pmap.c revision 1.93 1 1.93 christos /* $NetBSD: pmap.c,v 1.93 2006/11/24 19:46:59 christos Exp $ */
2 1.1 gwr
3 1.1 gwr /*-
4 1.10 jeremy * Copyright (c) 1996, 1997 The NetBSD Foundation, Inc.
5 1.1 gwr * All rights reserved.
6 1.1 gwr *
7 1.1 gwr * This code is derived from software contributed to The NetBSD Foundation
8 1.1 gwr * by Jeremy Cooper.
9 1.1 gwr *
10 1.1 gwr * Redistribution and use in source and binary forms, with or without
11 1.1 gwr * modification, are permitted provided that the following conditions
12 1.1 gwr * are met:
13 1.1 gwr * 1. Redistributions of source code must retain the above copyright
14 1.1 gwr * notice, this list of conditions and the following disclaimer.
15 1.1 gwr * 2. Redistributions in binary form must reproduce the above copyright
16 1.1 gwr * notice, this list of conditions and the following disclaimer in the
17 1.1 gwr * documentation and/or other materials provided with the distribution.
18 1.1 gwr * 3. All advertising materials mentioning features or use of this software
19 1.1 gwr * must display the following acknowledgement:
20 1.1 gwr * This product includes software developed by the NetBSD
21 1.1 gwr * Foundation, Inc. and its contributors.
22 1.1 gwr * 4. Neither the name of The NetBSD Foundation nor the names of its
23 1.1 gwr * contributors may be used to endorse or promote products derived
24 1.1 gwr * from this software without specific prior written permission.
25 1.1 gwr *
26 1.1 gwr * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 1.1 gwr * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 1.1 gwr * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 1.1 gwr * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 1.1 gwr * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 1.1 gwr * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 1.1 gwr * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 1.1 gwr * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 1.1 gwr * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 1.1 gwr * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 1.1 gwr * POSSIBILITY OF SUCH DAMAGE.
37 1.1 gwr */
38 1.1 gwr
39 1.1 gwr /*
40 1.1 gwr * XXX These comments aren't quite accurate. Need to change.
41 1.1 gwr * The sun3x uses the MC68851 Memory Management Unit, which is built
42 1.1 gwr * into the CPU. The 68851 maps virtual to physical addresses using
43 1.1 gwr * a multi-level table lookup, which is stored in the very memory that
44 1.1 gwr * it maps. The number of levels of lookup is configurable from one
45 1.1 gwr * to four. In this implementation, we use three, named 'A' through 'C'.
46 1.1 gwr *
47 1.1 gwr * The MMU translates virtual addresses into physical addresses by
48 1.84 wiz * traversing these tables in a process called a 'table walk'. The most
49 1.1 gwr * significant 7 bits of the Virtual Address ('VA') being translated are
50 1.1 gwr * used as an index into the level A table, whose base in physical memory
51 1.1 gwr * is stored in a special MMU register, the 'CPU Root Pointer' or CRP. The
52 1.1 gwr * address found at that index in the A table is used as the base
53 1.1 gwr * address for the next table, the B table. The next six bits of the VA are
54 1.1 gwr * used as an index into the B table, which in turn gives the base address
55 1.1 gwr * of the third and final C table.
56 1.1 gwr *
57 1.1 gwr * The next six bits of the VA are used as an index into the C table to
58 1.1 gwr * locate a Page Table Entry (PTE). The PTE is a physical address in memory
59 1.1 gwr * to which the remaining 13 bits of the VA are added, producing the
60 1.1 gwr * mapped physical address.
61 1.1 gwr *
62 1.1 gwr * To map the entire memory space in this manner would require 2114296 bytes
63 1.1 gwr * of page tables per process - quite expensive. Instead we will
64 1.1 gwr * allocate a fixed but considerably smaller space for the page tables at
65 1.1 gwr * the time the VM system is initialized. When the pmap code is asked by
66 1.1 gwr * the kernel to map a VA to a PA, it allocates tables as needed from this
67 1.1 gwr * pool. When there are no more tables in the pool, tables are stolen
68 1.1 gwr * from the oldest mapped entries in the tree. This is only possible
69 1.1 gwr * because all memory mappings are stored in the kernel memory map
70 1.1 gwr * structures, independent of the pmap structures. A VA which references
71 1.1 gwr * one of these invalidated maps will cause a page fault. The kernel
72 1.1 gwr * will determine that the page fault was caused by a task using a valid
73 1.1 gwr * VA, but for some reason (which does not concern it), that address was
74 1.1 gwr * not mapped. It will ask the pmap code to re-map the entry and then
75 1.1 gwr * it will resume executing the faulting task.
76 1.1 gwr *
77 1.1 gwr * In this manner the most efficient use of the page table space is
78 1.1 gwr * achieved. Tasks which do not execute often will have their tables
79 1.1 gwr * stolen and reused by tasks which execute more frequently. The best
80 1.1 gwr * size for the page table pool will probably be determined by
81 1.1 gwr * experimentation.
82 1.1 gwr *
83 1.1 gwr * You read all of the comments so far. Good for you.
84 1.1 gwr * Now go play!
85 1.1 gwr */
86 1.1 gwr
87 1.1 gwr /*** A Note About the 68851 Address Translation Cache
88 1.1 gwr * The MC68851 has a 64 entry cache, called the Address Translation Cache
89 1.1 gwr * or 'ATC'. This cache stores the most recently used page descriptors
90 1.1 gwr * accessed by the MMU when it does translations. Using a marker called a
91 1.1 gwr * 'task alias' the MMU can store the descriptors from 8 different table
92 1.1 gwr * spaces concurrently. The task alias is associated with the base
93 1.1 gwr * address of the level A table of that address space. When an address
94 1.1 gwr * space is currently active (the CRP currently points to its A table)
95 1.1 gwr * the only cached descriptors that will be obeyed are ones which have a
96 1.1 gwr * matching task alias of the current space associated with them.
97 1.1 gwr *
98 1.1 gwr * Since the cache is always consulted before any table lookups are done,
99 1.1 gwr * it is important that it accurately reflect the state of the MMU tables.
100 1.1 gwr * Whenever a change has been made to a table that has been loaded into
101 1.1 gwr * the MMU, the code must be sure to flush any cached entries that are
102 1.1 gwr * affected by the change. These instances are documented in the code at
103 1.1 gwr * various points.
104 1.1 gwr */
105 1.1 gwr /*** A Note About the Note About the 68851 Address Translation Cache
106 1.1 gwr * 4 months into this code I discovered that the sun3x does not have
107 1.1 gwr * a MC68851 chip. Instead, it has a version of this MMU that is part of the
108 1.1 gwr * the 68030 CPU.
109 1.1 gwr * All though it behaves very similarly to the 68851, it only has 1 task
110 1.8 gwr * alias and a 22 entry cache. So sadly (or happily), the first paragraph
111 1.8 gwr * of the previous note does not apply to the sun3x pmap.
112 1.1 gwr */
113 1.83 lukem
114 1.83 lukem #include <sys/cdefs.h>
115 1.93 christos __KERNEL_RCSID(0, "$NetBSD: pmap.c,v 1.93 2006/11/24 19:46:59 christos Exp $");
116 1.45 gwr
117 1.45 gwr #include "opt_ddb.h"
118 1.82 martin #include "opt_pmap_debug.h"
119 1.1 gwr
120 1.1 gwr #include <sys/param.h>
121 1.1 gwr #include <sys/systm.h>
122 1.1 gwr #include <sys/proc.h>
123 1.1 gwr #include <sys/malloc.h>
124 1.56 tsutsui #include <sys/pool.h>
125 1.1 gwr #include <sys/user.h>
126 1.1 gwr #include <sys/queue.h>
127 1.20 thorpej #include <sys/kcore.h>
128 1.38 gwr
129 1.38 gwr #include <uvm/uvm.h>
130 1.43 mrg
131 1.1 gwr #include <machine/cpu.h>
132 1.17 gwr #include <machine/kcore.h>
133 1.33 gwr #include <machine/mon.h>
134 1.1 gwr #include <machine/pmap.h>
135 1.1 gwr #include <machine/pte.h>
136 1.37 gwr #include <machine/vmparam.h>
137 1.75 chs #include <m68k/cacheops.h>
138 1.33 gwr
139 1.33 gwr #include <sun3/sun3/cache.h>
140 1.33 gwr #include <sun3/sun3/machdep.h>
141 1.1 gwr
142 1.1 gwr #include "pmap_pvt.h"
143 1.1 gwr
144 1.1 gwr /* XXX - What headers declare these? */
145 1.1 gwr extern struct pcb *curpcb;
146 1.1 gwr extern int physmem;
147 1.7 gwr
148 1.1 gwr /* Defined in locore.s */
149 1.1 gwr extern char kernel_text[];
150 1.1 gwr
151 1.1 gwr /* Defined by the linker */
152 1.1 gwr extern char etext[], edata[], end[];
153 1.1 gwr extern char *esym; /* DDB */
154 1.1 gwr
155 1.7 gwr /*************************** DEBUGGING DEFINITIONS ***********************
156 1.7 gwr * Macros, preprocessor defines and variables used in debugging can make *
157 1.7 gwr * code hard to read. Anything used exclusively for debugging purposes *
158 1.7 gwr * is defined here to avoid having such mess scattered around the file. *
159 1.7 gwr *************************************************************************/
160 1.8 gwr #ifdef PMAP_DEBUG
161 1.7 gwr /*
162 1.7 gwr * To aid the debugging process, macros should be expanded into smaller steps
163 1.7 gwr * that accomplish the same goal, yet provide convenient places for placing
164 1.8 gwr * breakpoints. When this code is compiled with PMAP_DEBUG mode defined, the
165 1.7 gwr * 'INLINE' keyword is defined to an empty string. This way, any function
166 1.7 gwr * defined to be a 'static INLINE' will become 'outlined' and compiled as
167 1.7 gwr * a separate function, which is much easier to debug.
168 1.7 gwr */
169 1.7 gwr #define INLINE /* nothing */
170 1.7 gwr
171 1.1 gwr /*
172 1.7 gwr * It is sometimes convenient to watch the activity of a particular table
173 1.7 gwr * in the system. The following variables are used for that purpose.
174 1.1 gwr */
175 1.7 gwr a_tmgr_t *pmap_watch_atbl = 0;
176 1.7 gwr b_tmgr_t *pmap_watch_btbl = 0;
177 1.7 gwr c_tmgr_t *pmap_watch_ctbl = 0;
178 1.1 gwr
179 1.7 gwr int pmap_debug = 0;
180 1.7 gwr #define DPRINT(args) if (pmap_debug) printf args
181 1.7 gwr
182 1.7 gwr #else /********** Stuff below is defined if NOT debugging **************/
183 1.7 gwr
184 1.7 gwr #define INLINE inline
185 1.10 jeremy #define DPRINT(args) /* nada */
186 1.7 gwr
187 1.10 jeremy #endif /* PMAP_DEBUG */
188 1.7 gwr /*********************** END OF DEBUGGING DEFINITIONS ********************/
189 1.1 gwr
190 1.1 gwr /*** Management Structure - Memory Layout
191 1.1 gwr * For every MMU table in the sun3x pmap system there must be a way to
192 1.1 gwr * manage it; we must know which process is using it, what other tables
193 1.1 gwr * depend on it, and whether or not it contains any locked pages. This
194 1.1 gwr * is solved by the creation of 'table management' or 'tmgr'
195 1.1 gwr * structures. One for each MMU table in the system.
196 1.1 gwr *
197 1.1 gwr * MAP OF MEMORY USED BY THE PMAP SYSTEM
198 1.1 gwr *
199 1.1 gwr * towards lower memory
200 1.1 gwr * kernAbase -> +-------------------------------------------------------+
201 1.1 gwr * | Kernel MMU A level table |
202 1.1 gwr * kernBbase -> +-------------------------------------------------------+
203 1.1 gwr * | Kernel MMU B level tables |
204 1.1 gwr * kernCbase -> +-------------------------------------------------------+
205 1.1 gwr * | |
206 1.1 gwr * | Kernel MMU C level tables |
207 1.1 gwr * | |
208 1.7 gwr * mmuCbase -> +-------------------------------------------------------+
209 1.7 gwr * | User MMU C level tables |
210 1.1 gwr * mmuAbase -> +-------------------------------------------------------+
211 1.1 gwr * | |
212 1.1 gwr * | User MMU A level tables |
213 1.1 gwr * | |
214 1.1 gwr * mmuBbase -> +-------------------------------------------------------+
215 1.1 gwr * | User MMU B level tables |
216 1.1 gwr * tmgrAbase -> +-------------------------------------------------------+
217 1.1 gwr * | TMGR A level table structures |
218 1.1 gwr * tmgrBbase -> +-------------------------------------------------------+
219 1.1 gwr * | TMGR B level table structures |
220 1.1 gwr * tmgrCbase -> +-------------------------------------------------------+
221 1.1 gwr * | TMGR C level table structures |
222 1.1 gwr * pvbase -> +-------------------------------------------------------+
223 1.1 gwr * | Physical to Virtual mapping table (list heads) |
224 1.1 gwr * pvebase -> +-------------------------------------------------------+
225 1.1 gwr * | Physical to Virtual mapping table (list elements) |
226 1.1 gwr * | |
227 1.1 gwr * +-------------------------------------------------------+
228 1.1 gwr * towards higher memory
229 1.1 gwr *
230 1.1 gwr * For every A table in the MMU A area, there will be a corresponding
231 1.1 gwr * a_tmgr structure in the TMGR A area. The same will be true for
232 1.1 gwr * the B and C tables. This arrangement will make it easy to find the
233 1.1 gwr * controling tmgr structure for any table in the system by use of
234 1.1 gwr * (relatively) simple macros.
235 1.1 gwr */
236 1.7 gwr
237 1.7 gwr /*
238 1.8 gwr * Global variables for storing the base addresses for the areas
239 1.1 gwr * labeled above.
240 1.1 gwr */
241 1.69 chs static vaddr_t kernAphys;
242 1.1 gwr static mmu_long_dte_t *kernAbase;
243 1.1 gwr static mmu_short_dte_t *kernBbase;
244 1.1 gwr static mmu_short_pte_t *kernCbase;
245 1.15 gwr static mmu_short_pte_t *mmuCbase;
246 1.15 gwr static mmu_short_dte_t *mmuBbase;
247 1.1 gwr static mmu_long_dte_t *mmuAbase;
248 1.1 gwr static a_tmgr_t *Atmgrbase;
249 1.1 gwr static b_tmgr_t *Btmgrbase;
250 1.1 gwr static c_tmgr_t *Ctmgrbase;
251 1.15 gwr static pv_t *pvbase;
252 1.1 gwr static pv_elem_t *pvebase;
253 1.15 gwr struct pmap kernel_pmap;
254 1.1 gwr
255 1.8 gwr /*
256 1.8 gwr * This holds the CRP currently loaded into the MMU.
257 1.8 gwr */
258 1.8 gwr struct mmu_rootptr kernel_crp;
259 1.8 gwr
260 1.8 gwr /*
261 1.8 gwr * Just all around global variables.
262 1.1 gwr */
263 1.1 gwr static TAILQ_HEAD(a_pool_head_struct, a_tmgr_struct) a_pool;
264 1.1 gwr static TAILQ_HEAD(b_pool_head_struct, b_tmgr_struct) b_pool;
265 1.1 gwr static TAILQ_HEAD(c_pool_head_struct, c_tmgr_struct) c_pool;
266 1.7 gwr
267 1.7 gwr
268 1.7 gwr /*
269 1.7 gwr * Flags used to mark the safety/availability of certain operations or
270 1.7 gwr * resources.
271 1.7 gwr */
272 1.92 tsutsui /* Safe to use pmap_bootstrap_alloc(). */
273 1.92 tsutsui static boolean_t bootstrap_alloc_enabled = FALSE;
274 1.92 tsutsui /* Temporary virtual pages are in use */
275 1.92 tsutsui int tmp_vpages_inuse;
276 1.1 gwr
277 1.1 gwr /*
278 1.1 gwr * XXX: For now, retain the traditional variables that were
279 1.1 gwr * used in the old pmap/vm interface (without NONCONTIG).
280 1.1 gwr */
281 1.81 thorpej /* Kernel virtual address space available: */
282 1.81 thorpej vaddr_t virtual_avail, virtual_end;
283 1.1 gwr /* Physical address space available: */
284 1.69 chs paddr_t avail_start, avail_end;
285 1.1 gwr
286 1.7 gwr /* This keep track of the end of the contiguously mapped range. */
287 1.69 chs vaddr_t virtual_contig_end;
288 1.7 gwr
289 1.7 gwr /* Physical address used by pmap_next_page() */
290 1.69 chs paddr_t avail_next;
291 1.7 gwr
292 1.7 gwr /* These are used by pmap_copy_page(), etc. */
293 1.69 chs vaddr_t tmp_vpages[2];
294 1.1 gwr
295 1.56 tsutsui /* memory pool for pmap structures */
296 1.56 tsutsui struct pool pmap_pmap_pool;
297 1.56 tsutsui
298 1.7 gwr /*
299 1.7 gwr * The 3/80 is the only member of the sun3x family that has non-contiguous
300 1.1 gwr * physical memory. Memory is divided into 4 banks which are physically
301 1.1 gwr * locatable on the system board. Although the size of these banks varies
302 1.1 gwr * with the size of memory they contain, their base addresses are
303 1.1 gwr * permenently fixed. The following structure, which describes these
304 1.1 gwr * banks, is initialized by pmap_bootstrap() after it reads from a similar
305 1.1 gwr * structure provided by the ROM Monitor.
306 1.1 gwr *
307 1.1 gwr * For the other machines in the sun3x architecture which do have contiguous
308 1.1 gwr * RAM, this list will have only one entry, which will describe the entire
309 1.1 gwr * range of available memory.
310 1.1 gwr */
311 1.20 thorpej struct pmap_physmem_struct avail_mem[SUN3X_NPHYS_RAM_SEGS];
312 1.1 gwr u_int total_phys_mem;
313 1.1 gwr
314 1.7 gwr /*************************************************************************/
315 1.7 gwr
316 1.7 gwr /*
317 1.7 gwr * XXX - Should "tune" these based on statistics.
318 1.7 gwr *
319 1.7 gwr * My first guess about the relative numbers of these needed is
320 1.7 gwr * based on the fact that a "typical" process will have several
321 1.7 gwr * pages mapped at low virtual addresses (text, data, bss), then
322 1.7 gwr * some mapped shared libraries, and then some stack pages mapped
323 1.7 gwr * near the high end of the VA space. Each process can use only
324 1.7 gwr * one A table, and most will use only two B tables (maybe three)
325 1.7 gwr * and probably about four C tables. Therefore, the first guess
326 1.7 gwr * at the relative numbers of these needed is 1:2:4 -gwr
327 1.7 gwr *
328 1.7 gwr * The number of C tables needed is closely related to the amount
329 1.7 gwr * of physical memory available plus a certain amount attributable
330 1.7 gwr * to the use of double mappings. With a few simulation statistics
331 1.7 gwr * we can find a reasonably good estimation of this unknown value.
332 1.7 gwr * Armed with that and the above ratios, we have a good idea of what
333 1.7 gwr * is needed at each level. -j
334 1.7 gwr *
335 1.7 gwr * Note: It is not physical memory memory size, but the total mapped
336 1.7 gwr * virtual space required by the combined working sets of all the
337 1.7 gwr * currently _runnable_ processes. (Sleeping ones don't count.)
338 1.7 gwr * The amount of physical memory should be irrelevant. -gwr
339 1.7 gwr */
340 1.22 jeremy #ifdef FIXED_NTABLES
341 1.7 gwr #define NUM_A_TABLES 16
342 1.7 gwr #define NUM_B_TABLES 32
343 1.7 gwr #define NUM_C_TABLES 64
344 1.22 jeremy #else
345 1.22 jeremy unsigned int NUM_A_TABLES, NUM_B_TABLES, NUM_C_TABLES;
346 1.22 jeremy #endif /* FIXED_NTABLES */
347 1.7 gwr
348 1.7 gwr /*
349 1.7 gwr * This determines our total virtual mapping capacity.
350 1.7 gwr * Yes, it is a FIXED value so we can pre-allocate.
351 1.7 gwr */
352 1.7 gwr #define NUM_USER_PTES (NUM_C_TABLES * MMU_C_TBL_SIZE)
353 1.15 gwr
354 1.15 gwr /*
355 1.15 gwr * The size of the Kernel Virtual Address Space (KVAS)
356 1.15 gwr * for purposes of MMU table allocation is -KERNBASE
357 1.15 gwr * (length from KERNBASE to 0xFFFFffff)
358 1.15 gwr */
359 1.15 gwr #define KVAS_SIZE (-KERNBASE)
360 1.15 gwr
361 1.15 gwr /* Numbers of kernel MMU tables to support KVAS_SIZE. */
362 1.15 gwr #define KERN_B_TABLES (KVAS_SIZE >> MMU_TIA_SHIFT)
363 1.15 gwr #define KERN_C_TABLES (KVAS_SIZE >> MMU_TIB_SHIFT)
364 1.15 gwr #define NUM_KERN_PTES (KVAS_SIZE >> MMU_TIC_SHIFT)
365 1.7 gwr
366 1.7 gwr /*************************** MISCELANEOUS MACROS *************************/
367 1.55 tsutsui #define pmap_lock(pmap) simple_lock(&pmap->pm_lock)
368 1.55 tsutsui #define pmap_unlock(pmap) simple_unlock(&pmap->pm_lock)
369 1.55 tsutsui #define pmap_add_ref(pmap) ++pmap->pm_refcount
370 1.55 tsutsui #define pmap_del_ref(pmap) --pmap->pm_refcount
371 1.55 tsutsui #define pmap_refcount(pmap) pmap->pm_refcount
372 1.64 thorpej
373 1.64 thorpej void *pmap_bootstrap_alloc(int);
374 1.7 gwr
375 1.86 chs static INLINE void *mmu_ptov(paddr_t);
376 1.86 chs static INLINE paddr_t mmu_vtop(void *);
377 1.7 gwr
378 1.7 gwr #if 0
379 1.92 tsutsui static INLINE a_tmgr_t *mmuA2tmgr(mmu_long_dte_t *);
380 1.26 jeremy #endif /* 0 */
381 1.92 tsutsui static INLINE b_tmgr_t *mmuB2tmgr(mmu_short_dte_t *);
382 1.92 tsutsui static INLINE c_tmgr_t *mmuC2tmgr(mmu_short_pte_t *);
383 1.7 gwr
384 1.86 chs static INLINE pv_t *pa2pv(paddr_t);
385 1.86 chs static INLINE int pteidx(mmu_short_pte_t *);
386 1.86 chs static INLINE pmap_t current_pmap(void);
387 1.7 gwr
388 1.7 gwr /*
389 1.7 gwr * We can always convert between virtual and physical addresses
390 1.7 gwr * for anything in the range [KERNBASE ... avail_start] because
391 1.7 gwr * that range is GUARANTEED to be mapped linearly.
392 1.7 gwr * We rely heavily upon this feature!
393 1.7 gwr */
394 1.7 gwr static INLINE void *
395 1.86 chs mmu_ptov(paddr_t pa)
396 1.7 gwr {
397 1.69 chs vaddr_t va;
398 1.7 gwr
399 1.7 gwr va = (pa + KERNBASE);
400 1.8 gwr #ifdef PMAP_DEBUG
401 1.7 gwr if ((va < KERNBASE) || (va >= virtual_contig_end))
402 1.7 gwr panic("mmu_ptov");
403 1.7 gwr #endif
404 1.92 tsutsui return (void *)va;
405 1.7 gwr }
406 1.69 chs
407 1.86 chs static INLINE paddr_t
408 1.86 chs mmu_vtop(void *vva)
409 1.7 gwr {
410 1.69 chs vaddr_t va;
411 1.7 gwr
412 1.69 chs va = (vaddr_t)vva;
413 1.8 gwr #ifdef PMAP_DEBUG
414 1.7 gwr if ((va < KERNBASE) || (va >= virtual_contig_end))
415 1.72 tsutsui panic("mmu_vtop");
416 1.7 gwr #endif
417 1.92 tsutsui return va - KERNBASE;
418 1.7 gwr }
419 1.7 gwr
420 1.7 gwr /*
421 1.7 gwr * These macros map MMU tables to their corresponding manager structures.
422 1.1 gwr * They are needed quite often because many of the pointers in the pmap
423 1.1 gwr * system reference MMU tables and not the structures that control them.
424 1.1 gwr * There needs to be a way to find one when given the other and these
425 1.1 gwr * macros do so by taking advantage of the memory layout described above.
426 1.1 gwr * Here's a quick step through the first macro, mmuA2tmgr():
427 1.1 gwr *
428 1.1 gwr * 1) find the offset of the given MMU A table from the base of its table
429 1.1 gwr * pool (table - mmuAbase).
430 1.1 gwr * 2) convert this offset into a table index by dividing it by the
431 1.1 gwr * size of one MMU 'A' table. (sizeof(mmu_long_dte_t) * MMU_A_TBL_SIZE)
432 1.1 gwr * 3) use this index to select the corresponding 'A' table manager
433 1.1 gwr * structure from the 'A' table manager pool (Atmgrbase[index]).
434 1.1 gwr */
435 1.7 gwr /* This function is not currently used. */
436 1.7 gwr #if 0
437 1.7 gwr static INLINE a_tmgr_t *
438 1.86 chs mmuA2tmgr(mmu_long_dte_t *mmuAtbl)
439 1.7 gwr {
440 1.69 chs int idx;
441 1.7 gwr
442 1.7 gwr /* Which table is this in? */
443 1.7 gwr idx = (mmuAtbl - mmuAbase) / MMU_A_TBL_SIZE;
444 1.8 gwr #ifdef PMAP_DEBUG
445 1.7 gwr if ((idx < 0) || (idx >= NUM_A_TABLES))
446 1.7 gwr panic("mmuA2tmgr");
447 1.7 gwr #endif
448 1.92 tsutsui return &Atmgrbase[idx];
449 1.7 gwr }
450 1.7 gwr #endif /* 0 */
451 1.7 gwr
452 1.7 gwr static INLINE b_tmgr_t *
453 1.86 chs mmuB2tmgr(mmu_short_dte_t *mmuBtbl)
454 1.7 gwr {
455 1.69 chs int idx;
456 1.7 gwr
457 1.7 gwr /* Which table is this in? */
458 1.7 gwr idx = (mmuBtbl - mmuBbase) / MMU_B_TBL_SIZE;
459 1.8 gwr #ifdef PMAP_DEBUG
460 1.7 gwr if ((idx < 0) || (idx >= NUM_B_TABLES))
461 1.7 gwr panic("mmuB2tmgr");
462 1.7 gwr #endif
463 1.92 tsutsui return &Btmgrbase[idx];
464 1.7 gwr }
465 1.7 gwr
466 1.7 gwr /* mmuC2tmgr INTERNAL
467 1.7 gwr **
468 1.7 gwr * Given a pte known to belong to a C table, return the address of
469 1.7 gwr * that table's management structure.
470 1.7 gwr */
471 1.7 gwr static INLINE c_tmgr_t *
472 1.86 chs mmuC2tmgr(mmu_short_pte_t *mmuCtbl)
473 1.7 gwr {
474 1.69 chs int idx;
475 1.7 gwr
476 1.7 gwr /* Which table is this in? */
477 1.7 gwr idx = (mmuCtbl - mmuCbase) / MMU_C_TBL_SIZE;
478 1.8 gwr #ifdef PMAP_DEBUG
479 1.7 gwr if ((idx < 0) || (idx >= NUM_C_TABLES))
480 1.7 gwr panic("mmuC2tmgr");
481 1.7 gwr #endif
482 1.92 tsutsui return &Ctmgrbase[idx];
483 1.7 gwr }
484 1.7 gwr
485 1.8 gwr /* This is now a function call below.
486 1.1 gwr * #define pa2pv(pa) \
487 1.1 gwr * (&pvbase[(unsigned long)\
488 1.25 veego * m68k_btop(pa)\
489 1.1 gwr * ])
490 1.1 gwr */
491 1.1 gwr
492 1.7 gwr /* pa2pv INTERNAL
493 1.7 gwr **
494 1.7 gwr * Return the pv_list_head element which manages the given physical
495 1.7 gwr * address.
496 1.7 gwr */
497 1.7 gwr static INLINE pv_t *
498 1.86 chs pa2pv(paddr_t pa)
499 1.7 gwr {
500 1.69 chs struct pmap_physmem_struct *bank;
501 1.69 chs int idx;
502 1.7 gwr
503 1.7 gwr bank = &avail_mem[0];
504 1.7 gwr while (pa >= bank->pmem_end)
505 1.7 gwr bank = bank->pmem_next;
506 1.7 gwr
507 1.7 gwr pa -= bank->pmem_start;
508 1.25 veego idx = bank->pmem_pvbase + m68k_btop(pa);
509 1.8 gwr #ifdef PMAP_DEBUG
510 1.7 gwr if ((idx < 0) || (idx >= physmem))
511 1.7 gwr panic("pa2pv");
512 1.7 gwr #endif
513 1.7 gwr return &pvbase[idx];
514 1.7 gwr }
515 1.7 gwr
516 1.7 gwr /* pteidx INTERNAL
517 1.7 gwr **
518 1.7 gwr * Return the index of the given PTE within the entire fixed table of
519 1.7 gwr * PTEs.
520 1.7 gwr */
521 1.7 gwr static INLINE int
522 1.86 chs pteidx(mmu_short_pte_t *pte)
523 1.7 gwr {
524 1.92 tsutsui
525 1.92 tsutsui return pte - kernCbase;
526 1.7 gwr }
527 1.7 gwr
528 1.7 gwr /*
529 1.8 gwr * This just offers a place to put some debugging checks,
530 1.76 thorpej * and reduces the number of places "curlwp" appears...
531 1.7 gwr */
532 1.86 chs static INLINE pmap_t
533 1.86 chs current_pmap(void)
534 1.7 gwr {
535 1.7 gwr struct vmspace *vm;
536 1.67 chs struct vm_map *map;
537 1.7 gwr pmap_t pmap;
538 1.7 gwr
539 1.76 thorpej if (curlwp == NULL)
540 1.9 gwr pmap = &kernel_pmap;
541 1.9 gwr else {
542 1.76 thorpej vm = curproc->p_vmspace;
543 1.9 gwr map = &vm->vm_map;
544 1.9 gwr pmap = vm_map_pmap(map);
545 1.9 gwr }
546 1.7 gwr
547 1.92 tsutsui return pmap;
548 1.7 gwr }
549 1.7 gwr
550 1.7 gwr
551 1.1 gwr /*************************** FUNCTION DEFINITIONS ************************
552 1.1 gwr * These appear here merely for the compiler to enforce type checking on *
553 1.1 gwr * all function calls. *
554 1.7 gwr *************************************************************************/
555 1.1 gwr
556 1.92 tsutsui /*
557 1.92 tsutsui * Internal functions
558 1.92 tsutsui */
559 1.92 tsutsui a_tmgr_t *get_a_table(void);
560 1.92 tsutsui b_tmgr_t *get_b_table(void);
561 1.92 tsutsui c_tmgr_t *get_c_table(void);
562 1.92 tsutsui int free_a_table(a_tmgr_t *, boolean_t);
563 1.92 tsutsui int free_b_table(b_tmgr_t *, boolean_t);
564 1.92 tsutsui int free_c_table(c_tmgr_t *, boolean_t);
565 1.92 tsutsui
566 1.92 tsutsui void pmap_bootstrap_aalign(int);
567 1.92 tsutsui void pmap_alloc_usermmu(void);
568 1.92 tsutsui void pmap_alloc_usertmgr(void);
569 1.92 tsutsui void pmap_alloc_pv(void);
570 1.92 tsutsui void pmap_init_a_tables(void);
571 1.92 tsutsui void pmap_init_b_tables(void);
572 1.92 tsutsui void pmap_init_c_tables(void);
573 1.92 tsutsui void pmap_init_pv(void);
574 1.92 tsutsui void pmap_clear_pv(paddr_t, int);
575 1.92 tsutsui static INLINE boolean_t is_managed(paddr_t);
576 1.92 tsutsui
577 1.92 tsutsui boolean_t pmap_remove_a(a_tmgr_t *, vaddr_t, vaddr_t);
578 1.92 tsutsui boolean_t pmap_remove_b(b_tmgr_t *, vaddr_t, vaddr_t);
579 1.92 tsutsui boolean_t pmap_remove_c(c_tmgr_t *, vaddr_t, vaddr_t);
580 1.92 tsutsui void pmap_remove_pte(mmu_short_pte_t *);
581 1.92 tsutsui
582 1.92 tsutsui void pmap_enter_kernel(vaddr_t, paddr_t, vm_prot_t);
583 1.92 tsutsui static INLINE void pmap_remove_kernel(vaddr_t, vaddr_t);
584 1.92 tsutsui static INLINE void pmap_protect_kernel(vaddr_t, vaddr_t, vm_prot_t);
585 1.92 tsutsui static INLINE boolean_t pmap_extract_kernel(vaddr_t, paddr_t *);
586 1.92 tsutsui vaddr_t pmap_get_pteinfo(u_int, pmap_t *, c_tmgr_t **);
587 1.92 tsutsui static INLINE int pmap_dereference(pmap_t);
588 1.92 tsutsui
589 1.92 tsutsui boolean_t pmap_stroll(pmap_t, vaddr_t, a_tmgr_t **, b_tmgr_t **, c_tmgr_t **,
590 1.92 tsutsui mmu_short_pte_t **, int *, int *, int *);
591 1.92 tsutsui void pmap_bootstrap_copyprom(void);
592 1.92 tsutsui void pmap_takeover_mmu(void);
593 1.92 tsutsui void pmap_bootstrap_setprom(void);
594 1.86 chs static void pmap_page_upload(void);
595 1.1 gwr
596 1.92 tsutsui #ifdef PMAP_DEBUG
597 1.92 tsutsui /* Debugging function definitions */
598 1.92 tsutsui void pv_list(paddr_t, int);
599 1.92 tsutsui #endif /* PMAP_DEBUG */
600 1.92 tsutsui
601 1.1 gwr /** Interface functions
602 1.1 gwr ** - functions required by the Mach VM Pmap interface, with MACHINE_CONTIG
603 1.1 gwr ** defined.
604 1.92 tsutsui ** The new UVM doesn't require them so now INTERNAL.
605 1.1 gwr **/
606 1.92 tsutsui static INLINE void pmap_pinit(pmap_t);
607 1.92 tsutsui static INLINE void pmap_release(pmap_t);
608 1.1 gwr
609 1.1 gwr /********************************** CODE ********************************
610 1.1 gwr * Functions that are called from other parts of the kernel are labeled *
611 1.1 gwr * as 'INTERFACE' functions. Functions that are only called from *
612 1.1 gwr * within the pmap module are labeled as 'INTERNAL' functions. *
613 1.1 gwr * Functions that are internal, but are not (currently) used at all are *
614 1.1 gwr * labeled 'INTERNAL_X'. *
615 1.1 gwr ************************************************************************/
616 1.1 gwr
617 1.1 gwr /* pmap_bootstrap INTERNAL
618 1.1 gwr **
619 1.33 gwr * Initializes the pmap system. Called at boot time from
620 1.33 gwr * locore2.c:_vm_init()
621 1.1 gwr *
622 1.1 gwr * Reminder: having a pmap_bootstrap_alloc() and also having the VM
623 1.1 gwr * system implement pmap_steal_memory() is redundant.
624 1.1 gwr * Don't release this code without removing one or the other!
625 1.1 gwr */
626 1.86 chs void
627 1.86 chs pmap_bootstrap(vaddr_t nextva)
628 1.1 gwr {
629 1.1 gwr struct physmemory *membank;
630 1.1 gwr struct pmap_physmem_struct *pmap_membank;
631 1.69 chs vaddr_t va, eva;
632 1.69 chs paddr_t pa;
633 1.1 gwr int b, c, i, j; /* running table counts */
634 1.40 gwr int size, resvmem;
635 1.1 gwr
636 1.1 gwr /*
637 1.1 gwr * This function is called by __bootstrap after it has
638 1.1 gwr * determined the type of machine and made the appropriate
639 1.1 gwr * patches to the ROM vectors (XXX- I don't quite know what I meant
640 1.1 gwr * by that.) It allocates and sets up enough of the pmap system
641 1.1 gwr * to manage the kernel's address space.
642 1.1 gwr */
643 1.1 gwr
644 1.1 gwr /*
645 1.7 gwr * Determine the range of kernel virtual and physical
646 1.7 gwr * space available. Note that we ABSOLUTELY DEPEND on
647 1.7 gwr * the fact that the first bank of memory (4MB) is
648 1.7 gwr * mapped linearly to KERNBASE (which we guaranteed in
649 1.7 gwr * the first instructions of locore.s).
650 1.7 gwr * That is plenty for our bootstrap work.
651 1.1 gwr */
652 1.25 veego virtual_avail = m68k_round_page(nextva);
653 1.7 gwr virtual_contig_end = KERNBASE + 0x400000; /* +4MB */
654 1.1 gwr virtual_end = VM_MAX_KERNEL_ADDRESS;
655 1.7 gwr /* Don't need avail_start til later. */
656 1.1 gwr
657 1.7 gwr /* We may now call pmap_bootstrap_alloc(). */
658 1.7 gwr bootstrap_alloc_enabled = TRUE;
659 1.1 gwr
660 1.1 gwr /*
661 1.1 gwr * This is a somewhat unwrapped loop to deal with
662 1.1 gwr * copying the PROM's 'phsymem' banks into the pmap's
663 1.1 gwr * banks. The following is always assumed:
664 1.1 gwr * 1. There is always at least one bank of memory.
665 1.1 gwr * 2. There is always a last bank of memory, and its
666 1.1 gwr * pmem_next member must be set to NULL.
667 1.1 gwr */
668 1.1 gwr membank = romVectorPtr->v_physmemory;
669 1.1 gwr pmap_membank = avail_mem;
670 1.1 gwr total_phys_mem = 0;
671 1.1 gwr
672 1.40 gwr for (;;) { /* break on !membank */
673 1.1 gwr pmap_membank->pmem_start = membank->address;
674 1.1 gwr pmap_membank->pmem_end = membank->address + membank->size;
675 1.1 gwr total_phys_mem += membank->size;
676 1.40 gwr membank = membank->next;
677 1.40 gwr if (!membank)
678 1.40 gwr break;
679 1.1 gwr /* This silly syntax arises because pmap_membank
680 1.1 gwr * is really a pre-allocated array, but it is put into
681 1.1 gwr * use as a linked list.
682 1.1 gwr */
683 1.1 gwr pmap_membank->pmem_next = pmap_membank + 1;
684 1.1 gwr pmap_membank = pmap_membank->pmem_next;
685 1.1 gwr }
686 1.40 gwr /* This is the last element. */
687 1.40 gwr pmap_membank->pmem_next = NULL;
688 1.1 gwr
689 1.1 gwr /*
690 1.40 gwr * Note: total_phys_mem, physmem represent
691 1.40 gwr * actual physical memory, including that
692 1.40 gwr * reserved for the PROM monitor.
693 1.1 gwr */
694 1.40 gwr physmem = btoc(total_phys_mem);
695 1.1 gwr
696 1.1 gwr /*
697 1.60 tsutsui * Avail_end is set to the first byte of physical memory
698 1.60 tsutsui * after the end of the last bank. We use this only to
699 1.60 tsutsui * determine if a physical address is "managed" memory.
700 1.60 tsutsui * This address range should be reduced to prevent the
701 1.40 gwr * physical pages needed by the PROM monitor from being used
702 1.40 gwr * in the VM system.
703 1.1 gwr */
704 1.40 gwr resvmem = total_phys_mem - *(romVectorPtr->memoryAvail);
705 1.40 gwr resvmem = m68k_round_page(resvmem);
706 1.60 tsutsui avail_end = pmap_membank->pmem_end - resvmem;
707 1.1 gwr
708 1.1 gwr /*
709 1.15 gwr * First allocate enough kernel MMU tables to map all
710 1.15 gwr * of kernel virtual space from KERNBASE to 0xFFFFFFFF.
711 1.1 gwr * Note: All must be aligned on 256 byte boundaries.
712 1.15 gwr * Start with the level-A table (one of those).
713 1.1 gwr */
714 1.69 chs size = sizeof(mmu_long_dte_t) * MMU_A_TBL_SIZE;
715 1.7 gwr kernAbase = pmap_bootstrap_alloc(size);
716 1.71 tsutsui memset(kernAbase, 0, size);
717 1.1 gwr
718 1.15 gwr /* Now the level-B kernel tables... */
719 1.15 gwr size = sizeof(mmu_short_dte_t) * MMU_B_TBL_SIZE * KERN_B_TABLES;
720 1.7 gwr kernBbase = pmap_bootstrap_alloc(size);
721 1.71 tsutsui memset(kernBbase, 0, size);
722 1.1 gwr
723 1.15 gwr /* Now the level-C kernel tables... */
724 1.15 gwr size = sizeof(mmu_short_pte_t) * MMU_C_TBL_SIZE * KERN_C_TABLES;
725 1.15 gwr kernCbase = pmap_bootstrap_alloc(size);
726 1.71 tsutsui memset(kernCbase, 0, size);
727 1.7 gwr /*
728 1.7 gwr * Note: In order for the PV system to work correctly, the kernel
729 1.7 gwr * and user-level C tables must be allocated contiguously.
730 1.7 gwr * Nothing should be allocated between here and the allocation of
731 1.7 gwr * mmuCbase below. XXX: Should do this as one allocation, and
732 1.7 gwr * then compute a pointer for mmuCbase instead of this...
733 1.15 gwr *
734 1.15 gwr * Allocate user MMU tables.
735 1.70 wiz * These must be contiguous with the preceding.
736 1.7 gwr */
737 1.22 jeremy
738 1.22 jeremy #ifndef FIXED_NTABLES
739 1.22 jeremy /*
740 1.22 jeremy * The number of user-level C tables that should be allocated is
741 1.22 jeremy * related to the size of physical memory. In general, there should
742 1.22 jeremy * be enough tables to map four times the amount of available RAM.
743 1.22 jeremy * The extra amount is needed because some table space is wasted by
744 1.22 jeremy * fragmentation.
745 1.22 jeremy */
746 1.22 jeremy NUM_C_TABLES = (total_phys_mem * 4) / (MMU_C_TBL_SIZE * MMU_PAGE_SIZE);
747 1.22 jeremy NUM_B_TABLES = NUM_C_TABLES / 2;
748 1.22 jeremy NUM_A_TABLES = NUM_B_TABLES / 2;
749 1.22 jeremy #endif /* !FIXED_NTABLES */
750 1.22 jeremy
751 1.15 gwr size = sizeof(mmu_short_pte_t) * MMU_C_TBL_SIZE * NUM_C_TABLES;
752 1.15 gwr mmuCbase = pmap_bootstrap_alloc(size);
753 1.15 gwr
754 1.15 gwr size = sizeof(mmu_short_dte_t) * MMU_B_TBL_SIZE * NUM_B_TABLES;
755 1.15 gwr mmuBbase = pmap_bootstrap_alloc(size);
756 1.1 gwr
757 1.69 chs size = sizeof(mmu_long_dte_t) * MMU_A_TBL_SIZE * NUM_A_TABLES;
758 1.15 gwr mmuAbase = pmap_bootstrap_alloc(size);
759 1.7 gwr
760 1.7 gwr /*
761 1.7 gwr * Fill in the never-changing part of the kernel tables.
762 1.7 gwr * For simplicity, the kernel's mappings will be editable as a
763 1.1 gwr * flat array of page table entries at kernCbase. The
764 1.1 gwr * higher level 'A' and 'B' tables must be initialized to point
765 1.1 gwr * to this lower one.
766 1.1 gwr */
767 1.1 gwr b = c = 0;
768 1.1 gwr
769 1.7 gwr /*
770 1.7 gwr * Invalidate all mappings below KERNBASE in the A table.
771 1.1 gwr * This area has already been zeroed out, but it is good
772 1.1 gwr * practice to explicitly show that we are interpreting
773 1.1 gwr * it as a list of A table descriptors.
774 1.1 gwr */
775 1.1 gwr for (i = 0; i < MMU_TIA(KERNBASE); i++) {
776 1.1 gwr kernAbase[i].addr.raw = 0;
777 1.1 gwr }
778 1.1 gwr
779 1.7 gwr /*
780 1.7 gwr * Set up the kernel A and B tables so that they will reference the
781 1.1 gwr * correct spots in the contiguous table of PTEs allocated for the
782 1.1 gwr * kernel's virtual memory space.
783 1.1 gwr */
784 1.1 gwr for (i = MMU_TIA(KERNBASE); i < MMU_A_TBL_SIZE; i++) {
785 1.1 gwr kernAbase[i].attr.raw =
786 1.92 tsutsui MMU_LONG_DTE_LU | MMU_LONG_DTE_SUPV | MMU_DT_SHORT;
787 1.7 gwr kernAbase[i].addr.raw = mmu_vtop(&kernBbase[b]);
788 1.1 gwr
789 1.92 tsutsui for (j = 0; j < MMU_B_TBL_SIZE; j++) {
790 1.92 tsutsui kernBbase[b + j].attr.raw =
791 1.92 tsutsui mmu_vtop(&kernCbase[c]) | MMU_DT_SHORT;
792 1.1 gwr c += MMU_C_TBL_SIZE;
793 1.1 gwr }
794 1.1 gwr b += MMU_B_TBL_SIZE;
795 1.1 gwr }
796 1.1 gwr
797 1.7 gwr pmap_alloc_usermmu(); /* Allocate user MMU tables. */
798 1.7 gwr pmap_alloc_usertmgr(); /* Allocate user MMU table managers.*/
799 1.7 gwr pmap_alloc_pv(); /* Allocate physical->virtual map. */
800 1.7 gwr
801 1.7 gwr /*
802 1.7 gwr * We are now done with pmap_bootstrap_alloc(). Round up
803 1.7 gwr * `virtual_avail' to the nearest page, and set the flag
804 1.7 gwr * to prevent use of pmap_bootstrap_alloc() hereafter.
805 1.7 gwr */
806 1.79 thorpej pmap_bootstrap_aalign(PAGE_SIZE);
807 1.7 gwr bootstrap_alloc_enabled = FALSE;
808 1.7 gwr
809 1.7 gwr /*
810 1.7 gwr * Now that we are done with pmap_bootstrap_alloc(), we
811 1.7 gwr * must save the virtual and physical addresses of the
812 1.7 gwr * end of the linearly mapped range, which are stored in
813 1.7 gwr * virtual_contig_end and avail_start, respectively.
814 1.7 gwr * These variables will never change after this point.
815 1.7 gwr */
816 1.7 gwr virtual_contig_end = virtual_avail;
817 1.7 gwr avail_start = virtual_avail - KERNBASE;
818 1.7 gwr
819 1.7 gwr /*
820 1.7 gwr * `avail_next' is a running pointer used by pmap_next_page() to
821 1.7 gwr * keep track of the next available physical page to be handed
822 1.7 gwr * to the VM system during its initialization, in which it
823 1.7 gwr * asks for physical pages, one at a time.
824 1.7 gwr */
825 1.7 gwr avail_next = avail_start;
826 1.7 gwr
827 1.7 gwr /*
828 1.7 gwr * Now allocate some virtual addresses, but not the physical pages
829 1.7 gwr * behind them. Note that virtual_avail is already page-aligned.
830 1.7 gwr *
831 1.7 gwr * tmp_vpages[] is an array of two virtual pages used for temporary
832 1.7 gwr * kernel mappings in the pmap module to facilitate various physical
833 1.7 gwr * address-oritented operations.
834 1.7 gwr */
835 1.7 gwr tmp_vpages[0] = virtual_avail;
836 1.79 thorpej virtual_avail += PAGE_SIZE;
837 1.7 gwr tmp_vpages[1] = virtual_avail;
838 1.79 thorpej virtual_avail += PAGE_SIZE;
839 1.7 gwr
840 1.7 gwr /** Initialize the PV system **/
841 1.7 gwr pmap_init_pv();
842 1.7 gwr
843 1.7 gwr /*
844 1.7 gwr * Fill in the kernel_pmap structure and kernel_crp.
845 1.7 gwr */
846 1.7 gwr kernAphys = mmu_vtop(kernAbase);
847 1.7 gwr kernel_pmap.pm_a_tmgr = NULL;
848 1.7 gwr kernel_pmap.pm_a_phys = kernAphys;
849 1.7 gwr kernel_pmap.pm_refcount = 1; /* always in use */
850 1.55 tsutsui simple_lock_init(&kernel_pmap.pm_lock);
851 1.7 gwr
852 1.7 gwr kernel_crp.rp_attr = MMU_LONG_DTE_LU | MMU_DT_LONG;
853 1.7 gwr kernel_crp.rp_addr = kernAphys;
854 1.7 gwr
855 1.1 gwr /*
856 1.1 gwr * Now pmap_enter_kernel() may be used safely and will be
857 1.7 gwr * the main interface used hereafter to modify the kernel's
858 1.7 gwr * virtual address space. Note that since we are still running
859 1.7 gwr * under the PROM's address table, none of these table modifications
860 1.7 gwr * actually take effect until pmap_takeover_mmu() is called.
861 1.1 gwr *
862 1.7 gwr * Note: Our tables do NOT have the PROM linear mappings!
863 1.7 gwr * Only the mappings created here exist in our tables, so
864 1.7 gwr * remember to map anything we expect to use.
865 1.1 gwr */
866 1.69 chs va = (vaddr_t)KERNBASE;
867 1.7 gwr pa = 0;
868 1.1 gwr
869 1.1 gwr /*
870 1.7 gwr * The first page of the kernel virtual address space is the msgbuf
871 1.7 gwr * page. The page attributes (data, non-cached) are set here, while
872 1.7 gwr * the address is assigned to this global pointer in cpu_startup().
873 1.29 gwr * It is non-cached, mostly due to paranoia.
874 1.1 gwr */
875 1.29 gwr pmap_enter_kernel(va, pa|PMAP_NC, VM_PROT_ALL);
876 1.92 tsutsui va += PAGE_SIZE;
877 1.92 tsutsui pa += PAGE_SIZE;
878 1.1 gwr
879 1.7 gwr /* Next page is used as the temporary stack. */
880 1.1 gwr pmap_enter_kernel(va, pa, VM_PROT_ALL);
881 1.92 tsutsui va += PAGE_SIZE;
882 1.92 tsutsui pa += PAGE_SIZE;
883 1.1 gwr
884 1.1 gwr /*
885 1.1 gwr * Map all of the kernel's text segment as read-only and cacheable.
886 1.1 gwr * (Cacheable is implied by default). Unfortunately, the last bytes
887 1.1 gwr * of kernel text and the first bytes of kernel data will often be
888 1.1 gwr * sharing the same page. Therefore, the last page of kernel text
889 1.93 christos * has to be mapped as read/write, to accommodate the data.
890 1.1 gwr */
891 1.69 chs eva = m68k_trunc_page((vaddr_t)etext);
892 1.79 thorpej for (; va < eva; va += PAGE_SIZE, pa += PAGE_SIZE)
893 1.1 gwr pmap_enter_kernel(va, pa, VM_PROT_READ|VM_PROT_EXECUTE);
894 1.1 gwr
895 1.7 gwr /*
896 1.7 gwr * Map all of the kernel's data as read/write and cacheable.
897 1.7 gwr * This includes: data, BSS, symbols, and everything in the
898 1.7 gwr * contiguous memory used by pmap_bootstrap_alloc()
899 1.1 gwr */
900 1.79 thorpej for (; pa < avail_start; va += PAGE_SIZE, pa += PAGE_SIZE)
901 1.1 gwr pmap_enter_kernel(va, pa, VM_PROT_READ|VM_PROT_WRITE);
902 1.1 gwr
903 1.7 gwr /*
904 1.7 gwr * At this point we are almost ready to take over the MMU. But first
905 1.7 gwr * we must save the PROM's address space in our map, as we call its
906 1.7 gwr * routines and make references to its data later in the kernel.
907 1.1 gwr */
908 1.7 gwr pmap_bootstrap_copyprom();
909 1.7 gwr pmap_takeover_mmu();
910 1.13 gwr pmap_bootstrap_setprom();
911 1.1 gwr
912 1.1 gwr /* Notify the VM system of our page size. */
913 1.79 thorpej uvmexp.pagesize = PAGE_SIZE;
914 1.43 mrg uvm_setpagesize();
915 1.37 gwr
916 1.37 gwr pmap_page_upload();
917 1.1 gwr }
918 1.1 gwr
919 1.1 gwr
920 1.1 gwr /* pmap_alloc_usermmu INTERNAL
921 1.1 gwr **
922 1.1 gwr * Called from pmap_bootstrap() to allocate MMU tables that will
923 1.1 gwr * eventually be used for user mappings.
924 1.1 gwr */
925 1.86 chs void
926 1.86 chs pmap_alloc_usermmu(void)
927 1.1 gwr {
928 1.92 tsutsui
929 1.7 gwr /* XXX: Moved into caller. */
930 1.1 gwr }
931 1.1 gwr
932 1.1 gwr /* pmap_alloc_pv INTERNAL
933 1.1 gwr **
934 1.1 gwr * Called from pmap_bootstrap() to allocate the physical
935 1.1 gwr * to virtual mapping list. Each physical page of memory
936 1.1 gwr * in the system has a corresponding element in this list.
937 1.1 gwr */
938 1.86 chs void
939 1.86 chs pmap_alloc_pv(void)
940 1.1 gwr {
941 1.1 gwr int i;
942 1.1 gwr unsigned int total_mem;
943 1.1 gwr
944 1.7 gwr /*
945 1.7 gwr * Allocate a pv_head structure for every page of physical
946 1.1 gwr * memory that will be managed by the system. Since memory on
947 1.1 gwr * the 3/80 is non-contiguous, we cannot arrive at a total page
948 1.1 gwr * count by subtraction of the lowest available address from the
949 1.1 gwr * highest, but rather we have to step through each memory
950 1.1 gwr * bank and add the number of pages in each to the total.
951 1.1 gwr *
952 1.1 gwr * At this time we also initialize the offset of each bank's
953 1.1 gwr * starting pv_head within the pv_head list so that the physical
954 1.1 gwr * memory state routines (pmap_is_referenced(),
955 1.1 gwr * pmap_is_modified(), et al.) can quickly find coresponding
956 1.1 gwr * pv_heads in spite of the non-contiguity.
957 1.1 gwr */
958 1.1 gwr total_mem = 0;
959 1.20 thorpej for (i = 0; i < SUN3X_NPHYS_RAM_SEGS; i++) {
960 1.25 veego avail_mem[i].pmem_pvbase = m68k_btop(total_mem);
961 1.92 tsutsui total_mem += avail_mem[i].pmem_end - avail_mem[i].pmem_start;
962 1.1 gwr if (avail_mem[i].pmem_next == NULL)
963 1.1 gwr break;
964 1.1 gwr }
965 1.92 tsutsui pvbase = (pv_t *)pmap_bootstrap_alloc(sizeof(pv_t) *
966 1.92 tsutsui m68k_btop(total_phys_mem));
967 1.1 gwr }
968 1.1 gwr
969 1.1 gwr /* pmap_alloc_usertmgr INTERNAL
970 1.1 gwr **
971 1.1 gwr * Called from pmap_bootstrap() to allocate the structures which
972 1.1 gwr * facilitate management of user MMU tables. Each user MMU table
973 1.1 gwr * in the system has one such structure associated with it.
974 1.1 gwr */
975 1.86 chs void
976 1.86 chs pmap_alloc_usertmgr(void)
977 1.1 gwr {
978 1.1 gwr /* Allocate user MMU table managers */
979 1.7 gwr /* It would be a lot simpler to just make these BSS, but */
980 1.7 gwr /* we may want to change their size at boot time... -j */
981 1.92 tsutsui Atmgrbase =
982 1.92 tsutsui (a_tmgr_t *)pmap_bootstrap_alloc(sizeof(a_tmgr_t) * NUM_A_TABLES);
983 1.92 tsutsui Btmgrbase =
984 1.92 tsutsui (b_tmgr_t *)pmap_bootstrap_alloc(sizeof(b_tmgr_t) * NUM_B_TABLES);
985 1.92 tsutsui Ctmgrbase =
986 1.92 tsutsui (c_tmgr_t *)pmap_bootstrap_alloc(sizeof(c_tmgr_t) * NUM_C_TABLES);
987 1.1 gwr
988 1.7 gwr /*
989 1.7 gwr * Allocate PV list elements for the physical to virtual
990 1.1 gwr * mapping system.
991 1.1 gwr */
992 1.92 tsutsui pvebase = (pv_elem_t *)pmap_bootstrap_alloc(sizeof(pv_elem_t) *
993 1.92 tsutsui (NUM_USER_PTES + NUM_KERN_PTES));
994 1.1 gwr }
995 1.1 gwr
996 1.1 gwr /* pmap_bootstrap_copyprom() INTERNAL
997 1.1 gwr **
998 1.1 gwr * Copy the PROM mappings into our own tables. Note, we
999 1.1 gwr * can use physical addresses until __bootstrap returns.
1000 1.1 gwr */
1001 1.86 chs void
1002 1.86 chs pmap_bootstrap_copyprom(void)
1003 1.1 gwr {
1004 1.33 gwr struct sunromvec *romp;
1005 1.1 gwr int *mon_ctbl;
1006 1.1 gwr mmu_short_pte_t *kpte;
1007 1.1 gwr int i, len;
1008 1.1 gwr
1009 1.1 gwr romp = romVectorPtr;
1010 1.1 gwr
1011 1.1 gwr /*
1012 1.33 gwr * Copy the mappings in SUN3X_MON_KDB_BASE...SUN3X_MONEND
1013 1.33 gwr * Note: mon_ctbl[0] maps SUN3X_MON_KDB_BASE
1014 1.1 gwr */
1015 1.1 gwr mon_ctbl = *romp->monptaddr;
1016 1.33 gwr i = m68k_btop(SUN3X_MON_KDB_BASE - KERNBASE);
1017 1.1 gwr kpte = &kernCbase[i];
1018 1.33 gwr len = m68k_btop(SUN3X_MONEND - SUN3X_MON_KDB_BASE);
1019 1.1 gwr
1020 1.1 gwr for (i = 0; i < len; i++) {
1021 1.1 gwr kpte[i].attr.raw = mon_ctbl[i];
1022 1.1 gwr }
1023 1.1 gwr
1024 1.1 gwr /*
1025 1.1 gwr * Copy the mappings at MON_DVMA_BASE (to the end).
1026 1.1 gwr * Note, in here, mon_ctbl[0] maps MON_DVMA_BASE.
1027 1.32 gwr * Actually, we only want the last page, which the
1028 1.32 gwr * PROM has set up for use by the "ie" driver.
1029 1.32 gwr * (The i82686 needs its SCP there.)
1030 1.32 gwr * If we copy all the mappings, pmap_enter_kernel
1031 1.32 gwr * may complain about finding valid PTEs that are
1032 1.32 gwr * not recorded in our PV lists...
1033 1.1 gwr */
1034 1.1 gwr mon_ctbl = *romp->shadowpteaddr;
1035 1.33 gwr i = m68k_btop(SUN3X_MON_DVMA_BASE - KERNBASE);
1036 1.1 gwr kpte = &kernCbase[i];
1037 1.33 gwr len = m68k_btop(SUN3X_MON_DVMA_SIZE);
1038 1.92 tsutsui for (i = (len - 1); i < len; i++) {
1039 1.1 gwr kpte[i].attr.raw = mon_ctbl[i];
1040 1.1 gwr }
1041 1.1 gwr }
1042 1.1 gwr
1043 1.1 gwr /* pmap_takeover_mmu INTERNAL
1044 1.1 gwr **
1045 1.1 gwr * Called from pmap_bootstrap() after it has copied enough of the
1046 1.1 gwr * PROM mappings into the kernel map so that we can use our own
1047 1.1 gwr * MMU table.
1048 1.1 gwr */
1049 1.86 chs void
1050 1.86 chs pmap_takeover_mmu(void)
1051 1.1 gwr {
1052 1.1 gwr
1053 1.13 gwr loadcrp(&kernel_crp);
1054 1.1 gwr }
1055 1.1 gwr
1056 1.13 gwr /* pmap_bootstrap_setprom() INTERNAL
1057 1.13 gwr **
1058 1.13 gwr * Set the PROM mappings so it can see kernel space.
1059 1.13 gwr * Note that physical addresses are used here, which
1060 1.13 gwr * we can get away with because this runs with the
1061 1.13 gwr * low 1GB set for transparent translation.
1062 1.13 gwr */
1063 1.86 chs void
1064 1.86 chs pmap_bootstrap_setprom(void)
1065 1.13 gwr {
1066 1.13 gwr mmu_long_dte_t *mon_dte;
1067 1.13 gwr extern struct mmu_rootptr mon_crp;
1068 1.13 gwr int i;
1069 1.13 gwr
1070 1.92 tsutsui mon_dte = (mmu_long_dte_t *)mon_crp.rp_addr;
1071 1.13 gwr for (i = MMU_TIA(KERNBASE); i < MMU_TIA(KERN_END); i++) {
1072 1.13 gwr mon_dte[i].attr.raw = kernAbase[i].attr.raw;
1073 1.13 gwr mon_dte[i].addr.raw = kernAbase[i].addr.raw;
1074 1.13 gwr }
1075 1.13 gwr }
1076 1.13 gwr
1077 1.13 gwr
1078 1.1 gwr /* pmap_init INTERFACE
1079 1.1 gwr **
1080 1.1 gwr * Called at the end of vm_init() to set up the pmap system to go
1081 1.7 gwr * into full time operation. All initialization of kernel_pmap
1082 1.7 gwr * should be already done by now, so this should just do things
1083 1.7 gwr * needed for user-level pmaps to work.
1084 1.1 gwr */
1085 1.86 chs void
1086 1.86 chs pmap_init(void)
1087 1.1 gwr {
1088 1.92 tsutsui
1089 1.1 gwr /** Initialize the manager pools **/
1090 1.1 gwr TAILQ_INIT(&a_pool);
1091 1.1 gwr TAILQ_INIT(&b_pool);
1092 1.1 gwr TAILQ_INIT(&c_pool);
1093 1.1 gwr
1094 1.1 gwr /**************************************************************
1095 1.1 gwr * Initialize all tmgr structures and MMU tables they manage. *
1096 1.1 gwr **************************************************************/
1097 1.1 gwr /** Initialize A tables **/
1098 1.1 gwr pmap_init_a_tables();
1099 1.1 gwr /** Initialize B tables **/
1100 1.1 gwr pmap_init_b_tables();
1101 1.1 gwr /** Initialize C tables **/
1102 1.1 gwr pmap_init_c_tables();
1103 1.56 tsutsui
1104 1.56 tsutsui /** Initialize the pmap pools **/
1105 1.56 tsutsui pool_init(&pmap_pmap_pool, sizeof(struct pmap), 0, 0, 0, "pmappl",
1106 1.74 thorpej &pool_allocator_nointr);
1107 1.1 gwr }
1108 1.1 gwr
1109 1.1 gwr /* pmap_init_a_tables() INTERNAL
1110 1.1 gwr **
1111 1.1 gwr * Initializes all A managers, their MMU A tables, and inserts
1112 1.1 gwr * them into the A manager pool for use by the system.
1113 1.1 gwr */
1114 1.86 chs void
1115 1.86 chs pmap_init_a_tables(void)
1116 1.1 gwr {
1117 1.1 gwr int i;
1118 1.1 gwr a_tmgr_t *a_tbl;
1119 1.1 gwr
1120 1.86 chs for (i = 0; i < NUM_A_TABLES; i++) {
1121 1.1 gwr /* Select the next available A manager from the pool */
1122 1.1 gwr a_tbl = &Atmgrbase[i];
1123 1.1 gwr
1124 1.7 gwr /*
1125 1.7 gwr * Clear its parent entry. Set its wired and valid
1126 1.1 gwr * entry count to zero.
1127 1.1 gwr */
1128 1.1 gwr a_tbl->at_parent = NULL;
1129 1.1 gwr a_tbl->at_wcnt = a_tbl->at_ecnt = 0;
1130 1.1 gwr
1131 1.1 gwr /* Assign it the next available MMU A table from the pool */
1132 1.1 gwr a_tbl->at_dtbl = &mmuAbase[i * MMU_A_TBL_SIZE];
1133 1.1 gwr
1134 1.7 gwr /*
1135 1.7 gwr * Initialize the MMU A table with the table in the `proc0',
1136 1.1 gwr * or kernel, mapping. This ensures that every process has
1137 1.1 gwr * the kernel mapped in the top part of its address space.
1138 1.1 gwr */
1139 1.92 tsutsui memcpy(a_tbl->at_dtbl, kernAbase,
1140 1.92 tsutsui MMU_A_TBL_SIZE * sizeof(mmu_long_dte_t));
1141 1.1 gwr
1142 1.7 gwr /*
1143 1.7 gwr * Finally, insert the manager into the A pool,
1144 1.1 gwr * making it ready to be used by the system.
1145 1.1 gwr */
1146 1.1 gwr TAILQ_INSERT_TAIL(&a_pool, a_tbl, at_link);
1147 1.1 gwr }
1148 1.1 gwr }
1149 1.1 gwr
1150 1.1 gwr /* pmap_init_b_tables() INTERNAL
1151 1.1 gwr **
1152 1.1 gwr * Initializes all B table managers, their MMU B tables, and
1153 1.1 gwr * inserts them into the B manager pool for use by the system.
1154 1.1 gwr */
1155 1.86 chs void
1156 1.86 chs pmap_init_b_tables(void)
1157 1.1 gwr {
1158 1.86 chs int i, j;
1159 1.1 gwr b_tmgr_t *b_tbl;
1160 1.1 gwr
1161 1.86 chs for (i = 0; i < NUM_B_TABLES; i++) {
1162 1.1 gwr /* Select the next available B manager from the pool */
1163 1.1 gwr b_tbl = &Btmgrbase[i];
1164 1.1 gwr
1165 1.1 gwr b_tbl->bt_parent = NULL; /* clear its parent, */
1166 1.1 gwr b_tbl->bt_pidx = 0; /* parent index, */
1167 1.1 gwr b_tbl->bt_wcnt = 0; /* wired entry count, */
1168 1.1 gwr b_tbl->bt_ecnt = 0; /* valid entry count. */
1169 1.1 gwr
1170 1.1 gwr /* Assign it the next available MMU B table from the pool */
1171 1.1 gwr b_tbl->bt_dtbl = &mmuBbase[i * MMU_B_TBL_SIZE];
1172 1.1 gwr
1173 1.1 gwr /* Invalidate every descriptor in the table */
1174 1.92 tsutsui for (j = 0; j < MMU_B_TBL_SIZE; j++)
1175 1.1 gwr b_tbl->bt_dtbl[j].attr.raw = MMU_DT_INVALID;
1176 1.1 gwr
1177 1.1 gwr /* Insert the manager into the B pool */
1178 1.1 gwr TAILQ_INSERT_TAIL(&b_pool, b_tbl, bt_link);
1179 1.1 gwr }
1180 1.1 gwr }
1181 1.1 gwr
1182 1.1 gwr /* pmap_init_c_tables() INTERNAL
1183 1.1 gwr **
1184 1.1 gwr * Initializes all C table managers, their MMU C tables, and
1185 1.1 gwr * inserts them into the C manager pool for use by the system.
1186 1.1 gwr */
1187 1.86 chs void
1188 1.86 chs pmap_init_c_tables(void)
1189 1.1 gwr {
1190 1.86 chs int i, j;
1191 1.1 gwr c_tmgr_t *c_tbl;
1192 1.1 gwr
1193 1.86 chs for (i = 0; i < NUM_C_TABLES; i++) {
1194 1.1 gwr /* Select the next available C manager from the pool */
1195 1.1 gwr c_tbl = &Ctmgrbase[i];
1196 1.1 gwr
1197 1.1 gwr c_tbl->ct_parent = NULL; /* clear its parent, */
1198 1.1 gwr c_tbl->ct_pidx = 0; /* parent index, */
1199 1.1 gwr c_tbl->ct_wcnt = 0; /* wired entry count, */
1200 1.26 jeremy c_tbl->ct_ecnt = 0; /* valid entry count, */
1201 1.26 jeremy c_tbl->ct_pmap = NULL; /* parent pmap, */
1202 1.26 jeremy c_tbl->ct_va = 0; /* base of managed range */
1203 1.1 gwr
1204 1.1 gwr /* Assign it the next available MMU C table from the pool */
1205 1.1 gwr c_tbl->ct_dtbl = &mmuCbase[i * MMU_C_TBL_SIZE];
1206 1.1 gwr
1207 1.92 tsutsui for (j = 0; j < MMU_C_TBL_SIZE; j++)
1208 1.1 gwr c_tbl->ct_dtbl[j].attr.raw = MMU_DT_INVALID;
1209 1.1 gwr
1210 1.1 gwr TAILQ_INSERT_TAIL(&c_pool, c_tbl, ct_link);
1211 1.1 gwr }
1212 1.1 gwr }
1213 1.1 gwr
1214 1.1 gwr /* pmap_init_pv() INTERNAL
1215 1.1 gwr **
1216 1.1 gwr * Initializes the Physical to Virtual mapping system.
1217 1.1 gwr */
1218 1.86 chs void
1219 1.86 chs pmap_init_pv(void)
1220 1.1 gwr {
1221 1.86 chs int i;
1222 1.7 gwr
1223 1.7 gwr /* Initialize every PV head. */
1224 1.25 veego for (i = 0; i < m68k_btop(total_phys_mem); i++) {
1225 1.7 gwr pvbase[i].pv_idx = PVE_EOL; /* Indicate no mappings */
1226 1.7 gwr pvbase[i].pv_flags = 0; /* Zero out page flags */
1227 1.7 gwr }
1228 1.1 gwr }
1229 1.1 gwr
1230 1.92 tsutsui /* is_managed INTERNAL
1231 1.92 tsutsui **
1232 1.92 tsutsui * Determine if the given physical address is managed by the PV system.
1233 1.92 tsutsui * Note that this logic assumes that no one will ask for the status of
1234 1.92 tsutsui * addresses which lie in-between the memory banks on the 3/80. If they
1235 1.92 tsutsui * do so, it will falsely report that it is managed.
1236 1.92 tsutsui *
1237 1.92 tsutsui * Note: A "managed" address is one that was reported to the VM system as
1238 1.92 tsutsui * a "usable page" during system startup. As such, the VM system expects the
1239 1.92 tsutsui * pmap module to keep an accurate track of the useage of those pages.
1240 1.92 tsutsui * Any page not given to the VM system at startup does not exist (as far as
1241 1.92 tsutsui * the VM system is concerned) and is therefore "unmanaged." Examples are
1242 1.92 tsutsui * those pages which belong to the ROM monitor and the memory allocated before
1243 1.92 tsutsui * the VM system was started.
1244 1.92 tsutsui */
1245 1.92 tsutsui static INLINE boolean_t
1246 1.92 tsutsui is_managed(paddr_t pa)
1247 1.92 tsutsui {
1248 1.92 tsutsui if (pa >= avail_start && pa < avail_end)
1249 1.92 tsutsui return TRUE;
1250 1.92 tsutsui else
1251 1.92 tsutsui return FALSE;
1252 1.92 tsutsui }
1253 1.92 tsutsui
1254 1.1 gwr /* get_a_table INTERNAL
1255 1.1 gwr **
1256 1.1 gwr * Retrieve and return a level A table for use in a user map.
1257 1.1 gwr */
1258 1.1 gwr a_tmgr_t *
1259 1.86 chs get_a_table(void)
1260 1.1 gwr {
1261 1.1 gwr a_tmgr_t *tbl;
1262 1.7 gwr pmap_t pmap;
1263 1.1 gwr
1264 1.1 gwr /* Get the top A table in the pool */
1265 1.86 chs tbl = TAILQ_FIRST(&a_pool);
1266 1.7 gwr if (tbl == NULL) {
1267 1.7 gwr /*
1268 1.85 wiz * XXX - Instead of panicking here and in other get_x_table
1269 1.7 gwr * functions, we do have the option of sleeping on the head of
1270 1.7 gwr * the table pool. Any function which updates the table pool
1271 1.7 gwr * would then issue a wakeup() on the head, thus waking up any
1272 1.7 gwr * processes waiting for a table.
1273 1.7 gwr *
1274 1.7 gwr * Actually, the place to sleep would be when some process
1275 1.7 gwr * asks for a "wired" mapping that would run us short of
1276 1.7 gwr * mapping resources. This design DEPENDS on always having
1277 1.7 gwr * some mapping resources in the pool for stealing, so we
1278 1.7 gwr * must make sure we NEVER let the pool become empty. -gwr
1279 1.7 gwr */
1280 1.1 gwr panic("get_a_table: out of A tables.");
1281 1.7 gwr }
1282 1.7 gwr
1283 1.1 gwr TAILQ_REMOVE(&a_pool, tbl, at_link);
1284 1.7 gwr /*
1285 1.7 gwr * If the table has a non-null parent pointer then it is in use.
1286 1.1 gwr * Forcibly abduct it from its parent and clear its entries.
1287 1.1 gwr * No re-entrancy worries here. This table would not be in the
1288 1.1 gwr * table pool unless it was available for use.
1289 1.7 gwr *
1290 1.7 gwr * Note that the second argument to free_a_table() is FALSE. This
1291 1.7 gwr * indicates that the table should not be relinked into the A table
1292 1.7 gwr * pool. That is a job for the function that called us.
1293 1.1 gwr */
1294 1.1 gwr if (tbl->at_parent) {
1295 1.91 tsutsui KASSERT(tbl->at_wcnt == 0);
1296 1.7 gwr pmap = tbl->at_parent;
1297 1.8 gwr free_a_table(tbl, FALSE);
1298 1.7 gwr pmap->pm_a_tmgr = NULL;
1299 1.7 gwr pmap->pm_a_phys = kernAphys;
1300 1.1 gwr }
1301 1.1 gwr return tbl;
1302 1.1 gwr }
1303 1.1 gwr
1304 1.1 gwr /* get_b_table INTERNAL
1305 1.1 gwr **
1306 1.1 gwr * Return a level B table for use.
1307 1.1 gwr */
1308 1.1 gwr b_tmgr_t *
1309 1.86 chs get_b_table(void)
1310 1.1 gwr {
1311 1.1 gwr b_tmgr_t *tbl;
1312 1.1 gwr
1313 1.1 gwr /* See 'get_a_table' for comments. */
1314 1.86 chs tbl = TAILQ_FIRST(&b_pool);
1315 1.1 gwr if (tbl == NULL)
1316 1.1 gwr panic("get_b_table: out of B tables.");
1317 1.1 gwr TAILQ_REMOVE(&b_pool, tbl, bt_link);
1318 1.1 gwr if (tbl->bt_parent) {
1319 1.91 tsutsui KASSERT(tbl->bt_wcnt == 0);
1320 1.1 gwr tbl->bt_parent->at_dtbl[tbl->bt_pidx].attr.raw = MMU_DT_INVALID;
1321 1.1 gwr tbl->bt_parent->at_ecnt--;
1322 1.8 gwr free_b_table(tbl, FALSE);
1323 1.1 gwr }
1324 1.1 gwr return tbl;
1325 1.1 gwr }
1326 1.1 gwr
1327 1.1 gwr /* get_c_table INTERNAL
1328 1.1 gwr **
1329 1.1 gwr * Return a level C table for use.
1330 1.1 gwr */
1331 1.1 gwr c_tmgr_t *
1332 1.86 chs get_c_table(void)
1333 1.1 gwr {
1334 1.1 gwr c_tmgr_t *tbl;
1335 1.1 gwr
1336 1.1 gwr /* See 'get_a_table' for comments */
1337 1.86 chs tbl = TAILQ_FIRST(&c_pool);
1338 1.1 gwr if (tbl == NULL)
1339 1.1 gwr panic("get_c_table: out of C tables.");
1340 1.1 gwr TAILQ_REMOVE(&c_pool, tbl, ct_link);
1341 1.1 gwr if (tbl->ct_parent) {
1342 1.91 tsutsui KASSERT(tbl->ct_wcnt == 0);
1343 1.1 gwr tbl->ct_parent->bt_dtbl[tbl->ct_pidx].attr.raw = MMU_DT_INVALID;
1344 1.1 gwr tbl->ct_parent->bt_ecnt--;
1345 1.8 gwr free_c_table(tbl, FALSE);
1346 1.1 gwr }
1347 1.1 gwr return tbl;
1348 1.1 gwr }
1349 1.1 gwr
1350 1.7 gwr /*
1351 1.7 gwr * The following 'free_table' and 'steal_table' functions are called to
1352 1.1 gwr * detach tables from their current obligations (parents and children) and
1353 1.1 gwr * prepare them for reuse in another mapping.
1354 1.1 gwr *
1355 1.1 gwr * Free_table is used when the calling function will handle the fate
1356 1.1 gwr * of the parent table, such as returning it to the free pool when it has
1357 1.1 gwr * no valid entries. Functions that do not want to handle this should
1358 1.1 gwr * call steal_table, in which the parent table's descriptors and entry
1359 1.1 gwr * count are automatically modified when this table is removed.
1360 1.1 gwr */
1361 1.1 gwr
1362 1.1 gwr /* free_a_table INTERNAL
1363 1.1 gwr **
1364 1.1 gwr * Unmaps the given A table and all child tables from their current
1365 1.1 gwr * mappings. Returns the number of pages that were invalidated.
1366 1.7 gwr * If 'relink' is true, the function will return the table to the head
1367 1.7 gwr * of the available table pool.
1368 1.1 gwr *
1369 1.1 gwr * Cache note: The MC68851 will automatically flush all
1370 1.1 gwr * descriptors derived from a given A table from its
1371 1.1 gwr * Automatic Translation Cache (ATC) if we issue a
1372 1.1 gwr * 'PFLUSHR' instruction with the base address of the
1373 1.1 gwr * table. This function should do, and does so.
1374 1.1 gwr * Note note: We are using an MC68030 - there is no
1375 1.1 gwr * PFLUSHR.
1376 1.1 gwr */
1377 1.86 chs int
1378 1.86 chs free_a_table(a_tmgr_t *a_tbl, boolean_t relink)
1379 1.1 gwr {
1380 1.1 gwr int i, removed_cnt;
1381 1.1 gwr mmu_long_dte_t *dte;
1382 1.1 gwr mmu_short_dte_t *dtbl;
1383 1.91 tsutsui b_tmgr_t *b_tbl;
1384 1.91 tsutsui uint8_t at_wired, bt_wired;
1385 1.1 gwr
1386 1.7 gwr /*
1387 1.7 gwr * Flush the ATC cache of all cached descriptors derived
1388 1.1 gwr * from this table.
1389 1.22 jeremy * Sun3x does not use 68851's cached table feature
1390 1.1 gwr * flush_atc_crp(mmu_vtop(a_tbl->dte));
1391 1.1 gwr */
1392 1.1 gwr
1393 1.7 gwr /*
1394 1.7 gwr * Remove any pending cache flushes that were designated
1395 1.1 gwr * for the pmap this A table belongs to.
1396 1.1 gwr * a_tbl->parent->atc_flushq[0] = 0;
1397 1.22 jeremy * Not implemented in sun3x.
1398 1.1 gwr */
1399 1.1 gwr
1400 1.7 gwr /*
1401 1.7 gwr * All A tables in the system should retain a map for the
1402 1.1 gwr * kernel. If the table contains any valid descriptors
1403 1.1 gwr * (other than those for the kernel area), invalidate them all,
1404 1.1 gwr * stopping short of the kernel's entries.
1405 1.1 gwr */
1406 1.1 gwr removed_cnt = 0;
1407 1.91 tsutsui at_wired = a_tbl->at_wcnt;
1408 1.1 gwr if (a_tbl->at_ecnt) {
1409 1.1 gwr dte = a_tbl->at_dtbl;
1410 1.92 tsutsui for (i = 0; i < MMU_TIA(KERNBASE); i++) {
1411 1.7 gwr /*
1412 1.7 gwr * If a table entry points to a valid B table, free
1413 1.1 gwr * it and its children.
1414 1.1 gwr */
1415 1.1 gwr if (MMU_VALID_DT(dte[i])) {
1416 1.7 gwr /*
1417 1.7 gwr * The following block does several things,
1418 1.1 gwr * from innermost expression to the
1419 1.1 gwr * outermost:
1420 1.1 gwr * 1) It extracts the base (cc 1996)
1421 1.1 gwr * address of the B table pointed
1422 1.1 gwr * to in the A table entry dte[i].
1423 1.1 gwr * 2) It converts this base address into
1424 1.1 gwr * the virtual address it can be
1425 1.1 gwr * accessed with. (all MMU tables point
1426 1.1 gwr * to physical addresses.)
1427 1.1 gwr * 3) It finds the corresponding manager
1428 1.1 gwr * structure which manages this MMU table.
1429 1.1 gwr * 4) It frees the manager structure.
1430 1.1 gwr * (This frees the MMU table and all
1431 1.1 gwr * child tables. See 'free_b_table' for
1432 1.1 gwr * details.)
1433 1.1 gwr */
1434 1.7 gwr dtbl = mmu_ptov(dte[i].addr.raw);
1435 1.91 tsutsui b_tbl = mmuB2tmgr(dtbl);
1436 1.91 tsutsui bt_wired = b_tbl->bt_wcnt;
1437 1.91 tsutsui removed_cnt += free_b_table(b_tbl, TRUE);
1438 1.91 tsutsui if (bt_wired)
1439 1.91 tsutsui a_tbl->at_wcnt--;
1440 1.8 gwr dte[i].attr.raw = MMU_DT_INVALID;
1441 1.1 gwr }
1442 1.8 gwr }
1443 1.8 gwr a_tbl->at_ecnt = 0;
1444 1.1 gwr }
1445 1.91 tsutsui KASSERT(a_tbl->at_wcnt == 0);
1446 1.91 tsutsui
1447 1.7 gwr if (relink) {
1448 1.7 gwr a_tbl->at_parent = NULL;
1449 1.91 tsutsui if (!at_wired)
1450 1.91 tsutsui TAILQ_REMOVE(&a_pool, a_tbl, at_link);
1451 1.7 gwr TAILQ_INSERT_HEAD(&a_pool, a_tbl, at_link);
1452 1.7 gwr }
1453 1.1 gwr return removed_cnt;
1454 1.1 gwr }
1455 1.1 gwr
1456 1.1 gwr /* free_b_table INTERNAL
1457 1.1 gwr **
1458 1.1 gwr * Unmaps the given B table and all its children from their current
1459 1.1 gwr * mappings. Returns the number of pages that were invalidated.
1460 1.1 gwr * (For comments, see 'free_a_table()').
1461 1.1 gwr */
1462 1.86 chs int
1463 1.86 chs free_b_table(b_tmgr_t *b_tbl, boolean_t relink)
1464 1.1 gwr {
1465 1.1 gwr int i, removed_cnt;
1466 1.1 gwr mmu_short_dte_t *dte;
1467 1.1 gwr mmu_short_pte_t *dtbl;
1468 1.91 tsutsui c_tmgr_t *c_tbl;
1469 1.91 tsutsui uint8_t bt_wired, ct_wired;
1470 1.1 gwr
1471 1.1 gwr removed_cnt = 0;
1472 1.91 tsutsui bt_wired = b_tbl->bt_wcnt;
1473 1.1 gwr if (b_tbl->bt_ecnt) {
1474 1.1 gwr dte = b_tbl->bt_dtbl;
1475 1.92 tsutsui for (i = 0; i < MMU_B_TBL_SIZE; i++) {
1476 1.1 gwr if (MMU_VALID_DT(dte[i])) {
1477 1.7 gwr dtbl = mmu_ptov(MMU_DTE_PA(dte[i]));
1478 1.91 tsutsui c_tbl = mmuC2tmgr(dtbl);
1479 1.91 tsutsui ct_wired = c_tbl->ct_wcnt;
1480 1.91 tsutsui removed_cnt += free_c_table(c_tbl, TRUE);
1481 1.91 tsutsui if (ct_wired)
1482 1.91 tsutsui b_tbl->bt_wcnt--;
1483 1.8 gwr dte[i].attr.raw = MMU_DT_INVALID;
1484 1.1 gwr }
1485 1.8 gwr }
1486 1.8 gwr b_tbl->bt_ecnt = 0;
1487 1.1 gwr }
1488 1.91 tsutsui KASSERT(b_tbl->bt_wcnt == 0);
1489 1.1 gwr
1490 1.7 gwr if (relink) {
1491 1.7 gwr b_tbl->bt_parent = NULL;
1492 1.91 tsutsui if (!bt_wired)
1493 1.91 tsutsui TAILQ_REMOVE(&b_pool, b_tbl, bt_link);
1494 1.7 gwr TAILQ_INSERT_HEAD(&b_pool, b_tbl, bt_link);
1495 1.7 gwr }
1496 1.1 gwr return removed_cnt;
1497 1.1 gwr }
1498 1.1 gwr
1499 1.1 gwr /* free_c_table INTERNAL
1500 1.1 gwr **
1501 1.1 gwr * Unmaps the given C table from use and returns it to the pool for
1502 1.1 gwr * re-use. Returns the number of pages that were invalidated.
1503 1.1 gwr *
1504 1.1 gwr * This function preserves any physical page modification information
1505 1.1 gwr * contained in the page descriptors within the C table by calling
1506 1.1 gwr * 'pmap_remove_pte().'
1507 1.1 gwr */
1508 1.86 chs int
1509 1.86 chs free_c_table(c_tmgr_t *c_tbl, boolean_t relink)
1510 1.1 gwr {
1511 1.91 tsutsui mmu_short_pte_t *c_pte;
1512 1.1 gwr int i, removed_cnt;
1513 1.91 tsutsui uint8_t ct_wired;
1514 1.1 gwr
1515 1.1 gwr removed_cnt = 0;
1516 1.91 tsutsui ct_wired = c_tbl->ct_wcnt;
1517 1.8 gwr if (c_tbl->ct_ecnt) {
1518 1.92 tsutsui for (i = 0; i < MMU_C_TBL_SIZE; i++) {
1519 1.91 tsutsui c_pte = &c_tbl->ct_dtbl[i];
1520 1.91 tsutsui if (MMU_VALID_DT(*c_pte)) {
1521 1.91 tsutsui if (c_pte->attr.raw & MMU_SHORT_PTE_WIRED)
1522 1.91 tsutsui c_tbl->ct_wcnt--;
1523 1.91 tsutsui pmap_remove_pte(c_pte);
1524 1.1 gwr removed_cnt++;
1525 1.1 gwr }
1526 1.8 gwr }
1527 1.8 gwr c_tbl->ct_ecnt = 0;
1528 1.8 gwr }
1529 1.91 tsutsui KASSERT(c_tbl->ct_wcnt == 0);
1530 1.8 gwr
1531 1.7 gwr if (relink) {
1532 1.7 gwr c_tbl->ct_parent = NULL;
1533 1.91 tsutsui if (!ct_wired)
1534 1.91 tsutsui TAILQ_REMOVE(&c_pool, c_tbl, ct_link);
1535 1.7 gwr TAILQ_INSERT_HEAD(&c_pool, c_tbl, ct_link);
1536 1.7 gwr }
1537 1.1 gwr return removed_cnt;
1538 1.1 gwr }
1539 1.1 gwr
1540 1.1 gwr
1541 1.1 gwr /* pmap_remove_pte INTERNAL
1542 1.1 gwr **
1543 1.1 gwr * Unmap the given pte and preserve any page modification
1544 1.1 gwr * information by transfering it to the pv head of the
1545 1.1 gwr * physical page it maps to. This function does not update
1546 1.1 gwr * any reference counts because it is assumed that the calling
1547 1.8 gwr * function will do so.
1548 1.1 gwr */
1549 1.1 gwr void
1550 1.86 chs pmap_remove_pte(mmu_short_pte_t *pte)
1551 1.1 gwr {
1552 1.7 gwr u_short pv_idx, targ_idx;
1553 1.69 chs paddr_t pa;
1554 1.1 gwr pv_t *pv;
1555 1.1 gwr
1556 1.1 gwr pa = MMU_PTE_PA(*pte);
1557 1.1 gwr if (is_managed(pa)) {
1558 1.1 gwr pv = pa2pv(pa);
1559 1.7 gwr targ_idx = pteidx(pte); /* Index of PTE being removed */
1560 1.7 gwr
1561 1.7 gwr /*
1562 1.7 gwr * If the PTE being removed is the first (or only) PTE in
1563 1.7 gwr * the list of PTEs currently mapped to this page, remove the
1564 1.7 gwr * PTE by changing the index found on the PV head. Otherwise
1565 1.7 gwr * a linear search through the list will have to be executed
1566 1.7 gwr * in order to find the PVE which points to the PTE being
1567 1.7 gwr * removed, so that it may be modified to point to its new
1568 1.7 gwr * neighbor.
1569 1.7 gwr */
1570 1.69 chs
1571 1.7 gwr pv_idx = pv->pv_idx; /* Index of first PTE in PV list */
1572 1.7 gwr if (pv_idx == targ_idx) {
1573 1.7 gwr pv->pv_idx = pvebase[targ_idx].pve_next;
1574 1.7 gwr } else {
1575 1.69 chs
1576 1.7 gwr /*
1577 1.32 gwr * Find the PV element pointing to the target
1578 1.32 gwr * element. Note: may have pv_idx==PVE_EOL
1579 1.7 gwr */
1580 1.69 chs
1581 1.32 gwr for (;;) {
1582 1.32 gwr if (pv_idx == PVE_EOL) {
1583 1.32 gwr goto pv_not_found;
1584 1.32 gwr }
1585 1.32 gwr if (pvebase[pv_idx].pve_next == targ_idx)
1586 1.32 gwr break;
1587 1.7 gwr pv_idx = pvebase[pv_idx].pve_next;
1588 1.7 gwr }
1589 1.69 chs
1590 1.7 gwr /*
1591 1.7 gwr * At this point, pv_idx is the index of the PV
1592 1.7 gwr * element just before the target element in the list.
1593 1.7 gwr * Unlink the target.
1594 1.7 gwr */
1595 1.69 chs
1596 1.7 gwr pvebase[pv_idx].pve_next = pvebase[targ_idx].pve_next;
1597 1.7 gwr }
1598 1.69 chs
1599 1.7 gwr /*
1600 1.7 gwr * Save the mod/ref bits of the pte by simply
1601 1.1 gwr * ORing the entire pte onto the pv_flags member
1602 1.1 gwr * of the pv structure.
1603 1.1 gwr * There is no need to use a separate bit pattern
1604 1.1 gwr * for usage information on the pv head than that
1605 1.1 gwr * which is used on the MMU ptes.
1606 1.1 gwr */
1607 1.69 chs
1608 1.92 tsutsui pv_not_found:
1609 1.7 gwr pv->pv_flags |= (u_short) pte->attr.raw;
1610 1.1 gwr }
1611 1.1 gwr pte->attr.raw = MMU_DT_INVALID;
1612 1.1 gwr }
1613 1.1 gwr
1614 1.1 gwr /* pmap_stroll INTERNAL
1615 1.1 gwr **
1616 1.1 gwr * Retrieve the addresses of all table managers involved in the mapping of
1617 1.77 wiz * the given virtual address. If the table walk completed successfully,
1618 1.77 wiz * return TRUE. If it was only partially successful, return FALSE.
1619 1.1 gwr * The table walk performed by this function is important to many other
1620 1.1 gwr * functions in this module.
1621 1.7 gwr *
1622 1.7 gwr * Note: This function ought to be easier to read.
1623 1.1 gwr */
1624 1.1 gwr boolean_t
1625 1.86 chs pmap_stroll(pmap_t pmap, vaddr_t va, a_tmgr_t **a_tbl, b_tmgr_t **b_tbl,
1626 1.86 chs c_tmgr_t **c_tbl, mmu_short_pte_t **pte, int *a_idx, int *b_idx,
1627 1.86 chs int *pte_idx)
1628 1.1 gwr {
1629 1.1 gwr mmu_long_dte_t *a_dte; /* A: long descriptor table */
1630 1.1 gwr mmu_short_dte_t *b_dte; /* B: short descriptor table */
1631 1.1 gwr
1632 1.1 gwr if (pmap == pmap_kernel())
1633 1.1 gwr return FALSE;
1634 1.1 gwr
1635 1.7 gwr /* Does the given pmap have its own A table? */
1636 1.7 gwr *a_tbl = pmap->pm_a_tmgr;
1637 1.1 gwr if (*a_tbl == NULL)
1638 1.1 gwr return FALSE; /* No. Return unknown. */
1639 1.1 gwr /* Does the A table have a valid B table
1640 1.1 gwr * under the corresponding table entry?
1641 1.1 gwr */
1642 1.1 gwr *a_idx = MMU_TIA(va);
1643 1.1 gwr a_dte = &((*a_tbl)->at_dtbl[*a_idx]);
1644 1.1 gwr if (!MMU_VALID_DT(*a_dte))
1645 1.1 gwr return FALSE; /* No. Return unknown. */
1646 1.1 gwr /* Yes. Extract B table from the A table. */
1647 1.7 gwr *b_tbl = mmuB2tmgr(mmu_ptov(a_dte->addr.raw));
1648 1.92 tsutsui /*
1649 1.92 tsutsui * Does the B table have a valid C table
1650 1.1 gwr * under the corresponding table entry?
1651 1.1 gwr */
1652 1.1 gwr *b_idx = MMU_TIB(va);
1653 1.1 gwr b_dte = &((*b_tbl)->bt_dtbl[*b_idx]);
1654 1.1 gwr if (!MMU_VALID_DT(*b_dte))
1655 1.1 gwr return FALSE; /* No. Return unknown. */
1656 1.1 gwr /* Yes. Extract C table from the B table. */
1657 1.7 gwr *c_tbl = mmuC2tmgr(mmu_ptov(MMU_DTE_PA(*b_dte)));
1658 1.1 gwr *pte_idx = MMU_TIC(va);
1659 1.1 gwr *pte = &((*c_tbl)->ct_dtbl[*pte_idx]);
1660 1.1 gwr
1661 1.92 tsutsui return TRUE;
1662 1.1 gwr }
1663 1.1 gwr
1664 1.1 gwr /* pmap_enter INTERFACE
1665 1.1 gwr **
1666 1.1 gwr * Called by the kernel to map a virtual address
1667 1.1 gwr * to a physical address in the given process map.
1668 1.1 gwr *
1669 1.1 gwr * Note: this function should apply an exclusive lock
1670 1.1 gwr * on the pmap system for its duration. (it certainly
1671 1.1 gwr * would save my hair!!)
1672 1.7 gwr * This function ought to be easier to read.
1673 1.1 gwr */
1674 1.86 chs int
1675 1.86 chs pmap_enter(pmap_t pmap, vaddr_t va, paddr_t pa, vm_prot_t prot, int flags)
1676 1.1 gwr {
1677 1.7 gwr boolean_t insert, managed; /* Marks the need for PV insertion.*/
1678 1.7 gwr u_short nidx; /* PV list index */
1679 1.52 jeremy int mapflags; /* Flags for the mapping (see NOTE1) */
1680 1.8 gwr u_int a_idx, b_idx, pte_idx; /* table indices */
1681 1.1 gwr a_tmgr_t *a_tbl; /* A: long descriptor table manager */
1682 1.1 gwr b_tmgr_t *b_tbl; /* B: short descriptor table manager */
1683 1.1 gwr c_tmgr_t *c_tbl; /* C: short page table manager */
1684 1.1 gwr mmu_long_dte_t *a_dte; /* A: long descriptor table */
1685 1.1 gwr mmu_short_dte_t *b_dte; /* B: short descriptor table */
1686 1.1 gwr mmu_short_pte_t *c_pte; /* C: short page descriptor table */
1687 1.1 gwr pv_t *pv; /* pv list head */
1688 1.52 jeremy boolean_t wired; /* is the mapping to be wired? */
1689 1.1 gwr enum {NONE, NEWA, NEWB, NEWC} llevel; /* used at end */
1690 1.1 gwr
1691 1.1 gwr if (pmap == pmap_kernel()) {
1692 1.1 gwr pmap_enter_kernel(va, pa, prot);
1693 1.61 chs return 0;
1694 1.1 gwr }
1695 1.7 gwr
1696 1.52 jeremy /*
1697 1.52 jeremy * Determine if the mapping should be wired.
1698 1.52 jeremy */
1699 1.52 jeremy wired = ((flags & PMAP_WIRED) != 0);
1700 1.52 jeremy
1701 1.52 jeremy /*
1702 1.52 jeremy * NOTE1:
1703 1.52 jeremy *
1704 1.52 jeremy * On November 13, 1999, someone changed the pmap_enter() API such
1705 1.52 jeremy * that it now accepts a 'flags' argument. This new argument
1706 1.52 jeremy * contains bit-flags for the architecture-independent (UVM) system to
1707 1.52 jeremy * use in signalling certain mapping requirements to the architecture-
1708 1.52 jeremy * dependent (pmap) system. The argument it replaces, 'wired', is now
1709 1.52 jeremy * one of the flags within it.
1710 1.52 jeremy *
1711 1.52 jeremy * In addition to flags signaled by the architecture-independent
1712 1.52 jeremy * system, parts of the architecture-dependent section of the sun3x
1713 1.52 jeremy * kernel pass their own flags in the lower, unused bits of the
1714 1.52 jeremy * physical address supplied to this function. These flags are
1715 1.52 jeremy * extracted and stored in the temporary variable 'mapflags'.
1716 1.52 jeremy *
1717 1.52 jeremy * Extract sun3x specific flags from the physical address.
1718 1.52 jeremy */
1719 1.92 tsutsui mapflags = (pa & ~MMU_PAGE_MASK);
1720 1.92 tsutsui pa &= MMU_PAGE_MASK;
1721 1.7 gwr
1722 1.7 gwr /*
1723 1.22 jeremy * Determine if the physical address being mapped is on-board RAM.
1724 1.22 jeremy * Any other area of the address space is likely to belong to a
1725 1.22 jeremy * device and hence it would be disasterous to cache its contents.
1726 1.7 gwr */
1727 1.7 gwr if ((managed = is_managed(pa)) == FALSE)
1728 1.52 jeremy mapflags |= PMAP_NC;
1729 1.7 gwr
1730 1.7 gwr /*
1731 1.7 gwr * For user mappings we walk along the MMU tables of the given
1732 1.1 gwr * pmap, reaching a PTE which describes the virtual page being
1733 1.1 gwr * mapped or changed. If any level of the walk ends in an invalid
1734 1.1 gwr * entry, a table must be allocated and the entry must be updated
1735 1.1 gwr * to point to it.
1736 1.1 gwr * There is a bit of confusion as to whether this code must be
1737 1.1 gwr * re-entrant. For now we will assume it is. To support
1738 1.1 gwr * re-entrancy we must unlink tables from the table pool before
1739 1.1 gwr * we assume we may use them. Tables are re-linked into the pool
1740 1.1 gwr * when we are finished with them at the end of the function.
1741 1.1 gwr * But I don't feel like doing that until we have proof that this
1742 1.1 gwr * needs to be re-entrant.
1743 1.1 gwr * 'llevel' records which tables need to be relinked.
1744 1.1 gwr */
1745 1.1 gwr llevel = NONE;
1746 1.1 gwr
1747 1.7 gwr /*
1748 1.7 gwr * Step 1 - Retrieve the A table from the pmap. If it has no
1749 1.7 gwr * A table, allocate a new one from the available pool.
1750 1.1 gwr */
1751 1.1 gwr
1752 1.7 gwr a_tbl = pmap->pm_a_tmgr;
1753 1.7 gwr if (a_tbl == NULL) {
1754 1.7 gwr /*
1755 1.7 gwr * This pmap does not currently have an A table. Allocate
1756 1.7 gwr * a new one.
1757 1.7 gwr */
1758 1.7 gwr a_tbl = get_a_table();
1759 1.7 gwr a_tbl->at_parent = pmap;
1760 1.7 gwr
1761 1.7 gwr /*
1762 1.7 gwr * Assign this new A table to the pmap, and calculate its
1763 1.7 gwr * physical address so that loadcrp() can be used to make
1764 1.7 gwr * the table active.
1765 1.7 gwr */
1766 1.7 gwr pmap->pm_a_tmgr = a_tbl;
1767 1.7 gwr pmap->pm_a_phys = mmu_vtop(a_tbl->at_dtbl);
1768 1.7 gwr
1769 1.7 gwr /*
1770 1.7 gwr * If the process receiving a new A table is the current
1771 1.7 gwr * process, we are responsible for setting the MMU so that
1772 1.9 gwr * it becomes the current address space. This only adds
1773 1.9 gwr * new mappings, so no need to flush anything.
1774 1.7 gwr */
1775 1.9 gwr if (pmap == current_pmap()) {
1776 1.9 gwr kernel_crp.rp_addr = pmap->pm_a_phys;
1777 1.9 gwr loadcrp(&kernel_crp);
1778 1.9 gwr }
1779 1.7 gwr
1780 1.1 gwr if (!wired)
1781 1.1 gwr llevel = NEWA;
1782 1.1 gwr } else {
1783 1.7 gwr /*
1784 1.7 gwr * Use the A table already allocated for this pmap.
1785 1.1 gwr * Unlink it from the A table pool if necessary.
1786 1.1 gwr */
1787 1.1 gwr if (wired && !a_tbl->at_wcnt)
1788 1.1 gwr TAILQ_REMOVE(&a_pool, a_tbl, at_link);
1789 1.1 gwr }
1790 1.1 gwr
1791 1.7 gwr /*
1792 1.7 gwr * Step 2 - Walk into the B table. If there is no valid B table,
1793 1.1 gwr * allocate one.
1794 1.1 gwr */
1795 1.1 gwr
1796 1.1 gwr a_idx = MMU_TIA(va); /* Calculate the TIA of the VA. */
1797 1.1 gwr a_dte = &a_tbl->at_dtbl[a_idx]; /* Retrieve descriptor from table */
1798 1.1 gwr if (MMU_VALID_DT(*a_dte)) { /* Is the descriptor valid? */
1799 1.7 gwr /* The descriptor is valid. Use the B table it points to. */
1800 1.1 gwr /*************************************
1801 1.1 gwr * a_idx *
1802 1.1 gwr * v *
1803 1.1 gwr * a_tbl -> +-+-+-+-+-+-+-+-+-+-+-+- *
1804 1.1 gwr * | | | | | | | | | | | | *
1805 1.1 gwr * +-+-+-+-+-+-+-+-+-+-+-+- *
1806 1.1 gwr * | *
1807 1.1 gwr * \- b_tbl -> +-+- *
1808 1.1 gwr * | | *
1809 1.1 gwr * +-+- *
1810 1.1 gwr *************************************/
1811 1.7 gwr b_dte = mmu_ptov(a_dte->addr.raw);
1812 1.1 gwr b_tbl = mmuB2tmgr(b_dte);
1813 1.7 gwr
1814 1.7 gwr /*
1815 1.7 gwr * If the requested mapping must be wired, but this table
1816 1.7 gwr * being used to map it is not, the table must be removed
1817 1.7 gwr * from the available pool and its wired entry count
1818 1.7 gwr * incremented.
1819 1.7 gwr */
1820 1.1 gwr if (wired && !b_tbl->bt_wcnt) {
1821 1.1 gwr TAILQ_REMOVE(&b_pool, b_tbl, bt_link);
1822 1.7 gwr a_tbl->at_wcnt++;
1823 1.1 gwr }
1824 1.1 gwr } else {
1825 1.7 gwr /* The descriptor is invalid. Allocate a new B table. */
1826 1.7 gwr b_tbl = get_b_table();
1827 1.7 gwr
1828 1.1 gwr /* Point the parent A table descriptor to this new B table. */
1829 1.7 gwr a_dte->addr.raw = mmu_vtop(b_tbl->bt_dtbl);
1830 1.7 gwr a_dte->attr.raw = MMU_LONG_DTE_LU | MMU_DT_SHORT;
1831 1.7 gwr a_tbl->at_ecnt++; /* Update parent's valid entry count */
1832 1.7 gwr
1833 1.1 gwr /* Create the necessary back references to the parent table */
1834 1.1 gwr b_tbl->bt_parent = a_tbl;
1835 1.1 gwr b_tbl->bt_pidx = a_idx;
1836 1.7 gwr
1837 1.7 gwr /*
1838 1.7 gwr * If this table is to be wired, make sure the parent A table
1839 1.1 gwr * wired count is updated to reflect that it has another wired
1840 1.1 gwr * entry.
1841 1.1 gwr */
1842 1.1 gwr if (wired)
1843 1.1 gwr a_tbl->at_wcnt++;
1844 1.1 gwr else if (llevel == NONE)
1845 1.1 gwr llevel = NEWB;
1846 1.1 gwr }
1847 1.1 gwr
1848 1.7 gwr /*
1849 1.7 gwr * Step 3 - Walk into the C table, if there is no valid C table,
1850 1.1 gwr * allocate one.
1851 1.1 gwr */
1852 1.1 gwr
1853 1.1 gwr b_idx = MMU_TIB(va); /* Calculate the TIB of the VA */
1854 1.1 gwr b_dte = &b_tbl->bt_dtbl[b_idx]; /* Retrieve descriptor from table */
1855 1.1 gwr if (MMU_VALID_DT(*b_dte)) { /* Is the descriptor valid? */
1856 1.7 gwr /* The descriptor is valid. Use the C table it points to. */
1857 1.1 gwr /**************************************
1858 1.1 gwr * c_idx *
1859 1.1 gwr * | v *
1860 1.1 gwr * \- b_tbl -> +-+-+-+-+-+-+-+-+-+-+- *
1861 1.1 gwr * | | | | | | | | | | | *
1862 1.1 gwr * +-+-+-+-+-+-+-+-+-+-+- *
1863 1.1 gwr * | *
1864 1.1 gwr * \- c_tbl -> +-+-- *
1865 1.1 gwr * | | | *
1866 1.1 gwr * +-+-- *
1867 1.1 gwr **************************************/
1868 1.7 gwr c_pte = mmu_ptov(MMU_PTE_PA(*b_dte));
1869 1.1 gwr c_tbl = mmuC2tmgr(c_pte);
1870 1.7 gwr
1871 1.7 gwr /* If mapping is wired and table is not */
1872 1.1 gwr if (wired && !c_tbl->ct_wcnt) {
1873 1.1 gwr TAILQ_REMOVE(&c_pool, c_tbl, ct_link);
1874 1.1 gwr b_tbl->bt_wcnt++;
1875 1.1 gwr }
1876 1.1 gwr } else {
1877 1.7 gwr /* The descriptor is invalid. Allocate a new C table. */
1878 1.7 gwr c_tbl = get_c_table();
1879 1.7 gwr
1880 1.1 gwr /* Point the parent B table descriptor to this new C table. */
1881 1.7 gwr b_dte->attr.raw = mmu_vtop(c_tbl->ct_dtbl);
1882 1.7 gwr b_dte->attr.raw |= MMU_DT_SHORT;
1883 1.7 gwr b_tbl->bt_ecnt++; /* Update parent's valid entry count */
1884 1.7 gwr
1885 1.1 gwr /* Create the necessary back references to the parent table */
1886 1.1 gwr c_tbl->ct_parent = b_tbl;
1887 1.1 gwr c_tbl->ct_pidx = b_idx;
1888 1.26 jeremy /*
1889 1.26 jeremy * Store the pmap and base virtual managed address for faster
1890 1.26 jeremy * retrieval in the PV functions.
1891 1.26 jeremy */
1892 1.26 jeremy c_tbl->ct_pmap = pmap;
1893 1.26 jeremy c_tbl->ct_va = (va & (MMU_TIA_MASK|MMU_TIB_MASK));
1894 1.7 gwr
1895 1.7 gwr /*
1896 1.7 gwr * If this table is to be wired, make sure the parent B table
1897 1.1 gwr * wired count is updated to reflect that it has another wired
1898 1.1 gwr * entry.
1899 1.1 gwr */
1900 1.1 gwr if (wired)
1901 1.1 gwr b_tbl->bt_wcnt++;
1902 1.1 gwr else if (llevel == NONE)
1903 1.1 gwr llevel = NEWC;
1904 1.1 gwr }
1905 1.1 gwr
1906 1.7 gwr /*
1907 1.7 gwr * Step 4 - Deposit a page descriptor (PTE) into the appropriate
1908 1.1 gwr * slot of the C table, describing the PA to which the VA is mapped.
1909 1.1 gwr */
1910 1.1 gwr
1911 1.1 gwr pte_idx = MMU_TIC(va);
1912 1.1 gwr c_pte = &c_tbl->ct_dtbl[pte_idx];
1913 1.1 gwr if (MMU_VALID_DT(*c_pte)) { /* Is the entry currently valid? */
1914 1.7 gwr /*
1915 1.7 gwr * The PTE is currently valid. This particular call
1916 1.1 gwr * is just a synonym for one (or more) of the following
1917 1.1 gwr * operations:
1918 1.7 gwr * change protection of a page
1919 1.1 gwr * change wiring status of a page
1920 1.1 gwr * remove the mapping of a page
1921 1.1 gwr */
1922 1.7 gwr
1923 1.7 gwr /* First check if this is a wiring operation. */
1924 1.91 tsutsui if (c_pte->attr.raw & MMU_SHORT_PTE_WIRED) {
1925 1.7 gwr /*
1926 1.91 tsutsui * The existing mapping is wired, so adjust wired
1927 1.91 tsutsui * entry count here. If new mapping is still wired,
1928 1.91 tsutsui * wired entry count will be incremented again later.
1929 1.7 gwr */
1930 1.91 tsutsui c_tbl->ct_wcnt--;
1931 1.91 tsutsui if (!wired) {
1932 1.91 tsutsui /*
1933 1.91 tsutsui * The mapping of this PTE is being changed
1934 1.91 tsutsui * from wired to unwired.
1935 1.91 tsutsui * Adjust wired entry counts in each table and
1936 1.91 tsutsui * set llevel flag to put unwired tables back
1937 1.91 tsutsui * into the active pool.
1938 1.91 tsutsui */
1939 1.91 tsutsui if (c_tbl->ct_wcnt == 0) {
1940 1.91 tsutsui llevel = NEWC;
1941 1.91 tsutsui if (--b_tbl->bt_wcnt == 0) {
1942 1.91 tsutsui llevel = NEWB;
1943 1.91 tsutsui if (--a_tbl->at_wcnt == 0) {
1944 1.91 tsutsui llevel = NEWA;
1945 1.91 tsutsui }
1946 1.91 tsutsui }
1947 1.91 tsutsui }
1948 1.91 tsutsui }
1949 1.7 gwr }
1950 1.7 gwr
1951 1.1 gwr /* Is the new address the same as the old? */
1952 1.1 gwr if (MMU_PTE_PA(*c_pte) == pa) {
1953 1.7 gwr /*
1954 1.7 gwr * Yes, mark that it does not need to be reinserted
1955 1.7 gwr * into the PV list.
1956 1.7 gwr */
1957 1.7 gwr insert = FALSE;
1958 1.7 gwr
1959 1.7 gwr /*
1960 1.7 gwr * Clear all but the modified, referenced and wired
1961 1.7 gwr * bits on the PTE.
1962 1.7 gwr */
1963 1.7 gwr c_pte->attr.raw &= (MMU_SHORT_PTE_M
1964 1.92 tsutsui | MMU_SHORT_PTE_USED | MMU_SHORT_PTE_WIRED);
1965 1.1 gwr } else {
1966 1.1 gwr /* No, remove the old entry */
1967 1.1 gwr pmap_remove_pte(c_pte);
1968 1.7 gwr insert = TRUE;
1969 1.1 gwr }
1970 1.8 gwr
1971 1.8 gwr /*
1972 1.8 gwr * TLB flush is only necessary if modifying current map.
1973 1.8 gwr * However, in pmap_enter(), the pmap almost always IS
1974 1.8 gwr * the current pmap, so don't even bother to check.
1975 1.8 gwr */
1976 1.8 gwr TBIS(va);
1977 1.1 gwr } else {
1978 1.7 gwr /*
1979 1.7 gwr * The PTE is invalid. Increment the valid entry count in
1980 1.8 gwr * the C table manager to reflect the addition of a new entry.
1981 1.7 gwr */
1982 1.1 gwr c_tbl->ct_ecnt++;
1983 1.8 gwr
1984 1.8 gwr /* XXX - temporarily make sure the PTE is cleared. */
1985 1.8 gwr c_pte->attr.raw = 0;
1986 1.1 gwr
1987 1.7 gwr /* It will also need to be inserted into the PV list. */
1988 1.7 gwr insert = TRUE;
1989 1.7 gwr }
1990 1.7 gwr
1991 1.7 gwr /*
1992 1.7 gwr * If page is changing from unwired to wired status, set an unused bit
1993 1.7 gwr * within the PTE to indicate that it is wired. Also increment the
1994 1.7 gwr * wired entry count in the C table manager.
1995 1.7 gwr */
1996 1.7 gwr if (wired) {
1997 1.1 gwr c_pte->attr.raw |= MMU_SHORT_PTE_WIRED;
1998 1.7 gwr c_tbl->ct_wcnt++;
1999 1.1 gwr }
2000 1.1 gwr
2001 1.7 gwr /*
2002 1.7 gwr * Map the page, being careful to preserve modify/reference/wired
2003 1.7 gwr * bits. At this point it is assumed that the PTE either has no bits
2004 1.7 gwr * set, or if there are set bits, they are only modified, reference or
2005 1.7 gwr * wired bits. If not, the following statement will cause erratic
2006 1.7 gwr * behavior.
2007 1.7 gwr */
2008 1.8 gwr #ifdef PMAP_DEBUG
2009 1.7 gwr if (c_pte->attr.raw & ~(MMU_SHORT_PTE_M |
2010 1.7 gwr MMU_SHORT_PTE_USED | MMU_SHORT_PTE_WIRED)) {
2011 1.7 gwr printf("pmap_enter: junk left in PTE at %p\n", c_pte);
2012 1.7 gwr Debugger();
2013 1.7 gwr }
2014 1.7 gwr #endif
2015 1.7 gwr c_pte->attr.raw |= ((u_long) pa | MMU_DT_PAGE);
2016 1.7 gwr
2017 1.7 gwr /*
2018 1.7 gwr * If the mapping should be read-only, set the write protect
2019 1.7 gwr * bit in the PTE.
2020 1.7 gwr */
2021 1.7 gwr if (!(prot & VM_PROT_WRITE))
2022 1.7 gwr c_pte->attr.raw |= MMU_SHORT_PTE_WP;
2023 1.7 gwr
2024 1.7 gwr /*
2025 1.87 chs * Mark the PTE as used and/or modified as specified by the flags arg.
2026 1.87 chs */
2027 1.87 chs if (flags & VM_PROT_ALL) {
2028 1.87 chs c_pte->attr.raw |= MMU_SHORT_PTE_USED;
2029 1.87 chs if (flags & VM_PROT_WRITE) {
2030 1.87 chs c_pte->attr.raw |= MMU_SHORT_PTE_M;
2031 1.87 chs }
2032 1.87 chs }
2033 1.87 chs
2034 1.87 chs /*
2035 1.7 gwr * If the mapping should be cache inhibited (indicated by the flag
2036 1.7 gwr * bits found on the lower order of the physical address.)
2037 1.7 gwr * mark the PTE as a cache inhibited page.
2038 1.7 gwr */
2039 1.52 jeremy if (mapflags & PMAP_NC)
2040 1.7 gwr c_pte->attr.raw |= MMU_SHORT_PTE_CI;
2041 1.7 gwr
2042 1.7 gwr /*
2043 1.7 gwr * If the physical address being mapped is managed by the PV
2044 1.7 gwr * system then link the pte into the list of pages mapped to that
2045 1.7 gwr * address.
2046 1.7 gwr */
2047 1.7 gwr if (insert && managed) {
2048 1.7 gwr pv = pa2pv(pa);
2049 1.7 gwr nidx = pteidx(c_pte);
2050 1.7 gwr
2051 1.7 gwr pvebase[nidx].pve_next = pv->pv_idx;
2052 1.7 gwr pv->pv_idx = nidx;
2053 1.7 gwr }
2054 1.1 gwr
2055 1.91 tsutsui /* Move any allocated or unwired tables back into the active pool. */
2056 1.1 gwr
2057 1.1 gwr switch (llevel) {
2058 1.1 gwr case NEWA:
2059 1.1 gwr TAILQ_INSERT_TAIL(&a_pool, a_tbl, at_link);
2060 1.1 gwr /* FALLTHROUGH */
2061 1.1 gwr case NEWB:
2062 1.1 gwr TAILQ_INSERT_TAIL(&b_pool, b_tbl, bt_link);
2063 1.1 gwr /* FALLTHROUGH */
2064 1.1 gwr case NEWC:
2065 1.1 gwr TAILQ_INSERT_TAIL(&c_pool, c_tbl, ct_link);
2066 1.1 gwr /* FALLTHROUGH */
2067 1.1 gwr default:
2068 1.1 gwr break;
2069 1.1 gwr }
2070 1.51 thorpej
2071 1.61 chs return 0;
2072 1.1 gwr }
2073 1.1 gwr
2074 1.1 gwr /* pmap_enter_kernel INTERNAL
2075 1.1 gwr **
2076 1.1 gwr * Map the given virtual address to the given physical address within the
2077 1.1 gwr * kernel address space. This function exists because the kernel map does
2078 1.1 gwr * not do dynamic table allocation. It consists of a contiguous array of ptes
2079 1.1 gwr * and can be edited directly without the need to walk through any tables.
2080 1.1 gwr *
2081 1.1 gwr * XXX: "Danger, Will Robinson!"
2082 1.1 gwr * Note that the kernel should never take a fault on any page
2083 1.1 gwr * between [ KERNBASE .. virtual_avail ] and this is checked in
2084 1.1 gwr * trap.c for kernel-mode MMU faults. This means that mappings
2085 1.1 gwr * created in that range must be implicily wired. -gwr
2086 1.1 gwr */
2087 1.86 chs void
2088 1.86 chs pmap_enter_kernel(vaddr_t va, paddr_t pa, vm_prot_t prot)
2089 1.1 gwr {
2090 1.7 gwr boolean_t was_valid, insert;
2091 1.32 gwr u_short pte_idx;
2092 1.69 chs int flags;
2093 1.1 gwr mmu_short_pte_t *pte;
2094 1.7 gwr pv_t *pv;
2095 1.69 chs paddr_t old_pa;
2096 1.7 gwr
2097 1.32 gwr flags = (pa & ~MMU_PAGE_MASK);
2098 1.32 gwr pa &= MMU_PAGE_MASK;
2099 1.32 gwr
2100 1.32 gwr if (is_managed(pa))
2101 1.32 gwr insert = TRUE;
2102 1.32 gwr else
2103 1.32 gwr insert = FALSE;
2104 1.7 gwr
2105 1.7 gwr /*
2106 1.7 gwr * Calculate the index of the PTE being modified.
2107 1.7 gwr */
2108 1.92 tsutsui pte_idx = (u_long)m68k_btop(va - KERNBASE);
2109 1.1 gwr
2110 1.22 jeremy /* This array is traditionally named "Sysmap" */
2111 1.7 gwr pte = &kernCbase[pte_idx];
2112 1.7 gwr
2113 1.7 gwr if (MMU_VALID_DT(*pte)) {
2114 1.1 gwr was_valid = TRUE;
2115 1.7 gwr /*
2116 1.32 gwr * If the PTE already maps a different
2117 1.32 gwr * physical address, umap and pv_unlink.
2118 1.24 jeremy */
2119 1.24 jeremy old_pa = MMU_PTE_PA(*pte);
2120 1.32 gwr if (pa != old_pa)
2121 1.32 gwr pmap_remove_pte(pte);
2122 1.32 gwr else {
2123 1.24 jeremy /*
2124 1.32 gwr * Old PA and new PA are the same. No need to
2125 1.32 gwr * relink the mapping within the PV list.
2126 1.24 jeremy */
2127 1.24 jeremy insert = FALSE;
2128 1.8 gwr
2129 1.7 gwr /*
2130 1.24 jeremy * Save any mod/ref bits on the PTE.
2131 1.7 gwr */
2132 1.24 jeremy pte->attr.raw &= (MMU_SHORT_PTE_USED|MMU_SHORT_PTE_M);
2133 1.7 gwr }
2134 1.7 gwr } else {
2135 1.8 gwr pte->attr.raw = MMU_DT_INVALID;
2136 1.7 gwr was_valid = FALSE;
2137 1.7 gwr }
2138 1.7 gwr
2139 1.7 gwr /*
2140 1.8 gwr * Map the page. Being careful to preserve modified/referenced bits
2141 1.8 gwr * on the PTE.
2142 1.7 gwr */
2143 1.7 gwr pte->attr.raw |= (pa | MMU_DT_PAGE);
2144 1.1 gwr
2145 1.1 gwr if (!(prot & VM_PROT_WRITE)) /* If access should be read-only */
2146 1.1 gwr pte->attr.raw |= MMU_SHORT_PTE_WP;
2147 1.7 gwr if (flags & PMAP_NC)
2148 1.1 gwr pte->attr.raw |= MMU_SHORT_PTE_CI;
2149 1.8 gwr if (was_valid)
2150 1.7 gwr TBIS(va);
2151 1.1 gwr
2152 1.7 gwr /*
2153 1.7 gwr * Insert the PTE into the PV system, if need be.
2154 1.7 gwr */
2155 1.7 gwr if (insert) {
2156 1.7 gwr pv = pa2pv(pa);
2157 1.7 gwr pvebase[pte_idx].pve_next = pv->pv_idx;
2158 1.7 gwr pv->pv_idx = pte_idx;
2159 1.7 gwr }
2160 1.34 gwr }
2161 1.34 gwr
2162 1.86 chs void
2163 1.86 chs pmap_kenter_pa(vaddr_t va, paddr_t pa, vm_prot_t prot)
2164 1.49 chs {
2165 1.69 chs mmu_short_pte_t *pte;
2166 1.69 chs
2167 1.69 chs /* This array is traditionally named "Sysmap" */
2168 1.69 chs pte = &kernCbase[(u_long)m68k_btop(va - KERNBASE)];
2169 1.69 chs
2170 1.69 chs KASSERT(!MMU_VALID_DT(*pte));
2171 1.69 chs pte->attr.raw = MMU_DT_INVALID | MMU_DT_PAGE | (pa & MMU_PAGE_MASK);
2172 1.69 chs if (!(prot & VM_PROT_WRITE))
2173 1.69 chs pte->attr.raw |= MMU_SHORT_PTE_WP;
2174 1.49 chs }
2175 1.49 chs
2176 1.86 chs void
2177 1.86 chs pmap_kremove(vaddr_t va, vsize_t len)
2178 1.49 chs {
2179 1.69 chs int idx, eidx;
2180 1.69 chs
2181 1.69 chs #ifdef PMAP_DEBUG
2182 1.91 tsutsui if ((va & PGOFSET) || (len & PGOFSET))
2183 1.72 tsutsui panic("pmap_kremove: alignment");
2184 1.69 chs #endif
2185 1.69 chs
2186 1.69 chs idx = m68k_btop(va - KERNBASE);
2187 1.69 chs eidx = m68k_btop(va + len - KERNBASE);
2188 1.69 chs
2189 1.69 chs while (idx < eidx) {
2190 1.69 chs kernCbase[idx++].attr.raw = MMU_DT_INVALID;
2191 1.69 chs TBIS(va);
2192 1.79 thorpej va += PAGE_SIZE;
2193 1.49 chs }
2194 1.49 chs }
2195 1.49 chs
2196 1.35 jeremy /* pmap_map INTERNAL
2197 1.35 jeremy **
2198 1.35 jeremy * Map a contiguous range of physical memory into a contiguous range of
2199 1.35 jeremy * the kernel virtual address space.
2200 1.35 jeremy *
2201 1.35 jeremy * Used for device mappings and early mapping of the kernel text/data/bss.
2202 1.35 jeremy * Returns the first virtual address beyond the end of the range.
2203 1.34 gwr */
2204 1.86 chs vaddr_t
2205 1.86 chs pmap_map(vaddr_t va, paddr_t pa, paddr_t endpa, int prot)
2206 1.34 gwr {
2207 1.34 gwr int sz;
2208 1.34 gwr
2209 1.34 gwr sz = endpa - pa;
2210 1.34 gwr do {
2211 1.34 gwr pmap_enter_kernel(va, pa, prot);
2212 1.79 thorpej va += PAGE_SIZE;
2213 1.79 thorpej pa += PAGE_SIZE;
2214 1.79 thorpej sz -= PAGE_SIZE;
2215 1.34 gwr } while (sz > 0);
2216 1.73 chris pmap_update(pmap_kernel());
2217 1.92 tsutsui return va;
2218 1.92 tsutsui }
2219 1.92 tsutsui
2220 1.92 tsutsui /* pmap_protect_kernel INTERNAL
2221 1.92 tsutsui **
2222 1.92 tsutsui * Apply the given protection code to a kernel address range.
2223 1.92 tsutsui */
2224 1.92 tsutsui static INLINE void
2225 1.92 tsutsui pmap_protect_kernel(vaddr_t startva, vaddr_t endva, vm_prot_t prot)
2226 1.92 tsutsui {
2227 1.92 tsutsui vaddr_t va;
2228 1.92 tsutsui mmu_short_pte_t *pte;
2229 1.92 tsutsui
2230 1.92 tsutsui pte = &kernCbase[(unsigned long) m68k_btop(startva - KERNBASE)];
2231 1.92 tsutsui for (va = startva; va < endva; va += PAGE_SIZE, pte++) {
2232 1.92 tsutsui if (MMU_VALID_DT(*pte)) {
2233 1.92 tsutsui switch (prot) {
2234 1.92 tsutsui case VM_PROT_ALL:
2235 1.92 tsutsui break;
2236 1.92 tsutsui case VM_PROT_EXECUTE:
2237 1.92 tsutsui case VM_PROT_READ:
2238 1.92 tsutsui case VM_PROT_READ|VM_PROT_EXECUTE:
2239 1.92 tsutsui pte->attr.raw |= MMU_SHORT_PTE_WP;
2240 1.92 tsutsui break;
2241 1.92 tsutsui case VM_PROT_NONE:
2242 1.92 tsutsui /* this is an alias for 'pmap_remove_kernel' */
2243 1.92 tsutsui pmap_remove_pte(pte);
2244 1.92 tsutsui break;
2245 1.92 tsutsui default:
2246 1.92 tsutsui break;
2247 1.92 tsutsui }
2248 1.92 tsutsui /*
2249 1.92 tsutsui * since this is the kernel, immediately flush any cached
2250 1.92 tsutsui * descriptors for this address.
2251 1.92 tsutsui */
2252 1.92 tsutsui TBIS(va);
2253 1.92 tsutsui }
2254 1.92 tsutsui }
2255 1.1 gwr }
2256 1.1 gwr
2257 1.1 gwr /* pmap_protect INTERFACE
2258 1.1 gwr **
2259 1.7 gwr * Apply the given protection to the given virtual address range within
2260 1.1 gwr * the given map.
2261 1.1 gwr *
2262 1.1 gwr * It is ok for the protection applied to be stronger than what is
2263 1.1 gwr * specified. We use this to our advantage when the given map has no
2264 1.7 gwr * mapping for the virtual address. By skipping a page when this
2265 1.1 gwr * is discovered, we are effectively applying a protection of VM_PROT_NONE,
2266 1.1 gwr * and therefore do not need to map the page just to apply a protection
2267 1.1 gwr * code. Only pmap_enter() needs to create new mappings if they do not exist.
2268 1.7 gwr *
2269 1.7 gwr * XXX - This function could be speeded up by using pmap_stroll() for inital
2270 1.7 gwr * setup, and then manual scrolling in the for() loop.
2271 1.1 gwr */
2272 1.86 chs void
2273 1.86 chs pmap_protect(pmap_t pmap, vaddr_t startva, vaddr_t endva, vm_prot_t prot)
2274 1.1 gwr {
2275 1.7 gwr boolean_t iscurpmap;
2276 1.1 gwr int a_idx, b_idx, c_idx;
2277 1.1 gwr a_tmgr_t *a_tbl;
2278 1.1 gwr b_tmgr_t *b_tbl;
2279 1.1 gwr c_tmgr_t *c_tbl;
2280 1.1 gwr mmu_short_pte_t *pte;
2281 1.1 gwr
2282 1.1 gwr if (pmap == pmap_kernel()) {
2283 1.7 gwr pmap_protect_kernel(startva, endva, prot);
2284 1.1 gwr return;
2285 1.1 gwr }
2286 1.1 gwr
2287 1.11 jeremy /*
2288 1.12 jeremy * In this particular pmap implementation, there are only three
2289 1.12 jeremy * types of memory protection: 'all' (read/write/execute),
2290 1.12 jeremy * 'read-only' (read/execute) and 'none' (no mapping.)
2291 1.12 jeremy * It is not possible for us to treat 'executable' as a separate
2292 1.12 jeremy * protection type. Therefore, protection requests that seek to
2293 1.12 jeremy * remove execute permission while retaining read or write, and those
2294 1.12 jeremy * that make little sense (write-only for example) are ignored.
2295 1.11 jeremy */
2296 1.12 jeremy switch (prot) {
2297 1.12 jeremy case VM_PROT_NONE:
2298 1.12 jeremy /*
2299 1.12 jeremy * A request to apply the protection code of
2300 1.12 jeremy * 'VM_PROT_NONE' is a synonym for pmap_remove().
2301 1.12 jeremy */
2302 1.12 jeremy pmap_remove(pmap, startva, endva);
2303 1.12 jeremy return;
2304 1.12 jeremy case VM_PROT_EXECUTE:
2305 1.12 jeremy case VM_PROT_READ:
2306 1.12 jeremy case VM_PROT_READ|VM_PROT_EXECUTE:
2307 1.12 jeremy /* continue */
2308 1.12 jeremy break;
2309 1.12 jeremy case VM_PROT_WRITE:
2310 1.12 jeremy case VM_PROT_WRITE|VM_PROT_READ:
2311 1.12 jeremy case VM_PROT_WRITE|VM_PROT_EXECUTE:
2312 1.12 jeremy case VM_PROT_ALL:
2313 1.12 jeremy /* None of these should happen in a sane system. */
2314 1.12 jeremy return;
2315 1.11 jeremy }
2316 1.11 jeremy
2317 1.11 jeremy /*
2318 1.11 jeremy * If the pmap has no A table, it has no mappings and therefore
2319 1.11 jeremy * there is nothing to protect.
2320 1.11 jeremy */
2321 1.11 jeremy if ((a_tbl = pmap->pm_a_tmgr) == NULL)
2322 1.11 jeremy return;
2323 1.11 jeremy
2324 1.11 jeremy a_idx = MMU_TIA(startva);
2325 1.11 jeremy b_idx = MMU_TIB(startva);
2326 1.11 jeremy c_idx = MMU_TIC(startva);
2327 1.90 skrll b_tbl = NULL;
2328 1.90 skrll c_tbl = NULL;
2329 1.11 jeremy
2330 1.7 gwr iscurpmap = (pmap == current_pmap());
2331 1.11 jeremy while (startva < endva) {
2332 1.11 jeremy if (b_tbl || MMU_VALID_DT(a_tbl->at_dtbl[a_idx])) {
2333 1.11 jeremy if (b_tbl == NULL) {
2334 1.11 jeremy b_tbl = (b_tmgr_t *) a_tbl->at_dtbl[a_idx].addr.raw;
2335 1.69 chs b_tbl = mmu_ptov((vaddr_t)b_tbl);
2336 1.69 chs b_tbl = mmuB2tmgr((mmu_short_dte_t *)b_tbl);
2337 1.11 jeremy }
2338 1.11 jeremy if (c_tbl || MMU_VALID_DT(b_tbl->bt_dtbl[b_idx])) {
2339 1.11 jeremy if (c_tbl == NULL) {
2340 1.11 jeremy c_tbl = (c_tmgr_t *) MMU_DTE_PA(b_tbl->bt_dtbl[b_idx]);
2341 1.69 chs c_tbl = mmu_ptov((vaddr_t)c_tbl);
2342 1.69 chs c_tbl = mmuC2tmgr((mmu_short_pte_t *)c_tbl);
2343 1.11 jeremy }
2344 1.11 jeremy if (MMU_VALID_DT(c_tbl->ct_dtbl[c_idx])) {
2345 1.11 jeremy pte = &c_tbl->ct_dtbl[c_idx];
2346 1.12 jeremy /* make the mapping read-only */
2347 1.12 jeremy pte->attr.raw |= MMU_SHORT_PTE_WP;
2348 1.11 jeremy /*
2349 1.11 jeremy * If we just modified the current address space,
2350 1.11 jeremy * flush any translations for the modified page from
2351 1.11 jeremy * the translation cache and any data from it in the
2352 1.11 jeremy * data cache.
2353 1.11 jeremy */
2354 1.11 jeremy if (iscurpmap)
2355 1.11 jeremy TBIS(startva);
2356 1.11 jeremy }
2357 1.79 thorpej startva += PAGE_SIZE;
2358 1.1 gwr
2359 1.11 jeremy if (++c_idx >= MMU_C_TBL_SIZE) { /* exceeded C table? */
2360 1.11 jeremy c_tbl = NULL;
2361 1.11 jeremy c_idx = 0;
2362 1.11 jeremy if (++b_idx >= MMU_B_TBL_SIZE) { /* exceeded B table? */
2363 1.11 jeremy b_tbl = NULL;
2364 1.11 jeremy b_idx = 0;
2365 1.11 jeremy }
2366 1.11 jeremy }
2367 1.11 jeremy } else { /* C table wasn't valid */
2368 1.11 jeremy c_tbl = NULL;
2369 1.11 jeremy c_idx = 0;
2370 1.11 jeremy startva += MMU_TIB_RANGE;
2371 1.11 jeremy if (++b_idx >= MMU_B_TBL_SIZE) { /* exceeded B table? */
2372 1.11 jeremy b_tbl = NULL;
2373 1.11 jeremy b_idx = 0;
2374 1.11 jeremy }
2375 1.11 jeremy } /* C table */
2376 1.11 jeremy } else { /* B table wasn't valid */
2377 1.11 jeremy b_tbl = NULL;
2378 1.11 jeremy b_idx = 0;
2379 1.11 jeremy startva += MMU_TIA_RANGE;
2380 1.11 jeremy a_idx++;
2381 1.11 jeremy } /* B table */
2382 1.1 gwr }
2383 1.1 gwr }
2384 1.1 gwr
2385 1.47 thorpej /* pmap_unwire INTERFACE
2386 1.1 gwr **
2387 1.47 thorpej * Clear the wired attribute of the specified page.
2388 1.1 gwr *
2389 1.1 gwr * This function is called from vm_fault.c to unwire
2390 1.47 thorpej * a mapping.
2391 1.1 gwr */
2392 1.86 chs void
2393 1.86 chs pmap_unwire(pmap_t pmap, vaddr_t va)
2394 1.1 gwr {
2395 1.1 gwr int a_idx, b_idx, c_idx;
2396 1.1 gwr a_tmgr_t *a_tbl;
2397 1.1 gwr b_tmgr_t *b_tbl;
2398 1.1 gwr c_tmgr_t *c_tbl;
2399 1.1 gwr mmu_short_pte_t *pte;
2400 1.1 gwr
2401 1.1 gwr /* Kernel mappings always remain wired. */
2402 1.1 gwr if (pmap == pmap_kernel())
2403 1.1 gwr return;
2404 1.1 gwr
2405 1.7 gwr /*
2406 1.7 gwr * Walk through the tables. If the walk terminates without
2407 1.1 gwr * a valid PTE then the address wasn't wired in the first place.
2408 1.1 gwr * Return immediately.
2409 1.1 gwr */
2410 1.1 gwr if (pmap_stroll(pmap, va, &a_tbl, &b_tbl, &c_tbl, &pte, &a_idx,
2411 1.1 gwr &b_idx, &c_idx) == FALSE)
2412 1.1 gwr return;
2413 1.1 gwr
2414 1.1 gwr
2415 1.1 gwr /* Is the PTE wired? If not, return. */
2416 1.1 gwr if (!(pte->attr.raw & MMU_SHORT_PTE_WIRED))
2417 1.1 gwr return;
2418 1.1 gwr
2419 1.1 gwr /* Remove the wiring bit. */
2420 1.1 gwr pte->attr.raw &= ~(MMU_SHORT_PTE_WIRED);
2421 1.1 gwr
2422 1.7 gwr /*
2423 1.7 gwr * Decrement the wired entry count in the C table.
2424 1.1 gwr * If it reaches zero the following things happen:
2425 1.1 gwr * 1. The table no longer has any wired entries and is considered
2426 1.1 gwr * unwired.
2427 1.1 gwr * 2. It is placed on the available queue.
2428 1.1 gwr * 3. The parent table's wired entry count is decremented.
2429 1.1 gwr * 4. If it reaches zero, this process repeats at step 1 and
2430 1.1 gwr * stops at after reaching the A table.
2431 1.1 gwr */
2432 1.7 gwr if (--c_tbl->ct_wcnt == 0) {
2433 1.1 gwr TAILQ_INSERT_TAIL(&c_pool, c_tbl, ct_link);
2434 1.7 gwr if (--b_tbl->bt_wcnt == 0) {
2435 1.1 gwr TAILQ_INSERT_TAIL(&b_pool, b_tbl, bt_link);
2436 1.7 gwr if (--a_tbl->at_wcnt == 0) {
2437 1.1 gwr TAILQ_INSERT_TAIL(&a_pool, a_tbl, at_link);
2438 1.1 gwr }
2439 1.1 gwr }
2440 1.1 gwr }
2441 1.1 gwr }
2442 1.1 gwr
2443 1.1 gwr /* pmap_copy INTERFACE
2444 1.1 gwr **
2445 1.1 gwr * Copy the mappings of a range of addresses in one pmap, into
2446 1.1 gwr * the destination address of another.
2447 1.1 gwr *
2448 1.1 gwr * This routine is advisory. Should we one day decide that MMU tables
2449 1.1 gwr * may be shared by more than one pmap, this function should be used to
2450 1.1 gwr * link them together. Until that day however, we do nothing.
2451 1.1 gwr */
2452 1.1 gwr void
2453 1.86 chs pmap_copy(pmap_t pmap_a, pmap_t pmap_b, vaddr_t dst, vsize_t len, vaddr_t src)
2454 1.1 gwr {
2455 1.92 tsutsui
2456 1.1 gwr /* not implemented. */
2457 1.1 gwr }
2458 1.1 gwr
2459 1.1 gwr /* pmap_copy_page INTERFACE
2460 1.1 gwr **
2461 1.1 gwr * Copy the contents of one physical page into another.
2462 1.1 gwr *
2463 1.7 gwr * This function makes use of two virtual pages allocated in pmap_bootstrap()
2464 1.24 jeremy * to map the two specified physical pages into the kernel address space.
2465 1.7 gwr *
2466 1.7 gwr * Note: We could use the transparent translation registers to make the
2467 1.7 gwr * mappings. If we do so, be sure to disable interrupts before using them.
2468 1.1 gwr */
2469 1.86 chs void
2470 1.86 chs pmap_copy_page(paddr_t srcpa, paddr_t dstpa)
2471 1.1 gwr {
2472 1.69 chs vaddr_t srcva, dstva;
2473 1.23 jeremy int s;
2474 1.24 jeremy
2475 1.24 jeremy srcva = tmp_vpages[0];
2476 1.24 jeremy dstva = tmp_vpages[1];
2477 1.1 gwr
2478 1.58 thorpej s = splvm();
2479 1.69 chs #ifdef DIAGNOSTIC
2480 1.24 jeremy if (tmp_vpages_inuse++)
2481 1.24 jeremy panic("pmap_copy_page: temporary vpages are in use.");
2482 1.69 chs #endif
2483 1.23 jeremy
2484 1.23 jeremy /* Map pages as non-cacheable to avoid cache polution? */
2485 1.69 chs pmap_kenter_pa(srcva, srcpa, VM_PROT_READ);
2486 1.92 tsutsui pmap_kenter_pa(dstva, dstpa, VM_PROT_READ | VM_PROT_WRITE);
2487 1.7 gwr
2488 1.79 thorpej /* Hand-optimized version of bcopy(src, dst, PAGE_SIZE) */
2489 1.92 tsutsui copypage((char *)srcva, (char *)dstva);
2490 1.24 jeremy
2491 1.79 thorpej pmap_kremove(srcva, PAGE_SIZE);
2492 1.79 thorpej pmap_kremove(dstva, PAGE_SIZE);
2493 1.24 jeremy
2494 1.69 chs #ifdef DIAGNOSTIC
2495 1.24 jeremy --tmp_vpages_inuse;
2496 1.69 chs #endif
2497 1.23 jeremy splx(s);
2498 1.1 gwr }
2499 1.1 gwr
2500 1.1 gwr /* pmap_zero_page INTERFACE
2501 1.1 gwr **
2502 1.1 gwr * Zero the contents of the specified physical page.
2503 1.1 gwr *
2504 1.7 gwr * Uses one of the virtual pages allocated in pmap_boostrap()
2505 1.24 jeremy * to map the specified page into the kernel address space.
2506 1.1 gwr */
2507 1.86 chs void
2508 1.86 chs pmap_zero_page(paddr_t dstpa)
2509 1.1 gwr {
2510 1.69 chs vaddr_t dstva;
2511 1.23 jeremy int s;
2512 1.23 jeremy
2513 1.24 jeremy dstva = tmp_vpages[1];
2514 1.58 thorpej s = splvm();
2515 1.69 chs #ifdef DIAGNOSTIC
2516 1.26 jeremy if (tmp_vpages_inuse++)
2517 1.24 jeremy panic("pmap_zero_page: temporary vpages are in use.");
2518 1.69 chs #endif
2519 1.24 jeremy
2520 1.24 jeremy /* The comments in pmap_copy_page() above apply here also. */
2521 1.92 tsutsui pmap_kenter_pa(dstva, dstpa, VM_PROT_READ | VM_PROT_WRITE);
2522 1.24 jeremy
2523 1.79 thorpej /* Hand-optimized version of bzero(ptr, PAGE_SIZE) */
2524 1.92 tsutsui zeropage((char *)dstva);
2525 1.1 gwr
2526 1.79 thorpej pmap_kremove(dstva, PAGE_SIZE);
2527 1.69 chs #ifdef DIAGNOSTIC
2528 1.24 jeremy --tmp_vpages_inuse;
2529 1.69 chs #endif
2530 1.23 jeremy splx(s);
2531 1.1 gwr }
2532 1.1 gwr
2533 1.1 gwr /* pmap_collect INTERFACE
2534 1.1 gwr **
2535 1.7 gwr * Called from the VM system when we are about to swap out
2536 1.7 gwr * the process using this pmap. This should give up any
2537 1.7 gwr * resources held here, including all its MMU tables.
2538 1.1 gwr */
2539 1.86 chs void
2540 1.86 chs pmap_collect(pmap_t pmap)
2541 1.1 gwr {
2542 1.92 tsutsui
2543 1.7 gwr /* XXX - todo... */
2544 1.1 gwr }
2545 1.1 gwr
2546 1.92 tsutsui /* pmap_pinit INTERNAL
2547 1.92 tsutsui **
2548 1.92 tsutsui * Initialize a pmap structure.
2549 1.92 tsutsui */
2550 1.92 tsutsui static INLINE void
2551 1.92 tsutsui pmap_pinit(pmap_t pmap)
2552 1.92 tsutsui {
2553 1.92 tsutsui
2554 1.92 tsutsui memset(pmap, 0, sizeof(struct pmap));
2555 1.92 tsutsui pmap->pm_a_tmgr = NULL;
2556 1.92 tsutsui pmap->pm_a_phys = kernAphys;
2557 1.92 tsutsui pmap->pm_refcount = 1;
2558 1.92 tsutsui simple_lock_init(&pmap->pm_lock);
2559 1.92 tsutsui }
2560 1.92 tsutsui
2561 1.1 gwr /* pmap_create INTERFACE
2562 1.1 gwr **
2563 1.1 gwr * Create and return a pmap structure.
2564 1.1 gwr */
2565 1.86 chs pmap_t
2566 1.86 chs pmap_create(void)
2567 1.1 gwr {
2568 1.1 gwr pmap_t pmap;
2569 1.1 gwr
2570 1.56 tsutsui pmap = pool_get(&pmap_pmap_pool, PR_WAITOK);
2571 1.1 gwr pmap_pinit(pmap);
2572 1.1 gwr return pmap;
2573 1.1 gwr }
2574 1.1 gwr
2575 1.92 tsutsui /* pmap_release INTERNAL
2576 1.1 gwr **
2577 1.1 gwr * Release any resources held by the given pmap.
2578 1.1 gwr *
2579 1.1 gwr * This is the reverse analog to pmap_pinit. It does not
2580 1.1 gwr * necessarily mean for the pmap structure to be deallocated,
2581 1.1 gwr * as in pmap_destroy.
2582 1.1 gwr */
2583 1.92 tsutsui static INLINE void
2584 1.86 chs pmap_release(pmap_t pmap)
2585 1.1 gwr {
2586 1.92 tsutsui
2587 1.7 gwr /*
2588 1.7 gwr * As long as the pmap contains no mappings,
2589 1.1 gwr * which always should be the case whenever
2590 1.1 gwr * this function is called, there really should
2591 1.1 gwr * be nothing to do.
2592 1.1 gwr */
2593 1.1 gwr #ifdef PMAP_DEBUG
2594 1.1 gwr if (pmap == pmap_kernel())
2595 1.9 gwr panic("pmap_release: kernel pmap");
2596 1.1 gwr #endif
2597 1.9 gwr /*
2598 1.9 gwr * XXX - If this pmap has an A table, give it back.
2599 1.9 gwr * The pmap SHOULD be empty by now, and pmap_remove
2600 1.9 gwr * should have already given back the A table...
2601 1.9 gwr * However, I see: pmap->pm_a_tmgr->at_ecnt == 1
2602 1.9 gwr * at this point, which means some mapping was not
2603 1.9 gwr * removed when it should have been. -gwr
2604 1.9 gwr */
2605 1.7 gwr if (pmap->pm_a_tmgr != NULL) {
2606 1.9 gwr /* First make sure we are not using it! */
2607 1.9 gwr if (kernel_crp.rp_addr == pmap->pm_a_phys) {
2608 1.9 gwr kernel_crp.rp_addr = kernAphys;
2609 1.9 gwr loadcrp(&kernel_crp);
2610 1.9 gwr }
2611 1.13 gwr #ifdef PMAP_DEBUG /* XXX - todo! */
2612 1.13 gwr /* XXX - Now complain... */
2613 1.13 gwr printf("pmap_release: still have table\n");
2614 1.13 gwr Debugger();
2615 1.13 gwr #endif
2616 1.7 gwr free_a_table(pmap->pm_a_tmgr, TRUE);
2617 1.7 gwr pmap->pm_a_tmgr = NULL;
2618 1.7 gwr pmap->pm_a_phys = kernAphys;
2619 1.7 gwr }
2620 1.1 gwr }
2621 1.1 gwr
2622 1.1 gwr /* pmap_reference INTERFACE
2623 1.1 gwr **
2624 1.1 gwr * Increment the reference count of a pmap.
2625 1.1 gwr */
2626 1.86 chs void
2627 1.86 chs pmap_reference(pmap_t pmap)
2628 1.1 gwr {
2629 1.55 tsutsui pmap_lock(pmap);
2630 1.55 tsutsui pmap_add_ref(pmap);
2631 1.55 tsutsui pmap_unlock(pmap);
2632 1.1 gwr }
2633 1.1 gwr
2634 1.1 gwr /* pmap_dereference INTERNAL
2635 1.1 gwr **
2636 1.1 gwr * Decrease the reference count on the given pmap
2637 1.1 gwr * by one and return the current count.
2638 1.1 gwr */
2639 1.92 tsutsui static INLINE int
2640 1.86 chs pmap_dereference(pmap_t pmap)
2641 1.1 gwr {
2642 1.1 gwr int rtn;
2643 1.1 gwr
2644 1.55 tsutsui pmap_lock(pmap);
2645 1.55 tsutsui rtn = pmap_del_ref(pmap);
2646 1.55 tsutsui pmap_unlock(pmap);
2647 1.1 gwr
2648 1.1 gwr return rtn;
2649 1.1 gwr }
2650 1.1 gwr
2651 1.1 gwr /* pmap_destroy INTERFACE
2652 1.1 gwr **
2653 1.1 gwr * Decrement a pmap's reference count and delete
2654 1.1 gwr * the pmap if it becomes zero. Will be called
2655 1.1 gwr * only after all mappings have been removed.
2656 1.1 gwr */
2657 1.86 chs void
2658 1.86 chs pmap_destroy(pmap_t pmap)
2659 1.1 gwr {
2660 1.92 tsutsui
2661 1.1 gwr if (pmap_dereference(pmap) == 0) {
2662 1.1 gwr pmap_release(pmap);
2663 1.56 tsutsui pool_put(&pmap_pmap_pool, pmap);
2664 1.1 gwr }
2665 1.1 gwr }
2666 1.1 gwr
2667 1.1 gwr /* pmap_is_referenced INTERFACE
2668 1.1 gwr **
2669 1.1 gwr * Determine if the given physical page has been
2670 1.1 gwr * referenced (read from [or written to.])
2671 1.1 gwr */
2672 1.1 gwr boolean_t
2673 1.86 chs pmap_is_referenced(struct vm_page *pg)
2674 1.1 gwr {
2675 1.49 chs paddr_t pa = VM_PAGE_TO_PHYS(pg);
2676 1.1 gwr pv_t *pv;
2677 1.69 chs int idx;
2678 1.1 gwr
2679 1.7 gwr /*
2680 1.7 gwr * Check the flags on the pv head. If they are set,
2681 1.1 gwr * return immediately. Otherwise a search must be done.
2682 1.7 gwr */
2683 1.69 chs
2684 1.69 chs pv = pa2pv(pa);
2685 1.1 gwr if (pv->pv_flags & PV_FLAGS_USED)
2686 1.1 gwr return TRUE;
2687 1.32 gwr
2688 1.32 gwr /*
2689 1.32 gwr * Search through all pv elements pointing
2690 1.32 gwr * to this page and query their reference bits
2691 1.32 gwr */
2692 1.32 gwr
2693 1.69 chs for (idx = pv->pv_idx; idx != PVE_EOL; idx = pvebase[idx].pve_next) {
2694 1.32 gwr if (MMU_PTE_USED(kernCbase[idx])) {
2695 1.32 gwr return TRUE;
2696 1.32 gwr }
2697 1.7 gwr }
2698 1.1 gwr return FALSE;
2699 1.1 gwr }
2700 1.1 gwr
2701 1.1 gwr /* pmap_is_modified INTERFACE
2702 1.1 gwr **
2703 1.1 gwr * Determine if the given physical page has been
2704 1.1 gwr * modified (written to.)
2705 1.1 gwr */
2706 1.1 gwr boolean_t
2707 1.86 chs pmap_is_modified(struct vm_page *pg)
2708 1.1 gwr {
2709 1.49 chs paddr_t pa = VM_PAGE_TO_PHYS(pg);
2710 1.1 gwr pv_t *pv;
2711 1.69 chs int idx;
2712 1.1 gwr
2713 1.1 gwr /* see comments in pmap_is_referenced() */
2714 1.1 gwr pv = pa2pv(pa);
2715 1.32 gwr if (pv->pv_flags & PV_FLAGS_MDFY)
2716 1.1 gwr return TRUE;
2717 1.32 gwr
2718 1.32 gwr for (idx = pv->pv_idx;
2719 1.32 gwr idx != PVE_EOL;
2720 1.32 gwr idx = pvebase[idx].pve_next) {
2721 1.32 gwr
2722 1.32 gwr if (MMU_PTE_MODIFIED(kernCbase[idx])) {
2723 1.32 gwr return TRUE;
2724 1.32 gwr }
2725 1.7 gwr }
2726 1.7 gwr
2727 1.1 gwr return FALSE;
2728 1.1 gwr }
2729 1.1 gwr
2730 1.1 gwr /* pmap_page_protect INTERFACE
2731 1.1 gwr **
2732 1.1 gwr * Applies the given protection to all mappings to the given
2733 1.1 gwr * physical page.
2734 1.1 gwr */
2735 1.86 chs void
2736 1.86 chs pmap_page_protect(struct vm_page *pg, vm_prot_t prot)
2737 1.1 gwr {
2738 1.49 chs paddr_t pa = VM_PAGE_TO_PHYS(pg);
2739 1.1 gwr pv_t *pv;
2740 1.69 chs int idx;
2741 1.69 chs vaddr_t va;
2742 1.1 gwr struct mmu_short_pte_struct *pte;
2743 1.8 gwr c_tmgr_t *c_tbl;
2744 1.8 gwr pmap_t pmap, curpmap;
2745 1.1 gwr
2746 1.8 gwr curpmap = current_pmap();
2747 1.1 gwr pv = pa2pv(pa);
2748 1.32 gwr
2749 1.69 chs for (idx = pv->pv_idx; idx != PVE_EOL; idx = pvebase[idx].pve_next) {
2750 1.7 gwr pte = &kernCbase[idx];
2751 1.1 gwr switch (prot) {
2752 1.1 gwr case VM_PROT_ALL:
2753 1.1 gwr /* do nothing */
2754 1.1 gwr break;
2755 1.7 gwr case VM_PROT_EXECUTE:
2756 1.1 gwr case VM_PROT_READ:
2757 1.1 gwr case VM_PROT_READ|VM_PROT_EXECUTE:
2758 1.8 gwr /*
2759 1.8 gwr * Determine the virtual address mapped by
2760 1.8 gwr * the PTE and flush ATC entries if necessary.
2761 1.8 gwr */
2762 1.8 gwr va = pmap_get_pteinfo(idx, &pmap, &c_tbl);
2763 1.69 chs pte->attr.raw |= MMU_SHORT_PTE_WP;
2764 1.8 gwr if (pmap == curpmap || pmap == pmap_kernel())
2765 1.8 gwr TBIS(va);
2766 1.1 gwr break;
2767 1.1 gwr case VM_PROT_NONE:
2768 1.7 gwr /* Save the mod/ref bits. */
2769 1.7 gwr pv->pv_flags |= pte->attr.raw;
2770 1.7 gwr /* Invalidate the PTE. */
2771 1.7 gwr pte->attr.raw = MMU_DT_INVALID;
2772 1.8 gwr
2773 1.8 gwr /*
2774 1.8 gwr * Update table counts. And flush ATC entries
2775 1.8 gwr * if necessary.
2776 1.8 gwr */
2777 1.8 gwr va = pmap_get_pteinfo(idx, &pmap, &c_tbl);
2778 1.8 gwr
2779 1.8 gwr /*
2780 1.8 gwr * If the PTE belongs to the kernel map,
2781 1.8 gwr * be sure to flush the page it maps.
2782 1.8 gwr */
2783 1.8 gwr if (pmap == pmap_kernel()) {
2784 1.8 gwr TBIS(va);
2785 1.8 gwr } else {
2786 1.8 gwr /*
2787 1.8 gwr * The PTE belongs to a user map.
2788 1.8 gwr * update the entry count in the C
2789 1.8 gwr * table to which it belongs and flush
2790 1.8 gwr * the ATC if the mapping belongs to
2791 1.8 gwr * the current pmap.
2792 1.8 gwr */
2793 1.8 gwr c_tbl->ct_ecnt--;
2794 1.8 gwr if (pmap == curpmap)
2795 1.8 gwr TBIS(va);
2796 1.8 gwr }
2797 1.1 gwr break;
2798 1.1 gwr default:
2799 1.1 gwr break;
2800 1.1 gwr }
2801 1.1 gwr }
2802 1.8 gwr
2803 1.8 gwr /*
2804 1.8 gwr * If the protection code indicates that all mappings to the page
2805 1.8 gwr * be removed, truncate the PV list to zero entries.
2806 1.8 gwr */
2807 1.7 gwr if (prot == VM_PROT_NONE)
2808 1.7 gwr pv->pv_idx = PVE_EOL;
2809 1.1 gwr }
2810 1.1 gwr
2811 1.7 gwr /* pmap_get_pteinfo INTERNAL
2812 1.1 gwr **
2813 1.7 gwr * Called internally to find the pmap and virtual address within that
2814 1.8 gwr * map to which the pte at the given index maps. Also includes the PTE's C
2815 1.8 gwr * table manager.
2816 1.1 gwr *
2817 1.7 gwr * Returns the pmap in the argument provided, and the virtual address
2818 1.7 gwr * by return value.
2819 1.1 gwr */
2820 1.86 chs vaddr_t
2821 1.86 chs pmap_get_pteinfo(u_int idx, pmap_t *pmap, c_tmgr_t **tbl)
2822 1.1 gwr {
2823 1.69 chs vaddr_t va = 0;
2824 1.1 gwr
2825 1.7 gwr /*
2826 1.7 gwr * Determine if the PTE is a kernel PTE or a user PTE.
2827 1.1 gwr */
2828 1.8 gwr if (idx >= NUM_KERN_PTES) {
2829 1.7 gwr /*
2830 1.7 gwr * The PTE belongs to a user mapping.
2831 1.7 gwr */
2832 1.8 gwr /* XXX: Would like an inline for this to validate idx... */
2833 1.26 jeremy *tbl = &Ctmgrbase[(idx - NUM_KERN_PTES) / MMU_C_TBL_SIZE];
2834 1.26 jeremy
2835 1.26 jeremy *pmap = (*tbl)->ct_pmap;
2836 1.26 jeremy /*
2837 1.26 jeremy * To find the va to which the PTE maps, we first take
2838 1.26 jeremy * the table's base virtual address mapping which is stored
2839 1.26 jeremy * in ct_va. We then increment this address by a page for
2840 1.26 jeremy * every slot skipped until we reach the PTE.
2841 1.26 jeremy */
2842 1.92 tsutsui va = (*tbl)->ct_va;
2843 1.26 jeremy va += m68k_ptob(idx % MMU_C_TBL_SIZE);
2844 1.7 gwr } else {
2845 1.7 gwr /*
2846 1.7 gwr * The PTE belongs to the kernel map.
2847 1.7 gwr */
2848 1.8 gwr *pmap = pmap_kernel();
2849 1.8 gwr
2850 1.25 veego va = m68k_ptob(idx);
2851 1.7 gwr va += KERNBASE;
2852 1.7 gwr }
2853 1.7 gwr
2854 1.1 gwr return va;
2855 1.1 gwr }
2856 1.1 gwr
2857 1.1 gwr /* pmap_clear_modify INTERFACE
2858 1.1 gwr **
2859 1.1 gwr * Clear the modification bit on the page at the specified
2860 1.1 gwr * physical address.
2861 1.1 gwr *
2862 1.1 gwr */
2863 1.49 chs boolean_t
2864 1.86 chs pmap_clear_modify(struct vm_page *pg)
2865 1.1 gwr {
2866 1.49 chs paddr_t pa = VM_PAGE_TO_PHYS(pg);
2867 1.49 chs boolean_t rv;
2868 1.49 chs
2869 1.49 chs rv = pmap_is_modified(pg);
2870 1.1 gwr pmap_clear_pv(pa, PV_FLAGS_MDFY);
2871 1.49 chs return rv;
2872 1.1 gwr }
2873 1.1 gwr
2874 1.1 gwr /* pmap_clear_reference INTERFACE
2875 1.1 gwr **
2876 1.1 gwr * Clear the referenced bit on the page at the specified
2877 1.1 gwr * physical address.
2878 1.1 gwr */
2879 1.49 chs boolean_t
2880 1.86 chs pmap_clear_reference(struct vm_page *pg)
2881 1.1 gwr {
2882 1.49 chs paddr_t pa = VM_PAGE_TO_PHYS(pg);
2883 1.49 chs boolean_t rv;
2884 1.49 chs
2885 1.49 chs rv = pmap_is_referenced(pg);
2886 1.1 gwr pmap_clear_pv(pa, PV_FLAGS_USED);
2887 1.49 chs return rv;
2888 1.1 gwr }
2889 1.1 gwr
2890 1.1 gwr /* pmap_clear_pv INTERNAL
2891 1.1 gwr **
2892 1.1 gwr * Clears the specified flag from the specified physical address.
2893 1.1 gwr * (Used by pmap_clear_modify() and pmap_clear_reference().)
2894 1.1 gwr *
2895 1.1 gwr * Flag is one of:
2896 1.1 gwr * PV_FLAGS_MDFY - Page modified bit.
2897 1.1 gwr * PV_FLAGS_USED - Page used (referenced) bit.
2898 1.1 gwr *
2899 1.1 gwr * This routine must not only clear the flag on the pv list
2900 1.1 gwr * head. It must also clear the bit on every pte in the pv
2901 1.1 gwr * list associated with the address.
2902 1.1 gwr */
2903 1.86 chs void
2904 1.86 chs pmap_clear_pv(paddr_t pa, int flag)
2905 1.1 gwr {
2906 1.1 gwr pv_t *pv;
2907 1.69 chs int idx;
2908 1.69 chs vaddr_t va;
2909 1.7 gwr pmap_t pmap;
2910 1.1 gwr mmu_short_pte_t *pte;
2911 1.7 gwr c_tmgr_t *c_tbl;
2912 1.1 gwr
2913 1.1 gwr pv = pa2pv(pa);
2914 1.1 gwr pv->pv_flags &= ~(flag);
2915 1.69 chs for (idx = pv->pv_idx; idx != PVE_EOL; idx = pvebase[idx].pve_next) {
2916 1.7 gwr pte = &kernCbase[idx];
2917 1.1 gwr pte->attr.raw &= ~(flag);
2918 1.69 chs
2919 1.7 gwr /*
2920 1.7 gwr * The MC68030 MMU will not set the modified or
2921 1.7 gwr * referenced bits on any MMU tables for which it has
2922 1.7 gwr * a cached descriptor with its modify bit set. To insure
2923 1.7 gwr * that it will modify these bits on the PTE during the next
2924 1.7 gwr * time it is written to or read from, we must flush it from
2925 1.7 gwr * the ATC.
2926 1.7 gwr *
2927 1.7 gwr * Ordinarily it is only necessary to flush the descriptor
2928 1.7 gwr * if it is used in the current address space. But since I
2929 1.7 gwr * am not sure that there will always be a notion of
2930 1.7 gwr * 'the current address space' when this function is called,
2931 1.7 gwr * I will skip the test and always flush the address. It
2932 1.7 gwr * does no harm.
2933 1.7 gwr */
2934 1.69 chs
2935 1.8 gwr va = pmap_get_pteinfo(idx, &pmap, &c_tbl);
2936 1.7 gwr TBIS(va);
2937 1.1 gwr }
2938 1.1 gwr }
2939 1.1 gwr
2940 1.92 tsutsui /* pmap_extract_kernel INTERNAL
2941 1.92 tsutsui **
2942 1.92 tsutsui * Extract a translation from the kernel address space.
2943 1.92 tsutsui */
2944 1.92 tsutsui static INLINE boolean_t
2945 1.92 tsutsui pmap_extract_kernel(vaddr_t va, paddr_t *pap)
2946 1.92 tsutsui {
2947 1.92 tsutsui mmu_short_pte_t *pte;
2948 1.92 tsutsui
2949 1.92 tsutsui pte = &kernCbase[(u_int)m68k_btop(va - KERNBASE)];
2950 1.92 tsutsui if (!MMU_VALID_DT(*pte))
2951 1.92 tsutsui return FALSE;
2952 1.92 tsutsui if (pap != NULL)
2953 1.92 tsutsui *pap = MMU_PTE_PA(*pte);
2954 1.92 tsutsui return TRUE;
2955 1.92 tsutsui }
2956 1.92 tsutsui
2957 1.1 gwr /* pmap_extract INTERFACE
2958 1.1 gwr **
2959 1.1 gwr * Return the physical address mapped by the virtual address
2960 1.48 thorpej * in the specified pmap.
2961 1.1 gwr *
2962 1.1 gwr * Note: this function should also apply an exclusive lock
2963 1.1 gwr * on the pmap system during its duration.
2964 1.1 gwr */
2965 1.86 chs boolean_t
2966 1.86 chs pmap_extract(pmap_t pmap, vaddr_t va, paddr_t *pap)
2967 1.1 gwr {
2968 1.1 gwr int a_idx, b_idx, pte_idx;
2969 1.1 gwr a_tmgr_t *a_tbl;
2970 1.1 gwr b_tmgr_t *b_tbl;
2971 1.1 gwr c_tmgr_t *c_tbl;
2972 1.1 gwr mmu_short_pte_t *c_pte;
2973 1.1 gwr
2974 1.1 gwr if (pmap == pmap_kernel())
2975 1.48 thorpej return pmap_extract_kernel(va, pap);
2976 1.1 gwr
2977 1.1 gwr if (pmap_stroll(pmap, va, &a_tbl, &b_tbl, &c_tbl,
2978 1.7 gwr &c_pte, &a_idx, &b_idx, &pte_idx) == FALSE)
2979 1.48 thorpej return FALSE;
2980 1.1 gwr
2981 1.7 gwr if (!MMU_VALID_DT(*c_pte))
2982 1.48 thorpej return FALSE;
2983 1.7 gwr
2984 1.48 thorpej if (pap != NULL)
2985 1.48 thorpej *pap = MMU_PTE_PA(*c_pte);
2986 1.92 tsutsui return TRUE;
2987 1.1 gwr }
2988 1.1 gwr
2989 1.1 gwr /* pmap_remove_kernel INTERNAL
2990 1.1 gwr **
2991 1.1 gwr * Remove the mapping of a range of virtual addresses from the kernel map.
2992 1.9 gwr * The arguments are already page-aligned.
2993 1.1 gwr */
2994 1.92 tsutsui static INLINE void
2995 1.86 chs pmap_remove_kernel(vaddr_t sva, vaddr_t eva)
2996 1.1 gwr {
2997 1.9 gwr int idx, eidx;
2998 1.9 gwr
2999 1.9 gwr #ifdef PMAP_DEBUG
3000 1.9 gwr if ((sva & PGOFSET) || (eva & PGOFSET))
3001 1.9 gwr panic("pmap_remove_kernel: alignment");
3002 1.9 gwr #endif
3003 1.1 gwr
3004 1.25 veego idx = m68k_btop(sva - KERNBASE);
3005 1.25 veego eidx = m68k_btop(eva - KERNBASE);
3006 1.9 gwr
3007 1.24 jeremy while (idx < eidx) {
3008 1.9 gwr pmap_remove_pte(&kernCbase[idx++]);
3009 1.24 jeremy TBIS(sva);
3010 1.79 thorpej sva += PAGE_SIZE;
3011 1.24 jeremy }
3012 1.1 gwr }
3013 1.1 gwr
3014 1.1 gwr /* pmap_remove INTERFACE
3015 1.1 gwr **
3016 1.1 gwr * Remove the mapping of a range of virtual addresses from the given pmap.
3017 1.7 gwr *
3018 1.1 gwr */
3019 1.86 chs void
3020 1.88 tsutsui pmap_remove(pmap_t pmap, vaddr_t sva, vaddr_t eva)
3021 1.1 gwr {
3022 1.7 gwr
3023 1.1 gwr if (pmap == pmap_kernel()) {
3024 1.88 tsutsui pmap_remove_kernel(sva, eva);
3025 1.1 gwr return;
3026 1.1 gwr }
3027 1.1 gwr
3028 1.7 gwr /*
3029 1.7 gwr * If the pmap doesn't have an A table of its own, it has no mappings
3030 1.7 gwr * that can be removed.
3031 1.1 gwr */
3032 1.7 gwr if (pmap->pm_a_tmgr == NULL)
3033 1.7 gwr return;
3034 1.7 gwr
3035 1.7 gwr /*
3036 1.7 gwr * Remove the specified range from the pmap. If the function
3037 1.7 gwr * returns true, the operation removed all the valid mappings
3038 1.7 gwr * in the pmap and freed its A table. If this happened to the
3039 1.7 gwr * currently loaded pmap, the MMU root pointer must be reloaded
3040 1.7 gwr * with the default 'kernel' map.
3041 1.7 gwr */
3042 1.88 tsutsui if (pmap_remove_a(pmap->pm_a_tmgr, sva, eva)) {
3043 1.9 gwr if (kernel_crp.rp_addr == pmap->pm_a_phys) {
3044 1.9 gwr kernel_crp.rp_addr = kernAphys;
3045 1.9 gwr loadcrp(&kernel_crp);
3046 1.9 gwr /* will do TLB flush below */
3047 1.9 gwr }
3048 1.7 gwr pmap->pm_a_tmgr = NULL;
3049 1.7 gwr pmap->pm_a_phys = kernAphys;
3050 1.1 gwr }
3051 1.9 gwr
3052 1.9 gwr /*
3053 1.9 gwr * If we just modified the current address space,
3054 1.9 gwr * make sure to flush the MMU cache.
3055 1.9 gwr *
3056 1.9 gwr * XXX - this could be an unecessarily large flush.
3057 1.9 gwr * XXX - Could decide, based on the size of the VA range
3058 1.9 gwr * to be removed, whether to flush "by pages" or "all".
3059 1.9 gwr */
3060 1.9 gwr if (pmap == current_pmap())
3061 1.9 gwr TBIAU();
3062 1.1 gwr }
3063 1.1 gwr
3064 1.1 gwr /* pmap_remove_a INTERNAL
3065 1.1 gwr **
3066 1.1 gwr * This is function number one in a set of three that removes a range
3067 1.1 gwr * of memory in the most efficient manner by removing the highest possible
3068 1.1 gwr * tables from the memory space. This particular function attempts to remove
3069 1.1 gwr * as many B tables as it can, delegating the remaining fragmented ranges to
3070 1.1 gwr * pmap_remove_b().
3071 1.1 gwr *
3072 1.7 gwr * If the removal operation results in an empty A table, the function returns
3073 1.7 gwr * TRUE.
3074 1.7 gwr *
3075 1.1 gwr * It's ugly but will do for now.
3076 1.1 gwr */
3077 1.86 chs boolean_t
3078 1.88 tsutsui pmap_remove_a(a_tmgr_t *a_tbl, vaddr_t sva, vaddr_t eva)
3079 1.1 gwr {
3080 1.7 gwr boolean_t empty;
3081 1.1 gwr int idx;
3082 1.69 chs vaddr_t nstart, nend;
3083 1.1 gwr b_tmgr_t *b_tbl;
3084 1.1 gwr mmu_long_dte_t *a_dte;
3085 1.1 gwr mmu_short_dte_t *b_dte;
3086 1.91 tsutsui uint8_t at_wired, bt_wired;
3087 1.8 gwr
3088 1.7 gwr /*
3089 1.7 gwr * The following code works with what I call a 'granularity
3090 1.7 gwr * reduction algorithim'. A range of addresses will always have
3091 1.7 gwr * the following properties, which are classified according to
3092 1.7 gwr * how the range relates to the size of the current granularity
3093 1.7 gwr * - an A table entry:
3094 1.7 gwr *
3095 1.7 gwr * 1 2 3 4
3096 1.7 gwr * -+---+---+---+---+---+---+---+-
3097 1.7 gwr * -+---+---+---+---+---+---+---+-
3098 1.7 gwr *
3099 1.7 gwr * A range will always start on a granularity boundary, illustrated
3100 1.7 gwr * by '+' signs in the table above, or it will start at some point
3101 1.7 gwr * inbetween a granularity boundary, as illustrated by point 1.
3102 1.7 gwr * The first step in removing a range of addresses is to remove the
3103 1.7 gwr * range between 1 and 2, the nearest granularity boundary. This
3104 1.7 gwr * job is handled by the section of code governed by the
3105 1.7 gwr * 'if (start < nstart)' statement.
3106 1.7 gwr *
3107 1.7 gwr * A range will always encompass zero or more intergral granules,
3108 1.7 gwr * illustrated by points 2 and 3. Integral granules are easy to
3109 1.7 gwr * remove. The removal of these granules is the second step, and
3110 1.7 gwr * is handled by the code block 'if (nstart < nend)'.
3111 1.7 gwr *
3112 1.7 gwr * Lastly, a range will always end on a granularity boundary,
3113 1.7 gwr * ill. by point 3, or it will fall just beyond one, ill. by point
3114 1.7 gwr * 4. The last step involves removing this range and is handled by
3115 1.7 gwr * the code block 'if (nend < end)'.
3116 1.7 gwr */
3117 1.88 tsutsui nstart = MMU_ROUND_UP_A(sva);
3118 1.88 tsutsui nend = MMU_ROUND_A(eva);
3119 1.1 gwr
3120 1.91 tsutsui at_wired = a_tbl->at_wcnt;
3121 1.91 tsutsui
3122 1.88 tsutsui if (sva < nstart) {
3123 1.7 gwr /*
3124 1.7 gwr * This block is executed if the range starts between
3125 1.7 gwr * a granularity boundary.
3126 1.7 gwr *
3127 1.7 gwr * First find the DTE which is responsible for mapping
3128 1.7 gwr * the start of the range.
3129 1.7 gwr */
3130 1.88 tsutsui idx = MMU_TIA(sva);
3131 1.1 gwr a_dte = &a_tbl->at_dtbl[idx];
3132 1.7 gwr
3133 1.7 gwr /*
3134 1.7 gwr * If the DTE is valid then delegate the removal of the sub
3135 1.7 gwr * range to pmap_remove_b(), which can remove addresses at
3136 1.7 gwr * a finer granularity.
3137 1.7 gwr */
3138 1.1 gwr if (MMU_VALID_DT(*a_dte)) {
3139 1.7 gwr b_dte = mmu_ptov(a_dte->addr.raw);
3140 1.1 gwr b_tbl = mmuB2tmgr(b_dte);
3141 1.91 tsutsui bt_wired = b_tbl->bt_wcnt;
3142 1.7 gwr
3143 1.7 gwr /*
3144 1.7 gwr * The sub range to be removed starts at the start
3145 1.7 gwr * of the full range we were asked to remove, and ends
3146 1.7 gwr * at the greater of:
3147 1.7 gwr * 1. The end of the full range, -or-
3148 1.7 gwr * 2. The end of the full range, rounded down to the
3149 1.7 gwr * nearest granularity boundary.
3150 1.7 gwr */
3151 1.88 tsutsui if (eva < nstart)
3152 1.88 tsutsui empty = pmap_remove_b(b_tbl, sva, eva);
3153 1.7 gwr else
3154 1.88 tsutsui empty = pmap_remove_b(b_tbl, sva, nstart);
3155 1.7 gwr
3156 1.7 gwr /*
3157 1.91 tsutsui * If the child table no longer has wired entries,
3158 1.91 tsutsui * decrement wired entry count.
3159 1.91 tsutsui */
3160 1.91 tsutsui if (bt_wired && b_tbl->bt_wcnt == 0)
3161 1.91 tsutsui a_tbl->at_wcnt--;
3162 1.91 tsutsui
3163 1.91 tsutsui /*
3164 1.7 gwr * If the removal resulted in an empty B table,
3165 1.7 gwr * invalidate the DTE that points to it and decrement
3166 1.7 gwr * the valid entry count of the A table.
3167 1.7 gwr */
3168 1.7 gwr if (empty) {
3169 1.7 gwr a_dte->attr.raw = MMU_DT_INVALID;
3170 1.7 gwr a_tbl->at_ecnt--;
3171 1.1 gwr }
3172 1.1 gwr }
3173 1.7 gwr /*
3174 1.7 gwr * If the DTE is invalid, the address range is already non-
3175 1.68 wiz * existent and can simply be skipped.
3176 1.7 gwr */
3177 1.1 gwr }
3178 1.1 gwr if (nstart < nend) {
3179 1.7 gwr /*
3180 1.8 gwr * This block is executed if the range spans a whole number
3181 1.7 gwr * multiple of granules (A table entries.)
3182 1.7 gwr *
3183 1.7 gwr * First find the DTE which is responsible for mapping
3184 1.7 gwr * the start of the first granule involved.
3185 1.7 gwr */
3186 1.1 gwr idx = MMU_TIA(nstart);
3187 1.1 gwr a_dte = &a_tbl->at_dtbl[idx];
3188 1.7 gwr
3189 1.7 gwr /*
3190 1.7 gwr * Remove entire sub-granules (B tables) one at a time,
3191 1.7 gwr * until reaching the end of the range.
3192 1.7 gwr */
3193 1.7 gwr for (; nstart < nend; a_dte++, nstart += MMU_TIA_RANGE)
3194 1.1 gwr if (MMU_VALID_DT(*a_dte)) {
3195 1.7 gwr /*
3196 1.7 gwr * Find the B table manager for the
3197 1.7 gwr * entry and free it.
3198 1.7 gwr */
3199 1.7 gwr b_dte = mmu_ptov(a_dte->addr.raw);
3200 1.1 gwr b_tbl = mmuB2tmgr(b_dte);
3201 1.91 tsutsui bt_wired = b_tbl->bt_wcnt;
3202 1.91 tsutsui
3203 1.7 gwr free_b_table(b_tbl, TRUE);
3204 1.7 gwr
3205 1.7 gwr /*
3206 1.91 tsutsui * All child entries has been removed.
3207 1.91 tsutsui * If there were any wired entries in it,
3208 1.91 tsutsui * decrement wired entry count.
3209 1.91 tsutsui */
3210 1.91 tsutsui if (bt_wired)
3211 1.91 tsutsui a_tbl->at_wcnt--;
3212 1.91 tsutsui
3213 1.91 tsutsui /*
3214 1.7 gwr * Invalidate the DTE that points to the
3215 1.7 gwr * B table and decrement the valid entry
3216 1.7 gwr * count of the A table.
3217 1.7 gwr */
3218 1.1 gwr a_dte->attr.raw = MMU_DT_INVALID;
3219 1.1 gwr a_tbl->at_ecnt--;
3220 1.1 gwr }
3221 1.1 gwr }
3222 1.88 tsutsui if (nend < eva) {
3223 1.7 gwr /*
3224 1.7 gwr * This block is executed if the range ends beyond a
3225 1.7 gwr * granularity boundary.
3226 1.7 gwr *
3227 1.7 gwr * First find the DTE which is responsible for mapping
3228 1.7 gwr * the start of the nearest (rounded down) granularity
3229 1.7 gwr * boundary.
3230 1.7 gwr */
3231 1.1 gwr idx = MMU_TIA(nend);
3232 1.1 gwr a_dte = &a_tbl->at_dtbl[idx];
3233 1.7 gwr
3234 1.7 gwr /*
3235 1.7 gwr * If the DTE is valid then delegate the removal of the sub
3236 1.7 gwr * range to pmap_remove_b(), which can remove addresses at
3237 1.7 gwr * a finer granularity.
3238 1.7 gwr */
3239 1.1 gwr if (MMU_VALID_DT(*a_dte)) {
3240 1.7 gwr /*
3241 1.7 gwr * Find the B table manager for the entry
3242 1.7 gwr * and hand it to pmap_remove_b() along with
3243 1.7 gwr * the sub range.
3244 1.7 gwr */
3245 1.7 gwr b_dte = mmu_ptov(a_dte->addr.raw);
3246 1.1 gwr b_tbl = mmuB2tmgr(b_dte);
3247 1.91 tsutsui bt_wired = b_tbl->bt_wcnt;
3248 1.7 gwr
3249 1.88 tsutsui empty = pmap_remove_b(b_tbl, nend, eva);
3250 1.7 gwr
3251 1.7 gwr /*
3252 1.91 tsutsui * If the child table no longer has wired entries,
3253 1.91 tsutsui * decrement wired entry count.
3254 1.91 tsutsui */
3255 1.91 tsutsui if (bt_wired && b_tbl->bt_wcnt == 0)
3256 1.91 tsutsui a_tbl->at_wcnt--;
3257 1.91 tsutsui /*
3258 1.7 gwr * If the removal resulted in an empty B table,
3259 1.7 gwr * invalidate the DTE that points to it and decrement
3260 1.7 gwr * the valid entry count of the A table.
3261 1.7 gwr */
3262 1.7 gwr if (empty) {
3263 1.7 gwr a_dte->attr.raw = MMU_DT_INVALID;
3264 1.7 gwr a_tbl->at_ecnt--;
3265 1.7 gwr }
3266 1.1 gwr }
3267 1.1 gwr }
3268 1.7 gwr
3269 1.7 gwr /*
3270 1.7 gwr * If there are no more entries in the A table, release it
3271 1.7 gwr * back to the available pool and return TRUE.
3272 1.7 gwr */
3273 1.7 gwr if (a_tbl->at_ecnt == 0) {
3274 1.91 tsutsui KASSERT(a_tbl->at_wcnt == 0);
3275 1.7 gwr a_tbl->at_parent = NULL;
3276 1.91 tsutsui if (!at_wired)
3277 1.91 tsutsui TAILQ_REMOVE(&a_pool, a_tbl, at_link);
3278 1.7 gwr TAILQ_INSERT_HEAD(&a_pool, a_tbl, at_link);
3279 1.7 gwr empty = TRUE;
3280 1.7 gwr } else {
3281 1.91 tsutsui /*
3282 1.91 tsutsui * If the table doesn't have wired entries any longer
3283 1.91 tsutsui * but still has unwired entries, put it back into
3284 1.91 tsutsui * the available queue.
3285 1.91 tsutsui */
3286 1.91 tsutsui if (at_wired && a_tbl->at_wcnt == 0)
3287 1.91 tsutsui TAILQ_INSERT_TAIL(&a_pool, a_tbl, at_link);
3288 1.7 gwr empty = FALSE;
3289 1.7 gwr }
3290 1.7 gwr
3291 1.7 gwr return empty;
3292 1.1 gwr }
3293 1.1 gwr
3294 1.1 gwr /* pmap_remove_b INTERNAL
3295 1.1 gwr **
3296 1.1 gwr * Remove a range of addresses from an address space, trying to remove entire
3297 1.1 gwr * C tables if possible.
3298 1.7 gwr *
3299 1.7 gwr * If the operation results in an empty B table, the function returns TRUE.
3300 1.1 gwr */
3301 1.86 chs boolean_t
3302 1.88 tsutsui pmap_remove_b(b_tmgr_t *b_tbl, vaddr_t sva, vaddr_t eva)
3303 1.1 gwr {
3304 1.7 gwr boolean_t empty;
3305 1.1 gwr int idx;
3306 1.69 chs vaddr_t nstart, nend, rstart;
3307 1.1 gwr c_tmgr_t *c_tbl;
3308 1.1 gwr mmu_short_dte_t *b_dte;
3309 1.1 gwr mmu_short_pte_t *c_dte;
3310 1.91 tsutsui uint8_t bt_wired, ct_wired;
3311 1.1 gwr
3312 1.88 tsutsui nstart = MMU_ROUND_UP_B(sva);
3313 1.88 tsutsui nend = MMU_ROUND_B(eva);
3314 1.1 gwr
3315 1.91 tsutsui bt_wired = b_tbl->bt_wcnt;
3316 1.91 tsutsui
3317 1.88 tsutsui if (sva < nstart) {
3318 1.88 tsutsui idx = MMU_TIB(sva);
3319 1.1 gwr b_dte = &b_tbl->bt_dtbl[idx];
3320 1.1 gwr if (MMU_VALID_DT(*b_dte)) {
3321 1.7 gwr c_dte = mmu_ptov(MMU_DTE_PA(*b_dte));
3322 1.1 gwr c_tbl = mmuC2tmgr(c_dte);
3323 1.91 tsutsui ct_wired = c_tbl->ct_wcnt;
3324 1.91 tsutsui
3325 1.88 tsutsui if (eva < nstart)
3326 1.88 tsutsui empty = pmap_remove_c(c_tbl, sva, eva);
3327 1.7 gwr else
3328 1.88 tsutsui empty = pmap_remove_c(c_tbl, sva, nstart);
3329 1.91 tsutsui
3330 1.91 tsutsui /*
3331 1.91 tsutsui * If the child table no longer has wired entries,
3332 1.91 tsutsui * decrement wired entry count.
3333 1.91 tsutsui */
3334 1.91 tsutsui if (ct_wired && c_tbl->ct_wcnt == 0)
3335 1.91 tsutsui b_tbl->bt_wcnt--;
3336 1.91 tsutsui
3337 1.7 gwr if (empty) {
3338 1.7 gwr b_dte->attr.raw = MMU_DT_INVALID;
3339 1.7 gwr b_tbl->bt_ecnt--;
3340 1.1 gwr }
3341 1.1 gwr }
3342 1.1 gwr }
3343 1.1 gwr if (nstart < nend) {
3344 1.1 gwr idx = MMU_TIB(nstart);
3345 1.1 gwr b_dte = &b_tbl->bt_dtbl[idx];
3346 1.1 gwr rstart = nstart;
3347 1.1 gwr while (rstart < nend) {
3348 1.1 gwr if (MMU_VALID_DT(*b_dte)) {
3349 1.7 gwr c_dte = mmu_ptov(MMU_DTE_PA(*b_dte));
3350 1.1 gwr c_tbl = mmuC2tmgr(c_dte);
3351 1.91 tsutsui ct_wired = c_tbl->ct_wcnt;
3352 1.91 tsutsui
3353 1.7 gwr free_c_table(c_tbl, TRUE);
3354 1.91 tsutsui
3355 1.91 tsutsui /*
3356 1.91 tsutsui * All child entries has been removed.
3357 1.91 tsutsui * If there were any wired entries in it,
3358 1.91 tsutsui * decrement wired entry count.
3359 1.91 tsutsui */
3360 1.91 tsutsui if (ct_wired)
3361 1.91 tsutsui b_tbl->bt_wcnt--;
3362 1.91 tsutsui
3363 1.1 gwr b_dte->attr.raw = MMU_DT_INVALID;
3364 1.1 gwr b_tbl->bt_ecnt--;
3365 1.1 gwr }
3366 1.1 gwr b_dte++;
3367 1.1 gwr rstart += MMU_TIB_RANGE;
3368 1.1 gwr }
3369 1.1 gwr }
3370 1.88 tsutsui if (nend < eva) {
3371 1.1 gwr idx = MMU_TIB(nend);
3372 1.1 gwr b_dte = &b_tbl->bt_dtbl[idx];
3373 1.1 gwr if (MMU_VALID_DT(*b_dte)) {
3374 1.7 gwr c_dte = mmu_ptov(MMU_DTE_PA(*b_dte));
3375 1.1 gwr c_tbl = mmuC2tmgr(c_dte);
3376 1.91 tsutsui ct_wired = c_tbl->ct_wcnt;
3377 1.88 tsutsui empty = pmap_remove_c(c_tbl, nend, eva);
3378 1.91 tsutsui
3379 1.91 tsutsui /*
3380 1.91 tsutsui * If the child table no longer has wired entries,
3381 1.91 tsutsui * decrement wired entry count.
3382 1.91 tsutsui */
3383 1.91 tsutsui if (ct_wired && c_tbl->ct_wcnt == 0)
3384 1.91 tsutsui b_tbl->bt_wcnt--;
3385 1.91 tsutsui
3386 1.7 gwr if (empty) {
3387 1.7 gwr b_dte->attr.raw = MMU_DT_INVALID;
3388 1.7 gwr b_tbl->bt_ecnt--;
3389 1.7 gwr }
3390 1.1 gwr }
3391 1.1 gwr }
3392 1.7 gwr
3393 1.7 gwr if (b_tbl->bt_ecnt == 0) {
3394 1.91 tsutsui KASSERT(b_tbl->bt_wcnt == 0);
3395 1.7 gwr b_tbl->bt_parent = NULL;
3396 1.91 tsutsui if (!bt_wired)
3397 1.91 tsutsui TAILQ_REMOVE(&b_pool, b_tbl, bt_link);
3398 1.7 gwr TAILQ_INSERT_HEAD(&b_pool, b_tbl, bt_link);
3399 1.7 gwr empty = TRUE;
3400 1.7 gwr } else {
3401 1.91 tsutsui /*
3402 1.91 tsutsui * If the table doesn't have wired entries any longer
3403 1.91 tsutsui * but still has unwired entries, put it back into
3404 1.91 tsutsui * the available queue.
3405 1.91 tsutsui */
3406 1.91 tsutsui if (bt_wired && b_tbl->bt_wcnt == 0)
3407 1.91 tsutsui TAILQ_INSERT_TAIL(&b_pool, b_tbl, bt_link);
3408 1.91 tsutsui
3409 1.7 gwr empty = FALSE;
3410 1.7 gwr }
3411 1.7 gwr
3412 1.7 gwr return empty;
3413 1.1 gwr }
3414 1.1 gwr
3415 1.1 gwr /* pmap_remove_c INTERNAL
3416 1.1 gwr **
3417 1.1 gwr * Remove a range of addresses from the given C table.
3418 1.1 gwr */
3419 1.86 chs boolean_t
3420 1.88 tsutsui pmap_remove_c(c_tmgr_t *c_tbl, vaddr_t sva, vaddr_t eva)
3421 1.1 gwr {
3422 1.7 gwr boolean_t empty;
3423 1.1 gwr int idx;
3424 1.1 gwr mmu_short_pte_t *c_pte;
3425 1.91 tsutsui uint8_t ct_wired;
3426 1.1 gwr
3427 1.91 tsutsui ct_wired = c_tbl->ct_wcnt;
3428 1.91 tsutsui
3429 1.88 tsutsui idx = MMU_TIC(sva);
3430 1.1 gwr c_pte = &c_tbl->ct_dtbl[idx];
3431 1.92 tsutsui for (; sva < eva; sva += MMU_PAGE_SIZE, c_pte++) {
3432 1.7 gwr if (MMU_VALID_DT(*c_pte)) {
3433 1.91 tsutsui if (c_pte->attr.raw & MMU_SHORT_PTE_WIRED)
3434 1.91 tsutsui c_tbl->ct_wcnt--;
3435 1.1 gwr pmap_remove_pte(c_pte);
3436 1.7 gwr c_tbl->ct_ecnt--;
3437 1.7 gwr }
3438 1.1 gwr }
3439 1.7 gwr
3440 1.7 gwr if (c_tbl->ct_ecnt == 0) {
3441 1.91 tsutsui KASSERT(c_tbl->ct_wcnt == 0);
3442 1.7 gwr c_tbl->ct_parent = NULL;
3443 1.91 tsutsui if (!ct_wired)
3444 1.91 tsutsui TAILQ_REMOVE(&c_pool, c_tbl, ct_link);
3445 1.9 gwr TAILQ_INSERT_HEAD(&c_pool, c_tbl, ct_link);
3446 1.9 gwr empty = TRUE;
3447 1.9 gwr } else {
3448 1.91 tsutsui /*
3449 1.91 tsutsui * If the table doesn't have wired entries any longer
3450 1.91 tsutsui * but still has unwired entries, put it back into
3451 1.91 tsutsui * the available queue.
3452 1.91 tsutsui */
3453 1.91 tsutsui if (ct_wired && c_tbl->ct_wcnt == 0)
3454 1.91 tsutsui TAILQ_INSERT_TAIL(&c_pool, c_tbl, ct_link);
3455 1.9 gwr empty = FALSE;
3456 1.9 gwr }
3457 1.7 gwr
3458 1.9 gwr return empty;
3459 1.1 gwr }
3460 1.1 gwr
3461 1.1 gwr /* pmap_bootstrap_alloc INTERNAL
3462 1.1 gwr **
3463 1.1 gwr * Used internally for memory allocation at startup when malloc is not
3464 1.1 gwr * available. This code will fail once it crosses the first memory
3465 1.1 gwr * bank boundary on the 3/80. Hopefully by then however, the VM system
3466 1.1 gwr * will be in charge of allocation.
3467 1.1 gwr */
3468 1.1 gwr void *
3469 1.86 chs pmap_bootstrap_alloc(int size)
3470 1.1 gwr {
3471 1.1 gwr void *rtn;
3472 1.1 gwr
3473 1.8 gwr #ifdef PMAP_DEBUG
3474 1.7 gwr if (bootstrap_alloc_enabled == FALSE) {
3475 1.7 gwr mon_printf("pmap_bootstrap_alloc: disabled\n");
3476 1.7 gwr sunmon_abort();
3477 1.7 gwr }
3478 1.7 gwr #endif
3479 1.7 gwr
3480 1.1 gwr rtn = (void *) virtual_avail;
3481 1.1 gwr virtual_avail += size;
3482 1.1 gwr
3483 1.8 gwr #ifdef PMAP_DEBUG
3484 1.7 gwr if (virtual_avail > virtual_contig_end) {
3485 1.7 gwr mon_printf("pmap_bootstrap_alloc: out of mem\n");
3486 1.7 gwr sunmon_abort();
3487 1.1 gwr }
3488 1.7 gwr #endif
3489 1.1 gwr
3490 1.1 gwr return rtn;
3491 1.1 gwr }
3492 1.1 gwr
3493 1.1 gwr /* pmap_bootstap_aalign INTERNAL
3494 1.1 gwr **
3495 1.7 gwr * Used to insure that the next call to pmap_bootstrap_alloc() will
3496 1.7 gwr * return a chunk of memory aligned to the specified size.
3497 1.8 gwr *
3498 1.8 gwr * Note: This function will only support alignment sizes that are powers
3499 1.8 gwr * of two.
3500 1.1 gwr */
3501 1.86 chs void
3502 1.86 chs pmap_bootstrap_aalign(int size)
3503 1.1 gwr {
3504 1.7 gwr int off;
3505 1.7 gwr
3506 1.7 gwr off = virtual_avail & (size - 1);
3507 1.7 gwr if (off) {
3508 1.92 tsutsui (void)pmap_bootstrap_alloc(size - off);
3509 1.1 gwr }
3510 1.1 gwr }
3511 1.7 gwr
3512 1.8 gwr /* pmap_pa_exists
3513 1.8 gwr **
3514 1.8 gwr * Used by the /dev/mem driver to see if a given PA is memory
3515 1.8 gwr * that can be mapped. (The PA is not in a hole.)
3516 1.8 gwr */
3517 1.86 chs int
3518 1.86 chs pmap_pa_exists(paddr_t pa)
3519 1.8 gwr {
3520 1.69 chs int i;
3521 1.21 gwr
3522 1.21 gwr for (i = 0; i < SUN3X_NPHYS_RAM_SEGS; i++) {
3523 1.21 gwr if ((pa >= avail_mem[i].pmem_start) &&
3524 1.21 gwr (pa < avail_mem[i].pmem_end))
3525 1.92 tsutsui return 1;
3526 1.21 gwr if (avail_mem[i].pmem_next == NULL)
3527 1.21 gwr break;
3528 1.21 gwr }
3529 1.92 tsutsui return 0;
3530 1.8 gwr }
3531 1.8 gwr
3532 1.31 gwr /* Called only from locore.s and pmap.c */
3533 1.86 chs void _pmap_switch(pmap_t pmap);
3534 1.31 gwr
3535 1.31 gwr /*
3536 1.31 gwr * _pmap_switch INTERNAL
3537 1.31 gwr *
3538 1.31 gwr * This is called by locore.s:cpu_switch() when it is
3539 1.31 gwr * switching to a new process. Load new translations.
3540 1.31 gwr * Note: done in-line by locore.s unless PMAP_DEBUG
3541 1.24 jeremy *
3542 1.31 gwr * Note that we do NOT allocate a context here, but
3543 1.31 gwr * share the "kernel only" context until we really
3544 1.31 gwr * need our own context for user-space mappings in
3545 1.31 gwr * pmap_enter_user(). [ s/context/mmu A table/ ]
3546 1.1 gwr */
3547 1.86 chs void
3548 1.86 chs _pmap_switch(pmap_t pmap)
3549 1.1 gwr {
3550 1.7 gwr u_long rootpa;
3551 1.7 gwr
3552 1.31 gwr /*
3553 1.31 gwr * Only do reload/flush if we have to.
3554 1.31 gwr * Note that if the old and new process
3555 1.31 gwr * were BOTH using the "null" context,
3556 1.31 gwr * then this will NOT flush the TLB.
3557 1.31 gwr */
3558 1.7 gwr rootpa = pmap->pm_a_phys;
3559 1.31 gwr if (kernel_crp.rp_addr != rootpa) {
3560 1.31 gwr DPRINT(("pmap_activate(%p)\n", pmap));
3561 1.7 gwr kernel_crp.rp_addr = rootpa;
3562 1.7 gwr loadcrp(&kernel_crp);
3563 1.8 gwr TBIAU();
3564 1.31 gwr }
3565 1.31 gwr }
3566 1.31 gwr
3567 1.31 gwr /*
3568 1.31 gwr * Exported version of pmap_activate(). This is called from the
3569 1.31 gwr * machine-independent VM code when a process is given a new pmap.
3570 1.76 thorpej * If (p == curlwp) do like cpu_switch would do; otherwise just
3571 1.31 gwr * take this as notification that the process has a new pmap.
3572 1.31 gwr */
3573 1.86 chs void
3574 1.86 chs pmap_activate(struct lwp *l)
3575 1.31 gwr {
3576 1.92 tsutsui
3577 1.76 thorpej if (l->l_proc == curproc) {
3578 1.76 thorpej _pmap_switch(l->l_proc->p_vmspace->vm_map.pmap);
3579 1.7 gwr }
3580 1.1 gwr }
3581 1.1 gwr
3582 1.30 thorpej /*
3583 1.30 thorpej * pmap_deactivate INTERFACE
3584 1.30 thorpej **
3585 1.30 thorpej * This is called to deactivate the specified process's address space.
3586 1.30 thorpej */
3587 1.86 chs void
3588 1.86 chs pmap_deactivate(struct lwp *l)
3589 1.1 gwr {
3590 1.92 tsutsui
3591 1.69 chs /* Nothing to do. */
3592 1.1 gwr }
3593 1.1 gwr
3594 1.17 gwr /*
3595 1.28 gwr * Fill in the sun3x-specific part of the kernel core header
3596 1.28 gwr * for dumpsys(). (See machdep.c for the rest.)
3597 1.17 gwr */
3598 1.86 chs void
3599 1.86 chs pmap_kcore_hdr(struct sun3x_kcore_hdr *sh)
3600 1.17 gwr {
3601 1.17 gwr u_long spa, len;
3602 1.17 gwr int i;
3603 1.20 thorpej
3604 1.28 gwr sh->pg_frame = MMU_SHORT_PTE_BASEADDR;
3605 1.28 gwr sh->pg_valid = MMU_DT_PAGE;
3606 1.20 thorpej sh->contig_end = virtual_contig_end;
3607 1.69 chs sh->kernCbase = (u_long)kernCbase;
3608 1.20 thorpej for (i = 0; i < SUN3X_NPHYS_RAM_SEGS; i++) {
3609 1.17 gwr spa = avail_mem[i].pmem_start;
3610 1.25 veego spa = m68k_trunc_page(spa);
3611 1.17 gwr len = avail_mem[i].pmem_end - spa;
3612 1.25 veego len = m68k_round_page(len);
3613 1.20 thorpej sh->ram_segs[i].start = spa;
3614 1.20 thorpej sh->ram_segs[i].size = len;
3615 1.17 gwr }
3616 1.17 gwr }
3617 1.17 gwr
3618 1.81 thorpej
3619 1.81 thorpej /* pmap_virtual_space INTERFACE
3620 1.81 thorpej **
3621 1.81 thorpej * Return the current available range of virtual addresses in the
3622 1.81 thorpej * arguuments provided. Only really called once.
3623 1.81 thorpej */
3624 1.86 chs void
3625 1.86 chs pmap_virtual_space(vaddr_t *vstart, vaddr_t *vend)
3626 1.81 thorpej {
3627 1.92 tsutsui
3628 1.81 thorpej *vstart = virtual_avail;
3629 1.81 thorpej *vend = virtual_end;
3630 1.81 thorpej }
3631 1.1 gwr
3632 1.37 gwr /*
3633 1.37 gwr * Provide memory to the VM system.
3634 1.37 gwr *
3635 1.37 gwr * Assume avail_start is always in the
3636 1.37 gwr * first segment as pmap_bootstrap does.
3637 1.37 gwr */
3638 1.86 chs static void
3639 1.86 chs pmap_page_upload(void)
3640 1.37 gwr {
3641 1.69 chs paddr_t a, b; /* memory range */
3642 1.37 gwr int i;
3643 1.37 gwr
3644 1.37 gwr /* Supply the memory in segments. */
3645 1.37 gwr for (i = 0; i < SUN3X_NPHYS_RAM_SEGS; i++) {
3646 1.37 gwr a = atop(avail_mem[i].pmem_start);
3647 1.37 gwr b = atop(avail_mem[i].pmem_end);
3648 1.37 gwr if (i == 0)
3649 1.37 gwr a = atop(avail_start);
3650 1.60 tsutsui if (avail_mem[i].pmem_end > avail_end)
3651 1.60 tsutsui b = atop(avail_end);
3652 1.37 gwr
3653 1.39 thorpej uvm_page_physload(a, b, a, b, VM_FREELIST_DEFAULT);
3654 1.37 gwr
3655 1.37 gwr if (avail_mem[i].pmem_next == NULL)
3656 1.37 gwr break;
3657 1.37 gwr }
3658 1.1 gwr }
3659 1.8 gwr
3660 1.8 gwr /* pmap_count INTERFACE
3661 1.8 gwr **
3662 1.8 gwr * Return the number of resident (valid) pages in the given pmap.
3663 1.8 gwr *
3664 1.8 gwr * Note: If this function is handed the kernel map, it will report
3665 1.8 gwr * that it has no mappings. Hopefully the VM system won't ask for kernel
3666 1.8 gwr * map statistics.
3667 1.8 gwr */
3668 1.86 chs segsz_t
3669 1.86 chs pmap_count(pmap_t pmap, int type)
3670 1.8 gwr {
3671 1.8 gwr u_int count;
3672 1.8 gwr int a_idx, b_idx;
3673 1.8 gwr a_tmgr_t *a_tbl;
3674 1.8 gwr b_tmgr_t *b_tbl;
3675 1.8 gwr c_tmgr_t *c_tbl;
3676 1.8 gwr
3677 1.8 gwr /*
3678 1.8 gwr * If the pmap does not have its own A table manager, it has no
3679 1.8 gwr * valid entires.
3680 1.8 gwr */
3681 1.8 gwr if (pmap->pm_a_tmgr == NULL)
3682 1.8 gwr return 0;
3683 1.8 gwr
3684 1.8 gwr a_tbl = pmap->pm_a_tmgr;
3685 1.8 gwr
3686 1.8 gwr count = 0;
3687 1.8 gwr for (a_idx = 0; a_idx < MMU_TIA(KERNBASE); a_idx++) {
3688 1.8 gwr if (MMU_VALID_DT(a_tbl->at_dtbl[a_idx])) {
3689 1.8 gwr b_tbl = mmuB2tmgr(mmu_ptov(a_tbl->at_dtbl[a_idx].addr.raw));
3690 1.8 gwr for (b_idx = 0; b_idx < MMU_B_TBL_SIZE; b_idx++) {
3691 1.8 gwr if (MMU_VALID_DT(b_tbl->bt_dtbl[b_idx])) {
3692 1.8 gwr c_tbl = mmuC2tmgr(
3693 1.8 gwr mmu_ptov(MMU_DTE_PA(b_tbl->bt_dtbl[b_idx])));
3694 1.8 gwr if (type == 0)
3695 1.8 gwr /*
3696 1.8 gwr * A resident entry count has been requested.
3697 1.8 gwr */
3698 1.8 gwr count += c_tbl->ct_ecnt;
3699 1.8 gwr else
3700 1.8 gwr /*
3701 1.8 gwr * A wired entry count has been requested.
3702 1.8 gwr */
3703 1.8 gwr count += c_tbl->ct_wcnt;
3704 1.8 gwr }
3705 1.8 gwr }
3706 1.8 gwr }
3707 1.8 gwr }
3708 1.8 gwr
3709 1.8 gwr return count;
3710 1.8 gwr }
3711 1.8 gwr
3712 1.1 gwr /************************ SUN3 COMPATIBILITY ROUTINES ********************
3713 1.1 gwr * The following routines are only used by DDB for tricky kernel text *
3714 1.1 gwr * text operations in db_memrw.c. They are provided for sun3 *
3715 1.1 gwr * compatibility. *
3716 1.1 gwr *************************************************************************/
3717 1.1 gwr /* get_pte INTERNAL
3718 1.1 gwr **
3719 1.1 gwr * Return the page descriptor the describes the kernel mapping
3720 1.1 gwr * of the given virtual address.
3721 1.1 gwr */
3722 1.86 chs extern u_long ptest_addr(u_long); /* XXX: locore.s */
3723 1.86 chs u_int
3724 1.86 chs get_pte(vaddr_t va)
3725 1.13 gwr {
3726 1.13 gwr u_long pte_pa;
3727 1.13 gwr mmu_short_pte_t *pte;
3728 1.13 gwr
3729 1.13 gwr /* Get the physical address of the PTE */
3730 1.13 gwr pte_pa = ptest_addr(va & ~PGOFSET);
3731 1.13 gwr
3732 1.13 gwr /* Convert to a virtual address... */
3733 1.13 gwr pte = (mmu_short_pte_t *) (KERNBASE + pte_pa);
3734 1.13 gwr
3735 1.13 gwr /* Make sure it is in our level-C tables... */
3736 1.13 gwr if ((pte < kernCbase) ||
3737 1.13 gwr (pte >= &mmuCbase[NUM_USER_PTES]))
3738 1.13 gwr return 0;
3739 1.13 gwr
3740 1.13 gwr /* ... and just return its contents. */
3741 1.13 gwr return (pte->attr.raw);
3742 1.13 gwr }
3743 1.13 gwr
3744 1.1 gwr
3745 1.1 gwr /* set_pte INTERNAL
3746 1.1 gwr **
3747 1.1 gwr * Set the page descriptor that describes the kernel mapping
3748 1.1 gwr * of the given virtual address.
3749 1.1 gwr */
3750 1.86 chs void
3751 1.86 chs set_pte(vaddr_t va, u_int pte)
3752 1.1 gwr {
3753 1.1 gwr u_long idx;
3754 1.1 gwr
3755 1.7 gwr if (va < KERNBASE)
3756 1.7 gwr return;
3757 1.7 gwr
3758 1.25 veego idx = (unsigned long) m68k_btop(va - KERNBASE);
3759 1.1 gwr kernCbase[idx].attr.raw = pte;
3760 1.33 gwr TBIS(va);
3761 1.1 gwr }
3762 1.42 is
3763 1.42 is /*
3764 1.42 is * Routine: pmap_procwr
3765 1.42 is *
3766 1.42 is * Function:
3767 1.42 is * Synchronize caches corresponding to [addr, addr+len) in p.
3768 1.42 is */
3769 1.86 chs void
3770 1.86 chs pmap_procwr(struct proc *p, vaddr_t va, size_t len)
3771 1.42 is {
3772 1.92 tsutsui
3773 1.42 is (void)cachectl1(0x80000004, va, len, p);
3774 1.42 is }
3775 1.42 is
3776 1.7 gwr
3777 1.8 gwr #ifdef PMAP_DEBUG
3778 1.7 gwr /************************** DEBUGGING ROUTINES **************************
3779 1.7 gwr * The following routines are meant to be an aid to debugging the pmap *
3780 1.7 gwr * system. They are callable from the DDB command line and should be *
3781 1.7 gwr * prepared to be handed unstable or incomplete states of the system. *
3782 1.7 gwr ************************************************************************/
3783 1.7 gwr
3784 1.7 gwr /* pv_list
3785 1.7 gwr **
3786 1.7 gwr * List all pages found on the pv list for the given physical page.
3787 1.8 gwr * To avoid endless loops, the listing will stop at the end of the list
3788 1.7 gwr * or after 'n' entries - whichever comes first.
3789 1.7 gwr */
3790 1.86 chs void
3791 1.86 chs pv_list(paddr_t pa, int n)
3792 1.7 gwr {
3793 1.7 gwr int idx;
3794 1.69 chs vaddr_t va;
3795 1.7 gwr pv_t *pv;
3796 1.7 gwr c_tmgr_t *c_tbl;
3797 1.7 gwr pmap_t pmap;
3798 1.7 gwr
3799 1.7 gwr pv = pa2pv(pa);
3800 1.7 gwr idx = pv->pv_idx;
3801 1.69 chs for (; idx != PVE_EOL && n > 0; idx = pvebase[idx].pve_next, n--) {
3802 1.8 gwr va = pmap_get_pteinfo(idx, &pmap, &c_tbl);
3803 1.7 gwr printf("idx %d, pmap 0x%x, va 0x%x, c_tbl %x\n",
3804 1.7 gwr idx, (u_int) pmap, (u_int) va, (u_int) c_tbl);
3805 1.7 gwr }
3806 1.7 gwr }
3807 1.8 gwr #endif /* PMAP_DEBUG */
3808 1.1 gwr
3809 1.1 gwr #ifdef NOT_YET
3810 1.1 gwr /* and maybe not ever */
3811 1.1 gwr /************************** LOW-LEVEL ROUTINES **************************
3812 1.78 wiz * These routines will eventually be re-written into assembly and placed*
3813 1.1 gwr * in locore.s. They are here now as stubs so that the pmap module can *
3814 1.1 gwr * be linked as a standalone user program for testing. *
3815 1.1 gwr ************************************************************************/
3816 1.1 gwr /* flush_atc_crp INTERNAL
3817 1.1 gwr **
3818 1.1 gwr * Flush all page descriptors derived from the given CPU Root Pointer
3819 1.1 gwr * (CRP), or 'A' table as it is known here, from the 68851's automatic
3820 1.1 gwr * cache.
3821 1.1 gwr */
3822 1.86 chs void
3823 1.86 chs flush_atc_crp(int a_tbl)
3824 1.1 gwr {
3825 1.1 gwr mmu_long_rp_t rp;
3826 1.1 gwr
3827 1.1 gwr /* Create a temporary root table pointer that points to the
3828 1.1 gwr * given A table.
3829 1.1 gwr */
3830 1.1 gwr rp.attr.raw = ~MMU_LONG_RP_LU;
3831 1.1 gwr rp.addr.raw = (unsigned int) a_tbl;
3832 1.1 gwr
3833 1.1 gwr mmu_pflushr(&rp);
3834 1.1 gwr /* mmu_pflushr:
3835 1.1 gwr * movel sp(4)@,a0
3836 1.1 gwr * pflushr a0@
3837 1.1 gwr * rts
3838 1.1 gwr */
3839 1.1 gwr }
3840 1.1 gwr #endif /* NOT_YET */
3841