Home | History | Annotate | Line # | Download | only in sun3x
pmap.c revision 1.87
      1  1.87      chs /*	$NetBSD: pmap.c,v 1.87 2005/05/29 15:57:02 chs Exp $	*/
      2   1.1      gwr 
      3   1.1      gwr /*-
      4  1.10   jeremy  * Copyright (c) 1996, 1997 The NetBSD Foundation, Inc.
      5   1.1      gwr  * All rights reserved.
      6   1.1      gwr  *
      7   1.1      gwr  * This code is derived from software contributed to The NetBSD Foundation
      8   1.1      gwr  * by Jeremy Cooper.
      9   1.1      gwr  *
     10   1.1      gwr  * Redistribution and use in source and binary forms, with or without
     11   1.1      gwr  * modification, are permitted provided that the following conditions
     12   1.1      gwr  * are met:
     13   1.1      gwr  * 1. Redistributions of source code must retain the above copyright
     14   1.1      gwr  *    notice, this list of conditions and the following disclaimer.
     15   1.1      gwr  * 2. Redistributions in binary form must reproduce the above copyright
     16   1.1      gwr  *    notice, this list of conditions and the following disclaimer in the
     17   1.1      gwr  *    documentation and/or other materials provided with the distribution.
     18   1.1      gwr  * 3. All advertising materials mentioning features or use of this software
     19   1.1      gwr  *    must display the following acknowledgement:
     20   1.1      gwr  *        This product includes software developed by the NetBSD
     21   1.1      gwr  *        Foundation, Inc. and its contributors.
     22   1.1      gwr  * 4. Neither the name of The NetBSD Foundation nor the names of its
     23   1.1      gwr  *    contributors may be used to endorse or promote products derived
     24   1.1      gwr  *    from this software without specific prior written permission.
     25   1.1      gwr  *
     26   1.1      gwr  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27   1.1      gwr  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28   1.1      gwr  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29   1.1      gwr  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30   1.1      gwr  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31   1.1      gwr  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32   1.1      gwr  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33   1.1      gwr  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34   1.1      gwr  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35   1.1      gwr  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36   1.1      gwr  * POSSIBILITY OF SUCH DAMAGE.
     37   1.1      gwr  */
     38   1.1      gwr 
     39   1.1      gwr /*
     40   1.1      gwr  * XXX These comments aren't quite accurate.  Need to change.
     41   1.1      gwr  * The sun3x uses the MC68851 Memory Management Unit, which is built
     42   1.1      gwr  * into the CPU.  The 68851 maps virtual to physical addresses using
     43   1.1      gwr  * a multi-level table lookup, which is stored in the very memory that
     44   1.1      gwr  * it maps.  The number of levels of lookup is configurable from one
     45   1.1      gwr  * to four.  In this implementation, we use three, named 'A' through 'C'.
     46   1.1      gwr  *
     47   1.1      gwr  * The MMU translates virtual addresses into physical addresses by
     48  1.84      wiz  * traversing these tables in a process called a 'table walk'.  The most
     49   1.1      gwr  * significant 7 bits of the Virtual Address ('VA') being translated are
     50   1.1      gwr  * used as an index into the level A table, whose base in physical memory
     51   1.1      gwr  * is stored in a special MMU register, the 'CPU Root Pointer' or CRP.  The
     52   1.1      gwr  * address found at that index in the A table is used as the base
     53   1.1      gwr  * address for the next table, the B table.  The next six bits of the VA are
     54   1.1      gwr  * used as an index into the B table, which in turn gives the base address
     55   1.1      gwr  * of the third and final C table.
     56   1.1      gwr  *
     57   1.1      gwr  * The next six bits of the VA are used as an index into the C table to
     58   1.1      gwr  * locate a Page Table Entry (PTE).  The PTE is a physical address in memory
     59   1.1      gwr  * to which the remaining 13 bits of the VA are added, producing the
     60   1.1      gwr  * mapped physical address.
     61   1.1      gwr  *
     62   1.1      gwr  * To map the entire memory space in this manner would require 2114296 bytes
     63   1.1      gwr  * of page tables per process - quite expensive.  Instead we will
     64   1.1      gwr  * allocate a fixed but considerably smaller space for the page tables at
     65   1.1      gwr  * the time the VM system is initialized.  When the pmap code is asked by
     66   1.1      gwr  * the kernel to map a VA to a PA, it allocates tables as needed from this
     67   1.1      gwr  * pool.  When there are no more tables in the pool, tables are stolen
     68   1.1      gwr  * from the oldest mapped entries in the tree.  This is only possible
     69   1.1      gwr  * because all memory mappings are stored in the kernel memory map
     70   1.1      gwr  * structures, independent of the pmap structures.  A VA which references
     71   1.1      gwr  * one of these invalidated maps will cause a page fault.  The kernel
     72   1.1      gwr  * will determine that the page fault was caused by a task using a valid
     73   1.1      gwr  * VA, but for some reason (which does not concern it), that address was
     74   1.1      gwr  * not mapped.  It will ask the pmap code to re-map the entry and then
     75   1.1      gwr  * it will resume executing the faulting task.
     76   1.1      gwr  *
     77   1.1      gwr  * In this manner the most efficient use of the page table space is
     78   1.1      gwr  * achieved.  Tasks which do not execute often will have their tables
     79   1.1      gwr  * stolen and reused by tasks which execute more frequently.  The best
     80   1.1      gwr  * size for the page table pool will probably be determined by
     81   1.1      gwr  * experimentation.
     82   1.1      gwr  *
     83   1.1      gwr  * You read all of the comments so far.  Good for you.
     84   1.1      gwr  * Now go play!
     85   1.1      gwr  */
     86   1.1      gwr 
     87   1.1      gwr /*** A Note About the 68851 Address Translation Cache
     88   1.1      gwr  * The MC68851 has a 64 entry cache, called the Address Translation Cache
     89   1.1      gwr  * or 'ATC'.  This cache stores the most recently used page descriptors
     90   1.1      gwr  * accessed by the MMU when it does translations.  Using a marker called a
     91   1.1      gwr  * 'task alias' the MMU can store the descriptors from 8 different table
     92   1.1      gwr  * spaces concurrently.  The task alias is associated with the base
     93   1.1      gwr  * address of the level A table of that address space.  When an address
     94   1.1      gwr  * space is currently active (the CRP currently points to its A table)
     95   1.1      gwr  * the only cached descriptors that will be obeyed are ones which have a
     96   1.1      gwr  * matching task alias of the current space associated with them.
     97   1.1      gwr  *
     98   1.1      gwr  * Since the cache is always consulted before any table lookups are done,
     99   1.1      gwr  * it is important that it accurately reflect the state of the MMU tables.
    100   1.1      gwr  * Whenever a change has been made to a table that has been loaded into
    101   1.1      gwr  * the MMU, the code must be sure to flush any cached entries that are
    102   1.1      gwr  * affected by the change.  These instances are documented in the code at
    103   1.1      gwr  * various points.
    104   1.1      gwr  */
    105   1.1      gwr /*** A Note About the Note About the 68851 Address Translation Cache
    106   1.1      gwr  * 4 months into this code I discovered that the sun3x does not have
    107   1.1      gwr  * a MC68851 chip. Instead, it has a version of this MMU that is part of the
    108   1.1      gwr  * the 68030 CPU.
    109   1.1      gwr  * All though it behaves very similarly to the 68851, it only has 1 task
    110   1.8      gwr  * alias and a 22 entry cache.  So sadly (or happily), the first paragraph
    111   1.8      gwr  * of the previous note does not apply to the sun3x pmap.
    112   1.1      gwr  */
    113  1.83    lukem 
    114  1.83    lukem #include <sys/cdefs.h>
    115  1.87      chs __KERNEL_RCSID(0, "$NetBSD: pmap.c,v 1.87 2005/05/29 15:57:02 chs Exp $");
    116  1.45      gwr 
    117  1.45      gwr #include "opt_ddb.h"
    118  1.82   martin #include "opt_pmap_debug.h"
    119   1.1      gwr 
    120   1.1      gwr #include <sys/param.h>
    121   1.1      gwr #include <sys/systm.h>
    122   1.1      gwr #include <sys/proc.h>
    123   1.1      gwr #include <sys/malloc.h>
    124  1.56  tsutsui #include <sys/pool.h>
    125   1.1      gwr #include <sys/user.h>
    126   1.1      gwr #include <sys/queue.h>
    127  1.20  thorpej #include <sys/kcore.h>
    128  1.38      gwr 
    129  1.38      gwr #include <uvm/uvm.h>
    130  1.43      mrg 
    131   1.1      gwr #include <machine/cpu.h>
    132  1.17      gwr #include <machine/kcore.h>
    133  1.33      gwr #include <machine/mon.h>
    134   1.1      gwr #include <machine/pmap.h>
    135   1.1      gwr #include <machine/pte.h>
    136  1.37      gwr #include <machine/vmparam.h>
    137  1.75      chs #include <m68k/cacheops.h>
    138  1.33      gwr 
    139  1.33      gwr #include <sun3/sun3/cache.h>
    140  1.33      gwr #include <sun3/sun3/machdep.h>
    141   1.1      gwr 
    142   1.1      gwr #include "pmap_pvt.h"
    143   1.1      gwr 
    144   1.1      gwr /* XXX - What headers declare these? */
    145   1.1      gwr extern struct pcb *curpcb;
    146   1.1      gwr extern int physmem;
    147   1.7      gwr 
    148   1.1      gwr /* Defined in locore.s */
    149   1.1      gwr extern char kernel_text[];
    150   1.1      gwr 
    151   1.1      gwr /* Defined by the linker */
    152   1.1      gwr extern char etext[], edata[], end[];
    153   1.1      gwr extern char *esym;	/* DDB */
    154   1.1      gwr 
    155   1.7      gwr /*************************** DEBUGGING DEFINITIONS ***********************
    156   1.7      gwr  * Macros, preprocessor defines and variables used in debugging can make *
    157   1.7      gwr  * code hard to read.  Anything used exclusively for debugging purposes  *
    158   1.7      gwr  * is defined here to avoid having such mess scattered around the file.  *
    159   1.7      gwr  *************************************************************************/
    160   1.8      gwr #ifdef	PMAP_DEBUG
    161   1.7      gwr /*
    162   1.7      gwr  * To aid the debugging process, macros should be expanded into smaller steps
    163   1.7      gwr  * that accomplish the same goal, yet provide convenient places for placing
    164   1.8      gwr  * breakpoints.  When this code is compiled with PMAP_DEBUG mode defined, the
    165   1.7      gwr  * 'INLINE' keyword is defined to an empty string.  This way, any function
    166   1.7      gwr  * defined to be a 'static INLINE' will become 'outlined' and compiled as
    167   1.7      gwr  * a separate function, which is much easier to debug.
    168   1.7      gwr  */
    169   1.7      gwr #define	INLINE	/* nothing */
    170   1.7      gwr 
    171   1.1      gwr /*
    172   1.7      gwr  * It is sometimes convenient to watch the activity of a particular table
    173   1.7      gwr  * in the system.  The following variables are used for that purpose.
    174   1.1      gwr  */
    175   1.7      gwr a_tmgr_t *pmap_watch_atbl = 0;
    176   1.7      gwr b_tmgr_t *pmap_watch_btbl = 0;
    177   1.7      gwr c_tmgr_t *pmap_watch_ctbl = 0;
    178   1.1      gwr 
    179   1.7      gwr int pmap_debug = 0;
    180   1.7      gwr #define DPRINT(args) if (pmap_debug) printf args
    181   1.7      gwr 
    182   1.7      gwr #else	/********** Stuff below is defined if NOT debugging **************/
    183   1.7      gwr 
    184   1.7      gwr #define	INLINE	inline
    185  1.10   jeremy #define DPRINT(args)  /* nada */
    186   1.7      gwr 
    187  1.10   jeremy #endif	/* PMAP_DEBUG */
    188   1.7      gwr /*********************** END OF DEBUGGING DEFINITIONS ********************/
    189   1.1      gwr 
    190   1.1      gwr /*** Management Structure - Memory Layout
    191   1.1      gwr  * For every MMU table in the sun3x pmap system there must be a way to
    192   1.1      gwr  * manage it; we must know which process is using it, what other tables
    193   1.1      gwr  * depend on it, and whether or not it contains any locked pages.  This
    194   1.1      gwr  * is solved by the creation of 'table management'  or 'tmgr'
    195   1.1      gwr  * structures.  One for each MMU table in the system.
    196   1.1      gwr  *
    197   1.1      gwr  *                        MAP OF MEMORY USED BY THE PMAP SYSTEM
    198   1.1      gwr  *
    199   1.1      gwr  *      towards lower memory
    200   1.1      gwr  * kernAbase -> +-------------------------------------------------------+
    201   1.1      gwr  *              | Kernel     MMU A level table                          |
    202   1.1      gwr  * kernBbase -> +-------------------------------------------------------+
    203   1.1      gwr  *              | Kernel     MMU B level tables                         |
    204   1.1      gwr  * kernCbase -> +-------------------------------------------------------+
    205   1.1      gwr  *              |                                                       |
    206   1.1      gwr  *              | Kernel     MMU C level tables                         |
    207   1.1      gwr  *              |                                                       |
    208   1.7      gwr  * mmuCbase  -> +-------------------------------------------------------+
    209   1.7      gwr  *              | User       MMU C level tables                         |
    210   1.1      gwr  * mmuAbase  -> +-------------------------------------------------------+
    211   1.1      gwr  *              |                                                       |
    212   1.1      gwr  *              | User       MMU A level tables                         |
    213   1.1      gwr  *              |                                                       |
    214   1.1      gwr  * mmuBbase  -> +-------------------------------------------------------+
    215   1.1      gwr  *              | User       MMU B level tables                         |
    216   1.1      gwr  * tmgrAbase -> +-------------------------------------------------------+
    217   1.1      gwr  *              |  TMGR A level table structures                        |
    218   1.1      gwr  * tmgrBbase -> +-------------------------------------------------------+
    219   1.1      gwr  *              |  TMGR B level table structures                        |
    220   1.1      gwr  * tmgrCbase -> +-------------------------------------------------------+
    221   1.1      gwr  *              |  TMGR C level table structures                        |
    222   1.1      gwr  * pvbase    -> +-------------------------------------------------------+
    223   1.1      gwr  *              |  Physical to Virtual mapping table (list heads)       |
    224   1.1      gwr  * pvebase   -> +-------------------------------------------------------+
    225   1.1      gwr  *              |  Physical to Virtual mapping table (list elements)    |
    226   1.1      gwr  *              |                                                       |
    227   1.1      gwr  *              +-------------------------------------------------------+
    228   1.1      gwr  *      towards higher memory
    229   1.1      gwr  *
    230   1.1      gwr  * For every A table in the MMU A area, there will be a corresponding
    231   1.1      gwr  * a_tmgr structure in the TMGR A area.  The same will be true for
    232   1.1      gwr  * the B and C tables.  This arrangement will make it easy to find the
    233   1.1      gwr  * controling tmgr structure for any table in the system by use of
    234   1.1      gwr  * (relatively) simple macros.
    235   1.1      gwr  */
    236   1.7      gwr 
    237   1.7      gwr /*
    238   1.8      gwr  * Global variables for storing the base addresses for the areas
    239   1.1      gwr  * labeled above.
    240   1.1      gwr  */
    241  1.69      chs static vaddr_t  	kernAphys;
    242   1.1      gwr static mmu_long_dte_t	*kernAbase;
    243   1.1      gwr static mmu_short_dte_t	*kernBbase;
    244   1.1      gwr static mmu_short_pte_t	*kernCbase;
    245  1.15      gwr static mmu_short_pte_t	*mmuCbase;
    246  1.15      gwr static mmu_short_dte_t	*mmuBbase;
    247   1.1      gwr static mmu_long_dte_t	*mmuAbase;
    248   1.1      gwr static a_tmgr_t		*Atmgrbase;
    249   1.1      gwr static b_tmgr_t		*Btmgrbase;
    250   1.1      gwr static c_tmgr_t		*Ctmgrbase;
    251  1.15      gwr static pv_t 		*pvbase;
    252   1.1      gwr static pv_elem_t	*pvebase;
    253  1.15      gwr struct pmap 		kernel_pmap;
    254   1.1      gwr 
    255   1.8      gwr /*
    256   1.8      gwr  * This holds the CRP currently loaded into the MMU.
    257   1.8      gwr  */
    258   1.8      gwr struct mmu_rootptr kernel_crp;
    259   1.8      gwr 
    260   1.8      gwr /*
    261   1.8      gwr  * Just all around global variables.
    262   1.1      gwr  */
    263   1.1      gwr static TAILQ_HEAD(a_pool_head_struct, a_tmgr_struct) a_pool;
    264   1.1      gwr static TAILQ_HEAD(b_pool_head_struct, b_tmgr_struct) b_pool;
    265   1.1      gwr static TAILQ_HEAD(c_pool_head_struct, c_tmgr_struct) c_pool;
    266   1.7      gwr 
    267   1.7      gwr 
    268   1.7      gwr /*
    269   1.7      gwr  * Flags used to mark the safety/availability of certain operations or
    270   1.7      gwr  * resources.
    271   1.7      gwr  */
    272  1.69      chs static boolean_t bootstrap_alloc_enabled = FALSE; /*Safe to use pmap_bootstrap_alloc().*/
    273  1.24   jeremy int tmp_vpages_inuse;	/* Temporary virtual pages are in use */
    274   1.1      gwr 
    275   1.1      gwr /*
    276   1.1      gwr  * XXX:  For now, retain the traditional variables that were
    277   1.1      gwr  * used in the old pmap/vm interface (without NONCONTIG).
    278   1.1      gwr  */
    279  1.81  thorpej /* Kernel virtual address space available: */
    280  1.81  thorpej vaddr_t	virtual_avail, virtual_end;
    281   1.1      gwr /* Physical address space available: */
    282  1.69      chs paddr_t	avail_start, avail_end;
    283   1.1      gwr 
    284   1.7      gwr /* This keep track of the end of the contiguously mapped range. */
    285  1.69      chs vaddr_t virtual_contig_end;
    286   1.7      gwr 
    287   1.7      gwr /* Physical address used by pmap_next_page() */
    288  1.69      chs paddr_t avail_next;
    289   1.7      gwr 
    290   1.7      gwr /* These are used by pmap_copy_page(), etc. */
    291  1.69      chs vaddr_t tmp_vpages[2];
    292   1.1      gwr 
    293  1.56  tsutsui /* memory pool for pmap structures */
    294  1.56  tsutsui struct pool	pmap_pmap_pool;
    295  1.56  tsutsui 
    296   1.7      gwr /*
    297   1.7      gwr  * The 3/80 is the only member of the sun3x family that has non-contiguous
    298   1.1      gwr  * physical memory.  Memory is divided into 4 banks which are physically
    299   1.1      gwr  * locatable on the system board.  Although the size of these banks varies
    300   1.1      gwr  * with the size of memory they contain, their base addresses are
    301   1.1      gwr  * permenently fixed.  The following structure, which describes these
    302   1.1      gwr  * banks, is initialized by pmap_bootstrap() after it reads from a similar
    303   1.1      gwr  * structure provided by the ROM Monitor.
    304   1.1      gwr  *
    305   1.1      gwr  * For the other machines in the sun3x architecture which do have contiguous
    306   1.1      gwr  * RAM, this list will have only one entry, which will describe the entire
    307   1.1      gwr  * range of available memory.
    308   1.1      gwr  */
    309  1.20  thorpej struct pmap_physmem_struct avail_mem[SUN3X_NPHYS_RAM_SEGS];
    310   1.1      gwr u_int total_phys_mem;
    311   1.1      gwr 
    312   1.7      gwr /*************************************************************************/
    313   1.7      gwr 
    314   1.7      gwr /*
    315   1.7      gwr  * XXX - Should "tune" these based on statistics.
    316   1.7      gwr  *
    317   1.7      gwr  * My first guess about the relative numbers of these needed is
    318   1.7      gwr  * based on the fact that a "typical" process will have several
    319   1.7      gwr  * pages mapped at low virtual addresses (text, data, bss), then
    320   1.7      gwr  * some mapped shared libraries, and then some stack pages mapped
    321   1.7      gwr  * near the high end of the VA space.  Each process can use only
    322   1.7      gwr  * one A table, and most will use only two B tables (maybe three)
    323   1.7      gwr  * and probably about four C tables.  Therefore, the first guess
    324   1.7      gwr  * at the relative numbers of these needed is 1:2:4 -gwr
    325   1.7      gwr  *
    326   1.7      gwr  * The number of C tables needed is closely related to the amount
    327   1.7      gwr  * of physical memory available plus a certain amount attributable
    328   1.7      gwr  * to the use of double mappings.  With a few simulation statistics
    329   1.7      gwr  * we can find a reasonably good estimation of this unknown value.
    330   1.7      gwr  * Armed with that and the above ratios, we have a good idea of what
    331   1.7      gwr  * is needed at each level. -j
    332   1.7      gwr  *
    333   1.7      gwr  * Note: It is not physical memory memory size, but the total mapped
    334   1.7      gwr  * virtual space required by the combined working sets of all the
    335   1.7      gwr  * currently _runnable_ processes.  (Sleeping ones don't count.)
    336   1.7      gwr  * The amount of physical memory should be irrelevant. -gwr
    337   1.7      gwr  */
    338  1.22   jeremy #ifdef	FIXED_NTABLES
    339   1.7      gwr #define NUM_A_TABLES	16
    340   1.7      gwr #define NUM_B_TABLES	32
    341   1.7      gwr #define NUM_C_TABLES	64
    342  1.22   jeremy #else
    343  1.22   jeremy unsigned int	NUM_A_TABLES, NUM_B_TABLES, NUM_C_TABLES;
    344  1.22   jeremy #endif	/* FIXED_NTABLES */
    345   1.7      gwr 
    346   1.7      gwr /*
    347   1.7      gwr  * This determines our total virtual mapping capacity.
    348   1.7      gwr  * Yes, it is a FIXED value so we can pre-allocate.
    349   1.7      gwr  */
    350   1.7      gwr #define NUM_USER_PTES	(NUM_C_TABLES * MMU_C_TBL_SIZE)
    351  1.15      gwr 
    352  1.15      gwr /*
    353  1.15      gwr  * The size of the Kernel Virtual Address Space (KVAS)
    354  1.15      gwr  * for purposes of MMU table allocation is -KERNBASE
    355  1.15      gwr  * (length from KERNBASE to 0xFFFFffff)
    356  1.15      gwr  */
    357  1.15      gwr #define	KVAS_SIZE		(-KERNBASE)
    358  1.15      gwr 
    359  1.15      gwr /* Numbers of kernel MMU tables to support KVAS_SIZE. */
    360  1.15      gwr #define KERN_B_TABLES	(KVAS_SIZE >> MMU_TIA_SHIFT)
    361  1.15      gwr #define KERN_C_TABLES	(KVAS_SIZE >> MMU_TIB_SHIFT)
    362  1.15      gwr #define	NUM_KERN_PTES	(KVAS_SIZE >> MMU_TIC_SHIFT)
    363   1.7      gwr 
    364   1.7      gwr /*************************** MISCELANEOUS MACROS *************************/
    365  1.55  tsutsui #define pmap_lock(pmap) simple_lock(&pmap->pm_lock)
    366  1.55  tsutsui #define pmap_unlock(pmap) simple_unlock(&pmap->pm_lock)
    367  1.55  tsutsui #define pmap_add_ref(pmap) ++pmap->pm_refcount
    368  1.55  tsutsui #define pmap_del_ref(pmap) --pmap->pm_refcount
    369  1.55  tsutsui #define pmap_refcount(pmap) pmap->pm_refcount
    370  1.64  thorpej 
    371  1.64  thorpej void *pmap_bootstrap_alloc(int);
    372   1.7      gwr 
    373  1.86      chs static INLINE void *mmu_ptov(paddr_t);
    374  1.86      chs static INLINE paddr_t mmu_vtop(void *);
    375   1.7      gwr 
    376   1.7      gwr #if	0
    377  1.86      chs static INLINE a_tmgr_t * mmuA2tmgr(mmu_long_dte_t *);
    378  1.26   jeremy #endif /* 0 */
    379  1.86      chs static INLINE b_tmgr_t * mmuB2tmgr(mmu_short_dte_t *);
    380  1.86      chs static INLINE c_tmgr_t * mmuC2tmgr(mmu_short_pte_t *);
    381   1.7      gwr 
    382  1.86      chs static INLINE pv_t *pa2pv(paddr_t);
    383  1.86      chs static INLINE int   pteidx(mmu_short_pte_t *);
    384  1.86      chs static INLINE pmap_t current_pmap(void);
    385   1.7      gwr 
    386   1.7      gwr /*
    387   1.7      gwr  * We can always convert between virtual and physical addresses
    388   1.7      gwr  * for anything in the range [KERNBASE ... avail_start] because
    389   1.7      gwr  * that range is GUARANTEED to be mapped linearly.
    390   1.7      gwr  * We rely heavily upon this feature!
    391   1.7      gwr  */
    392   1.7      gwr static INLINE void *
    393  1.86      chs mmu_ptov(paddr_t pa)
    394   1.7      gwr {
    395  1.69      chs 	vaddr_t va;
    396   1.7      gwr 
    397   1.7      gwr 	va = (pa + KERNBASE);
    398   1.8      gwr #ifdef	PMAP_DEBUG
    399   1.7      gwr 	if ((va < KERNBASE) || (va >= virtual_contig_end))
    400   1.7      gwr 		panic("mmu_ptov");
    401   1.7      gwr #endif
    402   1.7      gwr 	return ((void*)va);
    403   1.7      gwr }
    404  1.69      chs 
    405  1.86      chs static INLINE paddr_t
    406  1.86      chs mmu_vtop(void *vva)
    407   1.7      gwr {
    408  1.69      chs 	vaddr_t va;
    409   1.7      gwr 
    410  1.69      chs 	va = (vaddr_t)vva;
    411   1.8      gwr #ifdef	PMAP_DEBUG
    412   1.7      gwr 	if ((va < KERNBASE) || (va >= virtual_contig_end))
    413  1.72  tsutsui 		panic("mmu_vtop");
    414   1.7      gwr #endif
    415   1.7      gwr 	return (va - KERNBASE);
    416   1.7      gwr }
    417   1.7      gwr 
    418   1.7      gwr /*
    419   1.7      gwr  * These macros map MMU tables to their corresponding manager structures.
    420   1.1      gwr  * They are needed quite often because many of the pointers in the pmap
    421   1.1      gwr  * system reference MMU tables and not the structures that control them.
    422   1.1      gwr  * There needs to be a way to find one when given the other and these
    423   1.1      gwr  * macros do so by taking advantage of the memory layout described above.
    424   1.1      gwr  * Here's a quick step through the first macro, mmuA2tmgr():
    425   1.1      gwr  *
    426   1.1      gwr  * 1) find the offset of the given MMU A table from the base of its table
    427   1.1      gwr  *    pool (table - mmuAbase).
    428   1.1      gwr  * 2) convert this offset into a table index by dividing it by the
    429   1.1      gwr  *    size of one MMU 'A' table. (sizeof(mmu_long_dte_t) * MMU_A_TBL_SIZE)
    430   1.1      gwr  * 3) use this index to select the corresponding 'A' table manager
    431   1.1      gwr  *    structure from the 'A' table manager pool (Atmgrbase[index]).
    432   1.1      gwr  */
    433   1.7      gwr /*  This function is not currently used. */
    434   1.7      gwr #if	0
    435   1.7      gwr static INLINE a_tmgr_t *
    436  1.86      chs mmuA2tmgr(mmu_long_dte_t *mmuAtbl)
    437   1.7      gwr {
    438  1.69      chs 	int idx;
    439   1.7      gwr 
    440   1.7      gwr 	/* Which table is this in? */
    441   1.7      gwr 	idx = (mmuAtbl - mmuAbase) / MMU_A_TBL_SIZE;
    442   1.8      gwr #ifdef	PMAP_DEBUG
    443   1.7      gwr 	if ((idx < 0) || (idx >= NUM_A_TABLES))
    444   1.7      gwr 		panic("mmuA2tmgr");
    445   1.7      gwr #endif
    446   1.7      gwr 	return (&Atmgrbase[idx]);
    447   1.7      gwr }
    448   1.7      gwr #endif	/* 0 */
    449   1.7      gwr 
    450   1.7      gwr static INLINE b_tmgr_t *
    451  1.86      chs mmuB2tmgr(mmu_short_dte_t *mmuBtbl)
    452   1.7      gwr {
    453  1.69      chs 	int idx;
    454   1.7      gwr 
    455   1.7      gwr 	/* Which table is this in? */
    456   1.7      gwr 	idx = (mmuBtbl - mmuBbase) / MMU_B_TBL_SIZE;
    457   1.8      gwr #ifdef	PMAP_DEBUG
    458   1.7      gwr 	if ((idx < 0) || (idx >= NUM_B_TABLES))
    459   1.7      gwr 		panic("mmuB2tmgr");
    460   1.7      gwr #endif
    461   1.7      gwr 	return (&Btmgrbase[idx]);
    462   1.7      gwr }
    463   1.7      gwr 
    464   1.7      gwr /* mmuC2tmgr			INTERNAL
    465   1.7      gwr  **
    466   1.7      gwr  * Given a pte known to belong to a C table, return the address of
    467   1.7      gwr  * that table's management structure.
    468   1.7      gwr  */
    469   1.7      gwr static INLINE c_tmgr_t *
    470  1.86      chs mmuC2tmgr(mmu_short_pte_t *mmuCtbl)
    471   1.7      gwr {
    472  1.69      chs 	int idx;
    473   1.7      gwr 
    474   1.7      gwr 	/* Which table is this in? */
    475   1.7      gwr 	idx = (mmuCtbl - mmuCbase) / MMU_C_TBL_SIZE;
    476   1.8      gwr #ifdef	PMAP_DEBUG
    477   1.7      gwr 	if ((idx < 0) || (idx >= NUM_C_TABLES))
    478   1.7      gwr 		panic("mmuC2tmgr");
    479   1.7      gwr #endif
    480   1.7      gwr 	return (&Ctmgrbase[idx]);
    481   1.7      gwr }
    482   1.7      gwr 
    483   1.8      gwr /* This is now a function call below.
    484   1.1      gwr  * #define pa2pv(pa) \
    485   1.1      gwr  *	(&pvbase[(unsigned long)\
    486  1.25    veego  *		m68k_btop(pa)\
    487   1.1      gwr  *	])
    488   1.1      gwr  */
    489   1.1      gwr 
    490   1.7      gwr /* pa2pv			INTERNAL
    491   1.7      gwr  **
    492   1.7      gwr  * Return the pv_list_head element which manages the given physical
    493   1.7      gwr  * address.
    494   1.7      gwr  */
    495   1.7      gwr static INLINE pv_t *
    496  1.86      chs pa2pv(paddr_t pa)
    497   1.7      gwr {
    498  1.69      chs 	struct pmap_physmem_struct *bank;
    499  1.69      chs 	int idx;
    500   1.7      gwr 
    501   1.7      gwr 	bank = &avail_mem[0];
    502   1.7      gwr 	while (pa >= bank->pmem_end)
    503   1.7      gwr 		bank = bank->pmem_next;
    504   1.7      gwr 
    505   1.7      gwr 	pa -= bank->pmem_start;
    506  1.25    veego 	idx = bank->pmem_pvbase + m68k_btop(pa);
    507   1.8      gwr #ifdef	PMAP_DEBUG
    508   1.7      gwr 	if ((idx < 0) || (idx >= physmem))
    509   1.7      gwr 		panic("pa2pv");
    510   1.7      gwr #endif
    511   1.7      gwr 	return &pvbase[idx];
    512   1.7      gwr }
    513   1.7      gwr 
    514   1.7      gwr /* pteidx			INTERNAL
    515   1.7      gwr  **
    516   1.7      gwr  * Return the index of the given PTE within the entire fixed table of
    517   1.7      gwr  * PTEs.
    518   1.7      gwr  */
    519   1.7      gwr static INLINE int
    520  1.86      chs pteidx(mmu_short_pte_t *pte)
    521   1.7      gwr {
    522   1.7      gwr 	return (pte - kernCbase);
    523   1.7      gwr }
    524   1.7      gwr 
    525   1.7      gwr /*
    526   1.8      gwr  * This just offers a place to put some debugging checks,
    527  1.76  thorpej  * and reduces the number of places "curlwp" appears...
    528   1.7      gwr  */
    529  1.86      chs static INLINE pmap_t
    530  1.86      chs current_pmap(void)
    531   1.7      gwr {
    532   1.7      gwr 	struct vmspace *vm;
    533  1.67      chs 	struct vm_map *map;
    534   1.7      gwr 	pmap_t	pmap;
    535   1.7      gwr 
    536  1.76  thorpej 	if (curlwp == NULL)
    537   1.9      gwr 		pmap = &kernel_pmap;
    538   1.9      gwr 	else {
    539  1.76  thorpej 		vm = curproc->p_vmspace;
    540   1.9      gwr 		map = &vm->vm_map;
    541   1.9      gwr 		pmap = vm_map_pmap(map);
    542   1.9      gwr 	}
    543   1.7      gwr 
    544   1.7      gwr 	return (pmap);
    545   1.7      gwr }
    546   1.7      gwr 
    547   1.7      gwr 
    548   1.1      gwr /*************************** FUNCTION DEFINITIONS ************************
    549   1.1      gwr  * These appear here merely for the compiler to enforce type checking on *
    550   1.1      gwr  * all function calls.                                                   *
    551   1.7      gwr  *************************************************************************/
    552   1.1      gwr 
    553   1.1      gwr /** Internal functions
    554  1.37      gwr  ** Most functions used only within this module are defined in
    555  1.37      gwr  **   pmap_pvt.h (why not here if used only here?)
    556   1.1      gwr  **/
    557  1.86      chs static void pmap_page_upload(void);
    558   1.1      gwr 
    559   1.1      gwr /** Interface functions
    560   1.1      gwr  ** - functions required by the Mach VM Pmap interface, with MACHINE_CONTIG
    561   1.1      gwr  **   defined.
    562   1.1      gwr  **/
    563  1.86      chs void pmap_pinit(pmap_t);
    564  1.86      chs void pmap_release(pmap_t);
    565   1.1      gwr 
    566   1.1      gwr /********************************** CODE ********************************
    567   1.1      gwr  * Functions that are called from other parts of the kernel are labeled *
    568   1.1      gwr  * as 'INTERFACE' functions.  Functions that are only called from       *
    569   1.1      gwr  * within the pmap module are labeled as 'INTERNAL' functions.          *
    570   1.1      gwr  * Functions that are internal, but are not (currently) used at all are *
    571   1.1      gwr  * labeled 'INTERNAL_X'.                                                *
    572   1.1      gwr  ************************************************************************/
    573   1.1      gwr 
    574   1.1      gwr /* pmap_bootstrap			INTERNAL
    575   1.1      gwr  **
    576  1.33      gwr  * Initializes the pmap system.  Called at boot time from
    577  1.33      gwr  * locore2.c:_vm_init()
    578   1.1      gwr  *
    579   1.1      gwr  * Reminder: having a pmap_bootstrap_alloc() and also having the VM
    580   1.1      gwr  *           system implement pmap_steal_memory() is redundant.
    581   1.1      gwr  *           Don't release this code without removing one or the other!
    582   1.1      gwr  */
    583  1.86      chs void
    584  1.86      chs pmap_bootstrap(vaddr_t nextva)
    585   1.1      gwr {
    586   1.1      gwr 	struct physmemory *membank;
    587   1.1      gwr 	struct pmap_physmem_struct *pmap_membank;
    588  1.69      chs 	vaddr_t va, eva;
    589  1.69      chs 	paddr_t pa;
    590   1.1      gwr 	int b, c, i, j;	/* running table counts */
    591  1.40      gwr 	int size, resvmem;
    592   1.1      gwr 
    593   1.1      gwr 	/*
    594   1.1      gwr 	 * This function is called by __bootstrap after it has
    595   1.1      gwr 	 * determined the type of machine and made the appropriate
    596   1.1      gwr 	 * patches to the ROM vectors (XXX- I don't quite know what I meant
    597   1.1      gwr 	 * by that.)  It allocates and sets up enough of the pmap system
    598   1.1      gwr 	 * to manage the kernel's address space.
    599   1.1      gwr 	 */
    600   1.1      gwr 
    601   1.1      gwr 	/*
    602   1.7      gwr 	 * Determine the range of kernel virtual and physical
    603   1.7      gwr 	 * space available. Note that we ABSOLUTELY DEPEND on
    604   1.7      gwr 	 * the fact that the first bank of memory (4MB) is
    605   1.7      gwr 	 * mapped linearly to KERNBASE (which we guaranteed in
    606   1.7      gwr 	 * the first instructions of locore.s).
    607   1.7      gwr 	 * That is plenty for our bootstrap work.
    608   1.1      gwr 	 */
    609  1.25    veego 	virtual_avail = m68k_round_page(nextva);
    610   1.7      gwr 	virtual_contig_end = KERNBASE + 0x400000; /* +4MB */
    611   1.1      gwr 	virtual_end = VM_MAX_KERNEL_ADDRESS;
    612   1.7      gwr 	/* Don't need avail_start til later. */
    613   1.1      gwr 
    614   1.7      gwr 	/* We may now call pmap_bootstrap_alloc(). */
    615   1.7      gwr 	bootstrap_alloc_enabled = TRUE;
    616   1.1      gwr 
    617   1.1      gwr 	/*
    618   1.1      gwr 	 * This is a somewhat unwrapped loop to deal with
    619   1.1      gwr 	 * copying the PROM's 'phsymem' banks into the pmap's
    620   1.1      gwr 	 * banks.  The following is always assumed:
    621   1.1      gwr 	 * 1. There is always at least one bank of memory.
    622   1.1      gwr 	 * 2. There is always a last bank of memory, and its
    623   1.1      gwr 	 *    pmem_next member must be set to NULL.
    624   1.1      gwr 	 */
    625   1.1      gwr 	membank = romVectorPtr->v_physmemory;
    626   1.1      gwr 	pmap_membank = avail_mem;
    627   1.1      gwr 	total_phys_mem = 0;
    628   1.1      gwr 
    629  1.40      gwr 	for (;;) { /* break on !membank */
    630   1.1      gwr 		pmap_membank->pmem_start = membank->address;
    631   1.1      gwr 		pmap_membank->pmem_end = membank->address + membank->size;
    632   1.1      gwr 		total_phys_mem += membank->size;
    633  1.40      gwr 		membank = membank->next;
    634  1.40      gwr 		if (!membank)
    635  1.40      gwr 			break;
    636   1.1      gwr 		/* This silly syntax arises because pmap_membank
    637   1.1      gwr 		 * is really a pre-allocated array, but it is put into
    638   1.1      gwr 		 * use as a linked list.
    639   1.1      gwr 		 */
    640   1.1      gwr 		pmap_membank->pmem_next = pmap_membank + 1;
    641   1.1      gwr 		pmap_membank = pmap_membank->pmem_next;
    642   1.1      gwr 	}
    643  1.40      gwr 	/* This is the last element. */
    644  1.40      gwr 	pmap_membank->pmem_next = NULL;
    645   1.1      gwr 
    646   1.1      gwr 	/*
    647  1.40      gwr 	 * Note: total_phys_mem, physmem represent
    648  1.40      gwr 	 * actual physical memory, including that
    649  1.40      gwr 	 * reserved for the PROM monitor.
    650   1.1      gwr 	 */
    651  1.40      gwr 	physmem = btoc(total_phys_mem);
    652   1.1      gwr 
    653   1.1      gwr 	/*
    654  1.60  tsutsui 	 * Avail_end is set to the first byte of physical memory
    655  1.60  tsutsui 	 * after the end of the last bank.  We use this only to
    656  1.60  tsutsui 	 * determine if a physical address is "managed" memory.
    657  1.60  tsutsui 	 * This address range should be reduced to prevent the
    658  1.40      gwr 	 * physical pages needed by the PROM monitor from being used
    659  1.40      gwr 	 * in the VM system.
    660   1.1      gwr 	 */
    661  1.40      gwr 	resvmem = total_phys_mem - *(romVectorPtr->memoryAvail);
    662  1.40      gwr 	resvmem = m68k_round_page(resvmem);
    663  1.60  tsutsui 	avail_end = pmap_membank->pmem_end - resvmem;
    664   1.1      gwr 
    665   1.1      gwr 	/*
    666  1.15      gwr 	 * First allocate enough kernel MMU tables to map all
    667  1.15      gwr 	 * of kernel virtual space from KERNBASE to 0xFFFFFFFF.
    668   1.1      gwr 	 * Note: All must be aligned on 256 byte boundaries.
    669  1.15      gwr 	 * Start with the level-A table (one of those).
    670   1.1      gwr 	 */
    671  1.69      chs 	size = sizeof(mmu_long_dte_t) * MMU_A_TBL_SIZE;
    672   1.7      gwr 	kernAbase = pmap_bootstrap_alloc(size);
    673  1.71  tsutsui 	memset(kernAbase, 0, size);
    674   1.1      gwr 
    675  1.15      gwr 	/* Now the level-B kernel tables... */
    676  1.15      gwr 	size = sizeof(mmu_short_dte_t) * MMU_B_TBL_SIZE * KERN_B_TABLES;
    677   1.7      gwr 	kernBbase = pmap_bootstrap_alloc(size);
    678  1.71  tsutsui 	memset(kernBbase, 0, size);
    679   1.1      gwr 
    680  1.15      gwr 	/* Now the level-C kernel tables... */
    681  1.15      gwr 	size = sizeof(mmu_short_pte_t) * MMU_C_TBL_SIZE * KERN_C_TABLES;
    682  1.15      gwr 	kernCbase = pmap_bootstrap_alloc(size);
    683  1.71  tsutsui 	memset(kernCbase, 0, size);
    684   1.7      gwr 	/*
    685   1.7      gwr 	 * Note: In order for the PV system to work correctly, the kernel
    686   1.7      gwr 	 * and user-level C tables must be allocated contiguously.
    687   1.7      gwr 	 * Nothing should be allocated between here and the allocation of
    688   1.7      gwr 	 * mmuCbase below.  XXX: Should do this as one allocation, and
    689   1.7      gwr 	 * then compute a pointer for mmuCbase instead of this...
    690  1.15      gwr 	 *
    691  1.15      gwr 	 * Allocate user MMU tables.
    692  1.70      wiz 	 * These must be contiguous with the preceding.
    693   1.7      gwr 	 */
    694  1.22   jeremy 
    695  1.22   jeremy #ifndef	FIXED_NTABLES
    696  1.22   jeremy 	/*
    697  1.22   jeremy 	 * The number of user-level C tables that should be allocated is
    698  1.22   jeremy 	 * related to the size of physical memory.  In general, there should
    699  1.22   jeremy 	 * be enough tables to map four times the amount of available RAM.
    700  1.22   jeremy 	 * The extra amount is needed because some table space is wasted by
    701  1.22   jeremy 	 * fragmentation.
    702  1.22   jeremy 	 */
    703  1.22   jeremy 	NUM_C_TABLES = (total_phys_mem * 4) / (MMU_C_TBL_SIZE * MMU_PAGE_SIZE);
    704  1.22   jeremy 	NUM_B_TABLES = NUM_C_TABLES / 2;
    705  1.22   jeremy 	NUM_A_TABLES = NUM_B_TABLES / 2;
    706  1.22   jeremy #endif	/* !FIXED_NTABLES */
    707  1.22   jeremy 
    708  1.15      gwr 	size = sizeof(mmu_short_pte_t) * MMU_C_TBL_SIZE	* NUM_C_TABLES;
    709  1.15      gwr 	mmuCbase = pmap_bootstrap_alloc(size);
    710  1.15      gwr 
    711  1.15      gwr 	size = sizeof(mmu_short_dte_t) * MMU_B_TBL_SIZE	* NUM_B_TABLES;
    712  1.15      gwr 	mmuBbase = pmap_bootstrap_alloc(size);
    713   1.1      gwr 
    714  1.69      chs 	size = sizeof(mmu_long_dte_t) * MMU_A_TBL_SIZE * NUM_A_TABLES;
    715  1.15      gwr 	mmuAbase = pmap_bootstrap_alloc(size);
    716   1.7      gwr 
    717   1.7      gwr 	/*
    718   1.7      gwr 	 * Fill in the never-changing part of the kernel tables.
    719   1.7      gwr 	 * For simplicity, the kernel's mappings will be editable as a
    720   1.1      gwr 	 * flat array of page table entries at kernCbase.  The
    721   1.1      gwr 	 * higher level 'A' and 'B' tables must be initialized to point
    722   1.1      gwr 	 * to this lower one.
    723   1.1      gwr 	 */
    724   1.1      gwr 	b = c = 0;
    725   1.1      gwr 
    726   1.7      gwr 	/*
    727   1.7      gwr 	 * Invalidate all mappings below KERNBASE in the A table.
    728   1.1      gwr 	 * This area has already been zeroed out, but it is good
    729   1.1      gwr 	 * practice to explicitly show that we are interpreting
    730   1.1      gwr 	 * it as a list of A table descriptors.
    731   1.1      gwr 	 */
    732   1.1      gwr 	for (i = 0; i < MMU_TIA(KERNBASE); i++) {
    733   1.1      gwr 		kernAbase[i].addr.raw = 0;
    734   1.1      gwr 	}
    735   1.1      gwr 
    736   1.7      gwr 	/*
    737   1.7      gwr 	 * Set up the kernel A and B tables so that they will reference the
    738   1.1      gwr 	 * correct spots in the contiguous table of PTEs allocated for the
    739   1.1      gwr 	 * kernel's virtual memory space.
    740   1.1      gwr 	 */
    741   1.1      gwr 	for (i = MMU_TIA(KERNBASE); i < MMU_A_TBL_SIZE; i++) {
    742   1.1      gwr 		kernAbase[i].attr.raw =
    743   1.1      gwr 			MMU_LONG_DTE_LU | MMU_LONG_DTE_SUPV | MMU_DT_SHORT;
    744   1.7      gwr 		kernAbase[i].addr.raw = mmu_vtop(&kernBbase[b]);
    745   1.1      gwr 
    746   1.1      gwr 		for (j=0; j < MMU_B_TBL_SIZE; j++) {
    747   1.7      gwr 			kernBbase[b + j].attr.raw = mmu_vtop(&kernCbase[c])
    748   1.1      gwr 				| MMU_DT_SHORT;
    749   1.1      gwr 			c += MMU_C_TBL_SIZE;
    750   1.1      gwr 		}
    751   1.1      gwr 		b += MMU_B_TBL_SIZE;
    752   1.1      gwr 	}
    753   1.1      gwr 
    754   1.7      gwr 	pmap_alloc_usermmu();	/* Allocate user MMU tables.        */
    755   1.7      gwr 	pmap_alloc_usertmgr();	/* Allocate user MMU table managers.*/
    756   1.7      gwr 	pmap_alloc_pv();	/* Allocate physical->virtual map.  */
    757   1.7      gwr 
    758   1.7      gwr 	/*
    759   1.7      gwr 	 * We are now done with pmap_bootstrap_alloc().  Round up
    760   1.7      gwr 	 * `virtual_avail' to the nearest page, and set the flag
    761   1.7      gwr 	 * to prevent use of pmap_bootstrap_alloc() hereafter.
    762   1.7      gwr 	 */
    763  1.79  thorpej 	pmap_bootstrap_aalign(PAGE_SIZE);
    764   1.7      gwr 	bootstrap_alloc_enabled = FALSE;
    765   1.7      gwr 
    766   1.7      gwr 	/*
    767   1.7      gwr 	 * Now that we are done with pmap_bootstrap_alloc(), we
    768   1.7      gwr 	 * must save the virtual and physical addresses of the
    769   1.7      gwr 	 * end of the linearly mapped range, which are stored in
    770   1.7      gwr 	 * virtual_contig_end and avail_start, respectively.
    771   1.7      gwr 	 * These variables will never change after this point.
    772   1.7      gwr 	 */
    773   1.7      gwr 	virtual_contig_end = virtual_avail;
    774   1.7      gwr 	avail_start = virtual_avail - KERNBASE;
    775   1.7      gwr 
    776   1.7      gwr 	/*
    777   1.7      gwr 	 * `avail_next' is a running pointer used by pmap_next_page() to
    778   1.7      gwr 	 * keep track of the next available physical page to be handed
    779   1.7      gwr 	 * to the VM system during its initialization, in which it
    780   1.7      gwr 	 * asks for physical pages, one at a time.
    781   1.7      gwr 	 */
    782   1.7      gwr 	avail_next = avail_start;
    783   1.7      gwr 
    784   1.7      gwr 	/*
    785   1.7      gwr 	 * Now allocate some virtual addresses, but not the physical pages
    786   1.7      gwr 	 * behind them.  Note that virtual_avail is already page-aligned.
    787   1.7      gwr 	 *
    788   1.7      gwr 	 * tmp_vpages[] is an array of two virtual pages used for temporary
    789   1.7      gwr 	 * kernel mappings in the pmap module to facilitate various physical
    790   1.7      gwr 	 * address-oritented operations.
    791   1.7      gwr 	 */
    792   1.7      gwr 	tmp_vpages[0] = virtual_avail;
    793  1.79  thorpej 	virtual_avail += PAGE_SIZE;
    794   1.7      gwr 	tmp_vpages[1] = virtual_avail;
    795  1.79  thorpej 	virtual_avail += PAGE_SIZE;
    796   1.7      gwr 
    797   1.7      gwr 	/** Initialize the PV system **/
    798   1.7      gwr 	pmap_init_pv();
    799   1.7      gwr 
    800   1.7      gwr 	/*
    801   1.7      gwr 	 * Fill in the kernel_pmap structure and kernel_crp.
    802   1.7      gwr 	 */
    803   1.7      gwr 	kernAphys = mmu_vtop(kernAbase);
    804   1.7      gwr 	kernel_pmap.pm_a_tmgr = NULL;
    805   1.7      gwr 	kernel_pmap.pm_a_phys = kernAphys;
    806   1.7      gwr 	kernel_pmap.pm_refcount = 1; /* always in use */
    807  1.55  tsutsui 	simple_lock_init(&kernel_pmap.pm_lock);
    808   1.7      gwr 
    809   1.7      gwr 	kernel_crp.rp_attr = MMU_LONG_DTE_LU | MMU_DT_LONG;
    810   1.7      gwr 	kernel_crp.rp_addr = kernAphys;
    811   1.7      gwr 
    812   1.1      gwr 	/*
    813   1.1      gwr 	 * Now pmap_enter_kernel() may be used safely and will be
    814   1.7      gwr 	 * the main interface used hereafter to modify the kernel's
    815   1.7      gwr 	 * virtual address space.  Note that since we are still running
    816   1.7      gwr 	 * under the PROM's address table, none of these table modifications
    817   1.7      gwr 	 * actually take effect until pmap_takeover_mmu() is called.
    818   1.1      gwr 	 *
    819   1.7      gwr 	 * Note: Our tables do NOT have the PROM linear mappings!
    820   1.7      gwr 	 * Only the mappings created here exist in our tables, so
    821   1.7      gwr 	 * remember to map anything we expect to use.
    822   1.1      gwr 	 */
    823  1.69      chs 	va = (vaddr_t)KERNBASE;
    824   1.7      gwr 	pa = 0;
    825   1.1      gwr 
    826   1.1      gwr 	/*
    827   1.7      gwr 	 * The first page of the kernel virtual address space is the msgbuf
    828   1.7      gwr 	 * page.  The page attributes (data, non-cached) are set here, while
    829   1.7      gwr 	 * the address is assigned to this global pointer in cpu_startup().
    830  1.29      gwr 	 * It is non-cached, mostly due to paranoia.
    831   1.1      gwr 	 */
    832  1.29      gwr 	pmap_enter_kernel(va, pa|PMAP_NC, VM_PROT_ALL);
    833  1.79  thorpej 	va += PAGE_SIZE; pa += PAGE_SIZE;
    834   1.1      gwr 
    835   1.7      gwr 	/* Next page is used as the temporary stack. */
    836   1.1      gwr 	pmap_enter_kernel(va, pa, VM_PROT_ALL);
    837  1.79  thorpej 	va += PAGE_SIZE; pa += PAGE_SIZE;
    838   1.1      gwr 
    839   1.1      gwr 	/*
    840   1.1      gwr 	 * Map all of the kernel's text segment as read-only and cacheable.
    841   1.1      gwr 	 * (Cacheable is implied by default).  Unfortunately, the last bytes
    842   1.1      gwr 	 * of kernel text and the first bytes of kernel data will often be
    843   1.1      gwr 	 * sharing the same page.  Therefore, the last page of kernel text
    844   1.1      gwr 	 * has to be mapped as read/write, to accomodate the data.
    845   1.1      gwr 	 */
    846  1.69      chs 	eva = m68k_trunc_page((vaddr_t)etext);
    847  1.79  thorpej 	for (; va < eva; va += PAGE_SIZE, pa += PAGE_SIZE)
    848   1.1      gwr 		pmap_enter_kernel(va, pa, VM_PROT_READ|VM_PROT_EXECUTE);
    849   1.1      gwr 
    850   1.7      gwr 	/*
    851   1.7      gwr 	 * Map all of the kernel's data as read/write and cacheable.
    852   1.7      gwr 	 * This includes: data, BSS, symbols, and everything in the
    853   1.7      gwr 	 * contiguous memory used by pmap_bootstrap_alloc()
    854   1.1      gwr 	 */
    855  1.79  thorpej 	for (; pa < avail_start; va += PAGE_SIZE, pa += PAGE_SIZE)
    856   1.1      gwr 		pmap_enter_kernel(va, pa, VM_PROT_READ|VM_PROT_WRITE);
    857   1.1      gwr 
    858   1.7      gwr 	/*
    859   1.7      gwr 	 * At this point we are almost ready to take over the MMU.  But first
    860   1.7      gwr 	 * we must save the PROM's address space in our map, as we call its
    861   1.7      gwr 	 * routines and make references to its data later in the kernel.
    862   1.1      gwr 	 */
    863   1.7      gwr 	pmap_bootstrap_copyprom();
    864   1.7      gwr 	pmap_takeover_mmu();
    865  1.13      gwr 	pmap_bootstrap_setprom();
    866   1.1      gwr 
    867   1.1      gwr 	/* Notify the VM system of our page size. */
    868  1.79  thorpej 	uvmexp.pagesize = PAGE_SIZE;
    869  1.43      mrg 	uvm_setpagesize();
    870  1.37      gwr 
    871  1.37      gwr 	pmap_page_upload();
    872   1.1      gwr }
    873   1.1      gwr 
    874   1.1      gwr 
    875   1.1      gwr /* pmap_alloc_usermmu			INTERNAL
    876   1.1      gwr  **
    877   1.1      gwr  * Called from pmap_bootstrap() to allocate MMU tables that will
    878   1.1      gwr  * eventually be used for user mappings.
    879   1.1      gwr  */
    880  1.86      chs void
    881  1.86      chs pmap_alloc_usermmu(void)
    882   1.1      gwr {
    883   1.7      gwr 	/* XXX: Moved into caller. */
    884   1.1      gwr }
    885   1.1      gwr 
    886   1.1      gwr /* pmap_alloc_pv			INTERNAL
    887   1.1      gwr  **
    888   1.1      gwr  * Called from pmap_bootstrap() to allocate the physical
    889   1.1      gwr  * to virtual mapping list.  Each physical page of memory
    890   1.1      gwr  * in the system has a corresponding element in this list.
    891   1.1      gwr  */
    892  1.86      chs void
    893  1.86      chs pmap_alloc_pv(void)
    894   1.1      gwr {
    895   1.1      gwr 	int	i;
    896   1.1      gwr 	unsigned int	total_mem;
    897   1.1      gwr 
    898   1.7      gwr 	/*
    899   1.7      gwr 	 * Allocate a pv_head structure for every page of physical
    900   1.1      gwr 	 * memory that will be managed by the system.  Since memory on
    901   1.1      gwr 	 * the 3/80 is non-contiguous, we cannot arrive at a total page
    902   1.1      gwr 	 * count by subtraction of the lowest available address from the
    903   1.1      gwr 	 * highest, but rather we have to step through each memory
    904   1.1      gwr 	 * bank and add the number of pages in each to the total.
    905   1.1      gwr 	 *
    906   1.1      gwr 	 * At this time we also initialize the offset of each bank's
    907   1.1      gwr 	 * starting pv_head within the pv_head list so that the physical
    908   1.1      gwr 	 * memory state routines (pmap_is_referenced(),
    909   1.1      gwr 	 * pmap_is_modified(), et al.) can quickly find coresponding
    910   1.1      gwr 	 * pv_heads in spite of the non-contiguity.
    911   1.1      gwr 	 */
    912   1.1      gwr 	total_mem = 0;
    913  1.20  thorpej 	for (i = 0; i < SUN3X_NPHYS_RAM_SEGS; i++) {
    914  1.25    veego 		avail_mem[i].pmem_pvbase = m68k_btop(total_mem);
    915   1.1      gwr 		total_mem += avail_mem[i].pmem_end -
    916   1.1      gwr 			avail_mem[i].pmem_start;
    917   1.1      gwr 		if (avail_mem[i].pmem_next == NULL)
    918   1.1      gwr 			break;
    919   1.1      gwr 	}
    920   1.1      gwr 	pvbase = (pv_t *) pmap_bootstrap_alloc(sizeof(pv_t) *
    921  1.25    veego 		m68k_btop(total_phys_mem));
    922   1.1      gwr }
    923   1.1      gwr 
    924   1.1      gwr /* pmap_alloc_usertmgr			INTERNAL
    925   1.1      gwr  **
    926   1.1      gwr  * Called from pmap_bootstrap() to allocate the structures which
    927   1.1      gwr  * facilitate management of user MMU tables.  Each user MMU table
    928   1.1      gwr  * in the system has one such structure associated with it.
    929   1.1      gwr  */
    930  1.86      chs void
    931  1.86      chs pmap_alloc_usertmgr(void)
    932   1.1      gwr {
    933   1.1      gwr 	/* Allocate user MMU table managers */
    934   1.7      gwr 	/* It would be a lot simpler to just make these BSS, but */
    935   1.7      gwr 	/* we may want to change their size at boot time... -j */
    936   1.1      gwr 	Atmgrbase = (a_tmgr_t *) pmap_bootstrap_alloc(sizeof(a_tmgr_t)
    937   1.1      gwr 		* NUM_A_TABLES);
    938   1.1      gwr 	Btmgrbase = (b_tmgr_t *) pmap_bootstrap_alloc(sizeof(b_tmgr_t)
    939   1.1      gwr 		* NUM_B_TABLES);
    940   1.1      gwr 	Ctmgrbase = (c_tmgr_t *) pmap_bootstrap_alloc(sizeof(c_tmgr_t)
    941   1.1      gwr 		* NUM_C_TABLES);
    942   1.1      gwr 
    943   1.7      gwr 	/*
    944   1.7      gwr 	 * Allocate PV list elements for the physical to virtual
    945   1.1      gwr 	 * mapping system.
    946   1.1      gwr 	 */
    947   1.1      gwr 	pvebase = (pv_elem_t *) pmap_bootstrap_alloc(
    948   1.7      gwr 		sizeof(pv_elem_t) * (NUM_USER_PTES + NUM_KERN_PTES));
    949   1.1      gwr }
    950   1.1      gwr 
    951   1.1      gwr /* pmap_bootstrap_copyprom()			INTERNAL
    952   1.1      gwr  **
    953   1.1      gwr  * Copy the PROM mappings into our own tables.  Note, we
    954   1.1      gwr  * can use physical addresses until __bootstrap returns.
    955   1.1      gwr  */
    956  1.86      chs void
    957  1.86      chs pmap_bootstrap_copyprom(void)
    958   1.1      gwr {
    959  1.33      gwr 	struct sunromvec *romp;
    960   1.1      gwr 	int *mon_ctbl;
    961   1.1      gwr 	mmu_short_pte_t *kpte;
    962   1.1      gwr 	int i, len;
    963   1.1      gwr 
    964   1.1      gwr 	romp = romVectorPtr;
    965   1.1      gwr 
    966   1.1      gwr 	/*
    967  1.33      gwr 	 * Copy the mappings in SUN3X_MON_KDB_BASE...SUN3X_MONEND
    968  1.33      gwr 	 * Note: mon_ctbl[0] maps SUN3X_MON_KDB_BASE
    969   1.1      gwr 	 */
    970   1.1      gwr 	mon_ctbl = *romp->monptaddr;
    971  1.33      gwr 	i = m68k_btop(SUN3X_MON_KDB_BASE - KERNBASE);
    972   1.1      gwr 	kpte = &kernCbase[i];
    973  1.33      gwr 	len = m68k_btop(SUN3X_MONEND - SUN3X_MON_KDB_BASE);
    974   1.1      gwr 
    975   1.1      gwr 	for (i = 0; i < len; i++) {
    976   1.1      gwr 		kpte[i].attr.raw = mon_ctbl[i];
    977   1.1      gwr 	}
    978   1.1      gwr 
    979   1.1      gwr 	/*
    980   1.1      gwr 	 * Copy the mappings at MON_DVMA_BASE (to the end).
    981   1.1      gwr 	 * Note, in here, mon_ctbl[0] maps MON_DVMA_BASE.
    982  1.32      gwr 	 * Actually, we only want the last page, which the
    983  1.32      gwr 	 * PROM has set up for use by the "ie" driver.
    984  1.32      gwr 	 * (The i82686 needs its SCP there.)
    985  1.32      gwr 	 * If we copy all the mappings, pmap_enter_kernel
    986  1.32      gwr 	 * may complain about finding valid PTEs that are
    987  1.32      gwr 	 * not recorded in our PV lists...
    988   1.1      gwr 	 */
    989   1.1      gwr 	mon_ctbl = *romp->shadowpteaddr;
    990  1.33      gwr 	i = m68k_btop(SUN3X_MON_DVMA_BASE - KERNBASE);
    991   1.1      gwr 	kpte = &kernCbase[i];
    992  1.33      gwr 	len = m68k_btop(SUN3X_MON_DVMA_SIZE);
    993  1.32      gwr 	for (i = (len-1); i < len; i++) {
    994   1.1      gwr 		kpte[i].attr.raw = mon_ctbl[i];
    995   1.1      gwr 	}
    996   1.1      gwr }
    997   1.1      gwr 
    998   1.1      gwr /* pmap_takeover_mmu			INTERNAL
    999   1.1      gwr  **
   1000   1.1      gwr  * Called from pmap_bootstrap() after it has copied enough of the
   1001   1.1      gwr  * PROM mappings into the kernel map so that we can use our own
   1002   1.1      gwr  * MMU table.
   1003   1.1      gwr  */
   1004  1.86      chs void
   1005  1.86      chs pmap_takeover_mmu(void)
   1006   1.1      gwr {
   1007   1.1      gwr 
   1008  1.13      gwr 	loadcrp(&kernel_crp);
   1009   1.1      gwr }
   1010   1.1      gwr 
   1011  1.13      gwr /* pmap_bootstrap_setprom()			INTERNAL
   1012  1.13      gwr  **
   1013  1.13      gwr  * Set the PROM mappings so it can see kernel space.
   1014  1.13      gwr  * Note that physical addresses are used here, which
   1015  1.13      gwr  * we can get away with because this runs with the
   1016  1.13      gwr  * low 1GB set for transparent translation.
   1017  1.13      gwr  */
   1018  1.86      chs void
   1019  1.86      chs pmap_bootstrap_setprom(void)
   1020  1.13      gwr {
   1021  1.13      gwr 	mmu_long_dte_t *mon_dte;
   1022  1.13      gwr 	extern struct mmu_rootptr mon_crp;
   1023  1.13      gwr 	int i;
   1024  1.13      gwr 
   1025  1.13      gwr 	mon_dte = (mmu_long_dte_t *) mon_crp.rp_addr;
   1026  1.13      gwr 	for (i = MMU_TIA(KERNBASE); i < MMU_TIA(KERN_END); i++) {
   1027  1.13      gwr 		mon_dte[i].attr.raw = kernAbase[i].attr.raw;
   1028  1.13      gwr 		mon_dte[i].addr.raw = kernAbase[i].addr.raw;
   1029  1.13      gwr 	}
   1030  1.13      gwr }
   1031  1.13      gwr 
   1032  1.13      gwr 
   1033   1.1      gwr /* pmap_init			INTERFACE
   1034   1.1      gwr  **
   1035   1.1      gwr  * Called at the end of vm_init() to set up the pmap system to go
   1036   1.7      gwr  * into full time operation.  All initialization of kernel_pmap
   1037   1.7      gwr  * should be already done by now, so this should just do things
   1038   1.7      gwr  * needed for user-level pmaps to work.
   1039   1.1      gwr  */
   1040  1.86      chs void
   1041  1.86      chs pmap_init(void)
   1042   1.1      gwr {
   1043   1.1      gwr 	/** Initialize the manager pools **/
   1044   1.1      gwr 	TAILQ_INIT(&a_pool);
   1045   1.1      gwr 	TAILQ_INIT(&b_pool);
   1046   1.1      gwr 	TAILQ_INIT(&c_pool);
   1047   1.1      gwr 
   1048   1.1      gwr 	/**************************************************************
   1049   1.1      gwr 	 * Initialize all tmgr structures and MMU tables they manage. *
   1050   1.1      gwr 	 **************************************************************/
   1051   1.1      gwr 	/** Initialize A tables **/
   1052   1.1      gwr 	pmap_init_a_tables();
   1053   1.1      gwr 	/** Initialize B tables **/
   1054   1.1      gwr 	pmap_init_b_tables();
   1055   1.1      gwr 	/** Initialize C tables **/
   1056   1.1      gwr 	pmap_init_c_tables();
   1057  1.56  tsutsui 
   1058  1.56  tsutsui 	/** Initialize the pmap pools **/
   1059  1.56  tsutsui 	pool_init(&pmap_pmap_pool, sizeof(struct pmap), 0, 0, 0, "pmappl",
   1060  1.74  thorpej 	    &pool_allocator_nointr);
   1061   1.1      gwr }
   1062   1.1      gwr 
   1063   1.1      gwr /* pmap_init_a_tables()			INTERNAL
   1064   1.1      gwr  **
   1065   1.1      gwr  * Initializes all A managers, their MMU A tables, and inserts
   1066   1.1      gwr  * them into the A manager pool for use by the system.
   1067   1.1      gwr  */
   1068  1.86      chs void
   1069  1.86      chs pmap_init_a_tables(void)
   1070   1.1      gwr {
   1071   1.1      gwr 	int i;
   1072   1.1      gwr 	a_tmgr_t *a_tbl;
   1073   1.1      gwr 
   1074  1.86      chs 	for (i = 0; i < NUM_A_TABLES; i++) {
   1075   1.1      gwr 		/* Select the next available A manager from the pool */
   1076   1.1      gwr 		a_tbl = &Atmgrbase[i];
   1077   1.1      gwr 
   1078   1.7      gwr 		/*
   1079   1.7      gwr 		 * Clear its parent entry.  Set its wired and valid
   1080   1.1      gwr 		 * entry count to zero.
   1081   1.1      gwr 		 */
   1082   1.1      gwr 		a_tbl->at_parent = NULL;
   1083   1.1      gwr 		a_tbl->at_wcnt = a_tbl->at_ecnt = 0;
   1084   1.1      gwr 
   1085   1.1      gwr 		/* Assign it the next available MMU A table from the pool */
   1086   1.1      gwr 		a_tbl->at_dtbl = &mmuAbase[i * MMU_A_TBL_SIZE];
   1087   1.1      gwr 
   1088   1.7      gwr 		/*
   1089   1.7      gwr 		 * Initialize the MMU A table with the table in the `proc0',
   1090   1.1      gwr 		 * or kernel, mapping.  This ensures that every process has
   1091   1.1      gwr 		 * the kernel mapped in the top part of its address space.
   1092   1.1      gwr 		 */
   1093  1.71  tsutsui 		memcpy(a_tbl->at_dtbl, kernAbase, MMU_A_TBL_SIZE *
   1094   1.1      gwr 			sizeof(mmu_long_dte_t));
   1095   1.1      gwr 
   1096   1.7      gwr 		/*
   1097   1.7      gwr 		 * Finally, insert the manager into the A pool,
   1098   1.1      gwr 		 * making it ready to be used by the system.
   1099   1.1      gwr 		 */
   1100   1.1      gwr 		TAILQ_INSERT_TAIL(&a_pool, a_tbl, at_link);
   1101   1.1      gwr     }
   1102   1.1      gwr }
   1103   1.1      gwr 
   1104   1.1      gwr /* pmap_init_b_tables()			INTERNAL
   1105   1.1      gwr  **
   1106   1.1      gwr  * Initializes all B table managers, their MMU B tables, and
   1107   1.1      gwr  * inserts them into the B manager pool for use by the system.
   1108   1.1      gwr  */
   1109  1.86      chs void
   1110  1.86      chs pmap_init_b_tables(void)
   1111   1.1      gwr {
   1112  1.86      chs 	int i, j;
   1113   1.1      gwr 	b_tmgr_t *b_tbl;
   1114   1.1      gwr 
   1115  1.86      chs 	for (i = 0; i < NUM_B_TABLES; i++) {
   1116   1.1      gwr 		/* Select the next available B manager from the pool */
   1117   1.1      gwr 		b_tbl = &Btmgrbase[i];
   1118   1.1      gwr 
   1119   1.1      gwr 		b_tbl->bt_parent = NULL;	/* clear its parent,  */
   1120   1.1      gwr 		b_tbl->bt_pidx = 0;		/* parent index,      */
   1121   1.1      gwr 		b_tbl->bt_wcnt = 0;		/* wired entry count, */
   1122   1.1      gwr 		b_tbl->bt_ecnt = 0;		/* valid entry count. */
   1123   1.1      gwr 
   1124   1.1      gwr 		/* Assign it the next available MMU B table from the pool */
   1125   1.1      gwr 		b_tbl->bt_dtbl = &mmuBbase[i * MMU_B_TBL_SIZE];
   1126   1.1      gwr 
   1127   1.1      gwr 		/* Invalidate every descriptor in the table */
   1128   1.1      gwr 		for (j=0; j < MMU_B_TBL_SIZE; j++)
   1129   1.1      gwr 			b_tbl->bt_dtbl[j].attr.raw = MMU_DT_INVALID;
   1130   1.1      gwr 
   1131   1.1      gwr 		/* Insert the manager into the B pool */
   1132   1.1      gwr 		TAILQ_INSERT_TAIL(&b_pool, b_tbl, bt_link);
   1133   1.1      gwr 	}
   1134   1.1      gwr }
   1135   1.1      gwr 
   1136   1.1      gwr /* pmap_init_c_tables()			INTERNAL
   1137   1.1      gwr  **
   1138   1.1      gwr  * Initializes all C table managers, their MMU C tables, and
   1139   1.1      gwr  * inserts them into the C manager pool for use by the system.
   1140   1.1      gwr  */
   1141  1.86      chs void
   1142  1.86      chs pmap_init_c_tables(void)
   1143   1.1      gwr {
   1144  1.86      chs 	int i, j;
   1145   1.1      gwr 	c_tmgr_t *c_tbl;
   1146   1.1      gwr 
   1147  1.86      chs 	for (i = 0; i < NUM_C_TABLES; i++) {
   1148   1.1      gwr 		/* Select the next available C manager from the pool */
   1149   1.1      gwr 		c_tbl = &Ctmgrbase[i];
   1150   1.1      gwr 
   1151   1.1      gwr 		c_tbl->ct_parent = NULL;	/* clear its parent,  */
   1152   1.1      gwr 		c_tbl->ct_pidx = 0;		/* parent index,      */
   1153   1.1      gwr 		c_tbl->ct_wcnt = 0;		/* wired entry count, */
   1154  1.26   jeremy 		c_tbl->ct_ecnt = 0;		/* valid entry count, */
   1155  1.26   jeremy 		c_tbl->ct_pmap = NULL;		/* parent pmap,       */
   1156  1.26   jeremy 		c_tbl->ct_va = 0;		/* base of managed range */
   1157   1.1      gwr 
   1158   1.1      gwr 		/* Assign it the next available MMU C table from the pool */
   1159   1.1      gwr 		c_tbl->ct_dtbl = &mmuCbase[i * MMU_C_TBL_SIZE];
   1160   1.1      gwr 
   1161   1.1      gwr 		for (j=0; j < MMU_C_TBL_SIZE; j++)
   1162   1.1      gwr 			c_tbl->ct_dtbl[j].attr.raw = MMU_DT_INVALID;
   1163   1.1      gwr 
   1164   1.1      gwr 		TAILQ_INSERT_TAIL(&c_pool, c_tbl, ct_link);
   1165   1.1      gwr 	}
   1166   1.1      gwr }
   1167   1.1      gwr 
   1168   1.1      gwr /* pmap_init_pv()			INTERNAL
   1169   1.1      gwr  **
   1170   1.1      gwr  * Initializes the Physical to Virtual mapping system.
   1171   1.1      gwr  */
   1172  1.86      chs void
   1173  1.86      chs pmap_init_pv(void)
   1174   1.1      gwr {
   1175  1.86      chs 	int i;
   1176   1.7      gwr 
   1177   1.7      gwr 	/* Initialize every PV head. */
   1178  1.25    veego 	for (i = 0; i < m68k_btop(total_phys_mem); i++) {
   1179   1.7      gwr 		pvbase[i].pv_idx = PVE_EOL;	/* Indicate no mappings */
   1180   1.7      gwr 		pvbase[i].pv_flags = 0;		/* Zero out page flags  */
   1181   1.7      gwr 	}
   1182   1.1      gwr }
   1183   1.1      gwr 
   1184   1.1      gwr /* get_a_table			INTERNAL
   1185   1.1      gwr  **
   1186   1.1      gwr  * Retrieve and return a level A table for use in a user map.
   1187   1.1      gwr  */
   1188   1.1      gwr a_tmgr_t *
   1189  1.86      chs get_a_table(void)
   1190   1.1      gwr {
   1191   1.1      gwr 	a_tmgr_t *tbl;
   1192   1.7      gwr 	pmap_t pmap;
   1193   1.1      gwr 
   1194   1.1      gwr 	/* Get the top A table in the pool */
   1195  1.86      chs 	tbl = TAILQ_FIRST(&a_pool);
   1196   1.7      gwr 	if (tbl == NULL) {
   1197   1.7      gwr 		/*
   1198  1.85      wiz 		 * XXX - Instead of panicking here and in other get_x_table
   1199   1.7      gwr 		 * functions, we do have the option of sleeping on the head of
   1200   1.7      gwr 		 * the table pool.  Any function which updates the table pool
   1201   1.7      gwr 		 * would then issue a wakeup() on the head, thus waking up any
   1202   1.7      gwr 		 * processes waiting for a table.
   1203   1.7      gwr 		 *
   1204   1.7      gwr 		 * Actually, the place to sleep would be when some process
   1205   1.7      gwr 		 * asks for a "wired" mapping that would run us short of
   1206   1.7      gwr 		 * mapping resources.  This design DEPENDS on always having
   1207   1.7      gwr 		 * some mapping resources in the pool for stealing, so we
   1208   1.7      gwr 		 * must make sure we NEVER let the pool become empty. -gwr
   1209   1.7      gwr 		 */
   1210   1.1      gwr 		panic("get_a_table: out of A tables.");
   1211   1.7      gwr 	}
   1212   1.7      gwr 
   1213   1.1      gwr 	TAILQ_REMOVE(&a_pool, tbl, at_link);
   1214   1.7      gwr 	/*
   1215   1.7      gwr 	 * If the table has a non-null parent pointer then it is in use.
   1216   1.1      gwr 	 * Forcibly abduct it from its parent and clear its entries.
   1217   1.1      gwr 	 * No re-entrancy worries here.  This table would not be in the
   1218   1.1      gwr 	 * table pool unless it was available for use.
   1219   1.7      gwr 	 *
   1220   1.7      gwr 	 * Note that the second argument to free_a_table() is FALSE.  This
   1221   1.7      gwr 	 * indicates that the table should not be relinked into the A table
   1222   1.7      gwr 	 * pool.  That is a job for the function that called us.
   1223   1.1      gwr 	 */
   1224   1.1      gwr 	if (tbl->at_parent) {
   1225   1.7      gwr 		pmap = tbl->at_parent;
   1226   1.8      gwr 		free_a_table(tbl, FALSE);
   1227   1.7      gwr 		pmap->pm_a_tmgr = NULL;
   1228   1.7      gwr 		pmap->pm_a_phys = kernAphys;
   1229   1.1      gwr 	}
   1230   1.1      gwr 	return tbl;
   1231   1.1      gwr }
   1232   1.1      gwr 
   1233   1.1      gwr /* get_b_table			INTERNAL
   1234   1.1      gwr  **
   1235   1.1      gwr  * Return a level B table for use.
   1236   1.1      gwr  */
   1237   1.1      gwr b_tmgr_t *
   1238  1.86      chs get_b_table(void)
   1239   1.1      gwr {
   1240   1.1      gwr 	b_tmgr_t *tbl;
   1241   1.1      gwr 
   1242   1.1      gwr 	/* See 'get_a_table' for comments. */
   1243  1.86      chs 	tbl = TAILQ_FIRST(&b_pool);
   1244   1.1      gwr 	if (tbl == NULL)
   1245   1.1      gwr 		panic("get_b_table: out of B tables.");
   1246   1.1      gwr 	TAILQ_REMOVE(&b_pool, tbl, bt_link);
   1247   1.1      gwr 	if (tbl->bt_parent) {
   1248   1.1      gwr 		tbl->bt_parent->at_dtbl[tbl->bt_pidx].attr.raw = MMU_DT_INVALID;
   1249   1.1      gwr 		tbl->bt_parent->at_ecnt--;
   1250   1.8      gwr 		free_b_table(tbl, FALSE);
   1251   1.1      gwr 	}
   1252   1.1      gwr 	return tbl;
   1253   1.1      gwr }
   1254   1.1      gwr 
   1255   1.1      gwr /* get_c_table			INTERNAL
   1256   1.1      gwr  **
   1257   1.1      gwr  * Return a level C table for use.
   1258   1.1      gwr  */
   1259   1.1      gwr c_tmgr_t *
   1260  1.86      chs get_c_table(void)
   1261   1.1      gwr {
   1262   1.1      gwr 	c_tmgr_t *tbl;
   1263   1.1      gwr 
   1264   1.1      gwr 	/* See 'get_a_table' for comments */
   1265  1.86      chs 	tbl = TAILQ_FIRST(&c_pool);
   1266   1.1      gwr 	if (tbl == NULL)
   1267   1.1      gwr 		panic("get_c_table: out of C tables.");
   1268   1.1      gwr 	TAILQ_REMOVE(&c_pool, tbl, ct_link);
   1269   1.1      gwr 	if (tbl->ct_parent) {
   1270   1.1      gwr 		tbl->ct_parent->bt_dtbl[tbl->ct_pidx].attr.raw = MMU_DT_INVALID;
   1271   1.1      gwr 		tbl->ct_parent->bt_ecnt--;
   1272   1.8      gwr 		free_c_table(tbl, FALSE);
   1273   1.1      gwr 	}
   1274   1.1      gwr 	return tbl;
   1275   1.1      gwr }
   1276   1.1      gwr 
   1277   1.7      gwr /*
   1278   1.7      gwr  * The following 'free_table' and 'steal_table' functions are called to
   1279   1.1      gwr  * detach tables from their current obligations (parents and children) and
   1280   1.1      gwr  * prepare them for reuse in another mapping.
   1281   1.1      gwr  *
   1282   1.1      gwr  * Free_table is used when the calling function will handle the fate
   1283   1.1      gwr  * of the parent table, such as returning it to the free pool when it has
   1284   1.1      gwr  * no valid entries.  Functions that do not want to handle this should
   1285   1.1      gwr  * call steal_table, in which the parent table's descriptors and entry
   1286   1.1      gwr  * count are automatically modified when this table is removed.
   1287   1.1      gwr  */
   1288   1.1      gwr 
   1289   1.1      gwr /* free_a_table			INTERNAL
   1290   1.1      gwr  **
   1291   1.1      gwr  * Unmaps the given A table and all child tables from their current
   1292   1.1      gwr  * mappings.  Returns the number of pages that were invalidated.
   1293   1.7      gwr  * If 'relink' is true, the function will return the table to the head
   1294   1.7      gwr  * of the available table pool.
   1295   1.1      gwr  *
   1296   1.1      gwr  * Cache note: The MC68851 will automatically flush all
   1297   1.1      gwr  * descriptors derived from a given A table from its
   1298   1.1      gwr  * Automatic Translation Cache (ATC) if we issue a
   1299   1.1      gwr  * 'PFLUSHR' instruction with the base address of the
   1300   1.1      gwr  * table.  This function should do, and does so.
   1301   1.1      gwr  * Note note: We are using an MC68030 - there is no
   1302   1.1      gwr  * PFLUSHR.
   1303   1.1      gwr  */
   1304  1.86      chs int
   1305  1.86      chs free_a_table(a_tmgr_t *a_tbl, boolean_t relink)
   1306   1.1      gwr {
   1307   1.1      gwr 	int i, removed_cnt;
   1308   1.1      gwr 	mmu_long_dte_t	*dte;
   1309   1.1      gwr 	mmu_short_dte_t *dtbl;
   1310   1.1      gwr 	b_tmgr_t	*tmgr;
   1311   1.1      gwr 
   1312   1.7      gwr 	/*
   1313   1.7      gwr 	 * Flush the ATC cache of all cached descriptors derived
   1314   1.1      gwr 	 * from this table.
   1315  1.22   jeremy 	 * Sun3x does not use 68851's cached table feature
   1316   1.1      gwr 	 * flush_atc_crp(mmu_vtop(a_tbl->dte));
   1317   1.1      gwr 	 */
   1318   1.1      gwr 
   1319   1.7      gwr 	/*
   1320   1.7      gwr 	 * Remove any pending cache flushes that were designated
   1321   1.1      gwr 	 * for the pmap this A table belongs to.
   1322   1.1      gwr 	 * a_tbl->parent->atc_flushq[0] = 0;
   1323  1.22   jeremy 	 * Not implemented in sun3x.
   1324   1.1      gwr 	 */
   1325   1.1      gwr 
   1326   1.7      gwr 	/*
   1327   1.7      gwr 	 * All A tables in the system should retain a map for the
   1328   1.1      gwr 	 * kernel. If the table contains any valid descriptors
   1329   1.1      gwr 	 * (other than those for the kernel area), invalidate them all,
   1330   1.1      gwr 	 * stopping short of the kernel's entries.
   1331   1.1      gwr 	 */
   1332   1.1      gwr 	removed_cnt = 0;
   1333   1.1      gwr 	if (a_tbl->at_ecnt) {
   1334   1.1      gwr 		dte = a_tbl->at_dtbl;
   1335   1.8      gwr 		for (i=0; i < MMU_TIA(KERNBASE); i++) {
   1336   1.7      gwr 			/*
   1337   1.7      gwr 			 * If a table entry points to a valid B table, free
   1338   1.1      gwr 			 * it and its children.
   1339   1.1      gwr 			 */
   1340   1.1      gwr 			if (MMU_VALID_DT(dte[i])) {
   1341   1.7      gwr 				/*
   1342   1.7      gwr 				 * The following block does several things,
   1343   1.1      gwr 				 * from innermost expression to the
   1344   1.1      gwr 				 * outermost:
   1345   1.1      gwr 				 * 1) It extracts the base (cc 1996)
   1346   1.1      gwr 				 *    address of the B table pointed
   1347   1.1      gwr 				 *    to in the A table entry dte[i].
   1348   1.1      gwr 				 * 2) It converts this base address into
   1349   1.1      gwr 				 *    the virtual address it can be
   1350   1.1      gwr 				 *    accessed with. (all MMU tables point
   1351   1.1      gwr 				 *    to physical addresses.)
   1352   1.1      gwr 				 * 3) It finds the corresponding manager
   1353   1.1      gwr 				 *    structure which manages this MMU table.
   1354   1.1      gwr 				 * 4) It frees the manager structure.
   1355   1.1      gwr 				 *    (This frees the MMU table and all
   1356   1.1      gwr 				 *    child tables. See 'free_b_table' for
   1357   1.1      gwr 				 *    details.)
   1358   1.1      gwr 				 */
   1359   1.7      gwr 				dtbl = mmu_ptov(dte[i].addr.raw);
   1360   1.1      gwr 				tmgr = mmuB2tmgr(dtbl);
   1361   1.7      gwr 				removed_cnt += free_b_table(tmgr, TRUE);
   1362   1.8      gwr 				dte[i].attr.raw = MMU_DT_INVALID;
   1363   1.1      gwr 			}
   1364   1.8      gwr 		}
   1365   1.8      gwr 		a_tbl->at_ecnt = 0;
   1366   1.1      gwr 	}
   1367   1.7      gwr 	if (relink) {
   1368   1.7      gwr 		a_tbl->at_parent = NULL;
   1369   1.7      gwr 		TAILQ_REMOVE(&a_pool, a_tbl, at_link);
   1370   1.7      gwr 		TAILQ_INSERT_HEAD(&a_pool, a_tbl, at_link);
   1371   1.7      gwr 	}
   1372   1.1      gwr 	return removed_cnt;
   1373   1.1      gwr }
   1374   1.1      gwr 
   1375   1.1      gwr /* free_b_table			INTERNAL
   1376   1.1      gwr  **
   1377   1.1      gwr  * Unmaps the given B table and all its children from their current
   1378   1.1      gwr  * mappings.  Returns the number of pages that were invalidated.
   1379   1.1      gwr  * (For comments, see 'free_a_table()').
   1380   1.1      gwr  */
   1381  1.86      chs int
   1382  1.86      chs free_b_table(b_tmgr_t *b_tbl, boolean_t relink)
   1383   1.1      gwr {
   1384   1.1      gwr 	int i, removed_cnt;
   1385   1.1      gwr 	mmu_short_dte_t *dte;
   1386   1.1      gwr 	mmu_short_pte_t	*dtbl;
   1387   1.1      gwr 	c_tmgr_t	*tmgr;
   1388   1.1      gwr 
   1389   1.1      gwr 	removed_cnt = 0;
   1390   1.1      gwr 	if (b_tbl->bt_ecnt) {
   1391   1.1      gwr 		dte = b_tbl->bt_dtbl;
   1392   1.8      gwr 		for (i=0; i < MMU_B_TBL_SIZE; i++) {
   1393   1.1      gwr 			if (MMU_VALID_DT(dte[i])) {
   1394   1.7      gwr 				dtbl = mmu_ptov(MMU_DTE_PA(dte[i]));
   1395   1.1      gwr 				tmgr = mmuC2tmgr(dtbl);
   1396   1.7      gwr 				removed_cnt += free_c_table(tmgr, TRUE);
   1397   1.8      gwr 				dte[i].attr.raw = MMU_DT_INVALID;
   1398   1.1      gwr 			}
   1399   1.8      gwr 		}
   1400   1.8      gwr 		b_tbl->bt_ecnt = 0;
   1401   1.1      gwr 	}
   1402   1.1      gwr 
   1403   1.7      gwr 	if (relink) {
   1404   1.7      gwr 		b_tbl->bt_parent = NULL;
   1405   1.7      gwr 		TAILQ_REMOVE(&b_pool, b_tbl, bt_link);
   1406   1.7      gwr 		TAILQ_INSERT_HEAD(&b_pool, b_tbl, bt_link);
   1407   1.7      gwr 	}
   1408   1.1      gwr 	return removed_cnt;
   1409   1.1      gwr }
   1410   1.1      gwr 
   1411   1.1      gwr /* free_c_table			INTERNAL
   1412   1.1      gwr  **
   1413   1.1      gwr  * Unmaps the given C table from use and returns it to the pool for
   1414   1.1      gwr  * re-use.  Returns the number of pages that were invalidated.
   1415   1.1      gwr  *
   1416   1.1      gwr  * This function preserves any physical page modification information
   1417   1.1      gwr  * contained in the page descriptors within the C table by calling
   1418   1.1      gwr  * 'pmap_remove_pte().'
   1419   1.1      gwr  */
   1420  1.86      chs int
   1421  1.86      chs free_c_table(c_tmgr_t *c_tbl, boolean_t relink)
   1422   1.1      gwr {
   1423   1.1      gwr 	int i, removed_cnt;
   1424   1.1      gwr 
   1425   1.1      gwr 	removed_cnt = 0;
   1426   1.8      gwr 	if (c_tbl->ct_ecnt) {
   1427   1.8      gwr 		for (i=0; i < MMU_C_TBL_SIZE; i++) {
   1428   1.1      gwr 			if (MMU_VALID_DT(c_tbl->ct_dtbl[i])) {
   1429   1.1      gwr 				pmap_remove_pte(&c_tbl->ct_dtbl[i]);
   1430   1.1      gwr 				removed_cnt++;
   1431   1.1      gwr 			}
   1432   1.8      gwr 		}
   1433   1.8      gwr 		c_tbl->ct_ecnt = 0;
   1434   1.8      gwr 	}
   1435   1.8      gwr 
   1436   1.7      gwr 	if (relink) {
   1437   1.7      gwr 		c_tbl->ct_parent = NULL;
   1438   1.7      gwr 		TAILQ_REMOVE(&c_pool, c_tbl, ct_link);
   1439   1.7      gwr 		TAILQ_INSERT_HEAD(&c_pool, c_tbl, ct_link);
   1440   1.7      gwr 	}
   1441   1.1      gwr 	return removed_cnt;
   1442   1.1      gwr }
   1443   1.1      gwr 
   1444   1.1      gwr 
   1445   1.1      gwr /* pmap_remove_pte			INTERNAL
   1446   1.1      gwr  **
   1447   1.1      gwr  * Unmap the given pte and preserve any page modification
   1448   1.1      gwr  * information by transfering it to the pv head of the
   1449   1.1      gwr  * physical page it maps to.  This function does not update
   1450   1.1      gwr  * any reference counts because it is assumed that the calling
   1451   1.8      gwr  * function will do so.
   1452   1.1      gwr  */
   1453   1.1      gwr void
   1454  1.86      chs pmap_remove_pte(mmu_short_pte_t *pte)
   1455   1.1      gwr {
   1456   1.7      gwr 	u_short     pv_idx, targ_idx;
   1457  1.69      chs 	paddr_t     pa;
   1458   1.1      gwr 	pv_t       *pv;
   1459   1.1      gwr 
   1460   1.1      gwr 	pa = MMU_PTE_PA(*pte);
   1461   1.1      gwr 	if (is_managed(pa)) {
   1462   1.1      gwr 		pv = pa2pv(pa);
   1463   1.7      gwr 		targ_idx = pteidx(pte);	/* Index of PTE being removed    */
   1464   1.7      gwr 
   1465   1.7      gwr 		/*
   1466   1.7      gwr 		 * If the PTE being removed is the first (or only) PTE in
   1467   1.7      gwr 		 * the list of PTEs currently mapped to this page, remove the
   1468   1.7      gwr 		 * PTE by changing the index found on the PV head.  Otherwise
   1469   1.7      gwr 		 * a linear search through the list will have to be executed
   1470   1.7      gwr 		 * in order to find the PVE which points to the PTE being
   1471   1.7      gwr 		 * removed, so that it may be modified to point to its new
   1472   1.7      gwr 		 * neighbor.
   1473   1.7      gwr 		 */
   1474  1.69      chs 
   1475   1.7      gwr 		pv_idx = pv->pv_idx;	/* Index of first PTE in PV list */
   1476   1.7      gwr 		if (pv_idx == targ_idx) {
   1477   1.7      gwr 			pv->pv_idx = pvebase[targ_idx].pve_next;
   1478   1.7      gwr 		} else {
   1479  1.69      chs 
   1480   1.7      gwr 			/*
   1481  1.32      gwr 			 * Find the PV element pointing to the target
   1482  1.32      gwr 			 * element.  Note: may have pv_idx==PVE_EOL
   1483   1.7      gwr 			 */
   1484  1.69      chs 
   1485  1.32      gwr 			for (;;) {
   1486  1.32      gwr 				if (pv_idx == PVE_EOL) {
   1487  1.32      gwr 					goto pv_not_found;
   1488  1.32      gwr 				}
   1489  1.32      gwr 				if (pvebase[pv_idx].pve_next == targ_idx)
   1490  1.32      gwr 					break;
   1491   1.7      gwr 				pv_idx = pvebase[pv_idx].pve_next;
   1492   1.7      gwr 			}
   1493  1.69      chs 
   1494   1.7      gwr 			/*
   1495   1.7      gwr 			 * At this point, pv_idx is the index of the PV
   1496   1.7      gwr 			 * element just before the target element in the list.
   1497   1.7      gwr 			 * Unlink the target.
   1498   1.7      gwr 			 */
   1499  1.69      chs 
   1500   1.7      gwr 			pvebase[pv_idx].pve_next = pvebase[targ_idx].pve_next;
   1501   1.7      gwr 		}
   1502  1.69      chs 
   1503   1.7      gwr 		/*
   1504   1.7      gwr 		 * Save the mod/ref bits of the pte by simply
   1505   1.1      gwr 		 * ORing the entire pte onto the pv_flags member
   1506   1.1      gwr 		 * of the pv structure.
   1507   1.1      gwr 		 * There is no need to use a separate bit pattern
   1508   1.1      gwr 		 * for usage information on the pv head than that
   1509   1.1      gwr 		 * which is used on the MMU ptes.
   1510   1.1      gwr 		 */
   1511  1.69      chs 
   1512  1.69      chs pv_not_found:
   1513   1.7      gwr 		pv->pv_flags |= (u_short) pte->attr.raw;
   1514   1.1      gwr 	}
   1515   1.1      gwr 	pte->attr.raw = MMU_DT_INVALID;
   1516   1.1      gwr }
   1517   1.1      gwr 
   1518   1.1      gwr /* pmap_stroll			INTERNAL
   1519   1.1      gwr  **
   1520   1.1      gwr  * Retrieve the addresses of all table managers involved in the mapping of
   1521  1.77      wiz  * the given virtual address.  If the table walk completed successfully,
   1522  1.77      wiz  * return TRUE.  If it was only partially successful, return FALSE.
   1523   1.1      gwr  * The table walk performed by this function is important to many other
   1524   1.1      gwr  * functions in this module.
   1525   1.7      gwr  *
   1526   1.7      gwr  * Note: This function ought to be easier to read.
   1527   1.1      gwr  */
   1528   1.1      gwr boolean_t
   1529  1.86      chs pmap_stroll(pmap_t pmap, vaddr_t va, a_tmgr_t **a_tbl, b_tmgr_t **b_tbl,
   1530  1.86      chs     c_tmgr_t **c_tbl, mmu_short_pte_t **pte, int *a_idx, int *b_idx,
   1531  1.86      chs     int *pte_idx)
   1532   1.1      gwr {
   1533   1.1      gwr 	mmu_long_dte_t *a_dte;   /* A: long descriptor table          */
   1534   1.1      gwr 	mmu_short_dte_t *b_dte;  /* B: short descriptor table         */
   1535   1.1      gwr 
   1536   1.1      gwr 	if (pmap == pmap_kernel())
   1537   1.1      gwr 		return FALSE;
   1538   1.1      gwr 
   1539   1.7      gwr 	/* Does the given pmap have its own A table? */
   1540   1.7      gwr 	*a_tbl = pmap->pm_a_tmgr;
   1541   1.1      gwr 	if (*a_tbl == NULL)
   1542   1.1      gwr 		return FALSE; /* No.  Return unknown. */
   1543   1.1      gwr 	/* Does the A table have a valid B table
   1544   1.1      gwr 	 * under the corresponding table entry?
   1545   1.1      gwr 	 */
   1546   1.1      gwr 	*a_idx = MMU_TIA(va);
   1547   1.1      gwr 	a_dte = &((*a_tbl)->at_dtbl[*a_idx]);
   1548   1.1      gwr 	if (!MMU_VALID_DT(*a_dte))
   1549   1.1      gwr 		return FALSE; /* No. Return unknown. */
   1550   1.1      gwr 	/* Yes. Extract B table from the A table. */
   1551   1.7      gwr 	*b_tbl = mmuB2tmgr(mmu_ptov(a_dte->addr.raw));
   1552   1.1      gwr 	/* Does the B table have a valid C table
   1553   1.1      gwr 	 * under the corresponding table entry?
   1554   1.1      gwr 	 */
   1555   1.1      gwr 	*b_idx = MMU_TIB(va);
   1556   1.1      gwr 	b_dte = &((*b_tbl)->bt_dtbl[*b_idx]);
   1557   1.1      gwr 	if (!MMU_VALID_DT(*b_dte))
   1558   1.1      gwr 		return FALSE; /* No. Return unknown. */
   1559   1.1      gwr 	/* Yes. Extract C table from the B table. */
   1560   1.7      gwr 	*c_tbl = mmuC2tmgr(mmu_ptov(MMU_DTE_PA(*b_dte)));
   1561   1.1      gwr 	*pte_idx = MMU_TIC(va);
   1562   1.1      gwr 	*pte = &((*c_tbl)->ct_dtbl[*pte_idx]);
   1563   1.1      gwr 
   1564   1.1      gwr 	return	TRUE;
   1565   1.1      gwr }
   1566   1.1      gwr 
   1567   1.1      gwr /* pmap_enter			INTERFACE
   1568   1.1      gwr  **
   1569   1.1      gwr  * Called by the kernel to map a virtual address
   1570   1.1      gwr  * to a physical address in the given process map.
   1571   1.1      gwr  *
   1572   1.1      gwr  * Note: this function should apply an exclusive lock
   1573   1.1      gwr  * on the pmap system for its duration.  (it certainly
   1574   1.1      gwr  * would save my hair!!)
   1575   1.7      gwr  * This function ought to be easier to read.
   1576   1.1      gwr  */
   1577  1.86      chs int
   1578  1.86      chs pmap_enter(pmap_t pmap, vaddr_t va, paddr_t pa, vm_prot_t prot, int flags)
   1579   1.1      gwr {
   1580   1.7      gwr 	boolean_t insert, managed; /* Marks the need for PV insertion.*/
   1581   1.7      gwr 	u_short nidx;            /* PV list index                     */
   1582  1.52   jeremy 	int mapflags;            /* Flags for the mapping (see NOTE1) */
   1583   1.8      gwr 	u_int a_idx, b_idx, pte_idx; /* table indices                 */
   1584   1.1      gwr 	a_tmgr_t *a_tbl;         /* A: long descriptor table manager  */
   1585   1.1      gwr 	b_tmgr_t *b_tbl;         /* B: short descriptor table manager */
   1586   1.1      gwr 	c_tmgr_t *c_tbl;         /* C: short page table manager       */
   1587   1.1      gwr 	mmu_long_dte_t *a_dte;   /* A: long descriptor table          */
   1588   1.1      gwr 	mmu_short_dte_t *b_dte;  /* B: short descriptor table         */
   1589   1.1      gwr 	mmu_short_pte_t *c_pte;  /* C: short page descriptor table    */
   1590   1.1      gwr 	pv_t      *pv;           /* pv list head                      */
   1591  1.52   jeremy 	boolean_t wired;         /* is the mapping to be wired?       */
   1592   1.1      gwr 	enum {NONE, NEWA, NEWB, NEWC} llevel; /* used at end   */
   1593   1.1      gwr 
   1594   1.1      gwr 	if (pmap == pmap_kernel()) {
   1595   1.1      gwr 		pmap_enter_kernel(va, pa, prot);
   1596  1.61      chs 		return 0;
   1597   1.1      gwr 	}
   1598   1.7      gwr 
   1599  1.52   jeremy 	/*
   1600  1.52   jeremy 	 * Determine if the mapping should be wired.
   1601  1.52   jeremy 	 */
   1602  1.52   jeremy 	wired = ((flags & PMAP_WIRED) != 0);
   1603  1.52   jeremy 
   1604  1.52   jeremy 	/*
   1605  1.52   jeremy 	 * NOTE1:
   1606  1.52   jeremy 	 *
   1607  1.52   jeremy 	 * On November 13, 1999, someone changed the pmap_enter() API such
   1608  1.52   jeremy 	 * that it now accepts a 'flags' argument.  This new argument
   1609  1.52   jeremy 	 * contains bit-flags for the architecture-independent (UVM) system to
   1610  1.52   jeremy 	 * use in signalling certain mapping requirements to the architecture-
   1611  1.52   jeremy 	 * dependent (pmap) system.  The argument it replaces, 'wired', is now
   1612  1.52   jeremy 	 * one of the flags within it.
   1613  1.52   jeremy 	 *
   1614  1.52   jeremy 	 * In addition to flags signaled by the architecture-independent
   1615  1.52   jeremy 	 * system, parts of the architecture-dependent section of the sun3x
   1616  1.52   jeremy 	 * kernel pass their own flags in the lower, unused bits of the
   1617  1.52   jeremy 	 * physical address supplied to this function.  These flags are
   1618  1.52   jeremy 	 * extracted and stored in the temporary variable 'mapflags'.
   1619  1.52   jeremy 	 *
   1620  1.52   jeremy 	 * Extract sun3x specific flags from the physical address.
   1621  1.52   jeremy 	 */
   1622  1.52   jeremy 	mapflags  = (pa & ~MMU_PAGE_MASK);
   1623  1.52   jeremy 	pa       &= MMU_PAGE_MASK;
   1624   1.7      gwr 
   1625   1.7      gwr 	/*
   1626  1.22   jeremy 	 * Determine if the physical address being mapped is on-board RAM.
   1627  1.22   jeremy 	 * Any other area of the address space is likely to belong to a
   1628  1.22   jeremy 	 * device and hence it would be disasterous to cache its contents.
   1629   1.7      gwr 	 */
   1630   1.7      gwr 	if ((managed = is_managed(pa)) == FALSE)
   1631  1.52   jeremy 		mapflags |= PMAP_NC;
   1632   1.7      gwr 
   1633   1.7      gwr 	/*
   1634   1.7      gwr 	 * For user mappings we walk along the MMU tables of the given
   1635   1.1      gwr 	 * pmap, reaching a PTE which describes the virtual page being
   1636   1.1      gwr 	 * mapped or changed.  If any level of the walk ends in an invalid
   1637   1.1      gwr 	 * entry, a table must be allocated and the entry must be updated
   1638   1.1      gwr 	 * to point to it.
   1639   1.1      gwr 	 * There is a bit of confusion as to whether this code must be
   1640   1.1      gwr 	 * re-entrant.  For now we will assume it is.  To support
   1641   1.1      gwr 	 * re-entrancy we must unlink tables from the table pool before
   1642   1.1      gwr 	 * we assume we may use them.  Tables are re-linked into the pool
   1643   1.1      gwr 	 * when we are finished with them at the end of the function.
   1644   1.1      gwr 	 * But I don't feel like doing that until we have proof that this
   1645   1.1      gwr 	 * needs to be re-entrant.
   1646   1.1      gwr 	 * 'llevel' records which tables need to be relinked.
   1647   1.1      gwr 	 */
   1648   1.1      gwr 	llevel = NONE;
   1649   1.1      gwr 
   1650   1.7      gwr 	/*
   1651   1.7      gwr 	 * Step 1 - Retrieve the A table from the pmap.  If it has no
   1652   1.7      gwr 	 * A table, allocate a new one from the available pool.
   1653   1.1      gwr 	 */
   1654   1.1      gwr 
   1655   1.7      gwr 	a_tbl = pmap->pm_a_tmgr;
   1656   1.7      gwr 	if (a_tbl == NULL) {
   1657   1.7      gwr 		/*
   1658   1.7      gwr 		 * This pmap does not currently have an A table.  Allocate
   1659   1.7      gwr 		 * a new one.
   1660   1.7      gwr 		 */
   1661   1.7      gwr 		a_tbl = get_a_table();
   1662   1.7      gwr 		a_tbl->at_parent = pmap;
   1663   1.7      gwr 
   1664   1.7      gwr 		/*
   1665   1.7      gwr 		 * Assign this new A table to the pmap, and calculate its
   1666   1.7      gwr 		 * physical address so that loadcrp() can be used to make
   1667   1.7      gwr 		 * the table active.
   1668   1.7      gwr 		 */
   1669   1.7      gwr 		pmap->pm_a_tmgr = a_tbl;
   1670   1.7      gwr 		pmap->pm_a_phys = mmu_vtop(a_tbl->at_dtbl);
   1671   1.7      gwr 
   1672   1.7      gwr 		/*
   1673   1.7      gwr 		 * If the process receiving a new A table is the current
   1674   1.7      gwr 		 * process, we are responsible for setting the MMU so that
   1675   1.9      gwr 		 * it becomes the current address space.  This only adds
   1676   1.9      gwr 		 * new mappings, so no need to flush anything.
   1677   1.7      gwr 		 */
   1678   1.9      gwr 		if (pmap == current_pmap()) {
   1679   1.9      gwr 			kernel_crp.rp_addr = pmap->pm_a_phys;
   1680   1.9      gwr 			loadcrp(&kernel_crp);
   1681   1.9      gwr 		}
   1682   1.7      gwr 
   1683   1.1      gwr 		if (!wired)
   1684   1.1      gwr 			llevel = NEWA;
   1685   1.1      gwr 	} else {
   1686   1.7      gwr 		/*
   1687   1.7      gwr 		 * Use the A table already allocated for this pmap.
   1688   1.1      gwr 		 * Unlink it from the A table pool if necessary.
   1689   1.1      gwr 		 */
   1690   1.1      gwr 		if (wired && !a_tbl->at_wcnt)
   1691   1.1      gwr 			TAILQ_REMOVE(&a_pool, a_tbl, at_link);
   1692   1.1      gwr 	}
   1693   1.1      gwr 
   1694   1.7      gwr 	/*
   1695   1.7      gwr 	 * Step 2 - Walk into the B table.  If there is no valid B table,
   1696   1.1      gwr 	 * allocate one.
   1697   1.1      gwr 	 */
   1698   1.1      gwr 
   1699   1.1      gwr 	a_idx = MMU_TIA(va);            /* Calculate the TIA of the VA. */
   1700   1.1      gwr 	a_dte = &a_tbl->at_dtbl[a_idx]; /* Retrieve descriptor from table */
   1701   1.1      gwr 	if (MMU_VALID_DT(*a_dte)) {     /* Is the descriptor valid? */
   1702   1.7      gwr 		/* The descriptor is valid.  Use the B table it points to. */
   1703   1.1      gwr 		/*************************************
   1704   1.1      gwr 		 *               a_idx               *
   1705   1.1      gwr 		 *                 v                 *
   1706   1.1      gwr 		 * a_tbl -> +-+-+-+-+-+-+-+-+-+-+-+- *
   1707   1.1      gwr 		 *          | | | | | | | | | | | |  *
   1708   1.1      gwr 		 *          +-+-+-+-+-+-+-+-+-+-+-+- *
   1709   1.1      gwr 		 *                 |                 *
   1710   1.1      gwr 		 *                 \- b_tbl -> +-+-  *
   1711   1.1      gwr 		 *                             | |   *
   1712   1.1      gwr 		 *                             +-+-  *
   1713   1.1      gwr 		 *************************************/
   1714   1.7      gwr 		b_dte = mmu_ptov(a_dte->addr.raw);
   1715   1.1      gwr 		b_tbl = mmuB2tmgr(b_dte);
   1716   1.7      gwr 
   1717   1.7      gwr 		/*
   1718   1.7      gwr 		 * If the requested mapping must be wired, but this table
   1719   1.7      gwr 		 * being used to map it is not, the table must be removed
   1720   1.7      gwr 		 * from the available pool and its wired entry count
   1721   1.7      gwr 		 * incremented.
   1722   1.7      gwr 		 */
   1723   1.1      gwr 		if (wired && !b_tbl->bt_wcnt) {
   1724   1.1      gwr 			TAILQ_REMOVE(&b_pool, b_tbl, bt_link);
   1725   1.7      gwr 			a_tbl->at_wcnt++;
   1726   1.1      gwr 		}
   1727   1.1      gwr 	} else {
   1728   1.7      gwr 		/* The descriptor is invalid.  Allocate a new B table. */
   1729   1.7      gwr 		b_tbl = get_b_table();
   1730   1.7      gwr 
   1731   1.1      gwr 		/* Point the parent A table descriptor to this new B table. */
   1732   1.7      gwr 		a_dte->addr.raw = mmu_vtop(b_tbl->bt_dtbl);
   1733   1.7      gwr 		a_dte->attr.raw = MMU_LONG_DTE_LU | MMU_DT_SHORT;
   1734   1.7      gwr 		a_tbl->at_ecnt++; /* Update parent's valid entry count */
   1735   1.7      gwr 
   1736   1.1      gwr 		/* Create the necessary back references to the parent table */
   1737   1.1      gwr 		b_tbl->bt_parent = a_tbl;
   1738   1.1      gwr 		b_tbl->bt_pidx = a_idx;
   1739   1.7      gwr 
   1740   1.7      gwr 		/*
   1741   1.7      gwr 		 * If this table is to be wired, make sure the parent A table
   1742   1.1      gwr 		 * wired count is updated to reflect that it has another wired
   1743   1.1      gwr 		 * entry.
   1744   1.1      gwr 		 */
   1745   1.1      gwr 		if (wired)
   1746   1.1      gwr 			a_tbl->at_wcnt++;
   1747   1.1      gwr 		else if (llevel == NONE)
   1748   1.1      gwr 			llevel = NEWB;
   1749   1.1      gwr 	}
   1750   1.1      gwr 
   1751   1.7      gwr 	/*
   1752   1.7      gwr 	 * Step 3 - Walk into the C table, if there is no valid C table,
   1753   1.1      gwr 	 * allocate one.
   1754   1.1      gwr 	 */
   1755   1.1      gwr 
   1756   1.1      gwr 	b_idx = MMU_TIB(va);            /* Calculate the TIB of the VA */
   1757   1.1      gwr 	b_dte = &b_tbl->bt_dtbl[b_idx]; /* Retrieve descriptor from table */
   1758   1.1      gwr 	if (MMU_VALID_DT(*b_dte)) {     /* Is the descriptor valid? */
   1759   1.7      gwr 		/* The descriptor is valid.  Use the C table it points to. */
   1760   1.1      gwr 		/**************************************
   1761   1.1      gwr 		 *               c_idx                *
   1762   1.1      gwr 		 * |                v                 *
   1763   1.1      gwr 		 * \- b_tbl -> +-+-+-+-+-+-+-+-+-+-+- *
   1764   1.1      gwr 		 *             | | | | | | | | | | |  *
   1765   1.1      gwr 		 *             +-+-+-+-+-+-+-+-+-+-+- *
   1766   1.1      gwr 		 *                  |                 *
   1767   1.1      gwr 		 *                  \- c_tbl -> +-+-- *
   1768   1.1      gwr 		 *                              | | | *
   1769   1.1      gwr 		 *                              +-+-- *
   1770   1.1      gwr 		 **************************************/
   1771   1.7      gwr 		c_pte = mmu_ptov(MMU_PTE_PA(*b_dte));
   1772   1.1      gwr 		c_tbl = mmuC2tmgr(c_pte);
   1773   1.7      gwr 
   1774   1.7      gwr 		/* If mapping is wired and table is not */
   1775   1.1      gwr 		if (wired && !c_tbl->ct_wcnt) {
   1776   1.1      gwr 			TAILQ_REMOVE(&c_pool, c_tbl, ct_link);
   1777   1.1      gwr 			b_tbl->bt_wcnt++;
   1778   1.1      gwr 		}
   1779   1.1      gwr 	} else {
   1780   1.7      gwr 		/* The descriptor is invalid.  Allocate a new C table. */
   1781   1.7      gwr 		c_tbl = get_c_table();
   1782   1.7      gwr 
   1783   1.1      gwr 		/* Point the parent B table descriptor to this new C table. */
   1784   1.7      gwr 		b_dte->attr.raw = mmu_vtop(c_tbl->ct_dtbl);
   1785   1.7      gwr 		b_dte->attr.raw |= MMU_DT_SHORT;
   1786   1.7      gwr 		b_tbl->bt_ecnt++; /* Update parent's valid entry count */
   1787   1.7      gwr 
   1788   1.1      gwr 		/* Create the necessary back references to the parent table */
   1789   1.1      gwr 		c_tbl->ct_parent = b_tbl;
   1790   1.1      gwr 		c_tbl->ct_pidx = b_idx;
   1791  1.26   jeremy 		/*
   1792  1.26   jeremy 		 * Store the pmap and base virtual managed address for faster
   1793  1.26   jeremy 		 * retrieval in the PV functions.
   1794  1.26   jeremy 		 */
   1795  1.26   jeremy 		c_tbl->ct_pmap = pmap;
   1796  1.26   jeremy 		c_tbl->ct_va = (va & (MMU_TIA_MASK|MMU_TIB_MASK));
   1797   1.7      gwr 
   1798   1.7      gwr 		/*
   1799   1.7      gwr 		 * If this table is to be wired, make sure the parent B table
   1800   1.1      gwr 		 * wired count is updated to reflect that it has another wired
   1801   1.1      gwr 		 * entry.
   1802   1.1      gwr 		 */
   1803   1.1      gwr 		if (wired)
   1804   1.1      gwr 			b_tbl->bt_wcnt++;
   1805   1.1      gwr 		else if (llevel == NONE)
   1806   1.1      gwr 			llevel = NEWC;
   1807   1.1      gwr 	}
   1808   1.1      gwr 
   1809   1.7      gwr 	/*
   1810   1.7      gwr 	 * Step 4 - Deposit a page descriptor (PTE) into the appropriate
   1811   1.1      gwr 	 * slot of the C table, describing the PA to which the VA is mapped.
   1812   1.1      gwr 	 */
   1813   1.1      gwr 
   1814   1.1      gwr 	pte_idx = MMU_TIC(va);
   1815   1.1      gwr 	c_pte = &c_tbl->ct_dtbl[pte_idx];
   1816   1.1      gwr 	if (MMU_VALID_DT(*c_pte)) { /* Is the entry currently valid? */
   1817   1.7      gwr 		/*
   1818   1.7      gwr 		 * The PTE is currently valid.  This particular call
   1819   1.1      gwr 		 * is just a synonym for one (or more) of the following
   1820   1.1      gwr 		 * operations:
   1821   1.7      gwr 		 *     change protection of a page
   1822   1.1      gwr 		 *     change wiring status of a page
   1823   1.1      gwr 		 *     remove the mapping of a page
   1824   1.7      gwr 		 *
   1825   1.7      gwr 		 * XXX - Semi critical: This code should unwire the PTE
   1826   1.7      gwr 		 * and, possibly, associated parent tables if this is a
   1827   1.7      gwr 		 * change wiring operation.  Currently it does not.
   1828   1.7      gwr 		 *
   1829  1.47  thorpej 		 * This may be ok if pmap_unwire() is the only
   1830   1.7      gwr 		 * interface used to UNWIRE a page.
   1831   1.1      gwr 		 */
   1832   1.7      gwr 
   1833   1.7      gwr 		/* First check if this is a wiring operation. */
   1834   1.7      gwr 		if (wired && (c_pte->attr.raw & MMU_SHORT_PTE_WIRED)) {
   1835   1.7      gwr 			/*
   1836   1.7      gwr 			 * The PTE is already wired.  To prevent it from being
   1837   1.7      gwr 			 * counted as a new wiring operation, reset the 'wired'
   1838   1.7      gwr 			 * variable.
   1839   1.7      gwr 			 */
   1840   1.7      gwr 			wired = FALSE;
   1841   1.7      gwr 		}
   1842   1.7      gwr 
   1843   1.1      gwr 		/* Is the new address the same as the old? */
   1844   1.1      gwr 		if (MMU_PTE_PA(*c_pte) == pa) {
   1845   1.7      gwr 			/*
   1846   1.7      gwr 			 * Yes, mark that it does not need to be reinserted
   1847   1.7      gwr 			 * into the PV list.
   1848   1.7      gwr 			 */
   1849   1.7      gwr 			insert = FALSE;
   1850   1.7      gwr 
   1851   1.7      gwr 			/*
   1852   1.7      gwr 			 * Clear all but the modified, referenced and wired
   1853   1.7      gwr 			 * bits on the PTE.
   1854   1.7      gwr 			 */
   1855   1.7      gwr 			c_pte->attr.raw &= (MMU_SHORT_PTE_M
   1856   1.7      gwr 				| MMU_SHORT_PTE_USED | MMU_SHORT_PTE_WIRED);
   1857   1.1      gwr 		} else {
   1858   1.1      gwr 			/* No, remove the old entry */
   1859   1.1      gwr 			pmap_remove_pte(c_pte);
   1860   1.7      gwr 			insert = TRUE;
   1861   1.1      gwr 		}
   1862   1.8      gwr 
   1863   1.8      gwr 		/*
   1864   1.8      gwr 		 * TLB flush is only necessary if modifying current map.
   1865   1.8      gwr 		 * However, in pmap_enter(), the pmap almost always IS
   1866   1.8      gwr 		 * the current pmap, so don't even bother to check.
   1867   1.8      gwr 		 */
   1868   1.8      gwr 		TBIS(va);
   1869   1.1      gwr 	} else {
   1870   1.7      gwr 		/*
   1871   1.7      gwr 		 * The PTE is invalid.  Increment the valid entry count in
   1872   1.8      gwr 		 * the C table manager to reflect the addition of a new entry.
   1873   1.7      gwr 		 */
   1874   1.1      gwr 		c_tbl->ct_ecnt++;
   1875   1.8      gwr 
   1876   1.8      gwr 		/* XXX - temporarily make sure the PTE is cleared. */
   1877   1.8      gwr 		c_pte->attr.raw = 0;
   1878   1.1      gwr 
   1879   1.7      gwr 		/* It will also need to be inserted into the PV list. */
   1880   1.7      gwr 		insert = TRUE;
   1881   1.7      gwr 	}
   1882   1.7      gwr 
   1883   1.7      gwr 	/*
   1884   1.7      gwr 	 * If page is changing from unwired to wired status, set an unused bit
   1885   1.7      gwr 	 * within the PTE to indicate that it is wired.  Also increment the
   1886   1.7      gwr 	 * wired entry count in the C table manager.
   1887   1.7      gwr 	 */
   1888   1.7      gwr 	if (wired) {
   1889   1.1      gwr 		c_pte->attr.raw |= MMU_SHORT_PTE_WIRED;
   1890   1.7      gwr 		c_tbl->ct_wcnt++;
   1891   1.1      gwr 	}
   1892   1.1      gwr 
   1893   1.7      gwr 	/*
   1894   1.7      gwr 	 * Map the page, being careful to preserve modify/reference/wired
   1895   1.7      gwr 	 * bits.  At this point it is assumed that the PTE either has no bits
   1896   1.7      gwr 	 * set, or if there are set bits, they are only modified, reference or
   1897   1.7      gwr 	 * wired bits.  If not, the following statement will cause erratic
   1898   1.7      gwr 	 * behavior.
   1899   1.7      gwr 	 */
   1900   1.8      gwr #ifdef	PMAP_DEBUG
   1901   1.7      gwr 	if (c_pte->attr.raw & ~(MMU_SHORT_PTE_M |
   1902   1.7      gwr 		MMU_SHORT_PTE_USED | MMU_SHORT_PTE_WIRED)) {
   1903   1.7      gwr 		printf("pmap_enter: junk left in PTE at %p\n", c_pte);
   1904   1.7      gwr 		Debugger();
   1905   1.7      gwr 	}
   1906   1.7      gwr #endif
   1907   1.7      gwr 	c_pte->attr.raw |= ((u_long) pa | MMU_DT_PAGE);
   1908   1.7      gwr 
   1909   1.7      gwr 	/*
   1910   1.7      gwr 	 * If the mapping should be read-only, set the write protect
   1911   1.7      gwr 	 * bit in the PTE.
   1912   1.7      gwr 	 */
   1913   1.7      gwr 	if (!(prot & VM_PROT_WRITE))
   1914   1.7      gwr 		c_pte->attr.raw |= MMU_SHORT_PTE_WP;
   1915   1.7      gwr 
   1916   1.7      gwr 	/*
   1917  1.87      chs 	 * Mark the PTE as used and/or modified as specified by the flags arg.
   1918  1.87      chs 	 */
   1919  1.87      chs 	if (flags & VM_PROT_ALL) {
   1920  1.87      chs 		c_pte->attr.raw |= MMU_SHORT_PTE_USED;
   1921  1.87      chs 		if (flags & VM_PROT_WRITE) {
   1922  1.87      chs 			c_pte->attr.raw |= MMU_SHORT_PTE_M;
   1923  1.87      chs 		}
   1924  1.87      chs 	}
   1925  1.87      chs 
   1926  1.87      chs 	/*
   1927   1.7      gwr 	 * If the mapping should be cache inhibited (indicated by the flag
   1928   1.7      gwr 	 * bits found on the lower order of the physical address.)
   1929   1.7      gwr 	 * mark the PTE as a cache inhibited page.
   1930   1.7      gwr 	 */
   1931  1.52   jeremy 	if (mapflags & PMAP_NC)
   1932   1.7      gwr 		c_pte->attr.raw |= MMU_SHORT_PTE_CI;
   1933   1.7      gwr 
   1934   1.7      gwr 	/*
   1935   1.7      gwr 	 * If the physical address being mapped is managed by the PV
   1936   1.7      gwr 	 * system then link the pte into the list of pages mapped to that
   1937   1.7      gwr 	 * address.
   1938   1.7      gwr 	 */
   1939   1.7      gwr 	if (insert && managed) {
   1940   1.7      gwr 		pv = pa2pv(pa);
   1941   1.7      gwr 		nidx = pteidx(c_pte);
   1942   1.7      gwr 
   1943   1.7      gwr 		pvebase[nidx].pve_next = pv->pv_idx;
   1944   1.7      gwr 		pv->pv_idx = nidx;
   1945   1.7      gwr 	}
   1946   1.1      gwr 
   1947   1.1      gwr 	/* Move any allocated tables back into the active pool. */
   1948   1.1      gwr 
   1949   1.1      gwr 	switch (llevel) {
   1950   1.1      gwr 		case NEWA:
   1951   1.1      gwr 			TAILQ_INSERT_TAIL(&a_pool, a_tbl, at_link);
   1952   1.1      gwr 			/* FALLTHROUGH */
   1953   1.1      gwr 		case NEWB:
   1954   1.1      gwr 			TAILQ_INSERT_TAIL(&b_pool, b_tbl, bt_link);
   1955   1.1      gwr 			/* FALLTHROUGH */
   1956   1.1      gwr 		case NEWC:
   1957   1.1      gwr 			TAILQ_INSERT_TAIL(&c_pool, c_tbl, ct_link);
   1958   1.1      gwr 			/* FALLTHROUGH */
   1959   1.1      gwr 		default:
   1960   1.1      gwr 			break;
   1961   1.1      gwr 	}
   1962  1.51  thorpej 
   1963  1.61      chs 	return 0;
   1964   1.1      gwr }
   1965   1.1      gwr 
   1966   1.1      gwr /* pmap_enter_kernel			INTERNAL
   1967   1.1      gwr  **
   1968   1.1      gwr  * Map the given virtual address to the given physical address within the
   1969   1.1      gwr  * kernel address space.  This function exists because the kernel map does
   1970   1.1      gwr  * not do dynamic table allocation.  It consists of a contiguous array of ptes
   1971   1.1      gwr  * and can be edited directly without the need to walk through any tables.
   1972   1.1      gwr  *
   1973   1.1      gwr  * XXX: "Danger, Will Robinson!"
   1974   1.1      gwr  * Note that the kernel should never take a fault on any page
   1975   1.1      gwr  * between [ KERNBASE .. virtual_avail ] and this is checked in
   1976   1.1      gwr  * trap.c for kernel-mode MMU faults.  This means that mappings
   1977   1.1      gwr  * created in that range must be implicily wired. -gwr
   1978   1.1      gwr  */
   1979  1.86      chs void
   1980  1.86      chs pmap_enter_kernel(vaddr_t va, paddr_t pa, vm_prot_t prot)
   1981   1.1      gwr {
   1982   1.7      gwr 	boolean_t       was_valid, insert;
   1983  1.32      gwr 	u_short         pte_idx;
   1984  1.69      chs 	int             flags;
   1985   1.1      gwr 	mmu_short_pte_t *pte;
   1986   1.7      gwr 	pv_t            *pv;
   1987  1.69      chs 	paddr_t     old_pa;
   1988   1.7      gwr 
   1989  1.32      gwr 	flags = (pa & ~MMU_PAGE_MASK);
   1990  1.32      gwr 	pa &= MMU_PAGE_MASK;
   1991  1.32      gwr 
   1992  1.32      gwr 	if (is_managed(pa))
   1993  1.32      gwr 		insert = TRUE;
   1994  1.32      gwr 	else
   1995  1.32      gwr 		insert = FALSE;
   1996   1.7      gwr 
   1997   1.7      gwr 	/*
   1998   1.7      gwr 	 * Calculate the index of the PTE being modified.
   1999   1.7      gwr 	 */
   2000  1.25    veego 	pte_idx = (u_long) m68k_btop(va - KERNBASE);
   2001   1.1      gwr 
   2002  1.22   jeremy 	/* This array is traditionally named "Sysmap" */
   2003   1.7      gwr 	pte = &kernCbase[pte_idx];
   2004   1.7      gwr 
   2005   1.7      gwr 	if (MMU_VALID_DT(*pte)) {
   2006   1.1      gwr 		was_valid = TRUE;
   2007   1.7      gwr 		/*
   2008  1.32      gwr 		 * If the PTE already maps a different
   2009  1.32      gwr 		 * physical address, umap and pv_unlink.
   2010  1.24   jeremy 		 */
   2011  1.24   jeremy 		old_pa = MMU_PTE_PA(*pte);
   2012  1.32      gwr 		if (pa != old_pa)
   2013  1.32      gwr 			pmap_remove_pte(pte);
   2014  1.32      gwr 		else {
   2015  1.24   jeremy 		    /*
   2016  1.32      gwr 		     * Old PA and new PA are the same.  No need to
   2017  1.32      gwr 		     * relink the mapping within the PV list.
   2018  1.24   jeremy 		     */
   2019  1.24   jeremy 		     insert = FALSE;
   2020   1.8      gwr 
   2021   1.7      gwr 		    /*
   2022  1.24   jeremy 		     * Save any mod/ref bits on the PTE.
   2023   1.7      gwr 		     */
   2024  1.24   jeremy 		    pte->attr.raw &= (MMU_SHORT_PTE_USED|MMU_SHORT_PTE_M);
   2025   1.7      gwr 		}
   2026   1.7      gwr 	} else {
   2027   1.8      gwr 		pte->attr.raw = MMU_DT_INVALID;
   2028   1.7      gwr 		was_valid = FALSE;
   2029   1.7      gwr 	}
   2030   1.7      gwr 
   2031   1.7      gwr 	/*
   2032   1.8      gwr 	 * Map the page.  Being careful to preserve modified/referenced bits
   2033   1.8      gwr 	 * on the PTE.
   2034   1.7      gwr 	 */
   2035   1.7      gwr 	pte->attr.raw |= (pa | MMU_DT_PAGE);
   2036   1.1      gwr 
   2037   1.1      gwr 	if (!(prot & VM_PROT_WRITE)) /* If access should be read-only */
   2038   1.1      gwr 		pte->attr.raw |= MMU_SHORT_PTE_WP;
   2039   1.7      gwr 	if (flags & PMAP_NC)
   2040   1.1      gwr 		pte->attr.raw |= MMU_SHORT_PTE_CI;
   2041   1.8      gwr 	if (was_valid)
   2042   1.7      gwr 		TBIS(va);
   2043   1.1      gwr 
   2044   1.7      gwr 	/*
   2045   1.7      gwr 	 * Insert the PTE into the PV system, if need be.
   2046   1.7      gwr 	 */
   2047   1.7      gwr 	if (insert) {
   2048   1.7      gwr 		pv = pa2pv(pa);
   2049   1.7      gwr 		pvebase[pte_idx].pve_next = pv->pv_idx;
   2050   1.7      gwr 		pv->pv_idx = pte_idx;
   2051   1.7      gwr 	}
   2052  1.34      gwr }
   2053  1.34      gwr 
   2054  1.86      chs void
   2055  1.86      chs pmap_kenter_pa(vaddr_t va, paddr_t pa, vm_prot_t prot)
   2056  1.49      chs {
   2057  1.69      chs 	mmu_short_pte_t	*pte;
   2058  1.69      chs 
   2059  1.69      chs 	/* This array is traditionally named "Sysmap" */
   2060  1.69      chs 	pte = &kernCbase[(u_long)m68k_btop(va - KERNBASE)];
   2061  1.69      chs 
   2062  1.69      chs 	KASSERT(!MMU_VALID_DT(*pte));
   2063  1.69      chs 	pte->attr.raw = MMU_DT_INVALID | MMU_DT_PAGE | (pa & MMU_PAGE_MASK);
   2064  1.69      chs 	if (!(prot & VM_PROT_WRITE))
   2065  1.69      chs 		pte->attr.raw |= MMU_SHORT_PTE_WP;
   2066  1.49      chs }
   2067  1.49      chs 
   2068  1.86      chs void
   2069  1.86      chs pmap_kremove(vaddr_t va, vsize_t len)
   2070  1.49      chs {
   2071  1.69      chs 	int idx, eidx;
   2072  1.69      chs 
   2073  1.69      chs #ifdef	PMAP_DEBUG
   2074  1.69      chs 	if ((sva & PGOFSET) || (eva & PGOFSET))
   2075  1.72  tsutsui 		panic("pmap_kremove: alignment");
   2076  1.69      chs #endif
   2077  1.69      chs 
   2078  1.69      chs 	idx  = m68k_btop(va - KERNBASE);
   2079  1.69      chs 	eidx = m68k_btop(va + len - KERNBASE);
   2080  1.69      chs 
   2081  1.69      chs 	while (idx < eidx) {
   2082  1.69      chs 		kernCbase[idx++].attr.raw = MMU_DT_INVALID;
   2083  1.69      chs 		TBIS(va);
   2084  1.79  thorpej 		va += PAGE_SIZE;
   2085  1.49      chs 	}
   2086  1.49      chs }
   2087  1.49      chs 
   2088  1.35   jeremy /* pmap_map			INTERNAL
   2089  1.35   jeremy  **
   2090  1.35   jeremy  * Map a contiguous range of physical memory into a contiguous range of
   2091  1.35   jeremy  * the kernel virtual address space.
   2092  1.35   jeremy  *
   2093  1.35   jeremy  * Used for device mappings and early mapping of the kernel text/data/bss.
   2094  1.35   jeremy  * Returns the first virtual address beyond the end of the range.
   2095  1.34      gwr  */
   2096  1.86      chs vaddr_t
   2097  1.86      chs pmap_map(vaddr_t va, paddr_t pa, paddr_t endpa, int prot)
   2098  1.34      gwr {
   2099  1.34      gwr 	int sz;
   2100  1.34      gwr 
   2101  1.34      gwr 	sz = endpa - pa;
   2102  1.34      gwr 	do {
   2103  1.34      gwr 		pmap_enter_kernel(va, pa, prot);
   2104  1.79  thorpej 		va += PAGE_SIZE;
   2105  1.79  thorpej 		pa += PAGE_SIZE;
   2106  1.79  thorpej 		sz -= PAGE_SIZE;
   2107  1.34      gwr 	} while (sz > 0);
   2108  1.73    chris 	pmap_update(pmap_kernel());
   2109  1.34      gwr 	return(va);
   2110   1.1      gwr }
   2111   1.1      gwr 
   2112   1.1      gwr /* pmap_protect			INTERFACE
   2113   1.1      gwr  **
   2114   1.7      gwr  * Apply the given protection to the given virtual address range within
   2115   1.1      gwr  * the given map.
   2116   1.1      gwr  *
   2117   1.1      gwr  * It is ok for the protection applied to be stronger than what is
   2118   1.1      gwr  * specified.  We use this to our advantage when the given map has no
   2119   1.7      gwr  * mapping for the virtual address.  By skipping a page when this
   2120   1.1      gwr  * is discovered, we are effectively applying a protection of VM_PROT_NONE,
   2121   1.1      gwr  * and therefore do not need to map the page just to apply a protection
   2122   1.1      gwr  * code.  Only pmap_enter() needs to create new mappings if they do not exist.
   2123   1.7      gwr  *
   2124   1.7      gwr  * XXX - This function could be speeded up by using pmap_stroll() for inital
   2125   1.7      gwr  *       setup, and then manual scrolling in the for() loop.
   2126   1.1      gwr  */
   2127  1.86      chs void
   2128  1.86      chs pmap_protect(pmap_t pmap, vaddr_t startva, vaddr_t endva, vm_prot_t prot)
   2129   1.1      gwr {
   2130   1.7      gwr 	boolean_t iscurpmap;
   2131   1.1      gwr 	int a_idx, b_idx, c_idx;
   2132   1.1      gwr 	a_tmgr_t *a_tbl;
   2133   1.1      gwr 	b_tmgr_t *b_tbl;
   2134   1.1      gwr 	c_tmgr_t *c_tbl;
   2135   1.1      gwr 	mmu_short_pte_t *pte;
   2136   1.1      gwr 
   2137   1.1      gwr 	if (pmap == pmap_kernel()) {
   2138   1.7      gwr 		pmap_protect_kernel(startva, endva, prot);
   2139   1.1      gwr 		return;
   2140   1.1      gwr 	}
   2141   1.1      gwr 
   2142  1.11   jeremy 	/*
   2143  1.12   jeremy 	 * In this particular pmap implementation, there are only three
   2144  1.12   jeremy 	 * types of memory protection: 'all' (read/write/execute),
   2145  1.12   jeremy 	 * 'read-only' (read/execute) and 'none' (no mapping.)
   2146  1.12   jeremy 	 * It is not possible for us to treat 'executable' as a separate
   2147  1.12   jeremy 	 * protection type.  Therefore, protection requests that seek to
   2148  1.12   jeremy 	 * remove execute permission while retaining read or write, and those
   2149  1.12   jeremy 	 * that make little sense (write-only for example) are ignored.
   2150  1.11   jeremy 	 */
   2151  1.12   jeremy 	switch (prot) {
   2152  1.12   jeremy 		case VM_PROT_NONE:
   2153  1.12   jeremy 			/*
   2154  1.12   jeremy 			 * A request to apply the protection code of
   2155  1.12   jeremy 			 * 'VM_PROT_NONE' is a synonym for pmap_remove().
   2156  1.12   jeremy 			 */
   2157  1.12   jeremy 			pmap_remove(pmap, startva, endva);
   2158  1.12   jeremy 			return;
   2159  1.12   jeremy 		case	VM_PROT_EXECUTE:
   2160  1.12   jeremy 		case	VM_PROT_READ:
   2161  1.12   jeremy 		case	VM_PROT_READ|VM_PROT_EXECUTE:
   2162  1.12   jeremy 			/* continue */
   2163  1.12   jeremy 			break;
   2164  1.12   jeremy 		case	VM_PROT_WRITE:
   2165  1.12   jeremy 		case	VM_PROT_WRITE|VM_PROT_READ:
   2166  1.12   jeremy 		case	VM_PROT_WRITE|VM_PROT_EXECUTE:
   2167  1.12   jeremy 		case	VM_PROT_ALL:
   2168  1.12   jeremy 			/* None of these should happen in a sane system. */
   2169  1.12   jeremy 			return;
   2170  1.11   jeremy 	}
   2171  1.11   jeremy 
   2172  1.11   jeremy 	/*
   2173  1.11   jeremy 	 * If the pmap has no A table, it has no mappings and therefore
   2174  1.11   jeremy 	 * there is nothing to protect.
   2175  1.11   jeremy 	 */
   2176  1.11   jeremy 	if ((a_tbl = pmap->pm_a_tmgr) == NULL)
   2177  1.11   jeremy 		return;
   2178  1.11   jeremy 
   2179  1.11   jeremy 	a_idx = MMU_TIA(startva);
   2180  1.11   jeremy 	b_idx = MMU_TIB(startva);
   2181  1.11   jeremy 	c_idx = MMU_TIC(startva);
   2182  1.11   jeremy 	b_tbl = (b_tmgr_t *) c_tbl = NULL;
   2183  1.11   jeremy 
   2184   1.7      gwr 	iscurpmap = (pmap == current_pmap());
   2185  1.11   jeremy 	while (startva < endva) {
   2186  1.11   jeremy 		if (b_tbl || MMU_VALID_DT(a_tbl->at_dtbl[a_idx])) {
   2187  1.11   jeremy 		  if (b_tbl == NULL) {
   2188  1.11   jeremy 		    b_tbl = (b_tmgr_t *) a_tbl->at_dtbl[a_idx].addr.raw;
   2189  1.69      chs 		    b_tbl = mmu_ptov((vaddr_t)b_tbl);
   2190  1.69      chs 		    b_tbl = mmuB2tmgr((mmu_short_dte_t *)b_tbl);
   2191  1.11   jeremy 		  }
   2192  1.11   jeremy 		  if (c_tbl || MMU_VALID_DT(b_tbl->bt_dtbl[b_idx])) {
   2193  1.11   jeremy 		    if (c_tbl == NULL) {
   2194  1.11   jeremy 		      c_tbl = (c_tmgr_t *) MMU_DTE_PA(b_tbl->bt_dtbl[b_idx]);
   2195  1.69      chs 		      c_tbl = mmu_ptov((vaddr_t)c_tbl);
   2196  1.69      chs 		      c_tbl = mmuC2tmgr((mmu_short_pte_t *)c_tbl);
   2197  1.11   jeremy 		    }
   2198  1.11   jeremy 		    if (MMU_VALID_DT(c_tbl->ct_dtbl[c_idx])) {
   2199  1.11   jeremy 		      pte = &c_tbl->ct_dtbl[c_idx];
   2200  1.12   jeremy 		      /* make the mapping read-only */
   2201  1.12   jeremy 		      pte->attr.raw |= MMU_SHORT_PTE_WP;
   2202  1.11   jeremy 		      /*
   2203  1.11   jeremy 		       * If we just modified the current address space,
   2204  1.11   jeremy 		       * flush any translations for the modified page from
   2205  1.11   jeremy 		       * the translation cache and any data from it in the
   2206  1.11   jeremy 		       * data cache.
   2207  1.11   jeremy 		       */
   2208  1.11   jeremy 		      if (iscurpmap)
   2209  1.11   jeremy 		          TBIS(startva);
   2210  1.11   jeremy 		    }
   2211  1.79  thorpej 		    startva += PAGE_SIZE;
   2212   1.1      gwr 
   2213  1.11   jeremy 		    if (++c_idx >= MMU_C_TBL_SIZE) { /* exceeded C table? */
   2214  1.11   jeremy 		      c_tbl = NULL;
   2215  1.11   jeremy 		      c_idx = 0;
   2216  1.11   jeremy 		      if (++b_idx >= MMU_B_TBL_SIZE) { /* exceeded B table? */
   2217  1.11   jeremy 		        b_tbl = NULL;
   2218  1.11   jeremy 		        b_idx = 0;
   2219  1.11   jeremy 		      }
   2220  1.11   jeremy 		    }
   2221  1.11   jeremy 		  } else { /* C table wasn't valid */
   2222  1.11   jeremy 		    c_tbl = NULL;
   2223  1.11   jeremy 		    c_idx = 0;
   2224  1.11   jeremy 		    startva += MMU_TIB_RANGE;
   2225  1.11   jeremy 		    if (++b_idx >= MMU_B_TBL_SIZE) { /* exceeded B table? */
   2226  1.11   jeremy 		      b_tbl = NULL;
   2227  1.11   jeremy 		      b_idx = 0;
   2228  1.11   jeremy 		    }
   2229  1.11   jeremy 		  } /* C table */
   2230  1.11   jeremy 		} else { /* B table wasn't valid */
   2231  1.11   jeremy 		  b_tbl = NULL;
   2232  1.11   jeremy 		  b_idx = 0;
   2233  1.11   jeremy 		  startva += MMU_TIA_RANGE;
   2234  1.11   jeremy 		  a_idx++;
   2235  1.11   jeremy 		} /* B table */
   2236   1.1      gwr 	}
   2237   1.1      gwr }
   2238   1.1      gwr 
   2239   1.1      gwr /* pmap_protect_kernel			INTERNAL
   2240   1.1      gwr  **
   2241   1.7      gwr  * Apply the given protection code to a kernel address range.
   2242   1.1      gwr  */
   2243  1.86      chs void
   2244  1.86      chs pmap_protect_kernel(vaddr_t startva, vaddr_t endva, vm_prot_t prot)
   2245   1.1      gwr {
   2246  1.69      chs 	vaddr_t va;
   2247   1.1      gwr 	mmu_short_pte_t *pte;
   2248   1.1      gwr 
   2249  1.25    veego 	pte = &kernCbase[(unsigned long) m68k_btop(startva - KERNBASE)];
   2250  1.79  thorpej 	for (va = startva; va < endva; va += PAGE_SIZE, pte++) {
   2251   1.7      gwr 		if (MMU_VALID_DT(*pte)) {
   2252   1.7      gwr 		    switch (prot) {
   2253   1.7      gwr 		        case VM_PROT_ALL:
   2254   1.7      gwr 		            break;
   2255   1.7      gwr 		        case VM_PROT_EXECUTE:
   2256   1.7      gwr 		        case VM_PROT_READ:
   2257   1.7      gwr 		        case VM_PROT_READ|VM_PROT_EXECUTE:
   2258   1.7      gwr 		            pte->attr.raw |= MMU_SHORT_PTE_WP;
   2259   1.7      gwr 		            break;
   2260   1.7      gwr 		        case VM_PROT_NONE:
   2261   1.7      gwr 		            /* this is an alias for 'pmap_remove_kernel' */
   2262   1.7      gwr 		            pmap_remove_pte(pte);
   2263   1.7      gwr 		            break;
   2264   1.7      gwr 		        default:
   2265   1.7      gwr 		            break;
   2266   1.7      gwr 		    }
   2267   1.7      gwr 		    /*
   2268   1.7      gwr 		     * since this is the kernel, immediately flush any cached
   2269   1.7      gwr 		     * descriptors for this address.
   2270   1.7      gwr 		     */
   2271   1.7      gwr 		    TBIS(va);
   2272   1.1      gwr 		}
   2273   1.1      gwr 	}
   2274   1.1      gwr }
   2275   1.1      gwr 
   2276  1.47  thorpej /* pmap_unwire				INTERFACE
   2277   1.1      gwr  **
   2278  1.47  thorpej  * Clear the wired attribute of the specified page.
   2279   1.1      gwr  *
   2280   1.1      gwr  * This function is called from vm_fault.c to unwire
   2281  1.47  thorpej  * a mapping.
   2282   1.1      gwr  */
   2283  1.86      chs void
   2284  1.86      chs pmap_unwire(pmap_t pmap, vaddr_t va)
   2285   1.1      gwr {
   2286   1.1      gwr 	int a_idx, b_idx, c_idx;
   2287   1.1      gwr 	a_tmgr_t *a_tbl;
   2288   1.1      gwr 	b_tmgr_t *b_tbl;
   2289   1.1      gwr 	c_tmgr_t *c_tbl;
   2290   1.1      gwr 	mmu_short_pte_t *pte;
   2291   1.1      gwr 
   2292   1.1      gwr 	/* Kernel mappings always remain wired. */
   2293   1.1      gwr 	if (pmap == pmap_kernel())
   2294   1.1      gwr 		return;
   2295   1.1      gwr 
   2296   1.7      gwr 	/*
   2297   1.7      gwr 	 * Walk through the tables.  If the walk terminates without
   2298   1.1      gwr 	 * a valid PTE then the address wasn't wired in the first place.
   2299   1.1      gwr 	 * Return immediately.
   2300   1.1      gwr 	 */
   2301   1.1      gwr 	if (pmap_stroll(pmap, va, &a_tbl, &b_tbl, &c_tbl, &pte, &a_idx,
   2302   1.1      gwr 		&b_idx, &c_idx) == FALSE)
   2303   1.1      gwr 		return;
   2304   1.1      gwr 
   2305   1.1      gwr 
   2306   1.1      gwr 	/* Is the PTE wired?  If not, return. */
   2307   1.1      gwr 	if (!(pte->attr.raw & MMU_SHORT_PTE_WIRED))
   2308   1.1      gwr 		return;
   2309   1.1      gwr 
   2310   1.1      gwr 	/* Remove the wiring bit. */
   2311   1.1      gwr 	pte->attr.raw &= ~(MMU_SHORT_PTE_WIRED);
   2312   1.1      gwr 
   2313   1.7      gwr 	/*
   2314   1.7      gwr 	 * Decrement the wired entry count in the C table.
   2315   1.1      gwr 	 * If it reaches zero the following things happen:
   2316   1.1      gwr 	 * 1. The table no longer has any wired entries and is considered
   2317   1.1      gwr 	 *    unwired.
   2318   1.1      gwr 	 * 2. It is placed on the available queue.
   2319   1.1      gwr 	 * 3. The parent table's wired entry count is decremented.
   2320   1.1      gwr 	 * 4. If it reaches zero, this process repeats at step 1 and
   2321   1.1      gwr 	 *    stops at after reaching the A table.
   2322   1.1      gwr 	 */
   2323   1.7      gwr 	if (--c_tbl->ct_wcnt == 0) {
   2324   1.1      gwr 		TAILQ_INSERT_TAIL(&c_pool, c_tbl, ct_link);
   2325   1.7      gwr 		if (--b_tbl->bt_wcnt == 0) {
   2326   1.1      gwr 			TAILQ_INSERT_TAIL(&b_pool, b_tbl, bt_link);
   2327   1.7      gwr 			if (--a_tbl->at_wcnt == 0) {
   2328   1.1      gwr 				TAILQ_INSERT_TAIL(&a_pool, a_tbl, at_link);
   2329   1.1      gwr 			}
   2330   1.1      gwr 		}
   2331   1.1      gwr 	}
   2332   1.1      gwr }
   2333   1.1      gwr 
   2334   1.1      gwr /* pmap_copy				INTERFACE
   2335   1.1      gwr  **
   2336   1.1      gwr  * Copy the mappings of a range of addresses in one pmap, into
   2337   1.1      gwr  * the destination address of another.
   2338   1.1      gwr  *
   2339   1.1      gwr  * This routine is advisory.  Should we one day decide that MMU tables
   2340   1.1      gwr  * may be shared by more than one pmap, this function should be used to
   2341   1.1      gwr  * link them together.  Until that day however, we do nothing.
   2342   1.1      gwr  */
   2343   1.1      gwr void
   2344  1.86      chs pmap_copy(pmap_t pmap_a, pmap_t pmap_b, vaddr_t dst, vsize_t len, vaddr_t src)
   2345   1.1      gwr {
   2346   1.1      gwr 	/* not implemented. */
   2347   1.1      gwr }
   2348   1.1      gwr 
   2349   1.1      gwr /* pmap_copy_page			INTERFACE
   2350   1.1      gwr  **
   2351   1.1      gwr  * Copy the contents of one physical page into another.
   2352   1.1      gwr  *
   2353   1.7      gwr  * This function makes use of two virtual pages allocated in pmap_bootstrap()
   2354  1.24   jeremy  * to map the two specified physical pages into the kernel address space.
   2355   1.7      gwr  *
   2356   1.7      gwr  * Note: We could use the transparent translation registers to make the
   2357   1.7      gwr  * mappings.  If we do so, be sure to disable interrupts before using them.
   2358   1.1      gwr  */
   2359  1.86      chs void
   2360  1.86      chs pmap_copy_page(paddr_t srcpa, paddr_t dstpa)
   2361   1.1      gwr {
   2362  1.69      chs 	vaddr_t srcva, dstva;
   2363  1.23   jeremy 	int s;
   2364  1.24   jeremy 
   2365  1.24   jeremy 	srcva = tmp_vpages[0];
   2366  1.24   jeremy 	dstva = tmp_vpages[1];
   2367   1.1      gwr 
   2368  1.58  thorpej 	s = splvm();
   2369  1.69      chs #ifdef DIAGNOSTIC
   2370  1.24   jeremy 	if (tmp_vpages_inuse++)
   2371  1.24   jeremy 		panic("pmap_copy_page: temporary vpages are in use.");
   2372  1.69      chs #endif
   2373  1.23   jeremy 
   2374  1.23   jeremy 	/* Map pages as non-cacheable to avoid cache polution? */
   2375  1.69      chs 	pmap_kenter_pa(srcva, srcpa, VM_PROT_READ);
   2376  1.69      chs 	pmap_kenter_pa(dstva, dstpa, VM_PROT_READ|VM_PROT_WRITE);
   2377   1.7      gwr 
   2378  1.79  thorpej 	/* Hand-optimized version of bcopy(src, dst, PAGE_SIZE) */
   2379  1.24   jeremy 	copypage((char *) srcva, (char *) dstva);
   2380  1.24   jeremy 
   2381  1.79  thorpej 	pmap_kremove(srcva, PAGE_SIZE);
   2382  1.79  thorpej 	pmap_kremove(dstva, PAGE_SIZE);
   2383  1.24   jeremy 
   2384  1.69      chs #ifdef DIAGNOSTIC
   2385  1.24   jeremy 	--tmp_vpages_inuse;
   2386  1.69      chs #endif
   2387  1.23   jeremy 	splx(s);
   2388   1.1      gwr }
   2389   1.1      gwr 
   2390   1.1      gwr /* pmap_zero_page			INTERFACE
   2391   1.1      gwr  **
   2392   1.1      gwr  * Zero the contents of the specified physical page.
   2393   1.1      gwr  *
   2394   1.7      gwr  * Uses one of the virtual pages allocated in pmap_boostrap()
   2395  1.24   jeremy  * to map the specified page into the kernel address space.
   2396   1.1      gwr  */
   2397  1.86      chs void
   2398  1.86      chs pmap_zero_page(paddr_t dstpa)
   2399   1.1      gwr {
   2400  1.69      chs 	vaddr_t dstva;
   2401  1.23   jeremy 	int s;
   2402  1.23   jeremy 
   2403  1.24   jeremy 	dstva = tmp_vpages[1];
   2404  1.58  thorpej 	s = splvm();
   2405  1.69      chs #ifdef DIAGNOSTIC
   2406  1.26   jeremy 	if (tmp_vpages_inuse++)
   2407  1.24   jeremy 		panic("pmap_zero_page: temporary vpages are in use.");
   2408  1.69      chs #endif
   2409  1.24   jeremy 
   2410  1.24   jeremy 	/* The comments in pmap_copy_page() above apply here also. */
   2411  1.69      chs 	pmap_kenter_pa(dstva, dstpa, VM_PROT_READ|VM_PROT_WRITE);
   2412  1.24   jeremy 
   2413  1.79  thorpej 	/* Hand-optimized version of bzero(ptr, PAGE_SIZE) */
   2414  1.24   jeremy 	zeropage((char *) dstva);
   2415   1.1      gwr 
   2416  1.79  thorpej 	pmap_kremove(dstva, PAGE_SIZE);
   2417  1.69      chs #ifdef DIAGNOSTIC
   2418  1.24   jeremy 	--tmp_vpages_inuse;
   2419  1.69      chs #endif
   2420  1.23   jeremy 	splx(s);
   2421   1.1      gwr }
   2422   1.1      gwr 
   2423   1.1      gwr /* pmap_collect			INTERFACE
   2424   1.1      gwr  **
   2425   1.7      gwr  * Called from the VM system when we are about to swap out
   2426   1.7      gwr  * the process using this pmap.  This should give up any
   2427   1.7      gwr  * resources held here, including all its MMU tables.
   2428   1.1      gwr  */
   2429  1.86      chs void
   2430  1.86      chs pmap_collect(pmap_t pmap)
   2431   1.1      gwr {
   2432   1.7      gwr 	/* XXX - todo... */
   2433   1.1      gwr }
   2434   1.1      gwr 
   2435   1.1      gwr /* pmap_create			INTERFACE
   2436   1.1      gwr  **
   2437   1.1      gwr  * Create and return a pmap structure.
   2438   1.1      gwr  */
   2439  1.86      chs pmap_t
   2440  1.86      chs pmap_create(void)
   2441   1.1      gwr {
   2442   1.1      gwr 	pmap_t	pmap;
   2443   1.1      gwr 
   2444  1.56  tsutsui 	pmap = pool_get(&pmap_pmap_pool, PR_WAITOK);
   2445   1.1      gwr 	pmap_pinit(pmap);
   2446   1.1      gwr 	return pmap;
   2447   1.1      gwr }
   2448   1.1      gwr 
   2449   1.1      gwr /* pmap_pinit			INTERNAL
   2450   1.1      gwr  **
   2451   1.1      gwr  * Initialize a pmap structure.
   2452   1.1      gwr  */
   2453  1.86      chs void
   2454  1.86      chs pmap_pinit(pmap_t pmap)
   2455   1.1      gwr {
   2456  1.71  tsutsui 	memset(pmap, 0, sizeof(struct pmap));
   2457   1.7      gwr 	pmap->pm_a_tmgr = NULL;
   2458   1.7      gwr 	pmap->pm_a_phys = kernAphys;
   2459  1.55  tsutsui 	pmap->pm_refcount = 1;
   2460  1.55  tsutsui 	simple_lock_init(&pmap->pm_lock);
   2461   1.1      gwr }
   2462   1.1      gwr 
   2463   1.1      gwr /* pmap_release				INTERFACE
   2464   1.1      gwr  **
   2465   1.1      gwr  * Release any resources held by the given pmap.
   2466   1.1      gwr  *
   2467   1.1      gwr  * This is the reverse analog to pmap_pinit.  It does not
   2468   1.1      gwr  * necessarily mean for the pmap structure to be deallocated,
   2469   1.1      gwr  * as in pmap_destroy.
   2470   1.1      gwr  */
   2471  1.86      chs void
   2472  1.86      chs pmap_release(pmap_t pmap)
   2473   1.1      gwr {
   2474   1.7      gwr 	/*
   2475   1.7      gwr 	 * As long as the pmap contains no mappings,
   2476   1.1      gwr 	 * which always should be the case whenever
   2477   1.1      gwr 	 * this function is called, there really should
   2478   1.1      gwr 	 * be nothing to do.
   2479   1.1      gwr 	 */
   2480   1.1      gwr #ifdef	PMAP_DEBUG
   2481   1.1      gwr 	if (pmap == pmap_kernel())
   2482   1.9      gwr 		panic("pmap_release: kernel pmap");
   2483   1.1      gwr #endif
   2484   1.9      gwr 	/*
   2485   1.9      gwr 	 * XXX - If this pmap has an A table, give it back.
   2486   1.9      gwr 	 * The pmap SHOULD be empty by now, and pmap_remove
   2487   1.9      gwr 	 * should have already given back the A table...
   2488   1.9      gwr 	 * However, I see:  pmap->pm_a_tmgr->at_ecnt == 1
   2489   1.9      gwr 	 * at this point, which means some mapping was not
   2490   1.9      gwr 	 * removed when it should have been. -gwr
   2491   1.9      gwr 	 */
   2492   1.7      gwr 	if (pmap->pm_a_tmgr != NULL) {
   2493   1.9      gwr 		/* First make sure we are not using it! */
   2494   1.9      gwr 		if (kernel_crp.rp_addr == pmap->pm_a_phys) {
   2495   1.9      gwr 			kernel_crp.rp_addr = kernAphys;
   2496   1.9      gwr 			loadcrp(&kernel_crp);
   2497   1.9      gwr 		}
   2498  1.13      gwr #ifdef	PMAP_DEBUG /* XXX - todo! */
   2499  1.13      gwr 		/* XXX - Now complain... */
   2500  1.13      gwr 		printf("pmap_release: still have table\n");
   2501  1.13      gwr 		Debugger();
   2502  1.13      gwr #endif
   2503   1.7      gwr 		free_a_table(pmap->pm_a_tmgr, TRUE);
   2504   1.7      gwr 		pmap->pm_a_tmgr = NULL;
   2505   1.7      gwr 		pmap->pm_a_phys = kernAphys;
   2506   1.7      gwr 	}
   2507   1.1      gwr }
   2508   1.1      gwr 
   2509   1.1      gwr /* pmap_reference			INTERFACE
   2510   1.1      gwr  **
   2511   1.1      gwr  * Increment the reference count of a pmap.
   2512   1.1      gwr  */
   2513  1.86      chs void
   2514  1.86      chs pmap_reference(pmap_t pmap)
   2515   1.1      gwr {
   2516  1.55  tsutsui 	pmap_lock(pmap);
   2517  1.55  tsutsui 	pmap_add_ref(pmap);
   2518  1.55  tsutsui 	pmap_unlock(pmap);
   2519   1.1      gwr }
   2520   1.1      gwr 
   2521   1.1      gwr /* pmap_dereference			INTERNAL
   2522   1.1      gwr  **
   2523   1.1      gwr  * Decrease the reference count on the given pmap
   2524   1.1      gwr  * by one and return the current count.
   2525   1.1      gwr  */
   2526  1.86      chs int
   2527  1.86      chs pmap_dereference(pmap_t pmap)
   2528   1.1      gwr {
   2529   1.1      gwr 	int rtn;
   2530   1.1      gwr 
   2531  1.55  tsutsui 	pmap_lock(pmap);
   2532  1.55  tsutsui 	rtn = pmap_del_ref(pmap);
   2533  1.55  tsutsui 	pmap_unlock(pmap);
   2534   1.1      gwr 
   2535   1.1      gwr 	return rtn;
   2536   1.1      gwr }
   2537   1.1      gwr 
   2538   1.1      gwr /* pmap_destroy			INTERFACE
   2539   1.1      gwr  **
   2540   1.1      gwr  * Decrement a pmap's reference count and delete
   2541   1.1      gwr  * the pmap if it becomes zero.  Will be called
   2542   1.1      gwr  * only after all mappings have been removed.
   2543   1.1      gwr  */
   2544  1.86      chs void
   2545  1.86      chs pmap_destroy(pmap_t pmap)
   2546   1.1      gwr {
   2547   1.1      gwr 	if (pmap_dereference(pmap) == 0) {
   2548   1.1      gwr 		pmap_release(pmap);
   2549  1.56  tsutsui 		pool_put(&pmap_pmap_pool, pmap);
   2550   1.1      gwr 	}
   2551   1.1      gwr }
   2552   1.1      gwr 
   2553   1.1      gwr /* pmap_is_referenced			INTERFACE
   2554   1.1      gwr  **
   2555   1.1      gwr  * Determine if the given physical page has been
   2556   1.1      gwr  * referenced (read from [or written to.])
   2557   1.1      gwr  */
   2558   1.1      gwr boolean_t
   2559  1.86      chs pmap_is_referenced(struct vm_page *pg)
   2560   1.1      gwr {
   2561  1.49      chs 	paddr_t   pa = VM_PAGE_TO_PHYS(pg);
   2562   1.1      gwr 	pv_t      *pv;
   2563  1.69      chs 	int       idx;
   2564   1.1      gwr 
   2565   1.7      gwr 	/*
   2566   1.7      gwr 	 * Check the flags on the pv head.  If they are set,
   2567   1.1      gwr 	 * return immediately.  Otherwise a search must be done.
   2568   1.7      gwr 	 */
   2569  1.69      chs 
   2570  1.69      chs 	pv = pa2pv(pa);
   2571   1.1      gwr 	if (pv->pv_flags & PV_FLAGS_USED)
   2572   1.1      gwr 		return TRUE;
   2573  1.32      gwr 
   2574  1.32      gwr 	/*
   2575  1.32      gwr 	 * Search through all pv elements pointing
   2576  1.32      gwr 	 * to this page and query their reference bits
   2577  1.32      gwr 	 */
   2578  1.32      gwr 
   2579  1.69      chs 	for (idx = pv->pv_idx; idx != PVE_EOL; idx = pvebase[idx].pve_next) {
   2580  1.32      gwr 		if (MMU_PTE_USED(kernCbase[idx])) {
   2581  1.32      gwr 			return TRUE;
   2582  1.32      gwr 		}
   2583   1.7      gwr 	}
   2584   1.1      gwr 	return FALSE;
   2585   1.1      gwr }
   2586   1.1      gwr 
   2587   1.1      gwr /* pmap_is_modified			INTERFACE
   2588   1.1      gwr  **
   2589   1.1      gwr  * Determine if the given physical page has been
   2590   1.1      gwr  * modified (written to.)
   2591   1.1      gwr  */
   2592   1.1      gwr boolean_t
   2593  1.86      chs pmap_is_modified(struct vm_page *pg)
   2594   1.1      gwr {
   2595  1.49      chs 	paddr_t   pa = VM_PAGE_TO_PHYS(pg);
   2596   1.1      gwr 	pv_t      *pv;
   2597  1.69      chs 	int       idx;
   2598   1.1      gwr 
   2599   1.1      gwr 	/* see comments in pmap_is_referenced() */
   2600   1.1      gwr 	pv = pa2pv(pa);
   2601  1.32      gwr 	if (pv->pv_flags & PV_FLAGS_MDFY)
   2602   1.1      gwr 		return TRUE;
   2603  1.32      gwr 
   2604  1.32      gwr 	for (idx = pv->pv_idx;
   2605  1.32      gwr 		 idx != PVE_EOL;
   2606  1.32      gwr 		 idx = pvebase[idx].pve_next) {
   2607  1.32      gwr 
   2608  1.32      gwr 		if (MMU_PTE_MODIFIED(kernCbase[idx])) {
   2609  1.32      gwr 			return TRUE;
   2610  1.32      gwr 		}
   2611   1.7      gwr 	}
   2612   1.7      gwr 
   2613   1.1      gwr 	return FALSE;
   2614   1.1      gwr }
   2615   1.1      gwr 
   2616   1.1      gwr /* pmap_page_protect			INTERFACE
   2617   1.1      gwr  **
   2618   1.1      gwr  * Applies the given protection to all mappings to the given
   2619   1.1      gwr  * physical page.
   2620   1.1      gwr  */
   2621  1.86      chs void
   2622  1.86      chs pmap_page_protect(struct vm_page *pg, vm_prot_t prot)
   2623   1.1      gwr {
   2624  1.49      chs 	paddr_t   pa = VM_PAGE_TO_PHYS(pg);
   2625   1.1      gwr 	pv_t      *pv;
   2626  1.69      chs 	int       idx;
   2627  1.69      chs 	vaddr_t va;
   2628   1.1      gwr 	struct mmu_short_pte_struct *pte;
   2629   1.8      gwr 	c_tmgr_t  *c_tbl;
   2630   1.8      gwr 	pmap_t    pmap, curpmap;
   2631   1.1      gwr 
   2632   1.8      gwr 	curpmap = current_pmap();
   2633   1.1      gwr 	pv = pa2pv(pa);
   2634  1.32      gwr 
   2635  1.69      chs 	for (idx = pv->pv_idx; idx != PVE_EOL; idx = pvebase[idx].pve_next) {
   2636   1.7      gwr 		pte = &kernCbase[idx];
   2637   1.1      gwr 		switch (prot) {
   2638   1.1      gwr 			case VM_PROT_ALL:
   2639   1.1      gwr 				/* do nothing */
   2640   1.1      gwr 				break;
   2641   1.7      gwr 			case VM_PROT_EXECUTE:
   2642   1.1      gwr 			case VM_PROT_READ:
   2643   1.1      gwr 			case VM_PROT_READ|VM_PROT_EXECUTE:
   2644   1.8      gwr 				/*
   2645   1.8      gwr 				 * Determine the virtual address mapped by
   2646   1.8      gwr 				 * the PTE and flush ATC entries if necessary.
   2647   1.8      gwr 				 */
   2648   1.8      gwr 				va = pmap_get_pteinfo(idx, &pmap, &c_tbl);
   2649  1.69      chs 				pte->attr.raw |= MMU_SHORT_PTE_WP;
   2650   1.8      gwr 				if (pmap == curpmap || pmap == pmap_kernel())
   2651   1.8      gwr 					TBIS(va);
   2652   1.1      gwr 				break;
   2653   1.1      gwr 			case VM_PROT_NONE:
   2654   1.7      gwr 				/* Save the mod/ref bits. */
   2655   1.7      gwr 				pv->pv_flags |= pte->attr.raw;
   2656   1.7      gwr 				/* Invalidate the PTE. */
   2657   1.7      gwr 				pte->attr.raw = MMU_DT_INVALID;
   2658   1.8      gwr 
   2659   1.8      gwr 				/*
   2660   1.8      gwr 				 * Update table counts.  And flush ATC entries
   2661   1.8      gwr 				 * if necessary.
   2662   1.8      gwr 				 */
   2663   1.8      gwr 				va = pmap_get_pteinfo(idx, &pmap, &c_tbl);
   2664   1.8      gwr 
   2665   1.8      gwr 				/*
   2666   1.8      gwr 				 * If the PTE belongs to the kernel map,
   2667   1.8      gwr 				 * be sure to flush the page it maps.
   2668   1.8      gwr 				 */
   2669   1.8      gwr 				if (pmap == pmap_kernel()) {
   2670   1.8      gwr 					TBIS(va);
   2671   1.8      gwr 				} else {
   2672   1.8      gwr 					/*
   2673   1.8      gwr 					 * The PTE belongs to a user map.
   2674   1.8      gwr 					 * update the entry count in the C
   2675   1.8      gwr 					 * table to which it belongs and flush
   2676   1.8      gwr 					 * the ATC if the mapping belongs to
   2677   1.8      gwr 					 * the current pmap.
   2678   1.8      gwr 					 */
   2679   1.8      gwr 					c_tbl->ct_ecnt--;
   2680   1.8      gwr 					if (pmap == curpmap)
   2681   1.8      gwr 						TBIS(va);
   2682   1.8      gwr 				}
   2683   1.1      gwr 				break;
   2684   1.1      gwr 			default:
   2685   1.1      gwr 				break;
   2686   1.1      gwr 		}
   2687   1.1      gwr 	}
   2688   1.8      gwr 
   2689   1.8      gwr 	/*
   2690   1.8      gwr 	 * If the protection code indicates that all mappings to the page
   2691   1.8      gwr 	 * be removed, truncate the PV list to zero entries.
   2692   1.8      gwr 	 */
   2693   1.7      gwr 	if (prot == VM_PROT_NONE)
   2694   1.7      gwr 		pv->pv_idx = PVE_EOL;
   2695   1.1      gwr }
   2696   1.1      gwr 
   2697   1.7      gwr /* pmap_get_pteinfo		INTERNAL
   2698   1.1      gwr  **
   2699   1.7      gwr  * Called internally to find the pmap and virtual address within that
   2700   1.8      gwr  * map to which the pte at the given index maps.  Also includes the PTE's C
   2701   1.8      gwr  * table manager.
   2702   1.1      gwr  *
   2703   1.7      gwr  * Returns the pmap in the argument provided, and the virtual address
   2704   1.7      gwr  * by return value.
   2705   1.1      gwr  */
   2706  1.86      chs vaddr_t
   2707  1.86      chs pmap_get_pteinfo(u_int idx, pmap_t *pmap, c_tmgr_t **tbl)
   2708   1.1      gwr {
   2709  1.69      chs 	vaddr_t     va = 0;
   2710   1.1      gwr 
   2711   1.7      gwr 	/*
   2712   1.7      gwr 	 * Determine if the PTE is a kernel PTE or a user PTE.
   2713   1.1      gwr 	 */
   2714   1.8      gwr 	if (idx >= NUM_KERN_PTES) {
   2715   1.7      gwr 		/*
   2716   1.7      gwr 		 * The PTE belongs to a user mapping.
   2717   1.7      gwr 		 */
   2718   1.8      gwr 		/* XXX: Would like an inline for this to validate idx... */
   2719  1.26   jeremy 		*tbl = &Ctmgrbase[(idx - NUM_KERN_PTES) / MMU_C_TBL_SIZE];
   2720  1.26   jeremy 
   2721  1.26   jeremy 		*pmap = (*tbl)->ct_pmap;
   2722  1.26   jeremy 		/*
   2723  1.26   jeremy 		 * To find the va to which the PTE maps, we first take
   2724  1.26   jeremy 		 * the table's base virtual address mapping which is stored
   2725  1.26   jeremy 		 * in ct_va.  We then increment this address by a page for
   2726  1.26   jeremy 		 * every slot skipped until we reach the PTE.
   2727  1.26   jeremy 		 */
   2728  1.26   jeremy 		va =    (*tbl)->ct_va;
   2729  1.26   jeremy 		va += m68k_ptob(idx % MMU_C_TBL_SIZE);
   2730   1.7      gwr 	} else {
   2731   1.7      gwr 		/*
   2732   1.7      gwr 		 * The PTE belongs to the kernel map.
   2733   1.7      gwr 		 */
   2734   1.8      gwr 		*pmap = pmap_kernel();
   2735   1.8      gwr 
   2736  1.25    veego 		va = m68k_ptob(idx);
   2737   1.7      gwr 		va += KERNBASE;
   2738   1.7      gwr 	}
   2739   1.7      gwr 
   2740   1.1      gwr 	return va;
   2741   1.1      gwr }
   2742   1.1      gwr 
   2743   1.1      gwr /* pmap_clear_modify			INTERFACE
   2744   1.1      gwr  **
   2745   1.1      gwr  * Clear the modification bit on the page at the specified
   2746   1.1      gwr  * physical address.
   2747   1.1      gwr  *
   2748   1.1      gwr  */
   2749  1.49      chs boolean_t
   2750  1.86      chs pmap_clear_modify(struct vm_page *pg)
   2751   1.1      gwr {
   2752  1.49      chs 	paddr_t pa = VM_PAGE_TO_PHYS(pg);
   2753  1.49      chs 	boolean_t rv;
   2754  1.49      chs 
   2755  1.49      chs 	rv = pmap_is_modified(pg);
   2756   1.1      gwr 	pmap_clear_pv(pa, PV_FLAGS_MDFY);
   2757  1.49      chs 	return rv;
   2758   1.1      gwr }
   2759   1.1      gwr 
   2760   1.1      gwr /* pmap_clear_reference			INTERFACE
   2761   1.1      gwr  **
   2762   1.1      gwr  * Clear the referenced bit on the page at the specified
   2763   1.1      gwr  * physical address.
   2764   1.1      gwr  */
   2765  1.49      chs boolean_t
   2766  1.86      chs pmap_clear_reference(struct vm_page *pg)
   2767   1.1      gwr {
   2768  1.49      chs 	paddr_t pa = VM_PAGE_TO_PHYS(pg);
   2769  1.49      chs 	boolean_t rv;
   2770  1.49      chs 
   2771  1.49      chs 	rv = pmap_is_referenced(pg);
   2772   1.1      gwr 	pmap_clear_pv(pa, PV_FLAGS_USED);
   2773  1.49      chs 	return rv;
   2774   1.1      gwr }
   2775   1.1      gwr 
   2776   1.1      gwr /* pmap_clear_pv			INTERNAL
   2777   1.1      gwr  **
   2778   1.1      gwr  * Clears the specified flag from the specified physical address.
   2779   1.1      gwr  * (Used by pmap_clear_modify() and pmap_clear_reference().)
   2780   1.1      gwr  *
   2781   1.1      gwr  * Flag is one of:
   2782   1.1      gwr  *   PV_FLAGS_MDFY - Page modified bit.
   2783   1.1      gwr  *   PV_FLAGS_USED - Page used (referenced) bit.
   2784   1.1      gwr  *
   2785   1.1      gwr  * This routine must not only clear the flag on the pv list
   2786   1.1      gwr  * head.  It must also clear the bit on every pte in the pv
   2787   1.1      gwr  * list associated with the address.
   2788   1.1      gwr  */
   2789  1.86      chs void
   2790  1.86      chs pmap_clear_pv(paddr_t pa, int flag)
   2791   1.1      gwr {
   2792   1.1      gwr 	pv_t      *pv;
   2793  1.69      chs 	int       idx;
   2794  1.69      chs 	vaddr_t   va;
   2795   1.7      gwr 	pmap_t          pmap;
   2796   1.1      gwr 	mmu_short_pte_t *pte;
   2797   1.7      gwr 	c_tmgr_t        *c_tbl;
   2798   1.1      gwr 
   2799   1.1      gwr 	pv = pa2pv(pa);
   2800   1.1      gwr 	pv->pv_flags &= ~(flag);
   2801  1.69      chs 	for (idx = pv->pv_idx; idx != PVE_EOL; idx = pvebase[idx].pve_next) {
   2802   1.7      gwr 		pte = &kernCbase[idx];
   2803   1.1      gwr 		pte->attr.raw &= ~(flag);
   2804  1.69      chs 
   2805   1.7      gwr 		/*
   2806   1.7      gwr 		 * The MC68030 MMU will not set the modified or
   2807   1.7      gwr 		 * referenced bits on any MMU tables for which it has
   2808   1.7      gwr 		 * a cached descriptor with its modify bit set.  To insure
   2809   1.7      gwr 		 * that it will modify these bits on the PTE during the next
   2810   1.7      gwr 		 * time it is written to or read from, we must flush it from
   2811   1.7      gwr 		 * the ATC.
   2812   1.7      gwr 		 *
   2813   1.7      gwr 		 * Ordinarily it is only necessary to flush the descriptor
   2814   1.7      gwr 		 * if it is used in the current address space.  But since I
   2815   1.7      gwr 		 * am not sure that there will always be a notion of
   2816   1.7      gwr 		 * 'the current address space' when this function is called,
   2817   1.7      gwr 		 * I will skip the test and always flush the address.  It
   2818   1.7      gwr 		 * does no harm.
   2819   1.7      gwr 		 */
   2820  1.69      chs 
   2821   1.8      gwr 		va = pmap_get_pteinfo(idx, &pmap, &c_tbl);
   2822   1.7      gwr 		TBIS(va);
   2823   1.1      gwr 	}
   2824   1.1      gwr }
   2825   1.1      gwr 
   2826   1.1      gwr /* pmap_extract			INTERFACE
   2827   1.1      gwr  **
   2828   1.1      gwr  * Return the physical address mapped by the virtual address
   2829  1.48  thorpej  * in the specified pmap.
   2830   1.1      gwr  *
   2831   1.1      gwr  * Note: this function should also apply an exclusive lock
   2832   1.1      gwr  * on the pmap system during its duration.
   2833   1.1      gwr  */
   2834  1.86      chs boolean_t
   2835  1.86      chs pmap_extract(pmap_t pmap, vaddr_t va, paddr_t *pap)
   2836   1.1      gwr {
   2837   1.1      gwr 	int a_idx, b_idx, pte_idx;
   2838   1.1      gwr 	a_tmgr_t	*a_tbl;
   2839   1.1      gwr 	b_tmgr_t	*b_tbl;
   2840   1.1      gwr 	c_tmgr_t	*c_tbl;
   2841   1.1      gwr 	mmu_short_pte_t	*c_pte;
   2842   1.1      gwr 
   2843   1.1      gwr 	if (pmap == pmap_kernel())
   2844  1.48  thorpej 		return pmap_extract_kernel(va, pap);
   2845   1.1      gwr 
   2846   1.1      gwr 	if (pmap_stroll(pmap, va, &a_tbl, &b_tbl, &c_tbl,
   2847   1.7      gwr 		&c_pte, &a_idx, &b_idx, &pte_idx) == FALSE)
   2848  1.48  thorpej 		return FALSE;
   2849   1.1      gwr 
   2850   1.7      gwr 	if (!MMU_VALID_DT(*c_pte))
   2851  1.48  thorpej 		return FALSE;
   2852   1.7      gwr 
   2853  1.48  thorpej 	if (pap != NULL)
   2854  1.48  thorpej 		*pap = MMU_PTE_PA(*c_pte);
   2855  1.48  thorpej 	return (TRUE);
   2856   1.1      gwr }
   2857   1.1      gwr 
   2858   1.1      gwr /* pmap_extract_kernel		INTERNAL
   2859   1.1      gwr  **
   2860   1.8      gwr  * Extract a translation from the kernel address space.
   2861   1.1      gwr  */
   2862  1.86      chs boolean_t
   2863  1.86      chs pmap_extract_kernel(vaddr_t va, paddr_t *pap)
   2864   1.1      gwr {
   2865   1.1      gwr 	mmu_short_pte_t *pte;
   2866   1.1      gwr 
   2867  1.25    veego 	pte = &kernCbase[(u_int) m68k_btop(va - KERNBASE)];
   2868  1.48  thorpej 	if (!MMU_VALID_DT(*pte))
   2869  1.48  thorpej 		return (FALSE);
   2870  1.48  thorpej 	if (pap != NULL)
   2871  1.48  thorpej 		*pap = MMU_PTE_PA(*pte);
   2872  1.48  thorpej 	return (TRUE);
   2873   1.1      gwr }
   2874   1.1      gwr 
   2875   1.1      gwr /* pmap_remove_kernel		INTERNAL
   2876   1.1      gwr  **
   2877   1.1      gwr  * Remove the mapping of a range of virtual addresses from the kernel map.
   2878   1.9      gwr  * The arguments are already page-aligned.
   2879   1.1      gwr  */
   2880  1.86      chs void
   2881  1.86      chs pmap_remove_kernel(vaddr_t sva, vaddr_t eva)
   2882   1.1      gwr {
   2883   1.9      gwr 	int idx, eidx;
   2884   1.9      gwr 
   2885   1.9      gwr #ifdef	PMAP_DEBUG
   2886   1.9      gwr 	if ((sva & PGOFSET) || (eva & PGOFSET))
   2887   1.9      gwr 		panic("pmap_remove_kernel: alignment");
   2888   1.9      gwr #endif
   2889   1.1      gwr 
   2890  1.25    veego 	idx  = m68k_btop(sva - KERNBASE);
   2891  1.25    veego 	eidx = m68k_btop(eva - KERNBASE);
   2892   1.9      gwr 
   2893  1.24   jeremy 	while (idx < eidx) {
   2894   1.9      gwr 		pmap_remove_pte(&kernCbase[idx++]);
   2895  1.24   jeremy 		TBIS(sva);
   2896  1.79  thorpej 		sva += PAGE_SIZE;
   2897  1.24   jeremy 	}
   2898   1.1      gwr }
   2899   1.1      gwr 
   2900   1.1      gwr /* pmap_remove			INTERFACE
   2901   1.1      gwr  **
   2902   1.1      gwr  * Remove the mapping of a range of virtual addresses from the given pmap.
   2903   1.7      gwr  *
   2904   1.7      gwr  * If the range contains any wired entries, this function will probably create
   2905   1.7      gwr  * disaster.
   2906   1.1      gwr  */
   2907  1.86      chs void
   2908  1.86      chs pmap_remove(pmap_t pmap, vaddr_t start, vaddr_t end)
   2909   1.1      gwr {
   2910   1.7      gwr 
   2911   1.1      gwr 	if (pmap == pmap_kernel()) {
   2912   1.1      gwr 		pmap_remove_kernel(start, end);
   2913   1.1      gwr 		return;
   2914   1.1      gwr 	}
   2915   1.1      gwr 
   2916   1.7      gwr 	/*
   2917   1.7      gwr 	 * If the pmap doesn't have an A table of its own, it has no mappings
   2918   1.7      gwr 	 * that can be removed.
   2919   1.1      gwr 	 */
   2920   1.7      gwr 	if (pmap->pm_a_tmgr == NULL)
   2921   1.7      gwr 		return;
   2922   1.7      gwr 
   2923   1.7      gwr 	/*
   2924   1.7      gwr 	 * Remove the specified range from the pmap.  If the function
   2925   1.7      gwr 	 * returns true, the operation removed all the valid mappings
   2926   1.7      gwr 	 * in the pmap and freed its A table.  If this happened to the
   2927   1.7      gwr 	 * currently loaded pmap, the MMU root pointer must be reloaded
   2928   1.7      gwr 	 * with the default 'kernel' map.
   2929   1.7      gwr 	 */
   2930   1.7      gwr 	if (pmap_remove_a(pmap->pm_a_tmgr, start, end)) {
   2931   1.9      gwr 		if (kernel_crp.rp_addr == pmap->pm_a_phys) {
   2932   1.9      gwr 			kernel_crp.rp_addr = kernAphys;
   2933   1.9      gwr 			loadcrp(&kernel_crp);
   2934   1.9      gwr 			/* will do TLB flush below */
   2935   1.9      gwr 		}
   2936   1.7      gwr 		pmap->pm_a_tmgr = NULL;
   2937   1.7      gwr 		pmap->pm_a_phys = kernAphys;
   2938   1.1      gwr 	}
   2939   1.9      gwr 
   2940   1.9      gwr 	/*
   2941   1.9      gwr 	 * If we just modified the current address space,
   2942   1.9      gwr 	 * make sure to flush the MMU cache.
   2943   1.9      gwr 	 *
   2944   1.9      gwr 	 * XXX - this could be an unecessarily large flush.
   2945   1.9      gwr 	 * XXX - Could decide, based on the size of the VA range
   2946   1.9      gwr 	 * to be removed, whether to flush "by pages" or "all".
   2947   1.9      gwr 	 */
   2948   1.9      gwr 	if (pmap == current_pmap())
   2949   1.9      gwr 		TBIAU();
   2950   1.1      gwr }
   2951   1.1      gwr 
   2952   1.1      gwr /* pmap_remove_a			INTERNAL
   2953   1.1      gwr  **
   2954   1.1      gwr  * This is function number one in a set of three that removes a range
   2955   1.1      gwr  * of memory in the most efficient manner by removing the highest possible
   2956   1.1      gwr  * tables from the memory space.  This particular function attempts to remove
   2957   1.1      gwr  * as many B tables as it can, delegating the remaining fragmented ranges to
   2958   1.1      gwr  * pmap_remove_b().
   2959   1.1      gwr  *
   2960   1.7      gwr  * If the removal operation results in an empty A table, the function returns
   2961   1.7      gwr  * TRUE.
   2962   1.7      gwr  *
   2963   1.1      gwr  * It's ugly but will do for now.
   2964   1.1      gwr  */
   2965  1.86      chs boolean_t
   2966  1.86      chs pmap_remove_a(a_tmgr_t *a_tbl, vaddr_t start, vaddr_t end)
   2967   1.1      gwr {
   2968   1.7      gwr 	boolean_t empty;
   2969   1.1      gwr 	int idx;
   2970  1.69      chs 	vaddr_t nstart, nend;
   2971   1.1      gwr 	b_tmgr_t *b_tbl;
   2972   1.1      gwr 	mmu_long_dte_t  *a_dte;
   2973   1.1      gwr 	mmu_short_dte_t *b_dte;
   2974   1.8      gwr 
   2975   1.7      gwr 	/*
   2976   1.7      gwr 	 * The following code works with what I call a 'granularity
   2977   1.7      gwr 	 * reduction algorithim'.  A range of addresses will always have
   2978   1.7      gwr 	 * the following properties, which are classified according to
   2979   1.7      gwr 	 * how the range relates to the size of the current granularity
   2980   1.7      gwr 	 * - an A table entry:
   2981   1.7      gwr 	 *
   2982   1.7      gwr 	 *            1 2       3 4
   2983   1.7      gwr 	 * -+---+---+---+---+---+---+---+-
   2984   1.7      gwr 	 * -+---+---+---+---+---+---+---+-
   2985   1.7      gwr 	 *
   2986   1.7      gwr 	 * A range will always start on a granularity boundary, illustrated
   2987   1.7      gwr 	 * by '+' signs in the table above, or it will start at some point
   2988   1.7      gwr 	 * inbetween a granularity boundary, as illustrated by point 1.
   2989   1.7      gwr 	 * The first step in removing a range of addresses is to remove the
   2990   1.7      gwr 	 * range between 1 and 2, the nearest granularity boundary.  This
   2991   1.7      gwr 	 * job is handled by the section of code governed by the
   2992   1.7      gwr 	 * 'if (start < nstart)' statement.
   2993   1.7      gwr 	 *
   2994   1.7      gwr 	 * A range will always encompass zero or more intergral granules,
   2995   1.7      gwr 	 * illustrated by points 2 and 3.  Integral granules are easy to
   2996   1.7      gwr 	 * remove.  The removal of these granules is the second step, and
   2997   1.7      gwr 	 * is handled by the code block 'if (nstart < nend)'.
   2998   1.7      gwr 	 *
   2999   1.7      gwr 	 * Lastly, a range will always end on a granularity boundary,
   3000   1.7      gwr 	 * ill. by point 3, or it will fall just beyond one, ill. by point
   3001   1.7      gwr 	 * 4.  The last step involves removing this range and is handled by
   3002   1.7      gwr 	 * the code block 'if (nend < end)'.
   3003   1.7      gwr 	 */
   3004   1.1      gwr 	nstart = MMU_ROUND_UP_A(start);
   3005   1.1      gwr 	nend = MMU_ROUND_A(end);
   3006   1.1      gwr 
   3007   1.1      gwr 	if (start < nstart) {
   3008   1.7      gwr 		/*
   3009   1.7      gwr 		 * This block is executed if the range starts between
   3010   1.7      gwr 		 * a granularity boundary.
   3011   1.7      gwr 		 *
   3012   1.7      gwr 		 * First find the DTE which is responsible for mapping
   3013   1.7      gwr 		 * the start of the range.
   3014   1.7      gwr 		 */
   3015   1.1      gwr 		idx = MMU_TIA(start);
   3016   1.1      gwr 		a_dte = &a_tbl->at_dtbl[idx];
   3017   1.7      gwr 
   3018   1.7      gwr 		/*
   3019   1.7      gwr 		 * If the DTE is valid then delegate the removal of the sub
   3020   1.7      gwr 		 * range to pmap_remove_b(), which can remove addresses at
   3021   1.7      gwr 		 * a finer granularity.
   3022   1.7      gwr 		 */
   3023   1.1      gwr 		if (MMU_VALID_DT(*a_dte)) {
   3024   1.7      gwr 			b_dte = mmu_ptov(a_dte->addr.raw);
   3025   1.1      gwr 			b_tbl = mmuB2tmgr(b_dte);
   3026   1.7      gwr 
   3027   1.7      gwr 			/*
   3028   1.7      gwr 			 * The sub range to be removed starts at the start
   3029   1.7      gwr 			 * of the full range we were asked to remove, and ends
   3030   1.7      gwr 			 * at the greater of:
   3031   1.7      gwr 			 * 1. The end of the full range, -or-
   3032   1.7      gwr 			 * 2. The end of the full range, rounded down to the
   3033   1.7      gwr 			 *    nearest granularity boundary.
   3034   1.7      gwr 			 */
   3035   1.7      gwr 			if (end < nstart)
   3036   1.8      gwr 				empty = pmap_remove_b(b_tbl, start, end);
   3037   1.7      gwr 			else
   3038   1.8      gwr 				empty = pmap_remove_b(b_tbl, start, nstart);
   3039   1.7      gwr 
   3040   1.7      gwr 			/*
   3041   1.7      gwr 			 * If the removal resulted in an empty B table,
   3042   1.7      gwr 			 * invalidate the DTE that points to it and decrement
   3043   1.7      gwr 			 * the valid entry count of the A table.
   3044   1.7      gwr 			 */
   3045   1.7      gwr 			if (empty) {
   3046   1.7      gwr 				a_dte->attr.raw = MMU_DT_INVALID;
   3047   1.7      gwr 				a_tbl->at_ecnt--;
   3048   1.1      gwr 			}
   3049   1.1      gwr 		}
   3050   1.7      gwr 		/*
   3051   1.7      gwr 		 * If the DTE is invalid, the address range is already non-
   3052  1.68      wiz 		 * existent and can simply be skipped.
   3053   1.7      gwr 		 */
   3054   1.1      gwr 	}
   3055   1.1      gwr 	if (nstart < nend) {
   3056   1.7      gwr 		/*
   3057   1.8      gwr 		 * This block is executed if the range spans a whole number
   3058   1.7      gwr 		 * multiple of granules (A table entries.)
   3059   1.7      gwr 		 *
   3060   1.7      gwr 		 * First find the DTE which is responsible for mapping
   3061   1.7      gwr 		 * the start of the first granule involved.
   3062   1.7      gwr 		 */
   3063   1.1      gwr 		idx = MMU_TIA(nstart);
   3064   1.1      gwr 		a_dte = &a_tbl->at_dtbl[idx];
   3065   1.7      gwr 
   3066   1.7      gwr 		/*
   3067   1.7      gwr 		 * Remove entire sub-granules (B tables) one at a time,
   3068   1.7      gwr 		 * until reaching the end of the range.
   3069   1.7      gwr 		 */
   3070   1.7      gwr 		for (; nstart < nend; a_dte++, nstart += MMU_TIA_RANGE)
   3071   1.1      gwr 			if (MMU_VALID_DT(*a_dte)) {
   3072   1.7      gwr 				/*
   3073   1.7      gwr 				 * Find the B table manager for the
   3074   1.7      gwr 				 * entry and free it.
   3075   1.7      gwr 				 */
   3076   1.7      gwr 				b_dte = mmu_ptov(a_dte->addr.raw);
   3077   1.1      gwr 				b_tbl = mmuB2tmgr(b_dte);
   3078   1.7      gwr 				free_b_table(b_tbl, TRUE);
   3079   1.7      gwr 
   3080   1.7      gwr 				/*
   3081   1.7      gwr 				 * Invalidate the DTE that points to the
   3082   1.7      gwr 				 * B table and decrement the valid entry
   3083   1.7      gwr 				 * count of the A table.
   3084   1.7      gwr 				 */
   3085   1.1      gwr 				a_dte->attr.raw = MMU_DT_INVALID;
   3086   1.1      gwr 				a_tbl->at_ecnt--;
   3087   1.1      gwr 			}
   3088   1.1      gwr 	}
   3089   1.1      gwr 	if (nend < end) {
   3090   1.7      gwr 		/*
   3091   1.7      gwr 		 * This block is executed if the range ends beyond a
   3092   1.7      gwr 		 * granularity boundary.
   3093   1.7      gwr 		 *
   3094   1.7      gwr 		 * First find the DTE which is responsible for mapping
   3095   1.7      gwr 		 * the start of the nearest (rounded down) granularity
   3096   1.7      gwr 		 * boundary.
   3097   1.7      gwr 		 */
   3098   1.1      gwr 		idx = MMU_TIA(nend);
   3099   1.1      gwr 		a_dte = &a_tbl->at_dtbl[idx];
   3100   1.7      gwr 
   3101   1.7      gwr 		/*
   3102   1.7      gwr 		 * If the DTE is valid then delegate the removal of the sub
   3103   1.7      gwr 		 * range to pmap_remove_b(), which can remove addresses at
   3104   1.7      gwr 		 * a finer granularity.
   3105   1.7      gwr 		 */
   3106   1.1      gwr 		if (MMU_VALID_DT(*a_dte)) {
   3107   1.7      gwr 			/*
   3108   1.7      gwr 			 * Find the B table manager for the entry
   3109   1.7      gwr 			 * and hand it to pmap_remove_b() along with
   3110   1.7      gwr 			 * the sub range.
   3111   1.7      gwr 			 */
   3112   1.7      gwr 			b_dte = mmu_ptov(a_dte->addr.raw);
   3113   1.1      gwr 			b_tbl = mmuB2tmgr(b_dte);
   3114   1.7      gwr 
   3115   1.8      gwr 			empty = pmap_remove_b(b_tbl, nend, end);
   3116   1.7      gwr 
   3117   1.7      gwr 			/*
   3118   1.7      gwr 			 * If the removal resulted in an empty B table,
   3119   1.7      gwr 			 * invalidate the DTE that points to it and decrement
   3120   1.7      gwr 			 * the valid entry count of the A table.
   3121   1.7      gwr 			 */
   3122   1.7      gwr 			if (empty) {
   3123   1.7      gwr 				a_dte->attr.raw = MMU_DT_INVALID;
   3124   1.7      gwr 				a_tbl->at_ecnt--;
   3125   1.7      gwr 			}
   3126   1.1      gwr 		}
   3127   1.1      gwr 	}
   3128   1.7      gwr 
   3129   1.7      gwr 	/*
   3130   1.7      gwr 	 * If there are no more entries in the A table, release it
   3131   1.7      gwr 	 * back to the available pool and return TRUE.
   3132   1.7      gwr 	 */
   3133   1.7      gwr 	if (a_tbl->at_ecnt == 0) {
   3134   1.7      gwr 		a_tbl->at_parent = NULL;
   3135   1.7      gwr 		TAILQ_REMOVE(&a_pool, a_tbl, at_link);
   3136   1.7      gwr 		TAILQ_INSERT_HEAD(&a_pool, a_tbl, at_link);
   3137   1.7      gwr 		empty = TRUE;
   3138   1.7      gwr 	} else {
   3139   1.7      gwr 		empty = FALSE;
   3140   1.7      gwr 	}
   3141   1.7      gwr 
   3142   1.7      gwr 	return empty;
   3143   1.1      gwr }
   3144   1.1      gwr 
   3145   1.1      gwr /* pmap_remove_b			INTERNAL
   3146   1.1      gwr  **
   3147   1.1      gwr  * Remove a range of addresses from an address space, trying to remove entire
   3148   1.1      gwr  * C tables if possible.
   3149   1.7      gwr  *
   3150   1.7      gwr  * If the operation results in an empty B table, the function returns TRUE.
   3151   1.1      gwr  */
   3152  1.86      chs boolean_t
   3153  1.86      chs pmap_remove_b(b_tmgr_t *b_tbl, vaddr_t start, vaddr_t end)
   3154   1.1      gwr {
   3155   1.7      gwr 	boolean_t empty;
   3156   1.1      gwr 	int idx;
   3157  1.69      chs 	vaddr_t nstart, nend, rstart;
   3158   1.1      gwr 	c_tmgr_t *c_tbl;
   3159   1.1      gwr 	mmu_short_dte_t  *b_dte;
   3160   1.1      gwr 	mmu_short_pte_t  *c_dte;
   3161   1.1      gwr 
   3162   1.1      gwr 
   3163   1.1      gwr 	nstart = MMU_ROUND_UP_B(start);
   3164   1.1      gwr 	nend = MMU_ROUND_B(end);
   3165   1.1      gwr 
   3166   1.1      gwr 	if (start < nstart) {
   3167   1.1      gwr 		idx = MMU_TIB(start);
   3168   1.1      gwr 		b_dte = &b_tbl->bt_dtbl[idx];
   3169   1.1      gwr 		if (MMU_VALID_DT(*b_dte)) {
   3170   1.7      gwr 			c_dte = mmu_ptov(MMU_DTE_PA(*b_dte));
   3171   1.1      gwr 			c_tbl = mmuC2tmgr(c_dte);
   3172   1.7      gwr 			if (end < nstart)
   3173   1.8      gwr 				empty = pmap_remove_c(c_tbl, start, end);
   3174   1.7      gwr 			else
   3175   1.8      gwr 				empty = pmap_remove_c(c_tbl, start, nstart);
   3176   1.7      gwr 			if (empty) {
   3177   1.7      gwr 				b_dte->attr.raw = MMU_DT_INVALID;
   3178   1.7      gwr 				b_tbl->bt_ecnt--;
   3179   1.1      gwr 			}
   3180   1.1      gwr 		}
   3181   1.1      gwr 	}
   3182   1.1      gwr 	if (nstart < nend) {
   3183   1.1      gwr 		idx = MMU_TIB(nstart);
   3184   1.1      gwr 		b_dte = &b_tbl->bt_dtbl[idx];
   3185   1.1      gwr 		rstart = nstart;
   3186   1.1      gwr 		while (rstart < nend) {
   3187   1.1      gwr 			if (MMU_VALID_DT(*b_dte)) {
   3188   1.7      gwr 				c_dte = mmu_ptov(MMU_DTE_PA(*b_dte));
   3189   1.1      gwr 				c_tbl = mmuC2tmgr(c_dte);
   3190   1.7      gwr 				free_c_table(c_tbl, TRUE);
   3191   1.1      gwr 				b_dte->attr.raw = MMU_DT_INVALID;
   3192   1.1      gwr 				b_tbl->bt_ecnt--;
   3193   1.1      gwr 			}
   3194   1.1      gwr 			b_dte++;
   3195   1.1      gwr 			rstart += MMU_TIB_RANGE;
   3196   1.1      gwr 		}
   3197   1.1      gwr 	}
   3198   1.1      gwr 	if (nend < end) {
   3199   1.1      gwr 		idx = MMU_TIB(nend);
   3200   1.1      gwr 		b_dte = &b_tbl->bt_dtbl[idx];
   3201   1.1      gwr 		if (MMU_VALID_DT(*b_dte)) {
   3202   1.7      gwr 			c_dte = mmu_ptov(MMU_DTE_PA(*b_dte));
   3203   1.1      gwr 			c_tbl = mmuC2tmgr(c_dte);
   3204   1.8      gwr 			empty = pmap_remove_c(c_tbl, nend, end);
   3205   1.7      gwr 			if (empty) {
   3206   1.7      gwr 				b_dte->attr.raw = MMU_DT_INVALID;
   3207   1.7      gwr 				b_tbl->bt_ecnt--;
   3208   1.7      gwr 			}
   3209   1.1      gwr 		}
   3210   1.1      gwr 	}
   3211   1.7      gwr 
   3212   1.7      gwr 	if (b_tbl->bt_ecnt == 0) {
   3213   1.7      gwr 		b_tbl->bt_parent = NULL;
   3214   1.7      gwr 		TAILQ_REMOVE(&b_pool, b_tbl, bt_link);
   3215   1.7      gwr 		TAILQ_INSERT_HEAD(&b_pool, b_tbl, bt_link);
   3216   1.7      gwr 		empty = TRUE;
   3217   1.7      gwr 	} else {
   3218   1.7      gwr 		empty = FALSE;
   3219   1.7      gwr 	}
   3220   1.7      gwr 
   3221   1.7      gwr 	return empty;
   3222   1.1      gwr }
   3223   1.1      gwr 
   3224   1.1      gwr /* pmap_remove_c			INTERNAL
   3225   1.1      gwr  **
   3226   1.1      gwr  * Remove a range of addresses from the given C table.
   3227   1.1      gwr  */
   3228  1.86      chs boolean_t
   3229  1.86      chs pmap_remove_c(c_tmgr_t *c_tbl, vaddr_t start, vaddr_t end)
   3230   1.1      gwr {
   3231   1.7      gwr 	boolean_t empty;
   3232   1.1      gwr 	int idx;
   3233   1.1      gwr 	mmu_short_pte_t *c_pte;
   3234   1.1      gwr 
   3235   1.1      gwr 	idx = MMU_TIC(start);
   3236   1.1      gwr 	c_pte = &c_tbl->ct_dtbl[idx];
   3237   1.8      gwr 	for (;start < end; start += MMU_PAGE_SIZE, c_pte++) {
   3238   1.7      gwr 		if (MMU_VALID_DT(*c_pte)) {
   3239   1.1      gwr 			pmap_remove_pte(c_pte);
   3240   1.7      gwr 			c_tbl->ct_ecnt--;
   3241   1.7      gwr 		}
   3242   1.1      gwr 	}
   3243   1.7      gwr 
   3244   1.7      gwr 	if (c_tbl->ct_ecnt == 0) {
   3245   1.7      gwr 		c_tbl->ct_parent = NULL;
   3246   1.7      gwr 		TAILQ_REMOVE(&c_pool, c_tbl, ct_link);
   3247   1.9      gwr 		TAILQ_INSERT_HEAD(&c_pool, c_tbl, ct_link);
   3248   1.9      gwr 		empty = TRUE;
   3249   1.9      gwr 	} else {
   3250   1.9      gwr 		empty = FALSE;
   3251   1.9      gwr 	}
   3252   1.7      gwr 
   3253   1.9      gwr 	return empty;
   3254   1.1      gwr }
   3255   1.1      gwr 
   3256   1.1      gwr /* is_managed				INTERNAL
   3257   1.1      gwr  **
   3258   1.1      gwr  * Determine if the given physical address is managed by the PV system.
   3259   1.1      gwr  * Note that this logic assumes that no one will ask for the status of
   3260   1.1      gwr  * addresses which lie in-between the memory banks on the 3/80.  If they
   3261   1.1      gwr  * do so, it will falsely report that it is managed.
   3262   1.7      gwr  *
   3263   1.8      gwr  * Note: A "managed" address is one that was reported to the VM system as
   3264   1.8      gwr  * a "usable page" during system startup.  As such, the VM system expects the
   3265   1.8      gwr  * pmap module to keep an accurate track of the useage of those pages.
   3266   1.8      gwr  * Any page not given to the VM system at startup does not exist (as far as
   3267   1.8      gwr  * the VM system is concerned) and is therefore "unmanaged."  Examples are
   3268   1.8      gwr  * those pages which belong to the ROM monitor and the memory allocated before
   3269   1.8      gwr  * the VM system was started.
   3270   1.1      gwr  */
   3271  1.86      chs boolean_t
   3272  1.86      chs is_managed(paddr_t pa)
   3273   1.1      gwr {
   3274   1.1      gwr 	if (pa >= avail_start && pa < avail_end)
   3275   1.1      gwr 		return TRUE;
   3276   1.1      gwr 	else
   3277   1.1      gwr 		return FALSE;
   3278   1.1      gwr }
   3279   1.1      gwr 
   3280   1.1      gwr /* pmap_bootstrap_alloc			INTERNAL
   3281   1.1      gwr  **
   3282   1.1      gwr  * Used internally for memory allocation at startup when malloc is not
   3283   1.1      gwr  * available.  This code will fail once it crosses the first memory
   3284   1.1      gwr  * bank boundary on the 3/80.  Hopefully by then however, the VM system
   3285   1.1      gwr  * will be in charge of allocation.
   3286   1.1      gwr  */
   3287   1.1      gwr void *
   3288  1.86      chs pmap_bootstrap_alloc(int size)
   3289   1.1      gwr {
   3290   1.1      gwr 	void *rtn;
   3291   1.1      gwr 
   3292   1.8      gwr #ifdef	PMAP_DEBUG
   3293   1.7      gwr 	if (bootstrap_alloc_enabled == FALSE) {
   3294   1.7      gwr 		mon_printf("pmap_bootstrap_alloc: disabled\n");
   3295   1.7      gwr 		sunmon_abort();
   3296   1.7      gwr 	}
   3297   1.7      gwr #endif
   3298   1.7      gwr 
   3299   1.1      gwr 	rtn = (void *) virtual_avail;
   3300   1.1      gwr 	virtual_avail += size;
   3301   1.1      gwr 
   3302   1.8      gwr #ifdef	PMAP_DEBUG
   3303   1.7      gwr 	if (virtual_avail > virtual_contig_end) {
   3304   1.7      gwr 		mon_printf("pmap_bootstrap_alloc: out of mem\n");
   3305   1.7      gwr 		sunmon_abort();
   3306   1.1      gwr 	}
   3307   1.7      gwr #endif
   3308   1.1      gwr 
   3309   1.1      gwr 	return rtn;
   3310   1.1      gwr }
   3311   1.1      gwr 
   3312   1.1      gwr /* pmap_bootstap_aalign			INTERNAL
   3313   1.1      gwr  **
   3314   1.7      gwr  * Used to insure that the next call to pmap_bootstrap_alloc() will
   3315   1.7      gwr  * return a chunk of memory aligned to the specified size.
   3316   1.8      gwr  *
   3317   1.8      gwr  * Note: This function will only support alignment sizes that are powers
   3318   1.8      gwr  * of two.
   3319   1.1      gwr  */
   3320  1.86      chs void
   3321  1.86      chs pmap_bootstrap_aalign(int size)
   3322   1.1      gwr {
   3323   1.7      gwr 	int off;
   3324   1.7      gwr 
   3325   1.7      gwr 	off = virtual_avail & (size - 1);
   3326   1.7      gwr 	if (off) {
   3327   1.7      gwr 		(void) pmap_bootstrap_alloc(size - off);
   3328   1.1      gwr 	}
   3329   1.1      gwr }
   3330   1.7      gwr 
   3331   1.8      gwr /* pmap_pa_exists
   3332   1.8      gwr  **
   3333   1.8      gwr  * Used by the /dev/mem driver to see if a given PA is memory
   3334   1.8      gwr  * that can be mapped.  (The PA is not in a hole.)
   3335   1.8      gwr  */
   3336  1.86      chs int
   3337  1.86      chs pmap_pa_exists(paddr_t pa)
   3338   1.8      gwr {
   3339  1.69      chs 	int i;
   3340  1.21      gwr 
   3341  1.21      gwr 	for (i = 0; i < SUN3X_NPHYS_RAM_SEGS; i++) {
   3342  1.21      gwr 		if ((pa >= avail_mem[i].pmem_start) &&
   3343  1.21      gwr 			(pa <  avail_mem[i].pmem_end))
   3344  1.21      gwr 			return (1);
   3345  1.21      gwr 		if (avail_mem[i].pmem_next == NULL)
   3346  1.21      gwr 			break;
   3347  1.21      gwr 	}
   3348   1.8      gwr 	return (0);
   3349   1.8      gwr }
   3350   1.8      gwr 
   3351  1.31      gwr /* Called only from locore.s and pmap.c */
   3352  1.86      chs void	_pmap_switch(pmap_t pmap);
   3353  1.31      gwr 
   3354  1.31      gwr /*
   3355  1.31      gwr  * _pmap_switch			INTERNAL
   3356  1.31      gwr  *
   3357  1.31      gwr  * This is called by locore.s:cpu_switch() when it is
   3358  1.31      gwr  * switching to a new process.  Load new translations.
   3359  1.31      gwr  * Note: done in-line by locore.s unless PMAP_DEBUG
   3360  1.24   jeremy  *
   3361  1.31      gwr  * Note that we do NOT allocate a context here, but
   3362  1.31      gwr  * share the "kernel only" context until we really
   3363  1.31      gwr  * need our own context for user-space mappings in
   3364  1.31      gwr  * pmap_enter_user().  [ s/context/mmu A table/ ]
   3365   1.1      gwr  */
   3366  1.86      chs void
   3367  1.86      chs _pmap_switch(pmap_t pmap)
   3368   1.1      gwr {
   3369   1.7      gwr 	u_long rootpa;
   3370   1.7      gwr 
   3371  1.31      gwr 	/*
   3372  1.31      gwr 	 * Only do reload/flush if we have to.
   3373  1.31      gwr 	 * Note that if the old and new process
   3374  1.31      gwr 	 * were BOTH using the "null" context,
   3375  1.31      gwr 	 * then this will NOT flush the TLB.
   3376  1.31      gwr 	 */
   3377   1.7      gwr 	rootpa = pmap->pm_a_phys;
   3378  1.31      gwr 	if (kernel_crp.rp_addr != rootpa) {
   3379  1.31      gwr 		DPRINT(("pmap_activate(%p)\n", pmap));
   3380   1.7      gwr 		kernel_crp.rp_addr = rootpa;
   3381   1.7      gwr 		loadcrp(&kernel_crp);
   3382   1.8      gwr 		TBIAU();
   3383  1.31      gwr 	}
   3384  1.31      gwr }
   3385  1.31      gwr 
   3386  1.31      gwr /*
   3387  1.31      gwr  * Exported version of pmap_activate().  This is called from the
   3388  1.31      gwr  * machine-independent VM code when a process is given a new pmap.
   3389  1.76  thorpej  * If (p == curlwp) do like cpu_switch would do; otherwise just
   3390  1.31      gwr  * take this as notification that the process has a new pmap.
   3391  1.31      gwr  */
   3392  1.86      chs void
   3393  1.86      chs pmap_activate(struct lwp *l)
   3394  1.31      gwr {
   3395  1.76  thorpej 	if (l->l_proc == curproc) {
   3396  1.76  thorpej 		_pmap_switch(l->l_proc->p_vmspace->vm_map.pmap);
   3397   1.7      gwr 	}
   3398   1.1      gwr }
   3399   1.1      gwr 
   3400  1.30  thorpej /*
   3401  1.30  thorpej  * pmap_deactivate			INTERFACE
   3402  1.30  thorpej  **
   3403  1.30  thorpej  * This is called to deactivate the specified process's address space.
   3404  1.30  thorpej  */
   3405  1.86      chs void
   3406  1.86      chs pmap_deactivate(struct lwp *l)
   3407   1.1      gwr {
   3408  1.69      chs 	/* Nothing to do. */
   3409   1.1      gwr }
   3410   1.1      gwr 
   3411  1.17      gwr /*
   3412  1.28      gwr  * Fill in the sun3x-specific part of the kernel core header
   3413  1.28      gwr  * for dumpsys().  (See machdep.c for the rest.)
   3414  1.17      gwr  */
   3415  1.86      chs void
   3416  1.86      chs pmap_kcore_hdr(struct sun3x_kcore_hdr *sh)
   3417  1.17      gwr {
   3418  1.17      gwr 	u_long spa, len;
   3419  1.17      gwr 	int i;
   3420  1.20  thorpej 
   3421  1.28      gwr 	sh->pg_frame = MMU_SHORT_PTE_BASEADDR;
   3422  1.28      gwr 	sh->pg_valid = MMU_DT_PAGE;
   3423  1.20  thorpej 	sh->contig_end = virtual_contig_end;
   3424  1.69      chs 	sh->kernCbase = (u_long)kernCbase;
   3425  1.20  thorpej 	for (i = 0; i < SUN3X_NPHYS_RAM_SEGS; i++) {
   3426  1.17      gwr 		spa = avail_mem[i].pmem_start;
   3427  1.25    veego 		spa = m68k_trunc_page(spa);
   3428  1.17      gwr 		len = avail_mem[i].pmem_end - spa;
   3429  1.25    veego 		len = m68k_round_page(len);
   3430  1.20  thorpej 		sh->ram_segs[i].start = spa;
   3431  1.20  thorpej 		sh->ram_segs[i].size  = len;
   3432  1.17      gwr 	}
   3433  1.17      gwr }
   3434  1.17      gwr 
   3435  1.81  thorpej 
   3436  1.81  thorpej /* pmap_virtual_space			INTERFACE
   3437  1.81  thorpej  **
   3438  1.81  thorpej  * Return the current available range of virtual addresses in the
   3439  1.81  thorpej  * arguuments provided.  Only really called once.
   3440  1.81  thorpej  */
   3441  1.86      chs void
   3442  1.86      chs pmap_virtual_space(vaddr_t *vstart, vaddr_t *vend)
   3443  1.81  thorpej {
   3444  1.81  thorpej 	*vstart = virtual_avail;
   3445  1.81  thorpej 	*vend = virtual_end;
   3446  1.81  thorpej }
   3447   1.1      gwr 
   3448  1.37      gwr /*
   3449  1.37      gwr  * Provide memory to the VM system.
   3450  1.37      gwr  *
   3451  1.37      gwr  * Assume avail_start is always in the
   3452  1.37      gwr  * first segment as pmap_bootstrap does.
   3453  1.37      gwr  */
   3454  1.86      chs static void
   3455  1.86      chs pmap_page_upload(void)
   3456  1.37      gwr {
   3457  1.69      chs 	paddr_t	a, b;	/* memory range */
   3458  1.37      gwr 	int i;
   3459  1.37      gwr 
   3460  1.37      gwr 	/* Supply the memory in segments. */
   3461  1.37      gwr 	for (i = 0; i < SUN3X_NPHYS_RAM_SEGS; i++) {
   3462  1.37      gwr 		a = atop(avail_mem[i].pmem_start);
   3463  1.37      gwr 		b = atop(avail_mem[i].pmem_end);
   3464  1.37      gwr 		if (i == 0)
   3465  1.37      gwr 			a = atop(avail_start);
   3466  1.60  tsutsui 		if (avail_mem[i].pmem_end > avail_end)
   3467  1.60  tsutsui 			b = atop(avail_end);
   3468  1.37      gwr 
   3469  1.39  thorpej 		uvm_page_physload(a, b, a, b, VM_FREELIST_DEFAULT);
   3470  1.37      gwr 
   3471  1.37      gwr 		if (avail_mem[i].pmem_next == NULL)
   3472  1.37      gwr 			break;
   3473  1.37      gwr 	}
   3474   1.1      gwr }
   3475   1.8      gwr 
   3476   1.8      gwr /* pmap_count			INTERFACE
   3477   1.8      gwr  **
   3478   1.8      gwr  * Return the number of resident (valid) pages in the given pmap.
   3479   1.8      gwr  *
   3480   1.8      gwr  * Note:  If this function is handed the kernel map, it will report
   3481   1.8      gwr  * that it has no mappings.  Hopefully the VM system won't ask for kernel
   3482   1.8      gwr  * map statistics.
   3483   1.8      gwr  */
   3484  1.86      chs segsz_t
   3485  1.86      chs pmap_count(pmap_t pmap, int type)
   3486   1.8      gwr {
   3487   1.8      gwr 	u_int     count;
   3488   1.8      gwr 	int       a_idx, b_idx;
   3489   1.8      gwr 	a_tmgr_t *a_tbl;
   3490   1.8      gwr 	b_tmgr_t *b_tbl;
   3491   1.8      gwr 	c_tmgr_t *c_tbl;
   3492   1.8      gwr 
   3493   1.8      gwr 	/*
   3494   1.8      gwr 	 * If the pmap does not have its own A table manager, it has no
   3495   1.8      gwr 	 * valid entires.
   3496   1.8      gwr 	 */
   3497   1.8      gwr 	if (pmap->pm_a_tmgr == NULL)
   3498   1.8      gwr 		return 0;
   3499   1.8      gwr 
   3500   1.8      gwr 	a_tbl = pmap->pm_a_tmgr;
   3501   1.8      gwr 
   3502   1.8      gwr 	count = 0;
   3503   1.8      gwr 	for (a_idx = 0; a_idx < MMU_TIA(KERNBASE); a_idx++) {
   3504   1.8      gwr 	    if (MMU_VALID_DT(a_tbl->at_dtbl[a_idx])) {
   3505   1.8      gwr 	        b_tbl = mmuB2tmgr(mmu_ptov(a_tbl->at_dtbl[a_idx].addr.raw));
   3506   1.8      gwr 	        for (b_idx = 0; b_idx < MMU_B_TBL_SIZE; b_idx++) {
   3507   1.8      gwr 	            if (MMU_VALID_DT(b_tbl->bt_dtbl[b_idx])) {
   3508   1.8      gwr 	                c_tbl = mmuC2tmgr(
   3509   1.8      gwr 	                    mmu_ptov(MMU_DTE_PA(b_tbl->bt_dtbl[b_idx])));
   3510   1.8      gwr 	                if (type == 0)
   3511   1.8      gwr 	                    /*
   3512   1.8      gwr 	                     * A resident entry count has been requested.
   3513   1.8      gwr 	                     */
   3514   1.8      gwr 	                    count += c_tbl->ct_ecnt;
   3515   1.8      gwr 	                else
   3516   1.8      gwr 	                    /*
   3517   1.8      gwr 	                     * A wired entry count has been requested.
   3518   1.8      gwr 	                     */
   3519   1.8      gwr 	                    count += c_tbl->ct_wcnt;
   3520   1.8      gwr 	            }
   3521   1.8      gwr 	        }
   3522   1.8      gwr 	    }
   3523   1.8      gwr 	}
   3524   1.8      gwr 
   3525   1.8      gwr 	return count;
   3526   1.8      gwr }
   3527   1.8      gwr 
   3528   1.1      gwr /************************ SUN3 COMPATIBILITY ROUTINES ********************
   3529   1.1      gwr  * The following routines are only used by DDB for tricky kernel text    *
   3530   1.1      gwr  * text operations in db_memrw.c.  They are provided for sun3            *
   3531   1.1      gwr  * compatibility.                                                        *
   3532   1.1      gwr  *************************************************************************/
   3533   1.1      gwr /* get_pte			INTERNAL
   3534   1.1      gwr  **
   3535   1.1      gwr  * Return the page descriptor the describes the kernel mapping
   3536   1.1      gwr  * of the given virtual address.
   3537   1.1      gwr  */
   3538  1.86      chs extern u_long ptest_addr(u_long);	/* XXX: locore.s */
   3539  1.86      chs u_int
   3540  1.86      chs get_pte(vaddr_t va)
   3541  1.13      gwr {
   3542  1.13      gwr 	u_long pte_pa;
   3543  1.13      gwr 	mmu_short_pte_t *pte;
   3544  1.13      gwr 
   3545  1.13      gwr 	/* Get the physical address of the PTE */
   3546  1.13      gwr 	pte_pa = ptest_addr(va & ~PGOFSET);
   3547  1.13      gwr 
   3548  1.13      gwr 	/* Convert to a virtual address... */
   3549  1.13      gwr 	pte = (mmu_short_pte_t *) (KERNBASE + pte_pa);
   3550  1.13      gwr 
   3551  1.13      gwr 	/* Make sure it is in our level-C tables... */
   3552  1.13      gwr 	if ((pte < kernCbase) ||
   3553  1.13      gwr 		(pte >= &mmuCbase[NUM_USER_PTES]))
   3554  1.13      gwr 		return 0;
   3555  1.13      gwr 
   3556  1.13      gwr 	/* ... and just return its contents. */
   3557  1.13      gwr 	return (pte->attr.raw);
   3558  1.13      gwr }
   3559  1.13      gwr 
   3560   1.1      gwr 
   3561   1.1      gwr /* set_pte			INTERNAL
   3562   1.1      gwr  **
   3563   1.1      gwr  * Set the page descriptor that describes the kernel mapping
   3564   1.1      gwr  * of the given virtual address.
   3565   1.1      gwr  */
   3566  1.86      chs void
   3567  1.86      chs set_pte(vaddr_t va, u_int pte)
   3568   1.1      gwr {
   3569   1.1      gwr 	u_long idx;
   3570   1.1      gwr 
   3571   1.7      gwr 	if (va < KERNBASE)
   3572   1.7      gwr 		return;
   3573   1.7      gwr 
   3574  1.25    veego 	idx = (unsigned long) m68k_btop(va - KERNBASE);
   3575   1.1      gwr 	kernCbase[idx].attr.raw = pte;
   3576  1.33      gwr 	TBIS(va);
   3577   1.1      gwr }
   3578  1.42       is 
   3579  1.42       is /*
   3580  1.42       is  *	Routine:        pmap_procwr
   3581  1.42       is  *
   3582  1.42       is  *	Function:
   3583  1.42       is  *		Synchronize caches corresponding to [addr, addr+len) in p.
   3584  1.42       is  */
   3585  1.86      chs void
   3586  1.86      chs pmap_procwr(struct proc *p, vaddr_t va, size_t len)
   3587  1.42       is {
   3588  1.42       is 	(void)cachectl1(0x80000004, va, len, p);
   3589  1.42       is }
   3590  1.42       is 
   3591   1.7      gwr 
   3592   1.8      gwr #ifdef	PMAP_DEBUG
   3593   1.7      gwr /************************** DEBUGGING ROUTINES **************************
   3594   1.7      gwr  * The following routines are meant to be an aid to debugging the pmap  *
   3595   1.7      gwr  * system.  They are callable from the DDB command line and should be   *
   3596   1.7      gwr  * prepared to be handed unstable or incomplete states of the system.   *
   3597   1.7      gwr  ************************************************************************/
   3598   1.7      gwr 
   3599   1.7      gwr /* pv_list
   3600   1.7      gwr  **
   3601   1.7      gwr  * List all pages found on the pv list for the given physical page.
   3602   1.8      gwr  * To avoid endless loops, the listing will stop at the end of the list
   3603   1.7      gwr  * or after 'n' entries - whichever comes first.
   3604   1.7      gwr  */
   3605  1.86      chs void
   3606  1.86      chs pv_list(paddr_t pa, int n)
   3607   1.7      gwr {
   3608   1.7      gwr 	int  idx;
   3609  1.69      chs 	vaddr_t va;
   3610   1.7      gwr 	pv_t *pv;
   3611   1.7      gwr 	c_tmgr_t *c_tbl;
   3612   1.7      gwr 	pmap_t pmap;
   3613   1.7      gwr 
   3614   1.7      gwr 	pv = pa2pv(pa);
   3615   1.7      gwr 	idx = pv->pv_idx;
   3616  1.69      chs 	for (; idx != PVE_EOL && n > 0; idx = pvebase[idx].pve_next, n--) {
   3617   1.8      gwr 		va = pmap_get_pteinfo(idx, &pmap, &c_tbl);
   3618   1.7      gwr 		printf("idx %d, pmap 0x%x, va 0x%x, c_tbl %x\n",
   3619   1.7      gwr 			idx, (u_int) pmap, (u_int) va, (u_int) c_tbl);
   3620   1.7      gwr 	}
   3621   1.7      gwr }
   3622   1.8      gwr #endif	/* PMAP_DEBUG */
   3623   1.1      gwr 
   3624   1.1      gwr #ifdef NOT_YET
   3625   1.1      gwr /* and maybe not ever */
   3626   1.1      gwr /************************** LOW-LEVEL ROUTINES **************************
   3627  1.78      wiz  * These routines will eventually be re-written into assembly and placed*
   3628   1.1      gwr  * in locore.s.  They are here now as stubs so that the pmap module can *
   3629   1.1      gwr  * be linked as a standalone user program for testing.                  *
   3630   1.1      gwr  ************************************************************************/
   3631   1.1      gwr /* flush_atc_crp			INTERNAL
   3632   1.1      gwr  **
   3633   1.1      gwr  * Flush all page descriptors derived from the given CPU Root Pointer
   3634   1.1      gwr  * (CRP), or 'A' table as it is known here, from the 68851's automatic
   3635   1.1      gwr  * cache.
   3636   1.1      gwr  */
   3637  1.86      chs void
   3638  1.86      chs flush_atc_crp(int a_tbl)
   3639   1.1      gwr {
   3640   1.1      gwr 	mmu_long_rp_t rp;
   3641   1.1      gwr 
   3642   1.1      gwr 	/* Create a temporary root table pointer that points to the
   3643   1.1      gwr 	 * given A table.
   3644   1.1      gwr 	 */
   3645   1.1      gwr 	rp.attr.raw = ~MMU_LONG_RP_LU;
   3646   1.1      gwr 	rp.addr.raw = (unsigned int) a_tbl;
   3647   1.1      gwr 
   3648   1.1      gwr 	mmu_pflushr(&rp);
   3649   1.1      gwr 	/* mmu_pflushr:
   3650   1.1      gwr 	 * 	movel   sp(4)@,a0
   3651   1.1      gwr 	 * 	pflushr a0@
   3652   1.1      gwr 	 *	rts
   3653   1.1      gwr 	 */
   3654   1.1      gwr }
   3655   1.1      gwr #endif /* NOT_YET */
   3656