pmap.c revision 1.100 1 /* $NetBSD: pmap.c,v 1.100 2008/12/09 20:45:46 pooka Exp $ */
2
3 /*-
4 * Copyright (c) 1996, 1997 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jeremy Cooper.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * XXX These comments aren't quite accurate. Need to change.
34 * The sun3x uses the MC68851 Memory Management Unit, which is built
35 * into the CPU. The 68851 maps virtual to physical addresses using
36 * a multi-level table lookup, which is stored in the very memory that
37 * it maps. The number of levels of lookup is configurable from one
38 * to four. In this implementation, we use three, named 'A' through 'C'.
39 *
40 * The MMU translates virtual addresses into physical addresses by
41 * traversing these tables in a process called a 'table walk'. The most
42 * significant 7 bits of the Virtual Address ('VA') being translated are
43 * used as an index into the level A table, whose base in physical memory
44 * is stored in a special MMU register, the 'CPU Root Pointer' or CRP. The
45 * address found at that index in the A table is used as the base
46 * address for the next table, the B table. The next six bits of the VA are
47 * used as an index into the B table, which in turn gives the base address
48 * of the third and final C table.
49 *
50 * The next six bits of the VA are used as an index into the C table to
51 * locate a Page Table Entry (PTE). The PTE is a physical address in memory
52 * to which the remaining 13 bits of the VA are added, producing the
53 * mapped physical address.
54 *
55 * To map the entire memory space in this manner would require 2114296 bytes
56 * of page tables per process - quite expensive. Instead we will
57 * allocate a fixed but considerably smaller space for the page tables at
58 * the time the VM system is initialized. When the pmap code is asked by
59 * the kernel to map a VA to a PA, it allocates tables as needed from this
60 * pool. When there are no more tables in the pool, tables are stolen
61 * from the oldest mapped entries in the tree. This is only possible
62 * because all memory mappings are stored in the kernel memory map
63 * structures, independent of the pmap structures. A VA which references
64 * one of these invalidated maps will cause a page fault. The kernel
65 * will determine that the page fault was caused by a task using a valid
66 * VA, but for some reason (which does not concern it), that address was
67 * not mapped. It will ask the pmap code to re-map the entry and then
68 * it will resume executing the faulting task.
69 *
70 * In this manner the most efficient use of the page table space is
71 * achieved. Tasks which do not execute often will have their tables
72 * stolen and reused by tasks which execute more frequently. The best
73 * size for the page table pool will probably be determined by
74 * experimentation.
75 *
76 * You read all of the comments so far. Good for you.
77 * Now go play!
78 */
79
80 /*** A Note About the 68851 Address Translation Cache
81 * The MC68851 has a 64 entry cache, called the Address Translation Cache
82 * or 'ATC'. This cache stores the most recently used page descriptors
83 * accessed by the MMU when it does translations. Using a marker called a
84 * 'task alias' the MMU can store the descriptors from 8 different table
85 * spaces concurrently. The task alias is associated with the base
86 * address of the level A table of that address space. When an address
87 * space is currently active (the CRP currently points to its A table)
88 * the only cached descriptors that will be obeyed are ones which have a
89 * matching task alias of the current space associated with them.
90 *
91 * Since the cache is always consulted before any table lookups are done,
92 * it is important that it accurately reflect the state of the MMU tables.
93 * Whenever a change has been made to a table that has been loaded into
94 * the MMU, the code must be sure to flush any cached entries that are
95 * affected by the change. These instances are documented in the code at
96 * various points.
97 */
98 /*** A Note About the Note About the 68851 Address Translation Cache
99 * 4 months into this code I discovered that the sun3x does not have
100 * a MC68851 chip. Instead, it has a version of this MMU that is part of the
101 * the 68030 CPU.
102 * All though it behaves very similarly to the 68851, it only has 1 task
103 * alias and a 22 entry cache. So sadly (or happily), the first paragraph
104 * of the previous note does not apply to the sun3x pmap.
105 */
106
107 #include <sys/cdefs.h>
108 __KERNEL_RCSID(0, "$NetBSD: pmap.c,v 1.100 2008/12/09 20:45:46 pooka Exp $");
109
110 #include "opt_ddb.h"
111 #include "opt_pmap_debug.h"
112
113 #include <sys/param.h>
114 #include <sys/systm.h>
115 #include <sys/proc.h>
116 #include <sys/malloc.h>
117 #include <sys/pool.h>
118 #include <sys/user.h>
119 #include <sys/queue.h>
120 #include <sys/kcore.h>
121
122 #include <uvm/uvm.h>
123
124 #include <machine/cpu.h>
125 #include <machine/kcore.h>
126 #include <machine/mon.h>
127 #include <machine/pmap.h>
128 #include <machine/pte.h>
129 #include <machine/vmparam.h>
130 #include <m68k/cacheops.h>
131
132 #include <sun3/sun3/cache.h>
133 #include <sun3/sun3/machdep.h>
134
135 #include "pmap_pvt.h"
136
137 /* XXX - What headers declare these? */
138 extern struct pcb *curpcb;
139 extern int physmem;
140
141 /* Defined in locore.s */
142 extern char kernel_text[];
143
144 /* Defined by the linker */
145 extern char etext[], edata[], end[];
146 extern char *esym; /* DDB */
147
148 /*************************** DEBUGGING DEFINITIONS ***********************
149 * Macros, preprocessor defines and variables used in debugging can make *
150 * code hard to read. Anything used exclusively for debugging purposes *
151 * is defined here to avoid having such mess scattered around the file. *
152 *************************************************************************/
153 #ifdef PMAP_DEBUG
154 /*
155 * To aid the debugging process, macros should be expanded into smaller steps
156 * that accomplish the same goal, yet provide convenient places for placing
157 * breakpoints. When this code is compiled with PMAP_DEBUG mode defined, the
158 * 'INLINE' keyword is defined to an empty string. This way, any function
159 * defined to be a 'static INLINE' will become 'outlined' and compiled as
160 * a separate function, which is much easier to debug.
161 */
162 #define INLINE /* nothing */
163
164 /*
165 * It is sometimes convenient to watch the activity of a particular table
166 * in the system. The following variables are used for that purpose.
167 */
168 a_tmgr_t *pmap_watch_atbl = 0;
169 b_tmgr_t *pmap_watch_btbl = 0;
170 c_tmgr_t *pmap_watch_ctbl = 0;
171
172 int pmap_debug = 0;
173 #define DPRINT(args) if (pmap_debug) printf args
174
175 #else /********** Stuff below is defined if NOT debugging **************/
176
177 #define INLINE inline
178 #define DPRINT(args) /* nada */
179
180 #endif /* PMAP_DEBUG */
181 /*********************** END OF DEBUGGING DEFINITIONS ********************/
182
183 /*** Management Structure - Memory Layout
184 * For every MMU table in the sun3x pmap system there must be a way to
185 * manage it; we must know which process is using it, what other tables
186 * depend on it, and whether or not it contains any locked pages. This
187 * is solved by the creation of 'table management' or 'tmgr'
188 * structures. One for each MMU table in the system.
189 *
190 * MAP OF MEMORY USED BY THE PMAP SYSTEM
191 *
192 * towards lower memory
193 * kernAbase -> +-------------------------------------------------------+
194 * | Kernel MMU A level table |
195 * kernBbase -> +-------------------------------------------------------+
196 * | Kernel MMU B level tables |
197 * kernCbase -> +-------------------------------------------------------+
198 * | |
199 * | Kernel MMU C level tables |
200 * | |
201 * mmuCbase -> +-------------------------------------------------------+
202 * | User MMU C level tables |
203 * mmuAbase -> +-------------------------------------------------------+
204 * | |
205 * | User MMU A level tables |
206 * | |
207 * mmuBbase -> +-------------------------------------------------------+
208 * | User MMU B level tables |
209 * tmgrAbase -> +-------------------------------------------------------+
210 * | TMGR A level table structures |
211 * tmgrBbase -> +-------------------------------------------------------+
212 * | TMGR B level table structures |
213 * tmgrCbase -> +-------------------------------------------------------+
214 * | TMGR C level table structures |
215 * pvbase -> +-------------------------------------------------------+
216 * | Physical to Virtual mapping table (list heads) |
217 * pvebase -> +-------------------------------------------------------+
218 * | Physical to Virtual mapping table (list elements) |
219 * | |
220 * +-------------------------------------------------------+
221 * towards higher memory
222 *
223 * For every A table in the MMU A area, there will be a corresponding
224 * a_tmgr structure in the TMGR A area. The same will be true for
225 * the B and C tables. This arrangement will make it easy to find the
226 * controling tmgr structure for any table in the system by use of
227 * (relatively) simple macros.
228 */
229
230 /*
231 * Global variables for storing the base addresses for the areas
232 * labeled above.
233 */
234 static vaddr_t kernAphys;
235 static mmu_long_dte_t *kernAbase;
236 static mmu_short_dte_t *kernBbase;
237 static mmu_short_pte_t *kernCbase;
238 static mmu_short_pte_t *mmuCbase;
239 static mmu_short_dte_t *mmuBbase;
240 static mmu_long_dte_t *mmuAbase;
241 static a_tmgr_t *Atmgrbase;
242 static b_tmgr_t *Btmgrbase;
243 static c_tmgr_t *Ctmgrbase;
244 static pv_t *pvbase;
245 static pv_elem_t *pvebase;
246 static struct pmap kernel_pmap;
247 struct pmap *kernel_pmap_ptr = &kernel_pmap;
248
249 /*
250 * This holds the CRP currently loaded into the MMU.
251 */
252 struct mmu_rootptr kernel_crp;
253
254 /*
255 * Just all around global variables.
256 */
257 static TAILQ_HEAD(a_pool_head_struct, a_tmgr_struct) a_pool;
258 static TAILQ_HEAD(b_pool_head_struct, b_tmgr_struct) b_pool;
259 static TAILQ_HEAD(c_pool_head_struct, c_tmgr_struct) c_pool;
260
261
262 /*
263 * Flags used to mark the safety/availability of certain operations or
264 * resources.
265 */
266 /* Safe to use pmap_bootstrap_alloc(). */
267 static bool bootstrap_alloc_enabled = false;
268 /* Temporary virtual pages are in use */
269 int tmp_vpages_inuse;
270
271 /*
272 * XXX: For now, retain the traditional variables that were
273 * used in the old pmap/vm interface (without NONCONTIG).
274 */
275 /* Kernel virtual address space available: */
276 vaddr_t virtual_avail, virtual_end;
277 /* Physical address space available: */
278 paddr_t avail_start, avail_end;
279
280 /* This keep track of the end of the contiguously mapped range. */
281 vaddr_t virtual_contig_end;
282
283 /* Physical address used by pmap_next_page() */
284 paddr_t avail_next;
285
286 /* These are used by pmap_copy_page(), etc. */
287 vaddr_t tmp_vpages[2];
288
289 /* memory pool for pmap structures */
290 struct pool pmap_pmap_pool;
291
292 /*
293 * The 3/80 is the only member of the sun3x family that has non-contiguous
294 * physical memory. Memory is divided into 4 banks which are physically
295 * locatable on the system board. Although the size of these banks varies
296 * with the size of memory they contain, their base addresses are
297 * permenently fixed. The following structure, which describes these
298 * banks, is initialized by pmap_bootstrap() after it reads from a similar
299 * structure provided by the ROM Monitor.
300 *
301 * For the other machines in the sun3x architecture which do have contiguous
302 * RAM, this list will have only one entry, which will describe the entire
303 * range of available memory.
304 */
305 struct pmap_physmem_struct avail_mem[SUN3X_NPHYS_RAM_SEGS];
306 u_int total_phys_mem;
307
308 /*************************************************************************/
309
310 /*
311 * XXX - Should "tune" these based on statistics.
312 *
313 * My first guess about the relative numbers of these needed is
314 * based on the fact that a "typical" process will have several
315 * pages mapped at low virtual addresses (text, data, bss), then
316 * some mapped shared libraries, and then some stack pages mapped
317 * near the high end of the VA space. Each process can use only
318 * one A table, and most will use only two B tables (maybe three)
319 * and probably about four C tables. Therefore, the first guess
320 * at the relative numbers of these needed is 1:2:4 -gwr
321 *
322 * The number of C tables needed is closely related to the amount
323 * of physical memory available plus a certain amount attributable
324 * to the use of double mappings. With a few simulation statistics
325 * we can find a reasonably good estimation of this unknown value.
326 * Armed with that and the above ratios, we have a good idea of what
327 * is needed at each level. -j
328 *
329 * Note: It is not physical memory memory size, but the total mapped
330 * virtual space required by the combined working sets of all the
331 * currently _runnable_ processes. (Sleeping ones don't count.)
332 * The amount of physical memory should be irrelevant. -gwr
333 */
334 #ifdef FIXED_NTABLES
335 #define NUM_A_TABLES 16
336 #define NUM_B_TABLES 32
337 #define NUM_C_TABLES 64
338 #else
339 unsigned int NUM_A_TABLES, NUM_B_TABLES, NUM_C_TABLES;
340 #endif /* FIXED_NTABLES */
341
342 /*
343 * This determines our total virtual mapping capacity.
344 * Yes, it is a FIXED value so we can pre-allocate.
345 */
346 #define NUM_USER_PTES (NUM_C_TABLES * MMU_C_TBL_SIZE)
347
348 /*
349 * The size of the Kernel Virtual Address Space (KVAS)
350 * for purposes of MMU table allocation is -KERNBASE
351 * (length from KERNBASE to 0xFFFFffff)
352 */
353 #define KVAS_SIZE (-KERNBASE)
354
355 /* Numbers of kernel MMU tables to support KVAS_SIZE. */
356 #define KERN_B_TABLES (KVAS_SIZE >> MMU_TIA_SHIFT)
357 #define KERN_C_TABLES (KVAS_SIZE >> MMU_TIB_SHIFT)
358 #define NUM_KERN_PTES (KVAS_SIZE >> MMU_TIC_SHIFT)
359
360 /*************************** MISCELANEOUS MACROS *************************/
361 #define pmap_lock(pmap) simple_lock(&pmap->pm_lock)
362 #define pmap_unlock(pmap) simple_unlock(&pmap->pm_lock)
363 #define pmap_add_ref(pmap) ++pmap->pm_refcount
364 #define pmap_del_ref(pmap) --pmap->pm_refcount
365 #define pmap_refcount(pmap) pmap->pm_refcount
366
367 void *pmap_bootstrap_alloc(int);
368
369 static INLINE void *mmu_ptov(paddr_t);
370 static INLINE paddr_t mmu_vtop(void *);
371
372 #if 0
373 static INLINE a_tmgr_t *mmuA2tmgr(mmu_long_dte_t *);
374 #endif /* 0 */
375 static INLINE b_tmgr_t *mmuB2tmgr(mmu_short_dte_t *);
376 static INLINE c_tmgr_t *mmuC2tmgr(mmu_short_pte_t *);
377
378 static INLINE pv_t *pa2pv(paddr_t);
379 static INLINE int pteidx(mmu_short_pte_t *);
380 static INLINE pmap_t current_pmap(void);
381
382 /*
383 * We can always convert between virtual and physical addresses
384 * for anything in the range [KERNBASE ... avail_start] because
385 * that range is GUARANTEED to be mapped linearly.
386 * We rely heavily upon this feature!
387 */
388 static INLINE void *
389 mmu_ptov(paddr_t pa)
390 {
391 vaddr_t va;
392
393 va = (pa + KERNBASE);
394 #ifdef PMAP_DEBUG
395 if ((va < KERNBASE) || (va >= virtual_contig_end))
396 panic("mmu_ptov");
397 #endif
398 return (void *)va;
399 }
400
401 static INLINE paddr_t
402 mmu_vtop(void *vva)
403 {
404 vaddr_t va;
405
406 va = (vaddr_t)vva;
407 #ifdef PMAP_DEBUG
408 if ((va < KERNBASE) || (va >= virtual_contig_end))
409 panic("mmu_vtop");
410 #endif
411 return va - KERNBASE;
412 }
413
414 /*
415 * These macros map MMU tables to their corresponding manager structures.
416 * They are needed quite often because many of the pointers in the pmap
417 * system reference MMU tables and not the structures that control them.
418 * There needs to be a way to find one when given the other and these
419 * macros do so by taking advantage of the memory layout described above.
420 * Here's a quick step through the first macro, mmuA2tmgr():
421 *
422 * 1) find the offset of the given MMU A table from the base of its table
423 * pool (table - mmuAbase).
424 * 2) convert this offset into a table index by dividing it by the
425 * size of one MMU 'A' table. (sizeof(mmu_long_dte_t) * MMU_A_TBL_SIZE)
426 * 3) use this index to select the corresponding 'A' table manager
427 * structure from the 'A' table manager pool (Atmgrbase[index]).
428 */
429 /* This function is not currently used. */
430 #if 0
431 static INLINE a_tmgr_t *
432 mmuA2tmgr(mmu_long_dte_t *mmuAtbl)
433 {
434 int idx;
435
436 /* Which table is this in? */
437 idx = (mmuAtbl - mmuAbase) / MMU_A_TBL_SIZE;
438 #ifdef PMAP_DEBUG
439 if ((idx < 0) || (idx >= NUM_A_TABLES))
440 panic("mmuA2tmgr");
441 #endif
442 return &Atmgrbase[idx];
443 }
444 #endif /* 0 */
445
446 static INLINE b_tmgr_t *
447 mmuB2tmgr(mmu_short_dte_t *mmuBtbl)
448 {
449 int idx;
450
451 /* Which table is this in? */
452 idx = (mmuBtbl - mmuBbase) / MMU_B_TBL_SIZE;
453 #ifdef PMAP_DEBUG
454 if ((idx < 0) || (idx >= NUM_B_TABLES))
455 panic("mmuB2tmgr");
456 #endif
457 return &Btmgrbase[idx];
458 }
459
460 /* mmuC2tmgr INTERNAL
461 **
462 * Given a pte known to belong to a C table, return the address of
463 * that table's management structure.
464 */
465 static INLINE c_tmgr_t *
466 mmuC2tmgr(mmu_short_pte_t *mmuCtbl)
467 {
468 int idx;
469
470 /* Which table is this in? */
471 idx = (mmuCtbl - mmuCbase) / MMU_C_TBL_SIZE;
472 #ifdef PMAP_DEBUG
473 if ((idx < 0) || (idx >= NUM_C_TABLES))
474 panic("mmuC2tmgr");
475 #endif
476 return &Ctmgrbase[idx];
477 }
478
479 /* This is now a function call below.
480 * #define pa2pv(pa) \
481 * (&pvbase[(unsigned long)\
482 * m68k_btop(pa)\
483 * ])
484 */
485
486 /* pa2pv INTERNAL
487 **
488 * Return the pv_list_head element which manages the given physical
489 * address.
490 */
491 static INLINE pv_t *
492 pa2pv(paddr_t pa)
493 {
494 struct pmap_physmem_struct *bank;
495 int idx;
496
497 bank = &avail_mem[0];
498 while (pa >= bank->pmem_end)
499 bank = bank->pmem_next;
500
501 pa -= bank->pmem_start;
502 idx = bank->pmem_pvbase + m68k_btop(pa);
503 #ifdef PMAP_DEBUG
504 if ((idx < 0) || (idx >= physmem))
505 panic("pa2pv");
506 #endif
507 return &pvbase[idx];
508 }
509
510 /* pteidx INTERNAL
511 **
512 * Return the index of the given PTE within the entire fixed table of
513 * PTEs.
514 */
515 static INLINE int
516 pteidx(mmu_short_pte_t *pte)
517 {
518
519 return pte - kernCbase;
520 }
521
522 /*
523 * This just offers a place to put some debugging checks,
524 * and reduces the number of places "curlwp" appears...
525 */
526 static INLINE pmap_t
527 current_pmap(void)
528 {
529 struct vmspace *vm;
530 struct vm_map *map;
531 pmap_t pmap;
532
533 vm = curproc->p_vmspace;
534 map = &vm->vm_map;
535 pmap = vm_map_pmap(map);
536
537 return pmap;
538 }
539
540
541 /*************************** FUNCTION DEFINITIONS ************************
542 * These appear here merely for the compiler to enforce type checking on *
543 * all function calls. *
544 *************************************************************************/
545
546 /*
547 * Internal functions
548 */
549 a_tmgr_t *get_a_table(void);
550 b_tmgr_t *get_b_table(void);
551 c_tmgr_t *get_c_table(void);
552 int free_a_table(a_tmgr_t *, bool);
553 int free_b_table(b_tmgr_t *, bool);
554 int free_c_table(c_tmgr_t *, bool);
555
556 void pmap_bootstrap_aalign(int);
557 void pmap_alloc_usermmu(void);
558 void pmap_alloc_usertmgr(void);
559 void pmap_alloc_pv(void);
560 void pmap_init_a_tables(void);
561 void pmap_init_b_tables(void);
562 void pmap_init_c_tables(void);
563 void pmap_init_pv(void);
564 void pmap_clear_pv(paddr_t, int);
565 static INLINE bool is_managed(paddr_t);
566
567 bool pmap_remove_a(a_tmgr_t *, vaddr_t, vaddr_t);
568 bool pmap_remove_b(b_tmgr_t *, vaddr_t, vaddr_t);
569 bool pmap_remove_c(c_tmgr_t *, vaddr_t, vaddr_t);
570 void pmap_remove_pte(mmu_short_pte_t *);
571
572 void pmap_enter_kernel(vaddr_t, paddr_t, vm_prot_t);
573 static INLINE void pmap_remove_kernel(vaddr_t, vaddr_t);
574 static INLINE void pmap_protect_kernel(vaddr_t, vaddr_t, vm_prot_t);
575 static INLINE bool pmap_extract_kernel(vaddr_t, paddr_t *);
576 vaddr_t pmap_get_pteinfo(u_int, pmap_t *, c_tmgr_t **);
577 static INLINE int pmap_dereference(pmap_t);
578
579 bool pmap_stroll(pmap_t, vaddr_t, a_tmgr_t **, b_tmgr_t **, c_tmgr_t **,
580 mmu_short_pte_t **, int *, int *, int *);
581 void pmap_bootstrap_copyprom(void);
582 void pmap_takeover_mmu(void);
583 void pmap_bootstrap_setprom(void);
584 static void pmap_page_upload(void);
585
586 #ifdef PMAP_DEBUG
587 /* Debugging function definitions */
588 void pv_list(paddr_t, int);
589 #endif /* PMAP_DEBUG */
590
591 /** Interface functions
592 ** - functions required by the Mach VM Pmap interface, with MACHINE_CONTIG
593 ** defined.
594 ** The new UVM doesn't require them so now INTERNAL.
595 **/
596 static INLINE void pmap_pinit(pmap_t);
597 static INLINE void pmap_release(pmap_t);
598
599 /********************************** CODE ********************************
600 * Functions that are called from other parts of the kernel are labeled *
601 * as 'INTERFACE' functions. Functions that are only called from *
602 * within the pmap module are labeled as 'INTERNAL' functions. *
603 * Functions that are internal, but are not (currently) used at all are *
604 * labeled 'INTERNAL_X'. *
605 ************************************************************************/
606
607 /* pmap_bootstrap INTERNAL
608 **
609 * Initializes the pmap system. Called at boot time from
610 * locore2.c:_vm_init()
611 *
612 * Reminder: having a pmap_bootstrap_alloc() and also having the VM
613 * system implement pmap_steal_memory() is redundant.
614 * Don't release this code without removing one or the other!
615 */
616 void
617 pmap_bootstrap(vaddr_t nextva)
618 {
619 struct physmemory *membank;
620 struct pmap_physmem_struct *pmap_membank;
621 vaddr_t va, eva;
622 paddr_t pa;
623 int b, c, i, j; /* running table counts */
624 int size, resvmem;
625
626 /*
627 * This function is called by __bootstrap after it has
628 * determined the type of machine and made the appropriate
629 * patches to the ROM vectors (XXX- I don't quite know what I meant
630 * by that.) It allocates and sets up enough of the pmap system
631 * to manage the kernel's address space.
632 */
633
634 /*
635 * Determine the range of kernel virtual and physical
636 * space available. Note that we ABSOLUTELY DEPEND on
637 * the fact that the first bank of memory (4MB) is
638 * mapped linearly to KERNBASE (which we guaranteed in
639 * the first instructions of locore.s).
640 * That is plenty for our bootstrap work.
641 */
642 virtual_avail = m68k_round_page(nextva);
643 virtual_contig_end = KERNBASE + 0x400000; /* +4MB */
644 virtual_end = VM_MAX_KERNEL_ADDRESS;
645 /* Don't need avail_start til later. */
646
647 /* We may now call pmap_bootstrap_alloc(). */
648 bootstrap_alloc_enabled = true;
649
650 /*
651 * This is a somewhat unwrapped loop to deal with
652 * copying the PROM's 'phsymem' banks into the pmap's
653 * banks. The following is always assumed:
654 * 1. There is always at least one bank of memory.
655 * 2. There is always a last bank of memory, and its
656 * pmem_next member must be set to NULL.
657 */
658 membank = romVectorPtr->v_physmemory;
659 pmap_membank = avail_mem;
660 total_phys_mem = 0;
661
662 for (;;) { /* break on !membank */
663 pmap_membank->pmem_start = membank->address;
664 pmap_membank->pmem_end = membank->address + membank->size;
665 total_phys_mem += membank->size;
666 membank = membank->next;
667 if (!membank)
668 break;
669 /* This silly syntax arises because pmap_membank
670 * is really a pre-allocated array, but it is put into
671 * use as a linked list.
672 */
673 pmap_membank->pmem_next = pmap_membank + 1;
674 pmap_membank = pmap_membank->pmem_next;
675 }
676 /* This is the last element. */
677 pmap_membank->pmem_next = NULL;
678
679 /*
680 * Note: total_phys_mem, physmem represent
681 * actual physical memory, including that
682 * reserved for the PROM monitor.
683 */
684 physmem = btoc(total_phys_mem);
685
686 /*
687 * Avail_end is set to the first byte of physical memory
688 * after the end of the last bank. We use this only to
689 * determine if a physical address is "managed" memory.
690 * This address range should be reduced to prevent the
691 * physical pages needed by the PROM monitor from being used
692 * in the VM system.
693 */
694 resvmem = total_phys_mem - *(romVectorPtr->memoryAvail);
695 resvmem = m68k_round_page(resvmem);
696 avail_end = pmap_membank->pmem_end - resvmem;
697
698 /*
699 * First allocate enough kernel MMU tables to map all
700 * of kernel virtual space from KERNBASE to 0xFFFFFFFF.
701 * Note: All must be aligned on 256 byte boundaries.
702 * Start with the level-A table (one of those).
703 */
704 size = sizeof(mmu_long_dte_t) * MMU_A_TBL_SIZE;
705 kernAbase = pmap_bootstrap_alloc(size);
706 memset(kernAbase, 0, size);
707
708 /* Now the level-B kernel tables... */
709 size = sizeof(mmu_short_dte_t) * MMU_B_TBL_SIZE * KERN_B_TABLES;
710 kernBbase = pmap_bootstrap_alloc(size);
711 memset(kernBbase, 0, size);
712
713 /* Now the level-C kernel tables... */
714 size = sizeof(mmu_short_pte_t) * MMU_C_TBL_SIZE * KERN_C_TABLES;
715 kernCbase = pmap_bootstrap_alloc(size);
716 memset(kernCbase, 0, size);
717 /*
718 * Note: In order for the PV system to work correctly, the kernel
719 * and user-level C tables must be allocated contiguously.
720 * Nothing should be allocated between here and the allocation of
721 * mmuCbase below. XXX: Should do this as one allocation, and
722 * then compute a pointer for mmuCbase instead of this...
723 *
724 * Allocate user MMU tables.
725 * These must be contiguous with the preceding.
726 */
727
728 #ifndef FIXED_NTABLES
729 /*
730 * The number of user-level C tables that should be allocated is
731 * related to the size of physical memory. In general, there should
732 * be enough tables to map four times the amount of available RAM.
733 * The extra amount is needed because some table space is wasted by
734 * fragmentation.
735 */
736 NUM_C_TABLES = (total_phys_mem * 4) / (MMU_C_TBL_SIZE * MMU_PAGE_SIZE);
737 NUM_B_TABLES = NUM_C_TABLES / 2;
738 NUM_A_TABLES = NUM_B_TABLES / 2;
739 #endif /* !FIXED_NTABLES */
740
741 size = sizeof(mmu_short_pte_t) * MMU_C_TBL_SIZE * NUM_C_TABLES;
742 mmuCbase = pmap_bootstrap_alloc(size);
743
744 size = sizeof(mmu_short_dte_t) * MMU_B_TBL_SIZE * NUM_B_TABLES;
745 mmuBbase = pmap_bootstrap_alloc(size);
746
747 size = sizeof(mmu_long_dte_t) * MMU_A_TBL_SIZE * NUM_A_TABLES;
748 mmuAbase = pmap_bootstrap_alloc(size);
749
750 /*
751 * Fill in the never-changing part of the kernel tables.
752 * For simplicity, the kernel's mappings will be editable as a
753 * flat array of page table entries at kernCbase. The
754 * higher level 'A' and 'B' tables must be initialized to point
755 * to this lower one.
756 */
757 b = c = 0;
758
759 /*
760 * Invalidate all mappings below KERNBASE in the A table.
761 * This area has already been zeroed out, but it is good
762 * practice to explicitly show that we are interpreting
763 * it as a list of A table descriptors.
764 */
765 for (i = 0; i < MMU_TIA(KERNBASE); i++) {
766 kernAbase[i].addr.raw = 0;
767 }
768
769 /*
770 * Set up the kernel A and B tables so that they will reference the
771 * correct spots in the contiguous table of PTEs allocated for the
772 * kernel's virtual memory space.
773 */
774 for (i = MMU_TIA(KERNBASE); i < MMU_A_TBL_SIZE; i++) {
775 kernAbase[i].attr.raw =
776 MMU_LONG_DTE_LU | MMU_LONG_DTE_SUPV | MMU_DT_SHORT;
777 kernAbase[i].addr.raw = mmu_vtop(&kernBbase[b]);
778
779 for (j = 0; j < MMU_B_TBL_SIZE; j++) {
780 kernBbase[b + j].attr.raw =
781 mmu_vtop(&kernCbase[c]) | MMU_DT_SHORT;
782 c += MMU_C_TBL_SIZE;
783 }
784 b += MMU_B_TBL_SIZE;
785 }
786
787 pmap_alloc_usermmu(); /* Allocate user MMU tables. */
788 pmap_alloc_usertmgr(); /* Allocate user MMU table managers.*/
789 pmap_alloc_pv(); /* Allocate physical->virtual map. */
790
791 /*
792 * We are now done with pmap_bootstrap_alloc(). Round up
793 * `virtual_avail' to the nearest page, and set the flag
794 * to prevent use of pmap_bootstrap_alloc() hereafter.
795 */
796 pmap_bootstrap_aalign(PAGE_SIZE);
797 bootstrap_alloc_enabled = false;
798
799 /*
800 * Now that we are done with pmap_bootstrap_alloc(), we
801 * must save the virtual and physical addresses of the
802 * end of the linearly mapped range, which are stored in
803 * virtual_contig_end and avail_start, respectively.
804 * These variables will never change after this point.
805 */
806 virtual_contig_end = virtual_avail;
807 avail_start = virtual_avail - KERNBASE;
808
809 /*
810 * `avail_next' is a running pointer used by pmap_next_page() to
811 * keep track of the next available physical page to be handed
812 * to the VM system during its initialization, in which it
813 * asks for physical pages, one at a time.
814 */
815 avail_next = avail_start;
816
817 /*
818 * Now allocate some virtual addresses, but not the physical pages
819 * behind them. Note that virtual_avail is already page-aligned.
820 *
821 * tmp_vpages[] is an array of two virtual pages used for temporary
822 * kernel mappings in the pmap module to facilitate various physical
823 * address-oritented operations.
824 */
825 tmp_vpages[0] = virtual_avail;
826 virtual_avail += PAGE_SIZE;
827 tmp_vpages[1] = virtual_avail;
828 virtual_avail += PAGE_SIZE;
829
830 /** Initialize the PV system **/
831 pmap_init_pv();
832
833 /*
834 * Fill in the kernel_pmap structure and kernel_crp.
835 */
836 kernAphys = mmu_vtop(kernAbase);
837 kernel_pmap.pm_a_tmgr = NULL;
838 kernel_pmap.pm_a_phys = kernAphys;
839 kernel_pmap.pm_refcount = 1; /* always in use */
840 simple_lock_init(&kernel_pmap.pm_lock);
841
842 kernel_crp.rp_attr = MMU_LONG_DTE_LU | MMU_DT_LONG;
843 kernel_crp.rp_addr = kernAphys;
844
845 /*
846 * Now pmap_enter_kernel() may be used safely and will be
847 * the main interface used hereafter to modify the kernel's
848 * virtual address space. Note that since we are still running
849 * under the PROM's address table, none of these table modifications
850 * actually take effect until pmap_takeover_mmu() is called.
851 *
852 * Note: Our tables do NOT have the PROM linear mappings!
853 * Only the mappings created here exist in our tables, so
854 * remember to map anything we expect to use.
855 */
856 va = (vaddr_t)KERNBASE;
857 pa = 0;
858
859 /*
860 * The first page of the kernel virtual address space is the msgbuf
861 * page. The page attributes (data, non-cached) are set here, while
862 * the address is assigned to this global pointer in cpu_startup().
863 * It is non-cached, mostly due to paranoia.
864 */
865 pmap_enter_kernel(va, pa|PMAP_NC, VM_PROT_ALL);
866 va += PAGE_SIZE;
867 pa += PAGE_SIZE;
868
869 /* Next page is used as the temporary stack. */
870 pmap_enter_kernel(va, pa, VM_PROT_ALL);
871 va += PAGE_SIZE;
872 pa += PAGE_SIZE;
873
874 /*
875 * Map all of the kernel's text segment as read-only and cacheable.
876 * (Cacheable is implied by default). Unfortunately, the last bytes
877 * of kernel text and the first bytes of kernel data will often be
878 * sharing the same page. Therefore, the last page of kernel text
879 * has to be mapped as read/write, to accommodate the data.
880 */
881 eva = m68k_trunc_page((vaddr_t)etext);
882 for (; va < eva; va += PAGE_SIZE, pa += PAGE_SIZE)
883 pmap_enter_kernel(va, pa, VM_PROT_READ|VM_PROT_EXECUTE);
884
885 /*
886 * Map all of the kernel's data as read/write and cacheable.
887 * This includes: data, BSS, symbols, and everything in the
888 * contiguous memory used by pmap_bootstrap_alloc()
889 */
890 for (; pa < avail_start; va += PAGE_SIZE, pa += PAGE_SIZE)
891 pmap_enter_kernel(va, pa, VM_PROT_READ|VM_PROT_WRITE);
892
893 /*
894 * At this point we are almost ready to take over the MMU. But first
895 * we must save the PROM's address space in our map, as we call its
896 * routines and make references to its data later in the kernel.
897 */
898 pmap_bootstrap_copyprom();
899 pmap_takeover_mmu();
900 pmap_bootstrap_setprom();
901
902 /* Notify the VM system of our page size. */
903 uvmexp.pagesize = PAGE_SIZE;
904 uvm_setpagesize();
905
906 pmap_page_upload();
907 }
908
909
910 /* pmap_alloc_usermmu INTERNAL
911 **
912 * Called from pmap_bootstrap() to allocate MMU tables that will
913 * eventually be used for user mappings.
914 */
915 void
916 pmap_alloc_usermmu(void)
917 {
918
919 /* XXX: Moved into caller. */
920 }
921
922 /* pmap_alloc_pv INTERNAL
923 **
924 * Called from pmap_bootstrap() to allocate the physical
925 * to virtual mapping list. Each physical page of memory
926 * in the system has a corresponding element in this list.
927 */
928 void
929 pmap_alloc_pv(void)
930 {
931 int i;
932 unsigned int total_mem;
933
934 /*
935 * Allocate a pv_head structure for every page of physical
936 * memory that will be managed by the system. Since memory on
937 * the 3/80 is non-contiguous, we cannot arrive at a total page
938 * count by subtraction of the lowest available address from the
939 * highest, but rather we have to step through each memory
940 * bank and add the number of pages in each to the total.
941 *
942 * At this time we also initialize the offset of each bank's
943 * starting pv_head within the pv_head list so that the physical
944 * memory state routines (pmap_is_referenced(),
945 * pmap_is_modified(), et al.) can quickly find coresponding
946 * pv_heads in spite of the non-contiguity.
947 */
948 total_mem = 0;
949 for (i = 0; i < SUN3X_NPHYS_RAM_SEGS; i++) {
950 avail_mem[i].pmem_pvbase = m68k_btop(total_mem);
951 total_mem += avail_mem[i].pmem_end - avail_mem[i].pmem_start;
952 if (avail_mem[i].pmem_next == NULL)
953 break;
954 }
955 pvbase = (pv_t *)pmap_bootstrap_alloc(sizeof(pv_t) *
956 m68k_btop(total_phys_mem));
957 }
958
959 /* pmap_alloc_usertmgr INTERNAL
960 **
961 * Called from pmap_bootstrap() to allocate the structures which
962 * facilitate management of user MMU tables. Each user MMU table
963 * in the system has one such structure associated with it.
964 */
965 void
966 pmap_alloc_usertmgr(void)
967 {
968 /* Allocate user MMU table managers */
969 /* It would be a lot simpler to just make these BSS, but */
970 /* we may want to change their size at boot time... -j */
971 Atmgrbase =
972 (a_tmgr_t *)pmap_bootstrap_alloc(sizeof(a_tmgr_t) * NUM_A_TABLES);
973 Btmgrbase =
974 (b_tmgr_t *)pmap_bootstrap_alloc(sizeof(b_tmgr_t) * NUM_B_TABLES);
975 Ctmgrbase =
976 (c_tmgr_t *)pmap_bootstrap_alloc(sizeof(c_tmgr_t) * NUM_C_TABLES);
977
978 /*
979 * Allocate PV list elements for the physical to virtual
980 * mapping system.
981 */
982 pvebase = (pv_elem_t *)pmap_bootstrap_alloc(sizeof(pv_elem_t) *
983 (NUM_USER_PTES + NUM_KERN_PTES));
984 }
985
986 /* pmap_bootstrap_copyprom() INTERNAL
987 **
988 * Copy the PROM mappings into our own tables. Note, we
989 * can use physical addresses until __bootstrap returns.
990 */
991 void
992 pmap_bootstrap_copyprom(void)
993 {
994 struct sunromvec *romp;
995 int *mon_ctbl;
996 mmu_short_pte_t *kpte;
997 int i, len;
998
999 romp = romVectorPtr;
1000
1001 /*
1002 * Copy the mappings in SUN3X_MON_KDB_BASE...SUN3X_MONEND
1003 * Note: mon_ctbl[0] maps SUN3X_MON_KDB_BASE
1004 */
1005 mon_ctbl = *romp->monptaddr;
1006 i = m68k_btop(SUN3X_MON_KDB_BASE - KERNBASE);
1007 kpte = &kernCbase[i];
1008 len = m68k_btop(SUN3X_MONEND - SUN3X_MON_KDB_BASE);
1009
1010 for (i = 0; i < len; i++) {
1011 kpte[i].attr.raw = mon_ctbl[i];
1012 }
1013
1014 /*
1015 * Copy the mappings at MON_DVMA_BASE (to the end).
1016 * Note, in here, mon_ctbl[0] maps MON_DVMA_BASE.
1017 * Actually, we only want the last page, which the
1018 * PROM has set up for use by the "ie" driver.
1019 * (The i82686 needs its SCP there.)
1020 * If we copy all the mappings, pmap_enter_kernel
1021 * may complain about finding valid PTEs that are
1022 * not recorded in our PV lists...
1023 */
1024 mon_ctbl = *romp->shadowpteaddr;
1025 i = m68k_btop(SUN3X_MON_DVMA_BASE - KERNBASE);
1026 kpte = &kernCbase[i];
1027 len = m68k_btop(SUN3X_MON_DVMA_SIZE);
1028 for (i = (len - 1); i < len; i++) {
1029 kpte[i].attr.raw = mon_ctbl[i];
1030 }
1031 }
1032
1033 /* pmap_takeover_mmu INTERNAL
1034 **
1035 * Called from pmap_bootstrap() after it has copied enough of the
1036 * PROM mappings into the kernel map so that we can use our own
1037 * MMU table.
1038 */
1039 void
1040 pmap_takeover_mmu(void)
1041 {
1042
1043 loadcrp(&kernel_crp);
1044 }
1045
1046 /* pmap_bootstrap_setprom() INTERNAL
1047 **
1048 * Set the PROM mappings so it can see kernel space.
1049 * Note that physical addresses are used here, which
1050 * we can get away with because this runs with the
1051 * low 1GB set for transparent translation.
1052 */
1053 void
1054 pmap_bootstrap_setprom(void)
1055 {
1056 mmu_long_dte_t *mon_dte;
1057 extern struct mmu_rootptr mon_crp;
1058 int i;
1059
1060 mon_dte = (mmu_long_dte_t *)mon_crp.rp_addr;
1061 for (i = MMU_TIA(KERNBASE); i < MMU_TIA(KERN_END); i++) {
1062 mon_dte[i].attr.raw = kernAbase[i].attr.raw;
1063 mon_dte[i].addr.raw = kernAbase[i].addr.raw;
1064 }
1065 }
1066
1067
1068 /* pmap_init INTERFACE
1069 **
1070 * Called at the end of vm_init() to set up the pmap system to go
1071 * into full time operation. All initialization of kernel_pmap
1072 * should be already done by now, so this should just do things
1073 * needed for user-level pmaps to work.
1074 */
1075 void
1076 pmap_init(void)
1077 {
1078
1079 /** Initialize the manager pools **/
1080 TAILQ_INIT(&a_pool);
1081 TAILQ_INIT(&b_pool);
1082 TAILQ_INIT(&c_pool);
1083
1084 /**************************************************************
1085 * Initialize all tmgr structures and MMU tables they manage. *
1086 **************************************************************/
1087 /** Initialize A tables **/
1088 pmap_init_a_tables();
1089 /** Initialize B tables **/
1090 pmap_init_b_tables();
1091 /** Initialize C tables **/
1092 pmap_init_c_tables();
1093
1094 /** Initialize the pmap pools **/
1095 pool_init(&pmap_pmap_pool, sizeof(struct pmap), 0, 0, 0, "pmappl",
1096 &pool_allocator_nointr, IPL_NONE);
1097 }
1098
1099 /* pmap_init_a_tables() INTERNAL
1100 **
1101 * Initializes all A managers, their MMU A tables, and inserts
1102 * them into the A manager pool for use by the system.
1103 */
1104 void
1105 pmap_init_a_tables(void)
1106 {
1107 int i;
1108 a_tmgr_t *a_tbl;
1109
1110 for (i = 0; i < NUM_A_TABLES; i++) {
1111 /* Select the next available A manager from the pool */
1112 a_tbl = &Atmgrbase[i];
1113
1114 /*
1115 * Clear its parent entry. Set its wired and valid
1116 * entry count to zero.
1117 */
1118 a_tbl->at_parent = NULL;
1119 a_tbl->at_wcnt = a_tbl->at_ecnt = 0;
1120
1121 /* Assign it the next available MMU A table from the pool */
1122 a_tbl->at_dtbl = &mmuAbase[i * MMU_A_TBL_SIZE];
1123
1124 /*
1125 * Initialize the MMU A table with the table in the `proc0',
1126 * or kernel, mapping. This ensures that every process has
1127 * the kernel mapped in the top part of its address space.
1128 */
1129 memcpy(a_tbl->at_dtbl, kernAbase,
1130 MMU_A_TBL_SIZE * sizeof(mmu_long_dte_t));
1131
1132 /*
1133 * Finally, insert the manager into the A pool,
1134 * making it ready to be used by the system.
1135 */
1136 TAILQ_INSERT_TAIL(&a_pool, a_tbl, at_link);
1137 }
1138 }
1139
1140 /* pmap_init_b_tables() INTERNAL
1141 **
1142 * Initializes all B table managers, their MMU B tables, and
1143 * inserts them into the B manager pool for use by the system.
1144 */
1145 void
1146 pmap_init_b_tables(void)
1147 {
1148 int i, j;
1149 b_tmgr_t *b_tbl;
1150
1151 for (i = 0; i < NUM_B_TABLES; i++) {
1152 /* Select the next available B manager from the pool */
1153 b_tbl = &Btmgrbase[i];
1154
1155 b_tbl->bt_parent = NULL; /* clear its parent, */
1156 b_tbl->bt_pidx = 0; /* parent index, */
1157 b_tbl->bt_wcnt = 0; /* wired entry count, */
1158 b_tbl->bt_ecnt = 0; /* valid entry count. */
1159
1160 /* Assign it the next available MMU B table from the pool */
1161 b_tbl->bt_dtbl = &mmuBbase[i * MMU_B_TBL_SIZE];
1162
1163 /* Invalidate every descriptor in the table */
1164 for (j = 0; j < MMU_B_TBL_SIZE; j++)
1165 b_tbl->bt_dtbl[j].attr.raw = MMU_DT_INVALID;
1166
1167 /* Insert the manager into the B pool */
1168 TAILQ_INSERT_TAIL(&b_pool, b_tbl, bt_link);
1169 }
1170 }
1171
1172 /* pmap_init_c_tables() INTERNAL
1173 **
1174 * Initializes all C table managers, their MMU C tables, and
1175 * inserts them into the C manager pool for use by the system.
1176 */
1177 void
1178 pmap_init_c_tables(void)
1179 {
1180 int i, j;
1181 c_tmgr_t *c_tbl;
1182
1183 for (i = 0; i < NUM_C_TABLES; i++) {
1184 /* Select the next available C manager from the pool */
1185 c_tbl = &Ctmgrbase[i];
1186
1187 c_tbl->ct_parent = NULL; /* clear its parent, */
1188 c_tbl->ct_pidx = 0; /* parent index, */
1189 c_tbl->ct_wcnt = 0; /* wired entry count, */
1190 c_tbl->ct_ecnt = 0; /* valid entry count, */
1191 c_tbl->ct_pmap = NULL; /* parent pmap, */
1192 c_tbl->ct_va = 0; /* base of managed range */
1193
1194 /* Assign it the next available MMU C table from the pool */
1195 c_tbl->ct_dtbl = &mmuCbase[i * MMU_C_TBL_SIZE];
1196
1197 for (j = 0; j < MMU_C_TBL_SIZE; j++)
1198 c_tbl->ct_dtbl[j].attr.raw = MMU_DT_INVALID;
1199
1200 TAILQ_INSERT_TAIL(&c_pool, c_tbl, ct_link);
1201 }
1202 }
1203
1204 /* pmap_init_pv() INTERNAL
1205 **
1206 * Initializes the Physical to Virtual mapping system.
1207 */
1208 void
1209 pmap_init_pv(void)
1210 {
1211 int i;
1212
1213 /* Initialize every PV head. */
1214 for (i = 0; i < m68k_btop(total_phys_mem); i++) {
1215 pvbase[i].pv_idx = PVE_EOL; /* Indicate no mappings */
1216 pvbase[i].pv_flags = 0; /* Zero out page flags */
1217 }
1218 }
1219
1220 /* is_managed INTERNAL
1221 **
1222 * Determine if the given physical address is managed by the PV system.
1223 * Note that this logic assumes that no one will ask for the status of
1224 * addresses which lie in-between the memory banks on the 3/80. If they
1225 * do so, it will falsely report that it is managed.
1226 *
1227 * Note: A "managed" address is one that was reported to the VM system as
1228 * a "usable page" during system startup. As such, the VM system expects the
1229 * pmap module to keep an accurate track of the useage of those pages.
1230 * Any page not given to the VM system at startup does not exist (as far as
1231 * the VM system is concerned) and is therefore "unmanaged." Examples are
1232 * those pages which belong to the ROM monitor and the memory allocated before
1233 * the VM system was started.
1234 */
1235 static INLINE bool
1236 is_managed(paddr_t pa)
1237 {
1238 if (pa >= avail_start && pa < avail_end)
1239 return true;
1240 else
1241 return false;
1242 }
1243
1244 /* get_a_table INTERNAL
1245 **
1246 * Retrieve and return a level A table for use in a user map.
1247 */
1248 a_tmgr_t *
1249 get_a_table(void)
1250 {
1251 a_tmgr_t *tbl;
1252 pmap_t pmap;
1253
1254 /* Get the top A table in the pool */
1255 tbl = TAILQ_FIRST(&a_pool);
1256 if (tbl == NULL) {
1257 /*
1258 * XXX - Instead of panicking here and in other get_x_table
1259 * functions, we do have the option of sleeping on the head of
1260 * the table pool. Any function which updates the table pool
1261 * would then issue a wakeup() on the head, thus waking up any
1262 * processes waiting for a table.
1263 *
1264 * Actually, the place to sleep would be when some process
1265 * asks for a "wired" mapping that would run us short of
1266 * mapping resources. This design DEPENDS on always having
1267 * some mapping resources in the pool for stealing, so we
1268 * must make sure we NEVER let the pool become empty. -gwr
1269 */
1270 panic("get_a_table: out of A tables.");
1271 }
1272
1273 TAILQ_REMOVE(&a_pool, tbl, at_link);
1274 /*
1275 * If the table has a non-null parent pointer then it is in use.
1276 * Forcibly abduct it from its parent and clear its entries.
1277 * No re-entrancy worries here. This table would not be in the
1278 * table pool unless it was available for use.
1279 *
1280 * Note that the second argument to free_a_table() is false. This
1281 * indicates that the table should not be relinked into the A table
1282 * pool. That is a job for the function that called us.
1283 */
1284 if (tbl->at_parent) {
1285 KASSERT(tbl->at_wcnt == 0);
1286 pmap = tbl->at_parent;
1287 free_a_table(tbl, false);
1288 pmap->pm_a_tmgr = NULL;
1289 pmap->pm_a_phys = kernAphys;
1290 }
1291 return tbl;
1292 }
1293
1294 /* get_b_table INTERNAL
1295 **
1296 * Return a level B table for use.
1297 */
1298 b_tmgr_t *
1299 get_b_table(void)
1300 {
1301 b_tmgr_t *tbl;
1302
1303 /* See 'get_a_table' for comments. */
1304 tbl = TAILQ_FIRST(&b_pool);
1305 if (tbl == NULL)
1306 panic("get_b_table: out of B tables.");
1307 TAILQ_REMOVE(&b_pool, tbl, bt_link);
1308 if (tbl->bt_parent) {
1309 KASSERT(tbl->bt_wcnt == 0);
1310 tbl->bt_parent->at_dtbl[tbl->bt_pidx].attr.raw = MMU_DT_INVALID;
1311 tbl->bt_parent->at_ecnt--;
1312 free_b_table(tbl, false);
1313 }
1314 return tbl;
1315 }
1316
1317 /* get_c_table INTERNAL
1318 **
1319 * Return a level C table for use.
1320 */
1321 c_tmgr_t *
1322 get_c_table(void)
1323 {
1324 c_tmgr_t *tbl;
1325
1326 /* See 'get_a_table' for comments */
1327 tbl = TAILQ_FIRST(&c_pool);
1328 if (tbl == NULL)
1329 panic("get_c_table: out of C tables.");
1330 TAILQ_REMOVE(&c_pool, tbl, ct_link);
1331 if (tbl->ct_parent) {
1332 KASSERT(tbl->ct_wcnt == 0);
1333 tbl->ct_parent->bt_dtbl[tbl->ct_pidx].attr.raw = MMU_DT_INVALID;
1334 tbl->ct_parent->bt_ecnt--;
1335 free_c_table(tbl, false);
1336 }
1337 return tbl;
1338 }
1339
1340 /*
1341 * The following 'free_table' and 'steal_table' functions are called to
1342 * detach tables from their current obligations (parents and children) and
1343 * prepare them for reuse in another mapping.
1344 *
1345 * Free_table is used when the calling function will handle the fate
1346 * of the parent table, such as returning it to the free pool when it has
1347 * no valid entries. Functions that do not want to handle this should
1348 * call steal_table, in which the parent table's descriptors and entry
1349 * count are automatically modified when this table is removed.
1350 */
1351
1352 /* free_a_table INTERNAL
1353 **
1354 * Unmaps the given A table and all child tables from their current
1355 * mappings. Returns the number of pages that were invalidated.
1356 * If 'relink' is true, the function will return the table to the head
1357 * of the available table pool.
1358 *
1359 * Cache note: The MC68851 will automatically flush all
1360 * descriptors derived from a given A table from its
1361 * Automatic Translation Cache (ATC) if we issue a
1362 * 'PFLUSHR' instruction with the base address of the
1363 * table. This function should do, and does so.
1364 * Note note: We are using an MC68030 - there is no
1365 * PFLUSHR.
1366 */
1367 int
1368 free_a_table(a_tmgr_t *a_tbl, bool relink)
1369 {
1370 int i, removed_cnt;
1371 mmu_long_dte_t *dte;
1372 mmu_short_dte_t *dtbl;
1373 b_tmgr_t *b_tbl;
1374 uint8_t at_wired, bt_wired;
1375
1376 /*
1377 * Flush the ATC cache of all cached descriptors derived
1378 * from this table.
1379 * Sun3x does not use 68851's cached table feature
1380 * flush_atc_crp(mmu_vtop(a_tbl->dte));
1381 */
1382
1383 /*
1384 * Remove any pending cache flushes that were designated
1385 * for the pmap this A table belongs to.
1386 * a_tbl->parent->atc_flushq[0] = 0;
1387 * Not implemented in sun3x.
1388 */
1389
1390 /*
1391 * All A tables in the system should retain a map for the
1392 * kernel. If the table contains any valid descriptors
1393 * (other than those for the kernel area), invalidate them all,
1394 * stopping short of the kernel's entries.
1395 */
1396 removed_cnt = 0;
1397 at_wired = a_tbl->at_wcnt;
1398 if (a_tbl->at_ecnt) {
1399 dte = a_tbl->at_dtbl;
1400 for (i = 0; i < MMU_TIA(KERNBASE); i++) {
1401 /*
1402 * If a table entry points to a valid B table, free
1403 * it and its children.
1404 */
1405 if (MMU_VALID_DT(dte[i])) {
1406 /*
1407 * The following block does several things,
1408 * from innermost expression to the
1409 * outermost:
1410 * 1) It extracts the base (cc 1996)
1411 * address of the B table pointed
1412 * to in the A table entry dte[i].
1413 * 2) It converts this base address into
1414 * the virtual address it can be
1415 * accessed with. (all MMU tables point
1416 * to physical addresses.)
1417 * 3) It finds the corresponding manager
1418 * structure which manages this MMU table.
1419 * 4) It frees the manager structure.
1420 * (This frees the MMU table and all
1421 * child tables. See 'free_b_table' for
1422 * details.)
1423 */
1424 dtbl = mmu_ptov(dte[i].addr.raw);
1425 b_tbl = mmuB2tmgr(dtbl);
1426 bt_wired = b_tbl->bt_wcnt;
1427 removed_cnt += free_b_table(b_tbl, true);
1428 if (bt_wired)
1429 a_tbl->at_wcnt--;
1430 dte[i].attr.raw = MMU_DT_INVALID;
1431 }
1432 }
1433 a_tbl->at_ecnt = 0;
1434 }
1435 KASSERT(a_tbl->at_wcnt == 0);
1436
1437 if (relink) {
1438 a_tbl->at_parent = NULL;
1439 if (!at_wired)
1440 TAILQ_REMOVE(&a_pool, a_tbl, at_link);
1441 TAILQ_INSERT_HEAD(&a_pool, a_tbl, at_link);
1442 }
1443 return removed_cnt;
1444 }
1445
1446 /* free_b_table INTERNAL
1447 **
1448 * Unmaps the given B table and all its children from their current
1449 * mappings. Returns the number of pages that were invalidated.
1450 * (For comments, see 'free_a_table()').
1451 */
1452 int
1453 free_b_table(b_tmgr_t *b_tbl, bool relink)
1454 {
1455 int i, removed_cnt;
1456 mmu_short_dte_t *dte;
1457 mmu_short_pte_t *dtbl;
1458 c_tmgr_t *c_tbl;
1459 uint8_t bt_wired, ct_wired;
1460
1461 removed_cnt = 0;
1462 bt_wired = b_tbl->bt_wcnt;
1463 if (b_tbl->bt_ecnt) {
1464 dte = b_tbl->bt_dtbl;
1465 for (i = 0; i < MMU_B_TBL_SIZE; i++) {
1466 if (MMU_VALID_DT(dte[i])) {
1467 dtbl = mmu_ptov(MMU_DTE_PA(dte[i]));
1468 c_tbl = mmuC2tmgr(dtbl);
1469 ct_wired = c_tbl->ct_wcnt;
1470 removed_cnt += free_c_table(c_tbl, true);
1471 if (ct_wired)
1472 b_tbl->bt_wcnt--;
1473 dte[i].attr.raw = MMU_DT_INVALID;
1474 }
1475 }
1476 b_tbl->bt_ecnt = 0;
1477 }
1478 KASSERT(b_tbl->bt_wcnt == 0);
1479
1480 if (relink) {
1481 b_tbl->bt_parent = NULL;
1482 if (!bt_wired)
1483 TAILQ_REMOVE(&b_pool, b_tbl, bt_link);
1484 TAILQ_INSERT_HEAD(&b_pool, b_tbl, bt_link);
1485 }
1486 return removed_cnt;
1487 }
1488
1489 /* free_c_table INTERNAL
1490 **
1491 * Unmaps the given C table from use and returns it to the pool for
1492 * re-use. Returns the number of pages that were invalidated.
1493 *
1494 * This function preserves any physical page modification information
1495 * contained in the page descriptors within the C table by calling
1496 * 'pmap_remove_pte().'
1497 */
1498 int
1499 free_c_table(c_tmgr_t *c_tbl, bool relink)
1500 {
1501 mmu_short_pte_t *c_pte;
1502 int i, removed_cnt;
1503 uint8_t ct_wired;
1504
1505 removed_cnt = 0;
1506 ct_wired = c_tbl->ct_wcnt;
1507 if (c_tbl->ct_ecnt) {
1508 for (i = 0; i < MMU_C_TBL_SIZE; i++) {
1509 c_pte = &c_tbl->ct_dtbl[i];
1510 if (MMU_VALID_DT(*c_pte)) {
1511 if (c_pte->attr.raw & MMU_SHORT_PTE_WIRED)
1512 c_tbl->ct_wcnt--;
1513 pmap_remove_pte(c_pte);
1514 removed_cnt++;
1515 }
1516 }
1517 c_tbl->ct_ecnt = 0;
1518 }
1519 KASSERT(c_tbl->ct_wcnt == 0);
1520
1521 if (relink) {
1522 c_tbl->ct_parent = NULL;
1523 if (!ct_wired)
1524 TAILQ_REMOVE(&c_pool, c_tbl, ct_link);
1525 TAILQ_INSERT_HEAD(&c_pool, c_tbl, ct_link);
1526 }
1527 return removed_cnt;
1528 }
1529
1530
1531 /* pmap_remove_pte INTERNAL
1532 **
1533 * Unmap the given pte and preserve any page modification
1534 * information by transfering it to the pv head of the
1535 * physical page it maps to. This function does not update
1536 * any reference counts because it is assumed that the calling
1537 * function will do so.
1538 */
1539 void
1540 pmap_remove_pte(mmu_short_pte_t *pte)
1541 {
1542 u_short pv_idx, targ_idx;
1543 paddr_t pa;
1544 pv_t *pv;
1545
1546 pa = MMU_PTE_PA(*pte);
1547 if (is_managed(pa)) {
1548 pv = pa2pv(pa);
1549 targ_idx = pteidx(pte); /* Index of PTE being removed */
1550
1551 /*
1552 * If the PTE being removed is the first (or only) PTE in
1553 * the list of PTEs currently mapped to this page, remove the
1554 * PTE by changing the index found on the PV head. Otherwise
1555 * a linear search through the list will have to be executed
1556 * in order to find the PVE which points to the PTE being
1557 * removed, so that it may be modified to point to its new
1558 * neighbor.
1559 */
1560
1561 pv_idx = pv->pv_idx; /* Index of first PTE in PV list */
1562 if (pv_idx == targ_idx) {
1563 pv->pv_idx = pvebase[targ_idx].pve_next;
1564 } else {
1565
1566 /*
1567 * Find the PV element pointing to the target
1568 * element. Note: may have pv_idx==PVE_EOL
1569 */
1570
1571 for (;;) {
1572 if (pv_idx == PVE_EOL) {
1573 goto pv_not_found;
1574 }
1575 if (pvebase[pv_idx].pve_next == targ_idx)
1576 break;
1577 pv_idx = pvebase[pv_idx].pve_next;
1578 }
1579
1580 /*
1581 * At this point, pv_idx is the index of the PV
1582 * element just before the target element in the list.
1583 * Unlink the target.
1584 */
1585
1586 pvebase[pv_idx].pve_next = pvebase[targ_idx].pve_next;
1587 }
1588
1589 /*
1590 * Save the mod/ref bits of the pte by simply
1591 * ORing the entire pte onto the pv_flags member
1592 * of the pv structure.
1593 * There is no need to use a separate bit pattern
1594 * for usage information on the pv head than that
1595 * which is used on the MMU ptes.
1596 */
1597
1598 pv_not_found:
1599 pv->pv_flags |= (u_short) pte->attr.raw;
1600 }
1601 pte->attr.raw = MMU_DT_INVALID;
1602 }
1603
1604 /* pmap_stroll INTERNAL
1605 **
1606 * Retrieve the addresses of all table managers involved in the mapping of
1607 * the given virtual address. If the table walk completed successfully,
1608 * return true. If it was only partially successful, return false.
1609 * The table walk performed by this function is important to many other
1610 * functions in this module.
1611 *
1612 * Note: This function ought to be easier to read.
1613 */
1614 bool
1615 pmap_stroll(pmap_t pmap, vaddr_t va, a_tmgr_t **a_tbl, b_tmgr_t **b_tbl,
1616 c_tmgr_t **c_tbl, mmu_short_pte_t **pte, int *a_idx, int *b_idx,
1617 int *pte_idx)
1618 {
1619 mmu_long_dte_t *a_dte; /* A: long descriptor table */
1620 mmu_short_dte_t *b_dte; /* B: short descriptor table */
1621
1622 if (pmap == pmap_kernel())
1623 return false;
1624
1625 /* Does the given pmap have its own A table? */
1626 *a_tbl = pmap->pm_a_tmgr;
1627 if (*a_tbl == NULL)
1628 return false; /* No. Return unknown. */
1629 /* Does the A table have a valid B table
1630 * under the corresponding table entry?
1631 */
1632 *a_idx = MMU_TIA(va);
1633 a_dte = &((*a_tbl)->at_dtbl[*a_idx]);
1634 if (!MMU_VALID_DT(*a_dte))
1635 return false; /* No. Return unknown. */
1636 /* Yes. Extract B table from the A table. */
1637 *b_tbl = mmuB2tmgr(mmu_ptov(a_dte->addr.raw));
1638 /*
1639 * Does the B table have a valid C table
1640 * under the corresponding table entry?
1641 */
1642 *b_idx = MMU_TIB(va);
1643 b_dte = &((*b_tbl)->bt_dtbl[*b_idx]);
1644 if (!MMU_VALID_DT(*b_dte))
1645 return false; /* No. Return unknown. */
1646 /* Yes. Extract C table from the B table. */
1647 *c_tbl = mmuC2tmgr(mmu_ptov(MMU_DTE_PA(*b_dte)));
1648 *pte_idx = MMU_TIC(va);
1649 *pte = &((*c_tbl)->ct_dtbl[*pte_idx]);
1650
1651 return true;
1652 }
1653
1654 /* pmap_enter INTERFACE
1655 **
1656 * Called by the kernel to map a virtual address
1657 * to a physical address in the given process map.
1658 *
1659 * Note: this function should apply an exclusive lock
1660 * on the pmap system for its duration. (it certainly
1661 * would save my hair!!)
1662 * This function ought to be easier to read.
1663 */
1664 int
1665 pmap_enter(pmap_t pmap, vaddr_t va, paddr_t pa, vm_prot_t prot, int flags)
1666 {
1667 bool insert, managed; /* Marks the need for PV insertion.*/
1668 u_short nidx; /* PV list index */
1669 int mapflags; /* Flags for the mapping (see NOTE1) */
1670 u_int a_idx, b_idx, pte_idx; /* table indices */
1671 a_tmgr_t *a_tbl; /* A: long descriptor table manager */
1672 b_tmgr_t *b_tbl; /* B: short descriptor table manager */
1673 c_tmgr_t *c_tbl; /* C: short page table manager */
1674 mmu_long_dte_t *a_dte; /* A: long descriptor table */
1675 mmu_short_dte_t *b_dte; /* B: short descriptor table */
1676 mmu_short_pte_t *c_pte; /* C: short page descriptor table */
1677 pv_t *pv; /* pv list head */
1678 bool wired; /* is the mapping to be wired? */
1679 enum {NONE, NEWA, NEWB, NEWC} llevel; /* used at end */
1680
1681 if (pmap == pmap_kernel()) {
1682 pmap_enter_kernel(va, pa, prot);
1683 return 0;
1684 }
1685
1686 /*
1687 * Determine if the mapping should be wired.
1688 */
1689 wired = ((flags & PMAP_WIRED) != 0);
1690
1691 /*
1692 * NOTE1:
1693 *
1694 * On November 13, 1999, someone changed the pmap_enter() API such
1695 * that it now accepts a 'flags' argument. This new argument
1696 * contains bit-flags for the architecture-independent (UVM) system to
1697 * use in signalling certain mapping requirements to the architecture-
1698 * dependent (pmap) system. The argument it replaces, 'wired', is now
1699 * one of the flags within it.
1700 *
1701 * In addition to flags signaled by the architecture-independent
1702 * system, parts of the architecture-dependent section of the sun3x
1703 * kernel pass their own flags in the lower, unused bits of the
1704 * physical address supplied to this function. These flags are
1705 * extracted and stored in the temporary variable 'mapflags'.
1706 *
1707 * Extract sun3x specific flags from the physical address.
1708 */
1709 mapflags = (pa & ~MMU_PAGE_MASK);
1710 pa &= MMU_PAGE_MASK;
1711
1712 /*
1713 * Determine if the physical address being mapped is on-board RAM.
1714 * Any other area of the address space is likely to belong to a
1715 * device and hence it would be disasterous to cache its contents.
1716 */
1717 if ((managed = is_managed(pa)) == false)
1718 mapflags |= PMAP_NC;
1719
1720 /*
1721 * For user mappings we walk along the MMU tables of the given
1722 * pmap, reaching a PTE which describes the virtual page being
1723 * mapped or changed. If any level of the walk ends in an invalid
1724 * entry, a table must be allocated and the entry must be updated
1725 * to point to it.
1726 * There is a bit of confusion as to whether this code must be
1727 * re-entrant. For now we will assume it is. To support
1728 * re-entrancy we must unlink tables from the table pool before
1729 * we assume we may use them. Tables are re-linked into the pool
1730 * when we are finished with them at the end of the function.
1731 * But I don't feel like doing that until we have proof that this
1732 * needs to be re-entrant.
1733 * 'llevel' records which tables need to be relinked.
1734 */
1735 llevel = NONE;
1736
1737 /*
1738 * Step 1 - Retrieve the A table from the pmap. If it has no
1739 * A table, allocate a new one from the available pool.
1740 */
1741
1742 a_tbl = pmap->pm_a_tmgr;
1743 if (a_tbl == NULL) {
1744 /*
1745 * This pmap does not currently have an A table. Allocate
1746 * a new one.
1747 */
1748 a_tbl = get_a_table();
1749 a_tbl->at_parent = pmap;
1750
1751 /*
1752 * Assign this new A table to the pmap, and calculate its
1753 * physical address so that loadcrp() can be used to make
1754 * the table active.
1755 */
1756 pmap->pm_a_tmgr = a_tbl;
1757 pmap->pm_a_phys = mmu_vtop(a_tbl->at_dtbl);
1758
1759 /*
1760 * If the process receiving a new A table is the current
1761 * process, we are responsible for setting the MMU so that
1762 * it becomes the current address space. This only adds
1763 * new mappings, so no need to flush anything.
1764 */
1765 if (pmap == current_pmap()) {
1766 kernel_crp.rp_addr = pmap->pm_a_phys;
1767 loadcrp(&kernel_crp);
1768 }
1769
1770 if (!wired)
1771 llevel = NEWA;
1772 } else {
1773 /*
1774 * Use the A table already allocated for this pmap.
1775 * Unlink it from the A table pool if necessary.
1776 */
1777 if (wired && !a_tbl->at_wcnt)
1778 TAILQ_REMOVE(&a_pool, a_tbl, at_link);
1779 }
1780
1781 /*
1782 * Step 2 - Walk into the B table. If there is no valid B table,
1783 * allocate one.
1784 */
1785
1786 a_idx = MMU_TIA(va); /* Calculate the TIA of the VA. */
1787 a_dte = &a_tbl->at_dtbl[a_idx]; /* Retrieve descriptor from table */
1788 if (MMU_VALID_DT(*a_dte)) { /* Is the descriptor valid? */
1789 /* The descriptor is valid. Use the B table it points to. */
1790 /*************************************
1791 * a_idx *
1792 * v *
1793 * a_tbl -> +-+-+-+-+-+-+-+-+-+-+-+- *
1794 * | | | | | | | | | | | | *
1795 * +-+-+-+-+-+-+-+-+-+-+-+- *
1796 * | *
1797 * \- b_tbl -> +-+- *
1798 * | | *
1799 * +-+- *
1800 *************************************/
1801 b_dte = mmu_ptov(a_dte->addr.raw);
1802 b_tbl = mmuB2tmgr(b_dte);
1803
1804 /*
1805 * If the requested mapping must be wired, but this table
1806 * being used to map it is not, the table must be removed
1807 * from the available pool and its wired entry count
1808 * incremented.
1809 */
1810 if (wired && !b_tbl->bt_wcnt) {
1811 TAILQ_REMOVE(&b_pool, b_tbl, bt_link);
1812 a_tbl->at_wcnt++;
1813 }
1814 } else {
1815 /* The descriptor is invalid. Allocate a new B table. */
1816 b_tbl = get_b_table();
1817
1818 /* Point the parent A table descriptor to this new B table. */
1819 a_dte->addr.raw = mmu_vtop(b_tbl->bt_dtbl);
1820 a_dte->attr.raw = MMU_LONG_DTE_LU | MMU_DT_SHORT;
1821 a_tbl->at_ecnt++; /* Update parent's valid entry count */
1822
1823 /* Create the necessary back references to the parent table */
1824 b_tbl->bt_parent = a_tbl;
1825 b_tbl->bt_pidx = a_idx;
1826
1827 /*
1828 * If this table is to be wired, make sure the parent A table
1829 * wired count is updated to reflect that it has another wired
1830 * entry.
1831 */
1832 if (wired)
1833 a_tbl->at_wcnt++;
1834 else if (llevel == NONE)
1835 llevel = NEWB;
1836 }
1837
1838 /*
1839 * Step 3 - Walk into the C table, if there is no valid C table,
1840 * allocate one.
1841 */
1842
1843 b_idx = MMU_TIB(va); /* Calculate the TIB of the VA */
1844 b_dte = &b_tbl->bt_dtbl[b_idx]; /* Retrieve descriptor from table */
1845 if (MMU_VALID_DT(*b_dte)) { /* Is the descriptor valid? */
1846 /* The descriptor is valid. Use the C table it points to. */
1847 /**************************************
1848 * c_idx *
1849 * | v *
1850 * \- b_tbl -> +-+-+-+-+-+-+-+-+-+-+- *
1851 * | | | | | | | | | | | *
1852 * +-+-+-+-+-+-+-+-+-+-+- *
1853 * | *
1854 * \- c_tbl -> +-+-- *
1855 * | | | *
1856 * +-+-- *
1857 **************************************/
1858 c_pte = mmu_ptov(MMU_PTE_PA(*b_dte));
1859 c_tbl = mmuC2tmgr(c_pte);
1860
1861 /* If mapping is wired and table is not */
1862 if (wired && !c_tbl->ct_wcnt) {
1863 TAILQ_REMOVE(&c_pool, c_tbl, ct_link);
1864 b_tbl->bt_wcnt++;
1865 }
1866 } else {
1867 /* The descriptor is invalid. Allocate a new C table. */
1868 c_tbl = get_c_table();
1869
1870 /* Point the parent B table descriptor to this new C table. */
1871 b_dte->attr.raw = mmu_vtop(c_tbl->ct_dtbl);
1872 b_dte->attr.raw |= MMU_DT_SHORT;
1873 b_tbl->bt_ecnt++; /* Update parent's valid entry count */
1874
1875 /* Create the necessary back references to the parent table */
1876 c_tbl->ct_parent = b_tbl;
1877 c_tbl->ct_pidx = b_idx;
1878 /*
1879 * Store the pmap and base virtual managed address for faster
1880 * retrieval in the PV functions.
1881 */
1882 c_tbl->ct_pmap = pmap;
1883 c_tbl->ct_va = (va & (MMU_TIA_MASK|MMU_TIB_MASK));
1884
1885 /*
1886 * If this table is to be wired, make sure the parent B table
1887 * wired count is updated to reflect that it has another wired
1888 * entry.
1889 */
1890 if (wired)
1891 b_tbl->bt_wcnt++;
1892 else if (llevel == NONE)
1893 llevel = NEWC;
1894 }
1895
1896 /*
1897 * Step 4 - Deposit a page descriptor (PTE) into the appropriate
1898 * slot of the C table, describing the PA to which the VA is mapped.
1899 */
1900
1901 pte_idx = MMU_TIC(va);
1902 c_pte = &c_tbl->ct_dtbl[pte_idx];
1903 if (MMU_VALID_DT(*c_pte)) { /* Is the entry currently valid? */
1904 /*
1905 * The PTE is currently valid. This particular call
1906 * is just a synonym for one (or more) of the following
1907 * operations:
1908 * change protection of a page
1909 * change wiring status of a page
1910 * remove the mapping of a page
1911 */
1912
1913 /* First check if this is a wiring operation. */
1914 if (c_pte->attr.raw & MMU_SHORT_PTE_WIRED) {
1915 /*
1916 * The existing mapping is wired, so adjust wired
1917 * entry count here. If new mapping is still wired,
1918 * wired entry count will be incremented again later.
1919 */
1920 c_tbl->ct_wcnt--;
1921 if (!wired) {
1922 /*
1923 * The mapping of this PTE is being changed
1924 * from wired to unwired.
1925 * Adjust wired entry counts in each table and
1926 * set llevel flag to put unwired tables back
1927 * into the active pool.
1928 */
1929 if (c_tbl->ct_wcnt == 0) {
1930 llevel = NEWC;
1931 if (--b_tbl->bt_wcnt == 0) {
1932 llevel = NEWB;
1933 if (--a_tbl->at_wcnt == 0) {
1934 llevel = NEWA;
1935 }
1936 }
1937 }
1938 }
1939 }
1940
1941 /* Is the new address the same as the old? */
1942 if (MMU_PTE_PA(*c_pte) == pa) {
1943 /*
1944 * Yes, mark that it does not need to be reinserted
1945 * into the PV list.
1946 */
1947 insert = false;
1948
1949 /*
1950 * Clear all but the modified, referenced and wired
1951 * bits on the PTE.
1952 */
1953 c_pte->attr.raw &= (MMU_SHORT_PTE_M
1954 | MMU_SHORT_PTE_USED | MMU_SHORT_PTE_WIRED);
1955 } else {
1956 /* No, remove the old entry */
1957 pmap_remove_pte(c_pte);
1958 insert = true;
1959 }
1960
1961 /*
1962 * TLB flush is only necessary if modifying current map.
1963 * However, in pmap_enter(), the pmap almost always IS
1964 * the current pmap, so don't even bother to check.
1965 */
1966 TBIS(va);
1967 } else {
1968 /*
1969 * The PTE is invalid. Increment the valid entry count in
1970 * the C table manager to reflect the addition of a new entry.
1971 */
1972 c_tbl->ct_ecnt++;
1973
1974 /* XXX - temporarily make sure the PTE is cleared. */
1975 c_pte->attr.raw = 0;
1976
1977 /* It will also need to be inserted into the PV list. */
1978 insert = true;
1979 }
1980
1981 /*
1982 * If page is changing from unwired to wired status, set an unused bit
1983 * within the PTE to indicate that it is wired. Also increment the
1984 * wired entry count in the C table manager.
1985 */
1986 if (wired) {
1987 c_pte->attr.raw |= MMU_SHORT_PTE_WIRED;
1988 c_tbl->ct_wcnt++;
1989 }
1990
1991 /*
1992 * Map the page, being careful to preserve modify/reference/wired
1993 * bits. At this point it is assumed that the PTE either has no bits
1994 * set, or if there are set bits, they are only modified, reference or
1995 * wired bits. If not, the following statement will cause erratic
1996 * behavior.
1997 */
1998 #ifdef PMAP_DEBUG
1999 if (c_pte->attr.raw & ~(MMU_SHORT_PTE_M |
2000 MMU_SHORT_PTE_USED | MMU_SHORT_PTE_WIRED)) {
2001 printf("pmap_enter: junk left in PTE at %p\n", c_pte);
2002 Debugger();
2003 }
2004 #endif
2005 c_pte->attr.raw |= ((u_long) pa | MMU_DT_PAGE);
2006
2007 /*
2008 * If the mapping should be read-only, set the write protect
2009 * bit in the PTE.
2010 */
2011 if (!(prot & VM_PROT_WRITE))
2012 c_pte->attr.raw |= MMU_SHORT_PTE_WP;
2013
2014 /*
2015 * Mark the PTE as used and/or modified as specified by the flags arg.
2016 */
2017 if (flags & VM_PROT_ALL) {
2018 c_pte->attr.raw |= MMU_SHORT_PTE_USED;
2019 if (flags & VM_PROT_WRITE) {
2020 c_pte->attr.raw |= MMU_SHORT_PTE_M;
2021 }
2022 }
2023
2024 /*
2025 * If the mapping should be cache inhibited (indicated by the flag
2026 * bits found on the lower order of the physical address.)
2027 * mark the PTE as a cache inhibited page.
2028 */
2029 if (mapflags & PMAP_NC)
2030 c_pte->attr.raw |= MMU_SHORT_PTE_CI;
2031
2032 /*
2033 * If the physical address being mapped is managed by the PV
2034 * system then link the pte into the list of pages mapped to that
2035 * address.
2036 */
2037 if (insert && managed) {
2038 pv = pa2pv(pa);
2039 nidx = pteidx(c_pte);
2040
2041 pvebase[nidx].pve_next = pv->pv_idx;
2042 pv->pv_idx = nidx;
2043 }
2044
2045 /* Move any allocated or unwired tables back into the active pool. */
2046
2047 switch (llevel) {
2048 case NEWA:
2049 TAILQ_INSERT_TAIL(&a_pool, a_tbl, at_link);
2050 /* FALLTHROUGH */
2051 case NEWB:
2052 TAILQ_INSERT_TAIL(&b_pool, b_tbl, bt_link);
2053 /* FALLTHROUGH */
2054 case NEWC:
2055 TAILQ_INSERT_TAIL(&c_pool, c_tbl, ct_link);
2056 /* FALLTHROUGH */
2057 default:
2058 break;
2059 }
2060
2061 return 0;
2062 }
2063
2064 /* pmap_enter_kernel INTERNAL
2065 **
2066 * Map the given virtual address to the given physical address within the
2067 * kernel address space. This function exists because the kernel map does
2068 * not do dynamic table allocation. It consists of a contiguous array of ptes
2069 * and can be edited directly without the need to walk through any tables.
2070 *
2071 * XXX: "Danger, Will Robinson!"
2072 * Note that the kernel should never take a fault on any page
2073 * between [ KERNBASE .. virtual_avail ] and this is checked in
2074 * trap.c for kernel-mode MMU faults. This means that mappings
2075 * created in that range must be implicily wired. -gwr
2076 */
2077 void
2078 pmap_enter_kernel(vaddr_t va, paddr_t pa, vm_prot_t prot)
2079 {
2080 bool was_valid, insert;
2081 u_short pte_idx;
2082 int flags;
2083 mmu_short_pte_t *pte;
2084 pv_t *pv;
2085 paddr_t old_pa;
2086
2087 flags = (pa & ~MMU_PAGE_MASK);
2088 pa &= MMU_PAGE_MASK;
2089
2090 if (is_managed(pa))
2091 insert = true;
2092 else
2093 insert = false;
2094
2095 /*
2096 * Calculate the index of the PTE being modified.
2097 */
2098 pte_idx = (u_long)m68k_btop(va - KERNBASE);
2099
2100 /* This array is traditionally named "Sysmap" */
2101 pte = &kernCbase[pte_idx];
2102
2103 if (MMU_VALID_DT(*pte)) {
2104 was_valid = true;
2105 /*
2106 * If the PTE already maps a different
2107 * physical address, umap and pv_unlink.
2108 */
2109 old_pa = MMU_PTE_PA(*pte);
2110 if (pa != old_pa)
2111 pmap_remove_pte(pte);
2112 else {
2113 /*
2114 * Old PA and new PA are the same. No need to
2115 * relink the mapping within the PV list.
2116 */
2117 insert = false;
2118
2119 /*
2120 * Save any mod/ref bits on the PTE.
2121 */
2122 pte->attr.raw &= (MMU_SHORT_PTE_USED|MMU_SHORT_PTE_M);
2123 }
2124 } else {
2125 pte->attr.raw = MMU_DT_INVALID;
2126 was_valid = false;
2127 }
2128
2129 /*
2130 * Map the page. Being careful to preserve modified/referenced bits
2131 * on the PTE.
2132 */
2133 pte->attr.raw |= (pa | MMU_DT_PAGE);
2134
2135 if (!(prot & VM_PROT_WRITE)) /* If access should be read-only */
2136 pte->attr.raw |= MMU_SHORT_PTE_WP;
2137 if (flags & PMAP_NC)
2138 pte->attr.raw |= MMU_SHORT_PTE_CI;
2139 if (was_valid)
2140 TBIS(va);
2141
2142 /*
2143 * Insert the PTE into the PV system, if need be.
2144 */
2145 if (insert) {
2146 pv = pa2pv(pa);
2147 pvebase[pte_idx].pve_next = pv->pv_idx;
2148 pv->pv_idx = pte_idx;
2149 }
2150 }
2151
2152 void
2153 pmap_kenter_pa(vaddr_t va, paddr_t pa, vm_prot_t prot)
2154 {
2155 mmu_short_pte_t *pte;
2156
2157 /* This array is traditionally named "Sysmap" */
2158 pte = &kernCbase[(u_long)m68k_btop(va - KERNBASE)];
2159
2160 KASSERT(!MMU_VALID_DT(*pte));
2161 pte->attr.raw = MMU_DT_INVALID | MMU_DT_PAGE | (pa & MMU_PAGE_MASK);
2162 if (!(prot & VM_PROT_WRITE))
2163 pte->attr.raw |= MMU_SHORT_PTE_WP;
2164 }
2165
2166 void
2167 pmap_kremove(vaddr_t va, vsize_t len)
2168 {
2169 int idx, eidx;
2170
2171 #ifdef PMAP_DEBUG
2172 if ((va & PGOFSET) || (len & PGOFSET))
2173 panic("pmap_kremove: alignment");
2174 #endif
2175
2176 idx = m68k_btop(va - KERNBASE);
2177 eidx = m68k_btop(va + len - KERNBASE);
2178
2179 while (idx < eidx) {
2180 kernCbase[idx++].attr.raw = MMU_DT_INVALID;
2181 TBIS(va);
2182 va += PAGE_SIZE;
2183 }
2184 }
2185
2186 /* pmap_map INTERNAL
2187 **
2188 * Map a contiguous range of physical memory into a contiguous range of
2189 * the kernel virtual address space.
2190 *
2191 * Used for device mappings and early mapping of the kernel text/data/bss.
2192 * Returns the first virtual address beyond the end of the range.
2193 */
2194 vaddr_t
2195 pmap_map(vaddr_t va, paddr_t pa, paddr_t endpa, int prot)
2196 {
2197 int sz;
2198
2199 sz = endpa - pa;
2200 do {
2201 pmap_enter_kernel(va, pa, prot);
2202 va += PAGE_SIZE;
2203 pa += PAGE_SIZE;
2204 sz -= PAGE_SIZE;
2205 } while (sz > 0);
2206 pmap_update(pmap_kernel());
2207 return va;
2208 }
2209
2210 /* pmap_protect_kernel INTERNAL
2211 **
2212 * Apply the given protection code to a kernel address range.
2213 */
2214 static INLINE void
2215 pmap_protect_kernel(vaddr_t startva, vaddr_t endva, vm_prot_t prot)
2216 {
2217 vaddr_t va;
2218 mmu_short_pte_t *pte;
2219
2220 pte = &kernCbase[(unsigned long) m68k_btop(startva - KERNBASE)];
2221 for (va = startva; va < endva; va += PAGE_SIZE, pte++) {
2222 if (MMU_VALID_DT(*pte)) {
2223 switch (prot) {
2224 case VM_PROT_ALL:
2225 break;
2226 case VM_PROT_EXECUTE:
2227 case VM_PROT_READ:
2228 case VM_PROT_READ|VM_PROT_EXECUTE:
2229 pte->attr.raw |= MMU_SHORT_PTE_WP;
2230 break;
2231 case VM_PROT_NONE:
2232 /* this is an alias for 'pmap_remove_kernel' */
2233 pmap_remove_pte(pte);
2234 break;
2235 default:
2236 break;
2237 }
2238 /*
2239 * since this is the kernel, immediately flush any cached
2240 * descriptors for this address.
2241 */
2242 TBIS(va);
2243 }
2244 }
2245 }
2246
2247 /* pmap_protect INTERFACE
2248 **
2249 * Apply the given protection to the given virtual address range within
2250 * the given map.
2251 *
2252 * It is ok for the protection applied to be stronger than what is
2253 * specified. We use this to our advantage when the given map has no
2254 * mapping for the virtual address. By skipping a page when this
2255 * is discovered, we are effectively applying a protection of VM_PROT_NONE,
2256 * and therefore do not need to map the page just to apply a protection
2257 * code. Only pmap_enter() needs to create new mappings if they do not exist.
2258 *
2259 * XXX - This function could be speeded up by using pmap_stroll() for inital
2260 * setup, and then manual scrolling in the for() loop.
2261 */
2262 void
2263 pmap_protect(pmap_t pmap, vaddr_t startva, vaddr_t endva, vm_prot_t prot)
2264 {
2265 bool iscurpmap;
2266 int a_idx, b_idx, c_idx;
2267 a_tmgr_t *a_tbl;
2268 b_tmgr_t *b_tbl;
2269 c_tmgr_t *c_tbl;
2270 mmu_short_pte_t *pte;
2271
2272 if (pmap == pmap_kernel()) {
2273 pmap_protect_kernel(startva, endva, prot);
2274 return;
2275 }
2276
2277 /*
2278 * In this particular pmap implementation, there are only three
2279 * types of memory protection: 'all' (read/write/execute),
2280 * 'read-only' (read/execute) and 'none' (no mapping.)
2281 * It is not possible for us to treat 'executable' as a separate
2282 * protection type. Therefore, protection requests that seek to
2283 * remove execute permission while retaining read or write, and those
2284 * that make little sense (write-only for example) are ignored.
2285 */
2286 switch (prot) {
2287 case VM_PROT_NONE:
2288 /*
2289 * A request to apply the protection code of
2290 * 'VM_PROT_NONE' is a synonym for pmap_remove().
2291 */
2292 pmap_remove(pmap, startva, endva);
2293 return;
2294 case VM_PROT_EXECUTE:
2295 case VM_PROT_READ:
2296 case VM_PROT_READ|VM_PROT_EXECUTE:
2297 /* continue */
2298 break;
2299 case VM_PROT_WRITE:
2300 case VM_PROT_WRITE|VM_PROT_READ:
2301 case VM_PROT_WRITE|VM_PROT_EXECUTE:
2302 case VM_PROT_ALL:
2303 /* None of these should happen in a sane system. */
2304 return;
2305 }
2306
2307 /*
2308 * If the pmap has no A table, it has no mappings and therefore
2309 * there is nothing to protect.
2310 */
2311 if ((a_tbl = pmap->pm_a_tmgr) == NULL)
2312 return;
2313
2314 a_idx = MMU_TIA(startva);
2315 b_idx = MMU_TIB(startva);
2316 c_idx = MMU_TIC(startva);
2317 b_tbl = NULL;
2318 c_tbl = NULL;
2319
2320 iscurpmap = (pmap == current_pmap());
2321 while (startva < endva) {
2322 if (b_tbl || MMU_VALID_DT(a_tbl->at_dtbl[a_idx])) {
2323 if (b_tbl == NULL) {
2324 b_tbl = (b_tmgr_t *) a_tbl->at_dtbl[a_idx].addr.raw;
2325 b_tbl = mmu_ptov((vaddr_t)b_tbl);
2326 b_tbl = mmuB2tmgr((mmu_short_dte_t *)b_tbl);
2327 }
2328 if (c_tbl || MMU_VALID_DT(b_tbl->bt_dtbl[b_idx])) {
2329 if (c_tbl == NULL) {
2330 c_tbl = (c_tmgr_t *) MMU_DTE_PA(b_tbl->bt_dtbl[b_idx]);
2331 c_tbl = mmu_ptov((vaddr_t)c_tbl);
2332 c_tbl = mmuC2tmgr((mmu_short_pte_t *)c_tbl);
2333 }
2334 if (MMU_VALID_DT(c_tbl->ct_dtbl[c_idx])) {
2335 pte = &c_tbl->ct_dtbl[c_idx];
2336 /* make the mapping read-only */
2337 pte->attr.raw |= MMU_SHORT_PTE_WP;
2338 /*
2339 * If we just modified the current address space,
2340 * flush any translations for the modified page from
2341 * the translation cache and any data from it in the
2342 * data cache.
2343 */
2344 if (iscurpmap)
2345 TBIS(startva);
2346 }
2347 startva += PAGE_SIZE;
2348
2349 if (++c_idx >= MMU_C_TBL_SIZE) { /* exceeded C table? */
2350 c_tbl = NULL;
2351 c_idx = 0;
2352 if (++b_idx >= MMU_B_TBL_SIZE) { /* exceeded B table? */
2353 b_tbl = NULL;
2354 b_idx = 0;
2355 }
2356 }
2357 } else { /* C table wasn't valid */
2358 c_tbl = NULL;
2359 c_idx = 0;
2360 startva += MMU_TIB_RANGE;
2361 if (++b_idx >= MMU_B_TBL_SIZE) { /* exceeded B table? */
2362 b_tbl = NULL;
2363 b_idx = 0;
2364 }
2365 } /* C table */
2366 } else { /* B table wasn't valid */
2367 b_tbl = NULL;
2368 b_idx = 0;
2369 startva += MMU_TIA_RANGE;
2370 a_idx++;
2371 } /* B table */
2372 }
2373 }
2374
2375 /* pmap_unwire INTERFACE
2376 **
2377 * Clear the wired attribute of the specified page.
2378 *
2379 * This function is called from vm_fault.c to unwire
2380 * a mapping.
2381 */
2382 void
2383 pmap_unwire(pmap_t pmap, vaddr_t va)
2384 {
2385 int a_idx, b_idx, c_idx;
2386 a_tmgr_t *a_tbl;
2387 b_tmgr_t *b_tbl;
2388 c_tmgr_t *c_tbl;
2389 mmu_short_pte_t *pte;
2390
2391 /* Kernel mappings always remain wired. */
2392 if (pmap == pmap_kernel())
2393 return;
2394
2395 /*
2396 * Walk through the tables. If the walk terminates without
2397 * a valid PTE then the address wasn't wired in the first place.
2398 * Return immediately.
2399 */
2400 if (pmap_stroll(pmap, va, &a_tbl, &b_tbl, &c_tbl, &pte, &a_idx,
2401 &b_idx, &c_idx) == false)
2402 return;
2403
2404
2405 /* Is the PTE wired? If not, return. */
2406 if (!(pte->attr.raw & MMU_SHORT_PTE_WIRED))
2407 return;
2408
2409 /* Remove the wiring bit. */
2410 pte->attr.raw &= ~(MMU_SHORT_PTE_WIRED);
2411
2412 /*
2413 * Decrement the wired entry count in the C table.
2414 * If it reaches zero the following things happen:
2415 * 1. The table no longer has any wired entries and is considered
2416 * unwired.
2417 * 2. It is placed on the available queue.
2418 * 3. The parent table's wired entry count is decremented.
2419 * 4. If it reaches zero, this process repeats at step 1 and
2420 * stops at after reaching the A table.
2421 */
2422 if (--c_tbl->ct_wcnt == 0) {
2423 TAILQ_INSERT_TAIL(&c_pool, c_tbl, ct_link);
2424 if (--b_tbl->bt_wcnt == 0) {
2425 TAILQ_INSERT_TAIL(&b_pool, b_tbl, bt_link);
2426 if (--a_tbl->at_wcnt == 0) {
2427 TAILQ_INSERT_TAIL(&a_pool, a_tbl, at_link);
2428 }
2429 }
2430 }
2431 }
2432
2433 /* pmap_copy INTERFACE
2434 **
2435 * Copy the mappings of a range of addresses in one pmap, into
2436 * the destination address of another.
2437 *
2438 * This routine is advisory. Should we one day decide that MMU tables
2439 * may be shared by more than one pmap, this function should be used to
2440 * link them together. Until that day however, we do nothing.
2441 */
2442 void
2443 pmap_copy(pmap_t pmap_a, pmap_t pmap_b, vaddr_t dst, vsize_t len, vaddr_t src)
2444 {
2445
2446 /* not implemented. */
2447 }
2448
2449 /* pmap_copy_page INTERFACE
2450 **
2451 * Copy the contents of one physical page into another.
2452 *
2453 * This function makes use of two virtual pages allocated in pmap_bootstrap()
2454 * to map the two specified physical pages into the kernel address space.
2455 *
2456 * Note: We could use the transparent translation registers to make the
2457 * mappings. If we do so, be sure to disable interrupts before using them.
2458 */
2459 void
2460 pmap_copy_page(paddr_t srcpa, paddr_t dstpa)
2461 {
2462 vaddr_t srcva, dstva;
2463 int s;
2464
2465 srcva = tmp_vpages[0];
2466 dstva = tmp_vpages[1];
2467
2468 s = splvm();
2469 #ifdef DIAGNOSTIC
2470 if (tmp_vpages_inuse++)
2471 panic("pmap_copy_page: temporary vpages are in use.");
2472 #endif
2473
2474 /* Map pages as non-cacheable to avoid cache polution? */
2475 pmap_kenter_pa(srcva, srcpa, VM_PROT_READ);
2476 pmap_kenter_pa(dstva, dstpa, VM_PROT_READ | VM_PROT_WRITE);
2477
2478 /* Hand-optimized version of bcopy(src, dst, PAGE_SIZE) */
2479 copypage((char *)srcva, (char *)dstva);
2480
2481 pmap_kremove(srcva, PAGE_SIZE);
2482 pmap_kremove(dstva, PAGE_SIZE);
2483
2484 #ifdef DIAGNOSTIC
2485 --tmp_vpages_inuse;
2486 #endif
2487 splx(s);
2488 }
2489
2490 /* pmap_zero_page INTERFACE
2491 **
2492 * Zero the contents of the specified physical page.
2493 *
2494 * Uses one of the virtual pages allocated in pmap_boostrap()
2495 * to map the specified page into the kernel address space.
2496 */
2497 void
2498 pmap_zero_page(paddr_t dstpa)
2499 {
2500 vaddr_t dstva;
2501 int s;
2502
2503 dstva = tmp_vpages[1];
2504 s = splvm();
2505 #ifdef DIAGNOSTIC
2506 if (tmp_vpages_inuse++)
2507 panic("pmap_zero_page: temporary vpages are in use.");
2508 #endif
2509
2510 /* The comments in pmap_copy_page() above apply here also. */
2511 pmap_kenter_pa(dstva, dstpa, VM_PROT_READ | VM_PROT_WRITE);
2512
2513 /* Hand-optimized version of bzero(ptr, PAGE_SIZE) */
2514 zeropage((char *)dstva);
2515
2516 pmap_kremove(dstva, PAGE_SIZE);
2517 #ifdef DIAGNOSTIC
2518 --tmp_vpages_inuse;
2519 #endif
2520 splx(s);
2521 }
2522
2523 /* pmap_collect INTERFACE
2524 **
2525 * Called from the VM system when we are about to swap out
2526 * the process using this pmap. This should give up any
2527 * resources held here, including all its MMU tables.
2528 */
2529 void
2530 pmap_collect(pmap_t pmap)
2531 {
2532
2533 /* XXX - todo... */
2534 }
2535
2536 /* pmap_pinit INTERNAL
2537 **
2538 * Initialize a pmap structure.
2539 */
2540 static INLINE void
2541 pmap_pinit(pmap_t pmap)
2542 {
2543
2544 memset(pmap, 0, sizeof(struct pmap));
2545 pmap->pm_a_tmgr = NULL;
2546 pmap->pm_a_phys = kernAphys;
2547 pmap->pm_refcount = 1;
2548 simple_lock_init(&pmap->pm_lock);
2549 }
2550
2551 /* pmap_create INTERFACE
2552 **
2553 * Create and return a pmap structure.
2554 */
2555 pmap_t
2556 pmap_create(void)
2557 {
2558 pmap_t pmap;
2559
2560 pmap = pool_get(&pmap_pmap_pool, PR_WAITOK);
2561 pmap_pinit(pmap);
2562 return pmap;
2563 }
2564
2565 /* pmap_release INTERNAL
2566 **
2567 * Release any resources held by the given pmap.
2568 *
2569 * This is the reverse analog to pmap_pinit. It does not
2570 * necessarily mean for the pmap structure to be deallocated,
2571 * as in pmap_destroy.
2572 */
2573 static INLINE void
2574 pmap_release(pmap_t pmap)
2575 {
2576
2577 /*
2578 * As long as the pmap contains no mappings,
2579 * which always should be the case whenever
2580 * this function is called, there really should
2581 * be nothing to do.
2582 */
2583 #ifdef PMAP_DEBUG
2584 if (pmap == pmap_kernel())
2585 panic("pmap_release: kernel pmap");
2586 #endif
2587 /*
2588 * XXX - If this pmap has an A table, give it back.
2589 * The pmap SHOULD be empty by now, and pmap_remove
2590 * should have already given back the A table...
2591 * However, I see: pmap->pm_a_tmgr->at_ecnt == 1
2592 * at this point, which means some mapping was not
2593 * removed when it should have been. -gwr
2594 */
2595 if (pmap->pm_a_tmgr != NULL) {
2596 /* First make sure we are not using it! */
2597 if (kernel_crp.rp_addr == pmap->pm_a_phys) {
2598 kernel_crp.rp_addr = kernAphys;
2599 loadcrp(&kernel_crp);
2600 }
2601 #ifdef PMAP_DEBUG /* XXX - todo! */
2602 /* XXX - Now complain... */
2603 printf("pmap_release: still have table\n");
2604 Debugger();
2605 #endif
2606 free_a_table(pmap->pm_a_tmgr, true);
2607 pmap->pm_a_tmgr = NULL;
2608 pmap->pm_a_phys = kernAphys;
2609 }
2610 }
2611
2612 /* pmap_reference INTERFACE
2613 **
2614 * Increment the reference count of a pmap.
2615 */
2616 void
2617 pmap_reference(pmap_t pmap)
2618 {
2619 pmap_lock(pmap);
2620 pmap_add_ref(pmap);
2621 pmap_unlock(pmap);
2622 }
2623
2624 /* pmap_dereference INTERNAL
2625 **
2626 * Decrease the reference count on the given pmap
2627 * by one and return the current count.
2628 */
2629 static INLINE int
2630 pmap_dereference(pmap_t pmap)
2631 {
2632 int rtn;
2633
2634 pmap_lock(pmap);
2635 rtn = pmap_del_ref(pmap);
2636 pmap_unlock(pmap);
2637
2638 return rtn;
2639 }
2640
2641 /* pmap_destroy INTERFACE
2642 **
2643 * Decrement a pmap's reference count and delete
2644 * the pmap if it becomes zero. Will be called
2645 * only after all mappings have been removed.
2646 */
2647 void
2648 pmap_destroy(pmap_t pmap)
2649 {
2650
2651 if (pmap_dereference(pmap) == 0) {
2652 pmap_release(pmap);
2653 pool_put(&pmap_pmap_pool, pmap);
2654 }
2655 }
2656
2657 /* pmap_is_referenced INTERFACE
2658 **
2659 * Determine if the given physical page has been
2660 * referenced (read from [or written to.])
2661 */
2662 bool
2663 pmap_is_referenced(struct vm_page *pg)
2664 {
2665 paddr_t pa = VM_PAGE_TO_PHYS(pg);
2666 pv_t *pv;
2667 int idx;
2668
2669 /*
2670 * Check the flags on the pv head. If they are set,
2671 * return immediately. Otherwise a search must be done.
2672 */
2673
2674 pv = pa2pv(pa);
2675 if (pv->pv_flags & PV_FLAGS_USED)
2676 return true;
2677
2678 /*
2679 * Search through all pv elements pointing
2680 * to this page and query their reference bits
2681 */
2682
2683 for (idx = pv->pv_idx; idx != PVE_EOL; idx = pvebase[idx].pve_next) {
2684 if (MMU_PTE_USED(kernCbase[idx])) {
2685 return true;
2686 }
2687 }
2688 return false;
2689 }
2690
2691 /* pmap_is_modified INTERFACE
2692 **
2693 * Determine if the given physical page has been
2694 * modified (written to.)
2695 */
2696 bool
2697 pmap_is_modified(struct vm_page *pg)
2698 {
2699 paddr_t pa = VM_PAGE_TO_PHYS(pg);
2700 pv_t *pv;
2701 int idx;
2702
2703 /* see comments in pmap_is_referenced() */
2704 pv = pa2pv(pa);
2705 if (pv->pv_flags & PV_FLAGS_MDFY)
2706 return true;
2707
2708 for (idx = pv->pv_idx;
2709 idx != PVE_EOL;
2710 idx = pvebase[idx].pve_next) {
2711
2712 if (MMU_PTE_MODIFIED(kernCbase[idx])) {
2713 return true;
2714 }
2715 }
2716
2717 return false;
2718 }
2719
2720 /* pmap_page_protect INTERFACE
2721 **
2722 * Applies the given protection to all mappings to the given
2723 * physical page.
2724 */
2725 void
2726 pmap_page_protect(struct vm_page *pg, vm_prot_t prot)
2727 {
2728 paddr_t pa = VM_PAGE_TO_PHYS(pg);
2729 pv_t *pv;
2730 int idx;
2731 vaddr_t va;
2732 struct mmu_short_pte_struct *pte;
2733 c_tmgr_t *c_tbl;
2734 pmap_t pmap, curpmap;
2735
2736 curpmap = current_pmap();
2737 pv = pa2pv(pa);
2738
2739 for (idx = pv->pv_idx; idx != PVE_EOL; idx = pvebase[idx].pve_next) {
2740 pte = &kernCbase[idx];
2741 switch (prot) {
2742 case VM_PROT_ALL:
2743 /* do nothing */
2744 break;
2745 case VM_PROT_EXECUTE:
2746 case VM_PROT_READ:
2747 case VM_PROT_READ|VM_PROT_EXECUTE:
2748 /*
2749 * Determine the virtual address mapped by
2750 * the PTE and flush ATC entries if necessary.
2751 */
2752 va = pmap_get_pteinfo(idx, &pmap, &c_tbl);
2753 pte->attr.raw |= MMU_SHORT_PTE_WP;
2754 if (pmap == curpmap || pmap == pmap_kernel())
2755 TBIS(va);
2756 break;
2757 case VM_PROT_NONE:
2758 /* Save the mod/ref bits. */
2759 pv->pv_flags |= pte->attr.raw;
2760 /* Invalidate the PTE. */
2761 pte->attr.raw = MMU_DT_INVALID;
2762
2763 /*
2764 * Update table counts. And flush ATC entries
2765 * if necessary.
2766 */
2767 va = pmap_get_pteinfo(idx, &pmap, &c_tbl);
2768
2769 /*
2770 * If the PTE belongs to the kernel map,
2771 * be sure to flush the page it maps.
2772 */
2773 if (pmap == pmap_kernel()) {
2774 TBIS(va);
2775 } else {
2776 /*
2777 * The PTE belongs to a user map.
2778 * update the entry count in the C
2779 * table to which it belongs and flush
2780 * the ATC if the mapping belongs to
2781 * the current pmap.
2782 */
2783 c_tbl->ct_ecnt--;
2784 if (pmap == curpmap)
2785 TBIS(va);
2786 }
2787 break;
2788 default:
2789 break;
2790 }
2791 }
2792
2793 /*
2794 * If the protection code indicates that all mappings to the page
2795 * be removed, truncate the PV list to zero entries.
2796 */
2797 if (prot == VM_PROT_NONE)
2798 pv->pv_idx = PVE_EOL;
2799 }
2800
2801 /* pmap_get_pteinfo INTERNAL
2802 **
2803 * Called internally to find the pmap and virtual address within that
2804 * map to which the pte at the given index maps. Also includes the PTE's C
2805 * table manager.
2806 *
2807 * Returns the pmap in the argument provided, and the virtual address
2808 * by return value.
2809 */
2810 vaddr_t
2811 pmap_get_pteinfo(u_int idx, pmap_t *pmap, c_tmgr_t **tbl)
2812 {
2813 vaddr_t va = 0;
2814
2815 /*
2816 * Determine if the PTE is a kernel PTE or a user PTE.
2817 */
2818 if (idx >= NUM_KERN_PTES) {
2819 /*
2820 * The PTE belongs to a user mapping.
2821 */
2822 /* XXX: Would like an inline for this to validate idx... */
2823 *tbl = &Ctmgrbase[(idx - NUM_KERN_PTES) / MMU_C_TBL_SIZE];
2824
2825 *pmap = (*tbl)->ct_pmap;
2826 /*
2827 * To find the va to which the PTE maps, we first take
2828 * the table's base virtual address mapping which is stored
2829 * in ct_va. We then increment this address by a page for
2830 * every slot skipped until we reach the PTE.
2831 */
2832 va = (*tbl)->ct_va;
2833 va += m68k_ptob(idx % MMU_C_TBL_SIZE);
2834 } else {
2835 /*
2836 * The PTE belongs to the kernel map.
2837 */
2838 *pmap = pmap_kernel();
2839
2840 va = m68k_ptob(idx);
2841 va += KERNBASE;
2842 }
2843
2844 return va;
2845 }
2846
2847 /* pmap_clear_modify INTERFACE
2848 **
2849 * Clear the modification bit on the page at the specified
2850 * physical address.
2851 *
2852 */
2853 bool
2854 pmap_clear_modify(struct vm_page *pg)
2855 {
2856 paddr_t pa = VM_PAGE_TO_PHYS(pg);
2857 bool rv;
2858
2859 rv = pmap_is_modified(pg);
2860 pmap_clear_pv(pa, PV_FLAGS_MDFY);
2861 return rv;
2862 }
2863
2864 /* pmap_clear_reference INTERFACE
2865 **
2866 * Clear the referenced bit on the page at the specified
2867 * physical address.
2868 */
2869 bool
2870 pmap_clear_reference(struct vm_page *pg)
2871 {
2872 paddr_t pa = VM_PAGE_TO_PHYS(pg);
2873 bool rv;
2874
2875 rv = pmap_is_referenced(pg);
2876 pmap_clear_pv(pa, PV_FLAGS_USED);
2877 return rv;
2878 }
2879
2880 /* pmap_clear_pv INTERNAL
2881 **
2882 * Clears the specified flag from the specified physical address.
2883 * (Used by pmap_clear_modify() and pmap_clear_reference().)
2884 *
2885 * Flag is one of:
2886 * PV_FLAGS_MDFY - Page modified bit.
2887 * PV_FLAGS_USED - Page used (referenced) bit.
2888 *
2889 * This routine must not only clear the flag on the pv list
2890 * head. It must also clear the bit on every pte in the pv
2891 * list associated with the address.
2892 */
2893 void
2894 pmap_clear_pv(paddr_t pa, int flag)
2895 {
2896 pv_t *pv;
2897 int idx;
2898 vaddr_t va;
2899 pmap_t pmap;
2900 mmu_short_pte_t *pte;
2901 c_tmgr_t *c_tbl;
2902
2903 pv = pa2pv(pa);
2904 pv->pv_flags &= ~(flag);
2905 for (idx = pv->pv_idx; idx != PVE_EOL; idx = pvebase[idx].pve_next) {
2906 pte = &kernCbase[idx];
2907 pte->attr.raw &= ~(flag);
2908
2909 /*
2910 * The MC68030 MMU will not set the modified or
2911 * referenced bits on any MMU tables for which it has
2912 * a cached descriptor with its modify bit set. To insure
2913 * that it will modify these bits on the PTE during the next
2914 * time it is written to or read from, we must flush it from
2915 * the ATC.
2916 *
2917 * Ordinarily it is only necessary to flush the descriptor
2918 * if it is used in the current address space. But since I
2919 * am not sure that there will always be a notion of
2920 * 'the current address space' when this function is called,
2921 * I will skip the test and always flush the address. It
2922 * does no harm.
2923 */
2924
2925 va = pmap_get_pteinfo(idx, &pmap, &c_tbl);
2926 TBIS(va);
2927 }
2928 }
2929
2930 /* pmap_extract_kernel INTERNAL
2931 **
2932 * Extract a translation from the kernel address space.
2933 */
2934 static INLINE bool
2935 pmap_extract_kernel(vaddr_t va, paddr_t *pap)
2936 {
2937 mmu_short_pte_t *pte;
2938
2939 pte = &kernCbase[(u_int)m68k_btop(va - KERNBASE)];
2940 if (!MMU_VALID_DT(*pte))
2941 return false;
2942 if (pap != NULL)
2943 *pap = MMU_PTE_PA(*pte);
2944 return true;
2945 }
2946
2947 /* pmap_extract INTERFACE
2948 **
2949 * Return the physical address mapped by the virtual address
2950 * in the specified pmap.
2951 *
2952 * Note: this function should also apply an exclusive lock
2953 * on the pmap system during its duration.
2954 */
2955 bool
2956 pmap_extract(pmap_t pmap, vaddr_t va, paddr_t *pap)
2957 {
2958 int a_idx, b_idx, pte_idx;
2959 a_tmgr_t *a_tbl;
2960 b_tmgr_t *b_tbl;
2961 c_tmgr_t *c_tbl;
2962 mmu_short_pte_t *c_pte;
2963
2964 if (pmap == pmap_kernel())
2965 return pmap_extract_kernel(va, pap);
2966
2967 if (pmap_stroll(pmap, va, &a_tbl, &b_tbl, &c_tbl,
2968 &c_pte, &a_idx, &b_idx, &pte_idx) == false)
2969 return false;
2970
2971 if (!MMU_VALID_DT(*c_pte))
2972 return false;
2973
2974 if (pap != NULL)
2975 *pap = MMU_PTE_PA(*c_pte);
2976 return true;
2977 }
2978
2979 /* pmap_remove_kernel INTERNAL
2980 **
2981 * Remove the mapping of a range of virtual addresses from the kernel map.
2982 * The arguments are already page-aligned.
2983 */
2984 static INLINE void
2985 pmap_remove_kernel(vaddr_t sva, vaddr_t eva)
2986 {
2987 int idx, eidx;
2988
2989 #ifdef PMAP_DEBUG
2990 if ((sva & PGOFSET) || (eva & PGOFSET))
2991 panic("pmap_remove_kernel: alignment");
2992 #endif
2993
2994 idx = m68k_btop(sva - KERNBASE);
2995 eidx = m68k_btop(eva - KERNBASE);
2996
2997 while (idx < eidx) {
2998 pmap_remove_pte(&kernCbase[idx++]);
2999 TBIS(sva);
3000 sva += PAGE_SIZE;
3001 }
3002 }
3003
3004 /* pmap_remove INTERFACE
3005 **
3006 * Remove the mapping of a range of virtual addresses from the given pmap.
3007 *
3008 */
3009 void
3010 pmap_remove(pmap_t pmap, vaddr_t sva, vaddr_t eva)
3011 {
3012
3013 if (pmap == pmap_kernel()) {
3014 pmap_remove_kernel(sva, eva);
3015 return;
3016 }
3017
3018 /*
3019 * If the pmap doesn't have an A table of its own, it has no mappings
3020 * that can be removed.
3021 */
3022 if (pmap->pm_a_tmgr == NULL)
3023 return;
3024
3025 /*
3026 * Remove the specified range from the pmap. If the function
3027 * returns true, the operation removed all the valid mappings
3028 * in the pmap and freed its A table. If this happened to the
3029 * currently loaded pmap, the MMU root pointer must be reloaded
3030 * with the default 'kernel' map.
3031 */
3032 if (pmap_remove_a(pmap->pm_a_tmgr, sva, eva)) {
3033 if (kernel_crp.rp_addr == pmap->pm_a_phys) {
3034 kernel_crp.rp_addr = kernAphys;
3035 loadcrp(&kernel_crp);
3036 /* will do TLB flush below */
3037 }
3038 pmap->pm_a_tmgr = NULL;
3039 pmap->pm_a_phys = kernAphys;
3040 }
3041
3042 /*
3043 * If we just modified the current address space,
3044 * make sure to flush the MMU cache.
3045 *
3046 * XXX - this could be an unecessarily large flush.
3047 * XXX - Could decide, based on the size of the VA range
3048 * to be removed, whether to flush "by pages" or "all".
3049 */
3050 if (pmap == current_pmap())
3051 TBIAU();
3052 }
3053
3054 /* pmap_remove_a INTERNAL
3055 **
3056 * This is function number one in a set of three that removes a range
3057 * of memory in the most efficient manner by removing the highest possible
3058 * tables from the memory space. This particular function attempts to remove
3059 * as many B tables as it can, delegating the remaining fragmented ranges to
3060 * pmap_remove_b().
3061 *
3062 * If the removal operation results in an empty A table, the function returns
3063 * true.
3064 *
3065 * It's ugly but will do for now.
3066 */
3067 bool
3068 pmap_remove_a(a_tmgr_t *a_tbl, vaddr_t sva, vaddr_t eva)
3069 {
3070 bool empty;
3071 int idx;
3072 vaddr_t nstart, nend;
3073 b_tmgr_t *b_tbl;
3074 mmu_long_dte_t *a_dte;
3075 mmu_short_dte_t *b_dte;
3076 uint8_t at_wired, bt_wired;
3077
3078 /*
3079 * The following code works with what I call a 'granularity
3080 * reduction algorithim'. A range of addresses will always have
3081 * the following properties, which are classified according to
3082 * how the range relates to the size of the current granularity
3083 * - an A table entry:
3084 *
3085 * 1 2 3 4
3086 * -+---+---+---+---+---+---+---+-
3087 * -+---+---+---+---+---+---+---+-
3088 *
3089 * A range will always start on a granularity boundary, illustrated
3090 * by '+' signs in the table above, or it will start at some point
3091 * inbetween a granularity boundary, as illustrated by point 1.
3092 * The first step in removing a range of addresses is to remove the
3093 * range between 1 and 2, the nearest granularity boundary. This
3094 * job is handled by the section of code governed by the
3095 * 'if (start < nstart)' statement.
3096 *
3097 * A range will always encompass zero or more intergral granules,
3098 * illustrated by points 2 and 3. Integral granules are easy to
3099 * remove. The removal of these granules is the second step, and
3100 * is handled by the code block 'if (nstart < nend)'.
3101 *
3102 * Lastly, a range will always end on a granularity boundary,
3103 * ill. by point 3, or it will fall just beyond one, ill. by point
3104 * 4. The last step involves removing this range and is handled by
3105 * the code block 'if (nend < end)'.
3106 */
3107 nstart = MMU_ROUND_UP_A(sva);
3108 nend = MMU_ROUND_A(eva);
3109
3110 at_wired = a_tbl->at_wcnt;
3111
3112 if (sva < nstart) {
3113 /*
3114 * This block is executed if the range starts between
3115 * a granularity boundary.
3116 *
3117 * First find the DTE which is responsible for mapping
3118 * the start of the range.
3119 */
3120 idx = MMU_TIA(sva);
3121 a_dte = &a_tbl->at_dtbl[idx];
3122
3123 /*
3124 * If the DTE is valid then delegate the removal of the sub
3125 * range to pmap_remove_b(), which can remove addresses at
3126 * a finer granularity.
3127 */
3128 if (MMU_VALID_DT(*a_dte)) {
3129 b_dte = mmu_ptov(a_dte->addr.raw);
3130 b_tbl = mmuB2tmgr(b_dte);
3131 bt_wired = b_tbl->bt_wcnt;
3132
3133 /*
3134 * The sub range to be removed starts at the start
3135 * of the full range we were asked to remove, and ends
3136 * at the greater of:
3137 * 1. The end of the full range, -or-
3138 * 2. The end of the full range, rounded down to the
3139 * nearest granularity boundary.
3140 */
3141 if (eva < nstart)
3142 empty = pmap_remove_b(b_tbl, sva, eva);
3143 else
3144 empty = pmap_remove_b(b_tbl, sva, nstart);
3145
3146 /*
3147 * If the child table no longer has wired entries,
3148 * decrement wired entry count.
3149 */
3150 if (bt_wired && b_tbl->bt_wcnt == 0)
3151 a_tbl->at_wcnt--;
3152
3153 /*
3154 * If the removal resulted in an empty B table,
3155 * invalidate the DTE that points to it and decrement
3156 * the valid entry count of the A table.
3157 */
3158 if (empty) {
3159 a_dte->attr.raw = MMU_DT_INVALID;
3160 a_tbl->at_ecnt--;
3161 }
3162 }
3163 /*
3164 * If the DTE is invalid, the address range is already non-
3165 * existent and can simply be skipped.
3166 */
3167 }
3168 if (nstart < nend) {
3169 /*
3170 * This block is executed if the range spans a whole number
3171 * multiple of granules (A table entries.)
3172 *
3173 * First find the DTE which is responsible for mapping
3174 * the start of the first granule involved.
3175 */
3176 idx = MMU_TIA(nstart);
3177 a_dte = &a_tbl->at_dtbl[idx];
3178
3179 /*
3180 * Remove entire sub-granules (B tables) one at a time,
3181 * until reaching the end of the range.
3182 */
3183 for (; nstart < nend; a_dte++, nstart += MMU_TIA_RANGE)
3184 if (MMU_VALID_DT(*a_dte)) {
3185 /*
3186 * Find the B table manager for the
3187 * entry and free it.
3188 */
3189 b_dte = mmu_ptov(a_dte->addr.raw);
3190 b_tbl = mmuB2tmgr(b_dte);
3191 bt_wired = b_tbl->bt_wcnt;
3192
3193 free_b_table(b_tbl, true);
3194
3195 /*
3196 * All child entries has been removed.
3197 * If there were any wired entries in it,
3198 * decrement wired entry count.
3199 */
3200 if (bt_wired)
3201 a_tbl->at_wcnt--;
3202
3203 /*
3204 * Invalidate the DTE that points to the
3205 * B table and decrement the valid entry
3206 * count of the A table.
3207 */
3208 a_dte->attr.raw = MMU_DT_INVALID;
3209 a_tbl->at_ecnt--;
3210 }
3211 }
3212 if (nend < eva) {
3213 /*
3214 * This block is executed if the range ends beyond a
3215 * granularity boundary.
3216 *
3217 * First find the DTE which is responsible for mapping
3218 * the start of the nearest (rounded down) granularity
3219 * boundary.
3220 */
3221 idx = MMU_TIA(nend);
3222 a_dte = &a_tbl->at_dtbl[idx];
3223
3224 /*
3225 * If the DTE is valid then delegate the removal of the sub
3226 * range to pmap_remove_b(), which can remove addresses at
3227 * a finer granularity.
3228 */
3229 if (MMU_VALID_DT(*a_dte)) {
3230 /*
3231 * Find the B table manager for the entry
3232 * and hand it to pmap_remove_b() along with
3233 * the sub range.
3234 */
3235 b_dte = mmu_ptov(a_dte->addr.raw);
3236 b_tbl = mmuB2tmgr(b_dte);
3237 bt_wired = b_tbl->bt_wcnt;
3238
3239 empty = pmap_remove_b(b_tbl, nend, eva);
3240
3241 /*
3242 * If the child table no longer has wired entries,
3243 * decrement wired entry count.
3244 */
3245 if (bt_wired && b_tbl->bt_wcnt == 0)
3246 a_tbl->at_wcnt--;
3247 /*
3248 * If the removal resulted in an empty B table,
3249 * invalidate the DTE that points to it and decrement
3250 * the valid entry count of the A table.
3251 */
3252 if (empty) {
3253 a_dte->attr.raw = MMU_DT_INVALID;
3254 a_tbl->at_ecnt--;
3255 }
3256 }
3257 }
3258
3259 /*
3260 * If there are no more entries in the A table, release it
3261 * back to the available pool and return true.
3262 */
3263 if (a_tbl->at_ecnt == 0) {
3264 KASSERT(a_tbl->at_wcnt == 0);
3265 a_tbl->at_parent = NULL;
3266 if (!at_wired)
3267 TAILQ_REMOVE(&a_pool, a_tbl, at_link);
3268 TAILQ_INSERT_HEAD(&a_pool, a_tbl, at_link);
3269 empty = true;
3270 } else {
3271 /*
3272 * If the table doesn't have wired entries any longer
3273 * but still has unwired entries, put it back into
3274 * the available queue.
3275 */
3276 if (at_wired && a_tbl->at_wcnt == 0)
3277 TAILQ_INSERT_TAIL(&a_pool, a_tbl, at_link);
3278 empty = false;
3279 }
3280
3281 return empty;
3282 }
3283
3284 /* pmap_remove_b INTERNAL
3285 **
3286 * Remove a range of addresses from an address space, trying to remove entire
3287 * C tables if possible.
3288 *
3289 * If the operation results in an empty B table, the function returns true.
3290 */
3291 bool
3292 pmap_remove_b(b_tmgr_t *b_tbl, vaddr_t sva, vaddr_t eva)
3293 {
3294 bool empty;
3295 int idx;
3296 vaddr_t nstart, nend, rstart;
3297 c_tmgr_t *c_tbl;
3298 mmu_short_dte_t *b_dte;
3299 mmu_short_pte_t *c_dte;
3300 uint8_t bt_wired, ct_wired;
3301
3302 nstart = MMU_ROUND_UP_B(sva);
3303 nend = MMU_ROUND_B(eva);
3304
3305 bt_wired = b_tbl->bt_wcnt;
3306
3307 if (sva < nstart) {
3308 idx = MMU_TIB(sva);
3309 b_dte = &b_tbl->bt_dtbl[idx];
3310 if (MMU_VALID_DT(*b_dte)) {
3311 c_dte = mmu_ptov(MMU_DTE_PA(*b_dte));
3312 c_tbl = mmuC2tmgr(c_dte);
3313 ct_wired = c_tbl->ct_wcnt;
3314
3315 if (eva < nstart)
3316 empty = pmap_remove_c(c_tbl, sva, eva);
3317 else
3318 empty = pmap_remove_c(c_tbl, sva, nstart);
3319
3320 /*
3321 * If the child table no longer has wired entries,
3322 * decrement wired entry count.
3323 */
3324 if (ct_wired && c_tbl->ct_wcnt == 0)
3325 b_tbl->bt_wcnt--;
3326
3327 if (empty) {
3328 b_dte->attr.raw = MMU_DT_INVALID;
3329 b_tbl->bt_ecnt--;
3330 }
3331 }
3332 }
3333 if (nstart < nend) {
3334 idx = MMU_TIB(nstart);
3335 b_dte = &b_tbl->bt_dtbl[idx];
3336 rstart = nstart;
3337 while (rstart < nend) {
3338 if (MMU_VALID_DT(*b_dte)) {
3339 c_dte = mmu_ptov(MMU_DTE_PA(*b_dte));
3340 c_tbl = mmuC2tmgr(c_dte);
3341 ct_wired = c_tbl->ct_wcnt;
3342
3343 free_c_table(c_tbl, true);
3344
3345 /*
3346 * All child entries has been removed.
3347 * If there were any wired entries in it,
3348 * decrement wired entry count.
3349 */
3350 if (ct_wired)
3351 b_tbl->bt_wcnt--;
3352
3353 b_dte->attr.raw = MMU_DT_INVALID;
3354 b_tbl->bt_ecnt--;
3355 }
3356 b_dte++;
3357 rstart += MMU_TIB_RANGE;
3358 }
3359 }
3360 if (nend < eva) {
3361 idx = MMU_TIB(nend);
3362 b_dte = &b_tbl->bt_dtbl[idx];
3363 if (MMU_VALID_DT(*b_dte)) {
3364 c_dte = mmu_ptov(MMU_DTE_PA(*b_dte));
3365 c_tbl = mmuC2tmgr(c_dte);
3366 ct_wired = c_tbl->ct_wcnt;
3367 empty = pmap_remove_c(c_tbl, nend, eva);
3368
3369 /*
3370 * If the child table no longer has wired entries,
3371 * decrement wired entry count.
3372 */
3373 if (ct_wired && c_tbl->ct_wcnt == 0)
3374 b_tbl->bt_wcnt--;
3375
3376 if (empty) {
3377 b_dte->attr.raw = MMU_DT_INVALID;
3378 b_tbl->bt_ecnt--;
3379 }
3380 }
3381 }
3382
3383 if (b_tbl->bt_ecnt == 0) {
3384 KASSERT(b_tbl->bt_wcnt == 0);
3385 b_tbl->bt_parent = NULL;
3386 if (!bt_wired)
3387 TAILQ_REMOVE(&b_pool, b_tbl, bt_link);
3388 TAILQ_INSERT_HEAD(&b_pool, b_tbl, bt_link);
3389 empty = true;
3390 } else {
3391 /*
3392 * If the table doesn't have wired entries any longer
3393 * but still has unwired entries, put it back into
3394 * the available queue.
3395 */
3396 if (bt_wired && b_tbl->bt_wcnt == 0)
3397 TAILQ_INSERT_TAIL(&b_pool, b_tbl, bt_link);
3398
3399 empty = false;
3400 }
3401
3402 return empty;
3403 }
3404
3405 /* pmap_remove_c INTERNAL
3406 **
3407 * Remove a range of addresses from the given C table.
3408 */
3409 bool
3410 pmap_remove_c(c_tmgr_t *c_tbl, vaddr_t sva, vaddr_t eva)
3411 {
3412 bool empty;
3413 int idx;
3414 mmu_short_pte_t *c_pte;
3415 uint8_t ct_wired;
3416
3417 ct_wired = c_tbl->ct_wcnt;
3418
3419 idx = MMU_TIC(sva);
3420 c_pte = &c_tbl->ct_dtbl[idx];
3421 for (; sva < eva; sva += MMU_PAGE_SIZE, c_pte++) {
3422 if (MMU_VALID_DT(*c_pte)) {
3423 if (c_pte->attr.raw & MMU_SHORT_PTE_WIRED)
3424 c_tbl->ct_wcnt--;
3425 pmap_remove_pte(c_pte);
3426 c_tbl->ct_ecnt--;
3427 }
3428 }
3429
3430 if (c_tbl->ct_ecnt == 0) {
3431 KASSERT(c_tbl->ct_wcnt == 0);
3432 c_tbl->ct_parent = NULL;
3433 if (!ct_wired)
3434 TAILQ_REMOVE(&c_pool, c_tbl, ct_link);
3435 TAILQ_INSERT_HEAD(&c_pool, c_tbl, ct_link);
3436 empty = true;
3437 } else {
3438 /*
3439 * If the table doesn't have wired entries any longer
3440 * but still has unwired entries, put it back into
3441 * the available queue.
3442 */
3443 if (ct_wired && c_tbl->ct_wcnt == 0)
3444 TAILQ_INSERT_TAIL(&c_pool, c_tbl, ct_link);
3445 empty = false;
3446 }
3447
3448 return empty;
3449 }
3450
3451 /* pmap_bootstrap_alloc INTERNAL
3452 **
3453 * Used internally for memory allocation at startup when malloc is not
3454 * available. This code will fail once it crosses the first memory
3455 * bank boundary on the 3/80. Hopefully by then however, the VM system
3456 * will be in charge of allocation.
3457 */
3458 void *
3459 pmap_bootstrap_alloc(int size)
3460 {
3461 void *rtn;
3462
3463 #ifdef PMAP_DEBUG
3464 if (bootstrap_alloc_enabled == false) {
3465 mon_printf("pmap_bootstrap_alloc: disabled\n");
3466 sunmon_abort();
3467 }
3468 #endif
3469
3470 rtn = (void *) virtual_avail;
3471 virtual_avail += size;
3472
3473 #ifdef PMAP_DEBUG
3474 if (virtual_avail > virtual_contig_end) {
3475 mon_printf("pmap_bootstrap_alloc: out of mem\n");
3476 sunmon_abort();
3477 }
3478 #endif
3479
3480 return rtn;
3481 }
3482
3483 /* pmap_bootstap_aalign INTERNAL
3484 **
3485 * Used to insure that the next call to pmap_bootstrap_alloc() will
3486 * return a chunk of memory aligned to the specified size.
3487 *
3488 * Note: This function will only support alignment sizes that are powers
3489 * of two.
3490 */
3491 void
3492 pmap_bootstrap_aalign(int size)
3493 {
3494 int off;
3495
3496 off = virtual_avail & (size - 1);
3497 if (off) {
3498 (void)pmap_bootstrap_alloc(size - off);
3499 }
3500 }
3501
3502 /* pmap_pa_exists
3503 **
3504 * Used by the /dev/mem driver to see if a given PA is memory
3505 * that can be mapped. (The PA is not in a hole.)
3506 */
3507 int
3508 pmap_pa_exists(paddr_t pa)
3509 {
3510 int i;
3511
3512 for (i = 0; i < SUN3X_NPHYS_RAM_SEGS; i++) {
3513 if ((pa >= avail_mem[i].pmem_start) &&
3514 (pa < avail_mem[i].pmem_end))
3515 return 1;
3516 if (avail_mem[i].pmem_next == NULL)
3517 break;
3518 }
3519 return 0;
3520 }
3521
3522 /* Called only from locore.s and pmap.c */
3523 void _pmap_switch(pmap_t pmap);
3524
3525 /*
3526 * _pmap_switch INTERNAL
3527 *
3528 * This is called by locore.s:cpu_switch() when it is
3529 * switching to a new process. Load new translations.
3530 * Note: done in-line by locore.s unless PMAP_DEBUG
3531 *
3532 * Note that we do NOT allocate a context here, but
3533 * share the "kernel only" context until we really
3534 * need our own context for user-space mappings in
3535 * pmap_enter_user(). [ s/context/mmu A table/ ]
3536 */
3537 void
3538 _pmap_switch(pmap_t pmap)
3539 {
3540 u_long rootpa;
3541
3542 /*
3543 * Only do reload/flush if we have to.
3544 * Note that if the old and new process
3545 * were BOTH using the "null" context,
3546 * then this will NOT flush the TLB.
3547 */
3548 rootpa = pmap->pm_a_phys;
3549 if (kernel_crp.rp_addr != rootpa) {
3550 DPRINT(("pmap_activate(%p)\n", pmap));
3551 kernel_crp.rp_addr = rootpa;
3552 loadcrp(&kernel_crp);
3553 TBIAU();
3554 }
3555 }
3556
3557 /*
3558 * Exported version of pmap_activate(). This is called from the
3559 * machine-independent VM code when a process is given a new pmap.
3560 * If (p == curlwp) do like cpu_switch would do; otherwise just
3561 * take this as notification that the process has a new pmap.
3562 */
3563 void
3564 pmap_activate(struct lwp *l)
3565 {
3566
3567 if (l->l_proc == curproc) {
3568 _pmap_switch(l->l_proc->p_vmspace->vm_map.pmap);
3569 }
3570 }
3571
3572 /*
3573 * pmap_deactivate INTERFACE
3574 **
3575 * This is called to deactivate the specified process's address space.
3576 */
3577 void
3578 pmap_deactivate(struct lwp *l)
3579 {
3580
3581 /* Nothing to do. */
3582 }
3583
3584 /*
3585 * Fill in the sun3x-specific part of the kernel core header
3586 * for dumpsys(). (See machdep.c for the rest.)
3587 */
3588 void
3589 pmap_kcore_hdr(struct sun3x_kcore_hdr *sh)
3590 {
3591 u_long spa, len;
3592 int i;
3593
3594 sh->pg_frame = MMU_SHORT_PTE_BASEADDR;
3595 sh->pg_valid = MMU_DT_PAGE;
3596 sh->contig_end = virtual_contig_end;
3597 sh->kernCbase = (u_long)kernCbase;
3598 for (i = 0; i < SUN3X_NPHYS_RAM_SEGS; i++) {
3599 spa = avail_mem[i].pmem_start;
3600 spa = m68k_trunc_page(spa);
3601 len = avail_mem[i].pmem_end - spa;
3602 len = m68k_round_page(len);
3603 sh->ram_segs[i].start = spa;
3604 sh->ram_segs[i].size = len;
3605 }
3606 }
3607
3608
3609 /* pmap_virtual_space INTERFACE
3610 **
3611 * Return the current available range of virtual addresses in the
3612 * arguuments provided. Only really called once.
3613 */
3614 void
3615 pmap_virtual_space(vaddr_t *vstart, vaddr_t *vend)
3616 {
3617
3618 *vstart = virtual_avail;
3619 *vend = virtual_end;
3620 }
3621
3622 /*
3623 * Provide memory to the VM system.
3624 *
3625 * Assume avail_start is always in the
3626 * first segment as pmap_bootstrap does.
3627 */
3628 static void
3629 pmap_page_upload(void)
3630 {
3631 paddr_t a, b; /* memory range */
3632 int i;
3633
3634 /* Supply the memory in segments. */
3635 for (i = 0; i < SUN3X_NPHYS_RAM_SEGS; i++) {
3636 a = atop(avail_mem[i].pmem_start);
3637 b = atop(avail_mem[i].pmem_end);
3638 if (i == 0)
3639 a = atop(avail_start);
3640 if (avail_mem[i].pmem_end > avail_end)
3641 b = atop(avail_end);
3642
3643 uvm_page_physload(a, b, a, b, VM_FREELIST_DEFAULT);
3644
3645 if (avail_mem[i].pmem_next == NULL)
3646 break;
3647 }
3648 }
3649
3650 /* pmap_count INTERFACE
3651 **
3652 * Return the number of resident (valid) pages in the given pmap.
3653 *
3654 * Note: If this function is handed the kernel map, it will report
3655 * that it has no mappings. Hopefully the VM system won't ask for kernel
3656 * map statistics.
3657 */
3658 segsz_t
3659 pmap_count(pmap_t pmap, int type)
3660 {
3661 u_int count;
3662 int a_idx, b_idx;
3663 a_tmgr_t *a_tbl;
3664 b_tmgr_t *b_tbl;
3665 c_tmgr_t *c_tbl;
3666
3667 /*
3668 * If the pmap does not have its own A table manager, it has no
3669 * valid entires.
3670 */
3671 if (pmap->pm_a_tmgr == NULL)
3672 return 0;
3673
3674 a_tbl = pmap->pm_a_tmgr;
3675
3676 count = 0;
3677 for (a_idx = 0; a_idx < MMU_TIA(KERNBASE); a_idx++) {
3678 if (MMU_VALID_DT(a_tbl->at_dtbl[a_idx])) {
3679 b_tbl = mmuB2tmgr(mmu_ptov(a_tbl->at_dtbl[a_idx].addr.raw));
3680 for (b_idx = 0; b_idx < MMU_B_TBL_SIZE; b_idx++) {
3681 if (MMU_VALID_DT(b_tbl->bt_dtbl[b_idx])) {
3682 c_tbl = mmuC2tmgr(
3683 mmu_ptov(MMU_DTE_PA(b_tbl->bt_dtbl[b_idx])));
3684 if (type == 0)
3685 /*
3686 * A resident entry count has been requested.
3687 */
3688 count += c_tbl->ct_ecnt;
3689 else
3690 /*
3691 * A wired entry count has been requested.
3692 */
3693 count += c_tbl->ct_wcnt;
3694 }
3695 }
3696 }
3697 }
3698
3699 return count;
3700 }
3701
3702 /************************ SUN3 COMPATIBILITY ROUTINES ********************
3703 * The following routines are only used by DDB for tricky kernel text *
3704 * text operations in db_memrw.c. They are provided for sun3 *
3705 * compatibility. *
3706 *************************************************************************/
3707 /* get_pte INTERNAL
3708 **
3709 * Return the page descriptor the describes the kernel mapping
3710 * of the given virtual address.
3711 */
3712 extern u_long ptest_addr(u_long); /* XXX: locore.s */
3713 u_int
3714 get_pte(vaddr_t va)
3715 {
3716 u_long pte_pa;
3717 mmu_short_pte_t *pte;
3718
3719 /* Get the physical address of the PTE */
3720 pte_pa = ptest_addr(va & ~PGOFSET);
3721
3722 /* Convert to a virtual address... */
3723 pte = (mmu_short_pte_t *) (KERNBASE + pte_pa);
3724
3725 /* Make sure it is in our level-C tables... */
3726 if ((pte < kernCbase) ||
3727 (pte >= &mmuCbase[NUM_USER_PTES]))
3728 return 0;
3729
3730 /* ... and just return its contents. */
3731 return (pte->attr.raw);
3732 }
3733
3734
3735 /* set_pte INTERNAL
3736 **
3737 * Set the page descriptor that describes the kernel mapping
3738 * of the given virtual address.
3739 */
3740 void
3741 set_pte(vaddr_t va, u_int pte)
3742 {
3743 u_long idx;
3744
3745 if (va < KERNBASE)
3746 return;
3747
3748 idx = (unsigned long) m68k_btop(va - KERNBASE);
3749 kernCbase[idx].attr.raw = pte;
3750 TBIS(va);
3751 }
3752
3753 /*
3754 * Routine: pmap_procwr
3755 *
3756 * Function:
3757 * Synchronize caches corresponding to [addr, addr+len) in p.
3758 */
3759 void
3760 pmap_procwr(struct proc *p, vaddr_t va, size_t len)
3761 {
3762
3763 (void)cachectl1(0x80000004, va, len, p);
3764 }
3765
3766
3767 #ifdef PMAP_DEBUG
3768 /************************** DEBUGGING ROUTINES **************************
3769 * The following routines are meant to be an aid to debugging the pmap *
3770 * system. They are callable from the DDB command line and should be *
3771 * prepared to be handed unstable or incomplete states of the system. *
3772 ************************************************************************/
3773
3774 /* pv_list
3775 **
3776 * List all pages found on the pv list for the given physical page.
3777 * To avoid endless loops, the listing will stop at the end of the list
3778 * or after 'n' entries - whichever comes first.
3779 */
3780 void
3781 pv_list(paddr_t pa, int n)
3782 {
3783 int idx;
3784 vaddr_t va;
3785 pv_t *pv;
3786 c_tmgr_t *c_tbl;
3787 pmap_t pmap;
3788
3789 pv = pa2pv(pa);
3790 idx = pv->pv_idx;
3791 for (; idx != PVE_EOL && n > 0; idx = pvebase[idx].pve_next, n--) {
3792 va = pmap_get_pteinfo(idx, &pmap, &c_tbl);
3793 printf("idx %d, pmap 0x%x, va 0x%x, c_tbl %x\n",
3794 idx, (u_int) pmap, (u_int) va, (u_int) c_tbl);
3795 }
3796 }
3797 #endif /* PMAP_DEBUG */
3798
3799 #ifdef NOT_YET
3800 /* and maybe not ever */
3801 /************************** LOW-LEVEL ROUTINES **************************
3802 * These routines will eventually be re-written into assembly and placed*
3803 * in locore.s. They are here now as stubs so that the pmap module can *
3804 * be linked as a standalone user program for testing. *
3805 ************************************************************************/
3806 /* flush_atc_crp INTERNAL
3807 **
3808 * Flush all page descriptors derived from the given CPU Root Pointer
3809 * (CRP), or 'A' table as it is known here, from the 68851's automatic
3810 * cache.
3811 */
3812 void
3813 flush_atc_crp(int a_tbl)
3814 {
3815 mmu_long_rp_t rp;
3816
3817 /* Create a temporary root table pointer that points to the
3818 * given A table.
3819 */
3820 rp.attr.raw = ~MMU_LONG_RP_LU;
3821 rp.addr.raw = (unsigned int) a_tbl;
3822
3823 mmu_pflushr(&rp);
3824 /* mmu_pflushr:
3825 * movel sp(4)@,a0
3826 * pflushr a0@
3827 * rts
3828 */
3829 }
3830 #endif /* NOT_YET */
3831