Home | History | Annotate | Line # | Download | only in sun3x
pmap.c revision 1.89.10.1
      1  1.89.10.1     elad /*	$NetBSD: pmap.c,v 1.89.10.1 2006/05/11 23:27:14 elad Exp $	*/
      2        1.1      gwr 
      3        1.1      gwr /*-
      4       1.10   jeremy  * Copyright (c) 1996, 1997 The NetBSD Foundation, Inc.
      5        1.1      gwr  * All rights reserved.
      6        1.1      gwr  *
      7        1.1      gwr  * This code is derived from software contributed to The NetBSD Foundation
      8        1.1      gwr  * by Jeremy Cooper.
      9        1.1      gwr  *
     10        1.1      gwr  * Redistribution and use in source and binary forms, with or without
     11        1.1      gwr  * modification, are permitted provided that the following conditions
     12        1.1      gwr  * are met:
     13        1.1      gwr  * 1. Redistributions of source code must retain the above copyright
     14        1.1      gwr  *    notice, this list of conditions and the following disclaimer.
     15        1.1      gwr  * 2. Redistributions in binary form must reproduce the above copyright
     16        1.1      gwr  *    notice, this list of conditions and the following disclaimer in the
     17        1.1      gwr  *    documentation and/or other materials provided with the distribution.
     18        1.1      gwr  * 3. All advertising materials mentioning features or use of this software
     19        1.1      gwr  *    must display the following acknowledgement:
     20        1.1      gwr  *        This product includes software developed by the NetBSD
     21        1.1      gwr  *        Foundation, Inc. and its contributors.
     22        1.1      gwr  * 4. Neither the name of The NetBSD Foundation nor the names of its
     23        1.1      gwr  *    contributors may be used to endorse or promote products derived
     24        1.1      gwr  *    from this software without specific prior written permission.
     25        1.1      gwr  *
     26        1.1      gwr  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27        1.1      gwr  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28        1.1      gwr  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29        1.1      gwr  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30        1.1      gwr  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31        1.1      gwr  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32        1.1      gwr  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33        1.1      gwr  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34        1.1      gwr  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35        1.1      gwr  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36        1.1      gwr  * POSSIBILITY OF SUCH DAMAGE.
     37        1.1      gwr  */
     38        1.1      gwr 
     39        1.1      gwr /*
     40        1.1      gwr  * XXX These comments aren't quite accurate.  Need to change.
     41        1.1      gwr  * The sun3x uses the MC68851 Memory Management Unit, which is built
     42        1.1      gwr  * into the CPU.  The 68851 maps virtual to physical addresses using
     43        1.1      gwr  * a multi-level table lookup, which is stored in the very memory that
     44        1.1      gwr  * it maps.  The number of levels of lookup is configurable from one
     45        1.1      gwr  * to four.  In this implementation, we use three, named 'A' through 'C'.
     46        1.1      gwr  *
     47        1.1      gwr  * The MMU translates virtual addresses into physical addresses by
     48       1.84      wiz  * traversing these tables in a process called a 'table walk'.  The most
     49        1.1      gwr  * significant 7 bits of the Virtual Address ('VA') being translated are
     50        1.1      gwr  * used as an index into the level A table, whose base in physical memory
     51        1.1      gwr  * is stored in a special MMU register, the 'CPU Root Pointer' or CRP.  The
     52        1.1      gwr  * address found at that index in the A table is used as the base
     53        1.1      gwr  * address for the next table, the B table.  The next six bits of the VA are
     54        1.1      gwr  * used as an index into the B table, which in turn gives the base address
     55        1.1      gwr  * of the third and final C table.
     56        1.1      gwr  *
     57        1.1      gwr  * The next six bits of the VA are used as an index into the C table to
     58        1.1      gwr  * locate a Page Table Entry (PTE).  The PTE is a physical address in memory
     59        1.1      gwr  * to which the remaining 13 bits of the VA are added, producing the
     60        1.1      gwr  * mapped physical address.
     61        1.1      gwr  *
     62        1.1      gwr  * To map the entire memory space in this manner would require 2114296 bytes
     63        1.1      gwr  * of page tables per process - quite expensive.  Instead we will
     64        1.1      gwr  * allocate a fixed but considerably smaller space for the page tables at
     65        1.1      gwr  * the time the VM system is initialized.  When the pmap code is asked by
     66        1.1      gwr  * the kernel to map a VA to a PA, it allocates tables as needed from this
     67        1.1      gwr  * pool.  When there are no more tables in the pool, tables are stolen
     68        1.1      gwr  * from the oldest mapped entries in the tree.  This is only possible
     69        1.1      gwr  * because all memory mappings are stored in the kernel memory map
     70        1.1      gwr  * structures, independent of the pmap structures.  A VA which references
     71        1.1      gwr  * one of these invalidated maps will cause a page fault.  The kernel
     72        1.1      gwr  * will determine that the page fault was caused by a task using a valid
     73        1.1      gwr  * VA, but for some reason (which does not concern it), that address was
     74        1.1      gwr  * not mapped.  It will ask the pmap code to re-map the entry and then
     75        1.1      gwr  * it will resume executing the faulting task.
     76        1.1      gwr  *
     77        1.1      gwr  * In this manner the most efficient use of the page table space is
     78        1.1      gwr  * achieved.  Tasks which do not execute often will have their tables
     79        1.1      gwr  * stolen and reused by tasks which execute more frequently.  The best
     80        1.1      gwr  * size for the page table pool will probably be determined by
     81        1.1      gwr  * experimentation.
     82        1.1      gwr  *
     83        1.1      gwr  * You read all of the comments so far.  Good for you.
     84        1.1      gwr  * Now go play!
     85        1.1      gwr  */
     86        1.1      gwr 
     87        1.1      gwr /*** A Note About the 68851 Address Translation Cache
     88        1.1      gwr  * The MC68851 has a 64 entry cache, called the Address Translation Cache
     89        1.1      gwr  * or 'ATC'.  This cache stores the most recently used page descriptors
     90        1.1      gwr  * accessed by the MMU when it does translations.  Using a marker called a
     91        1.1      gwr  * 'task alias' the MMU can store the descriptors from 8 different table
     92        1.1      gwr  * spaces concurrently.  The task alias is associated with the base
     93        1.1      gwr  * address of the level A table of that address space.  When an address
     94        1.1      gwr  * space is currently active (the CRP currently points to its A table)
     95        1.1      gwr  * the only cached descriptors that will be obeyed are ones which have a
     96        1.1      gwr  * matching task alias of the current space associated with them.
     97        1.1      gwr  *
     98        1.1      gwr  * Since the cache is always consulted before any table lookups are done,
     99        1.1      gwr  * it is important that it accurately reflect the state of the MMU tables.
    100        1.1      gwr  * Whenever a change has been made to a table that has been loaded into
    101        1.1      gwr  * the MMU, the code must be sure to flush any cached entries that are
    102        1.1      gwr  * affected by the change.  These instances are documented in the code at
    103        1.1      gwr  * various points.
    104        1.1      gwr  */
    105        1.1      gwr /*** A Note About the Note About the 68851 Address Translation Cache
    106        1.1      gwr  * 4 months into this code I discovered that the sun3x does not have
    107        1.1      gwr  * a MC68851 chip. Instead, it has a version of this MMU that is part of the
    108        1.1      gwr  * the 68030 CPU.
    109        1.1      gwr  * All though it behaves very similarly to the 68851, it only has 1 task
    110        1.8      gwr  * alias and a 22 entry cache.  So sadly (or happily), the first paragraph
    111        1.8      gwr  * of the previous note does not apply to the sun3x pmap.
    112        1.1      gwr  */
    113       1.83    lukem 
    114       1.83    lukem #include <sys/cdefs.h>
    115  1.89.10.1     elad __KERNEL_RCSID(0, "$NetBSD: pmap.c,v 1.89.10.1 2006/05/11 23:27:14 elad Exp $");
    116       1.45      gwr 
    117       1.45      gwr #include "opt_ddb.h"
    118       1.82   martin #include "opt_pmap_debug.h"
    119        1.1      gwr 
    120        1.1      gwr #include <sys/param.h>
    121        1.1      gwr #include <sys/systm.h>
    122        1.1      gwr #include <sys/proc.h>
    123        1.1      gwr #include <sys/malloc.h>
    124       1.56  tsutsui #include <sys/pool.h>
    125        1.1      gwr #include <sys/user.h>
    126        1.1      gwr #include <sys/queue.h>
    127       1.20  thorpej #include <sys/kcore.h>
    128       1.38      gwr 
    129       1.38      gwr #include <uvm/uvm.h>
    130       1.43      mrg 
    131        1.1      gwr #include <machine/cpu.h>
    132       1.17      gwr #include <machine/kcore.h>
    133       1.33      gwr #include <machine/mon.h>
    134        1.1      gwr #include <machine/pmap.h>
    135        1.1      gwr #include <machine/pte.h>
    136       1.37      gwr #include <machine/vmparam.h>
    137       1.75      chs #include <m68k/cacheops.h>
    138       1.33      gwr 
    139       1.33      gwr #include <sun3/sun3/cache.h>
    140       1.33      gwr #include <sun3/sun3/machdep.h>
    141        1.1      gwr 
    142        1.1      gwr #include "pmap_pvt.h"
    143        1.1      gwr 
    144        1.1      gwr /* XXX - What headers declare these? */
    145        1.1      gwr extern struct pcb *curpcb;
    146        1.1      gwr extern int physmem;
    147        1.7      gwr 
    148        1.1      gwr /* Defined in locore.s */
    149        1.1      gwr extern char kernel_text[];
    150        1.1      gwr 
    151        1.1      gwr /* Defined by the linker */
    152        1.1      gwr extern char etext[], edata[], end[];
    153        1.1      gwr extern char *esym;	/* DDB */
    154        1.1      gwr 
    155        1.7      gwr /*************************** DEBUGGING DEFINITIONS ***********************
    156        1.7      gwr  * Macros, preprocessor defines and variables used in debugging can make *
    157        1.7      gwr  * code hard to read.  Anything used exclusively for debugging purposes  *
    158        1.7      gwr  * is defined here to avoid having such mess scattered around the file.  *
    159        1.7      gwr  *************************************************************************/
    160        1.8      gwr #ifdef	PMAP_DEBUG
    161        1.7      gwr /*
    162        1.7      gwr  * To aid the debugging process, macros should be expanded into smaller steps
    163        1.7      gwr  * that accomplish the same goal, yet provide convenient places for placing
    164        1.8      gwr  * breakpoints.  When this code is compiled with PMAP_DEBUG mode defined, the
    165        1.7      gwr  * 'INLINE' keyword is defined to an empty string.  This way, any function
    166        1.7      gwr  * defined to be a 'static INLINE' will become 'outlined' and compiled as
    167        1.7      gwr  * a separate function, which is much easier to debug.
    168        1.7      gwr  */
    169        1.7      gwr #define	INLINE	/* nothing */
    170        1.7      gwr 
    171        1.1      gwr /*
    172        1.7      gwr  * It is sometimes convenient to watch the activity of a particular table
    173        1.7      gwr  * in the system.  The following variables are used for that purpose.
    174        1.1      gwr  */
    175        1.7      gwr a_tmgr_t *pmap_watch_atbl = 0;
    176        1.7      gwr b_tmgr_t *pmap_watch_btbl = 0;
    177        1.7      gwr c_tmgr_t *pmap_watch_ctbl = 0;
    178        1.1      gwr 
    179        1.7      gwr int pmap_debug = 0;
    180        1.7      gwr #define DPRINT(args) if (pmap_debug) printf args
    181        1.7      gwr 
    182        1.7      gwr #else	/********** Stuff below is defined if NOT debugging **************/
    183        1.7      gwr 
    184        1.7      gwr #define	INLINE	inline
    185       1.10   jeremy #define DPRINT(args)  /* nada */
    186        1.7      gwr 
    187       1.10   jeremy #endif	/* PMAP_DEBUG */
    188        1.7      gwr /*********************** END OF DEBUGGING DEFINITIONS ********************/
    189        1.1      gwr 
    190        1.1      gwr /*** Management Structure - Memory Layout
    191        1.1      gwr  * For every MMU table in the sun3x pmap system there must be a way to
    192        1.1      gwr  * manage it; we must know which process is using it, what other tables
    193        1.1      gwr  * depend on it, and whether or not it contains any locked pages.  This
    194        1.1      gwr  * is solved by the creation of 'table management'  or 'tmgr'
    195        1.1      gwr  * structures.  One for each MMU table in the system.
    196        1.1      gwr  *
    197        1.1      gwr  *                        MAP OF MEMORY USED BY THE PMAP SYSTEM
    198        1.1      gwr  *
    199        1.1      gwr  *      towards lower memory
    200        1.1      gwr  * kernAbase -> +-------------------------------------------------------+
    201        1.1      gwr  *              | Kernel     MMU A level table                          |
    202        1.1      gwr  * kernBbase -> +-------------------------------------------------------+
    203        1.1      gwr  *              | Kernel     MMU B level tables                         |
    204        1.1      gwr  * kernCbase -> +-------------------------------------------------------+
    205        1.1      gwr  *              |                                                       |
    206        1.1      gwr  *              | Kernel     MMU C level tables                         |
    207        1.1      gwr  *              |                                                       |
    208        1.7      gwr  * mmuCbase  -> +-------------------------------------------------------+
    209        1.7      gwr  *              | User       MMU C level tables                         |
    210        1.1      gwr  * mmuAbase  -> +-------------------------------------------------------+
    211        1.1      gwr  *              |                                                       |
    212        1.1      gwr  *              | User       MMU A level tables                         |
    213        1.1      gwr  *              |                                                       |
    214        1.1      gwr  * mmuBbase  -> +-------------------------------------------------------+
    215        1.1      gwr  *              | User       MMU B level tables                         |
    216        1.1      gwr  * tmgrAbase -> +-------------------------------------------------------+
    217        1.1      gwr  *              |  TMGR A level table structures                        |
    218        1.1      gwr  * tmgrBbase -> +-------------------------------------------------------+
    219        1.1      gwr  *              |  TMGR B level table structures                        |
    220        1.1      gwr  * tmgrCbase -> +-------------------------------------------------------+
    221        1.1      gwr  *              |  TMGR C level table structures                        |
    222        1.1      gwr  * pvbase    -> +-------------------------------------------------------+
    223        1.1      gwr  *              |  Physical to Virtual mapping table (list heads)       |
    224        1.1      gwr  * pvebase   -> +-------------------------------------------------------+
    225        1.1      gwr  *              |  Physical to Virtual mapping table (list elements)    |
    226        1.1      gwr  *              |                                                       |
    227        1.1      gwr  *              +-------------------------------------------------------+
    228        1.1      gwr  *      towards higher memory
    229        1.1      gwr  *
    230        1.1      gwr  * For every A table in the MMU A area, there will be a corresponding
    231        1.1      gwr  * a_tmgr structure in the TMGR A area.  The same will be true for
    232        1.1      gwr  * the B and C tables.  This arrangement will make it easy to find the
    233        1.1      gwr  * controling tmgr structure for any table in the system by use of
    234        1.1      gwr  * (relatively) simple macros.
    235        1.1      gwr  */
    236        1.7      gwr 
    237        1.7      gwr /*
    238        1.8      gwr  * Global variables for storing the base addresses for the areas
    239        1.1      gwr  * labeled above.
    240        1.1      gwr  */
    241       1.69      chs static vaddr_t  	kernAphys;
    242        1.1      gwr static mmu_long_dte_t	*kernAbase;
    243        1.1      gwr static mmu_short_dte_t	*kernBbase;
    244        1.1      gwr static mmu_short_pte_t	*kernCbase;
    245       1.15      gwr static mmu_short_pte_t	*mmuCbase;
    246       1.15      gwr static mmu_short_dte_t	*mmuBbase;
    247        1.1      gwr static mmu_long_dte_t	*mmuAbase;
    248        1.1      gwr static a_tmgr_t		*Atmgrbase;
    249        1.1      gwr static b_tmgr_t		*Btmgrbase;
    250        1.1      gwr static c_tmgr_t		*Ctmgrbase;
    251       1.15      gwr static pv_t 		*pvbase;
    252        1.1      gwr static pv_elem_t	*pvebase;
    253       1.15      gwr struct pmap 		kernel_pmap;
    254        1.1      gwr 
    255        1.8      gwr /*
    256        1.8      gwr  * This holds the CRP currently loaded into the MMU.
    257        1.8      gwr  */
    258        1.8      gwr struct mmu_rootptr kernel_crp;
    259        1.8      gwr 
    260        1.8      gwr /*
    261        1.8      gwr  * Just all around global variables.
    262        1.1      gwr  */
    263        1.1      gwr static TAILQ_HEAD(a_pool_head_struct, a_tmgr_struct) a_pool;
    264        1.1      gwr static TAILQ_HEAD(b_pool_head_struct, b_tmgr_struct) b_pool;
    265        1.1      gwr static TAILQ_HEAD(c_pool_head_struct, c_tmgr_struct) c_pool;
    266        1.7      gwr 
    267        1.7      gwr 
    268        1.7      gwr /*
    269        1.7      gwr  * Flags used to mark the safety/availability of certain operations or
    270        1.7      gwr  * resources.
    271        1.7      gwr  */
    272       1.69      chs static boolean_t bootstrap_alloc_enabled = FALSE; /*Safe to use pmap_bootstrap_alloc().*/
    273       1.24   jeremy int tmp_vpages_inuse;	/* Temporary virtual pages are in use */
    274        1.1      gwr 
    275        1.1      gwr /*
    276        1.1      gwr  * XXX:  For now, retain the traditional variables that were
    277        1.1      gwr  * used in the old pmap/vm interface (without NONCONTIG).
    278        1.1      gwr  */
    279       1.81  thorpej /* Kernel virtual address space available: */
    280       1.81  thorpej vaddr_t	virtual_avail, virtual_end;
    281        1.1      gwr /* Physical address space available: */
    282       1.69      chs paddr_t	avail_start, avail_end;
    283        1.1      gwr 
    284        1.7      gwr /* This keep track of the end of the contiguously mapped range. */
    285       1.69      chs vaddr_t virtual_contig_end;
    286        1.7      gwr 
    287        1.7      gwr /* Physical address used by pmap_next_page() */
    288       1.69      chs paddr_t avail_next;
    289        1.7      gwr 
    290        1.7      gwr /* These are used by pmap_copy_page(), etc. */
    291       1.69      chs vaddr_t tmp_vpages[2];
    292        1.1      gwr 
    293       1.56  tsutsui /* memory pool for pmap structures */
    294       1.56  tsutsui struct pool	pmap_pmap_pool;
    295       1.56  tsutsui 
    296        1.7      gwr /*
    297        1.7      gwr  * The 3/80 is the only member of the sun3x family that has non-contiguous
    298        1.1      gwr  * physical memory.  Memory is divided into 4 banks which are physically
    299        1.1      gwr  * locatable on the system board.  Although the size of these banks varies
    300        1.1      gwr  * with the size of memory they contain, their base addresses are
    301        1.1      gwr  * permenently fixed.  The following structure, which describes these
    302        1.1      gwr  * banks, is initialized by pmap_bootstrap() after it reads from a similar
    303        1.1      gwr  * structure provided by the ROM Monitor.
    304        1.1      gwr  *
    305        1.1      gwr  * For the other machines in the sun3x architecture which do have contiguous
    306        1.1      gwr  * RAM, this list will have only one entry, which will describe the entire
    307        1.1      gwr  * range of available memory.
    308        1.1      gwr  */
    309       1.20  thorpej struct pmap_physmem_struct avail_mem[SUN3X_NPHYS_RAM_SEGS];
    310        1.1      gwr u_int total_phys_mem;
    311        1.1      gwr 
    312        1.7      gwr /*************************************************************************/
    313        1.7      gwr 
    314        1.7      gwr /*
    315        1.7      gwr  * XXX - Should "tune" these based on statistics.
    316        1.7      gwr  *
    317        1.7      gwr  * My first guess about the relative numbers of these needed is
    318        1.7      gwr  * based on the fact that a "typical" process will have several
    319        1.7      gwr  * pages mapped at low virtual addresses (text, data, bss), then
    320        1.7      gwr  * some mapped shared libraries, and then some stack pages mapped
    321        1.7      gwr  * near the high end of the VA space.  Each process can use only
    322        1.7      gwr  * one A table, and most will use only two B tables (maybe three)
    323        1.7      gwr  * and probably about four C tables.  Therefore, the first guess
    324        1.7      gwr  * at the relative numbers of these needed is 1:2:4 -gwr
    325        1.7      gwr  *
    326        1.7      gwr  * The number of C tables needed is closely related to the amount
    327        1.7      gwr  * of physical memory available plus a certain amount attributable
    328        1.7      gwr  * to the use of double mappings.  With a few simulation statistics
    329        1.7      gwr  * we can find a reasonably good estimation of this unknown value.
    330        1.7      gwr  * Armed with that and the above ratios, we have a good idea of what
    331        1.7      gwr  * is needed at each level. -j
    332        1.7      gwr  *
    333        1.7      gwr  * Note: It is not physical memory memory size, but the total mapped
    334        1.7      gwr  * virtual space required by the combined working sets of all the
    335        1.7      gwr  * currently _runnable_ processes.  (Sleeping ones don't count.)
    336        1.7      gwr  * The amount of physical memory should be irrelevant. -gwr
    337        1.7      gwr  */
    338       1.22   jeremy #ifdef	FIXED_NTABLES
    339        1.7      gwr #define NUM_A_TABLES	16
    340        1.7      gwr #define NUM_B_TABLES	32
    341        1.7      gwr #define NUM_C_TABLES	64
    342       1.22   jeremy #else
    343       1.22   jeremy unsigned int	NUM_A_TABLES, NUM_B_TABLES, NUM_C_TABLES;
    344       1.22   jeremy #endif	/* FIXED_NTABLES */
    345        1.7      gwr 
    346        1.7      gwr /*
    347        1.7      gwr  * This determines our total virtual mapping capacity.
    348        1.7      gwr  * Yes, it is a FIXED value so we can pre-allocate.
    349        1.7      gwr  */
    350        1.7      gwr #define NUM_USER_PTES	(NUM_C_TABLES * MMU_C_TBL_SIZE)
    351       1.15      gwr 
    352       1.15      gwr /*
    353       1.15      gwr  * The size of the Kernel Virtual Address Space (KVAS)
    354       1.15      gwr  * for purposes of MMU table allocation is -KERNBASE
    355       1.15      gwr  * (length from KERNBASE to 0xFFFFffff)
    356       1.15      gwr  */
    357       1.15      gwr #define	KVAS_SIZE		(-KERNBASE)
    358       1.15      gwr 
    359       1.15      gwr /* Numbers of kernel MMU tables to support KVAS_SIZE. */
    360       1.15      gwr #define KERN_B_TABLES	(KVAS_SIZE >> MMU_TIA_SHIFT)
    361       1.15      gwr #define KERN_C_TABLES	(KVAS_SIZE >> MMU_TIB_SHIFT)
    362       1.15      gwr #define	NUM_KERN_PTES	(KVAS_SIZE >> MMU_TIC_SHIFT)
    363        1.7      gwr 
    364        1.7      gwr /*************************** MISCELANEOUS MACROS *************************/
    365       1.55  tsutsui #define pmap_lock(pmap) simple_lock(&pmap->pm_lock)
    366       1.55  tsutsui #define pmap_unlock(pmap) simple_unlock(&pmap->pm_lock)
    367       1.55  tsutsui #define pmap_add_ref(pmap) ++pmap->pm_refcount
    368       1.55  tsutsui #define pmap_del_ref(pmap) --pmap->pm_refcount
    369       1.55  tsutsui #define pmap_refcount(pmap) pmap->pm_refcount
    370       1.64  thorpej 
    371       1.64  thorpej void *pmap_bootstrap_alloc(int);
    372        1.7      gwr 
    373       1.86      chs static INLINE void *mmu_ptov(paddr_t);
    374       1.86      chs static INLINE paddr_t mmu_vtop(void *);
    375        1.7      gwr 
    376        1.7      gwr #if	0
    377       1.86      chs static INLINE a_tmgr_t * mmuA2tmgr(mmu_long_dte_t *);
    378       1.26   jeremy #endif /* 0 */
    379       1.86      chs static INLINE b_tmgr_t * mmuB2tmgr(mmu_short_dte_t *);
    380       1.86      chs static INLINE c_tmgr_t * mmuC2tmgr(mmu_short_pte_t *);
    381        1.7      gwr 
    382       1.86      chs static INLINE pv_t *pa2pv(paddr_t);
    383       1.86      chs static INLINE int   pteidx(mmu_short_pte_t *);
    384       1.86      chs static INLINE pmap_t current_pmap(void);
    385        1.7      gwr 
    386        1.7      gwr /*
    387        1.7      gwr  * We can always convert between virtual and physical addresses
    388        1.7      gwr  * for anything in the range [KERNBASE ... avail_start] because
    389        1.7      gwr  * that range is GUARANTEED to be mapped linearly.
    390        1.7      gwr  * We rely heavily upon this feature!
    391        1.7      gwr  */
    392        1.7      gwr static INLINE void *
    393       1.86      chs mmu_ptov(paddr_t pa)
    394        1.7      gwr {
    395       1.69      chs 	vaddr_t va;
    396        1.7      gwr 
    397        1.7      gwr 	va = (pa + KERNBASE);
    398        1.8      gwr #ifdef	PMAP_DEBUG
    399        1.7      gwr 	if ((va < KERNBASE) || (va >= virtual_contig_end))
    400        1.7      gwr 		panic("mmu_ptov");
    401        1.7      gwr #endif
    402        1.7      gwr 	return ((void*)va);
    403        1.7      gwr }
    404       1.69      chs 
    405       1.86      chs static INLINE paddr_t
    406       1.86      chs mmu_vtop(void *vva)
    407        1.7      gwr {
    408       1.69      chs 	vaddr_t va;
    409        1.7      gwr 
    410       1.69      chs 	va = (vaddr_t)vva;
    411        1.8      gwr #ifdef	PMAP_DEBUG
    412        1.7      gwr 	if ((va < KERNBASE) || (va >= virtual_contig_end))
    413       1.72  tsutsui 		panic("mmu_vtop");
    414        1.7      gwr #endif
    415        1.7      gwr 	return (va - KERNBASE);
    416        1.7      gwr }
    417        1.7      gwr 
    418        1.7      gwr /*
    419        1.7      gwr  * These macros map MMU tables to their corresponding manager structures.
    420        1.1      gwr  * They are needed quite often because many of the pointers in the pmap
    421        1.1      gwr  * system reference MMU tables and not the structures that control them.
    422        1.1      gwr  * There needs to be a way to find one when given the other and these
    423        1.1      gwr  * macros do so by taking advantage of the memory layout described above.
    424        1.1      gwr  * Here's a quick step through the first macro, mmuA2tmgr():
    425        1.1      gwr  *
    426        1.1      gwr  * 1) find the offset of the given MMU A table from the base of its table
    427        1.1      gwr  *    pool (table - mmuAbase).
    428        1.1      gwr  * 2) convert this offset into a table index by dividing it by the
    429        1.1      gwr  *    size of one MMU 'A' table. (sizeof(mmu_long_dte_t) * MMU_A_TBL_SIZE)
    430        1.1      gwr  * 3) use this index to select the corresponding 'A' table manager
    431        1.1      gwr  *    structure from the 'A' table manager pool (Atmgrbase[index]).
    432        1.1      gwr  */
    433        1.7      gwr /*  This function is not currently used. */
    434        1.7      gwr #if	0
    435        1.7      gwr static INLINE a_tmgr_t *
    436       1.86      chs mmuA2tmgr(mmu_long_dte_t *mmuAtbl)
    437        1.7      gwr {
    438       1.69      chs 	int idx;
    439        1.7      gwr 
    440        1.7      gwr 	/* Which table is this in? */
    441        1.7      gwr 	idx = (mmuAtbl - mmuAbase) / MMU_A_TBL_SIZE;
    442        1.8      gwr #ifdef	PMAP_DEBUG
    443        1.7      gwr 	if ((idx < 0) || (idx >= NUM_A_TABLES))
    444        1.7      gwr 		panic("mmuA2tmgr");
    445        1.7      gwr #endif
    446        1.7      gwr 	return (&Atmgrbase[idx]);
    447        1.7      gwr }
    448        1.7      gwr #endif	/* 0 */
    449        1.7      gwr 
    450        1.7      gwr static INLINE b_tmgr_t *
    451       1.86      chs mmuB2tmgr(mmu_short_dte_t *mmuBtbl)
    452        1.7      gwr {
    453       1.69      chs 	int idx;
    454        1.7      gwr 
    455        1.7      gwr 	/* Which table is this in? */
    456        1.7      gwr 	idx = (mmuBtbl - mmuBbase) / MMU_B_TBL_SIZE;
    457        1.8      gwr #ifdef	PMAP_DEBUG
    458        1.7      gwr 	if ((idx < 0) || (idx >= NUM_B_TABLES))
    459        1.7      gwr 		panic("mmuB2tmgr");
    460        1.7      gwr #endif
    461        1.7      gwr 	return (&Btmgrbase[idx]);
    462        1.7      gwr }
    463        1.7      gwr 
    464        1.7      gwr /* mmuC2tmgr			INTERNAL
    465        1.7      gwr  **
    466        1.7      gwr  * Given a pte known to belong to a C table, return the address of
    467        1.7      gwr  * that table's management structure.
    468        1.7      gwr  */
    469        1.7      gwr static INLINE c_tmgr_t *
    470       1.86      chs mmuC2tmgr(mmu_short_pte_t *mmuCtbl)
    471        1.7      gwr {
    472       1.69      chs 	int idx;
    473        1.7      gwr 
    474        1.7      gwr 	/* Which table is this in? */
    475        1.7      gwr 	idx = (mmuCtbl - mmuCbase) / MMU_C_TBL_SIZE;
    476        1.8      gwr #ifdef	PMAP_DEBUG
    477        1.7      gwr 	if ((idx < 0) || (idx >= NUM_C_TABLES))
    478        1.7      gwr 		panic("mmuC2tmgr");
    479        1.7      gwr #endif
    480        1.7      gwr 	return (&Ctmgrbase[idx]);
    481        1.7      gwr }
    482        1.7      gwr 
    483        1.8      gwr /* This is now a function call below.
    484        1.1      gwr  * #define pa2pv(pa) \
    485        1.1      gwr  *	(&pvbase[(unsigned long)\
    486       1.25    veego  *		m68k_btop(pa)\
    487        1.1      gwr  *	])
    488        1.1      gwr  */
    489        1.1      gwr 
    490        1.7      gwr /* pa2pv			INTERNAL
    491        1.7      gwr  **
    492        1.7      gwr  * Return the pv_list_head element which manages the given physical
    493        1.7      gwr  * address.
    494        1.7      gwr  */
    495        1.7      gwr static INLINE pv_t *
    496       1.86      chs pa2pv(paddr_t pa)
    497        1.7      gwr {
    498       1.69      chs 	struct pmap_physmem_struct *bank;
    499       1.69      chs 	int idx;
    500        1.7      gwr 
    501        1.7      gwr 	bank = &avail_mem[0];
    502        1.7      gwr 	while (pa >= bank->pmem_end)
    503        1.7      gwr 		bank = bank->pmem_next;
    504        1.7      gwr 
    505        1.7      gwr 	pa -= bank->pmem_start;
    506       1.25    veego 	idx = bank->pmem_pvbase + m68k_btop(pa);
    507        1.8      gwr #ifdef	PMAP_DEBUG
    508        1.7      gwr 	if ((idx < 0) || (idx >= physmem))
    509        1.7      gwr 		panic("pa2pv");
    510        1.7      gwr #endif
    511        1.7      gwr 	return &pvbase[idx];
    512        1.7      gwr }
    513        1.7      gwr 
    514        1.7      gwr /* pteidx			INTERNAL
    515        1.7      gwr  **
    516        1.7      gwr  * Return the index of the given PTE within the entire fixed table of
    517        1.7      gwr  * PTEs.
    518        1.7      gwr  */
    519        1.7      gwr static INLINE int
    520       1.86      chs pteidx(mmu_short_pte_t *pte)
    521        1.7      gwr {
    522        1.7      gwr 	return (pte - kernCbase);
    523        1.7      gwr }
    524        1.7      gwr 
    525        1.7      gwr /*
    526        1.8      gwr  * This just offers a place to put some debugging checks,
    527       1.76  thorpej  * and reduces the number of places "curlwp" appears...
    528        1.7      gwr  */
    529       1.86      chs static INLINE pmap_t
    530       1.86      chs current_pmap(void)
    531        1.7      gwr {
    532        1.7      gwr 	struct vmspace *vm;
    533       1.67      chs 	struct vm_map *map;
    534        1.7      gwr 	pmap_t	pmap;
    535        1.7      gwr 
    536       1.76  thorpej 	if (curlwp == NULL)
    537        1.9      gwr 		pmap = &kernel_pmap;
    538        1.9      gwr 	else {
    539       1.76  thorpej 		vm = curproc->p_vmspace;
    540        1.9      gwr 		map = &vm->vm_map;
    541        1.9      gwr 		pmap = vm_map_pmap(map);
    542        1.9      gwr 	}
    543        1.7      gwr 
    544        1.7      gwr 	return (pmap);
    545        1.7      gwr }
    546        1.7      gwr 
    547        1.7      gwr 
    548        1.1      gwr /*************************** FUNCTION DEFINITIONS ************************
    549        1.1      gwr  * These appear here merely for the compiler to enforce type checking on *
    550        1.1      gwr  * all function calls.                                                   *
    551        1.7      gwr  *************************************************************************/
    552        1.1      gwr 
    553        1.1      gwr /** Internal functions
    554       1.37      gwr  ** Most functions used only within this module are defined in
    555       1.37      gwr  **   pmap_pvt.h (why not here if used only here?)
    556        1.1      gwr  **/
    557       1.86      chs static void pmap_page_upload(void);
    558        1.1      gwr 
    559        1.1      gwr /** Interface functions
    560        1.1      gwr  ** - functions required by the Mach VM Pmap interface, with MACHINE_CONTIG
    561        1.1      gwr  **   defined.
    562        1.1      gwr  **/
    563       1.86      chs void pmap_pinit(pmap_t);
    564       1.86      chs void pmap_release(pmap_t);
    565        1.1      gwr 
    566        1.1      gwr /********************************** CODE ********************************
    567        1.1      gwr  * Functions that are called from other parts of the kernel are labeled *
    568        1.1      gwr  * as 'INTERFACE' functions.  Functions that are only called from       *
    569        1.1      gwr  * within the pmap module are labeled as 'INTERNAL' functions.          *
    570        1.1      gwr  * Functions that are internal, but are not (currently) used at all are *
    571        1.1      gwr  * labeled 'INTERNAL_X'.                                                *
    572        1.1      gwr  ************************************************************************/
    573        1.1      gwr 
    574        1.1      gwr /* pmap_bootstrap			INTERNAL
    575        1.1      gwr  **
    576       1.33      gwr  * Initializes the pmap system.  Called at boot time from
    577       1.33      gwr  * locore2.c:_vm_init()
    578        1.1      gwr  *
    579        1.1      gwr  * Reminder: having a pmap_bootstrap_alloc() and also having the VM
    580        1.1      gwr  *           system implement pmap_steal_memory() is redundant.
    581        1.1      gwr  *           Don't release this code without removing one or the other!
    582        1.1      gwr  */
    583       1.86      chs void
    584       1.86      chs pmap_bootstrap(vaddr_t nextva)
    585        1.1      gwr {
    586        1.1      gwr 	struct physmemory *membank;
    587        1.1      gwr 	struct pmap_physmem_struct *pmap_membank;
    588       1.69      chs 	vaddr_t va, eva;
    589       1.69      chs 	paddr_t pa;
    590        1.1      gwr 	int b, c, i, j;	/* running table counts */
    591       1.40      gwr 	int size, resvmem;
    592        1.1      gwr 
    593        1.1      gwr 	/*
    594        1.1      gwr 	 * This function is called by __bootstrap after it has
    595        1.1      gwr 	 * determined the type of machine and made the appropriate
    596        1.1      gwr 	 * patches to the ROM vectors (XXX- I don't quite know what I meant
    597        1.1      gwr 	 * by that.)  It allocates and sets up enough of the pmap system
    598        1.1      gwr 	 * to manage the kernel's address space.
    599        1.1      gwr 	 */
    600        1.1      gwr 
    601        1.1      gwr 	/*
    602        1.7      gwr 	 * Determine the range of kernel virtual and physical
    603        1.7      gwr 	 * space available. Note that we ABSOLUTELY DEPEND on
    604        1.7      gwr 	 * the fact that the first bank of memory (4MB) is
    605        1.7      gwr 	 * mapped linearly to KERNBASE (which we guaranteed in
    606        1.7      gwr 	 * the first instructions of locore.s).
    607        1.7      gwr 	 * That is plenty for our bootstrap work.
    608        1.1      gwr 	 */
    609       1.25    veego 	virtual_avail = m68k_round_page(nextva);
    610        1.7      gwr 	virtual_contig_end = KERNBASE + 0x400000; /* +4MB */
    611        1.1      gwr 	virtual_end = VM_MAX_KERNEL_ADDRESS;
    612        1.7      gwr 	/* Don't need avail_start til later. */
    613        1.1      gwr 
    614        1.7      gwr 	/* We may now call pmap_bootstrap_alloc(). */
    615        1.7      gwr 	bootstrap_alloc_enabled = TRUE;
    616        1.1      gwr 
    617        1.1      gwr 	/*
    618        1.1      gwr 	 * This is a somewhat unwrapped loop to deal with
    619        1.1      gwr 	 * copying the PROM's 'phsymem' banks into the pmap's
    620        1.1      gwr 	 * banks.  The following is always assumed:
    621        1.1      gwr 	 * 1. There is always at least one bank of memory.
    622        1.1      gwr 	 * 2. There is always a last bank of memory, and its
    623        1.1      gwr 	 *    pmem_next member must be set to NULL.
    624        1.1      gwr 	 */
    625        1.1      gwr 	membank = romVectorPtr->v_physmemory;
    626        1.1      gwr 	pmap_membank = avail_mem;
    627        1.1      gwr 	total_phys_mem = 0;
    628        1.1      gwr 
    629       1.40      gwr 	for (;;) { /* break on !membank */
    630        1.1      gwr 		pmap_membank->pmem_start = membank->address;
    631        1.1      gwr 		pmap_membank->pmem_end = membank->address + membank->size;
    632        1.1      gwr 		total_phys_mem += membank->size;
    633       1.40      gwr 		membank = membank->next;
    634       1.40      gwr 		if (!membank)
    635       1.40      gwr 			break;
    636        1.1      gwr 		/* This silly syntax arises because pmap_membank
    637        1.1      gwr 		 * is really a pre-allocated array, but it is put into
    638        1.1      gwr 		 * use as a linked list.
    639        1.1      gwr 		 */
    640        1.1      gwr 		pmap_membank->pmem_next = pmap_membank + 1;
    641        1.1      gwr 		pmap_membank = pmap_membank->pmem_next;
    642        1.1      gwr 	}
    643       1.40      gwr 	/* This is the last element. */
    644       1.40      gwr 	pmap_membank->pmem_next = NULL;
    645        1.1      gwr 
    646        1.1      gwr 	/*
    647       1.40      gwr 	 * Note: total_phys_mem, physmem represent
    648       1.40      gwr 	 * actual physical memory, including that
    649       1.40      gwr 	 * reserved for the PROM monitor.
    650        1.1      gwr 	 */
    651       1.40      gwr 	physmem = btoc(total_phys_mem);
    652        1.1      gwr 
    653        1.1      gwr 	/*
    654       1.60  tsutsui 	 * Avail_end is set to the first byte of physical memory
    655       1.60  tsutsui 	 * after the end of the last bank.  We use this only to
    656       1.60  tsutsui 	 * determine if a physical address is "managed" memory.
    657       1.60  tsutsui 	 * This address range should be reduced to prevent the
    658       1.40      gwr 	 * physical pages needed by the PROM monitor from being used
    659       1.40      gwr 	 * in the VM system.
    660        1.1      gwr 	 */
    661       1.40      gwr 	resvmem = total_phys_mem - *(romVectorPtr->memoryAvail);
    662       1.40      gwr 	resvmem = m68k_round_page(resvmem);
    663       1.60  tsutsui 	avail_end = pmap_membank->pmem_end - resvmem;
    664        1.1      gwr 
    665        1.1      gwr 	/*
    666       1.15      gwr 	 * First allocate enough kernel MMU tables to map all
    667       1.15      gwr 	 * of kernel virtual space from KERNBASE to 0xFFFFFFFF.
    668        1.1      gwr 	 * Note: All must be aligned on 256 byte boundaries.
    669       1.15      gwr 	 * Start with the level-A table (one of those).
    670        1.1      gwr 	 */
    671       1.69      chs 	size = sizeof(mmu_long_dte_t) * MMU_A_TBL_SIZE;
    672        1.7      gwr 	kernAbase = pmap_bootstrap_alloc(size);
    673       1.71  tsutsui 	memset(kernAbase, 0, size);
    674        1.1      gwr 
    675       1.15      gwr 	/* Now the level-B kernel tables... */
    676       1.15      gwr 	size = sizeof(mmu_short_dte_t) * MMU_B_TBL_SIZE * KERN_B_TABLES;
    677        1.7      gwr 	kernBbase = pmap_bootstrap_alloc(size);
    678       1.71  tsutsui 	memset(kernBbase, 0, size);
    679        1.1      gwr 
    680       1.15      gwr 	/* Now the level-C kernel tables... */
    681       1.15      gwr 	size = sizeof(mmu_short_pte_t) * MMU_C_TBL_SIZE * KERN_C_TABLES;
    682       1.15      gwr 	kernCbase = pmap_bootstrap_alloc(size);
    683       1.71  tsutsui 	memset(kernCbase, 0, size);
    684        1.7      gwr 	/*
    685        1.7      gwr 	 * Note: In order for the PV system to work correctly, the kernel
    686        1.7      gwr 	 * and user-level C tables must be allocated contiguously.
    687        1.7      gwr 	 * Nothing should be allocated between here and the allocation of
    688        1.7      gwr 	 * mmuCbase below.  XXX: Should do this as one allocation, and
    689        1.7      gwr 	 * then compute a pointer for mmuCbase instead of this...
    690       1.15      gwr 	 *
    691       1.15      gwr 	 * Allocate user MMU tables.
    692       1.70      wiz 	 * These must be contiguous with the preceding.
    693        1.7      gwr 	 */
    694       1.22   jeremy 
    695       1.22   jeremy #ifndef	FIXED_NTABLES
    696       1.22   jeremy 	/*
    697       1.22   jeremy 	 * The number of user-level C tables that should be allocated is
    698       1.22   jeremy 	 * related to the size of physical memory.  In general, there should
    699       1.22   jeremy 	 * be enough tables to map four times the amount of available RAM.
    700       1.22   jeremy 	 * The extra amount is needed because some table space is wasted by
    701       1.22   jeremy 	 * fragmentation.
    702       1.22   jeremy 	 */
    703       1.22   jeremy 	NUM_C_TABLES = (total_phys_mem * 4) / (MMU_C_TBL_SIZE * MMU_PAGE_SIZE);
    704       1.22   jeremy 	NUM_B_TABLES = NUM_C_TABLES / 2;
    705       1.22   jeremy 	NUM_A_TABLES = NUM_B_TABLES / 2;
    706       1.22   jeremy #endif	/* !FIXED_NTABLES */
    707       1.22   jeremy 
    708       1.15      gwr 	size = sizeof(mmu_short_pte_t) * MMU_C_TBL_SIZE	* NUM_C_TABLES;
    709       1.15      gwr 	mmuCbase = pmap_bootstrap_alloc(size);
    710       1.15      gwr 
    711       1.15      gwr 	size = sizeof(mmu_short_dte_t) * MMU_B_TBL_SIZE	* NUM_B_TABLES;
    712       1.15      gwr 	mmuBbase = pmap_bootstrap_alloc(size);
    713        1.1      gwr 
    714       1.69      chs 	size = sizeof(mmu_long_dte_t) * MMU_A_TBL_SIZE * NUM_A_TABLES;
    715       1.15      gwr 	mmuAbase = pmap_bootstrap_alloc(size);
    716        1.7      gwr 
    717        1.7      gwr 	/*
    718        1.7      gwr 	 * Fill in the never-changing part of the kernel tables.
    719        1.7      gwr 	 * For simplicity, the kernel's mappings will be editable as a
    720        1.1      gwr 	 * flat array of page table entries at kernCbase.  The
    721        1.1      gwr 	 * higher level 'A' and 'B' tables must be initialized to point
    722        1.1      gwr 	 * to this lower one.
    723        1.1      gwr 	 */
    724        1.1      gwr 	b = c = 0;
    725        1.1      gwr 
    726        1.7      gwr 	/*
    727        1.7      gwr 	 * Invalidate all mappings below KERNBASE in the A table.
    728        1.1      gwr 	 * This area has already been zeroed out, but it is good
    729        1.1      gwr 	 * practice to explicitly show that we are interpreting
    730        1.1      gwr 	 * it as a list of A table descriptors.
    731        1.1      gwr 	 */
    732        1.1      gwr 	for (i = 0; i < MMU_TIA(KERNBASE); i++) {
    733        1.1      gwr 		kernAbase[i].addr.raw = 0;
    734        1.1      gwr 	}
    735        1.1      gwr 
    736        1.7      gwr 	/*
    737        1.7      gwr 	 * Set up the kernel A and B tables so that they will reference the
    738        1.1      gwr 	 * correct spots in the contiguous table of PTEs allocated for the
    739        1.1      gwr 	 * kernel's virtual memory space.
    740        1.1      gwr 	 */
    741        1.1      gwr 	for (i = MMU_TIA(KERNBASE); i < MMU_A_TBL_SIZE; i++) {
    742        1.1      gwr 		kernAbase[i].attr.raw =
    743        1.1      gwr 			MMU_LONG_DTE_LU | MMU_LONG_DTE_SUPV | MMU_DT_SHORT;
    744        1.7      gwr 		kernAbase[i].addr.raw = mmu_vtop(&kernBbase[b]);
    745        1.1      gwr 
    746        1.1      gwr 		for (j=0; j < MMU_B_TBL_SIZE; j++) {
    747        1.7      gwr 			kernBbase[b + j].attr.raw = mmu_vtop(&kernCbase[c])
    748        1.1      gwr 				| MMU_DT_SHORT;
    749        1.1      gwr 			c += MMU_C_TBL_SIZE;
    750        1.1      gwr 		}
    751        1.1      gwr 		b += MMU_B_TBL_SIZE;
    752        1.1      gwr 	}
    753        1.1      gwr 
    754        1.7      gwr 	pmap_alloc_usermmu();	/* Allocate user MMU tables.        */
    755        1.7      gwr 	pmap_alloc_usertmgr();	/* Allocate user MMU table managers.*/
    756        1.7      gwr 	pmap_alloc_pv();	/* Allocate physical->virtual map.  */
    757        1.7      gwr 
    758        1.7      gwr 	/*
    759        1.7      gwr 	 * We are now done with pmap_bootstrap_alloc().  Round up
    760        1.7      gwr 	 * `virtual_avail' to the nearest page, and set the flag
    761        1.7      gwr 	 * to prevent use of pmap_bootstrap_alloc() hereafter.
    762        1.7      gwr 	 */
    763       1.79  thorpej 	pmap_bootstrap_aalign(PAGE_SIZE);
    764        1.7      gwr 	bootstrap_alloc_enabled = FALSE;
    765        1.7      gwr 
    766        1.7      gwr 	/*
    767        1.7      gwr 	 * Now that we are done with pmap_bootstrap_alloc(), we
    768        1.7      gwr 	 * must save the virtual and physical addresses of the
    769        1.7      gwr 	 * end of the linearly mapped range, which are stored in
    770        1.7      gwr 	 * virtual_contig_end and avail_start, respectively.
    771        1.7      gwr 	 * These variables will never change after this point.
    772        1.7      gwr 	 */
    773        1.7      gwr 	virtual_contig_end = virtual_avail;
    774        1.7      gwr 	avail_start = virtual_avail - KERNBASE;
    775        1.7      gwr 
    776        1.7      gwr 	/*
    777        1.7      gwr 	 * `avail_next' is a running pointer used by pmap_next_page() to
    778        1.7      gwr 	 * keep track of the next available physical page to be handed
    779        1.7      gwr 	 * to the VM system during its initialization, in which it
    780        1.7      gwr 	 * asks for physical pages, one at a time.
    781        1.7      gwr 	 */
    782        1.7      gwr 	avail_next = avail_start;
    783        1.7      gwr 
    784        1.7      gwr 	/*
    785        1.7      gwr 	 * Now allocate some virtual addresses, but not the physical pages
    786        1.7      gwr 	 * behind them.  Note that virtual_avail is already page-aligned.
    787        1.7      gwr 	 *
    788        1.7      gwr 	 * tmp_vpages[] is an array of two virtual pages used for temporary
    789        1.7      gwr 	 * kernel mappings in the pmap module to facilitate various physical
    790        1.7      gwr 	 * address-oritented operations.
    791        1.7      gwr 	 */
    792        1.7      gwr 	tmp_vpages[0] = virtual_avail;
    793       1.79  thorpej 	virtual_avail += PAGE_SIZE;
    794        1.7      gwr 	tmp_vpages[1] = virtual_avail;
    795       1.79  thorpej 	virtual_avail += PAGE_SIZE;
    796        1.7      gwr 
    797        1.7      gwr 	/** Initialize the PV system **/
    798        1.7      gwr 	pmap_init_pv();
    799        1.7      gwr 
    800        1.7      gwr 	/*
    801        1.7      gwr 	 * Fill in the kernel_pmap structure and kernel_crp.
    802        1.7      gwr 	 */
    803        1.7      gwr 	kernAphys = mmu_vtop(kernAbase);
    804        1.7      gwr 	kernel_pmap.pm_a_tmgr = NULL;
    805        1.7      gwr 	kernel_pmap.pm_a_phys = kernAphys;
    806        1.7      gwr 	kernel_pmap.pm_refcount = 1; /* always in use */
    807       1.55  tsutsui 	simple_lock_init(&kernel_pmap.pm_lock);
    808        1.7      gwr 
    809        1.7      gwr 	kernel_crp.rp_attr = MMU_LONG_DTE_LU | MMU_DT_LONG;
    810        1.7      gwr 	kernel_crp.rp_addr = kernAphys;
    811        1.7      gwr 
    812        1.1      gwr 	/*
    813        1.1      gwr 	 * Now pmap_enter_kernel() may be used safely and will be
    814        1.7      gwr 	 * the main interface used hereafter to modify the kernel's
    815        1.7      gwr 	 * virtual address space.  Note that since we are still running
    816        1.7      gwr 	 * under the PROM's address table, none of these table modifications
    817        1.7      gwr 	 * actually take effect until pmap_takeover_mmu() is called.
    818        1.1      gwr 	 *
    819        1.7      gwr 	 * Note: Our tables do NOT have the PROM linear mappings!
    820        1.7      gwr 	 * Only the mappings created here exist in our tables, so
    821        1.7      gwr 	 * remember to map anything we expect to use.
    822        1.1      gwr 	 */
    823       1.69      chs 	va = (vaddr_t)KERNBASE;
    824        1.7      gwr 	pa = 0;
    825        1.1      gwr 
    826        1.1      gwr 	/*
    827        1.7      gwr 	 * The first page of the kernel virtual address space is the msgbuf
    828        1.7      gwr 	 * page.  The page attributes (data, non-cached) are set here, while
    829        1.7      gwr 	 * the address is assigned to this global pointer in cpu_startup().
    830       1.29      gwr 	 * It is non-cached, mostly due to paranoia.
    831        1.1      gwr 	 */
    832       1.29      gwr 	pmap_enter_kernel(va, pa|PMAP_NC, VM_PROT_ALL);
    833       1.79  thorpej 	va += PAGE_SIZE; pa += PAGE_SIZE;
    834        1.1      gwr 
    835        1.7      gwr 	/* Next page is used as the temporary stack. */
    836        1.1      gwr 	pmap_enter_kernel(va, pa, VM_PROT_ALL);
    837       1.79  thorpej 	va += PAGE_SIZE; pa += PAGE_SIZE;
    838        1.1      gwr 
    839        1.1      gwr 	/*
    840        1.1      gwr 	 * Map all of the kernel's text segment as read-only and cacheable.
    841        1.1      gwr 	 * (Cacheable is implied by default).  Unfortunately, the last bytes
    842        1.1      gwr 	 * of kernel text and the first bytes of kernel data will often be
    843        1.1      gwr 	 * sharing the same page.  Therefore, the last page of kernel text
    844        1.1      gwr 	 * has to be mapped as read/write, to accomodate the data.
    845        1.1      gwr 	 */
    846       1.69      chs 	eva = m68k_trunc_page((vaddr_t)etext);
    847       1.79  thorpej 	for (; va < eva; va += PAGE_SIZE, pa += PAGE_SIZE)
    848        1.1      gwr 		pmap_enter_kernel(va, pa, VM_PROT_READ|VM_PROT_EXECUTE);
    849        1.1      gwr 
    850        1.7      gwr 	/*
    851        1.7      gwr 	 * Map all of the kernel's data as read/write and cacheable.
    852        1.7      gwr 	 * This includes: data, BSS, symbols, and everything in the
    853        1.7      gwr 	 * contiguous memory used by pmap_bootstrap_alloc()
    854        1.1      gwr 	 */
    855       1.79  thorpej 	for (; pa < avail_start; va += PAGE_SIZE, pa += PAGE_SIZE)
    856        1.1      gwr 		pmap_enter_kernel(va, pa, VM_PROT_READ|VM_PROT_WRITE);
    857        1.1      gwr 
    858        1.7      gwr 	/*
    859        1.7      gwr 	 * At this point we are almost ready to take over the MMU.  But first
    860        1.7      gwr 	 * we must save the PROM's address space in our map, as we call its
    861        1.7      gwr 	 * routines and make references to its data later in the kernel.
    862        1.1      gwr 	 */
    863        1.7      gwr 	pmap_bootstrap_copyprom();
    864        1.7      gwr 	pmap_takeover_mmu();
    865       1.13      gwr 	pmap_bootstrap_setprom();
    866        1.1      gwr 
    867        1.1      gwr 	/* Notify the VM system of our page size. */
    868       1.79  thorpej 	uvmexp.pagesize = PAGE_SIZE;
    869       1.43      mrg 	uvm_setpagesize();
    870       1.37      gwr 
    871       1.37      gwr 	pmap_page_upload();
    872        1.1      gwr }
    873        1.1      gwr 
    874        1.1      gwr 
    875        1.1      gwr /* pmap_alloc_usermmu			INTERNAL
    876        1.1      gwr  **
    877        1.1      gwr  * Called from pmap_bootstrap() to allocate MMU tables that will
    878        1.1      gwr  * eventually be used for user mappings.
    879        1.1      gwr  */
    880       1.86      chs void
    881       1.86      chs pmap_alloc_usermmu(void)
    882        1.1      gwr {
    883        1.7      gwr 	/* XXX: Moved into caller. */
    884        1.1      gwr }
    885        1.1      gwr 
    886        1.1      gwr /* pmap_alloc_pv			INTERNAL
    887        1.1      gwr  **
    888        1.1      gwr  * Called from pmap_bootstrap() to allocate the physical
    889        1.1      gwr  * to virtual mapping list.  Each physical page of memory
    890        1.1      gwr  * in the system has a corresponding element in this list.
    891        1.1      gwr  */
    892       1.86      chs void
    893       1.86      chs pmap_alloc_pv(void)
    894        1.1      gwr {
    895        1.1      gwr 	int	i;
    896        1.1      gwr 	unsigned int	total_mem;
    897        1.1      gwr 
    898        1.7      gwr 	/*
    899        1.7      gwr 	 * Allocate a pv_head structure for every page of physical
    900        1.1      gwr 	 * memory that will be managed by the system.  Since memory on
    901        1.1      gwr 	 * the 3/80 is non-contiguous, we cannot arrive at a total page
    902        1.1      gwr 	 * count by subtraction of the lowest available address from the
    903        1.1      gwr 	 * highest, but rather we have to step through each memory
    904        1.1      gwr 	 * bank and add the number of pages in each to the total.
    905        1.1      gwr 	 *
    906        1.1      gwr 	 * At this time we also initialize the offset of each bank's
    907        1.1      gwr 	 * starting pv_head within the pv_head list so that the physical
    908        1.1      gwr 	 * memory state routines (pmap_is_referenced(),
    909        1.1      gwr 	 * pmap_is_modified(), et al.) can quickly find coresponding
    910        1.1      gwr 	 * pv_heads in spite of the non-contiguity.
    911        1.1      gwr 	 */
    912        1.1      gwr 	total_mem = 0;
    913       1.20  thorpej 	for (i = 0; i < SUN3X_NPHYS_RAM_SEGS; i++) {
    914       1.25    veego 		avail_mem[i].pmem_pvbase = m68k_btop(total_mem);
    915        1.1      gwr 		total_mem += avail_mem[i].pmem_end -
    916        1.1      gwr 			avail_mem[i].pmem_start;
    917        1.1      gwr 		if (avail_mem[i].pmem_next == NULL)
    918        1.1      gwr 			break;
    919        1.1      gwr 	}
    920        1.1      gwr 	pvbase = (pv_t *) pmap_bootstrap_alloc(sizeof(pv_t) *
    921       1.25    veego 		m68k_btop(total_phys_mem));
    922        1.1      gwr }
    923        1.1      gwr 
    924        1.1      gwr /* pmap_alloc_usertmgr			INTERNAL
    925        1.1      gwr  **
    926        1.1      gwr  * Called from pmap_bootstrap() to allocate the structures which
    927        1.1      gwr  * facilitate management of user MMU tables.  Each user MMU table
    928        1.1      gwr  * in the system has one such structure associated with it.
    929        1.1      gwr  */
    930       1.86      chs void
    931       1.86      chs pmap_alloc_usertmgr(void)
    932        1.1      gwr {
    933        1.1      gwr 	/* Allocate user MMU table managers */
    934        1.7      gwr 	/* It would be a lot simpler to just make these BSS, but */
    935        1.7      gwr 	/* we may want to change their size at boot time... -j */
    936        1.1      gwr 	Atmgrbase = (a_tmgr_t *) pmap_bootstrap_alloc(sizeof(a_tmgr_t)
    937        1.1      gwr 		* NUM_A_TABLES);
    938        1.1      gwr 	Btmgrbase = (b_tmgr_t *) pmap_bootstrap_alloc(sizeof(b_tmgr_t)
    939        1.1      gwr 		* NUM_B_TABLES);
    940        1.1      gwr 	Ctmgrbase = (c_tmgr_t *) pmap_bootstrap_alloc(sizeof(c_tmgr_t)
    941        1.1      gwr 		* NUM_C_TABLES);
    942        1.1      gwr 
    943        1.7      gwr 	/*
    944        1.7      gwr 	 * Allocate PV list elements for the physical to virtual
    945        1.1      gwr 	 * mapping system.
    946        1.1      gwr 	 */
    947        1.1      gwr 	pvebase = (pv_elem_t *) pmap_bootstrap_alloc(
    948        1.7      gwr 		sizeof(pv_elem_t) * (NUM_USER_PTES + NUM_KERN_PTES));
    949        1.1      gwr }
    950        1.1      gwr 
    951        1.1      gwr /* pmap_bootstrap_copyprom()			INTERNAL
    952        1.1      gwr  **
    953        1.1      gwr  * Copy the PROM mappings into our own tables.  Note, we
    954        1.1      gwr  * can use physical addresses until __bootstrap returns.
    955        1.1      gwr  */
    956       1.86      chs void
    957       1.86      chs pmap_bootstrap_copyprom(void)
    958        1.1      gwr {
    959       1.33      gwr 	struct sunromvec *romp;
    960        1.1      gwr 	int *mon_ctbl;
    961        1.1      gwr 	mmu_short_pte_t *kpte;
    962        1.1      gwr 	int i, len;
    963        1.1      gwr 
    964        1.1      gwr 	romp = romVectorPtr;
    965        1.1      gwr 
    966        1.1      gwr 	/*
    967       1.33      gwr 	 * Copy the mappings in SUN3X_MON_KDB_BASE...SUN3X_MONEND
    968       1.33      gwr 	 * Note: mon_ctbl[0] maps SUN3X_MON_KDB_BASE
    969        1.1      gwr 	 */
    970        1.1      gwr 	mon_ctbl = *romp->monptaddr;
    971       1.33      gwr 	i = m68k_btop(SUN3X_MON_KDB_BASE - KERNBASE);
    972        1.1      gwr 	kpte = &kernCbase[i];
    973       1.33      gwr 	len = m68k_btop(SUN3X_MONEND - SUN3X_MON_KDB_BASE);
    974        1.1      gwr 
    975        1.1      gwr 	for (i = 0; i < len; i++) {
    976        1.1      gwr 		kpte[i].attr.raw = mon_ctbl[i];
    977        1.1      gwr 	}
    978        1.1      gwr 
    979        1.1      gwr 	/*
    980        1.1      gwr 	 * Copy the mappings at MON_DVMA_BASE (to the end).
    981        1.1      gwr 	 * Note, in here, mon_ctbl[0] maps MON_DVMA_BASE.
    982       1.32      gwr 	 * Actually, we only want the last page, which the
    983       1.32      gwr 	 * PROM has set up for use by the "ie" driver.
    984       1.32      gwr 	 * (The i82686 needs its SCP there.)
    985       1.32      gwr 	 * If we copy all the mappings, pmap_enter_kernel
    986       1.32      gwr 	 * may complain about finding valid PTEs that are
    987       1.32      gwr 	 * not recorded in our PV lists...
    988        1.1      gwr 	 */
    989        1.1      gwr 	mon_ctbl = *romp->shadowpteaddr;
    990       1.33      gwr 	i = m68k_btop(SUN3X_MON_DVMA_BASE - KERNBASE);
    991        1.1      gwr 	kpte = &kernCbase[i];
    992       1.33      gwr 	len = m68k_btop(SUN3X_MON_DVMA_SIZE);
    993       1.32      gwr 	for (i = (len-1); i < len; i++) {
    994        1.1      gwr 		kpte[i].attr.raw = mon_ctbl[i];
    995        1.1      gwr 	}
    996        1.1      gwr }
    997        1.1      gwr 
    998        1.1      gwr /* pmap_takeover_mmu			INTERNAL
    999        1.1      gwr  **
   1000        1.1      gwr  * Called from pmap_bootstrap() after it has copied enough of the
   1001        1.1      gwr  * PROM mappings into the kernel map so that we can use our own
   1002        1.1      gwr  * MMU table.
   1003        1.1      gwr  */
   1004       1.86      chs void
   1005       1.86      chs pmap_takeover_mmu(void)
   1006        1.1      gwr {
   1007        1.1      gwr 
   1008       1.13      gwr 	loadcrp(&kernel_crp);
   1009        1.1      gwr }
   1010        1.1      gwr 
   1011       1.13      gwr /* pmap_bootstrap_setprom()			INTERNAL
   1012       1.13      gwr  **
   1013       1.13      gwr  * Set the PROM mappings so it can see kernel space.
   1014       1.13      gwr  * Note that physical addresses are used here, which
   1015       1.13      gwr  * we can get away with because this runs with the
   1016       1.13      gwr  * low 1GB set for transparent translation.
   1017       1.13      gwr  */
   1018       1.86      chs void
   1019       1.86      chs pmap_bootstrap_setprom(void)
   1020       1.13      gwr {
   1021       1.13      gwr 	mmu_long_dte_t *mon_dte;
   1022       1.13      gwr 	extern struct mmu_rootptr mon_crp;
   1023       1.13      gwr 	int i;
   1024       1.13      gwr 
   1025       1.13      gwr 	mon_dte = (mmu_long_dte_t *) mon_crp.rp_addr;
   1026       1.13      gwr 	for (i = MMU_TIA(KERNBASE); i < MMU_TIA(KERN_END); i++) {
   1027       1.13      gwr 		mon_dte[i].attr.raw = kernAbase[i].attr.raw;
   1028       1.13      gwr 		mon_dte[i].addr.raw = kernAbase[i].addr.raw;
   1029       1.13      gwr 	}
   1030       1.13      gwr }
   1031       1.13      gwr 
   1032       1.13      gwr 
   1033        1.1      gwr /* pmap_init			INTERFACE
   1034        1.1      gwr  **
   1035        1.1      gwr  * Called at the end of vm_init() to set up the pmap system to go
   1036        1.7      gwr  * into full time operation.  All initialization of kernel_pmap
   1037        1.7      gwr  * should be already done by now, so this should just do things
   1038        1.7      gwr  * needed for user-level pmaps to work.
   1039        1.1      gwr  */
   1040       1.86      chs void
   1041       1.86      chs pmap_init(void)
   1042        1.1      gwr {
   1043        1.1      gwr 	/** Initialize the manager pools **/
   1044        1.1      gwr 	TAILQ_INIT(&a_pool);
   1045        1.1      gwr 	TAILQ_INIT(&b_pool);
   1046        1.1      gwr 	TAILQ_INIT(&c_pool);
   1047        1.1      gwr 
   1048        1.1      gwr 	/**************************************************************
   1049        1.1      gwr 	 * Initialize all tmgr structures and MMU tables they manage. *
   1050        1.1      gwr 	 **************************************************************/
   1051        1.1      gwr 	/** Initialize A tables **/
   1052        1.1      gwr 	pmap_init_a_tables();
   1053        1.1      gwr 	/** Initialize B tables **/
   1054        1.1      gwr 	pmap_init_b_tables();
   1055        1.1      gwr 	/** Initialize C tables **/
   1056        1.1      gwr 	pmap_init_c_tables();
   1057       1.56  tsutsui 
   1058       1.56  tsutsui 	/** Initialize the pmap pools **/
   1059       1.56  tsutsui 	pool_init(&pmap_pmap_pool, sizeof(struct pmap), 0, 0, 0, "pmappl",
   1060       1.74  thorpej 	    &pool_allocator_nointr);
   1061        1.1      gwr }
   1062        1.1      gwr 
   1063        1.1      gwr /* pmap_init_a_tables()			INTERNAL
   1064        1.1      gwr  **
   1065        1.1      gwr  * Initializes all A managers, their MMU A tables, and inserts
   1066        1.1      gwr  * them into the A manager pool for use by the system.
   1067        1.1      gwr  */
   1068       1.86      chs void
   1069       1.86      chs pmap_init_a_tables(void)
   1070        1.1      gwr {
   1071        1.1      gwr 	int i;
   1072        1.1      gwr 	a_tmgr_t *a_tbl;
   1073        1.1      gwr 
   1074       1.86      chs 	for (i = 0; i < NUM_A_TABLES; i++) {
   1075        1.1      gwr 		/* Select the next available A manager from the pool */
   1076        1.1      gwr 		a_tbl = &Atmgrbase[i];
   1077        1.1      gwr 
   1078        1.7      gwr 		/*
   1079        1.7      gwr 		 * Clear its parent entry.  Set its wired and valid
   1080        1.1      gwr 		 * entry count to zero.
   1081        1.1      gwr 		 */
   1082        1.1      gwr 		a_tbl->at_parent = NULL;
   1083        1.1      gwr 		a_tbl->at_wcnt = a_tbl->at_ecnt = 0;
   1084        1.1      gwr 
   1085        1.1      gwr 		/* Assign it the next available MMU A table from the pool */
   1086        1.1      gwr 		a_tbl->at_dtbl = &mmuAbase[i * MMU_A_TBL_SIZE];
   1087        1.1      gwr 
   1088        1.7      gwr 		/*
   1089        1.7      gwr 		 * Initialize the MMU A table with the table in the `proc0',
   1090        1.1      gwr 		 * or kernel, mapping.  This ensures that every process has
   1091        1.1      gwr 		 * the kernel mapped in the top part of its address space.
   1092        1.1      gwr 		 */
   1093       1.71  tsutsui 		memcpy(a_tbl->at_dtbl, kernAbase, MMU_A_TBL_SIZE *
   1094        1.1      gwr 			sizeof(mmu_long_dte_t));
   1095        1.1      gwr 
   1096        1.7      gwr 		/*
   1097        1.7      gwr 		 * Finally, insert the manager into the A pool,
   1098        1.1      gwr 		 * making it ready to be used by the system.
   1099        1.1      gwr 		 */
   1100        1.1      gwr 		TAILQ_INSERT_TAIL(&a_pool, a_tbl, at_link);
   1101        1.1      gwr     }
   1102        1.1      gwr }
   1103        1.1      gwr 
   1104        1.1      gwr /* pmap_init_b_tables()			INTERNAL
   1105        1.1      gwr  **
   1106        1.1      gwr  * Initializes all B table managers, their MMU B tables, and
   1107        1.1      gwr  * inserts them into the B manager pool for use by the system.
   1108        1.1      gwr  */
   1109       1.86      chs void
   1110       1.86      chs pmap_init_b_tables(void)
   1111        1.1      gwr {
   1112       1.86      chs 	int i, j;
   1113        1.1      gwr 	b_tmgr_t *b_tbl;
   1114        1.1      gwr 
   1115       1.86      chs 	for (i = 0; i < NUM_B_TABLES; i++) {
   1116        1.1      gwr 		/* Select the next available B manager from the pool */
   1117        1.1      gwr 		b_tbl = &Btmgrbase[i];
   1118        1.1      gwr 
   1119        1.1      gwr 		b_tbl->bt_parent = NULL;	/* clear its parent,  */
   1120        1.1      gwr 		b_tbl->bt_pidx = 0;		/* parent index,      */
   1121        1.1      gwr 		b_tbl->bt_wcnt = 0;		/* wired entry count, */
   1122        1.1      gwr 		b_tbl->bt_ecnt = 0;		/* valid entry count. */
   1123        1.1      gwr 
   1124        1.1      gwr 		/* Assign it the next available MMU B table from the pool */
   1125        1.1      gwr 		b_tbl->bt_dtbl = &mmuBbase[i * MMU_B_TBL_SIZE];
   1126        1.1      gwr 
   1127        1.1      gwr 		/* Invalidate every descriptor in the table */
   1128        1.1      gwr 		for (j=0; j < MMU_B_TBL_SIZE; j++)
   1129        1.1      gwr 			b_tbl->bt_dtbl[j].attr.raw = MMU_DT_INVALID;
   1130        1.1      gwr 
   1131        1.1      gwr 		/* Insert the manager into the B pool */
   1132        1.1      gwr 		TAILQ_INSERT_TAIL(&b_pool, b_tbl, bt_link);
   1133        1.1      gwr 	}
   1134        1.1      gwr }
   1135        1.1      gwr 
   1136        1.1      gwr /* pmap_init_c_tables()			INTERNAL
   1137        1.1      gwr  **
   1138        1.1      gwr  * Initializes all C table managers, their MMU C tables, and
   1139        1.1      gwr  * inserts them into the C manager pool for use by the system.
   1140        1.1      gwr  */
   1141       1.86      chs void
   1142       1.86      chs pmap_init_c_tables(void)
   1143        1.1      gwr {
   1144       1.86      chs 	int i, j;
   1145        1.1      gwr 	c_tmgr_t *c_tbl;
   1146        1.1      gwr 
   1147       1.86      chs 	for (i = 0; i < NUM_C_TABLES; i++) {
   1148        1.1      gwr 		/* Select the next available C manager from the pool */
   1149        1.1      gwr 		c_tbl = &Ctmgrbase[i];
   1150        1.1      gwr 
   1151        1.1      gwr 		c_tbl->ct_parent = NULL;	/* clear its parent,  */
   1152        1.1      gwr 		c_tbl->ct_pidx = 0;		/* parent index,      */
   1153        1.1      gwr 		c_tbl->ct_wcnt = 0;		/* wired entry count, */
   1154       1.26   jeremy 		c_tbl->ct_ecnt = 0;		/* valid entry count, */
   1155       1.26   jeremy 		c_tbl->ct_pmap = NULL;		/* parent pmap,       */
   1156       1.26   jeremy 		c_tbl->ct_va = 0;		/* base of managed range */
   1157        1.1      gwr 
   1158        1.1      gwr 		/* Assign it the next available MMU C table from the pool */
   1159        1.1      gwr 		c_tbl->ct_dtbl = &mmuCbase[i * MMU_C_TBL_SIZE];
   1160        1.1      gwr 
   1161        1.1      gwr 		for (j=0; j < MMU_C_TBL_SIZE; j++)
   1162        1.1      gwr 			c_tbl->ct_dtbl[j].attr.raw = MMU_DT_INVALID;
   1163        1.1      gwr 
   1164        1.1      gwr 		TAILQ_INSERT_TAIL(&c_pool, c_tbl, ct_link);
   1165        1.1      gwr 	}
   1166        1.1      gwr }
   1167        1.1      gwr 
   1168        1.1      gwr /* pmap_init_pv()			INTERNAL
   1169        1.1      gwr  **
   1170        1.1      gwr  * Initializes the Physical to Virtual mapping system.
   1171        1.1      gwr  */
   1172       1.86      chs void
   1173       1.86      chs pmap_init_pv(void)
   1174        1.1      gwr {
   1175       1.86      chs 	int i;
   1176        1.7      gwr 
   1177        1.7      gwr 	/* Initialize every PV head. */
   1178       1.25    veego 	for (i = 0; i < m68k_btop(total_phys_mem); i++) {
   1179        1.7      gwr 		pvbase[i].pv_idx = PVE_EOL;	/* Indicate no mappings */
   1180        1.7      gwr 		pvbase[i].pv_flags = 0;		/* Zero out page flags  */
   1181        1.7      gwr 	}
   1182        1.1      gwr }
   1183        1.1      gwr 
   1184        1.1      gwr /* get_a_table			INTERNAL
   1185        1.1      gwr  **
   1186        1.1      gwr  * Retrieve and return a level A table for use in a user map.
   1187        1.1      gwr  */
   1188        1.1      gwr a_tmgr_t *
   1189       1.86      chs get_a_table(void)
   1190        1.1      gwr {
   1191        1.1      gwr 	a_tmgr_t *tbl;
   1192        1.7      gwr 	pmap_t pmap;
   1193        1.1      gwr 
   1194        1.1      gwr 	/* Get the top A table in the pool */
   1195       1.86      chs 	tbl = TAILQ_FIRST(&a_pool);
   1196        1.7      gwr 	if (tbl == NULL) {
   1197        1.7      gwr 		/*
   1198       1.85      wiz 		 * XXX - Instead of panicking here and in other get_x_table
   1199        1.7      gwr 		 * functions, we do have the option of sleeping on the head of
   1200        1.7      gwr 		 * the table pool.  Any function which updates the table pool
   1201        1.7      gwr 		 * would then issue a wakeup() on the head, thus waking up any
   1202        1.7      gwr 		 * processes waiting for a table.
   1203        1.7      gwr 		 *
   1204        1.7      gwr 		 * Actually, the place to sleep would be when some process
   1205        1.7      gwr 		 * asks for a "wired" mapping that would run us short of
   1206        1.7      gwr 		 * mapping resources.  This design DEPENDS on always having
   1207        1.7      gwr 		 * some mapping resources in the pool for stealing, so we
   1208        1.7      gwr 		 * must make sure we NEVER let the pool become empty. -gwr
   1209        1.7      gwr 		 */
   1210        1.1      gwr 		panic("get_a_table: out of A tables.");
   1211        1.7      gwr 	}
   1212        1.7      gwr 
   1213        1.1      gwr 	TAILQ_REMOVE(&a_pool, tbl, at_link);
   1214        1.7      gwr 	/*
   1215        1.7      gwr 	 * If the table has a non-null parent pointer then it is in use.
   1216        1.1      gwr 	 * Forcibly abduct it from its parent and clear its entries.
   1217        1.1      gwr 	 * No re-entrancy worries here.  This table would not be in the
   1218        1.1      gwr 	 * table pool unless it was available for use.
   1219        1.7      gwr 	 *
   1220        1.7      gwr 	 * Note that the second argument to free_a_table() is FALSE.  This
   1221        1.7      gwr 	 * indicates that the table should not be relinked into the A table
   1222        1.7      gwr 	 * pool.  That is a job for the function that called us.
   1223        1.1      gwr 	 */
   1224        1.1      gwr 	if (tbl->at_parent) {
   1225        1.7      gwr 		pmap = tbl->at_parent;
   1226        1.8      gwr 		free_a_table(tbl, FALSE);
   1227        1.7      gwr 		pmap->pm_a_tmgr = NULL;
   1228        1.7      gwr 		pmap->pm_a_phys = kernAphys;
   1229        1.1      gwr 	}
   1230        1.1      gwr 	return tbl;
   1231        1.1      gwr }
   1232        1.1      gwr 
   1233        1.1      gwr /* get_b_table			INTERNAL
   1234        1.1      gwr  **
   1235        1.1      gwr  * Return a level B table for use.
   1236        1.1      gwr  */
   1237        1.1      gwr b_tmgr_t *
   1238       1.86      chs get_b_table(void)
   1239        1.1      gwr {
   1240        1.1      gwr 	b_tmgr_t *tbl;
   1241        1.1      gwr 
   1242        1.1      gwr 	/* See 'get_a_table' for comments. */
   1243       1.86      chs 	tbl = TAILQ_FIRST(&b_pool);
   1244        1.1      gwr 	if (tbl == NULL)
   1245        1.1      gwr 		panic("get_b_table: out of B tables.");
   1246        1.1      gwr 	TAILQ_REMOVE(&b_pool, tbl, bt_link);
   1247        1.1      gwr 	if (tbl->bt_parent) {
   1248        1.1      gwr 		tbl->bt_parent->at_dtbl[tbl->bt_pidx].attr.raw = MMU_DT_INVALID;
   1249        1.1      gwr 		tbl->bt_parent->at_ecnt--;
   1250        1.8      gwr 		free_b_table(tbl, FALSE);
   1251        1.1      gwr 	}
   1252        1.1      gwr 	return tbl;
   1253        1.1      gwr }
   1254        1.1      gwr 
   1255        1.1      gwr /* get_c_table			INTERNAL
   1256        1.1      gwr  **
   1257        1.1      gwr  * Return a level C table for use.
   1258        1.1      gwr  */
   1259        1.1      gwr c_tmgr_t *
   1260       1.86      chs get_c_table(void)
   1261        1.1      gwr {
   1262        1.1      gwr 	c_tmgr_t *tbl;
   1263        1.1      gwr 
   1264        1.1      gwr 	/* See 'get_a_table' for comments */
   1265       1.86      chs 	tbl = TAILQ_FIRST(&c_pool);
   1266        1.1      gwr 	if (tbl == NULL)
   1267        1.1      gwr 		panic("get_c_table: out of C tables.");
   1268        1.1      gwr 	TAILQ_REMOVE(&c_pool, tbl, ct_link);
   1269        1.1      gwr 	if (tbl->ct_parent) {
   1270        1.1      gwr 		tbl->ct_parent->bt_dtbl[tbl->ct_pidx].attr.raw = MMU_DT_INVALID;
   1271        1.1      gwr 		tbl->ct_parent->bt_ecnt--;
   1272        1.8      gwr 		free_c_table(tbl, FALSE);
   1273        1.1      gwr 	}
   1274        1.1      gwr 	return tbl;
   1275        1.1      gwr }
   1276        1.1      gwr 
   1277        1.7      gwr /*
   1278        1.7      gwr  * The following 'free_table' and 'steal_table' functions are called to
   1279        1.1      gwr  * detach tables from their current obligations (parents and children) and
   1280        1.1      gwr  * prepare them for reuse in another mapping.
   1281        1.1      gwr  *
   1282        1.1      gwr  * Free_table is used when the calling function will handle the fate
   1283        1.1      gwr  * of the parent table, such as returning it to the free pool when it has
   1284        1.1      gwr  * no valid entries.  Functions that do not want to handle this should
   1285        1.1      gwr  * call steal_table, in which the parent table's descriptors and entry
   1286        1.1      gwr  * count are automatically modified when this table is removed.
   1287        1.1      gwr  */
   1288        1.1      gwr 
   1289        1.1      gwr /* free_a_table			INTERNAL
   1290        1.1      gwr  **
   1291        1.1      gwr  * Unmaps the given A table and all child tables from their current
   1292        1.1      gwr  * mappings.  Returns the number of pages that were invalidated.
   1293        1.7      gwr  * If 'relink' is true, the function will return the table to the head
   1294        1.7      gwr  * of the available table pool.
   1295        1.1      gwr  *
   1296        1.1      gwr  * Cache note: The MC68851 will automatically flush all
   1297        1.1      gwr  * descriptors derived from a given A table from its
   1298        1.1      gwr  * Automatic Translation Cache (ATC) if we issue a
   1299        1.1      gwr  * 'PFLUSHR' instruction with the base address of the
   1300        1.1      gwr  * table.  This function should do, and does so.
   1301        1.1      gwr  * Note note: We are using an MC68030 - there is no
   1302        1.1      gwr  * PFLUSHR.
   1303        1.1      gwr  */
   1304       1.86      chs int
   1305       1.86      chs free_a_table(a_tmgr_t *a_tbl, boolean_t relink)
   1306        1.1      gwr {
   1307        1.1      gwr 	int i, removed_cnt;
   1308        1.1      gwr 	mmu_long_dte_t	*dte;
   1309        1.1      gwr 	mmu_short_dte_t *dtbl;
   1310        1.1      gwr 	b_tmgr_t	*tmgr;
   1311        1.1      gwr 
   1312        1.7      gwr 	/*
   1313        1.7      gwr 	 * Flush the ATC cache of all cached descriptors derived
   1314        1.1      gwr 	 * from this table.
   1315       1.22   jeremy 	 * Sun3x does not use 68851's cached table feature
   1316        1.1      gwr 	 * flush_atc_crp(mmu_vtop(a_tbl->dte));
   1317        1.1      gwr 	 */
   1318        1.1      gwr 
   1319        1.7      gwr 	/*
   1320        1.7      gwr 	 * Remove any pending cache flushes that were designated
   1321        1.1      gwr 	 * for the pmap this A table belongs to.
   1322        1.1      gwr 	 * a_tbl->parent->atc_flushq[0] = 0;
   1323       1.22   jeremy 	 * Not implemented in sun3x.
   1324        1.1      gwr 	 */
   1325        1.1      gwr 
   1326        1.7      gwr 	/*
   1327        1.7      gwr 	 * All A tables in the system should retain a map for the
   1328        1.1      gwr 	 * kernel. If the table contains any valid descriptors
   1329        1.1      gwr 	 * (other than those for the kernel area), invalidate them all,
   1330        1.1      gwr 	 * stopping short of the kernel's entries.
   1331        1.1      gwr 	 */
   1332        1.1      gwr 	removed_cnt = 0;
   1333        1.1      gwr 	if (a_tbl->at_ecnt) {
   1334        1.1      gwr 		dte = a_tbl->at_dtbl;
   1335        1.8      gwr 		for (i=0; i < MMU_TIA(KERNBASE); i++) {
   1336        1.7      gwr 			/*
   1337        1.7      gwr 			 * If a table entry points to a valid B table, free
   1338        1.1      gwr 			 * it and its children.
   1339        1.1      gwr 			 */
   1340        1.1      gwr 			if (MMU_VALID_DT(dte[i])) {
   1341        1.7      gwr 				/*
   1342        1.7      gwr 				 * The following block does several things,
   1343        1.1      gwr 				 * from innermost expression to the
   1344        1.1      gwr 				 * outermost:
   1345        1.1      gwr 				 * 1) It extracts the base (cc 1996)
   1346        1.1      gwr 				 *    address of the B table pointed
   1347        1.1      gwr 				 *    to in the A table entry dte[i].
   1348        1.1      gwr 				 * 2) It converts this base address into
   1349        1.1      gwr 				 *    the virtual address it can be
   1350        1.1      gwr 				 *    accessed with. (all MMU tables point
   1351        1.1      gwr 				 *    to physical addresses.)
   1352        1.1      gwr 				 * 3) It finds the corresponding manager
   1353        1.1      gwr 				 *    structure which manages this MMU table.
   1354        1.1      gwr 				 * 4) It frees the manager structure.
   1355        1.1      gwr 				 *    (This frees the MMU table and all
   1356        1.1      gwr 				 *    child tables. See 'free_b_table' for
   1357        1.1      gwr 				 *    details.)
   1358        1.1      gwr 				 */
   1359        1.7      gwr 				dtbl = mmu_ptov(dte[i].addr.raw);
   1360        1.1      gwr 				tmgr = mmuB2tmgr(dtbl);
   1361        1.7      gwr 				removed_cnt += free_b_table(tmgr, TRUE);
   1362        1.8      gwr 				dte[i].attr.raw = MMU_DT_INVALID;
   1363        1.1      gwr 			}
   1364        1.8      gwr 		}
   1365        1.8      gwr 		a_tbl->at_ecnt = 0;
   1366        1.1      gwr 	}
   1367        1.7      gwr 	if (relink) {
   1368        1.7      gwr 		a_tbl->at_parent = NULL;
   1369        1.7      gwr 		TAILQ_REMOVE(&a_pool, a_tbl, at_link);
   1370        1.7      gwr 		TAILQ_INSERT_HEAD(&a_pool, a_tbl, at_link);
   1371        1.7      gwr 	}
   1372        1.1      gwr 	return removed_cnt;
   1373        1.1      gwr }
   1374        1.1      gwr 
   1375        1.1      gwr /* free_b_table			INTERNAL
   1376        1.1      gwr  **
   1377        1.1      gwr  * Unmaps the given B table and all its children from their current
   1378        1.1      gwr  * mappings.  Returns the number of pages that were invalidated.
   1379        1.1      gwr  * (For comments, see 'free_a_table()').
   1380        1.1      gwr  */
   1381       1.86      chs int
   1382       1.86      chs free_b_table(b_tmgr_t *b_tbl, boolean_t relink)
   1383        1.1      gwr {
   1384        1.1      gwr 	int i, removed_cnt;
   1385        1.1      gwr 	mmu_short_dte_t *dte;
   1386        1.1      gwr 	mmu_short_pte_t	*dtbl;
   1387        1.1      gwr 	c_tmgr_t	*tmgr;
   1388        1.1      gwr 
   1389        1.1      gwr 	removed_cnt = 0;
   1390        1.1      gwr 	if (b_tbl->bt_ecnt) {
   1391        1.1      gwr 		dte = b_tbl->bt_dtbl;
   1392        1.8      gwr 		for (i=0; i < MMU_B_TBL_SIZE; i++) {
   1393        1.1      gwr 			if (MMU_VALID_DT(dte[i])) {
   1394        1.7      gwr 				dtbl = mmu_ptov(MMU_DTE_PA(dte[i]));
   1395        1.1      gwr 				tmgr = mmuC2tmgr(dtbl);
   1396        1.7      gwr 				removed_cnt += free_c_table(tmgr, TRUE);
   1397        1.8      gwr 				dte[i].attr.raw = MMU_DT_INVALID;
   1398        1.1      gwr 			}
   1399        1.8      gwr 		}
   1400        1.8      gwr 		b_tbl->bt_ecnt = 0;
   1401        1.1      gwr 	}
   1402        1.1      gwr 
   1403        1.7      gwr 	if (relink) {
   1404        1.7      gwr 		b_tbl->bt_parent = NULL;
   1405        1.7      gwr 		TAILQ_REMOVE(&b_pool, b_tbl, bt_link);
   1406        1.7      gwr 		TAILQ_INSERT_HEAD(&b_pool, b_tbl, bt_link);
   1407        1.7      gwr 	}
   1408        1.1      gwr 	return removed_cnt;
   1409        1.1      gwr }
   1410        1.1      gwr 
   1411        1.1      gwr /* free_c_table			INTERNAL
   1412        1.1      gwr  **
   1413        1.1      gwr  * Unmaps the given C table from use and returns it to the pool for
   1414        1.1      gwr  * re-use.  Returns the number of pages that were invalidated.
   1415        1.1      gwr  *
   1416        1.1      gwr  * This function preserves any physical page modification information
   1417        1.1      gwr  * contained in the page descriptors within the C table by calling
   1418        1.1      gwr  * 'pmap_remove_pte().'
   1419        1.1      gwr  */
   1420       1.86      chs int
   1421       1.86      chs free_c_table(c_tmgr_t *c_tbl, boolean_t relink)
   1422        1.1      gwr {
   1423        1.1      gwr 	int i, removed_cnt;
   1424        1.1      gwr 
   1425        1.1      gwr 	removed_cnt = 0;
   1426        1.8      gwr 	if (c_tbl->ct_ecnt) {
   1427        1.8      gwr 		for (i=0; i < MMU_C_TBL_SIZE; i++) {
   1428        1.1      gwr 			if (MMU_VALID_DT(c_tbl->ct_dtbl[i])) {
   1429        1.1      gwr 				pmap_remove_pte(&c_tbl->ct_dtbl[i]);
   1430        1.1      gwr 				removed_cnt++;
   1431        1.1      gwr 			}
   1432        1.8      gwr 		}
   1433        1.8      gwr 		c_tbl->ct_ecnt = 0;
   1434        1.8      gwr 	}
   1435        1.8      gwr 
   1436        1.7      gwr 	if (relink) {
   1437        1.7      gwr 		c_tbl->ct_parent = NULL;
   1438        1.7      gwr 		TAILQ_REMOVE(&c_pool, c_tbl, ct_link);
   1439        1.7      gwr 		TAILQ_INSERT_HEAD(&c_pool, c_tbl, ct_link);
   1440        1.7      gwr 	}
   1441        1.1      gwr 	return removed_cnt;
   1442        1.1      gwr }
   1443        1.1      gwr 
   1444        1.1      gwr 
   1445        1.1      gwr /* pmap_remove_pte			INTERNAL
   1446        1.1      gwr  **
   1447        1.1      gwr  * Unmap the given pte and preserve any page modification
   1448        1.1      gwr  * information by transfering it to the pv head of the
   1449        1.1      gwr  * physical page it maps to.  This function does not update
   1450        1.1      gwr  * any reference counts because it is assumed that the calling
   1451        1.8      gwr  * function will do so.
   1452        1.1      gwr  */
   1453        1.1      gwr void
   1454       1.86      chs pmap_remove_pte(mmu_short_pte_t *pte)
   1455        1.1      gwr {
   1456        1.7      gwr 	u_short     pv_idx, targ_idx;
   1457       1.69      chs 	paddr_t     pa;
   1458        1.1      gwr 	pv_t       *pv;
   1459        1.1      gwr 
   1460        1.1      gwr 	pa = MMU_PTE_PA(*pte);
   1461        1.1      gwr 	if (is_managed(pa)) {
   1462        1.1      gwr 		pv = pa2pv(pa);
   1463        1.7      gwr 		targ_idx = pteidx(pte);	/* Index of PTE being removed    */
   1464        1.7      gwr 
   1465        1.7      gwr 		/*
   1466        1.7      gwr 		 * If the PTE being removed is the first (or only) PTE in
   1467        1.7      gwr 		 * the list of PTEs currently mapped to this page, remove the
   1468        1.7      gwr 		 * PTE by changing the index found on the PV head.  Otherwise
   1469        1.7      gwr 		 * a linear search through the list will have to be executed
   1470        1.7      gwr 		 * in order to find the PVE which points to the PTE being
   1471        1.7      gwr 		 * removed, so that it may be modified to point to its new
   1472        1.7      gwr 		 * neighbor.
   1473        1.7      gwr 		 */
   1474       1.69      chs 
   1475        1.7      gwr 		pv_idx = pv->pv_idx;	/* Index of first PTE in PV list */
   1476        1.7      gwr 		if (pv_idx == targ_idx) {
   1477        1.7      gwr 			pv->pv_idx = pvebase[targ_idx].pve_next;
   1478        1.7      gwr 		} else {
   1479       1.69      chs 
   1480        1.7      gwr 			/*
   1481       1.32      gwr 			 * Find the PV element pointing to the target
   1482       1.32      gwr 			 * element.  Note: may have pv_idx==PVE_EOL
   1483        1.7      gwr 			 */
   1484       1.69      chs 
   1485       1.32      gwr 			for (;;) {
   1486       1.32      gwr 				if (pv_idx == PVE_EOL) {
   1487       1.32      gwr 					goto pv_not_found;
   1488       1.32      gwr 				}
   1489       1.32      gwr 				if (pvebase[pv_idx].pve_next == targ_idx)
   1490       1.32      gwr 					break;
   1491        1.7      gwr 				pv_idx = pvebase[pv_idx].pve_next;
   1492        1.7      gwr 			}
   1493       1.69      chs 
   1494        1.7      gwr 			/*
   1495        1.7      gwr 			 * At this point, pv_idx is the index of the PV
   1496        1.7      gwr 			 * element just before the target element in the list.
   1497        1.7      gwr 			 * Unlink the target.
   1498        1.7      gwr 			 */
   1499       1.69      chs 
   1500        1.7      gwr 			pvebase[pv_idx].pve_next = pvebase[targ_idx].pve_next;
   1501        1.7      gwr 		}
   1502       1.69      chs 
   1503        1.7      gwr 		/*
   1504        1.7      gwr 		 * Save the mod/ref bits of the pte by simply
   1505        1.1      gwr 		 * ORing the entire pte onto the pv_flags member
   1506        1.1      gwr 		 * of the pv structure.
   1507        1.1      gwr 		 * There is no need to use a separate bit pattern
   1508        1.1      gwr 		 * for usage information on the pv head than that
   1509        1.1      gwr 		 * which is used on the MMU ptes.
   1510        1.1      gwr 		 */
   1511       1.69      chs 
   1512       1.69      chs pv_not_found:
   1513        1.7      gwr 		pv->pv_flags |= (u_short) pte->attr.raw;
   1514        1.1      gwr 	}
   1515        1.1      gwr 	pte->attr.raw = MMU_DT_INVALID;
   1516        1.1      gwr }
   1517        1.1      gwr 
   1518        1.1      gwr /* pmap_stroll			INTERNAL
   1519        1.1      gwr  **
   1520        1.1      gwr  * Retrieve the addresses of all table managers involved in the mapping of
   1521       1.77      wiz  * the given virtual address.  If the table walk completed successfully,
   1522       1.77      wiz  * return TRUE.  If it was only partially successful, return FALSE.
   1523        1.1      gwr  * The table walk performed by this function is important to many other
   1524        1.1      gwr  * functions in this module.
   1525        1.7      gwr  *
   1526        1.7      gwr  * Note: This function ought to be easier to read.
   1527        1.1      gwr  */
   1528        1.1      gwr boolean_t
   1529       1.86      chs pmap_stroll(pmap_t pmap, vaddr_t va, a_tmgr_t **a_tbl, b_tmgr_t **b_tbl,
   1530       1.86      chs     c_tmgr_t **c_tbl, mmu_short_pte_t **pte, int *a_idx, int *b_idx,
   1531       1.86      chs     int *pte_idx)
   1532        1.1      gwr {
   1533        1.1      gwr 	mmu_long_dte_t *a_dte;   /* A: long descriptor table          */
   1534        1.1      gwr 	mmu_short_dte_t *b_dte;  /* B: short descriptor table         */
   1535        1.1      gwr 
   1536        1.1      gwr 	if (pmap == pmap_kernel())
   1537        1.1      gwr 		return FALSE;
   1538        1.1      gwr 
   1539        1.7      gwr 	/* Does the given pmap have its own A table? */
   1540        1.7      gwr 	*a_tbl = pmap->pm_a_tmgr;
   1541        1.1      gwr 	if (*a_tbl == NULL)
   1542        1.1      gwr 		return FALSE; /* No.  Return unknown. */
   1543        1.1      gwr 	/* Does the A table have a valid B table
   1544        1.1      gwr 	 * under the corresponding table entry?
   1545        1.1      gwr 	 */
   1546        1.1      gwr 	*a_idx = MMU_TIA(va);
   1547        1.1      gwr 	a_dte = &((*a_tbl)->at_dtbl[*a_idx]);
   1548        1.1      gwr 	if (!MMU_VALID_DT(*a_dte))
   1549        1.1      gwr 		return FALSE; /* No. Return unknown. */
   1550        1.1      gwr 	/* Yes. Extract B table from the A table. */
   1551        1.7      gwr 	*b_tbl = mmuB2tmgr(mmu_ptov(a_dte->addr.raw));
   1552        1.1      gwr 	/* Does the B table have a valid C table
   1553        1.1      gwr 	 * under the corresponding table entry?
   1554        1.1      gwr 	 */
   1555        1.1      gwr 	*b_idx = MMU_TIB(va);
   1556        1.1      gwr 	b_dte = &((*b_tbl)->bt_dtbl[*b_idx]);
   1557        1.1      gwr 	if (!MMU_VALID_DT(*b_dte))
   1558        1.1      gwr 		return FALSE; /* No. Return unknown. */
   1559        1.1      gwr 	/* Yes. Extract C table from the B table. */
   1560        1.7      gwr 	*c_tbl = mmuC2tmgr(mmu_ptov(MMU_DTE_PA(*b_dte)));
   1561        1.1      gwr 	*pte_idx = MMU_TIC(va);
   1562        1.1      gwr 	*pte = &((*c_tbl)->ct_dtbl[*pte_idx]);
   1563        1.1      gwr 
   1564        1.1      gwr 	return	TRUE;
   1565        1.1      gwr }
   1566        1.1      gwr 
   1567        1.1      gwr /* pmap_enter			INTERFACE
   1568        1.1      gwr  **
   1569        1.1      gwr  * Called by the kernel to map a virtual address
   1570        1.1      gwr  * to a physical address in the given process map.
   1571        1.1      gwr  *
   1572        1.1      gwr  * Note: this function should apply an exclusive lock
   1573        1.1      gwr  * on the pmap system for its duration.  (it certainly
   1574        1.1      gwr  * would save my hair!!)
   1575        1.7      gwr  * This function ought to be easier to read.
   1576        1.1      gwr  */
   1577       1.86      chs int
   1578       1.86      chs pmap_enter(pmap_t pmap, vaddr_t va, paddr_t pa, vm_prot_t prot, int flags)
   1579        1.1      gwr {
   1580        1.7      gwr 	boolean_t insert, managed; /* Marks the need for PV insertion.*/
   1581        1.7      gwr 	u_short nidx;            /* PV list index                     */
   1582       1.52   jeremy 	int mapflags;            /* Flags for the mapping (see NOTE1) */
   1583        1.8      gwr 	u_int a_idx, b_idx, pte_idx; /* table indices                 */
   1584        1.1      gwr 	a_tmgr_t *a_tbl;         /* A: long descriptor table manager  */
   1585        1.1      gwr 	b_tmgr_t *b_tbl;         /* B: short descriptor table manager */
   1586        1.1      gwr 	c_tmgr_t *c_tbl;         /* C: short page table manager       */
   1587        1.1      gwr 	mmu_long_dte_t *a_dte;   /* A: long descriptor table          */
   1588        1.1      gwr 	mmu_short_dte_t *b_dte;  /* B: short descriptor table         */
   1589        1.1      gwr 	mmu_short_pte_t *c_pte;  /* C: short page descriptor table    */
   1590        1.1      gwr 	pv_t      *pv;           /* pv list head                      */
   1591       1.52   jeremy 	boolean_t wired;         /* is the mapping to be wired?       */
   1592        1.1      gwr 	enum {NONE, NEWA, NEWB, NEWC} llevel; /* used at end   */
   1593        1.1      gwr 
   1594        1.1      gwr 	if (pmap == pmap_kernel()) {
   1595        1.1      gwr 		pmap_enter_kernel(va, pa, prot);
   1596       1.61      chs 		return 0;
   1597        1.1      gwr 	}
   1598        1.7      gwr 
   1599       1.52   jeremy 	/*
   1600       1.52   jeremy 	 * Determine if the mapping should be wired.
   1601       1.52   jeremy 	 */
   1602       1.52   jeremy 	wired = ((flags & PMAP_WIRED) != 0);
   1603       1.52   jeremy 
   1604       1.52   jeremy 	/*
   1605       1.52   jeremy 	 * NOTE1:
   1606       1.52   jeremy 	 *
   1607       1.52   jeremy 	 * On November 13, 1999, someone changed the pmap_enter() API such
   1608       1.52   jeremy 	 * that it now accepts a 'flags' argument.  This new argument
   1609       1.52   jeremy 	 * contains bit-flags for the architecture-independent (UVM) system to
   1610       1.52   jeremy 	 * use in signalling certain mapping requirements to the architecture-
   1611       1.52   jeremy 	 * dependent (pmap) system.  The argument it replaces, 'wired', is now
   1612       1.52   jeremy 	 * one of the flags within it.
   1613       1.52   jeremy 	 *
   1614       1.52   jeremy 	 * In addition to flags signaled by the architecture-independent
   1615       1.52   jeremy 	 * system, parts of the architecture-dependent section of the sun3x
   1616       1.52   jeremy 	 * kernel pass their own flags in the lower, unused bits of the
   1617       1.52   jeremy 	 * physical address supplied to this function.  These flags are
   1618       1.52   jeremy 	 * extracted and stored in the temporary variable 'mapflags'.
   1619       1.52   jeremy 	 *
   1620       1.52   jeremy 	 * Extract sun3x specific flags from the physical address.
   1621       1.52   jeremy 	 */
   1622       1.52   jeremy 	mapflags  = (pa & ~MMU_PAGE_MASK);
   1623       1.52   jeremy 	pa       &= MMU_PAGE_MASK;
   1624        1.7      gwr 
   1625        1.7      gwr 	/*
   1626       1.22   jeremy 	 * Determine if the physical address being mapped is on-board RAM.
   1627       1.22   jeremy 	 * Any other area of the address space is likely to belong to a
   1628       1.22   jeremy 	 * device and hence it would be disasterous to cache its contents.
   1629        1.7      gwr 	 */
   1630        1.7      gwr 	if ((managed = is_managed(pa)) == FALSE)
   1631       1.52   jeremy 		mapflags |= PMAP_NC;
   1632        1.7      gwr 
   1633        1.7      gwr 	/*
   1634        1.7      gwr 	 * For user mappings we walk along the MMU tables of the given
   1635        1.1      gwr 	 * pmap, reaching a PTE which describes the virtual page being
   1636        1.1      gwr 	 * mapped or changed.  If any level of the walk ends in an invalid
   1637        1.1      gwr 	 * entry, a table must be allocated and the entry must be updated
   1638        1.1      gwr 	 * to point to it.
   1639        1.1      gwr 	 * There is a bit of confusion as to whether this code must be
   1640        1.1      gwr 	 * re-entrant.  For now we will assume it is.  To support
   1641        1.1      gwr 	 * re-entrancy we must unlink tables from the table pool before
   1642        1.1      gwr 	 * we assume we may use them.  Tables are re-linked into the pool
   1643        1.1      gwr 	 * when we are finished with them at the end of the function.
   1644        1.1      gwr 	 * But I don't feel like doing that until we have proof that this
   1645        1.1      gwr 	 * needs to be re-entrant.
   1646        1.1      gwr 	 * 'llevel' records which tables need to be relinked.
   1647        1.1      gwr 	 */
   1648        1.1      gwr 	llevel = NONE;
   1649        1.1      gwr 
   1650        1.7      gwr 	/*
   1651        1.7      gwr 	 * Step 1 - Retrieve the A table from the pmap.  If it has no
   1652        1.7      gwr 	 * A table, allocate a new one from the available pool.
   1653        1.1      gwr 	 */
   1654        1.1      gwr 
   1655        1.7      gwr 	a_tbl = pmap->pm_a_tmgr;
   1656        1.7      gwr 	if (a_tbl == NULL) {
   1657        1.7      gwr 		/*
   1658        1.7      gwr 		 * This pmap does not currently have an A table.  Allocate
   1659        1.7      gwr 		 * a new one.
   1660        1.7      gwr 		 */
   1661        1.7      gwr 		a_tbl = get_a_table();
   1662        1.7      gwr 		a_tbl->at_parent = pmap;
   1663        1.7      gwr 
   1664        1.7      gwr 		/*
   1665        1.7      gwr 		 * Assign this new A table to the pmap, and calculate its
   1666        1.7      gwr 		 * physical address so that loadcrp() can be used to make
   1667        1.7      gwr 		 * the table active.
   1668        1.7      gwr 		 */
   1669        1.7      gwr 		pmap->pm_a_tmgr = a_tbl;
   1670        1.7      gwr 		pmap->pm_a_phys = mmu_vtop(a_tbl->at_dtbl);
   1671        1.7      gwr 
   1672        1.7      gwr 		/*
   1673        1.7      gwr 		 * If the process receiving a new A table is the current
   1674        1.7      gwr 		 * process, we are responsible for setting the MMU so that
   1675        1.9      gwr 		 * it becomes the current address space.  This only adds
   1676        1.9      gwr 		 * new mappings, so no need to flush anything.
   1677        1.7      gwr 		 */
   1678        1.9      gwr 		if (pmap == current_pmap()) {
   1679        1.9      gwr 			kernel_crp.rp_addr = pmap->pm_a_phys;
   1680        1.9      gwr 			loadcrp(&kernel_crp);
   1681        1.9      gwr 		}
   1682        1.7      gwr 
   1683        1.1      gwr 		if (!wired)
   1684        1.1      gwr 			llevel = NEWA;
   1685        1.1      gwr 	} else {
   1686        1.7      gwr 		/*
   1687        1.7      gwr 		 * Use the A table already allocated for this pmap.
   1688        1.1      gwr 		 * Unlink it from the A table pool if necessary.
   1689        1.1      gwr 		 */
   1690        1.1      gwr 		if (wired && !a_tbl->at_wcnt)
   1691        1.1      gwr 			TAILQ_REMOVE(&a_pool, a_tbl, at_link);
   1692        1.1      gwr 	}
   1693        1.1      gwr 
   1694        1.7      gwr 	/*
   1695        1.7      gwr 	 * Step 2 - Walk into the B table.  If there is no valid B table,
   1696        1.1      gwr 	 * allocate one.
   1697        1.1      gwr 	 */
   1698        1.1      gwr 
   1699        1.1      gwr 	a_idx = MMU_TIA(va);            /* Calculate the TIA of the VA. */
   1700        1.1      gwr 	a_dte = &a_tbl->at_dtbl[a_idx]; /* Retrieve descriptor from table */
   1701        1.1      gwr 	if (MMU_VALID_DT(*a_dte)) {     /* Is the descriptor valid? */
   1702        1.7      gwr 		/* The descriptor is valid.  Use the B table it points to. */
   1703        1.1      gwr 		/*************************************
   1704        1.1      gwr 		 *               a_idx               *
   1705        1.1      gwr 		 *                 v                 *
   1706        1.1      gwr 		 * a_tbl -> +-+-+-+-+-+-+-+-+-+-+-+- *
   1707        1.1      gwr 		 *          | | | | | | | | | | | |  *
   1708        1.1      gwr 		 *          +-+-+-+-+-+-+-+-+-+-+-+- *
   1709        1.1      gwr 		 *                 |                 *
   1710        1.1      gwr 		 *                 \- b_tbl -> +-+-  *
   1711        1.1      gwr 		 *                             | |   *
   1712        1.1      gwr 		 *                             +-+-  *
   1713        1.1      gwr 		 *************************************/
   1714        1.7      gwr 		b_dte = mmu_ptov(a_dte->addr.raw);
   1715        1.1      gwr 		b_tbl = mmuB2tmgr(b_dte);
   1716        1.7      gwr 
   1717        1.7      gwr 		/*
   1718        1.7      gwr 		 * If the requested mapping must be wired, but this table
   1719        1.7      gwr 		 * being used to map it is not, the table must be removed
   1720        1.7      gwr 		 * from the available pool and its wired entry count
   1721        1.7      gwr 		 * incremented.
   1722        1.7      gwr 		 */
   1723        1.1      gwr 		if (wired && !b_tbl->bt_wcnt) {
   1724        1.1      gwr 			TAILQ_REMOVE(&b_pool, b_tbl, bt_link);
   1725        1.7      gwr 			a_tbl->at_wcnt++;
   1726        1.1      gwr 		}
   1727        1.1      gwr 	} else {
   1728        1.7      gwr 		/* The descriptor is invalid.  Allocate a new B table. */
   1729        1.7      gwr 		b_tbl = get_b_table();
   1730        1.7      gwr 
   1731        1.1      gwr 		/* Point the parent A table descriptor to this new B table. */
   1732        1.7      gwr 		a_dte->addr.raw = mmu_vtop(b_tbl->bt_dtbl);
   1733        1.7      gwr 		a_dte->attr.raw = MMU_LONG_DTE_LU | MMU_DT_SHORT;
   1734        1.7      gwr 		a_tbl->at_ecnt++; /* Update parent's valid entry count */
   1735        1.7      gwr 
   1736        1.1      gwr 		/* Create the necessary back references to the parent table */
   1737        1.1      gwr 		b_tbl->bt_parent = a_tbl;
   1738        1.1      gwr 		b_tbl->bt_pidx = a_idx;
   1739        1.7      gwr 
   1740        1.7      gwr 		/*
   1741        1.7      gwr 		 * If this table is to be wired, make sure the parent A table
   1742        1.1      gwr 		 * wired count is updated to reflect that it has another wired
   1743        1.1      gwr 		 * entry.
   1744        1.1      gwr 		 */
   1745        1.1      gwr 		if (wired)
   1746        1.1      gwr 			a_tbl->at_wcnt++;
   1747        1.1      gwr 		else if (llevel == NONE)
   1748        1.1      gwr 			llevel = NEWB;
   1749        1.1      gwr 	}
   1750        1.1      gwr 
   1751        1.7      gwr 	/*
   1752        1.7      gwr 	 * Step 3 - Walk into the C table, if there is no valid C table,
   1753        1.1      gwr 	 * allocate one.
   1754        1.1      gwr 	 */
   1755        1.1      gwr 
   1756        1.1      gwr 	b_idx = MMU_TIB(va);            /* Calculate the TIB of the VA */
   1757        1.1      gwr 	b_dte = &b_tbl->bt_dtbl[b_idx]; /* Retrieve descriptor from table */
   1758        1.1      gwr 	if (MMU_VALID_DT(*b_dte)) {     /* Is the descriptor valid? */
   1759        1.7      gwr 		/* The descriptor is valid.  Use the C table it points to. */
   1760        1.1      gwr 		/**************************************
   1761        1.1      gwr 		 *               c_idx                *
   1762        1.1      gwr 		 * |                v                 *
   1763        1.1      gwr 		 * \- b_tbl -> +-+-+-+-+-+-+-+-+-+-+- *
   1764        1.1      gwr 		 *             | | | | | | | | | | |  *
   1765        1.1      gwr 		 *             +-+-+-+-+-+-+-+-+-+-+- *
   1766        1.1      gwr 		 *                  |                 *
   1767        1.1      gwr 		 *                  \- c_tbl -> +-+-- *
   1768        1.1      gwr 		 *                              | | | *
   1769        1.1      gwr 		 *                              +-+-- *
   1770        1.1      gwr 		 **************************************/
   1771        1.7      gwr 		c_pte = mmu_ptov(MMU_PTE_PA(*b_dte));
   1772        1.1      gwr 		c_tbl = mmuC2tmgr(c_pte);
   1773        1.7      gwr 
   1774        1.7      gwr 		/* If mapping is wired and table is not */
   1775        1.1      gwr 		if (wired && !c_tbl->ct_wcnt) {
   1776        1.1      gwr 			TAILQ_REMOVE(&c_pool, c_tbl, ct_link);
   1777        1.1      gwr 			b_tbl->bt_wcnt++;
   1778        1.1      gwr 		}
   1779        1.1      gwr 	} else {
   1780        1.7      gwr 		/* The descriptor is invalid.  Allocate a new C table. */
   1781        1.7      gwr 		c_tbl = get_c_table();
   1782        1.7      gwr 
   1783        1.1      gwr 		/* Point the parent B table descriptor to this new C table. */
   1784        1.7      gwr 		b_dte->attr.raw = mmu_vtop(c_tbl->ct_dtbl);
   1785        1.7      gwr 		b_dte->attr.raw |= MMU_DT_SHORT;
   1786        1.7      gwr 		b_tbl->bt_ecnt++; /* Update parent's valid entry count */
   1787        1.7      gwr 
   1788        1.1      gwr 		/* Create the necessary back references to the parent table */
   1789        1.1      gwr 		c_tbl->ct_parent = b_tbl;
   1790        1.1      gwr 		c_tbl->ct_pidx = b_idx;
   1791       1.26   jeremy 		/*
   1792       1.26   jeremy 		 * Store the pmap and base virtual managed address for faster
   1793       1.26   jeremy 		 * retrieval in the PV functions.
   1794       1.26   jeremy 		 */
   1795       1.26   jeremy 		c_tbl->ct_pmap = pmap;
   1796       1.26   jeremy 		c_tbl->ct_va = (va & (MMU_TIA_MASK|MMU_TIB_MASK));
   1797        1.7      gwr 
   1798        1.7      gwr 		/*
   1799        1.7      gwr 		 * If this table is to be wired, make sure the parent B table
   1800        1.1      gwr 		 * wired count is updated to reflect that it has another wired
   1801        1.1      gwr 		 * entry.
   1802        1.1      gwr 		 */
   1803        1.1      gwr 		if (wired)
   1804        1.1      gwr 			b_tbl->bt_wcnt++;
   1805        1.1      gwr 		else if (llevel == NONE)
   1806        1.1      gwr 			llevel = NEWC;
   1807        1.1      gwr 	}
   1808        1.1      gwr 
   1809        1.7      gwr 	/*
   1810        1.7      gwr 	 * Step 4 - Deposit a page descriptor (PTE) into the appropriate
   1811        1.1      gwr 	 * slot of the C table, describing the PA to which the VA is mapped.
   1812        1.1      gwr 	 */
   1813        1.1      gwr 
   1814        1.1      gwr 	pte_idx = MMU_TIC(va);
   1815        1.1      gwr 	c_pte = &c_tbl->ct_dtbl[pte_idx];
   1816        1.1      gwr 	if (MMU_VALID_DT(*c_pte)) { /* Is the entry currently valid? */
   1817        1.7      gwr 		/*
   1818        1.7      gwr 		 * The PTE is currently valid.  This particular call
   1819        1.1      gwr 		 * is just a synonym for one (or more) of the following
   1820        1.1      gwr 		 * operations:
   1821        1.7      gwr 		 *     change protection of a page
   1822        1.1      gwr 		 *     change wiring status of a page
   1823        1.1      gwr 		 *     remove the mapping of a page
   1824        1.7      gwr 		 *
   1825        1.7      gwr 		 * XXX - Semi critical: This code should unwire the PTE
   1826        1.7      gwr 		 * and, possibly, associated parent tables if this is a
   1827        1.7      gwr 		 * change wiring operation.  Currently it does not.
   1828        1.7      gwr 		 *
   1829       1.47  thorpej 		 * This may be ok if pmap_unwire() is the only
   1830        1.7      gwr 		 * interface used to UNWIRE a page.
   1831        1.1      gwr 		 */
   1832        1.7      gwr 
   1833        1.7      gwr 		/* First check if this is a wiring operation. */
   1834        1.7      gwr 		if (wired && (c_pte->attr.raw & MMU_SHORT_PTE_WIRED)) {
   1835        1.7      gwr 			/*
   1836        1.7      gwr 			 * The PTE is already wired.  To prevent it from being
   1837        1.7      gwr 			 * counted as a new wiring operation, reset the 'wired'
   1838        1.7      gwr 			 * variable.
   1839        1.7      gwr 			 */
   1840        1.7      gwr 			wired = FALSE;
   1841        1.7      gwr 		}
   1842        1.7      gwr 
   1843        1.1      gwr 		/* Is the new address the same as the old? */
   1844        1.1      gwr 		if (MMU_PTE_PA(*c_pte) == pa) {
   1845        1.7      gwr 			/*
   1846        1.7      gwr 			 * Yes, mark that it does not need to be reinserted
   1847        1.7      gwr 			 * into the PV list.
   1848        1.7      gwr 			 */
   1849        1.7      gwr 			insert = FALSE;
   1850        1.7      gwr 
   1851        1.7      gwr 			/*
   1852        1.7      gwr 			 * Clear all but the modified, referenced and wired
   1853        1.7      gwr 			 * bits on the PTE.
   1854        1.7      gwr 			 */
   1855        1.7      gwr 			c_pte->attr.raw &= (MMU_SHORT_PTE_M
   1856        1.7      gwr 				| MMU_SHORT_PTE_USED | MMU_SHORT_PTE_WIRED);
   1857        1.1      gwr 		} else {
   1858        1.1      gwr 			/* No, remove the old entry */
   1859        1.1      gwr 			pmap_remove_pte(c_pte);
   1860        1.7      gwr 			insert = TRUE;
   1861        1.1      gwr 		}
   1862        1.8      gwr 
   1863        1.8      gwr 		/*
   1864        1.8      gwr 		 * TLB flush is only necessary if modifying current map.
   1865        1.8      gwr 		 * However, in pmap_enter(), the pmap almost always IS
   1866        1.8      gwr 		 * the current pmap, so don't even bother to check.
   1867        1.8      gwr 		 */
   1868        1.8      gwr 		TBIS(va);
   1869        1.1      gwr 	} else {
   1870        1.7      gwr 		/*
   1871        1.7      gwr 		 * The PTE is invalid.  Increment the valid entry count in
   1872        1.8      gwr 		 * the C table manager to reflect the addition of a new entry.
   1873        1.7      gwr 		 */
   1874        1.1      gwr 		c_tbl->ct_ecnt++;
   1875        1.8      gwr 
   1876        1.8      gwr 		/* XXX - temporarily make sure the PTE is cleared. */
   1877        1.8      gwr 		c_pte->attr.raw = 0;
   1878        1.1      gwr 
   1879        1.7      gwr 		/* It will also need to be inserted into the PV list. */
   1880        1.7      gwr 		insert = TRUE;
   1881        1.7      gwr 	}
   1882        1.7      gwr 
   1883        1.7      gwr 	/*
   1884        1.7      gwr 	 * If page is changing from unwired to wired status, set an unused bit
   1885        1.7      gwr 	 * within the PTE to indicate that it is wired.  Also increment the
   1886        1.7      gwr 	 * wired entry count in the C table manager.
   1887        1.7      gwr 	 */
   1888        1.7      gwr 	if (wired) {
   1889        1.1      gwr 		c_pte->attr.raw |= MMU_SHORT_PTE_WIRED;
   1890        1.7      gwr 		c_tbl->ct_wcnt++;
   1891        1.1      gwr 	}
   1892        1.1      gwr 
   1893        1.7      gwr 	/*
   1894        1.7      gwr 	 * Map the page, being careful to preserve modify/reference/wired
   1895        1.7      gwr 	 * bits.  At this point it is assumed that the PTE either has no bits
   1896        1.7      gwr 	 * set, or if there are set bits, they are only modified, reference or
   1897        1.7      gwr 	 * wired bits.  If not, the following statement will cause erratic
   1898        1.7      gwr 	 * behavior.
   1899        1.7      gwr 	 */
   1900        1.8      gwr #ifdef	PMAP_DEBUG
   1901        1.7      gwr 	if (c_pte->attr.raw & ~(MMU_SHORT_PTE_M |
   1902        1.7      gwr 		MMU_SHORT_PTE_USED | MMU_SHORT_PTE_WIRED)) {
   1903        1.7      gwr 		printf("pmap_enter: junk left in PTE at %p\n", c_pte);
   1904        1.7      gwr 		Debugger();
   1905        1.7      gwr 	}
   1906        1.7      gwr #endif
   1907        1.7      gwr 	c_pte->attr.raw |= ((u_long) pa | MMU_DT_PAGE);
   1908        1.7      gwr 
   1909        1.7      gwr 	/*
   1910        1.7      gwr 	 * If the mapping should be read-only, set the write protect
   1911        1.7      gwr 	 * bit in the PTE.
   1912        1.7      gwr 	 */
   1913        1.7      gwr 	if (!(prot & VM_PROT_WRITE))
   1914        1.7      gwr 		c_pte->attr.raw |= MMU_SHORT_PTE_WP;
   1915        1.7      gwr 
   1916        1.7      gwr 	/*
   1917       1.87      chs 	 * Mark the PTE as used and/or modified as specified by the flags arg.
   1918       1.87      chs 	 */
   1919       1.87      chs 	if (flags & VM_PROT_ALL) {
   1920       1.87      chs 		c_pte->attr.raw |= MMU_SHORT_PTE_USED;
   1921       1.87      chs 		if (flags & VM_PROT_WRITE) {
   1922       1.87      chs 			c_pte->attr.raw |= MMU_SHORT_PTE_M;
   1923       1.87      chs 		}
   1924       1.87      chs 	}
   1925       1.87      chs 
   1926       1.87      chs 	/*
   1927        1.7      gwr 	 * If the mapping should be cache inhibited (indicated by the flag
   1928        1.7      gwr 	 * bits found on the lower order of the physical address.)
   1929        1.7      gwr 	 * mark the PTE as a cache inhibited page.
   1930        1.7      gwr 	 */
   1931       1.52   jeremy 	if (mapflags & PMAP_NC)
   1932        1.7      gwr 		c_pte->attr.raw |= MMU_SHORT_PTE_CI;
   1933        1.7      gwr 
   1934        1.7      gwr 	/*
   1935        1.7      gwr 	 * If the physical address being mapped is managed by the PV
   1936        1.7      gwr 	 * system then link the pte into the list of pages mapped to that
   1937        1.7      gwr 	 * address.
   1938        1.7      gwr 	 */
   1939        1.7      gwr 	if (insert && managed) {
   1940        1.7      gwr 		pv = pa2pv(pa);
   1941        1.7      gwr 		nidx = pteidx(c_pte);
   1942        1.7      gwr 
   1943        1.7      gwr 		pvebase[nidx].pve_next = pv->pv_idx;
   1944        1.7      gwr 		pv->pv_idx = nidx;
   1945        1.7      gwr 	}
   1946        1.1      gwr 
   1947        1.1      gwr 	/* Move any allocated tables back into the active pool. */
   1948        1.1      gwr 
   1949        1.1      gwr 	switch (llevel) {
   1950        1.1      gwr 		case NEWA:
   1951        1.1      gwr 			TAILQ_INSERT_TAIL(&a_pool, a_tbl, at_link);
   1952        1.1      gwr 			/* FALLTHROUGH */
   1953        1.1      gwr 		case NEWB:
   1954        1.1      gwr 			TAILQ_INSERT_TAIL(&b_pool, b_tbl, bt_link);
   1955        1.1      gwr 			/* FALLTHROUGH */
   1956        1.1      gwr 		case NEWC:
   1957        1.1      gwr 			TAILQ_INSERT_TAIL(&c_pool, c_tbl, ct_link);
   1958        1.1      gwr 			/* FALLTHROUGH */
   1959        1.1      gwr 		default:
   1960        1.1      gwr 			break;
   1961        1.1      gwr 	}
   1962       1.51  thorpej 
   1963       1.61      chs 	return 0;
   1964        1.1      gwr }
   1965        1.1      gwr 
   1966        1.1      gwr /* pmap_enter_kernel			INTERNAL
   1967        1.1      gwr  **
   1968        1.1      gwr  * Map the given virtual address to the given physical address within the
   1969        1.1      gwr  * kernel address space.  This function exists because the kernel map does
   1970        1.1      gwr  * not do dynamic table allocation.  It consists of a contiguous array of ptes
   1971        1.1      gwr  * and can be edited directly without the need to walk through any tables.
   1972        1.1      gwr  *
   1973        1.1      gwr  * XXX: "Danger, Will Robinson!"
   1974        1.1      gwr  * Note that the kernel should never take a fault on any page
   1975        1.1      gwr  * between [ KERNBASE .. virtual_avail ] and this is checked in
   1976        1.1      gwr  * trap.c for kernel-mode MMU faults.  This means that mappings
   1977        1.1      gwr  * created in that range must be implicily wired. -gwr
   1978        1.1      gwr  */
   1979       1.86      chs void
   1980       1.86      chs pmap_enter_kernel(vaddr_t va, paddr_t pa, vm_prot_t prot)
   1981        1.1      gwr {
   1982        1.7      gwr 	boolean_t       was_valid, insert;
   1983       1.32      gwr 	u_short         pte_idx;
   1984       1.69      chs 	int             flags;
   1985        1.1      gwr 	mmu_short_pte_t *pte;
   1986        1.7      gwr 	pv_t            *pv;
   1987       1.69      chs 	paddr_t     old_pa;
   1988        1.7      gwr 
   1989       1.32      gwr 	flags = (pa & ~MMU_PAGE_MASK);
   1990       1.32      gwr 	pa &= MMU_PAGE_MASK;
   1991       1.32      gwr 
   1992       1.32      gwr 	if (is_managed(pa))
   1993       1.32      gwr 		insert = TRUE;
   1994       1.32      gwr 	else
   1995       1.32      gwr 		insert = FALSE;
   1996        1.7      gwr 
   1997        1.7      gwr 	/*
   1998        1.7      gwr 	 * Calculate the index of the PTE being modified.
   1999        1.7      gwr 	 */
   2000       1.25    veego 	pte_idx = (u_long) m68k_btop(va - KERNBASE);
   2001        1.1      gwr 
   2002       1.22   jeremy 	/* This array is traditionally named "Sysmap" */
   2003        1.7      gwr 	pte = &kernCbase[pte_idx];
   2004        1.7      gwr 
   2005        1.7      gwr 	if (MMU_VALID_DT(*pte)) {
   2006        1.1      gwr 		was_valid = TRUE;
   2007        1.7      gwr 		/*
   2008       1.32      gwr 		 * If the PTE already maps a different
   2009       1.32      gwr 		 * physical address, umap and pv_unlink.
   2010       1.24   jeremy 		 */
   2011       1.24   jeremy 		old_pa = MMU_PTE_PA(*pte);
   2012       1.32      gwr 		if (pa != old_pa)
   2013       1.32      gwr 			pmap_remove_pte(pte);
   2014       1.32      gwr 		else {
   2015       1.24   jeremy 		    /*
   2016       1.32      gwr 		     * Old PA and new PA are the same.  No need to
   2017       1.32      gwr 		     * relink the mapping within the PV list.
   2018       1.24   jeremy 		     */
   2019       1.24   jeremy 		     insert = FALSE;
   2020        1.8      gwr 
   2021        1.7      gwr 		    /*
   2022       1.24   jeremy 		     * Save any mod/ref bits on the PTE.
   2023        1.7      gwr 		     */
   2024       1.24   jeremy 		    pte->attr.raw &= (MMU_SHORT_PTE_USED|MMU_SHORT_PTE_M);
   2025        1.7      gwr 		}
   2026        1.7      gwr 	} else {
   2027        1.8      gwr 		pte->attr.raw = MMU_DT_INVALID;
   2028        1.7      gwr 		was_valid = FALSE;
   2029        1.7      gwr 	}
   2030        1.7      gwr 
   2031        1.7      gwr 	/*
   2032        1.8      gwr 	 * Map the page.  Being careful to preserve modified/referenced bits
   2033        1.8      gwr 	 * on the PTE.
   2034        1.7      gwr 	 */
   2035        1.7      gwr 	pte->attr.raw |= (pa | MMU_DT_PAGE);
   2036        1.1      gwr 
   2037        1.1      gwr 	if (!(prot & VM_PROT_WRITE)) /* If access should be read-only */
   2038        1.1      gwr 		pte->attr.raw |= MMU_SHORT_PTE_WP;
   2039        1.7      gwr 	if (flags & PMAP_NC)
   2040        1.1      gwr 		pte->attr.raw |= MMU_SHORT_PTE_CI;
   2041        1.8      gwr 	if (was_valid)
   2042        1.7      gwr 		TBIS(va);
   2043        1.1      gwr 
   2044        1.7      gwr 	/*
   2045        1.7      gwr 	 * Insert the PTE into the PV system, if need be.
   2046        1.7      gwr 	 */
   2047        1.7      gwr 	if (insert) {
   2048        1.7      gwr 		pv = pa2pv(pa);
   2049        1.7      gwr 		pvebase[pte_idx].pve_next = pv->pv_idx;
   2050        1.7      gwr 		pv->pv_idx = pte_idx;
   2051        1.7      gwr 	}
   2052       1.34      gwr }
   2053       1.34      gwr 
   2054       1.86      chs void
   2055       1.86      chs pmap_kenter_pa(vaddr_t va, paddr_t pa, vm_prot_t prot)
   2056       1.49      chs {
   2057       1.69      chs 	mmu_short_pte_t	*pte;
   2058       1.69      chs 
   2059       1.69      chs 	/* This array is traditionally named "Sysmap" */
   2060       1.69      chs 	pte = &kernCbase[(u_long)m68k_btop(va - KERNBASE)];
   2061       1.69      chs 
   2062       1.69      chs 	KASSERT(!MMU_VALID_DT(*pte));
   2063       1.69      chs 	pte->attr.raw = MMU_DT_INVALID | MMU_DT_PAGE | (pa & MMU_PAGE_MASK);
   2064       1.69      chs 	if (!(prot & VM_PROT_WRITE))
   2065       1.69      chs 		pte->attr.raw |= MMU_SHORT_PTE_WP;
   2066       1.49      chs }
   2067       1.49      chs 
   2068       1.86      chs void
   2069       1.86      chs pmap_kremove(vaddr_t va, vsize_t len)
   2070       1.49      chs {
   2071       1.69      chs 	int idx, eidx;
   2072       1.69      chs 
   2073       1.69      chs #ifdef	PMAP_DEBUG
   2074       1.69      chs 	if ((sva & PGOFSET) || (eva & PGOFSET))
   2075       1.72  tsutsui 		panic("pmap_kremove: alignment");
   2076       1.69      chs #endif
   2077       1.69      chs 
   2078       1.69      chs 	idx  = m68k_btop(va - KERNBASE);
   2079       1.69      chs 	eidx = m68k_btop(va + len - KERNBASE);
   2080       1.69      chs 
   2081       1.69      chs 	while (idx < eidx) {
   2082       1.69      chs 		kernCbase[idx++].attr.raw = MMU_DT_INVALID;
   2083       1.69      chs 		TBIS(va);
   2084       1.79  thorpej 		va += PAGE_SIZE;
   2085       1.49      chs 	}
   2086       1.49      chs }
   2087       1.49      chs 
   2088       1.35   jeremy /* pmap_map			INTERNAL
   2089       1.35   jeremy  **
   2090       1.35   jeremy  * Map a contiguous range of physical memory into a contiguous range of
   2091       1.35   jeremy  * the kernel virtual address space.
   2092       1.35   jeremy  *
   2093       1.35   jeremy  * Used for device mappings and early mapping of the kernel text/data/bss.
   2094       1.35   jeremy  * Returns the first virtual address beyond the end of the range.
   2095       1.34      gwr  */
   2096       1.86      chs vaddr_t
   2097       1.86      chs pmap_map(vaddr_t va, paddr_t pa, paddr_t endpa, int prot)
   2098       1.34      gwr {
   2099       1.34      gwr 	int sz;
   2100       1.34      gwr 
   2101       1.34      gwr 	sz = endpa - pa;
   2102       1.34      gwr 	do {
   2103       1.34      gwr 		pmap_enter_kernel(va, pa, prot);
   2104       1.79  thorpej 		va += PAGE_SIZE;
   2105       1.79  thorpej 		pa += PAGE_SIZE;
   2106       1.79  thorpej 		sz -= PAGE_SIZE;
   2107       1.34      gwr 	} while (sz > 0);
   2108       1.73    chris 	pmap_update(pmap_kernel());
   2109       1.34      gwr 	return(va);
   2110        1.1      gwr }
   2111        1.1      gwr 
   2112        1.1      gwr /* pmap_protect			INTERFACE
   2113        1.1      gwr  **
   2114        1.7      gwr  * Apply the given protection to the given virtual address range within
   2115        1.1      gwr  * the given map.
   2116        1.1      gwr  *
   2117        1.1      gwr  * It is ok for the protection applied to be stronger than what is
   2118        1.1      gwr  * specified.  We use this to our advantage when the given map has no
   2119        1.7      gwr  * mapping for the virtual address.  By skipping a page when this
   2120        1.1      gwr  * is discovered, we are effectively applying a protection of VM_PROT_NONE,
   2121        1.1      gwr  * and therefore do not need to map the page just to apply a protection
   2122        1.1      gwr  * code.  Only pmap_enter() needs to create new mappings if they do not exist.
   2123        1.7      gwr  *
   2124        1.7      gwr  * XXX - This function could be speeded up by using pmap_stroll() for inital
   2125        1.7      gwr  *       setup, and then manual scrolling in the for() loop.
   2126        1.1      gwr  */
   2127       1.86      chs void
   2128       1.86      chs pmap_protect(pmap_t pmap, vaddr_t startva, vaddr_t endva, vm_prot_t prot)
   2129        1.1      gwr {
   2130        1.7      gwr 	boolean_t iscurpmap;
   2131        1.1      gwr 	int a_idx, b_idx, c_idx;
   2132        1.1      gwr 	a_tmgr_t *a_tbl;
   2133        1.1      gwr 	b_tmgr_t *b_tbl;
   2134        1.1      gwr 	c_tmgr_t *c_tbl;
   2135        1.1      gwr 	mmu_short_pte_t *pte;
   2136        1.1      gwr 
   2137        1.1      gwr 	if (pmap == pmap_kernel()) {
   2138        1.7      gwr 		pmap_protect_kernel(startva, endva, prot);
   2139        1.1      gwr 		return;
   2140        1.1      gwr 	}
   2141        1.1      gwr 
   2142       1.11   jeremy 	/*
   2143       1.12   jeremy 	 * In this particular pmap implementation, there are only three
   2144       1.12   jeremy 	 * types of memory protection: 'all' (read/write/execute),
   2145       1.12   jeremy 	 * 'read-only' (read/execute) and 'none' (no mapping.)
   2146       1.12   jeremy 	 * It is not possible for us to treat 'executable' as a separate
   2147       1.12   jeremy 	 * protection type.  Therefore, protection requests that seek to
   2148       1.12   jeremy 	 * remove execute permission while retaining read or write, and those
   2149       1.12   jeremy 	 * that make little sense (write-only for example) are ignored.
   2150       1.11   jeremy 	 */
   2151       1.12   jeremy 	switch (prot) {
   2152       1.12   jeremy 		case VM_PROT_NONE:
   2153       1.12   jeremy 			/*
   2154       1.12   jeremy 			 * A request to apply the protection code of
   2155       1.12   jeremy 			 * 'VM_PROT_NONE' is a synonym for pmap_remove().
   2156       1.12   jeremy 			 */
   2157       1.12   jeremy 			pmap_remove(pmap, startva, endva);
   2158       1.12   jeremy 			return;
   2159       1.12   jeremy 		case	VM_PROT_EXECUTE:
   2160       1.12   jeremy 		case	VM_PROT_READ:
   2161       1.12   jeremy 		case	VM_PROT_READ|VM_PROT_EXECUTE:
   2162       1.12   jeremy 			/* continue */
   2163       1.12   jeremy 			break;
   2164       1.12   jeremy 		case	VM_PROT_WRITE:
   2165       1.12   jeremy 		case	VM_PROT_WRITE|VM_PROT_READ:
   2166       1.12   jeremy 		case	VM_PROT_WRITE|VM_PROT_EXECUTE:
   2167       1.12   jeremy 		case	VM_PROT_ALL:
   2168       1.12   jeremy 			/* None of these should happen in a sane system. */
   2169       1.12   jeremy 			return;
   2170       1.11   jeremy 	}
   2171       1.11   jeremy 
   2172       1.11   jeremy 	/*
   2173       1.11   jeremy 	 * If the pmap has no A table, it has no mappings and therefore
   2174       1.11   jeremy 	 * there is nothing to protect.
   2175       1.11   jeremy 	 */
   2176       1.11   jeremy 	if ((a_tbl = pmap->pm_a_tmgr) == NULL)
   2177       1.11   jeremy 		return;
   2178       1.11   jeremy 
   2179       1.11   jeremy 	a_idx = MMU_TIA(startva);
   2180       1.11   jeremy 	b_idx = MMU_TIB(startva);
   2181       1.11   jeremy 	c_idx = MMU_TIC(startva);
   2182  1.89.10.1     elad 	b_tbl = NULL;
   2183  1.89.10.1     elad 	c_tbl = NULL;
   2184       1.11   jeremy 
   2185        1.7      gwr 	iscurpmap = (pmap == current_pmap());
   2186       1.11   jeremy 	while (startva < endva) {
   2187       1.11   jeremy 		if (b_tbl || MMU_VALID_DT(a_tbl->at_dtbl[a_idx])) {
   2188       1.11   jeremy 		  if (b_tbl == NULL) {
   2189       1.11   jeremy 		    b_tbl = (b_tmgr_t *) a_tbl->at_dtbl[a_idx].addr.raw;
   2190       1.69      chs 		    b_tbl = mmu_ptov((vaddr_t)b_tbl);
   2191       1.69      chs 		    b_tbl = mmuB2tmgr((mmu_short_dte_t *)b_tbl);
   2192       1.11   jeremy 		  }
   2193       1.11   jeremy 		  if (c_tbl || MMU_VALID_DT(b_tbl->bt_dtbl[b_idx])) {
   2194       1.11   jeremy 		    if (c_tbl == NULL) {
   2195       1.11   jeremy 		      c_tbl = (c_tmgr_t *) MMU_DTE_PA(b_tbl->bt_dtbl[b_idx]);
   2196       1.69      chs 		      c_tbl = mmu_ptov((vaddr_t)c_tbl);
   2197       1.69      chs 		      c_tbl = mmuC2tmgr((mmu_short_pte_t *)c_tbl);
   2198       1.11   jeremy 		    }
   2199       1.11   jeremy 		    if (MMU_VALID_DT(c_tbl->ct_dtbl[c_idx])) {
   2200       1.11   jeremy 		      pte = &c_tbl->ct_dtbl[c_idx];
   2201       1.12   jeremy 		      /* make the mapping read-only */
   2202       1.12   jeremy 		      pte->attr.raw |= MMU_SHORT_PTE_WP;
   2203       1.11   jeremy 		      /*
   2204       1.11   jeremy 		       * If we just modified the current address space,
   2205       1.11   jeremy 		       * flush any translations for the modified page from
   2206       1.11   jeremy 		       * the translation cache and any data from it in the
   2207       1.11   jeremy 		       * data cache.
   2208       1.11   jeremy 		       */
   2209       1.11   jeremy 		      if (iscurpmap)
   2210       1.11   jeremy 		          TBIS(startva);
   2211       1.11   jeremy 		    }
   2212       1.79  thorpej 		    startva += PAGE_SIZE;
   2213        1.1      gwr 
   2214       1.11   jeremy 		    if (++c_idx >= MMU_C_TBL_SIZE) { /* exceeded C table? */
   2215       1.11   jeremy 		      c_tbl = NULL;
   2216       1.11   jeremy 		      c_idx = 0;
   2217       1.11   jeremy 		      if (++b_idx >= MMU_B_TBL_SIZE) { /* exceeded B table? */
   2218       1.11   jeremy 		        b_tbl = NULL;
   2219       1.11   jeremy 		        b_idx = 0;
   2220       1.11   jeremy 		      }
   2221       1.11   jeremy 		    }
   2222       1.11   jeremy 		  } else { /* C table wasn't valid */
   2223       1.11   jeremy 		    c_tbl = NULL;
   2224       1.11   jeremy 		    c_idx = 0;
   2225       1.11   jeremy 		    startva += MMU_TIB_RANGE;
   2226       1.11   jeremy 		    if (++b_idx >= MMU_B_TBL_SIZE) { /* exceeded B table? */
   2227       1.11   jeremy 		      b_tbl = NULL;
   2228       1.11   jeremy 		      b_idx = 0;
   2229       1.11   jeremy 		    }
   2230       1.11   jeremy 		  } /* C table */
   2231       1.11   jeremy 		} else { /* B table wasn't valid */
   2232       1.11   jeremy 		  b_tbl = NULL;
   2233       1.11   jeremy 		  b_idx = 0;
   2234       1.11   jeremy 		  startva += MMU_TIA_RANGE;
   2235       1.11   jeremy 		  a_idx++;
   2236       1.11   jeremy 		} /* B table */
   2237        1.1      gwr 	}
   2238        1.1      gwr }
   2239        1.1      gwr 
   2240        1.1      gwr /* pmap_protect_kernel			INTERNAL
   2241        1.1      gwr  **
   2242        1.7      gwr  * Apply the given protection code to a kernel address range.
   2243        1.1      gwr  */
   2244       1.86      chs void
   2245       1.86      chs pmap_protect_kernel(vaddr_t startva, vaddr_t endva, vm_prot_t prot)
   2246        1.1      gwr {
   2247       1.69      chs 	vaddr_t va;
   2248        1.1      gwr 	mmu_short_pte_t *pte;
   2249        1.1      gwr 
   2250       1.25    veego 	pte = &kernCbase[(unsigned long) m68k_btop(startva - KERNBASE)];
   2251       1.79  thorpej 	for (va = startva; va < endva; va += PAGE_SIZE, pte++) {
   2252        1.7      gwr 		if (MMU_VALID_DT(*pte)) {
   2253        1.7      gwr 		    switch (prot) {
   2254        1.7      gwr 		        case VM_PROT_ALL:
   2255        1.7      gwr 		            break;
   2256        1.7      gwr 		        case VM_PROT_EXECUTE:
   2257        1.7      gwr 		        case VM_PROT_READ:
   2258        1.7      gwr 		        case VM_PROT_READ|VM_PROT_EXECUTE:
   2259        1.7      gwr 		            pte->attr.raw |= MMU_SHORT_PTE_WP;
   2260        1.7      gwr 		            break;
   2261        1.7      gwr 		        case VM_PROT_NONE:
   2262        1.7      gwr 		            /* this is an alias for 'pmap_remove_kernel' */
   2263        1.7      gwr 		            pmap_remove_pte(pte);
   2264        1.7      gwr 		            break;
   2265        1.7      gwr 		        default:
   2266        1.7      gwr 		            break;
   2267        1.7      gwr 		    }
   2268        1.7      gwr 		    /*
   2269        1.7      gwr 		     * since this is the kernel, immediately flush any cached
   2270        1.7      gwr 		     * descriptors for this address.
   2271        1.7      gwr 		     */
   2272        1.7      gwr 		    TBIS(va);
   2273        1.1      gwr 		}
   2274        1.1      gwr 	}
   2275        1.1      gwr }
   2276        1.1      gwr 
   2277       1.47  thorpej /* pmap_unwire				INTERFACE
   2278        1.1      gwr  **
   2279       1.47  thorpej  * Clear the wired attribute of the specified page.
   2280        1.1      gwr  *
   2281        1.1      gwr  * This function is called from vm_fault.c to unwire
   2282       1.47  thorpej  * a mapping.
   2283        1.1      gwr  */
   2284       1.86      chs void
   2285       1.86      chs pmap_unwire(pmap_t pmap, vaddr_t va)
   2286        1.1      gwr {
   2287        1.1      gwr 	int a_idx, b_idx, c_idx;
   2288        1.1      gwr 	a_tmgr_t *a_tbl;
   2289        1.1      gwr 	b_tmgr_t *b_tbl;
   2290        1.1      gwr 	c_tmgr_t *c_tbl;
   2291        1.1      gwr 	mmu_short_pte_t *pte;
   2292        1.1      gwr 
   2293        1.1      gwr 	/* Kernel mappings always remain wired. */
   2294        1.1      gwr 	if (pmap == pmap_kernel())
   2295        1.1      gwr 		return;
   2296        1.1      gwr 
   2297        1.7      gwr 	/*
   2298        1.7      gwr 	 * Walk through the tables.  If the walk terminates without
   2299        1.1      gwr 	 * a valid PTE then the address wasn't wired in the first place.
   2300        1.1      gwr 	 * Return immediately.
   2301        1.1      gwr 	 */
   2302        1.1      gwr 	if (pmap_stroll(pmap, va, &a_tbl, &b_tbl, &c_tbl, &pte, &a_idx,
   2303        1.1      gwr 		&b_idx, &c_idx) == FALSE)
   2304        1.1      gwr 		return;
   2305        1.1      gwr 
   2306        1.1      gwr 
   2307        1.1      gwr 	/* Is the PTE wired?  If not, return. */
   2308        1.1      gwr 	if (!(pte->attr.raw & MMU_SHORT_PTE_WIRED))
   2309        1.1      gwr 		return;
   2310        1.1      gwr 
   2311        1.1      gwr 	/* Remove the wiring bit. */
   2312        1.1      gwr 	pte->attr.raw &= ~(MMU_SHORT_PTE_WIRED);
   2313        1.1      gwr 
   2314        1.7      gwr 	/*
   2315        1.7      gwr 	 * Decrement the wired entry count in the C table.
   2316        1.1      gwr 	 * If it reaches zero the following things happen:
   2317        1.1      gwr 	 * 1. The table no longer has any wired entries and is considered
   2318        1.1      gwr 	 *    unwired.
   2319        1.1      gwr 	 * 2. It is placed on the available queue.
   2320        1.1      gwr 	 * 3. The parent table's wired entry count is decremented.
   2321        1.1      gwr 	 * 4. If it reaches zero, this process repeats at step 1 and
   2322        1.1      gwr 	 *    stops at after reaching the A table.
   2323        1.1      gwr 	 */
   2324        1.7      gwr 	if (--c_tbl->ct_wcnt == 0) {
   2325        1.1      gwr 		TAILQ_INSERT_TAIL(&c_pool, c_tbl, ct_link);
   2326        1.7      gwr 		if (--b_tbl->bt_wcnt == 0) {
   2327        1.1      gwr 			TAILQ_INSERT_TAIL(&b_pool, b_tbl, bt_link);
   2328        1.7      gwr 			if (--a_tbl->at_wcnt == 0) {
   2329        1.1      gwr 				TAILQ_INSERT_TAIL(&a_pool, a_tbl, at_link);
   2330        1.1      gwr 			}
   2331        1.1      gwr 		}
   2332        1.1      gwr 	}
   2333        1.1      gwr }
   2334        1.1      gwr 
   2335        1.1      gwr /* pmap_copy				INTERFACE
   2336        1.1      gwr  **
   2337        1.1      gwr  * Copy the mappings of a range of addresses in one pmap, into
   2338        1.1      gwr  * the destination address of another.
   2339        1.1      gwr  *
   2340        1.1      gwr  * This routine is advisory.  Should we one day decide that MMU tables
   2341        1.1      gwr  * may be shared by more than one pmap, this function should be used to
   2342        1.1      gwr  * link them together.  Until that day however, we do nothing.
   2343        1.1      gwr  */
   2344        1.1      gwr void
   2345       1.86      chs pmap_copy(pmap_t pmap_a, pmap_t pmap_b, vaddr_t dst, vsize_t len, vaddr_t src)
   2346        1.1      gwr {
   2347        1.1      gwr 	/* not implemented. */
   2348        1.1      gwr }
   2349        1.1      gwr 
   2350        1.1      gwr /* pmap_copy_page			INTERFACE
   2351        1.1      gwr  **
   2352        1.1      gwr  * Copy the contents of one physical page into another.
   2353        1.1      gwr  *
   2354        1.7      gwr  * This function makes use of two virtual pages allocated in pmap_bootstrap()
   2355       1.24   jeremy  * to map the two specified physical pages into the kernel address space.
   2356        1.7      gwr  *
   2357        1.7      gwr  * Note: We could use the transparent translation registers to make the
   2358        1.7      gwr  * mappings.  If we do so, be sure to disable interrupts before using them.
   2359        1.1      gwr  */
   2360       1.86      chs void
   2361       1.86      chs pmap_copy_page(paddr_t srcpa, paddr_t dstpa)
   2362        1.1      gwr {
   2363       1.69      chs 	vaddr_t srcva, dstva;
   2364       1.23   jeremy 	int s;
   2365       1.24   jeremy 
   2366       1.24   jeremy 	srcva = tmp_vpages[0];
   2367       1.24   jeremy 	dstva = tmp_vpages[1];
   2368        1.1      gwr 
   2369       1.58  thorpej 	s = splvm();
   2370       1.69      chs #ifdef DIAGNOSTIC
   2371       1.24   jeremy 	if (tmp_vpages_inuse++)
   2372       1.24   jeremy 		panic("pmap_copy_page: temporary vpages are in use.");
   2373       1.69      chs #endif
   2374       1.23   jeremy 
   2375       1.23   jeremy 	/* Map pages as non-cacheable to avoid cache polution? */
   2376       1.69      chs 	pmap_kenter_pa(srcva, srcpa, VM_PROT_READ);
   2377       1.69      chs 	pmap_kenter_pa(dstva, dstpa, VM_PROT_READ|VM_PROT_WRITE);
   2378        1.7      gwr 
   2379       1.79  thorpej 	/* Hand-optimized version of bcopy(src, dst, PAGE_SIZE) */
   2380       1.24   jeremy 	copypage((char *) srcva, (char *) dstva);
   2381       1.24   jeremy 
   2382       1.79  thorpej 	pmap_kremove(srcva, PAGE_SIZE);
   2383       1.79  thorpej 	pmap_kremove(dstva, PAGE_SIZE);
   2384       1.24   jeremy 
   2385       1.69      chs #ifdef DIAGNOSTIC
   2386       1.24   jeremy 	--tmp_vpages_inuse;
   2387       1.69      chs #endif
   2388       1.23   jeremy 	splx(s);
   2389        1.1      gwr }
   2390        1.1      gwr 
   2391        1.1      gwr /* pmap_zero_page			INTERFACE
   2392        1.1      gwr  **
   2393        1.1      gwr  * Zero the contents of the specified physical page.
   2394        1.1      gwr  *
   2395        1.7      gwr  * Uses one of the virtual pages allocated in pmap_boostrap()
   2396       1.24   jeremy  * to map the specified page into the kernel address space.
   2397        1.1      gwr  */
   2398       1.86      chs void
   2399       1.86      chs pmap_zero_page(paddr_t dstpa)
   2400        1.1      gwr {
   2401       1.69      chs 	vaddr_t dstva;
   2402       1.23   jeremy 	int s;
   2403       1.23   jeremy 
   2404       1.24   jeremy 	dstva = tmp_vpages[1];
   2405       1.58  thorpej 	s = splvm();
   2406       1.69      chs #ifdef DIAGNOSTIC
   2407       1.26   jeremy 	if (tmp_vpages_inuse++)
   2408       1.24   jeremy 		panic("pmap_zero_page: temporary vpages are in use.");
   2409       1.69      chs #endif
   2410       1.24   jeremy 
   2411       1.24   jeremy 	/* The comments in pmap_copy_page() above apply here also. */
   2412       1.69      chs 	pmap_kenter_pa(dstva, dstpa, VM_PROT_READ|VM_PROT_WRITE);
   2413       1.24   jeremy 
   2414       1.79  thorpej 	/* Hand-optimized version of bzero(ptr, PAGE_SIZE) */
   2415       1.24   jeremy 	zeropage((char *) dstva);
   2416        1.1      gwr 
   2417       1.79  thorpej 	pmap_kremove(dstva, PAGE_SIZE);
   2418       1.69      chs #ifdef DIAGNOSTIC
   2419       1.24   jeremy 	--tmp_vpages_inuse;
   2420       1.69      chs #endif
   2421       1.23   jeremy 	splx(s);
   2422        1.1      gwr }
   2423        1.1      gwr 
   2424        1.1      gwr /* pmap_collect			INTERFACE
   2425        1.1      gwr  **
   2426        1.7      gwr  * Called from the VM system when we are about to swap out
   2427        1.7      gwr  * the process using this pmap.  This should give up any
   2428        1.7      gwr  * resources held here, including all its MMU tables.
   2429        1.1      gwr  */
   2430       1.86      chs void
   2431       1.86      chs pmap_collect(pmap_t pmap)
   2432        1.1      gwr {
   2433        1.7      gwr 	/* XXX - todo... */
   2434        1.1      gwr }
   2435        1.1      gwr 
   2436        1.1      gwr /* pmap_create			INTERFACE
   2437        1.1      gwr  **
   2438        1.1      gwr  * Create and return a pmap structure.
   2439        1.1      gwr  */
   2440       1.86      chs pmap_t
   2441       1.86      chs pmap_create(void)
   2442        1.1      gwr {
   2443        1.1      gwr 	pmap_t	pmap;
   2444        1.1      gwr 
   2445       1.56  tsutsui 	pmap = pool_get(&pmap_pmap_pool, PR_WAITOK);
   2446        1.1      gwr 	pmap_pinit(pmap);
   2447        1.1      gwr 	return pmap;
   2448        1.1      gwr }
   2449        1.1      gwr 
   2450        1.1      gwr /* pmap_pinit			INTERNAL
   2451        1.1      gwr  **
   2452        1.1      gwr  * Initialize a pmap structure.
   2453        1.1      gwr  */
   2454       1.86      chs void
   2455       1.86      chs pmap_pinit(pmap_t pmap)
   2456        1.1      gwr {
   2457       1.71  tsutsui 	memset(pmap, 0, sizeof(struct pmap));
   2458        1.7      gwr 	pmap->pm_a_tmgr = NULL;
   2459        1.7      gwr 	pmap->pm_a_phys = kernAphys;
   2460       1.55  tsutsui 	pmap->pm_refcount = 1;
   2461       1.55  tsutsui 	simple_lock_init(&pmap->pm_lock);
   2462        1.1      gwr }
   2463        1.1      gwr 
   2464        1.1      gwr /* pmap_release				INTERFACE
   2465        1.1      gwr  **
   2466        1.1      gwr  * Release any resources held by the given pmap.
   2467        1.1      gwr  *
   2468        1.1      gwr  * This is the reverse analog to pmap_pinit.  It does not
   2469        1.1      gwr  * necessarily mean for the pmap structure to be deallocated,
   2470        1.1      gwr  * as in pmap_destroy.
   2471        1.1      gwr  */
   2472       1.86      chs void
   2473       1.86      chs pmap_release(pmap_t pmap)
   2474        1.1      gwr {
   2475        1.7      gwr 	/*
   2476        1.7      gwr 	 * As long as the pmap contains no mappings,
   2477        1.1      gwr 	 * which always should be the case whenever
   2478        1.1      gwr 	 * this function is called, there really should
   2479        1.1      gwr 	 * be nothing to do.
   2480        1.1      gwr 	 */
   2481        1.1      gwr #ifdef	PMAP_DEBUG
   2482        1.1      gwr 	if (pmap == pmap_kernel())
   2483        1.9      gwr 		panic("pmap_release: kernel pmap");
   2484        1.1      gwr #endif
   2485        1.9      gwr 	/*
   2486        1.9      gwr 	 * XXX - If this pmap has an A table, give it back.
   2487        1.9      gwr 	 * The pmap SHOULD be empty by now, and pmap_remove
   2488        1.9      gwr 	 * should have already given back the A table...
   2489        1.9      gwr 	 * However, I see:  pmap->pm_a_tmgr->at_ecnt == 1
   2490        1.9      gwr 	 * at this point, which means some mapping was not
   2491        1.9      gwr 	 * removed when it should have been. -gwr
   2492        1.9      gwr 	 */
   2493        1.7      gwr 	if (pmap->pm_a_tmgr != NULL) {
   2494        1.9      gwr 		/* First make sure we are not using it! */
   2495        1.9      gwr 		if (kernel_crp.rp_addr == pmap->pm_a_phys) {
   2496        1.9      gwr 			kernel_crp.rp_addr = kernAphys;
   2497        1.9      gwr 			loadcrp(&kernel_crp);
   2498        1.9      gwr 		}
   2499       1.13      gwr #ifdef	PMAP_DEBUG /* XXX - todo! */
   2500       1.13      gwr 		/* XXX - Now complain... */
   2501       1.13      gwr 		printf("pmap_release: still have table\n");
   2502       1.13      gwr 		Debugger();
   2503       1.13      gwr #endif
   2504        1.7      gwr 		free_a_table(pmap->pm_a_tmgr, TRUE);
   2505        1.7      gwr 		pmap->pm_a_tmgr = NULL;
   2506        1.7      gwr 		pmap->pm_a_phys = kernAphys;
   2507        1.7      gwr 	}
   2508        1.1      gwr }
   2509        1.1      gwr 
   2510        1.1      gwr /* pmap_reference			INTERFACE
   2511        1.1      gwr  **
   2512        1.1      gwr  * Increment the reference count of a pmap.
   2513        1.1      gwr  */
   2514       1.86      chs void
   2515       1.86      chs pmap_reference(pmap_t pmap)
   2516        1.1      gwr {
   2517       1.55  tsutsui 	pmap_lock(pmap);
   2518       1.55  tsutsui 	pmap_add_ref(pmap);
   2519       1.55  tsutsui 	pmap_unlock(pmap);
   2520        1.1      gwr }
   2521        1.1      gwr 
   2522        1.1      gwr /* pmap_dereference			INTERNAL
   2523        1.1      gwr  **
   2524        1.1      gwr  * Decrease the reference count on the given pmap
   2525        1.1      gwr  * by one and return the current count.
   2526        1.1      gwr  */
   2527       1.86      chs int
   2528       1.86      chs pmap_dereference(pmap_t pmap)
   2529        1.1      gwr {
   2530        1.1      gwr 	int rtn;
   2531        1.1      gwr 
   2532       1.55  tsutsui 	pmap_lock(pmap);
   2533       1.55  tsutsui 	rtn = pmap_del_ref(pmap);
   2534       1.55  tsutsui 	pmap_unlock(pmap);
   2535        1.1      gwr 
   2536        1.1      gwr 	return rtn;
   2537        1.1      gwr }
   2538        1.1      gwr 
   2539        1.1      gwr /* pmap_destroy			INTERFACE
   2540        1.1      gwr  **
   2541        1.1      gwr  * Decrement a pmap's reference count and delete
   2542        1.1      gwr  * the pmap if it becomes zero.  Will be called
   2543        1.1      gwr  * only after all mappings have been removed.
   2544        1.1      gwr  */
   2545       1.86      chs void
   2546       1.86      chs pmap_destroy(pmap_t pmap)
   2547        1.1      gwr {
   2548        1.1      gwr 	if (pmap_dereference(pmap) == 0) {
   2549        1.1      gwr 		pmap_release(pmap);
   2550       1.56  tsutsui 		pool_put(&pmap_pmap_pool, pmap);
   2551        1.1      gwr 	}
   2552        1.1      gwr }
   2553        1.1      gwr 
   2554        1.1      gwr /* pmap_is_referenced			INTERFACE
   2555        1.1      gwr  **
   2556        1.1      gwr  * Determine if the given physical page has been
   2557        1.1      gwr  * referenced (read from [or written to.])
   2558        1.1      gwr  */
   2559        1.1      gwr boolean_t
   2560       1.86      chs pmap_is_referenced(struct vm_page *pg)
   2561        1.1      gwr {
   2562       1.49      chs 	paddr_t   pa = VM_PAGE_TO_PHYS(pg);
   2563        1.1      gwr 	pv_t      *pv;
   2564       1.69      chs 	int       idx;
   2565        1.1      gwr 
   2566        1.7      gwr 	/*
   2567        1.7      gwr 	 * Check the flags on the pv head.  If they are set,
   2568        1.1      gwr 	 * return immediately.  Otherwise a search must be done.
   2569        1.7      gwr 	 */
   2570       1.69      chs 
   2571       1.69      chs 	pv = pa2pv(pa);
   2572        1.1      gwr 	if (pv->pv_flags & PV_FLAGS_USED)
   2573        1.1      gwr 		return TRUE;
   2574       1.32      gwr 
   2575       1.32      gwr 	/*
   2576       1.32      gwr 	 * Search through all pv elements pointing
   2577       1.32      gwr 	 * to this page and query their reference bits
   2578       1.32      gwr 	 */
   2579       1.32      gwr 
   2580       1.69      chs 	for (idx = pv->pv_idx; idx != PVE_EOL; idx = pvebase[idx].pve_next) {
   2581       1.32      gwr 		if (MMU_PTE_USED(kernCbase[idx])) {
   2582       1.32      gwr 			return TRUE;
   2583       1.32      gwr 		}
   2584        1.7      gwr 	}
   2585        1.1      gwr 	return FALSE;
   2586        1.1      gwr }
   2587        1.1      gwr 
   2588        1.1      gwr /* pmap_is_modified			INTERFACE
   2589        1.1      gwr  **
   2590        1.1      gwr  * Determine if the given physical page has been
   2591        1.1      gwr  * modified (written to.)
   2592        1.1      gwr  */
   2593        1.1      gwr boolean_t
   2594       1.86      chs pmap_is_modified(struct vm_page *pg)
   2595        1.1      gwr {
   2596       1.49      chs 	paddr_t   pa = VM_PAGE_TO_PHYS(pg);
   2597        1.1      gwr 	pv_t      *pv;
   2598       1.69      chs 	int       idx;
   2599        1.1      gwr 
   2600        1.1      gwr 	/* see comments in pmap_is_referenced() */
   2601        1.1      gwr 	pv = pa2pv(pa);
   2602       1.32      gwr 	if (pv->pv_flags & PV_FLAGS_MDFY)
   2603        1.1      gwr 		return TRUE;
   2604       1.32      gwr 
   2605       1.32      gwr 	for (idx = pv->pv_idx;
   2606       1.32      gwr 		 idx != PVE_EOL;
   2607       1.32      gwr 		 idx = pvebase[idx].pve_next) {
   2608       1.32      gwr 
   2609       1.32      gwr 		if (MMU_PTE_MODIFIED(kernCbase[idx])) {
   2610       1.32      gwr 			return TRUE;
   2611       1.32      gwr 		}
   2612        1.7      gwr 	}
   2613        1.7      gwr 
   2614        1.1      gwr 	return FALSE;
   2615        1.1      gwr }
   2616        1.1      gwr 
   2617        1.1      gwr /* pmap_page_protect			INTERFACE
   2618        1.1      gwr  **
   2619        1.1      gwr  * Applies the given protection to all mappings to the given
   2620        1.1      gwr  * physical page.
   2621        1.1      gwr  */
   2622       1.86      chs void
   2623       1.86      chs pmap_page_protect(struct vm_page *pg, vm_prot_t prot)
   2624        1.1      gwr {
   2625       1.49      chs 	paddr_t   pa = VM_PAGE_TO_PHYS(pg);
   2626        1.1      gwr 	pv_t      *pv;
   2627       1.69      chs 	int       idx;
   2628       1.69      chs 	vaddr_t va;
   2629        1.1      gwr 	struct mmu_short_pte_struct *pte;
   2630        1.8      gwr 	c_tmgr_t  *c_tbl;
   2631        1.8      gwr 	pmap_t    pmap, curpmap;
   2632        1.1      gwr 
   2633        1.8      gwr 	curpmap = current_pmap();
   2634        1.1      gwr 	pv = pa2pv(pa);
   2635       1.32      gwr 
   2636       1.69      chs 	for (idx = pv->pv_idx; idx != PVE_EOL; idx = pvebase[idx].pve_next) {
   2637        1.7      gwr 		pte = &kernCbase[idx];
   2638        1.1      gwr 		switch (prot) {
   2639        1.1      gwr 			case VM_PROT_ALL:
   2640        1.1      gwr 				/* do nothing */
   2641        1.1      gwr 				break;
   2642        1.7      gwr 			case VM_PROT_EXECUTE:
   2643        1.1      gwr 			case VM_PROT_READ:
   2644        1.1      gwr 			case VM_PROT_READ|VM_PROT_EXECUTE:
   2645        1.8      gwr 				/*
   2646        1.8      gwr 				 * Determine the virtual address mapped by
   2647        1.8      gwr 				 * the PTE and flush ATC entries if necessary.
   2648        1.8      gwr 				 */
   2649        1.8      gwr 				va = pmap_get_pteinfo(idx, &pmap, &c_tbl);
   2650       1.69      chs 				pte->attr.raw |= MMU_SHORT_PTE_WP;
   2651        1.8      gwr 				if (pmap == curpmap || pmap == pmap_kernel())
   2652        1.8      gwr 					TBIS(va);
   2653        1.1      gwr 				break;
   2654        1.1      gwr 			case VM_PROT_NONE:
   2655        1.7      gwr 				/* Save the mod/ref bits. */
   2656        1.7      gwr 				pv->pv_flags |= pte->attr.raw;
   2657        1.7      gwr 				/* Invalidate the PTE. */
   2658        1.7      gwr 				pte->attr.raw = MMU_DT_INVALID;
   2659        1.8      gwr 
   2660        1.8      gwr 				/*
   2661        1.8      gwr 				 * Update table counts.  And flush ATC entries
   2662        1.8      gwr 				 * if necessary.
   2663        1.8      gwr 				 */
   2664        1.8      gwr 				va = pmap_get_pteinfo(idx, &pmap, &c_tbl);
   2665        1.8      gwr 
   2666        1.8      gwr 				/*
   2667        1.8      gwr 				 * If the PTE belongs to the kernel map,
   2668        1.8      gwr 				 * be sure to flush the page it maps.
   2669        1.8      gwr 				 */
   2670        1.8      gwr 				if (pmap == pmap_kernel()) {
   2671        1.8      gwr 					TBIS(va);
   2672        1.8      gwr 				} else {
   2673        1.8      gwr 					/*
   2674        1.8      gwr 					 * The PTE belongs to a user map.
   2675        1.8      gwr 					 * update the entry count in the C
   2676        1.8      gwr 					 * table to which it belongs and flush
   2677        1.8      gwr 					 * the ATC if the mapping belongs to
   2678        1.8      gwr 					 * the current pmap.
   2679        1.8      gwr 					 */
   2680        1.8      gwr 					c_tbl->ct_ecnt--;
   2681        1.8      gwr 					if (pmap == curpmap)
   2682        1.8      gwr 						TBIS(va);
   2683        1.8      gwr 				}
   2684        1.1      gwr 				break;
   2685        1.1      gwr 			default:
   2686        1.1      gwr 				break;
   2687        1.1      gwr 		}
   2688        1.1      gwr 	}
   2689        1.8      gwr 
   2690        1.8      gwr 	/*
   2691        1.8      gwr 	 * If the protection code indicates that all mappings to the page
   2692        1.8      gwr 	 * be removed, truncate the PV list to zero entries.
   2693        1.8      gwr 	 */
   2694        1.7      gwr 	if (prot == VM_PROT_NONE)
   2695        1.7      gwr 		pv->pv_idx = PVE_EOL;
   2696        1.1      gwr }
   2697        1.1      gwr 
   2698        1.7      gwr /* pmap_get_pteinfo		INTERNAL
   2699        1.1      gwr  **
   2700        1.7      gwr  * Called internally to find the pmap and virtual address within that
   2701        1.8      gwr  * map to which the pte at the given index maps.  Also includes the PTE's C
   2702        1.8      gwr  * table manager.
   2703        1.1      gwr  *
   2704        1.7      gwr  * Returns the pmap in the argument provided, and the virtual address
   2705        1.7      gwr  * by return value.
   2706        1.1      gwr  */
   2707       1.86      chs vaddr_t
   2708       1.86      chs pmap_get_pteinfo(u_int idx, pmap_t *pmap, c_tmgr_t **tbl)
   2709        1.1      gwr {
   2710       1.69      chs 	vaddr_t     va = 0;
   2711        1.1      gwr 
   2712        1.7      gwr 	/*
   2713        1.7      gwr 	 * Determine if the PTE is a kernel PTE or a user PTE.
   2714        1.1      gwr 	 */
   2715        1.8      gwr 	if (idx >= NUM_KERN_PTES) {
   2716        1.7      gwr 		/*
   2717        1.7      gwr 		 * The PTE belongs to a user mapping.
   2718        1.7      gwr 		 */
   2719        1.8      gwr 		/* XXX: Would like an inline for this to validate idx... */
   2720       1.26   jeremy 		*tbl = &Ctmgrbase[(idx - NUM_KERN_PTES) / MMU_C_TBL_SIZE];
   2721       1.26   jeremy 
   2722       1.26   jeremy 		*pmap = (*tbl)->ct_pmap;
   2723       1.26   jeremy 		/*
   2724       1.26   jeremy 		 * To find the va to which the PTE maps, we first take
   2725       1.26   jeremy 		 * the table's base virtual address mapping which is stored
   2726       1.26   jeremy 		 * in ct_va.  We then increment this address by a page for
   2727       1.26   jeremy 		 * every slot skipped until we reach the PTE.
   2728       1.26   jeremy 		 */
   2729       1.26   jeremy 		va =    (*tbl)->ct_va;
   2730       1.26   jeremy 		va += m68k_ptob(idx % MMU_C_TBL_SIZE);
   2731        1.7      gwr 	} else {
   2732        1.7      gwr 		/*
   2733        1.7      gwr 		 * The PTE belongs to the kernel map.
   2734        1.7      gwr 		 */
   2735        1.8      gwr 		*pmap = pmap_kernel();
   2736        1.8      gwr 
   2737       1.25    veego 		va = m68k_ptob(idx);
   2738        1.7      gwr 		va += KERNBASE;
   2739        1.7      gwr 	}
   2740        1.7      gwr 
   2741        1.1      gwr 	return va;
   2742        1.1      gwr }
   2743        1.1      gwr 
   2744        1.1      gwr /* pmap_clear_modify			INTERFACE
   2745        1.1      gwr  **
   2746        1.1      gwr  * Clear the modification bit on the page at the specified
   2747        1.1      gwr  * physical address.
   2748        1.1      gwr  *
   2749        1.1      gwr  */
   2750       1.49      chs boolean_t
   2751       1.86      chs pmap_clear_modify(struct vm_page *pg)
   2752        1.1      gwr {
   2753       1.49      chs 	paddr_t pa = VM_PAGE_TO_PHYS(pg);
   2754       1.49      chs 	boolean_t rv;
   2755       1.49      chs 
   2756       1.49      chs 	rv = pmap_is_modified(pg);
   2757        1.1      gwr 	pmap_clear_pv(pa, PV_FLAGS_MDFY);
   2758       1.49      chs 	return rv;
   2759        1.1      gwr }
   2760        1.1      gwr 
   2761        1.1      gwr /* pmap_clear_reference			INTERFACE
   2762        1.1      gwr  **
   2763        1.1      gwr  * Clear the referenced bit on the page at the specified
   2764        1.1      gwr  * physical address.
   2765        1.1      gwr  */
   2766       1.49      chs boolean_t
   2767       1.86      chs pmap_clear_reference(struct vm_page *pg)
   2768        1.1      gwr {
   2769       1.49      chs 	paddr_t pa = VM_PAGE_TO_PHYS(pg);
   2770       1.49      chs 	boolean_t rv;
   2771       1.49      chs 
   2772       1.49      chs 	rv = pmap_is_referenced(pg);
   2773        1.1      gwr 	pmap_clear_pv(pa, PV_FLAGS_USED);
   2774       1.49      chs 	return rv;
   2775        1.1      gwr }
   2776        1.1      gwr 
   2777        1.1      gwr /* pmap_clear_pv			INTERNAL
   2778        1.1      gwr  **
   2779        1.1      gwr  * Clears the specified flag from the specified physical address.
   2780        1.1      gwr  * (Used by pmap_clear_modify() and pmap_clear_reference().)
   2781        1.1      gwr  *
   2782        1.1      gwr  * Flag is one of:
   2783        1.1      gwr  *   PV_FLAGS_MDFY - Page modified bit.
   2784        1.1      gwr  *   PV_FLAGS_USED - Page used (referenced) bit.
   2785        1.1      gwr  *
   2786        1.1      gwr  * This routine must not only clear the flag on the pv list
   2787        1.1      gwr  * head.  It must also clear the bit on every pte in the pv
   2788        1.1      gwr  * list associated with the address.
   2789        1.1      gwr  */
   2790       1.86      chs void
   2791       1.86      chs pmap_clear_pv(paddr_t pa, int flag)
   2792        1.1      gwr {
   2793        1.1      gwr 	pv_t      *pv;
   2794       1.69      chs 	int       idx;
   2795       1.69      chs 	vaddr_t   va;
   2796        1.7      gwr 	pmap_t          pmap;
   2797        1.1      gwr 	mmu_short_pte_t *pte;
   2798        1.7      gwr 	c_tmgr_t        *c_tbl;
   2799        1.1      gwr 
   2800        1.1      gwr 	pv = pa2pv(pa);
   2801        1.1      gwr 	pv->pv_flags &= ~(flag);
   2802       1.69      chs 	for (idx = pv->pv_idx; idx != PVE_EOL; idx = pvebase[idx].pve_next) {
   2803        1.7      gwr 		pte = &kernCbase[idx];
   2804        1.1      gwr 		pte->attr.raw &= ~(flag);
   2805       1.69      chs 
   2806        1.7      gwr 		/*
   2807        1.7      gwr 		 * The MC68030 MMU will not set the modified or
   2808        1.7      gwr 		 * referenced bits on any MMU tables for which it has
   2809        1.7      gwr 		 * a cached descriptor with its modify bit set.  To insure
   2810        1.7      gwr 		 * that it will modify these bits on the PTE during the next
   2811        1.7      gwr 		 * time it is written to or read from, we must flush it from
   2812        1.7      gwr 		 * the ATC.
   2813        1.7      gwr 		 *
   2814        1.7      gwr 		 * Ordinarily it is only necessary to flush the descriptor
   2815        1.7      gwr 		 * if it is used in the current address space.  But since I
   2816        1.7      gwr 		 * am not sure that there will always be a notion of
   2817        1.7      gwr 		 * 'the current address space' when this function is called,
   2818        1.7      gwr 		 * I will skip the test and always flush the address.  It
   2819        1.7      gwr 		 * does no harm.
   2820        1.7      gwr 		 */
   2821       1.69      chs 
   2822        1.8      gwr 		va = pmap_get_pteinfo(idx, &pmap, &c_tbl);
   2823        1.7      gwr 		TBIS(va);
   2824        1.1      gwr 	}
   2825        1.1      gwr }
   2826        1.1      gwr 
   2827        1.1      gwr /* pmap_extract			INTERFACE
   2828        1.1      gwr  **
   2829        1.1      gwr  * Return the physical address mapped by the virtual address
   2830       1.48  thorpej  * in the specified pmap.
   2831        1.1      gwr  *
   2832        1.1      gwr  * Note: this function should also apply an exclusive lock
   2833        1.1      gwr  * on the pmap system during its duration.
   2834        1.1      gwr  */
   2835       1.86      chs boolean_t
   2836       1.86      chs pmap_extract(pmap_t pmap, vaddr_t va, paddr_t *pap)
   2837        1.1      gwr {
   2838        1.1      gwr 	int a_idx, b_idx, pte_idx;
   2839        1.1      gwr 	a_tmgr_t	*a_tbl;
   2840        1.1      gwr 	b_tmgr_t	*b_tbl;
   2841        1.1      gwr 	c_tmgr_t	*c_tbl;
   2842        1.1      gwr 	mmu_short_pte_t	*c_pte;
   2843        1.1      gwr 
   2844        1.1      gwr 	if (pmap == pmap_kernel())
   2845       1.48  thorpej 		return pmap_extract_kernel(va, pap);
   2846        1.1      gwr 
   2847        1.1      gwr 	if (pmap_stroll(pmap, va, &a_tbl, &b_tbl, &c_tbl,
   2848        1.7      gwr 		&c_pte, &a_idx, &b_idx, &pte_idx) == FALSE)
   2849       1.48  thorpej 		return FALSE;
   2850        1.1      gwr 
   2851        1.7      gwr 	if (!MMU_VALID_DT(*c_pte))
   2852       1.48  thorpej 		return FALSE;
   2853        1.7      gwr 
   2854       1.48  thorpej 	if (pap != NULL)
   2855       1.48  thorpej 		*pap = MMU_PTE_PA(*c_pte);
   2856       1.48  thorpej 	return (TRUE);
   2857        1.1      gwr }
   2858        1.1      gwr 
   2859        1.1      gwr /* pmap_extract_kernel		INTERNAL
   2860        1.1      gwr  **
   2861        1.8      gwr  * Extract a translation from the kernel address space.
   2862        1.1      gwr  */
   2863       1.86      chs boolean_t
   2864       1.86      chs pmap_extract_kernel(vaddr_t va, paddr_t *pap)
   2865        1.1      gwr {
   2866        1.1      gwr 	mmu_short_pte_t *pte;
   2867        1.1      gwr 
   2868       1.25    veego 	pte = &kernCbase[(u_int) m68k_btop(va - KERNBASE)];
   2869       1.48  thorpej 	if (!MMU_VALID_DT(*pte))
   2870       1.48  thorpej 		return (FALSE);
   2871       1.48  thorpej 	if (pap != NULL)
   2872       1.48  thorpej 		*pap = MMU_PTE_PA(*pte);
   2873       1.48  thorpej 	return (TRUE);
   2874        1.1      gwr }
   2875        1.1      gwr 
   2876        1.1      gwr /* pmap_remove_kernel		INTERNAL
   2877        1.1      gwr  **
   2878        1.1      gwr  * Remove the mapping of a range of virtual addresses from the kernel map.
   2879        1.9      gwr  * The arguments are already page-aligned.
   2880        1.1      gwr  */
   2881       1.86      chs void
   2882       1.86      chs pmap_remove_kernel(vaddr_t sva, vaddr_t eva)
   2883        1.1      gwr {
   2884        1.9      gwr 	int idx, eidx;
   2885        1.9      gwr 
   2886        1.9      gwr #ifdef	PMAP_DEBUG
   2887        1.9      gwr 	if ((sva & PGOFSET) || (eva & PGOFSET))
   2888        1.9      gwr 		panic("pmap_remove_kernel: alignment");
   2889        1.9      gwr #endif
   2890        1.1      gwr 
   2891       1.25    veego 	idx  = m68k_btop(sva - KERNBASE);
   2892       1.25    veego 	eidx = m68k_btop(eva - KERNBASE);
   2893        1.9      gwr 
   2894       1.24   jeremy 	while (idx < eidx) {
   2895        1.9      gwr 		pmap_remove_pte(&kernCbase[idx++]);
   2896       1.24   jeremy 		TBIS(sva);
   2897       1.79  thorpej 		sva += PAGE_SIZE;
   2898       1.24   jeremy 	}
   2899        1.1      gwr }
   2900        1.1      gwr 
   2901        1.1      gwr /* pmap_remove			INTERFACE
   2902        1.1      gwr  **
   2903        1.1      gwr  * Remove the mapping of a range of virtual addresses from the given pmap.
   2904        1.7      gwr  *
   2905        1.7      gwr  * If the range contains any wired entries, this function will probably create
   2906        1.7      gwr  * disaster.
   2907        1.1      gwr  */
   2908       1.86      chs void
   2909       1.88  tsutsui pmap_remove(pmap_t pmap, vaddr_t sva, vaddr_t eva)
   2910        1.1      gwr {
   2911        1.7      gwr 
   2912        1.1      gwr 	if (pmap == pmap_kernel()) {
   2913       1.88  tsutsui 		pmap_remove_kernel(sva, eva);
   2914        1.1      gwr 		return;
   2915        1.1      gwr 	}
   2916        1.1      gwr 
   2917        1.7      gwr 	/*
   2918        1.7      gwr 	 * If the pmap doesn't have an A table of its own, it has no mappings
   2919        1.7      gwr 	 * that can be removed.
   2920        1.1      gwr 	 */
   2921        1.7      gwr 	if (pmap->pm_a_tmgr == NULL)
   2922        1.7      gwr 		return;
   2923        1.7      gwr 
   2924        1.7      gwr 	/*
   2925        1.7      gwr 	 * Remove the specified range from the pmap.  If the function
   2926        1.7      gwr 	 * returns true, the operation removed all the valid mappings
   2927        1.7      gwr 	 * in the pmap and freed its A table.  If this happened to the
   2928        1.7      gwr 	 * currently loaded pmap, the MMU root pointer must be reloaded
   2929        1.7      gwr 	 * with the default 'kernel' map.
   2930        1.7      gwr 	 */
   2931       1.88  tsutsui 	if (pmap_remove_a(pmap->pm_a_tmgr, sva, eva)) {
   2932        1.9      gwr 		if (kernel_crp.rp_addr == pmap->pm_a_phys) {
   2933        1.9      gwr 			kernel_crp.rp_addr = kernAphys;
   2934        1.9      gwr 			loadcrp(&kernel_crp);
   2935        1.9      gwr 			/* will do TLB flush below */
   2936        1.9      gwr 		}
   2937        1.7      gwr 		pmap->pm_a_tmgr = NULL;
   2938        1.7      gwr 		pmap->pm_a_phys = kernAphys;
   2939        1.1      gwr 	}
   2940        1.9      gwr 
   2941        1.9      gwr 	/*
   2942        1.9      gwr 	 * If we just modified the current address space,
   2943        1.9      gwr 	 * make sure to flush the MMU cache.
   2944        1.9      gwr 	 *
   2945        1.9      gwr 	 * XXX - this could be an unecessarily large flush.
   2946        1.9      gwr 	 * XXX - Could decide, based on the size of the VA range
   2947        1.9      gwr 	 * to be removed, whether to flush "by pages" or "all".
   2948        1.9      gwr 	 */
   2949        1.9      gwr 	if (pmap == current_pmap())
   2950        1.9      gwr 		TBIAU();
   2951        1.1      gwr }
   2952        1.1      gwr 
   2953        1.1      gwr /* pmap_remove_a			INTERNAL
   2954        1.1      gwr  **
   2955        1.1      gwr  * This is function number one in a set of three that removes a range
   2956        1.1      gwr  * of memory in the most efficient manner by removing the highest possible
   2957        1.1      gwr  * tables from the memory space.  This particular function attempts to remove
   2958        1.1      gwr  * as many B tables as it can, delegating the remaining fragmented ranges to
   2959        1.1      gwr  * pmap_remove_b().
   2960        1.1      gwr  *
   2961        1.7      gwr  * If the removal operation results in an empty A table, the function returns
   2962        1.7      gwr  * TRUE.
   2963        1.7      gwr  *
   2964        1.1      gwr  * It's ugly but will do for now.
   2965        1.1      gwr  */
   2966       1.86      chs boolean_t
   2967       1.88  tsutsui pmap_remove_a(a_tmgr_t *a_tbl, vaddr_t sva, vaddr_t eva)
   2968        1.1      gwr {
   2969        1.7      gwr 	boolean_t empty;
   2970        1.1      gwr 	int idx;
   2971       1.69      chs 	vaddr_t nstart, nend;
   2972        1.1      gwr 	b_tmgr_t *b_tbl;
   2973        1.1      gwr 	mmu_long_dte_t  *a_dte;
   2974        1.1      gwr 	mmu_short_dte_t *b_dte;
   2975        1.8      gwr 
   2976        1.7      gwr 	/*
   2977        1.7      gwr 	 * The following code works with what I call a 'granularity
   2978        1.7      gwr 	 * reduction algorithim'.  A range of addresses will always have
   2979        1.7      gwr 	 * the following properties, which are classified according to
   2980        1.7      gwr 	 * how the range relates to the size of the current granularity
   2981        1.7      gwr 	 * - an A table entry:
   2982        1.7      gwr 	 *
   2983        1.7      gwr 	 *            1 2       3 4
   2984        1.7      gwr 	 * -+---+---+---+---+---+---+---+-
   2985        1.7      gwr 	 * -+---+---+---+---+---+---+---+-
   2986        1.7      gwr 	 *
   2987        1.7      gwr 	 * A range will always start on a granularity boundary, illustrated
   2988        1.7      gwr 	 * by '+' signs in the table above, or it will start at some point
   2989        1.7      gwr 	 * inbetween a granularity boundary, as illustrated by point 1.
   2990        1.7      gwr 	 * The first step in removing a range of addresses is to remove the
   2991        1.7      gwr 	 * range between 1 and 2, the nearest granularity boundary.  This
   2992        1.7      gwr 	 * job is handled by the section of code governed by the
   2993        1.7      gwr 	 * 'if (start < nstart)' statement.
   2994        1.7      gwr 	 *
   2995        1.7      gwr 	 * A range will always encompass zero or more intergral granules,
   2996        1.7      gwr 	 * illustrated by points 2 and 3.  Integral granules are easy to
   2997        1.7      gwr 	 * remove.  The removal of these granules is the second step, and
   2998        1.7      gwr 	 * is handled by the code block 'if (nstart < nend)'.
   2999        1.7      gwr 	 *
   3000        1.7      gwr 	 * Lastly, a range will always end on a granularity boundary,
   3001        1.7      gwr 	 * ill. by point 3, or it will fall just beyond one, ill. by point
   3002        1.7      gwr 	 * 4.  The last step involves removing this range and is handled by
   3003        1.7      gwr 	 * the code block 'if (nend < end)'.
   3004        1.7      gwr 	 */
   3005       1.88  tsutsui 	nstart = MMU_ROUND_UP_A(sva);
   3006       1.88  tsutsui 	nend = MMU_ROUND_A(eva);
   3007        1.1      gwr 
   3008       1.88  tsutsui 	if (sva < nstart) {
   3009        1.7      gwr 		/*
   3010        1.7      gwr 		 * This block is executed if the range starts between
   3011        1.7      gwr 		 * a granularity boundary.
   3012        1.7      gwr 		 *
   3013        1.7      gwr 		 * First find the DTE which is responsible for mapping
   3014        1.7      gwr 		 * the start of the range.
   3015        1.7      gwr 		 */
   3016       1.88  tsutsui 		idx = MMU_TIA(sva);
   3017        1.1      gwr 		a_dte = &a_tbl->at_dtbl[idx];
   3018        1.7      gwr 
   3019        1.7      gwr 		/*
   3020        1.7      gwr 		 * If the DTE is valid then delegate the removal of the sub
   3021        1.7      gwr 		 * range to pmap_remove_b(), which can remove addresses at
   3022        1.7      gwr 		 * a finer granularity.
   3023        1.7      gwr 		 */
   3024        1.1      gwr 		if (MMU_VALID_DT(*a_dte)) {
   3025        1.7      gwr 			b_dte = mmu_ptov(a_dte->addr.raw);
   3026        1.1      gwr 			b_tbl = mmuB2tmgr(b_dte);
   3027        1.7      gwr 
   3028        1.7      gwr 			/*
   3029        1.7      gwr 			 * The sub range to be removed starts at the start
   3030        1.7      gwr 			 * of the full range we were asked to remove, and ends
   3031        1.7      gwr 			 * at the greater of:
   3032        1.7      gwr 			 * 1. The end of the full range, -or-
   3033        1.7      gwr 			 * 2. The end of the full range, rounded down to the
   3034        1.7      gwr 			 *    nearest granularity boundary.
   3035        1.7      gwr 			 */
   3036       1.88  tsutsui 			if (eva < nstart)
   3037       1.88  tsutsui 				empty = pmap_remove_b(b_tbl, sva, eva);
   3038        1.7      gwr 			else
   3039       1.88  tsutsui 				empty = pmap_remove_b(b_tbl, sva, nstart);
   3040        1.7      gwr 
   3041        1.7      gwr 			/*
   3042        1.7      gwr 			 * If the removal resulted in an empty B table,
   3043        1.7      gwr 			 * invalidate the DTE that points to it and decrement
   3044        1.7      gwr 			 * the valid entry count of the A table.
   3045        1.7      gwr 			 */
   3046        1.7      gwr 			if (empty) {
   3047        1.7      gwr 				a_dte->attr.raw = MMU_DT_INVALID;
   3048        1.7      gwr 				a_tbl->at_ecnt--;
   3049        1.1      gwr 			}
   3050        1.1      gwr 		}
   3051        1.7      gwr 		/*
   3052        1.7      gwr 		 * If the DTE is invalid, the address range is already non-
   3053       1.68      wiz 		 * existent and can simply be skipped.
   3054        1.7      gwr 		 */
   3055        1.1      gwr 	}
   3056        1.1      gwr 	if (nstart < nend) {
   3057        1.7      gwr 		/*
   3058        1.8      gwr 		 * This block is executed if the range spans a whole number
   3059        1.7      gwr 		 * multiple of granules (A table entries.)
   3060        1.7      gwr 		 *
   3061        1.7      gwr 		 * First find the DTE which is responsible for mapping
   3062        1.7      gwr 		 * the start of the first granule involved.
   3063        1.7      gwr 		 */
   3064        1.1      gwr 		idx = MMU_TIA(nstart);
   3065        1.1      gwr 		a_dte = &a_tbl->at_dtbl[idx];
   3066        1.7      gwr 
   3067        1.7      gwr 		/*
   3068        1.7      gwr 		 * Remove entire sub-granules (B tables) one at a time,
   3069        1.7      gwr 		 * until reaching the end of the range.
   3070        1.7      gwr 		 */
   3071        1.7      gwr 		for (; nstart < nend; a_dte++, nstart += MMU_TIA_RANGE)
   3072        1.1      gwr 			if (MMU_VALID_DT(*a_dte)) {
   3073        1.7      gwr 				/*
   3074        1.7      gwr 				 * Find the B table manager for the
   3075        1.7      gwr 				 * entry and free it.
   3076        1.7      gwr 				 */
   3077        1.7      gwr 				b_dte = mmu_ptov(a_dte->addr.raw);
   3078        1.1      gwr 				b_tbl = mmuB2tmgr(b_dte);
   3079        1.7      gwr 				free_b_table(b_tbl, TRUE);
   3080        1.7      gwr 
   3081        1.7      gwr 				/*
   3082        1.7      gwr 				 * Invalidate the DTE that points to the
   3083        1.7      gwr 				 * B table and decrement the valid entry
   3084        1.7      gwr 				 * count of the A table.
   3085        1.7      gwr 				 */
   3086        1.1      gwr 				a_dte->attr.raw = MMU_DT_INVALID;
   3087        1.1      gwr 				a_tbl->at_ecnt--;
   3088        1.1      gwr 			}
   3089        1.1      gwr 	}
   3090       1.88  tsutsui 	if (nend < eva) {
   3091        1.7      gwr 		/*
   3092        1.7      gwr 		 * This block is executed if the range ends beyond a
   3093        1.7      gwr 		 * granularity boundary.
   3094        1.7      gwr 		 *
   3095        1.7      gwr 		 * First find the DTE which is responsible for mapping
   3096        1.7      gwr 		 * the start of the nearest (rounded down) granularity
   3097        1.7      gwr 		 * boundary.
   3098        1.7      gwr 		 */
   3099        1.1      gwr 		idx = MMU_TIA(nend);
   3100        1.1      gwr 		a_dte = &a_tbl->at_dtbl[idx];
   3101        1.7      gwr 
   3102        1.7      gwr 		/*
   3103        1.7      gwr 		 * If the DTE is valid then delegate the removal of the sub
   3104        1.7      gwr 		 * range to pmap_remove_b(), which can remove addresses at
   3105        1.7      gwr 		 * a finer granularity.
   3106        1.7      gwr 		 */
   3107        1.1      gwr 		if (MMU_VALID_DT(*a_dte)) {
   3108        1.7      gwr 			/*
   3109        1.7      gwr 			 * Find the B table manager for the entry
   3110        1.7      gwr 			 * and hand it to pmap_remove_b() along with
   3111        1.7      gwr 			 * the sub range.
   3112        1.7      gwr 			 */
   3113        1.7      gwr 			b_dte = mmu_ptov(a_dte->addr.raw);
   3114        1.1      gwr 			b_tbl = mmuB2tmgr(b_dte);
   3115        1.7      gwr 
   3116       1.88  tsutsui 			empty = pmap_remove_b(b_tbl, nend, eva);
   3117        1.7      gwr 
   3118        1.7      gwr 			/*
   3119        1.7      gwr 			 * If the removal resulted in an empty B table,
   3120        1.7      gwr 			 * invalidate the DTE that points to it and decrement
   3121        1.7      gwr 			 * the valid entry count of the A table.
   3122        1.7      gwr 			 */
   3123        1.7      gwr 			if (empty) {
   3124        1.7      gwr 				a_dte->attr.raw = MMU_DT_INVALID;
   3125        1.7      gwr 				a_tbl->at_ecnt--;
   3126        1.7      gwr 			}
   3127        1.1      gwr 		}
   3128        1.1      gwr 	}
   3129        1.7      gwr 
   3130        1.7      gwr 	/*
   3131        1.7      gwr 	 * If there are no more entries in the A table, release it
   3132        1.7      gwr 	 * back to the available pool and return TRUE.
   3133        1.7      gwr 	 */
   3134        1.7      gwr 	if (a_tbl->at_ecnt == 0) {
   3135        1.7      gwr 		a_tbl->at_parent = NULL;
   3136        1.7      gwr 		TAILQ_REMOVE(&a_pool, a_tbl, at_link);
   3137        1.7      gwr 		TAILQ_INSERT_HEAD(&a_pool, a_tbl, at_link);
   3138        1.7      gwr 		empty = TRUE;
   3139        1.7      gwr 	} else {
   3140        1.7      gwr 		empty = FALSE;
   3141        1.7      gwr 	}
   3142        1.7      gwr 
   3143        1.7      gwr 	return empty;
   3144        1.1      gwr }
   3145        1.1      gwr 
   3146        1.1      gwr /* pmap_remove_b			INTERNAL
   3147        1.1      gwr  **
   3148        1.1      gwr  * Remove a range of addresses from an address space, trying to remove entire
   3149        1.1      gwr  * C tables if possible.
   3150        1.7      gwr  *
   3151        1.7      gwr  * If the operation results in an empty B table, the function returns TRUE.
   3152        1.1      gwr  */
   3153       1.86      chs boolean_t
   3154       1.88  tsutsui pmap_remove_b(b_tmgr_t *b_tbl, vaddr_t sva, vaddr_t eva)
   3155        1.1      gwr {
   3156        1.7      gwr 	boolean_t empty;
   3157        1.1      gwr 	int idx;
   3158       1.69      chs 	vaddr_t nstart, nend, rstart;
   3159        1.1      gwr 	c_tmgr_t *c_tbl;
   3160        1.1      gwr 	mmu_short_dte_t  *b_dte;
   3161        1.1      gwr 	mmu_short_pte_t  *c_dte;
   3162        1.1      gwr 
   3163        1.1      gwr 
   3164       1.88  tsutsui 	nstart = MMU_ROUND_UP_B(sva);
   3165       1.88  tsutsui 	nend = MMU_ROUND_B(eva);
   3166        1.1      gwr 
   3167       1.88  tsutsui 	if (sva < nstart) {
   3168       1.88  tsutsui 		idx = MMU_TIB(sva);
   3169        1.1      gwr 		b_dte = &b_tbl->bt_dtbl[idx];
   3170        1.1      gwr 		if (MMU_VALID_DT(*b_dte)) {
   3171        1.7      gwr 			c_dte = mmu_ptov(MMU_DTE_PA(*b_dte));
   3172        1.1      gwr 			c_tbl = mmuC2tmgr(c_dte);
   3173       1.88  tsutsui 			if (eva < nstart)
   3174       1.88  tsutsui 				empty = pmap_remove_c(c_tbl, sva, eva);
   3175        1.7      gwr 			else
   3176       1.88  tsutsui 				empty = pmap_remove_c(c_tbl, sva, nstart);
   3177        1.7      gwr 			if (empty) {
   3178        1.7      gwr 				b_dte->attr.raw = MMU_DT_INVALID;
   3179        1.7      gwr 				b_tbl->bt_ecnt--;
   3180        1.1      gwr 			}
   3181        1.1      gwr 		}
   3182        1.1      gwr 	}
   3183        1.1      gwr 	if (nstart < nend) {
   3184        1.1      gwr 		idx = MMU_TIB(nstart);
   3185        1.1      gwr 		b_dte = &b_tbl->bt_dtbl[idx];
   3186        1.1      gwr 		rstart = nstart;
   3187        1.1      gwr 		while (rstart < nend) {
   3188        1.1      gwr 			if (MMU_VALID_DT(*b_dte)) {
   3189        1.7      gwr 				c_dte = mmu_ptov(MMU_DTE_PA(*b_dte));
   3190        1.1      gwr 				c_tbl = mmuC2tmgr(c_dte);
   3191        1.7      gwr 				free_c_table(c_tbl, TRUE);
   3192        1.1      gwr 				b_dte->attr.raw = MMU_DT_INVALID;
   3193        1.1      gwr 				b_tbl->bt_ecnt--;
   3194        1.1      gwr 			}
   3195        1.1      gwr 			b_dte++;
   3196        1.1      gwr 			rstart += MMU_TIB_RANGE;
   3197        1.1      gwr 		}
   3198        1.1      gwr 	}
   3199       1.88  tsutsui 	if (nend < eva) {
   3200        1.1      gwr 		idx = MMU_TIB(nend);
   3201        1.1      gwr 		b_dte = &b_tbl->bt_dtbl[idx];
   3202        1.1      gwr 		if (MMU_VALID_DT(*b_dte)) {
   3203        1.7      gwr 			c_dte = mmu_ptov(MMU_DTE_PA(*b_dte));
   3204        1.1      gwr 			c_tbl = mmuC2tmgr(c_dte);
   3205       1.88  tsutsui 			empty = pmap_remove_c(c_tbl, nend, eva);
   3206        1.7      gwr 			if (empty) {
   3207        1.7      gwr 				b_dte->attr.raw = MMU_DT_INVALID;
   3208        1.7      gwr 				b_tbl->bt_ecnt--;
   3209        1.7      gwr 			}
   3210        1.1      gwr 		}
   3211        1.1      gwr 	}
   3212        1.7      gwr 
   3213        1.7      gwr 	if (b_tbl->bt_ecnt == 0) {
   3214        1.7      gwr 		b_tbl->bt_parent = NULL;
   3215        1.7      gwr 		TAILQ_REMOVE(&b_pool, b_tbl, bt_link);
   3216        1.7      gwr 		TAILQ_INSERT_HEAD(&b_pool, b_tbl, bt_link);
   3217        1.7      gwr 		empty = TRUE;
   3218        1.7      gwr 	} else {
   3219        1.7      gwr 		empty = FALSE;
   3220        1.7      gwr 	}
   3221        1.7      gwr 
   3222        1.7      gwr 	return empty;
   3223        1.1      gwr }
   3224        1.1      gwr 
   3225        1.1      gwr /* pmap_remove_c			INTERNAL
   3226        1.1      gwr  **
   3227        1.1      gwr  * Remove a range of addresses from the given C table.
   3228        1.1      gwr  */
   3229       1.86      chs boolean_t
   3230       1.88  tsutsui pmap_remove_c(c_tmgr_t *c_tbl, vaddr_t sva, vaddr_t eva)
   3231        1.1      gwr {
   3232        1.7      gwr 	boolean_t empty;
   3233        1.1      gwr 	int idx;
   3234        1.1      gwr 	mmu_short_pte_t *c_pte;
   3235        1.1      gwr 
   3236       1.88  tsutsui 	idx = MMU_TIC(sva);
   3237        1.1      gwr 	c_pte = &c_tbl->ct_dtbl[idx];
   3238       1.88  tsutsui 	for (;sva < eva; sva += MMU_PAGE_SIZE, c_pte++) {
   3239        1.7      gwr 		if (MMU_VALID_DT(*c_pte)) {
   3240        1.1      gwr 			pmap_remove_pte(c_pte);
   3241        1.7      gwr 			c_tbl->ct_ecnt--;
   3242        1.7      gwr 		}
   3243        1.1      gwr 	}
   3244        1.7      gwr 
   3245        1.7      gwr 	if (c_tbl->ct_ecnt == 0) {
   3246        1.7      gwr 		c_tbl->ct_parent = NULL;
   3247        1.7      gwr 		TAILQ_REMOVE(&c_pool, c_tbl, ct_link);
   3248        1.9      gwr 		TAILQ_INSERT_HEAD(&c_pool, c_tbl, ct_link);
   3249        1.9      gwr 		empty = TRUE;
   3250        1.9      gwr 	} else {
   3251        1.9      gwr 		empty = FALSE;
   3252        1.9      gwr 	}
   3253        1.7      gwr 
   3254        1.9      gwr 	return empty;
   3255        1.1      gwr }
   3256        1.1      gwr 
   3257        1.1      gwr /* is_managed				INTERNAL
   3258        1.1      gwr  **
   3259        1.1      gwr  * Determine if the given physical address is managed by the PV system.
   3260        1.1      gwr  * Note that this logic assumes that no one will ask for the status of
   3261        1.1      gwr  * addresses which lie in-between the memory banks on the 3/80.  If they
   3262        1.1      gwr  * do so, it will falsely report that it is managed.
   3263        1.7      gwr  *
   3264        1.8      gwr  * Note: A "managed" address is one that was reported to the VM system as
   3265        1.8      gwr  * a "usable page" during system startup.  As such, the VM system expects the
   3266        1.8      gwr  * pmap module to keep an accurate track of the useage of those pages.
   3267        1.8      gwr  * Any page not given to the VM system at startup does not exist (as far as
   3268        1.8      gwr  * the VM system is concerned) and is therefore "unmanaged."  Examples are
   3269        1.8      gwr  * those pages which belong to the ROM monitor and the memory allocated before
   3270        1.8      gwr  * the VM system was started.
   3271        1.1      gwr  */
   3272       1.86      chs boolean_t
   3273       1.86      chs is_managed(paddr_t pa)
   3274        1.1      gwr {
   3275        1.1      gwr 	if (pa >= avail_start && pa < avail_end)
   3276        1.1      gwr 		return TRUE;
   3277        1.1      gwr 	else
   3278        1.1      gwr 		return FALSE;
   3279        1.1      gwr }
   3280        1.1      gwr 
   3281        1.1      gwr /* pmap_bootstrap_alloc			INTERNAL
   3282        1.1      gwr  **
   3283        1.1      gwr  * Used internally for memory allocation at startup when malloc is not
   3284        1.1      gwr  * available.  This code will fail once it crosses the first memory
   3285        1.1      gwr  * bank boundary on the 3/80.  Hopefully by then however, the VM system
   3286        1.1      gwr  * will be in charge of allocation.
   3287        1.1      gwr  */
   3288        1.1      gwr void *
   3289       1.86      chs pmap_bootstrap_alloc(int size)
   3290        1.1      gwr {
   3291        1.1      gwr 	void *rtn;
   3292        1.1      gwr 
   3293        1.8      gwr #ifdef	PMAP_DEBUG
   3294        1.7      gwr 	if (bootstrap_alloc_enabled == FALSE) {
   3295        1.7      gwr 		mon_printf("pmap_bootstrap_alloc: disabled\n");
   3296        1.7      gwr 		sunmon_abort();
   3297        1.7      gwr 	}
   3298        1.7      gwr #endif
   3299        1.7      gwr 
   3300        1.1      gwr 	rtn = (void *) virtual_avail;
   3301        1.1      gwr 	virtual_avail += size;
   3302        1.1      gwr 
   3303        1.8      gwr #ifdef	PMAP_DEBUG
   3304        1.7      gwr 	if (virtual_avail > virtual_contig_end) {
   3305        1.7      gwr 		mon_printf("pmap_bootstrap_alloc: out of mem\n");
   3306        1.7      gwr 		sunmon_abort();
   3307        1.1      gwr 	}
   3308        1.7      gwr #endif
   3309        1.1      gwr 
   3310        1.1      gwr 	return rtn;
   3311        1.1      gwr }
   3312        1.1      gwr 
   3313        1.1      gwr /* pmap_bootstap_aalign			INTERNAL
   3314        1.1      gwr  **
   3315        1.7      gwr  * Used to insure that the next call to pmap_bootstrap_alloc() will
   3316        1.7      gwr  * return a chunk of memory aligned to the specified size.
   3317        1.8      gwr  *
   3318        1.8      gwr  * Note: This function will only support alignment sizes that are powers
   3319        1.8      gwr  * of two.
   3320        1.1      gwr  */
   3321       1.86      chs void
   3322       1.86      chs pmap_bootstrap_aalign(int size)
   3323        1.1      gwr {
   3324        1.7      gwr 	int off;
   3325        1.7      gwr 
   3326        1.7      gwr 	off = virtual_avail & (size - 1);
   3327        1.7      gwr 	if (off) {
   3328        1.7      gwr 		(void) pmap_bootstrap_alloc(size - off);
   3329        1.1      gwr 	}
   3330        1.1      gwr }
   3331        1.7      gwr 
   3332        1.8      gwr /* pmap_pa_exists
   3333        1.8      gwr  **
   3334        1.8      gwr  * Used by the /dev/mem driver to see if a given PA is memory
   3335        1.8      gwr  * that can be mapped.  (The PA is not in a hole.)
   3336        1.8      gwr  */
   3337       1.86      chs int
   3338       1.86      chs pmap_pa_exists(paddr_t pa)
   3339        1.8      gwr {
   3340       1.69      chs 	int i;
   3341       1.21      gwr 
   3342       1.21      gwr 	for (i = 0; i < SUN3X_NPHYS_RAM_SEGS; i++) {
   3343       1.21      gwr 		if ((pa >= avail_mem[i].pmem_start) &&
   3344       1.21      gwr 			(pa <  avail_mem[i].pmem_end))
   3345       1.21      gwr 			return (1);
   3346       1.21      gwr 		if (avail_mem[i].pmem_next == NULL)
   3347       1.21      gwr 			break;
   3348       1.21      gwr 	}
   3349        1.8      gwr 	return (0);
   3350        1.8      gwr }
   3351        1.8      gwr 
   3352       1.31      gwr /* Called only from locore.s and pmap.c */
   3353       1.86      chs void	_pmap_switch(pmap_t pmap);
   3354       1.31      gwr 
   3355       1.31      gwr /*
   3356       1.31      gwr  * _pmap_switch			INTERNAL
   3357       1.31      gwr  *
   3358       1.31      gwr  * This is called by locore.s:cpu_switch() when it is
   3359       1.31      gwr  * switching to a new process.  Load new translations.
   3360       1.31      gwr  * Note: done in-line by locore.s unless PMAP_DEBUG
   3361       1.24   jeremy  *
   3362       1.31      gwr  * Note that we do NOT allocate a context here, but
   3363       1.31      gwr  * share the "kernel only" context until we really
   3364       1.31      gwr  * need our own context for user-space mappings in
   3365       1.31      gwr  * pmap_enter_user().  [ s/context/mmu A table/ ]
   3366        1.1      gwr  */
   3367       1.86      chs void
   3368       1.86      chs _pmap_switch(pmap_t pmap)
   3369        1.1      gwr {
   3370        1.7      gwr 	u_long rootpa;
   3371        1.7      gwr 
   3372       1.31      gwr 	/*
   3373       1.31      gwr 	 * Only do reload/flush if we have to.
   3374       1.31      gwr 	 * Note that if the old and new process
   3375       1.31      gwr 	 * were BOTH using the "null" context,
   3376       1.31      gwr 	 * then this will NOT flush the TLB.
   3377       1.31      gwr 	 */
   3378        1.7      gwr 	rootpa = pmap->pm_a_phys;
   3379       1.31      gwr 	if (kernel_crp.rp_addr != rootpa) {
   3380       1.31      gwr 		DPRINT(("pmap_activate(%p)\n", pmap));
   3381        1.7      gwr 		kernel_crp.rp_addr = rootpa;
   3382        1.7      gwr 		loadcrp(&kernel_crp);
   3383        1.8      gwr 		TBIAU();
   3384       1.31      gwr 	}
   3385       1.31      gwr }
   3386       1.31      gwr 
   3387       1.31      gwr /*
   3388       1.31      gwr  * Exported version of pmap_activate().  This is called from the
   3389       1.31      gwr  * machine-independent VM code when a process is given a new pmap.
   3390       1.76  thorpej  * If (p == curlwp) do like cpu_switch would do; otherwise just
   3391       1.31      gwr  * take this as notification that the process has a new pmap.
   3392       1.31      gwr  */
   3393       1.86      chs void
   3394       1.86      chs pmap_activate(struct lwp *l)
   3395       1.31      gwr {
   3396       1.76  thorpej 	if (l->l_proc == curproc) {
   3397       1.76  thorpej 		_pmap_switch(l->l_proc->p_vmspace->vm_map.pmap);
   3398        1.7      gwr 	}
   3399        1.1      gwr }
   3400        1.1      gwr 
   3401       1.30  thorpej /*
   3402       1.30  thorpej  * pmap_deactivate			INTERFACE
   3403       1.30  thorpej  **
   3404       1.30  thorpej  * This is called to deactivate the specified process's address space.
   3405       1.30  thorpej  */
   3406       1.86      chs void
   3407       1.86      chs pmap_deactivate(struct lwp *l)
   3408        1.1      gwr {
   3409       1.69      chs 	/* Nothing to do. */
   3410        1.1      gwr }
   3411        1.1      gwr 
   3412       1.17      gwr /*
   3413       1.28      gwr  * Fill in the sun3x-specific part of the kernel core header
   3414       1.28      gwr  * for dumpsys().  (See machdep.c for the rest.)
   3415       1.17      gwr  */
   3416       1.86      chs void
   3417       1.86      chs pmap_kcore_hdr(struct sun3x_kcore_hdr *sh)
   3418       1.17      gwr {
   3419       1.17      gwr 	u_long spa, len;
   3420       1.17      gwr 	int i;
   3421       1.20  thorpej 
   3422       1.28      gwr 	sh->pg_frame = MMU_SHORT_PTE_BASEADDR;
   3423       1.28      gwr 	sh->pg_valid = MMU_DT_PAGE;
   3424       1.20  thorpej 	sh->contig_end = virtual_contig_end;
   3425       1.69      chs 	sh->kernCbase = (u_long)kernCbase;
   3426       1.20  thorpej 	for (i = 0; i < SUN3X_NPHYS_RAM_SEGS; i++) {
   3427       1.17      gwr 		spa = avail_mem[i].pmem_start;
   3428       1.25    veego 		spa = m68k_trunc_page(spa);
   3429       1.17      gwr 		len = avail_mem[i].pmem_end - spa;
   3430       1.25    veego 		len = m68k_round_page(len);
   3431       1.20  thorpej 		sh->ram_segs[i].start = spa;
   3432       1.20  thorpej 		sh->ram_segs[i].size  = len;
   3433       1.17      gwr 	}
   3434       1.17      gwr }
   3435       1.17      gwr 
   3436       1.81  thorpej 
   3437       1.81  thorpej /* pmap_virtual_space			INTERFACE
   3438       1.81  thorpej  **
   3439       1.81  thorpej  * Return the current available range of virtual addresses in the
   3440       1.81  thorpej  * arguuments provided.  Only really called once.
   3441       1.81  thorpej  */
   3442       1.86      chs void
   3443       1.86      chs pmap_virtual_space(vaddr_t *vstart, vaddr_t *vend)
   3444       1.81  thorpej {
   3445       1.81  thorpej 	*vstart = virtual_avail;
   3446       1.81  thorpej 	*vend = virtual_end;
   3447       1.81  thorpej }
   3448        1.1      gwr 
   3449       1.37      gwr /*
   3450       1.37      gwr  * Provide memory to the VM system.
   3451       1.37      gwr  *
   3452       1.37      gwr  * Assume avail_start is always in the
   3453       1.37      gwr  * first segment as pmap_bootstrap does.
   3454       1.37      gwr  */
   3455       1.86      chs static void
   3456       1.86      chs pmap_page_upload(void)
   3457       1.37      gwr {
   3458       1.69      chs 	paddr_t	a, b;	/* memory range */
   3459       1.37      gwr 	int i;
   3460       1.37      gwr 
   3461       1.37      gwr 	/* Supply the memory in segments. */
   3462       1.37      gwr 	for (i = 0; i < SUN3X_NPHYS_RAM_SEGS; i++) {
   3463       1.37      gwr 		a = atop(avail_mem[i].pmem_start);
   3464       1.37      gwr 		b = atop(avail_mem[i].pmem_end);
   3465       1.37      gwr 		if (i == 0)
   3466       1.37      gwr 			a = atop(avail_start);
   3467       1.60  tsutsui 		if (avail_mem[i].pmem_end > avail_end)
   3468       1.60  tsutsui 			b = atop(avail_end);
   3469       1.37      gwr 
   3470       1.39  thorpej 		uvm_page_physload(a, b, a, b, VM_FREELIST_DEFAULT);
   3471       1.37      gwr 
   3472       1.37      gwr 		if (avail_mem[i].pmem_next == NULL)
   3473       1.37      gwr 			break;
   3474       1.37      gwr 	}
   3475        1.1      gwr }
   3476        1.8      gwr 
   3477        1.8      gwr /* pmap_count			INTERFACE
   3478        1.8      gwr  **
   3479        1.8      gwr  * Return the number of resident (valid) pages in the given pmap.
   3480        1.8      gwr  *
   3481        1.8      gwr  * Note:  If this function is handed the kernel map, it will report
   3482        1.8      gwr  * that it has no mappings.  Hopefully the VM system won't ask for kernel
   3483        1.8      gwr  * map statistics.
   3484        1.8      gwr  */
   3485       1.86      chs segsz_t
   3486       1.86      chs pmap_count(pmap_t pmap, int type)
   3487        1.8      gwr {
   3488        1.8      gwr 	u_int     count;
   3489        1.8      gwr 	int       a_idx, b_idx;
   3490        1.8      gwr 	a_tmgr_t *a_tbl;
   3491        1.8      gwr 	b_tmgr_t *b_tbl;
   3492        1.8      gwr 	c_tmgr_t *c_tbl;
   3493        1.8      gwr 
   3494        1.8      gwr 	/*
   3495        1.8      gwr 	 * If the pmap does not have its own A table manager, it has no
   3496        1.8      gwr 	 * valid entires.
   3497        1.8      gwr 	 */
   3498        1.8      gwr 	if (pmap->pm_a_tmgr == NULL)
   3499        1.8      gwr 		return 0;
   3500        1.8      gwr 
   3501        1.8      gwr 	a_tbl = pmap->pm_a_tmgr;
   3502        1.8      gwr 
   3503        1.8      gwr 	count = 0;
   3504        1.8      gwr 	for (a_idx = 0; a_idx < MMU_TIA(KERNBASE); a_idx++) {
   3505        1.8      gwr 	    if (MMU_VALID_DT(a_tbl->at_dtbl[a_idx])) {
   3506        1.8      gwr 	        b_tbl = mmuB2tmgr(mmu_ptov(a_tbl->at_dtbl[a_idx].addr.raw));
   3507        1.8      gwr 	        for (b_idx = 0; b_idx < MMU_B_TBL_SIZE; b_idx++) {
   3508        1.8      gwr 	            if (MMU_VALID_DT(b_tbl->bt_dtbl[b_idx])) {
   3509        1.8      gwr 	                c_tbl = mmuC2tmgr(
   3510        1.8      gwr 	                    mmu_ptov(MMU_DTE_PA(b_tbl->bt_dtbl[b_idx])));
   3511        1.8      gwr 	                if (type == 0)
   3512        1.8      gwr 	                    /*
   3513        1.8      gwr 	                     * A resident entry count has been requested.
   3514        1.8      gwr 	                     */
   3515        1.8      gwr 	                    count += c_tbl->ct_ecnt;
   3516        1.8      gwr 	                else
   3517        1.8      gwr 	                    /*
   3518        1.8      gwr 	                     * A wired entry count has been requested.
   3519        1.8      gwr 	                     */
   3520        1.8      gwr 	                    count += c_tbl->ct_wcnt;
   3521        1.8      gwr 	            }
   3522        1.8      gwr 	        }
   3523        1.8      gwr 	    }
   3524        1.8      gwr 	}
   3525        1.8      gwr 
   3526        1.8      gwr 	return count;
   3527        1.8      gwr }
   3528        1.8      gwr 
   3529        1.1      gwr /************************ SUN3 COMPATIBILITY ROUTINES ********************
   3530        1.1      gwr  * The following routines are only used by DDB for tricky kernel text    *
   3531        1.1      gwr  * text operations in db_memrw.c.  They are provided for sun3            *
   3532        1.1      gwr  * compatibility.                                                        *
   3533        1.1      gwr  *************************************************************************/
   3534        1.1      gwr /* get_pte			INTERNAL
   3535        1.1      gwr  **
   3536        1.1      gwr  * Return the page descriptor the describes the kernel mapping
   3537        1.1      gwr  * of the given virtual address.
   3538        1.1      gwr  */
   3539       1.86      chs extern u_long ptest_addr(u_long);	/* XXX: locore.s */
   3540       1.86      chs u_int
   3541       1.86      chs get_pte(vaddr_t va)
   3542       1.13      gwr {
   3543       1.13      gwr 	u_long pte_pa;
   3544       1.13      gwr 	mmu_short_pte_t *pte;
   3545       1.13      gwr 
   3546       1.13      gwr 	/* Get the physical address of the PTE */
   3547       1.13      gwr 	pte_pa = ptest_addr(va & ~PGOFSET);
   3548       1.13      gwr 
   3549       1.13      gwr 	/* Convert to a virtual address... */
   3550       1.13      gwr 	pte = (mmu_short_pte_t *) (KERNBASE + pte_pa);
   3551       1.13      gwr 
   3552       1.13      gwr 	/* Make sure it is in our level-C tables... */
   3553       1.13      gwr 	if ((pte < kernCbase) ||
   3554       1.13      gwr 		(pte >= &mmuCbase[NUM_USER_PTES]))
   3555       1.13      gwr 		return 0;
   3556       1.13      gwr 
   3557       1.13      gwr 	/* ... and just return its contents. */
   3558       1.13      gwr 	return (pte->attr.raw);
   3559       1.13      gwr }
   3560       1.13      gwr 
   3561        1.1      gwr 
   3562        1.1      gwr /* set_pte			INTERNAL
   3563        1.1      gwr  **
   3564        1.1      gwr  * Set the page descriptor that describes the kernel mapping
   3565        1.1      gwr  * of the given virtual address.
   3566        1.1      gwr  */
   3567       1.86      chs void
   3568       1.86      chs set_pte(vaddr_t va, u_int pte)
   3569        1.1      gwr {
   3570        1.1      gwr 	u_long idx;
   3571        1.1      gwr 
   3572        1.7      gwr 	if (va < KERNBASE)
   3573        1.7      gwr 		return;
   3574        1.7      gwr 
   3575       1.25    veego 	idx = (unsigned long) m68k_btop(va - KERNBASE);
   3576        1.1      gwr 	kernCbase[idx].attr.raw = pte;
   3577       1.33      gwr 	TBIS(va);
   3578        1.1      gwr }
   3579       1.42       is 
   3580       1.42       is /*
   3581       1.42       is  *	Routine:        pmap_procwr
   3582       1.42       is  *
   3583       1.42       is  *	Function:
   3584       1.42       is  *		Synchronize caches corresponding to [addr, addr+len) in p.
   3585       1.42       is  */
   3586       1.86      chs void
   3587       1.86      chs pmap_procwr(struct proc *p, vaddr_t va, size_t len)
   3588       1.42       is {
   3589       1.42       is 	(void)cachectl1(0x80000004, va, len, p);
   3590       1.42       is }
   3591       1.42       is 
   3592        1.7      gwr 
   3593        1.8      gwr #ifdef	PMAP_DEBUG
   3594        1.7      gwr /************************** DEBUGGING ROUTINES **************************
   3595        1.7      gwr  * The following routines are meant to be an aid to debugging the pmap  *
   3596        1.7      gwr  * system.  They are callable from the DDB command line and should be   *
   3597        1.7      gwr  * prepared to be handed unstable or incomplete states of the system.   *
   3598        1.7      gwr  ************************************************************************/
   3599        1.7      gwr 
   3600        1.7      gwr /* pv_list
   3601        1.7      gwr  **
   3602        1.7      gwr  * List all pages found on the pv list for the given physical page.
   3603        1.8      gwr  * To avoid endless loops, the listing will stop at the end of the list
   3604        1.7      gwr  * or after 'n' entries - whichever comes first.
   3605        1.7      gwr  */
   3606       1.86      chs void
   3607       1.86      chs pv_list(paddr_t pa, int n)
   3608        1.7      gwr {
   3609        1.7      gwr 	int  idx;
   3610       1.69      chs 	vaddr_t va;
   3611        1.7      gwr 	pv_t *pv;
   3612        1.7      gwr 	c_tmgr_t *c_tbl;
   3613        1.7      gwr 	pmap_t pmap;
   3614        1.7      gwr 
   3615        1.7      gwr 	pv = pa2pv(pa);
   3616        1.7      gwr 	idx = pv->pv_idx;
   3617       1.69      chs 	for (; idx != PVE_EOL && n > 0; idx = pvebase[idx].pve_next, n--) {
   3618        1.8      gwr 		va = pmap_get_pteinfo(idx, &pmap, &c_tbl);
   3619        1.7      gwr 		printf("idx %d, pmap 0x%x, va 0x%x, c_tbl %x\n",
   3620        1.7      gwr 			idx, (u_int) pmap, (u_int) va, (u_int) c_tbl);
   3621        1.7      gwr 	}
   3622        1.7      gwr }
   3623        1.8      gwr #endif	/* PMAP_DEBUG */
   3624        1.1      gwr 
   3625        1.1      gwr #ifdef NOT_YET
   3626        1.1      gwr /* and maybe not ever */
   3627        1.1      gwr /************************** LOW-LEVEL ROUTINES **************************
   3628       1.78      wiz  * These routines will eventually be re-written into assembly and placed*
   3629        1.1      gwr  * in locore.s.  They are here now as stubs so that the pmap module can *
   3630        1.1      gwr  * be linked as a standalone user program for testing.                  *
   3631        1.1      gwr  ************************************************************************/
   3632        1.1      gwr /* flush_atc_crp			INTERNAL
   3633        1.1      gwr  **
   3634        1.1      gwr  * Flush all page descriptors derived from the given CPU Root Pointer
   3635        1.1      gwr  * (CRP), or 'A' table as it is known here, from the 68851's automatic
   3636        1.1      gwr  * cache.
   3637        1.1      gwr  */
   3638       1.86      chs void
   3639       1.86      chs flush_atc_crp(int a_tbl)
   3640        1.1      gwr {
   3641        1.1      gwr 	mmu_long_rp_t rp;
   3642        1.1      gwr 
   3643        1.1      gwr 	/* Create a temporary root table pointer that points to the
   3644        1.1      gwr 	 * given A table.
   3645        1.1      gwr 	 */
   3646        1.1      gwr 	rp.attr.raw = ~MMU_LONG_RP_LU;
   3647        1.1      gwr 	rp.addr.raw = (unsigned int) a_tbl;
   3648        1.1      gwr 
   3649        1.1      gwr 	mmu_pflushr(&rp);
   3650        1.1      gwr 	/* mmu_pflushr:
   3651        1.1      gwr 	 * 	movel   sp(4)@,a0
   3652        1.1      gwr 	 * 	pflushr a0@
   3653        1.1      gwr 	 *	rts
   3654        1.1      gwr 	 */
   3655        1.1      gwr }
   3656        1.1      gwr #endif /* NOT_YET */
   3657