Home | History | Annotate | Line # | Download | only in sun3x
pmap.c revision 1.105
      1 /*	$NetBSD: pmap.c,v 1.105 2009/04/25 15:32:30 tsutsui Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1996, 1997 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jeremy Cooper.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * XXX These comments aren't quite accurate.  Need to change.
     34  * The sun3x uses the MC68851 Memory Management Unit, which is built
     35  * into the CPU.  The 68851 maps virtual to physical addresses using
     36  * a multi-level table lookup, which is stored in the very memory that
     37  * it maps.  The number of levels of lookup is configurable from one
     38  * to four.  In this implementation, we use three, named 'A' through 'C'.
     39  *
     40  * The MMU translates virtual addresses into physical addresses by
     41  * traversing these tables in a process called a 'table walk'.  The most
     42  * significant 7 bits of the Virtual Address ('VA') being translated are
     43  * used as an index into the level A table, whose base in physical memory
     44  * is stored in a special MMU register, the 'CPU Root Pointer' or CRP.  The
     45  * address found at that index in the A table is used as the base
     46  * address for the next table, the B table.  The next six bits of the VA are
     47  * used as an index into the B table, which in turn gives the base address
     48  * of the third and final C table.
     49  *
     50  * The next six bits of the VA are used as an index into the C table to
     51  * locate a Page Table Entry (PTE).  The PTE is a physical address in memory
     52  * to which the remaining 13 bits of the VA are added, producing the
     53  * mapped physical address.
     54  *
     55  * To map the entire memory space in this manner would require 2114296 bytes
     56  * of page tables per process - quite expensive.  Instead we will
     57  * allocate a fixed but considerably smaller space for the page tables at
     58  * the time the VM system is initialized.  When the pmap code is asked by
     59  * the kernel to map a VA to a PA, it allocates tables as needed from this
     60  * pool.  When there are no more tables in the pool, tables are stolen
     61  * from the oldest mapped entries in the tree.  This is only possible
     62  * because all memory mappings are stored in the kernel memory map
     63  * structures, independent of the pmap structures.  A VA which references
     64  * one of these invalidated maps will cause a page fault.  The kernel
     65  * will determine that the page fault was caused by a task using a valid
     66  * VA, but for some reason (which does not concern it), that address was
     67  * not mapped.  It will ask the pmap code to re-map the entry and then
     68  * it will resume executing the faulting task.
     69  *
     70  * In this manner the most efficient use of the page table space is
     71  * achieved.  Tasks which do not execute often will have their tables
     72  * stolen and reused by tasks which execute more frequently.  The best
     73  * size for the page table pool will probably be determined by
     74  * experimentation.
     75  *
     76  * You read all of the comments so far.  Good for you.
     77  * Now go play!
     78  */
     79 
     80 /*** A Note About the 68851 Address Translation Cache
     81  * The MC68851 has a 64 entry cache, called the Address Translation Cache
     82  * or 'ATC'.  This cache stores the most recently used page descriptors
     83  * accessed by the MMU when it does translations.  Using a marker called a
     84  * 'task alias' the MMU can store the descriptors from 8 different table
     85  * spaces concurrently.  The task alias is associated with the base
     86  * address of the level A table of that address space.  When an address
     87  * space is currently active (the CRP currently points to its A table)
     88  * the only cached descriptors that will be obeyed are ones which have a
     89  * matching task alias of the current space associated with them.
     90  *
     91  * Since the cache is always consulted before any table lookups are done,
     92  * it is important that it accurately reflect the state of the MMU tables.
     93  * Whenever a change has been made to a table that has been loaded into
     94  * the MMU, the code must be sure to flush any cached entries that are
     95  * affected by the change.  These instances are documented in the code at
     96  * various points.
     97  */
     98 /*** A Note About the Note About the 68851 Address Translation Cache
     99  * 4 months into this code I discovered that the sun3x does not have
    100  * a MC68851 chip. Instead, it has a version of this MMU that is part of the
    101  * the 68030 CPU.
    102  * All though it behaves very similarly to the 68851, it only has 1 task
    103  * alias and a 22 entry cache.  So sadly (or happily), the first paragraph
    104  * of the previous note does not apply to the sun3x pmap.
    105  */
    106 
    107 #include <sys/cdefs.h>
    108 __KERNEL_RCSID(0, "$NetBSD: pmap.c,v 1.105 2009/04/25 15:32:30 tsutsui Exp $");
    109 
    110 #include "opt_ddb.h"
    111 #include "opt_pmap_debug.h"
    112 
    113 #include <sys/param.h>
    114 #include <sys/systm.h>
    115 #include <sys/proc.h>
    116 #include <sys/malloc.h>
    117 #include <sys/pool.h>
    118 #include <sys/user.h>
    119 #include <sys/queue.h>
    120 #include <sys/kcore.h>
    121 
    122 #include <uvm/uvm.h>
    123 
    124 #include <machine/cpu.h>
    125 #include <machine/kcore.h>
    126 #include <machine/mon.h>
    127 #include <machine/pmap.h>
    128 #include <machine/pte.h>
    129 #include <machine/vmparam.h>
    130 #include <m68k/cacheops.h>
    131 
    132 #include <sun3/sun3/cache.h>
    133 #include <sun3/sun3/machdep.h>
    134 
    135 #include "pmap_pvt.h"
    136 
    137 /* XXX - What headers declare these? */
    138 extern struct pcb *curpcb;
    139 extern int physmem;
    140 
    141 /* Defined in locore.s */
    142 extern char kernel_text[];
    143 
    144 /* Defined by the linker */
    145 extern char etext[], edata[], end[];
    146 extern char *esym;	/* DDB */
    147 
    148 /*************************** DEBUGGING DEFINITIONS ***********************
    149  * Macros, preprocessor defines and variables used in debugging can make *
    150  * code hard to read.  Anything used exclusively for debugging purposes  *
    151  * is defined here to avoid having such mess scattered around the file.  *
    152  *************************************************************************/
    153 #ifdef	PMAP_DEBUG
    154 /*
    155  * To aid the debugging process, macros should be expanded into smaller steps
    156  * that accomplish the same goal, yet provide convenient places for placing
    157  * breakpoints.  When this code is compiled with PMAP_DEBUG mode defined, the
    158  * 'INLINE' keyword is defined to an empty string.  This way, any function
    159  * defined to be a 'static INLINE' will become 'outlined' and compiled as
    160  * a separate function, which is much easier to debug.
    161  */
    162 #define	INLINE	/* nothing */
    163 
    164 /*
    165  * It is sometimes convenient to watch the activity of a particular table
    166  * in the system.  The following variables are used for that purpose.
    167  */
    168 a_tmgr_t *pmap_watch_atbl = 0;
    169 b_tmgr_t *pmap_watch_btbl = 0;
    170 c_tmgr_t *pmap_watch_ctbl = 0;
    171 
    172 int pmap_debug = 0;
    173 #define DPRINT(args) if (pmap_debug) printf args
    174 
    175 #else	/********** Stuff below is defined if NOT debugging **************/
    176 
    177 #define	INLINE	inline
    178 #define DPRINT(args)  /* nada */
    179 
    180 #endif	/* PMAP_DEBUG */
    181 /*********************** END OF DEBUGGING DEFINITIONS ********************/
    182 
    183 /*** Management Structure - Memory Layout
    184  * For every MMU table in the sun3x pmap system there must be a way to
    185  * manage it; we must know which process is using it, what other tables
    186  * depend on it, and whether or not it contains any locked pages.  This
    187  * is solved by the creation of 'table management'  or 'tmgr'
    188  * structures.  One for each MMU table in the system.
    189  *
    190  *                        MAP OF MEMORY USED BY THE PMAP SYSTEM
    191  *
    192  *      towards lower memory
    193  * kernAbase -> +-------------------------------------------------------+
    194  *              | Kernel     MMU A level table                          |
    195  * kernBbase -> +-------------------------------------------------------+
    196  *              | Kernel     MMU B level tables                         |
    197  * kernCbase -> +-------------------------------------------------------+
    198  *              |                                                       |
    199  *              | Kernel     MMU C level tables                         |
    200  *              |                                                       |
    201  * mmuCbase  -> +-------------------------------------------------------+
    202  *              | User       MMU C level tables                         |
    203  * mmuAbase  -> +-------------------------------------------------------+
    204  *              |                                                       |
    205  *              | User       MMU A level tables                         |
    206  *              |                                                       |
    207  * mmuBbase  -> +-------------------------------------------------------+
    208  *              | User       MMU B level tables                         |
    209  * tmgrAbase -> +-------------------------------------------------------+
    210  *              |  TMGR A level table structures                        |
    211  * tmgrBbase -> +-------------------------------------------------------+
    212  *              |  TMGR B level table structures                        |
    213  * tmgrCbase -> +-------------------------------------------------------+
    214  *              |  TMGR C level table structures                        |
    215  * pvbase    -> +-------------------------------------------------------+
    216  *              |  Physical to Virtual mapping table (list heads)       |
    217  * pvebase   -> +-------------------------------------------------------+
    218  *              |  Physical to Virtual mapping table (list elements)    |
    219  *              |                                                       |
    220  *              +-------------------------------------------------------+
    221  *      towards higher memory
    222  *
    223  * For every A table in the MMU A area, there will be a corresponding
    224  * a_tmgr structure in the TMGR A area.  The same will be true for
    225  * the B and C tables.  This arrangement will make it easy to find the
    226  * controling tmgr structure for any table in the system by use of
    227  * (relatively) simple macros.
    228  */
    229 
    230 /*
    231  * Global variables for storing the base addresses for the areas
    232  * labeled above.
    233  */
    234 static vaddr_t  	kernAphys;
    235 static mmu_long_dte_t	*kernAbase;
    236 static mmu_short_dte_t	*kernBbase;
    237 static mmu_short_pte_t	*kernCbase;
    238 static mmu_short_pte_t	*mmuCbase;
    239 static mmu_short_dte_t	*mmuBbase;
    240 static mmu_long_dte_t	*mmuAbase;
    241 static a_tmgr_t		*Atmgrbase;
    242 static b_tmgr_t		*Btmgrbase;
    243 static c_tmgr_t		*Ctmgrbase;
    244 static pv_t 		*pvbase;
    245 static pv_elem_t	*pvebase;
    246 static struct pmap	kernel_pmap;
    247 struct pmap		*const kernel_pmap_ptr = &kernel_pmap;
    248 
    249 /*
    250  * This holds the CRP currently loaded into the MMU.
    251  */
    252 struct mmu_rootptr kernel_crp;
    253 
    254 /*
    255  * Just all around global variables.
    256  */
    257 static TAILQ_HEAD(a_pool_head_struct, a_tmgr_struct) a_pool;
    258 static TAILQ_HEAD(b_pool_head_struct, b_tmgr_struct) b_pool;
    259 static TAILQ_HEAD(c_pool_head_struct, c_tmgr_struct) c_pool;
    260 
    261 
    262 /*
    263  * Flags used to mark the safety/availability of certain operations or
    264  * resources.
    265  */
    266 /* Safe to use pmap_bootstrap_alloc(). */
    267 static bool bootstrap_alloc_enabled = false;
    268 /* Temporary virtual pages are in use */
    269 int tmp_vpages_inuse;
    270 
    271 /*
    272  * XXX:  For now, retain the traditional variables that were
    273  * used in the old pmap/vm interface (without NONCONTIG).
    274  */
    275 /* Kernel virtual address space available: */
    276 vaddr_t	virtual_avail, virtual_end;
    277 /* Physical address space available: */
    278 paddr_t	avail_start, avail_end;
    279 
    280 /* This keep track of the end of the contiguously mapped range. */
    281 vaddr_t virtual_contig_end;
    282 
    283 /* Physical address used by pmap_next_page() */
    284 paddr_t avail_next;
    285 
    286 /* These are used by pmap_copy_page(), etc. */
    287 vaddr_t tmp_vpages[2];
    288 
    289 /* memory pool for pmap structures */
    290 struct pool	pmap_pmap_pool;
    291 
    292 /*
    293  * The 3/80 is the only member of the sun3x family that has non-contiguous
    294  * physical memory.  Memory is divided into 4 banks which are physically
    295  * locatable on the system board.  Although the size of these banks varies
    296  * with the size of memory they contain, their base addresses are
    297  * permenently fixed.  The following structure, which describes these
    298  * banks, is initialized by pmap_bootstrap() after it reads from a similar
    299  * structure provided by the ROM Monitor.
    300  *
    301  * For the other machines in the sun3x architecture which do have contiguous
    302  * RAM, this list will have only one entry, which will describe the entire
    303  * range of available memory.
    304  */
    305 struct pmap_physmem_struct avail_mem[SUN3X_NPHYS_RAM_SEGS];
    306 u_int total_phys_mem;
    307 
    308 /*************************************************************************/
    309 
    310 /*
    311  * XXX - Should "tune" these based on statistics.
    312  *
    313  * My first guess about the relative numbers of these needed is
    314  * based on the fact that a "typical" process will have several
    315  * pages mapped at low virtual addresses (text, data, bss), then
    316  * some mapped shared libraries, and then some stack pages mapped
    317  * near the high end of the VA space.  Each process can use only
    318  * one A table, and most will use only two B tables (maybe three)
    319  * and probably about four C tables.  Therefore, the first guess
    320  * at the relative numbers of these needed is 1:2:4 -gwr
    321  *
    322  * The number of C tables needed is closely related to the amount
    323  * of physical memory available plus a certain amount attributable
    324  * to the use of double mappings.  With a few simulation statistics
    325  * we can find a reasonably good estimation of this unknown value.
    326  * Armed with that and the above ratios, we have a good idea of what
    327  * is needed at each level. -j
    328  *
    329  * Note: It is not physical memory memory size, but the total mapped
    330  * virtual space required by the combined working sets of all the
    331  * currently _runnable_ processes.  (Sleeping ones don't count.)
    332  * The amount of physical memory should be irrelevant. -gwr
    333  */
    334 #ifdef	FIXED_NTABLES
    335 #define NUM_A_TABLES	16
    336 #define NUM_B_TABLES	32
    337 #define NUM_C_TABLES	64
    338 #else
    339 unsigned int	NUM_A_TABLES, NUM_B_TABLES, NUM_C_TABLES;
    340 #endif	/* FIXED_NTABLES */
    341 
    342 /*
    343  * This determines our total virtual mapping capacity.
    344  * Yes, it is a FIXED value so we can pre-allocate.
    345  */
    346 #define NUM_USER_PTES	(NUM_C_TABLES * MMU_C_TBL_SIZE)
    347 
    348 /*
    349  * The size of the Kernel Virtual Address Space (KVAS)
    350  * for purposes of MMU table allocation is -KERNBASE
    351  * (length from KERNBASE to 0xFFFFffff)
    352  */
    353 #define	KVAS_SIZE		(-KERNBASE)
    354 
    355 /* Numbers of kernel MMU tables to support KVAS_SIZE. */
    356 #define KERN_B_TABLES	(KVAS_SIZE >> MMU_TIA_SHIFT)
    357 #define KERN_C_TABLES	(KVAS_SIZE >> MMU_TIB_SHIFT)
    358 #define	NUM_KERN_PTES	(KVAS_SIZE >> MMU_TIC_SHIFT)
    359 
    360 /*************************** MISCELANEOUS MACROS *************************/
    361 #define pmap_lock(pmap) simple_lock(&pmap->pm_lock)
    362 #define pmap_unlock(pmap) simple_unlock(&pmap->pm_lock)
    363 #define pmap_add_ref(pmap) ++pmap->pm_refcount
    364 #define pmap_del_ref(pmap) --pmap->pm_refcount
    365 #define pmap_refcount(pmap) pmap->pm_refcount
    366 
    367 void *pmap_bootstrap_alloc(int);
    368 
    369 static INLINE void *mmu_ptov(paddr_t);
    370 static INLINE paddr_t mmu_vtop(void *);
    371 
    372 #if	0
    373 static INLINE a_tmgr_t *mmuA2tmgr(mmu_long_dte_t *);
    374 #endif /* 0 */
    375 static INLINE b_tmgr_t *mmuB2tmgr(mmu_short_dte_t *);
    376 static INLINE c_tmgr_t *mmuC2tmgr(mmu_short_pte_t *);
    377 
    378 static INLINE pv_t *pa2pv(paddr_t);
    379 static INLINE int   pteidx(mmu_short_pte_t *);
    380 static INLINE pmap_t current_pmap(void);
    381 
    382 /*
    383  * We can always convert between virtual and physical addresses
    384  * for anything in the range [KERNBASE ... avail_start] because
    385  * that range is GUARANTEED to be mapped linearly.
    386  * We rely heavily upon this feature!
    387  */
    388 static INLINE void *
    389 mmu_ptov(paddr_t pa)
    390 {
    391 	vaddr_t va;
    392 
    393 	va = (pa + KERNBASE);
    394 #ifdef	PMAP_DEBUG
    395 	if ((va < KERNBASE) || (va >= virtual_contig_end))
    396 		panic("mmu_ptov");
    397 #endif
    398 	return (void *)va;
    399 }
    400 
    401 static INLINE paddr_t
    402 mmu_vtop(void *vva)
    403 {
    404 	vaddr_t va;
    405 
    406 	va = (vaddr_t)vva;
    407 #ifdef	PMAP_DEBUG
    408 	if ((va < KERNBASE) || (va >= virtual_contig_end))
    409 		panic("mmu_vtop");
    410 #endif
    411 	return va - KERNBASE;
    412 }
    413 
    414 /*
    415  * These macros map MMU tables to their corresponding manager structures.
    416  * They are needed quite often because many of the pointers in the pmap
    417  * system reference MMU tables and not the structures that control them.
    418  * There needs to be a way to find one when given the other and these
    419  * macros do so by taking advantage of the memory layout described above.
    420  * Here's a quick step through the first macro, mmuA2tmgr():
    421  *
    422  * 1) find the offset of the given MMU A table from the base of its table
    423  *    pool (table - mmuAbase).
    424  * 2) convert this offset into a table index by dividing it by the
    425  *    size of one MMU 'A' table. (sizeof(mmu_long_dte_t) * MMU_A_TBL_SIZE)
    426  * 3) use this index to select the corresponding 'A' table manager
    427  *    structure from the 'A' table manager pool (Atmgrbase[index]).
    428  */
    429 /*  This function is not currently used. */
    430 #if	0
    431 static INLINE a_tmgr_t *
    432 mmuA2tmgr(mmu_long_dte_t *mmuAtbl)
    433 {
    434 	int idx;
    435 
    436 	/* Which table is this in? */
    437 	idx = (mmuAtbl - mmuAbase) / MMU_A_TBL_SIZE;
    438 #ifdef	PMAP_DEBUG
    439 	if ((idx < 0) || (idx >= NUM_A_TABLES))
    440 		panic("mmuA2tmgr");
    441 #endif
    442 	return &Atmgrbase[idx];
    443 }
    444 #endif	/* 0 */
    445 
    446 static INLINE b_tmgr_t *
    447 mmuB2tmgr(mmu_short_dte_t *mmuBtbl)
    448 {
    449 	int idx;
    450 
    451 	/* Which table is this in? */
    452 	idx = (mmuBtbl - mmuBbase) / MMU_B_TBL_SIZE;
    453 #ifdef	PMAP_DEBUG
    454 	if ((idx < 0) || (idx >= NUM_B_TABLES))
    455 		panic("mmuB2tmgr");
    456 #endif
    457 	return &Btmgrbase[idx];
    458 }
    459 
    460 /* mmuC2tmgr			INTERNAL
    461  **
    462  * Given a pte known to belong to a C table, return the address of
    463  * that table's management structure.
    464  */
    465 static INLINE c_tmgr_t *
    466 mmuC2tmgr(mmu_short_pte_t *mmuCtbl)
    467 {
    468 	int idx;
    469 
    470 	/* Which table is this in? */
    471 	idx = (mmuCtbl - mmuCbase) / MMU_C_TBL_SIZE;
    472 #ifdef	PMAP_DEBUG
    473 	if ((idx < 0) || (idx >= NUM_C_TABLES))
    474 		panic("mmuC2tmgr");
    475 #endif
    476 	return &Ctmgrbase[idx];
    477 }
    478 
    479 /* This is now a function call below.
    480  * #define pa2pv(pa) \
    481  *	(&pvbase[(unsigned long)\
    482  *		m68k_btop(pa)\
    483  *	])
    484  */
    485 
    486 /* pa2pv			INTERNAL
    487  **
    488  * Return the pv_list_head element which manages the given physical
    489  * address.
    490  */
    491 static INLINE pv_t *
    492 pa2pv(paddr_t pa)
    493 {
    494 	struct pmap_physmem_struct *bank;
    495 	int idx;
    496 
    497 	bank = &avail_mem[0];
    498 	while (pa >= bank->pmem_end)
    499 		bank = bank->pmem_next;
    500 
    501 	pa -= bank->pmem_start;
    502 	idx = bank->pmem_pvbase + m68k_btop(pa);
    503 #ifdef	PMAP_DEBUG
    504 	if ((idx < 0) || (idx >= physmem))
    505 		panic("pa2pv");
    506 #endif
    507 	return &pvbase[idx];
    508 }
    509 
    510 /* pteidx			INTERNAL
    511  **
    512  * Return the index of the given PTE within the entire fixed table of
    513  * PTEs.
    514  */
    515 static INLINE int
    516 pteidx(mmu_short_pte_t *pte)
    517 {
    518 
    519 	return pte - kernCbase;
    520 }
    521 
    522 /*
    523  * This just offers a place to put some debugging checks,
    524  * and reduces the number of places "curlwp" appears...
    525  */
    526 static INLINE pmap_t
    527 current_pmap(void)
    528 {
    529 	struct vmspace *vm;
    530 	struct vm_map *map;
    531 	pmap_t	pmap;
    532 
    533 	vm = curproc->p_vmspace;
    534 	map = &vm->vm_map;
    535 	pmap = vm_map_pmap(map);
    536 
    537 	return pmap;
    538 }
    539 
    540 
    541 /*************************** FUNCTION DEFINITIONS ************************
    542  * These appear here merely for the compiler to enforce type checking on *
    543  * all function calls.                                                   *
    544  *************************************************************************/
    545 
    546 /*
    547  * Internal functions
    548  */
    549 a_tmgr_t *get_a_table(void);
    550 b_tmgr_t *get_b_table(void);
    551 c_tmgr_t *get_c_table(void);
    552 int free_a_table(a_tmgr_t *, bool);
    553 int free_b_table(b_tmgr_t *, bool);
    554 int free_c_table(c_tmgr_t *, bool);
    555 
    556 void pmap_bootstrap_aalign(int);
    557 void pmap_alloc_usermmu(void);
    558 void pmap_alloc_usertmgr(void);
    559 void pmap_alloc_pv(void);
    560 void pmap_init_a_tables(void);
    561 void pmap_init_b_tables(void);
    562 void pmap_init_c_tables(void);
    563 void pmap_init_pv(void);
    564 void pmap_clear_pv(paddr_t, int);
    565 static INLINE bool is_managed(paddr_t);
    566 
    567 bool pmap_remove_a(a_tmgr_t *, vaddr_t, vaddr_t);
    568 bool pmap_remove_b(b_tmgr_t *, vaddr_t, vaddr_t);
    569 bool pmap_remove_c(c_tmgr_t *, vaddr_t, vaddr_t);
    570 void pmap_remove_pte(mmu_short_pte_t *);
    571 
    572 void pmap_enter_kernel(vaddr_t, paddr_t, vm_prot_t);
    573 static INLINE void pmap_remove_kernel(vaddr_t, vaddr_t);
    574 static INLINE void pmap_protect_kernel(vaddr_t, vaddr_t, vm_prot_t);
    575 static INLINE bool pmap_extract_kernel(vaddr_t, paddr_t *);
    576 vaddr_t pmap_get_pteinfo(u_int, pmap_t *, c_tmgr_t **);
    577 static INLINE int pmap_dereference(pmap_t);
    578 
    579 bool pmap_stroll(pmap_t, vaddr_t, a_tmgr_t **, b_tmgr_t **, c_tmgr_t **,
    580     mmu_short_pte_t **, int *, int *, int *);
    581 void pmap_bootstrap_copyprom(void);
    582 void pmap_takeover_mmu(void);
    583 void pmap_bootstrap_setprom(void);
    584 static void pmap_page_upload(void);
    585 
    586 #ifdef PMAP_DEBUG
    587 /* Debugging function definitions */
    588 void  pv_list(paddr_t, int);
    589 #endif /* PMAP_DEBUG */
    590 
    591 /** Interface functions
    592  ** - functions required by the Mach VM Pmap interface, with MACHINE_CONTIG
    593  **   defined.
    594  **   The new UVM doesn't require them so now INTERNAL.
    595  **/
    596 static INLINE void pmap_pinit(pmap_t);
    597 static INLINE void pmap_release(pmap_t);
    598 
    599 /********************************** CODE ********************************
    600  * Functions that are called from other parts of the kernel are labeled *
    601  * as 'INTERFACE' functions.  Functions that are only called from       *
    602  * within the pmap module are labeled as 'INTERNAL' functions.          *
    603  * Functions that are internal, but are not (currently) used at all are *
    604  * labeled 'INTERNAL_X'.                                                *
    605  ************************************************************************/
    606 
    607 /* pmap_bootstrap			INTERNAL
    608  **
    609  * Initializes the pmap system.  Called at boot time from
    610  * locore2.c:_vm_init()
    611  *
    612  * Reminder: having a pmap_bootstrap_alloc() and also having the VM
    613  *           system implement pmap_steal_memory() is redundant.
    614  *           Don't release this code without removing one or the other!
    615  */
    616 void
    617 pmap_bootstrap(vaddr_t nextva)
    618 {
    619 	struct physmemory *membank;
    620 	struct pmap_physmem_struct *pmap_membank;
    621 	vaddr_t va, eva;
    622 	paddr_t pa;
    623 	int b, c, i, j;	/* running table counts */
    624 	int size, resvmem;
    625 
    626 	/*
    627 	 * This function is called by __bootstrap after it has
    628 	 * determined the type of machine and made the appropriate
    629 	 * patches to the ROM vectors (XXX- I don't quite know what I meant
    630 	 * by that.)  It allocates and sets up enough of the pmap system
    631 	 * to manage the kernel's address space.
    632 	 */
    633 
    634 	/*
    635 	 * Determine the range of kernel virtual and physical
    636 	 * space available. Note that we ABSOLUTELY DEPEND on
    637 	 * the fact that the first bank of memory (4MB) is
    638 	 * mapped linearly to KERNBASE (which we guaranteed in
    639 	 * the first instructions of locore.s).
    640 	 * That is plenty for our bootstrap work.
    641 	 */
    642 	virtual_avail = m68k_round_page(nextva);
    643 	virtual_contig_end = KERNBASE + 0x400000; /* +4MB */
    644 	virtual_end = VM_MAX_KERNEL_ADDRESS;
    645 	/* Don't need avail_start til later. */
    646 
    647 	/* We may now call pmap_bootstrap_alloc(). */
    648 	bootstrap_alloc_enabled = true;
    649 
    650 	/*
    651 	 * This is a somewhat unwrapped loop to deal with
    652 	 * copying the PROM's 'phsymem' banks into the pmap's
    653 	 * banks.  The following is always assumed:
    654 	 * 1. There is always at least one bank of memory.
    655 	 * 2. There is always a last bank of memory, and its
    656 	 *    pmem_next member must be set to NULL.
    657 	 */
    658 	membank = romVectorPtr->v_physmemory;
    659 	pmap_membank = avail_mem;
    660 	total_phys_mem = 0;
    661 
    662 	for (;;) { /* break on !membank */
    663 		pmap_membank->pmem_start = membank->address;
    664 		pmap_membank->pmem_end = membank->address + membank->size;
    665 		total_phys_mem += membank->size;
    666 		membank = membank->next;
    667 		if (!membank)
    668 			break;
    669 		/* This silly syntax arises because pmap_membank
    670 		 * is really a pre-allocated array, but it is put into
    671 		 * use as a linked list.
    672 		 */
    673 		pmap_membank->pmem_next = pmap_membank + 1;
    674 		pmap_membank = pmap_membank->pmem_next;
    675 	}
    676 	/* This is the last element. */
    677 	pmap_membank->pmem_next = NULL;
    678 
    679 	/*
    680 	 * Note: total_phys_mem, physmem represent
    681 	 * actual physical memory, including that
    682 	 * reserved for the PROM monitor.
    683 	 */
    684 	physmem = btoc(total_phys_mem);
    685 
    686 	/*
    687 	 * Avail_end is set to the first byte of physical memory
    688 	 * after the end of the last bank.  We use this only to
    689 	 * determine if a physical address is "managed" memory.
    690 	 * This address range should be reduced to prevent the
    691 	 * physical pages needed by the PROM monitor from being used
    692 	 * in the VM system.
    693 	 */
    694 	resvmem = total_phys_mem - *(romVectorPtr->memoryAvail);
    695 	resvmem = m68k_round_page(resvmem);
    696 	avail_end = pmap_membank->pmem_end - resvmem;
    697 
    698 	/*
    699 	 * First allocate enough kernel MMU tables to map all
    700 	 * of kernel virtual space from KERNBASE to 0xFFFFFFFF.
    701 	 * Note: All must be aligned on 256 byte boundaries.
    702 	 * Start with the level-A table (one of those).
    703 	 */
    704 	size = sizeof(mmu_long_dte_t) * MMU_A_TBL_SIZE;
    705 	kernAbase = pmap_bootstrap_alloc(size);
    706 	memset(kernAbase, 0, size);
    707 
    708 	/* Now the level-B kernel tables... */
    709 	size = sizeof(mmu_short_dte_t) * MMU_B_TBL_SIZE * KERN_B_TABLES;
    710 	kernBbase = pmap_bootstrap_alloc(size);
    711 	memset(kernBbase, 0, size);
    712 
    713 	/* Now the level-C kernel tables... */
    714 	size = sizeof(mmu_short_pte_t) * MMU_C_TBL_SIZE * KERN_C_TABLES;
    715 	kernCbase = pmap_bootstrap_alloc(size);
    716 	memset(kernCbase, 0, size);
    717 	/*
    718 	 * Note: In order for the PV system to work correctly, the kernel
    719 	 * and user-level C tables must be allocated contiguously.
    720 	 * Nothing should be allocated between here and the allocation of
    721 	 * mmuCbase below.  XXX: Should do this as one allocation, and
    722 	 * then compute a pointer for mmuCbase instead of this...
    723 	 *
    724 	 * Allocate user MMU tables.
    725 	 * These must be contiguous with the preceding.
    726 	 */
    727 
    728 #ifndef	FIXED_NTABLES
    729 	/*
    730 	 * The number of user-level C tables that should be allocated is
    731 	 * related to the size of physical memory.  In general, there should
    732 	 * be enough tables to map four times the amount of available RAM.
    733 	 * The extra amount is needed because some table space is wasted by
    734 	 * fragmentation.
    735 	 */
    736 	NUM_C_TABLES = (total_phys_mem * 4) / (MMU_C_TBL_SIZE * MMU_PAGE_SIZE);
    737 	NUM_B_TABLES = NUM_C_TABLES / 2;
    738 	NUM_A_TABLES = NUM_B_TABLES / 2;
    739 #endif	/* !FIXED_NTABLES */
    740 
    741 	size = sizeof(mmu_short_pte_t) * MMU_C_TBL_SIZE	* NUM_C_TABLES;
    742 	mmuCbase = pmap_bootstrap_alloc(size);
    743 
    744 	size = sizeof(mmu_short_dte_t) * MMU_B_TBL_SIZE	* NUM_B_TABLES;
    745 	mmuBbase = pmap_bootstrap_alloc(size);
    746 
    747 	size = sizeof(mmu_long_dte_t) * MMU_A_TBL_SIZE * NUM_A_TABLES;
    748 	mmuAbase = pmap_bootstrap_alloc(size);
    749 
    750 	/*
    751 	 * Fill in the never-changing part of the kernel tables.
    752 	 * For simplicity, the kernel's mappings will be editable as a
    753 	 * flat array of page table entries at kernCbase.  The
    754 	 * higher level 'A' and 'B' tables must be initialized to point
    755 	 * to this lower one.
    756 	 */
    757 	b = c = 0;
    758 
    759 	/*
    760 	 * Invalidate all mappings below KERNBASE in the A table.
    761 	 * This area has already been zeroed out, but it is good
    762 	 * practice to explicitly show that we are interpreting
    763 	 * it as a list of A table descriptors.
    764 	 */
    765 	for (i = 0; i < MMU_TIA(KERNBASE); i++) {
    766 		kernAbase[i].addr.raw = 0;
    767 	}
    768 
    769 	/*
    770 	 * Set up the kernel A and B tables so that they will reference the
    771 	 * correct spots in the contiguous table of PTEs allocated for the
    772 	 * kernel's virtual memory space.
    773 	 */
    774 	for (i = MMU_TIA(KERNBASE); i < MMU_A_TBL_SIZE; i++) {
    775 		kernAbase[i].attr.raw =
    776 		    MMU_LONG_DTE_LU | MMU_LONG_DTE_SUPV | MMU_DT_SHORT;
    777 		kernAbase[i].addr.raw = mmu_vtop(&kernBbase[b]);
    778 
    779 		for (j = 0; j < MMU_B_TBL_SIZE; j++) {
    780 			kernBbase[b + j].attr.raw =
    781 			    mmu_vtop(&kernCbase[c]) | MMU_DT_SHORT;
    782 			c += MMU_C_TBL_SIZE;
    783 		}
    784 		b += MMU_B_TBL_SIZE;
    785 	}
    786 
    787 	pmap_alloc_usermmu();	/* Allocate user MMU tables.        */
    788 	pmap_alloc_usertmgr();	/* Allocate user MMU table managers.*/
    789 	pmap_alloc_pv();	/* Allocate physical->virtual map.  */
    790 
    791 	/*
    792 	 * We are now done with pmap_bootstrap_alloc().  Round up
    793 	 * `virtual_avail' to the nearest page, and set the flag
    794 	 * to prevent use of pmap_bootstrap_alloc() hereafter.
    795 	 */
    796 	pmap_bootstrap_aalign(PAGE_SIZE);
    797 	bootstrap_alloc_enabled = false;
    798 
    799 	/*
    800 	 * Now that we are done with pmap_bootstrap_alloc(), we
    801 	 * must save the virtual and physical addresses of the
    802 	 * end of the linearly mapped range, which are stored in
    803 	 * virtual_contig_end and avail_start, respectively.
    804 	 * These variables will never change after this point.
    805 	 */
    806 	virtual_contig_end = virtual_avail;
    807 	avail_start = virtual_avail - KERNBASE;
    808 
    809 	/*
    810 	 * `avail_next' is a running pointer used by pmap_next_page() to
    811 	 * keep track of the next available physical page to be handed
    812 	 * to the VM system during its initialization, in which it
    813 	 * asks for physical pages, one at a time.
    814 	 */
    815 	avail_next = avail_start;
    816 
    817 	/*
    818 	 * Now allocate some virtual addresses, but not the physical pages
    819 	 * behind them.  Note that virtual_avail is already page-aligned.
    820 	 *
    821 	 * tmp_vpages[] is an array of two virtual pages used for temporary
    822 	 * kernel mappings in the pmap module to facilitate various physical
    823 	 * address-oritented operations.
    824 	 */
    825 	tmp_vpages[0] = virtual_avail;
    826 	virtual_avail += PAGE_SIZE;
    827 	tmp_vpages[1] = virtual_avail;
    828 	virtual_avail += PAGE_SIZE;
    829 
    830 	/** Initialize the PV system **/
    831 	pmap_init_pv();
    832 
    833 	/*
    834 	 * Fill in the kernel_pmap structure and kernel_crp.
    835 	 */
    836 	kernAphys = mmu_vtop(kernAbase);
    837 	kernel_pmap.pm_a_tmgr = NULL;
    838 	kernel_pmap.pm_a_phys = kernAphys;
    839 	kernel_pmap.pm_refcount = 1; /* always in use */
    840 	simple_lock_init(&kernel_pmap.pm_lock);
    841 
    842 	kernel_crp.rp_attr = MMU_LONG_DTE_LU | MMU_DT_LONG;
    843 	kernel_crp.rp_addr = kernAphys;
    844 
    845 	/*
    846 	 * Now pmap_enter_kernel() may be used safely and will be
    847 	 * the main interface used hereafter to modify the kernel's
    848 	 * virtual address space.  Note that since we are still running
    849 	 * under the PROM's address table, none of these table modifications
    850 	 * actually take effect until pmap_takeover_mmu() is called.
    851 	 *
    852 	 * Note: Our tables do NOT have the PROM linear mappings!
    853 	 * Only the mappings created here exist in our tables, so
    854 	 * remember to map anything we expect to use.
    855 	 */
    856 	va = (vaddr_t)KERNBASE;
    857 	pa = 0;
    858 
    859 	/*
    860 	 * The first page of the kernel virtual address space is the msgbuf
    861 	 * page.  The page attributes (data, non-cached) are set here, while
    862 	 * the address is assigned to this global pointer in cpu_startup().
    863 	 * It is non-cached, mostly due to paranoia.
    864 	 */
    865 	pmap_enter_kernel(va, pa|PMAP_NC, VM_PROT_ALL);
    866 	va += PAGE_SIZE;
    867 	pa += PAGE_SIZE;
    868 
    869 	/* Next page is used as the temporary stack. */
    870 	pmap_enter_kernel(va, pa, VM_PROT_ALL);
    871 	va += PAGE_SIZE;
    872 	pa += PAGE_SIZE;
    873 
    874 	/*
    875 	 * Map all of the kernel's text segment as read-only and cacheable.
    876 	 * (Cacheable is implied by default).  Unfortunately, the last bytes
    877 	 * of kernel text and the first bytes of kernel data will often be
    878 	 * sharing the same page.  Therefore, the last page of kernel text
    879 	 * has to be mapped as read/write, to accommodate the data.
    880 	 */
    881 	eva = m68k_trunc_page((vaddr_t)etext);
    882 	for (; va < eva; va += PAGE_SIZE, pa += PAGE_SIZE)
    883 		pmap_enter_kernel(va, pa, VM_PROT_READ|VM_PROT_EXECUTE);
    884 
    885 	/*
    886 	 * Map all of the kernel's data as read/write and cacheable.
    887 	 * This includes: data, BSS, symbols, and everything in the
    888 	 * contiguous memory used by pmap_bootstrap_alloc()
    889 	 */
    890 	for (; pa < avail_start; va += PAGE_SIZE, pa += PAGE_SIZE)
    891 		pmap_enter_kernel(va, pa, VM_PROT_READ|VM_PROT_WRITE);
    892 
    893 	/*
    894 	 * At this point we are almost ready to take over the MMU.  But first
    895 	 * we must save the PROM's address space in our map, as we call its
    896 	 * routines and make references to its data later in the kernel.
    897 	 */
    898 	pmap_bootstrap_copyprom();
    899 	pmap_takeover_mmu();
    900 	pmap_bootstrap_setprom();
    901 
    902 	/* Notify the VM system of our page size. */
    903 	uvmexp.pagesize = PAGE_SIZE;
    904 	uvm_setpagesize();
    905 
    906 	pmap_page_upload();
    907 }
    908 
    909 
    910 /* pmap_alloc_usermmu			INTERNAL
    911  **
    912  * Called from pmap_bootstrap() to allocate MMU tables that will
    913  * eventually be used for user mappings.
    914  */
    915 void
    916 pmap_alloc_usermmu(void)
    917 {
    918 
    919 	/* XXX: Moved into caller. */
    920 }
    921 
    922 /* pmap_alloc_pv			INTERNAL
    923  **
    924  * Called from pmap_bootstrap() to allocate the physical
    925  * to virtual mapping list.  Each physical page of memory
    926  * in the system has a corresponding element in this list.
    927  */
    928 void
    929 pmap_alloc_pv(void)
    930 {
    931 	int	i;
    932 	unsigned int	total_mem;
    933 
    934 	/*
    935 	 * Allocate a pv_head structure for every page of physical
    936 	 * memory that will be managed by the system.  Since memory on
    937 	 * the 3/80 is non-contiguous, we cannot arrive at a total page
    938 	 * count by subtraction of the lowest available address from the
    939 	 * highest, but rather we have to step through each memory
    940 	 * bank and add the number of pages in each to the total.
    941 	 *
    942 	 * At this time we also initialize the offset of each bank's
    943 	 * starting pv_head within the pv_head list so that the physical
    944 	 * memory state routines (pmap_is_referenced(),
    945 	 * pmap_is_modified(), et al.) can quickly find coresponding
    946 	 * pv_heads in spite of the non-contiguity.
    947 	 */
    948 	total_mem = 0;
    949 	for (i = 0; i < SUN3X_NPHYS_RAM_SEGS; i++) {
    950 		avail_mem[i].pmem_pvbase = m68k_btop(total_mem);
    951 		total_mem += avail_mem[i].pmem_end - avail_mem[i].pmem_start;
    952 		if (avail_mem[i].pmem_next == NULL)
    953 			break;
    954 	}
    955 	pvbase = (pv_t *)pmap_bootstrap_alloc(sizeof(pv_t) *
    956 	    m68k_btop(total_phys_mem));
    957 }
    958 
    959 /* pmap_alloc_usertmgr			INTERNAL
    960  **
    961  * Called from pmap_bootstrap() to allocate the structures which
    962  * facilitate management of user MMU tables.  Each user MMU table
    963  * in the system has one such structure associated with it.
    964  */
    965 void
    966 pmap_alloc_usertmgr(void)
    967 {
    968 	/* Allocate user MMU table managers */
    969 	/* It would be a lot simpler to just make these BSS, but */
    970 	/* we may want to change their size at boot time... -j */
    971 	Atmgrbase =
    972 	    (a_tmgr_t *)pmap_bootstrap_alloc(sizeof(a_tmgr_t) * NUM_A_TABLES);
    973 	Btmgrbase =
    974 	    (b_tmgr_t *)pmap_bootstrap_alloc(sizeof(b_tmgr_t) * NUM_B_TABLES);
    975 	Ctmgrbase =
    976 	    (c_tmgr_t *)pmap_bootstrap_alloc(sizeof(c_tmgr_t) * NUM_C_TABLES);
    977 
    978 	/*
    979 	 * Allocate PV list elements for the physical to virtual
    980 	 * mapping system.
    981 	 */
    982 	pvebase = (pv_elem_t *)pmap_bootstrap_alloc(sizeof(pv_elem_t) *
    983 	    (NUM_USER_PTES + NUM_KERN_PTES));
    984 }
    985 
    986 /* pmap_bootstrap_copyprom()			INTERNAL
    987  **
    988  * Copy the PROM mappings into our own tables.  Note, we
    989  * can use physical addresses until __bootstrap returns.
    990  */
    991 void
    992 pmap_bootstrap_copyprom(void)
    993 {
    994 	struct sunromvec *romp;
    995 	int *mon_ctbl;
    996 	mmu_short_pte_t *kpte;
    997 	int i, len;
    998 
    999 	romp = romVectorPtr;
   1000 
   1001 	/*
   1002 	 * Copy the mappings in SUN3X_MON_KDB_BASE...SUN3X_MONEND
   1003 	 * Note: mon_ctbl[0] maps SUN3X_MON_KDB_BASE
   1004 	 */
   1005 	mon_ctbl = *romp->monptaddr;
   1006 	i = m68k_btop(SUN3X_MON_KDB_BASE - KERNBASE);
   1007 	kpte = &kernCbase[i];
   1008 	len = m68k_btop(SUN3X_MONEND - SUN3X_MON_KDB_BASE);
   1009 
   1010 	for (i = 0; i < len; i++) {
   1011 		kpte[i].attr.raw = mon_ctbl[i];
   1012 	}
   1013 
   1014 	/*
   1015 	 * Copy the mappings at MON_DVMA_BASE (to the end).
   1016 	 * Note, in here, mon_ctbl[0] maps MON_DVMA_BASE.
   1017 	 * Actually, we only want the last page, which the
   1018 	 * PROM has set up for use by the "ie" driver.
   1019 	 * (The i82686 needs its SCP there.)
   1020 	 * If we copy all the mappings, pmap_enter_kernel
   1021 	 * may complain about finding valid PTEs that are
   1022 	 * not recorded in our PV lists...
   1023 	 */
   1024 	mon_ctbl = *romp->shadowpteaddr;
   1025 	i = m68k_btop(SUN3X_MON_DVMA_BASE - KERNBASE);
   1026 	kpte = &kernCbase[i];
   1027 	len = m68k_btop(SUN3X_MON_DVMA_SIZE);
   1028 	for (i = (len - 1); i < len; i++) {
   1029 		kpte[i].attr.raw = mon_ctbl[i];
   1030 	}
   1031 }
   1032 
   1033 /* pmap_takeover_mmu			INTERNAL
   1034  **
   1035  * Called from pmap_bootstrap() after it has copied enough of the
   1036  * PROM mappings into the kernel map so that we can use our own
   1037  * MMU table.
   1038  */
   1039 void
   1040 pmap_takeover_mmu(void)
   1041 {
   1042 
   1043 	loadcrp(&kernel_crp);
   1044 }
   1045 
   1046 /* pmap_bootstrap_setprom()			INTERNAL
   1047  **
   1048  * Set the PROM mappings so it can see kernel space.
   1049  * Note that physical addresses are used here, which
   1050  * we can get away with because this runs with the
   1051  * low 1GB set for transparent translation.
   1052  */
   1053 void
   1054 pmap_bootstrap_setprom(void)
   1055 {
   1056 	mmu_long_dte_t *mon_dte;
   1057 	extern struct mmu_rootptr mon_crp;
   1058 	int i;
   1059 
   1060 	mon_dte = (mmu_long_dte_t *)mon_crp.rp_addr;
   1061 	for (i = MMU_TIA(KERNBASE); i < MMU_TIA(KERN_END); i++) {
   1062 		mon_dte[i].attr.raw = kernAbase[i].attr.raw;
   1063 		mon_dte[i].addr.raw = kernAbase[i].addr.raw;
   1064 	}
   1065 }
   1066 
   1067 
   1068 /* pmap_init			INTERFACE
   1069  **
   1070  * Called at the end of vm_init() to set up the pmap system to go
   1071  * into full time operation.  All initialization of kernel_pmap
   1072  * should be already done by now, so this should just do things
   1073  * needed for user-level pmaps to work.
   1074  */
   1075 void
   1076 pmap_init(void)
   1077 {
   1078 
   1079 	/** Initialize the manager pools **/
   1080 	TAILQ_INIT(&a_pool);
   1081 	TAILQ_INIT(&b_pool);
   1082 	TAILQ_INIT(&c_pool);
   1083 
   1084 	/**************************************************************
   1085 	 * Initialize all tmgr structures and MMU tables they manage. *
   1086 	 **************************************************************/
   1087 	/** Initialize A tables **/
   1088 	pmap_init_a_tables();
   1089 	/** Initialize B tables **/
   1090 	pmap_init_b_tables();
   1091 	/** Initialize C tables **/
   1092 	pmap_init_c_tables();
   1093 
   1094 	/** Initialize the pmap pools **/
   1095 	pool_init(&pmap_pmap_pool, sizeof(struct pmap), 0, 0, 0, "pmappl",
   1096 	    &pool_allocator_nointr, IPL_NONE);
   1097 }
   1098 
   1099 /* pmap_init_a_tables()			INTERNAL
   1100  **
   1101  * Initializes all A managers, their MMU A tables, and inserts
   1102  * them into the A manager pool for use by the system.
   1103  */
   1104 void
   1105 pmap_init_a_tables(void)
   1106 {
   1107 	int i;
   1108 	a_tmgr_t *a_tbl;
   1109 
   1110 	for (i = 0; i < NUM_A_TABLES; i++) {
   1111 		/* Select the next available A manager from the pool */
   1112 		a_tbl = &Atmgrbase[i];
   1113 
   1114 		/*
   1115 		 * Clear its parent entry.  Set its wired and valid
   1116 		 * entry count to zero.
   1117 		 */
   1118 		a_tbl->at_parent = NULL;
   1119 		a_tbl->at_wcnt = a_tbl->at_ecnt = 0;
   1120 
   1121 		/* Assign it the next available MMU A table from the pool */
   1122 		a_tbl->at_dtbl = &mmuAbase[i * MMU_A_TBL_SIZE];
   1123 
   1124 		/*
   1125 		 * Initialize the MMU A table with the table in the `proc0',
   1126 		 * or kernel, mapping.  This ensures that every process has
   1127 		 * the kernel mapped in the top part of its address space.
   1128 		 */
   1129 		memcpy(a_tbl->at_dtbl, kernAbase,
   1130 		    MMU_A_TBL_SIZE * sizeof(mmu_long_dte_t));
   1131 
   1132 		/*
   1133 		 * Finally, insert the manager into the A pool,
   1134 		 * making it ready to be used by the system.
   1135 		 */
   1136 		TAILQ_INSERT_TAIL(&a_pool, a_tbl, at_link);
   1137     }
   1138 }
   1139 
   1140 /* pmap_init_b_tables()			INTERNAL
   1141  **
   1142  * Initializes all B table managers, their MMU B tables, and
   1143  * inserts them into the B manager pool for use by the system.
   1144  */
   1145 void
   1146 pmap_init_b_tables(void)
   1147 {
   1148 	int i, j;
   1149 	b_tmgr_t *b_tbl;
   1150 
   1151 	for (i = 0; i < NUM_B_TABLES; i++) {
   1152 		/* Select the next available B manager from the pool */
   1153 		b_tbl = &Btmgrbase[i];
   1154 
   1155 		b_tbl->bt_parent = NULL;	/* clear its parent,  */
   1156 		b_tbl->bt_pidx = 0;		/* parent index,      */
   1157 		b_tbl->bt_wcnt = 0;		/* wired entry count, */
   1158 		b_tbl->bt_ecnt = 0;		/* valid entry count. */
   1159 
   1160 		/* Assign it the next available MMU B table from the pool */
   1161 		b_tbl->bt_dtbl = &mmuBbase[i * MMU_B_TBL_SIZE];
   1162 
   1163 		/* Invalidate every descriptor in the table */
   1164 		for (j = 0; j < MMU_B_TBL_SIZE; j++)
   1165 			b_tbl->bt_dtbl[j].attr.raw = MMU_DT_INVALID;
   1166 
   1167 		/* Insert the manager into the B pool */
   1168 		TAILQ_INSERT_TAIL(&b_pool, b_tbl, bt_link);
   1169 	}
   1170 }
   1171 
   1172 /* pmap_init_c_tables()			INTERNAL
   1173  **
   1174  * Initializes all C table managers, their MMU C tables, and
   1175  * inserts them into the C manager pool for use by the system.
   1176  */
   1177 void
   1178 pmap_init_c_tables(void)
   1179 {
   1180 	int i, j;
   1181 	c_tmgr_t *c_tbl;
   1182 
   1183 	for (i = 0; i < NUM_C_TABLES; i++) {
   1184 		/* Select the next available C manager from the pool */
   1185 		c_tbl = &Ctmgrbase[i];
   1186 
   1187 		c_tbl->ct_parent = NULL;	/* clear its parent,  */
   1188 		c_tbl->ct_pidx = 0;		/* parent index,      */
   1189 		c_tbl->ct_wcnt = 0;		/* wired entry count, */
   1190 		c_tbl->ct_ecnt = 0;		/* valid entry count, */
   1191 		c_tbl->ct_pmap = NULL;		/* parent pmap,       */
   1192 		c_tbl->ct_va = 0;		/* base of managed range */
   1193 
   1194 		/* Assign it the next available MMU C table from the pool */
   1195 		c_tbl->ct_dtbl = &mmuCbase[i * MMU_C_TBL_SIZE];
   1196 
   1197 		for (j = 0; j < MMU_C_TBL_SIZE; j++)
   1198 			c_tbl->ct_dtbl[j].attr.raw = MMU_DT_INVALID;
   1199 
   1200 		TAILQ_INSERT_TAIL(&c_pool, c_tbl, ct_link);
   1201 	}
   1202 }
   1203 
   1204 /* pmap_init_pv()			INTERNAL
   1205  **
   1206  * Initializes the Physical to Virtual mapping system.
   1207  */
   1208 void
   1209 pmap_init_pv(void)
   1210 {
   1211 	int i;
   1212 
   1213 	/* Initialize every PV head. */
   1214 	for (i = 0; i < m68k_btop(total_phys_mem); i++) {
   1215 		pvbase[i].pv_idx = PVE_EOL;	/* Indicate no mappings */
   1216 		pvbase[i].pv_flags = 0;		/* Zero out page flags  */
   1217 	}
   1218 }
   1219 
   1220 /* is_managed				INTERNAL
   1221  **
   1222  * Determine if the given physical address is managed by the PV system.
   1223  * Note that this logic assumes that no one will ask for the status of
   1224  * addresses which lie in-between the memory banks on the 3/80.  If they
   1225  * do so, it will falsely report that it is managed.
   1226  *
   1227  * Note: A "managed" address is one that was reported to the VM system as
   1228  * a "usable page" during system startup.  As such, the VM system expects the
   1229  * pmap module to keep an accurate track of the useage of those pages.
   1230  * Any page not given to the VM system at startup does not exist (as far as
   1231  * the VM system is concerned) and is therefore "unmanaged."  Examples are
   1232  * those pages which belong to the ROM monitor and the memory allocated before
   1233  * the VM system was started.
   1234  */
   1235 static INLINE bool
   1236 is_managed(paddr_t pa)
   1237 {
   1238 	if (pa >= avail_start && pa < avail_end)
   1239 		return true;
   1240 	else
   1241 		return false;
   1242 }
   1243 
   1244 /* get_a_table			INTERNAL
   1245  **
   1246  * Retrieve and return a level A table for use in a user map.
   1247  */
   1248 a_tmgr_t *
   1249 get_a_table(void)
   1250 {
   1251 	a_tmgr_t *tbl;
   1252 	pmap_t pmap;
   1253 
   1254 	/* Get the top A table in the pool */
   1255 	tbl = TAILQ_FIRST(&a_pool);
   1256 	if (tbl == NULL) {
   1257 		/*
   1258 		 * XXX - Instead of panicking here and in other get_x_table
   1259 		 * functions, we do have the option of sleeping on the head of
   1260 		 * the table pool.  Any function which updates the table pool
   1261 		 * would then issue a wakeup() on the head, thus waking up any
   1262 		 * processes waiting for a table.
   1263 		 *
   1264 		 * Actually, the place to sleep would be when some process
   1265 		 * asks for a "wired" mapping that would run us short of
   1266 		 * mapping resources.  This design DEPENDS on always having
   1267 		 * some mapping resources in the pool for stealing, so we
   1268 		 * must make sure we NEVER let the pool become empty. -gwr
   1269 		 */
   1270 		panic("get_a_table: out of A tables.");
   1271 	}
   1272 
   1273 	TAILQ_REMOVE(&a_pool, tbl, at_link);
   1274 	/*
   1275 	 * If the table has a non-null parent pointer then it is in use.
   1276 	 * Forcibly abduct it from its parent and clear its entries.
   1277 	 * No re-entrancy worries here.  This table would not be in the
   1278 	 * table pool unless it was available for use.
   1279 	 *
   1280 	 * Note that the second argument to free_a_table() is false.  This
   1281 	 * indicates that the table should not be relinked into the A table
   1282 	 * pool.  That is a job for the function that called us.
   1283 	 */
   1284 	if (tbl->at_parent) {
   1285 		KASSERT(tbl->at_wcnt == 0);
   1286 		pmap = tbl->at_parent;
   1287 		free_a_table(tbl, false);
   1288 		pmap->pm_a_tmgr = NULL;
   1289 		pmap->pm_a_phys = kernAphys;
   1290 	}
   1291 	return tbl;
   1292 }
   1293 
   1294 /* get_b_table			INTERNAL
   1295  **
   1296  * Return a level B table for use.
   1297  */
   1298 b_tmgr_t *
   1299 get_b_table(void)
   1300 {
   1301 	b_tmgr_t *tbl;
   1302 
   1303 	/* See 'get_a_table' for comments. */
   1304 	tbl = TAILQ_FIRST(&b_pool);
   1305 	if (tbl == NULL)
   1306 		panic("get_b_table: out of B tables.");
   1307 	TAILQ_REMOVE(&b_pool, tbl, bt_link);
   1308 	if (tbl->bt_parent) {
   1309 		KASSERT(tbl->bt_wcnt == 0);
   1310 		tbl->bt_parent->at_dtbl[tbl->bt_pidx].attr.raw = MMU_DT_INVALID;
   1311 		tbl->bt_parent->at_ecnt--;
   1312 		free_b_table(tbl, false);
   1313 	}
   1314 	return tbl;
   1315 }
   1316 
   1317 /* get_c_table			INTERNAL
   1318  **
   1319  * Return a level C table for use.
   1320  */
   1321 c_tmgr_t *
   1322 get_c_table(void)
   1323 {
   1324 	c_tmgr_t *tbl;
   1325 
   1326 	/* See 'get_a_table' for comments */
   1327 	tbl = TAILQ_FIRST(&c_pool);
   1328 	if (tbl == NULL)
   1329 		panic("get_c_table: out of C tables.");
   1330 	TAILQ_REMOVE(&c_pool, tbl, ct_link);
   1331 	if (tbl->ct_parent) {
   1332 		KASSERT(tbl->ct_wcnt == 0);
   1333 		tbl->ct_parent->bt_dtbl[tbl->ct_pidx].attr.raw = MMU_DT_INVALID;
   1334 		tbl->ct_parent->bt_ecnt--;
   1335 		free_c_table(tbl, false);
   1336 	}
   1337 	return tbl;
   1338 }
   1339 
   1340 /*
   1341  * The following 'free_table' and 'steal_table' functions are called to
   1342  * detach tables from their current obligations (parents and children) and
   1343  * prepare them for reuse in another mapping.
   1344  *
   1345  * Free_table is used when the calling function will handle the fate
   1346  * of the parent table, such as returning it to the free pool when it has
   1347  * no valid entries.  Functions that do not want to handle this should
   1348  * call steal_table, in which the parent table's descriptors and entry
   1349  * count are automatically modified when this table is removed.
   1350  */
   1351 
   1352 /* free_a_table			INTERNAL
   1353  **
   1354  * Unmaps the given A table and all child tables from their current
   1355  * mappings.  Returns the number of pages that were invalidated.
   1356  * If 'relink' is true, the function will return the table to the head
   1357  * of the available table pool.
   1358  *
   1359  * Cache note: The MC68851 will automatically flush all
   1360  * descriptors derived from a given A table from its
   1361  * Automatic Translation Cache (ATC) if we issue a
   1362  * 'PFLUSHR' instruction with the base address of the
   1363  * table.  This function should do, and does so.
   1364  * Note note: We are using an MC68030 - there is no
   1365  * PFLUSHR.
   1366  */
   1367 int
   1368 free_a_table(a_tmgr_t *a_tbl, bool relink)
   1369 {
   1370 	int i, removed_cnt;
   1371 	mmu_long_dte_t	*dte;
   1372 	mmu_short_dte_t *dtbl;
   1373 	b_tmgr_t	*b_tbl;
   1374 	uint8_t at_wired, bt_wired;
   1375 
   1376 	/*
   1377 	 * Flush the ATC cache of all cached descriptors derived
   1378 	 * from this table.
   1379 	 * Sun3x does not use 68851's cached table feature
   1380 	 * flush_atc_crp(mmu_vtop(a_tbl->dte));
   1381 	 */
   1382 
   1383 	/*
   1384 	 * Remove any pending cache flushes that were designated
   1385 	 * for the pmap this A table belongs to.
   1386 	 * a_tbl->parent->atc_flushq[0] = 0;
   1387 	 * Not implemented in sun3x.
   1388 	 */
   1389 
   1390 	/*
   1391 	 * All A tables in the system should retain a map for the
   1392 	 * kernel. If the table contains any valid descriptors
   1393 	 * (other than those for the kernel area), invalidate them all,
   1394 	 * stopping short of the kernel's entries.
   1395 	 */
   1396 	removed_cnt = 0;
   1397 	at_wired = a_tbl->at_wcnt;
   1398 	if (a_tbl->at_ecnt) {
   1399 		dte = a_tbl->at_dtbl;
   1400 		for (i = 0; i < MMU_TIA(KERNBASE); i++) {
   1401 			/*
   1402 			 * If a table entry points to a valid B table, free
   1403 			 * it and its children.
   1404 			 */
   1405 			if (MMU_VALID_DT(dte[i])) {
   1406 				/*
   1407 				 * The following block does several things,
   1408 				 * from innermost expression to the
   1409 				 * outermost:
   1410 				 * 1) It extracts the base (cc 1996)
   1411 				 *    address of the B table pointed
   1412 				 *    to in the A table entry dte[i].
   1413 				 * 2) It converts this base address into
   1414 				 *    the virtual address it can be
   1415 				 *    accessed with. (all MMU tables point
   1416 				 *    to physical addresses.)
   1417 				 * 3) It finds the corresponding manager
   1418 				 *    structure which manages this MMU table.
   1419 				 * 4) It frees the manager structure.
   1420 				 *    (This frees the MMU table and all
   1421 				 *    child tables. See 'free_b_table' for
   1422 				 *    details.)
   1423 				 */
   1424 				dtbl = mmu_ptov(dte[i].addr.raw);
   1425 				b_tbl = mmuB2tmgr(dtbl);
   1426 				bt_wired = b_tbl->bt_wcnt;
   1427 				removed_cnt += free_b_table(b_tbl, true);
   1428 				if (bt_wired)
   1429 					a_tbl->at_wcnt--;
   1430 				dte[i].attr.raw = MMU_DT_INVALID;
   1431 			}
   1432 		}
   1433 		a_tbl->at_ecnt = 0;
   1434 	}
   1435 	KASSERT(a_tbl->at_wcnt == 0);
   1436 
   1437 	if (relink) {
   1438 		a_tbl->at_parent = NULL;
   1439 		if (!at_wired)
   1440 			TAILQ_REMOVE(&a_pool, a_tbl, at_link);
   1441 		TAILQ_INSERT_HEAD(&a_pool, a_tbl, at_link);
   1442 	}
   1443 	return removed_cnt;
   1444 }
   1445 
   1446 /* free_b_table			INTERNAL
   1447  **
   1448  * Unmaps the given B table and all its children from their current
   1449  * mappings.  Returns the number of pages that were invalidated.
   1450  * (For comments, see 'free_a_table()').
   1451  */
   1452 int
   1453 free_b_table(b_tmgr_t *b_tbl, bool relink)
   1454 {
   1455 	int i, removed_cnt;
   1456 	mmu_short_dte_t *dte;
   1457 	mmu_short_pte_t	*dtbl;
   1458 	c_tmgr_t	*c_tbl;
   1459 	uint8_t bt_wired, ct_wired;
   1460 
   1461 	removed_cnt = 0;
   1462 	bt_wired = b_tbl->bt_wcnt;
   1463 	if (b_tbl->bt_ecnt) {
   1464 		dte = b_tbl->bt_dtbl;
   1465 		for (i = 0; i < MMU_B_TBL_SIZE; i++) {
   1466 			if (MMU_VALID_DT(dte[i])) {
   1467 				dtbl = mmu_ptov(MMU_DTE_PA(dte[i]));
   1468 				c_tbl = mmuC2tmgr(dtbl);
   1469 				ct_wired = c_tbl->ct_wcnt;
   1470 				removed_cnt += free_c_table(c_tbl, true);
   1471 				if (ct_wired)
   1472 					b_tbl->bt_wcnt--;
   1473 				dte[i].attr.raw = MMU_DT_INVALID;
   1474 			}
   1475 		}
   1476 		b_tbl->bt_ecnt = 0;
   1477 	}
   1478 	KASSERT(b_tbl->bt_wcnt == 0);
   1479 
   1480 	if (relink) {
   1481 		b_tbl->bt_parent = NULL;
   1482 		if (!bt_wired)
   1483 			TAILQ_REMOVE(&b_pool, b_tbl, bt_link);
   1484 		TAILQ_INSERT_HEAD(&b_pool, b_tbl, bt_link);
   1485 	}
   1486 	return removed_cnt;
   1487 }
   1488 
   1489 /* free_c_table			INTERNAL
   1490  **
   1491  * Unmaps the given C table from use and returns it to the pool for
   1492  * re-use.  Returns the number of pages that were invalidated.
   1493  *
   1494  * This function preserves any physical page modification information
   1495  * contained in the page descriptors within the C table by calling
   1496  * 'pmap_remove_pte().'
   1497  */
   1498 int
   1499 free_c_table(c_tmgr_t *c_tbl, bool relink)
   1500 {
   1501 	mmu_short_pte_t *c_pte;
   1502 	int i, removed_cnt;
   1503 	uint8_t ct_wired;
   1504 
   1505 	removed_cnt = 0;
   1506 	ct_wired = c_tbl->ct_wcnt;
   1507 	if (c_tbl->ct_ecnt) {
   1508 		for (i = 0; i < MMU_C_TBL_SIZE; i++) {
   1509 			c_pte = &c_tbl->ct_dtbl[i];
   1510 			if (MMU_VALID_DT(*c_pte)) {
   1511 				if (c_pte->attr.raw & MMU_SHORT_PTE_WIRED)
   1512 					c_tbl->ct_wcnt--;
   1513 				pmap_remove_pte(c_pte);
   1514 				removed_cnt++;
   1515 			}
   1516 		}
   1517 		c_tbl->ct_ecnt = 0;
   1518 	}
   1519 	KASSERT(c_tbl->ct_wcnt == 0);
   1520 
   1521 	if (relink) {
   1522 		c_tbl->ct_parent = NULL;
   1523 		if (!ct_wired)
   1524 			TAILQ_REMOVE(&c_pool, c_tbl, ct_link);
   1525 		TAILQ_INSERT_HEAD(&c_pool, c_tbl, ct_link);
   1526 	}
   1527 	return removed_cnt;
   1528 }
   1529 
   1530 
   1531 /* pmap_remove_pte			INTERNAL
   1532  **
   1533  * Unmap the given pte and preserve any page modification
   1534  * information by transfering it to the pv head of the
   1535  * physical page it maps to.  This function does not update
   1536  * any reference counts because it is assumed that the calling
   1537  * function will do so.
   1538  */
   1539 void
   1540 pmap_remove_pte(mmu_short_pte_t *pte)
   1541 {
   1542 	u_short     pv_idx, targ_idx;
   1543 	paddr_t     pa;
   1544 	pv_t       *pv;
   1545 
   1546 	pa = MMU_PTE_PA(*pte);
   1547 	if (is_managed(pa)) {
   1548 		pv = pa2pv(pa);
   1549 		targ_idx = pteidx(pte);	/* Index of PTE being removed    */
   1550 
   1551 		/*
   1552 		 * If the PTE being removed is the first (or only) PTE in
   1553 		 * the list of PTEs currently mapped to this page, remove the
   1554 		 * PTE by changing the index found on the PV head.  Otherwise
   1555 		 * a linear search through the list will have to be executed
   1556 		 * in order to find the PVE which points to the PTE being
   1557 		 * removed, so that it may be modified to point to its new
   1558 		 * neighbor.
   1559 		 */
   1560 
   1561 		pv_idx = pv->pv_idx;	/* Index of first PTE in PV list */
   1562 		if (pv_idx == targ_idx) {
   1563 			pv->pv_idx = pvebase[targ_idx].pve_next;
   1564 		} else {
   1565 
   1566 			/*
   1567 			 * Find the PV element pointing to the target
   1568 			 * element.  Note: may have pv_idx==PVE_EOL
   1569 			 */
   1570 
   1571 			for (;;) {
   1572 				if (pv_idx == PVE_EOL) {
   1573 					goto pv_not_found;
   1574 				}
   1575 				if (pvebase[pv_idx].pve_next == targ_idx)
   1576 					break;
   1577 				pv_idx = pvebase[pv_idx].pve_next;
   1578 			}
   1579 
   1580 			/*
   1581 			 * At this point, pv_idx is the index of the PV
   1582 			 * element just before the target element in the list.
   1583 			 * Unlink the target.
   1584 			 */
   1585 
   1586 			pvebase[pv_idx].pve_next = pvebase[targ_idx].pve_next;
   1587 		}
   1588 
   1589 		/*
   1590 		 * Save the mod/ref bits of the pte by simply
   1591 		 * ORing the entire pte onto the pv_flags member
   1592 		 * of the pv structure.
   1593 		 * There is no need to use a separate bit pattern
   1594 		 * for usage information on the pv head than that
   1595 		 * which is used on the MMU ptes.
   1596 		 */
   1597 
   1598  pv_not_found:
   1599 		pv->pv_flags |= (u_short) pte->attr.raw;
   1600 	}
   1601 	pte->attr.raw = MMU_DT_INVALID;
   1602 }
   1603 
   1604 /* pmap_stroll			INTERNAL
   1605  **
   1606  * Retrieve the addresses of all table managers involved in the mapping of
   1607  * the given virtual address.  If the table walk completed successfully,
   1608  * return true.  If it was only partially successful, return false.
   1609  * The table walk performed by this function is important to many other
   1610  * functions in this module.
   1611  *
   1612  * Note: This function ought to be easier to read.
   1613  */
   1614 bool
   1615 pmap_stroll(pmap_t pmap, vaddr_t va, a_tmgr_t **a_tbl, b_tmgr_t **b_tbl,
   1616     c_tmgr_t **c_tbl, mmu_short_pte_t **pte, int *a_idx, int *b_idx,
   1617     int *pte_idx)
   1618 {
   1619 	mmu_long_dte_t *a_dte;   /* A: long descriptor table          */
   1620 	mmu_short_dte_t *b_dte;  /* B: short descriptor table         */
   1621 
   1622 	if (pmap == pmap_kernel())
   1623 		return false;
   1624 
   1625 	/* Does the given pmap have its own A table? */
   1626 	*a_tbl = pmap->pm_a_tmgr;
   1627 	if (*a_tbl == NULL)
   1628 		return false; /* No.  Return unknown. */
   1629 	/* Does the A table have a valid B table
   1630 	 * under the corresponding table entry?
   1631 	 */
   1632 	*a_idx = MMU_TIA(va);
   1633 	a_dte = &((*a_tbl)->at_dtbl[*a_idx]);
   1634 	if (!MMU_VALID_DT(*a_dte))
   1635 		return false; /* No. Return unknown. */
   1636 	/* Yes. Extract B table from the A table. */
   1637 	*b_tbl = mmuB2tmgr(mmu_ptov(a_dte->addr.raw));
   1638 	/*
   1639 	 * Does the B table have a valid C table
   1640 	 * under the corresponding table entry?
   1641 	 */
   1642 	*b_idx = MMU_TIB(va);
   1643 	b_dte = &((*b_tbl)->bt_dtbl[*b_idx]);
   1644 	if (!MMU_VALID_DT(*b_dte))
   1645 		return false; /* No. Return unknown. */
   1646 	/* Yes. Extract C table from the B table. */
   1647 	*c_tbl = mmuC2tmgr(mmu_ptov(MMU_DTE_PA(*b_dte)));
   1648 	*pte_idx = MMU_TIC(va);
   1649 	*pte = &((*c_tbl)->ct_dtbl[*pte_idx]);
   1650 
   1651 	return true;
   1652 }
   1653 
   1654 /* pmap_enter			INTERFACE
   1655  **
   1656  * Called by the kernel to map a virtual address
   1657  * to a physical address in the given process map.
   1658  *
   1659  * Note: this function should apply an exclusive lock
   1660  * on the pmap system for its duration.  (it certainly
   1661  * would save my hair!!)
   1662  * This function ought to be easier to read.
   1663  */
   1664 int
   1665 pmap_enter(pmap_t pmap, vaddr_t va, paddr_t pa, vm_prot_t prot, u_int flags)
   1666 {
   1667 	bool insert, managed; /* Marks the need for PV insertion.*/
   1668 	u_short nidx;            /* PV list index                     */
   1669 	int mapflags;            /* Flags for the mapping (see NOTE1) */
   1670 	u_int a_idx, b_idx, pte_idx; /* table indices                 */
   1671 	a_tmgr_t *a_tbl;         /* A: long descriptor table manager  */
   1672 	b_tmgr_t *b_tbl;         /* B: short descriptor table manager */
   1673 	c_tmgr_t *c_tbl;         /* C: short page table manager       */
   1674 	mmu_long_dte_t *a_dte;   /* A: long descriptor table          */
   1675 	mmu_short_dte_t *b_dte;  /* B: short descriptor table         */
   1676 	mmu_short_pte_t *c_pte;  /* C: short page descriptor table    */
   1677 	pv_t      *pv;           /* pv list head                      */
   1678 	bool wired;         /* is the mapping to be wired?       */
   1679 	enum {NONE, NEWA, NEWB, NEWC} llevel; /* used at end   */
   1680 
   1681 	if (pmap == pmap_kernel()) {
   1682 		pmap_enter_kernel(va, pa, prot);
   1683 		return 0;
   1684 	}
   1685 
   1686 	/*
   1687 	 * Determine if the mapping should be wired.
   1688 	 */
   1689 	wired = ((flags & PMAP_WIRED) != 0);
   1690 
   1691 	/*
   1692 	 * NOTE1:
   1693 	 *
   1694 	 * On November 13, 1999, someone changed the pmap_enter() API such
   1695 	 * that it now accepts a 'flags' argument.  This new argument
   1696 	 * contains bit-flags for the architecture-independent (UVM) system to
   1697 	 * use in signalling certain mapping requirements to the architecture-
   1698 	 * dependent (pmap) system.  The argument it replaces, 'wired', is now
   1699 	 * one of the flags within it.
   1700 	 *
   1701 	 * In addition to flags signaled by the architecture-independent
   1702 	 * system, parts of the architecture-dependent section of the sun3x
   1703 	 * kernel pass their own flags in the lower, unused bits of the
   1704 	 * physical address supplied to this function.  These flags are
   1705 	 * extracted and stored in the temporary variable 'mapflags'.
   1706 	 *
   1707 	 * Extract sun3x specific flags from the physical address.
   1708 	 */
   1709 	mapflags = (pa & ~MMU_PAGE_MASK);
   1710 	pa &= MMU_PAGE_MASK;
   1711 
   1712 	/*
   1713 	 * Determine if the physical address being mapped is on-board RAM.
   1714 	 * Any other area of the address space is likely to belong to a
   1715 	 * device and hence it would be disasterous to cache its contents.
   1716 	 */
   1717 	if ((managed = is_managed(pa)) == false)
   1718 		mapflags |= PMAP_NC;
   1719 
   1720 	/*
   1721 	 * For user mappings we walk along the MMU tables of the given
   1722 	 * pmap, reaching a PTE which describes the virtual page being
   1723 	 * mapped or changed.  If any level of the walk ends in an invalid
   1724 	 * entry, a table must be allocated and the entry must be updated
   1725 	 * to point to it.
   1726 	 * There is a bit of confusion as to whether this code must be
   1727 	 * re-entrant.  For now we will assume it is.  To support
   1728 	 * re-entrancy we must unlink tables from the table pool before
   1729 	 * we assume we may use them.  Tables are re-linked into the pool
   1730 	 * when we are finished with them at the end of the function.
   1731 	 * But I don't feel like doing that until we have proof that this
   1732 	 * needs to be re-entrant.
   1733 	 * 'llevel' records which tables need to be relinked.
   1734 	 */
   1735 	llevel = NONE;
   1736 
   1737 	/*
   1738 	 * Step 1 - Retrieve the A table from the pmap.  If it has no
   1739 	 * A table, allocate a new one from the available pool.
   1740 	 */
   1741 
   1742 	a_tbl = pmap->pm_a_tmgr;
   1743 	if (a_tbl == NULL) {
   1744 		/*
   1745 		 * This pmap does not currently have an A table.  Allocate
   1746 		 * a new one.
   1747 		 */
   1748 		a_tbl = get_a_table();
   1749 		a_tbl->at_parent = pmap;
   1750 
   1751 		/*
   1752 		 * Assign this new A table to the pmap, and calculate its
   1753 		 * physical address so that loadcrp() can be used to make
   1754 		 * the table active.
   1755 		 */
   1756 		pmap->pm_a_tmgr = a_tbl;
   1757 		pmap->pm_a_phys = mmu_vtop(a_tbl->at_dtbl);
   1758 
   1759 		/*
   1760 		 * If the process receiving a new A table is the current
   1761 		 * process, we are responsible for setting the MMU so that
   1762 		 * it becomes the current address space.  This only adds
   1763 		 * new mappings, so no need to flush anything.
   1764 		 */
   1765 		if (pmap == current_pmap()) {
   1766 			kernel_crp.rp_addr = pmap->pm_a_phys;
   1767 			loadcrp(&kernel_crp);
   1768 		}
   1769 
   1770 		if (!wired)
   1771 			llevel = NEWA;
   1772 	} else {
   1773 		/*
   1774 		 * Use the A table already allocated for this pmap.
   1775 		 * Unlink it from the A table pool if necessary.
   1776 		 */
   1777 		if (wired && !a_tbl->at_wcnt)
   1778 			TAILQ_REMOVE(&a_pool, a_tbl, at_link);
   1779 	}
   1780 
   1781 	/*
   1782 	 * Step 2 - Walk into the B table.  If there is no valid B table,
   1783 	 * allocate one.
   1784 	 */
   1785 
   1786 	a_idx = MMU_TIA(va);            /* Calculate the TIA of the VA. */
   1787 	a_dte = &a_tbl->at_dtbl[a_idx]; /* Retrieve descriptor from table */
   1788 	if (MMU_VALID_DT(*a_dte)) {     /* Is the descriptor valid? */
   1789 		/* The descriptor is valid.  Use the B table it points to. */
   1790 		/*************************************
   1791 		 *               a_idx               *
   1792 		 *                 v                 *
   1793 		 * a_tbl -> +-+-+-+-+-+-+-+-+-+-+-+- *
   1794 		 *          | | | | | | | | | | | |  *
   1795 		 *          +-+-+-+-+-+-+-+-+-+-+-+- *
   1796 		 *                 |                 *
   1797 		 *                 \- b_tbl -> +-+-  *
   1798 		 *                             | |   *
   1799 		 *                             +-+-  *
   1800 		 *************************************/
   1801 		b_dte = mmu_ptov(a_dte->addr.raw);
   1802 		b_tbl = mmuB2tmgr(b_dte);
   1803 
   1804 		/*
   1805 		 * If the requested mapping must be wired, but this table
   1806 		 * being used to map it is not, the table must be removed
   1807 		 * from the available pool and its wired entry count
   1808 		 * incremented.
   1809 		 */
   1810 		if (wired && !b_tbl->bt_wcnt) {
   1811 			TAILQ_REMOVE(&b_pool, b_tbl, bt_link);
   1812 			a_tbl->at_wcnt++;
   1813 		}
   1814 	} else {
   1815 		/* The descriptor is invalid.  Allocate a new B table. */
   1816 		b_tbl = get_b_table();
   1817 
   1818 		/* Point the parent A table descriptor to this new B table. */
   1819 		a_dte->addr.raw = mmu_vtop(b_tbl->bt_dtbl);
   1820 		a_dte->attr.raw = MMU_LONG_DTE_LU | MMU_DT_SHORT;
   1821 		a_tbl->at_ecnt++; /* Update parent's valid entry count */
   1822 
   1823 		/* Create the necessary back references to the parent table */
   1824 		b_tbl->bt_parent = a_tbl;
   1825 		b_tbl->bt_pidx = a_idx;
   1826 
   1827 		/*
   1828 		 * If this table is to be wired, make sure the parent A table
   1829 		 * wired count is updated to reflect that it has another wired
   1830 		 * entry.
   1831 		 */
   1832 		if (wired)
   1833 			a_tbl->at_wcnt++;
   1834 		else if (llevel == NONE)
   1835 			llevel = NEWB;
   1836 	}
   1837 
   1838 	/*
   1839 	 * Step 3 - Walk into the C table, if there is no valid C table,
   1840 	 * allocate one.
   1841 	 */
   1842 
   1843 	b_idx = MMU_TIB(va);            /* Calculate the TIB of the VA */
   1844 	b_dte = &b_tbl->bt_dtbl[b_idx]; /* Retrieve descriptor from table */
   1845 	if (MMU_VALID_DT(*b_dte)) {     /* Is the descriptor valid? */
   1846 		/* The descriptor is valid.  Use the C table it points to. */
   1847 		/**************************************
   1848 		 *               c_idx                *
   1849 		 * |                v                 *
   1850 		 * \- b_tbl -> +-+-+-+-+-+-+-+-+-+-+- *
   1851 		 *             | | | | | | | | | | |  *
   1852 		 *             +-+-+-+-+-+-+-+-+-+-+- *
   1853 		 *                  |                 *
   1854 		 *                  \- c_tbl -> +-+-- *
   1855 		 *                              | | | *
   1856 		 *                              +-+-- *
   1857 		 **************************************/
   1858 		c_pte = mmu_ptov(MMU_PTE_PA(*b_dte));
   1859 		c_tbl = mmuC2tmgr(c_pte);
   1860 
   1861 		/* If mapping is wired and table is not */
   1862 		if (wired && !c_tbl->ct_wcnt) {
   1863 			TAILQ_REMOVE(&c_pool, c_tbl, ct_link);
   1864 			b_tbl->bt_wcnt++;
   1865 		}
   1866 	} else {
   1867 		/* The descriptor is invalid.  Allocate a new C table. */
   1868 		c_tbl = get_c_table();
   1869 
   1870 		/* Point the parent B table descriptor to this new C table. */
   1871 		b_dte->attr.raw = mmu_vtop(c_tbl->ct_dtbl);
   1872 		b_dte->attr.raw |= MMU_DT_SHORT;
   1873 		b_tbl->bt_ecnt++; /* Update parent's valid entry count */
   1874 
   1875 		/* Create the necessary back references to the parent table */
   1876 		c_tbl->ct_parent = b_tbl;
   1877 		c_tbl->ct_pidx = b_idx;
   1878 		/*
   1879 		 * Store the pmap and base virtual managed address for faster
   1880 		 * retrieval in the PV functions.
   1881 		 */
   1882 		c_tbl->ct_pmap = pmap;
   1883 		c_tbl->ct_va = (va & (MMU_TIA_MASK|MMU_TIB_MASK));
   1884 
   1885 		/*
   1886 		 * If this table is to be wired, make sure the parent B table
   1887 		 * wired count is updated to reflect that it has another wired
   1888 		 * entry.
   1889 		 */
   1890 		if (wired)
   1891 			b_tbl->bt_wcnt++;
   1892 		else if (llevel == NONE)
   1893 			llevel = NEWC;
   1894 	}
   1895 
   1896 	/*
   1897 	 * Step 4 - Deposit a page descriptor (PTE) into the appropriate
   1898 	 * slot of the C table, describing the PA to which the VA is mapped.
   1899 	 */
   1900 
   1901 	pte_idx = MMU_TIC(va);
   1902 	c_pte = &c_tbl->ct_dtbl[pte_idx];
   1903 	if (MMU_VALID_DT(*c_pte)) { /* Is the entry currently valid? */
   1904 		/*
   1905 		 * The PTE is currently valid.  This particular call
   1906 		 * is just a synonym for one (or more) of the following
   1907 		 * operations:
   1908 		 *     change protection of a page
   1909 		 *     change wiring status of a page
   1910 		 *     remove the mapping of a page
   1911 		 */
   1912 
   1913 		/* First check if this is a wiring operation. */
   1914 		if (c_pte->attr.raw & MMU_SHORT_PTE_WIRED) {
   1915 			/*
   1916 			 * The existing mapping is wired, so adjust wired
   1917 			 * entry count here. If new mapping is still wired,
   1918 			 * wired entry count will be incremented again later.
   1919 			 */
   1920 			c_tbl->ct_wcnt--;
   1921 			if (!wired) {
   1922 				/*
   1923 				 * The mapping of this PTE is being changed
   1924 				 * from wired to unwired.
   1925 				 * Adjust wired entry counts in each table and
   1926 				 * set llevel flag to put unwired tables back
   1927 				 * into the active pool.
   1928 				 */
   1929 				if (c_tbl->ct_wcnt == 0) {
   1930 					llevel = NEWC;
   1931 					if (--b_tbl->bt_wcnt == 0) {
   1932 						llevel = NEWB;
   1933 						if (--a_tbl->at_wcnt == 0) {
   1934 							llevel = NEWA;
   1935 						}
   1936 					}
   1937 				}
   1938 			}
   1939 		}
   1940 
   1941 		/* Is the new address the same as the old? */
   1942 		if (MMU_PTE_PA(*c_pte) == pa) {
   1943 			/*
   1944 			 * Yes, mark that it does not need to be reinserted
   1945 			 * into the PV list.
   1946 			 */
   1947 			insert = false;
   1948 
   1949 			/*
   1950 			 * Clear all but the modified, referenced and wired
   1951 			 * bits on the PTE.
   1952 			 */
   1953 			c_pte->attr.raw &= (MMU_SHORT_PTE_M
   1954 			    | MMU_SHORT_PTE_USED | MMU_SHORT_PTE_WIRED);
   1955 		} else {
   1956 			/* No, remove the old entry */
   1957 			pmap_remove_pte(c_pte);
   1958 			insert = true;
   1959 		}
   1960 
   1961 		/*
   1962 		 * TLB flush is only necessary if modifying current map.
   1963 		 * However, in pmap_enter(), the pmap almost always IS
   1964 		 * the current pmap, so don't even bother to check.
   1965 		 */
   1966 		TBIS(va);
   1967 	} else {
   1968 		/*
   1969 		 * The PTE is invalid.  Increment the valid entry count in
   1970 		 * the C table manager to reflect the addition of a new entry.
   1971 		 */
   1972 		c_tbl->ct_ecnt++;
   1973 
   1974 		/* XXX - temporarily make sure the PTE is cleared. */
   1975 		c_pte->attr.raw = 0;
   1976 
   1977 		/* It will also need to be inserted into the PV list. */
   1978 		insert = true;
   1979 	}
   1980 
   1981 	/*
   1982 	 * If page is changing from unwired to wired status, set an unused bit
   1983 	 * within the PTE to indicate that it is wired.  Also increment the
   1984 	 * wired entry count in the C table manager.
   1985 	 */
   1986 	if (wired) {
   1987 		c_pte->attr.raw |= MMU_SHORT_PTE_WIRED;
   1988 		c_tbl->ct_wcnt++;
   1989 	}
   1990 
   1991 	/*
   1992 	 * Map the page, being careful to preserve modify/reference/wired
   1993 	 * bits.  At this point it is assumed that the PTE either has no bits
   1994 	 * set, or if there are set bits, they are only modified, reference or
   1995 	 * wired bits.  If not, the following statement will cause erratic
   1996 	 * behavior.
   1997 	 */
   1998 #ifdef	PMAP_DEBUG
   1999 	if (c_pte->attr.raw & ~(MMU_SHORT_PTE_M |
   2000 		MMU_SHORT_PTE_USED | MMU_SHORT_PTE_WIRED)) {
   2001 		printf("pmap_enter: junk left in PTE at %p\n", c_pte);
   2002 		Debugger();
   2003 	}
   2004 #endif
   2005 	c_pte->attr.raw |= ((u_long) pa | MMU_DT_PAGE);
   2006 
   2007 	/*
   2008 	 * If the mapping should be read-only, set the write protect
   2009 	 * bit in the PTE.
   2010 	 */
   2011 	if (!(prot & VM_PROT_WRITE))
   2012 		c_pte->attr.raw |= MMU_SHORT_PTE_WP;
   2013 
   2014 	/*
   2015 	 * Mark the PTE as used and/or modified as specified by the flags arg.
   2016 	 */
   2017 	if (flags & VM_PROT_ALL) {
   2018 		c_pte->attr.raw |= MMU_SHORT_PTE_USED;
   2019 		if (flags & VM_PROT_WRITE) {
   2020 			c_pte->attr.raw |= MMU_SHORT_PTE_M;
   2021 		}
   2022 	}
   2023 
   2024 	/*
   2025 	 * If the mapping should be cache inhibited (indicated by the flag
   2026 	 * bits found on the lower order of the physical address.)
   2027 	 * mark the PTE as a cache inhibited page.
   2028 	 */
   2029 	if (mapflags & PMAP_NC)
   2030 		c_pte->attr.raw |= MMU_SHORT_PTE_CI;
   2031 
   2032 	/*
   2033 	 * If the physical address being mapped is managed by the PV
   2034 	 * system then link the pte into the list of pages mapped to that
   2035 	 * address.
   2036 	 */
   2037 	if (insert && managed) {
   2038 		pv = pa2pv(pa);
   2039 		nidx = pteidx(c_pte);
   2040 
   2041 		pvebase[nidx].pve_next = pv->pv_idx;
   2042 		pv->pv_idx = nidx;
   2043 	}
   2044 
   2045 	/* Move any allocated or unwired tables back into the active pool. */
   2046 
   2047 	switch (llevel) {
   2048 		case NEWA:
   2049 			TAILQ_INSERT_TAIL(&a_pool, a_tbl, at_link);
   2050 			/* FALLTHROUGH */
   2051 		case NEWB:
   2052 			TAILQ_INSERT_TAIL(&b_pool, b_tbl, bt_link);
   2053 			/* FALLTHROUGH */
   2054 		case NEWC:
   2055 			TAILQ_INSERT_TAIL(&c_pool, c_tbl, ct_link);
   2056 			/* FALLTHROUGH */
   2057 		default:
   2058 			break;
   2059 	}
   2060 
   2061 	return 0;
   2062 }
   2063 
   2064 /* pmap_enter_kernel			INTERNAL
   2065  **
   2066  * Map the given virtual address to the given physical address within the
   2067  * kernel address space.  This function exists because the kernel map does
   2068  * not do dynamic table allocation.  It consists of a contiguous array of ptes
   2069  * and can be edited directly without the need to walk through any tables.
   2070  *
   2071  * XXX: "Danger, Will Robinson!"
   2072  * Note that the kernel should never take a fault on any page
   2073  * between [ KERNBASE .. virtual_avail ] and this is checked in
   2074  * trap.c for kernel-mode MMU faults.  This means that mappings
   2075  * created in that range must be implicily wired. -gwr
   2076  */
   2077 void
   2078 pmap_enter_kernel(vaddr_t va, paddr_t pa, vm_prot_t prot)
   2079 {
   2080 	bool       was_valid, insert;
   2081 	u_short         pte_idx;
   2082 	int             flags;
   2083 	mmu_short_pte_t *pte;
   2084 	pv_t            *pv;
   2085 	paddr_t     old_pa;
   2086 
   2087 	flags = (pa & ~MMU_PAGE_MASK);
   2088 	pa &= MMU_PAGE_MASK;
   2089 
   2090 	if (is_managed(pa))
   2091 		insert = true;
   2092 	else
   2093 		insert = false;
   2094 
   2095 	/*
   2096 	 * Calculate the index of the PTE being modified.
   2097 	 */
   2098 	pte_idx = (u_long)m68k_btop(va - KERNBASE);
   2099 
   2100 	/* This array is traditionally named "Sysmap" */
   2101 	pte = &kernCbase[pte_idx];
   2102 
   2103 	if (MMU_VALID_DT(*pte)) {
   2104 		was_valid = true;
   2105 		/*
   2106 		 * If the PTE already maps a different
   2107 		 * physical address, umap and pv_unlink.
   2108 		 */
   2109 		old_pa = MMU_PTE_PA(*pte);
   2110 		if (pa != old_pa)
   2111 			pmap_remove_pte(pte);
   2112 		else {
   2113 		    /*
   2114 		     * Old PA and new PA are the same.  No need to
   2115 		     * relink the mapping within the PV list.
   2116 		     */
   2117 		     insert = false;
   2118 
   2119 		    /*
   2120 		     * Save any mod/ref bits on the PTE.
   2121 		     */
   2122 		    pte->attr.raw &= (MMU_SHORT_PTE_USED|MMU_SHORT_PTE_M);
   2123 		}
   2124 	} else {
   2125 		pte->attr.raw = MMU_DT_INVALID;
   2126 		was_valid = false;
   2127 	}
   2128 
   2129 	/*
   2130 	 * Map the page.  Being careful to preserve modified/referenced bits
   2131 	 * on the PTE.
   2132 	 */
   2133 	pte->attr.raw |= (pa | MMU_DT_PAGE);
   2134 
   2135 	if (!(prot & VM_PROT_WRITE)) /* If access should be read-only */
   2136 		pte->attr.raw |= MMU_SHORT_PTE_WP;
   2137 	if (flags & PMAP_NC)
   2138 		pte->attr.raw |= MMU_SHORT_PTE_CI;
   2139 	if (was_valid)
   2140 		TBIS(va);
   2141 
   2142 	/*
   2143 	 * Insert the PTE into the PV system, if need be.
   2144 	 */
   2145 	if (insert) {
   2146 		pv = pa2pv(pa);
   2147 		pvebase[pte_idx].pve_next = pv->pv_idx;
   2148 		pv->pv_idx = pte_idx;
   2149 	}
   2150 }
   2151 
   2152 void
   2153 pmap_kenter_pa(vaddr_t va, paddr_t pa, vm_prot_t prot)
   2154 {
   2155 	mmu_short_pte_t	*pte;
   2156 
   2157 	/* This array is traditionally named "Sysmap" */
   2158 	pte = &kernCbase[(u_long)m68k_btop(va - KERNBASE)];
   2159 
   2160 	KASSERT(!MMU_VALID_DT(*pte));
   2161 	pte->attr.raw = MMU_DT_INVALID | MMU_DT_PAGE | (pa & MMU_PAGE_MASK);
   2162 	if (!(prot & VM_PROT_WRITE))
   2163 		pte->attr.raw |= MMU_SHORT_PTE_WP;
   2164 }
   2165 
   2166 void
   2167 pmap_kremove(vaddr_t va, vsize_t len)
   2168 {
   2169 	int idx, eidx;
   2170 
   2171 #ifdef	PMAP_DEBUG
   2172 	if ((va & PGOFSET) || (len & PGOFSET))
   2173 		panic("pmap_kremove: alignment");
   2174 #endif
   2175 
   2176 	idx  = m68k_btop(va - KERNBASE);
   2177 	eidx = m68k_btop(va + len - KERNBASE);
   2178 
   2179 	while (idx < eidx) {
   2180 		kernCbase[idx++].attr.raw = MMU_DT_INVALID;
   2181 		TBIS(va);
   2182 		va += PAGE_SIZE;
   2183 	}
   2184 }
   2185 
   2186 /* pmap_map			INTERNAL
   2187  **
   2188  * Map a contiguous range of physical memory into a contiguous range of
   2189  * the kernel virtual address space.
   2190  *
   2191  * Used for device mappings and early mapping of the kernel text/data/bss.
   2192  * Returns the first virtual address beyond the end of the range.
   2193  */
   2194 vaddr_t
   2195 pmap_map(vaddr_t va, paddr_t pa, paddr_t endpa, int prot)
   2196 {
   2197 	int sz;
   2198 
   2199 	sz = endpa - pa;
   2200 	do {
   2201 		pmap_enter_kernel(va, pa, prot);
   2202 		va += PAGE_SIZE;
   2203 		pa += PAGE_SIZE;
   2204 		sz -= PAGE_SIZE;
   2205 	} while (sz > 0);
   2206 	pmap_update(pmap_kernel());
   2207 	return va;
   2208 }
   2209 
   2210 /* pmap_protect_kernel			INTERNAL
   2211  **
   2212  * Apply the given protection code to a kernel address range.
   2213  */
   2214 static INLINE void
   2215 pmap_protect_kernel(vaddr_t startva, vaddr_t endva, vm_prot_t prot)
   2216 {
   2217 	vaddr_t va;
   2218 	mmu_short_pte_t *pte;
   2219 
   2220 	pte = &kernCbase[(unsigned long) m68k_btop(startva - KERNBASE)];
   2221 	for (va = startva; va < endva; va += PAGE_SIZE, pte++) {
   2222 		if (MMU_VALID_DT(*pte)) {
   2223 		    switch (prot) {
   2224 		        case VM_PROT_ALL:
   2225 		            break;
   2226 		        case VM_PROT_EXECUTE:
   2227 		        case VM_PROT_READ:
   2228 		        case VM_PROT_READ|VM_PROT_EXECUTE:
   2229 		            pte->attr.raw |= MMU_SHORT_PTE_WP;
   2230 		            break;
   2231 		        case VM_PROT_NONE:
   2232 		            /* this is an alias for 'pmap_remove_kernel' */
   2233 		            pmap_remove_pte(pte);
   2234 		            break;
   2235 		        default:
   2236 		            break;
   2237 		    }
   2238 		    /*
   2239 		     * since this is the kernel, immediately flush any cached
   2240 		     * descriptors for this address.
   2241 		     */
   2242 		    TBIS(va);
   2243 		}
   2244 	}
   2245 }
   2246 
   2247 /* pmap_protect			INTERFACE
   2248  **
   2249  * Apply the given protection to the given virtual address range within
   2250  * the given map.
   2251  *
   2252  * It is ok for the protection applied to be stronger than what is
   2253  * specified.  We use this to our advantage when the given map has no
   2254  * mapping for the virtual address.  By skipping a page when this
   2255  * is discovered, we are effectively applying a protection of VM_PROT_NONE,
   2256  * and therefore do not need to map the page just to apply a protection
   2257  * code.  Only pmap_enter() needs to create new mappings if they do not exist.
   2258  *
   2259  * XXX - This function could be speeded up by using pmap_stroll() for inital
   2260  *       setup, and then manual scrolling in the for() loop.
   2261  */
   2262 void
   2263 pmap_protect(pmap_t pmap, vaddr_t startva, vaddr_t endva, vm_prot_t prot)
   2264 {
   2265 	bool iscurpmap;
   2266 	int a_idx, b_idx, c_idx;
   2267 	a_tmgr_t *a_tbl;
   2268 	b_tmgr_t *b_tbl;
   2269 	c_tmgr_t *c_tbl;
   2270 	mmu_short_pte_t *pte;
   2271 
   2272 	if (pmap == pmap_kernel()) {
   2273 		pmap_protect_kernel(startva, endva, prot);
   2274 		return;
   2275 	}
   2276 
   2277 	/*
   2278 	 * In this particular pmap implementation, there are only three
   2279 	 * types of memory protection: 'all' (read/write/execute),
   2280 	 * 'read-only' (read/execute) and 'none' (no mapping.)
   2281 	 * It is not possible for us to treat 'executable' as a separate
   2282 	 * protection type.  Therefore, protection requests that seek to
   2283 	 * remove execute permission while retaining read or write, and those
   2284 	 * that make little sense (write-only for example) are ignored.
   2285 	 */
   2286 	switch (prot) {
   2287 		case VM_PROT_NONE:
   2288 			/*
   2289 			 * A request to apply the protection code of
   2290 			 * 'VM_PROT_NONE' is a synonym for pmap_remove().
   2291 			 */
   2292 			pmap_remove(pmap, startva, endva);
   2293 			return;
   2294 		case	VM_PROT_EXECUTE:
   2295 		case	VM_PROT_READ:
   2296 		case	VM_PROT_READ|VM_PROT_EXECUTE:
   2297 			/* continue */
   2298 			break;
   2299 		case	VM_PROT_WRITE:
   2300 		case	VM_PROT_WRITE|VM_PROT_READ:
   2301 		case	VM_PROT_WRITE|VM_PROT_EXECUTE:
   2302 		case	VM_PROT_ALL:
   2303 			/* None of these should happen in a sane system. */
   2304 			return;
   2305 	}
   2306 
   2307 	/*
   2308 	 * If the pmap has no A table, it has no mappings and therefore
   2309 	 * there is nothing to protect.
   2310 	 */
   2311 	if ((a_tbl = pmap->pm_a_tmgr) == NULL)
   2312 		return;
   2313 
   2314 	a_idx = MMU_TIA(startva);
   2315 	b_idx = MMU_TIB(startva);
   2316 	c_idx = MMU_TIC(startva);
   2317 	b_tbl = NULL;
   2318 	c_tbl = NULL;
   2319 
   2320 	iscurpmap = (pmap == current_pmap());
   2321 	while (startva < endva) {
   2322 		if (b_tbl || MMU_VALID_DT(a_tbl->at_dtbl[a_idx])) {
   2323 		  if (b_tbl == NULL) {
   2324 		    b_tbl = (b_tmgr_t *) a_tbl->at_dtbl[a_idx].addr.raw;
   2325 		    b_tbl = mmu_ptov((vaddr_t)b_tbl);
   2326 		    b_tbl = mmuB2tmgr((mmu_short_dte_t *)b_tbl);
   2327 		  }
   2328 		  if (c_tbl || MMU_VALID_DT(b_tbl->bt_dtbl[b_idx])) {
   2329 		    if (c_tbl == NULL) {
   2330 		      c_tbl = (c_tmgr_t *) MMU_DTE_PA(b_tbl->bt_dtbl[b_idx]);
   2331 		      c_tbl = mmu_ptov((vaddr_t)c_tbl);
   2332 		      c_tbl = mmuC2tmgr((mmu_short_pte_t *)c_tbl);
   2333 		    }
   2334 		    if (MMU_VALID_DT(c_tbl->ct_dtbl[c_idx])) {
   2335 		      pte = &c_tbl->ct_dtbl[c_idx];
   2336 		      /* make the mapping read-only */
   2337 		      pte->attr.raw |= MMU_SHORT_PTE_WP;
   2338 		      /*
   2339 		       * If we just modified the current address space,
   2340 		       * flush any translations for the modified page from
   2341 		       * the translation cache and any data from it in the
   2342 		       * data cache.
   2343 		       */
   2344 		      if (iscurpmap)
   2345 		          TBIS(startva);
   2346 		    }
   2347 		    startva += PAGE_SIZE;
   2348 
   2349 		    if (++c_idx >= MMU_C_TBL_SIZE) { /* exceeded C table? */
   2350 		      c_tbl = NULL;
   2351 		      c_idx = 0;
   2352 		      if (++b_idx >= MMU_B_TBL_SIZE) { /* exceeded B table? */
   2353 		        b_tbl = NULL;
   2354 		        b_idx = 0;
   2355 		      }
   2356 		    }
   2357 		  } else { /* C table wasn't valid */
   2358 		    c_tbl = NULL;
   2359 		    c_idx = 0;
   2360 		    startva += MMU_TIB_RANGE;
   2361 		    if (++b_idx >= MMU_B_TBL_SIZE) { /* exceeded B table? */
   2362 		      b_tbl = NULL;
   2363 		      b_idx = 0;
   2364 		    }
   2365 		  } /* C table */
   2366 		} else { /* B table wasn't valid */
   2367 		  b_tbl = NULL;
   2368 		  b_idx = 0;
   2369 		  startva += MMU_TIA_RANGE;
   2370 		  a_idx++;
   2371 		} /* B table */
   2372 	}
   2373 }
   2374 
   2375 /* pmap_unwire				INTERFACE
   2376  **
   2377  * Clear the wired attribute of the specified page.
   2378  *
   2379  * This function is called from vm_fault.c to unwire
   2380  * a mapping.
   2381  */
   2382 void
   2383 pmap_unwire(pmap_t pmap, vaddr_t va)
   2384 {
   2385 	int a_idx, b_idx, c_idx;
   2386 	a_tmgr_t *a_tbl;
   2387 	b_tmgr_t *b_tbl;
   2388 	c_tmgr_t *c_tbl;
   2389 	mmu_short_pte_t *pte;
   2390 
   2391 	/* Kernel mappings always remain wired. */
   2392 	if (pmap == pmap_kernel())
   2393 		return;
   2394 
   2395 	/*
   2396 	 * Walk through the tables.  If the walk terminates without
   2397 	 * a valid PTE then the address wasn't wired in the first place.
   2398 	 * Return immediately.
   2399 	 */
   2400 	if (pmap_stroll(pmap, va, &a_tbl, &b_tbl, &c_tbl, &pte, &a_idx,
   2401 		&b_idx, &c_idx) == false)
   2402 		return;
   2403 
   2404 
   2405 	/* Is the PTE wired?  If not, return. */
   2406 	if (!(pte->attr.raw & MMU_SHORT_PTE_WIRED))
   2407 		return;
   2408 
   2409 	/* Remove the wiring bit. */
   2410 	pte->attr.raw &= ~(MMU_SHORT_PTE_WIRED);
   2411 
   2412 	/*
   2413 	 * Decrement the wired entry count in the C table.
   2414 	 * If it reaches zero the following things happen:
   2415 	 * 1. The table no longer has any wired entries and is considered
   2416 	 *    unwired.
   2417 	 * 2. It is placed on the available queue.
   2418 	 * 3. The parent table's wired entry count is decremented.
   2419 	 * 4. If it reaches zero, this process repeats at step 1 and
   2420 	 *    stops at after reaching the A table.
   2421 	 */
   2422 	if (--c_tbl->ct_wcnt == 0) {
   2423 		TAILQ_INSERT_TAIL(&c_pool, c_tbl, ct_link);
   2424 		if (--b_tbl->bt_wcnt == 0) {
   2425 			TAILQ_INSERT_TAIL(&b_pool, b_tbl, bt_link);
   2426 			if (--a_tbl->at_wcnt == 0) {
   2427 				TAILQ_INSERT_TAIL(&a_pool, a_tbl, at_link);
   2428 			}
   2429 		}
   2430 	}
   2431 }
   2432 
   2433 /* pmap_copy				INTERFACE
   2434  **
   2435  * Copy the mappings of a range of addresses in one pmap, into
   2436  * the destination address of another.
   2437  *
   2438  * This routine is advisory.  Should we one day decide that MMU tables
   2439  * may be shared by more than one pmap, this function should be used to
   2440  * link them together.  Until that day however, we do nothing.
   2441  */
   2442 void
   2443 pmap_copy(pmap_t pmap_a, pmap_t pmap_b, vaddr_t dst, vsize_t len, vaddr_t src)
   2444 {
   2445 
   2446 	/* not implemented. */
   2447 }
   2448 
   2449 /* pmap_copy_page			INTERFACE
   2450  **
   2451  * Copy the contents of one physical page into another.
   2452  *
   2453  * This function makes use of two virtual pages allocated in pmap_bootstrap()
   2454  * to map the two specified physical pages into the kernel address space.
   2455  *
   2456  * Note: We could use the transparent translation registers to make the
   2457  * mappings.  If we do so, be sure to disable interrupts before using them.
   2458  */
   2459 void
   2460 pmap_copy_page(paddr_t srcpa, paddr_t dstpa)
   2461 {
   2462 	vaddr_t srcva, dstva;
   2463 	int s;
   2464 
   2465 	srcva = tmp_vpages[0];
   2466 	dstva = tmp_vpages[1];
   2467 
   2468 	s = splvm();
   2469 #ifdef DIAGNOSTIC
   2470 	if (tmp_vpages_inuse++)
   2471 		panic("pmap_copy_page: temporary vpages are in use.");
   2472 #endif
   2473 
   2474 	/* Map pages as non-cacheable to avoid cache polution? */
   2475 	pmap_kenter_pa(srcva, srcpa, VM_PROT_READ);
   2476 	pmap_kenter_pa(dstva, dstpa, VM_PROT_READ | VM_PROT_WRITE);
   2477 
   2478 	/* Hand-optimized version of memcpy(dst, src, PAGE_SIZE) */
   2479 	copypage((char *)srcva, (char *)dstva);
   2480 
   2481 	pmap_kremove(srcva, PAGE_SIZE);
   2482 	pmap_kremove(dstva, PAGE_SIZE);
   2483 
   2484 #ifdef DIAGNOSTIC
   2485 	--tmp_vpages_inuse;
   2486 #endif
   2487 	splx(s);
   2488 }
   2489 
   2490 /* pmap_zero_page			INTERFACE
   2491  **
   2492  * Zero the contents of the specified physical page.
   2493  *
   2494  * Uses one of the virtual pages allocated in pmap_boostrap()
   2495  * to map the specified page into the kernel address space.
   2496  */
   2497 void
   2498 pmap_zero_page(paddr_t dstpa)
   2499 {
   2500 	vaddr_t dstva;
   2501 	int s;
   2502 
   2503 	dstva = tmp_vpages[1];
   2504 	s = splvm();
   2505 #ifdef DIAGNOSTIC
   2506 	if (tmp_vpages_inuse++)
   2507 		panic("pmap_zero_page: temporary vpages are in use.");
   2508 #endif
   2509 
   2510 	/* The comments in pmap_copy_page() above apply here also. */
   2511 	pmap_kenter_pa(dstva, dstpa, VM_PROT_READ | VM_PROT_WRITE);
   2512 
   2513 	/* Hand-optimized version of memset(ptr, 0, PAGE_SIZE) */
   2514 	zeropage((char *)dstva);
   2515 
   2516 	pmap_kremove(dstva, PAGE_SIZE);
   2517 #ifdef DIAGNOSTIC
   2518 	--tmp_vpages_inuse;
   2519 #endif
   2520 	splx(s);
   2521 }
   2522 
   2523 /* pmap_collect			INTERFACE
   2524  **
   2525  * Called from the VM system when we are about to swap out
   2526  * the process using this pmap.  This should give up any
   2527  * resources held here, including all its MMU tables.
   2528  */
   2529 void
   2530 pmap_collect(pmap_t pmap)
   2531 {
   2532 
   2533 	/* XXX - todo... */
   2534 }
   2535 
   2536 /* pmap_pinit			INTERNAL
   2537  **
   2538  * Initialize a pmap structure.
   2539  */
   2540 static INLINE void
   2541 pmap_pinit(pmap_t pmap)
   2542 {
   2543 
   2544 	memset(pmap, 0, sizeof(struct pmap));
   2545 	pmap->pm_a_tmgr = NULL;
   2546 	pmap->pm_a_phys = kernAphys;
   2547 	pmap->pm_refcount = 1;
   2548 	simple_lock_init(&pmap->pm_lock);
   2549 }
   2550 
   2551 /* pmap_create			INTERFACE
   2552  **
   2553  * Create and return a pmap structure.
   2554  */
   2555 pmap_t
   2556 pmap_create(void)
   2557 {
   2558 	pmap_t	pmap;
   2559 
   2560 	pmap = pool_get(&pmap_pmap_pool, PR_WAITOK);
   2561 	pmap_pinit(pmap);
   2562 	return pmap;
   2563 }
   2564 
   2565 /* pmap_release				INTERNAL
   2566  **
   2567  * Release any resources held by the given pmap.
   2568  *
   2569  * This is the reverse analog to pmap_pinit.  It does not
   2570  * necessarily mean for the pmap structure to be deallocated,
   2571  * as in pmap_destroy.
   2572  */
   2573 static INLINE void
   2574 pmap_release(pmap_t pmap)
   2575 {
   2576 
   2577 	/*
   2578 	 * As long as the pmap contains no mappings,
   2579 	 * which always should be the case whenever
   2580 	 * this function is called, there really should
   2581 	 * be nothing to do.
   2582 	 */
   2583 #ifdef	PMAP_DEBUG
   2584 	if (pmap == pmap_kernel())
   2585 		panic("pmap_release: kernel pmap");
   2586 #endif
   2587 	/*
   2588 	 * XXX - If this pmap has an A table, give it back.
   2589 	 * The pmap SHOULD be empty by now, and pmap_remove
   2590 	 * should have already given back the A table...
   2591 	 * However, I see:  pmap->pm_a_tmgr->at_ecnt == 1
   2592 	 * at this point, which means some mapping was not
   2593 	 * removed when it should have been. -gwr
   2594 	 */
   2595 	if (pmap->pm_a_tmgr != NULL) {
   2596 		/* First make sure we are not using it! */
   2597 		if (kernel_crp.rp_addr == pmap->pm_a_phys) {
   2598 			kernel_crp.rp_addr = kernAphys;
   2599 			loadcrp(&kernel_crp);
   2600 		}
   2601 #ifdef	PMAP_DEBUG /* XXX - todo! */
   2602 		/* XXX - Now complain... */
   2603 		printf("pmap_release: still have table\n");
   2604 		Debugger();
   2605 #endif
   2606 		free_a_table(pmap->pm_a_tmgr, true);
   2607 		pmap->pm_a_tmgr = NULL;
   2608 		pmap->pm_a_phys = kernAphys;
   2609 	}
   2610 }
   2611 
   2612 /* pmap_reference			INTERFACE
   2613  **
   2614  * Increment the reference count of a pmap.
   2615  */
   2616 void
   2617 pmap_reference(pmap_t pmap)
   2618 {
   2619 	pmap_lock(pmap);
   2620 	pmap_add_ref(pmap);
   2621 	pmap_unlock(pmap);
   2622 }
   2623 
   2624 /* pmap_dereference			INTERNAL
   2625  **
   2626  * Decrease the reference count on the given pmap
   2627  * by one and return the current count.
   2628  */
   2629 static INLINE int
   2630 pmap_dereference(pmap_t pmap)
   2631 {
   2632 	int rtn;
   2633 
   2634 	pmap_lock(pmap);
   2635 	rtn = pmap_del_ref(pmap);
   2636 	pmap_unlock(pmap);
   2637 
   2638 	return rtn;
   2639 }
   2640 
   2641 /* pmap_destroy			INTERFACE
   2642  **
   2643  * Decrement a pmap's reference count and delete
   2644  * the pmap if it becomes zero.  Will be called
   2645  * only after all mappings have been removed.
   2646  */
   2647 void
   2648 pmap_destroy(pmap_t pmap)
   2649 {
   2650 
   2651 	if (pmap_dereference(pmap) == 0) {
   2652 		pmap_release(pmap);
   2653 		pool_put(&pmap_pmap_pool, pmap);
   2654 	}
   2655 }
   2656 
   2657 /* pmap_is_referenced			INTERFACE
   2658  **
   2659  * Determine if the given physical page has been
   2660  * referenced (read from [or written to.])
   2661  */
   2662 bool
   2663 pmap_is_referenced(struct vm_page *pg)
   2664 {
   2665 	paddr_t   pa = VM_PAGE_TO_PHYS(pg);
   2666 	pv_t      *pv;
   2667 	int       idx;
   2668 
   2669 	/*
   2670 	 * Check the flags on the pv head.  If they are set,
   2671 	 * return immediately.  Otherwise a search must be done.
   2672 	 */
   2673 
   2674 	pv = pa2pv(pa);
   2675 	if (pv->pv_flags & PV_FLAGS_USED)
   2676 		return true;
   2677 
   2678 	/*
   2679 	 * Search through all pv elements pointing
   2680 	 * to this page and query their reference bits
   2681 	 */
   2682 
   2683 	for (idx = pv->pv_idx; idx != PVE_EOL; idx = pvebase[idx].pve_next) {
   2684 		if (MMU_PTE_USED(kernCbase[idx])) {
   2685 			return true;
   2686 		}
   2687 	}
   2688 	return false;
   2689 }
   2690 
   2691 /* pmap_is_modified			INTERFACE
   2692  **
   2693  * Determine if the given physical page has been
   2694  * modified (written to.)
   2695  */
   2696 bool
   2697 pmap_is_modified(struct vm_page *pg)
   2698 {
   2699 	paddr_t   pa = VM_PAGE_TO_PHYS(pg);
   2700 	pv_t      *pv;
   2701 	int       idx;
   2702 
   2703 	/* see comments in pmap_is_referenced() */
   2704 	pv = pa2pv(pa);
   2705 	if (pv->pv_flags & PV_FLAGS_MDFY)
   2706 		return true;
   2707 
   2708 	for (idx = pv->pv_idx;
   2709 		 idx != PVE_EOL;
   2710 		 idx = pvebase[idx].pve_next) {
   2711 
   2712 		if (MMU_PTE_MODIFIED(kernCbase[idx])) {
   2713 			return true;
   2714 		}
   2715 	}
   2716 
   2717 	return false;
   2718 }
   2719 
   2720 /* pmap_page_protect			INTERFACE
   2721  **
   2722  * Applies the given protection to all mappings to the given
   2723  * physical page.
   2724  */
   2725 void
   2726 pmap_page_protect(struct vm_page *pg, vm_prot_t prot)
   2727 {
   2728 	paddr_t   pa = VM_PAGE_TO_PHYS(pg);
   2729 	pv_t      *pv;
   2730 	int       idx;
   2731 	vaddr_t va;
   2732 	struct mmu_short_pte_struct *pte;
   2733 	c_tmgr_t  *c_tbl;
   2734 	pmap_t    pmap, curpmap;
   2735 
   2736 	curpmap = current_pmap();
   2737 	pv = pa2pv(pa);
   2738 
   2739 	for (idx = pv->pv_idx; idx != PVE_EOL; idx = pvebase[idx].pve_next) {
   2740 		pte = &kernCbase[idx];
   2741 		switch (prot) {
   2742 			case VM_PROT_ALL:
   2743 				/* do nothing */
   2744 				break;
   2745 			case VM_PROT_EXECUTE:
   2746 			case VM_PROT_READ:
   2747 			case VM_PROT_READ|VM_PROT_EXECUTE:
   2748 				/*
   2749 				 * Determine the virtual address mapped by
   2750 				 * the PTE and flush ATC entries if necessary.
   2751 				 */
   2752 				va = pmap_get_pteinfo(idx, &pmap, &c_tbl);
   2753 				pte->attr.raw |= MMU_SHORT_PTE_WP;
   2754 				if (pmap == curpmap || pmap == pmap_kernel())
   2755 					TBIS(va);
   2756 				break;
   2757 			case VM_PROT_NONE:
   2758 				/* Save the mod/ref bits. */
   2759 				pv->pv_flags |= pte->attr.raw;
   2760 				/* Invalidate the PTE. */
   2761 				pte->attr.raw = MMU_DT_INVALID;
   2762 
   2763 				/*
   2764 				 * Update table counts.  And flush ATC entries
   2765 				 * if necessary.
   2766 				 */
   2767 				va = pmap_get_pteinfo(idx, &pmap, &c_tbl);
   2768 
   2769 				/*
   2770 				 * If the PTE belongs to the kernel map,
   2771 				 * be sure to flush the page it maps.
   2772 				 */
   2773 				if (pmap == pmap_kernel()) {
   2774 					TBIS(va);
   2775 				} else {
   2776 					/*
   2777 					 * The PTE belongs to a user map.
   2778 					 * update the entry count in the C
   2779 					 * table to which it belongs and flush
   2780 					 * the ATC if the mapping belongs to
   2781 					 * the current pmap.
   2782 					 */
   2783 					c_tbl->ct_ecnt--;
   2784 					if (pmap == curpmap)
   2785 						TBIS(va);
   2786 				}
   2787 				break;
   2788 			default:
   2789 				break;
   2790 		}
   2791 	}
   2792 
   2793 	/*
   2794 	 * If the protection code indicates that all mappings to the page
   2795 	 * be removed, truncate the PV list to zero entries.
   2796 	 */
   2797 	if (prot == VM_PROT_NONE)
   2798 		pv->pv_idx = PVE_EOL;
   2799 }
   2800 
   2801 /* pmap_get_pteinfo		INTERNAL
   2802  **
   2803  * Called internally to find the pmap and virtual address within that
   2804  * map to which the pte at the given index maps.  Also includes the PTE's C
   2805  * table manager.
   2806  *
   2807  * Returns the pmap in the argument provided, and the virtual address
   2808  * by return value.
   2809  */
   2810 vaddr_t
   2811 pmap_get_pteinfo(u_int idx, pmap_t *pmap, c_tmgr_t **tbl)
   2812 {
   2813 	vaddr_t     va = 0;
   2814 
   2815 	/*
   2816 	 * Determine if the PTE is a kernel PTE or a user PTE.
   2817 	 */
   2818 	if (idx >= NUM_KERN_PTES) {
   2819 		/*
   2820 		 * The PTE belongs to a user mapping.
   2821 		 */
   2822 		/* XXX: Would like an inline for this to validate idx... */
   2823 		*tbl = &Ctmgrbase[(idx - NUM_KERN_PTES) / MMU_C_TBL_SIZE];
   2824 
   2825 		*pmap = (*tbl)->ct_pmap;
   2826 		/*
   2827 		 * To find the va to which the PTE maps, we first take
   2828 		 * the table's base virtual address mapping which is stored
   2829 		 * in ct_va.  We then increment this address by a page for
   2830 		 * every slot skipped until we reach the PTE.
   2831 		 */
   2832 		va = (*tbl)->ct_va;
   2833 		va += m68k_ptob(idx % MMU_C_TBL_SIZE);
   2834 	} else {
   2835 		/*
   2836 		 * The PTE belongs to the kernel map.
   2837 		 */
   2838 		*pmap = pmap_kernel();
   2839 
   2840 		va = m68k_ptob(idx);
   2841 		va += KERNBASE;
   2842 	}
   2843 
   2844 	return va;
   2845 }
   2846 
   2847 /* pmap_clear_modify			INTERFACE
   2848  **
   2849  * Clear the modification bit on the page at the specified
   2850  * physical address.
   2851  *
   2852  */
   2853 bool
   2854 pmap_clear_modify(struct vm_page *pg)
   2855 {
   2856 	paddr_t pa = VM_PAGE_TO_PHYS(pg);
   2857 	bool rv;
   2858 
   2859 	rv = pmap_is_modified(pg);
   2860 	pmap_clear_pv(pa, PV_FLAGS_MDFY);
   2861 	return rv;
   2862 }
   2863 
   2864 /* pmap_clear_reference			INTERFACE
   2865  **
   2866  * Clear the referenced bit on the page at the specified
   2867  * physical address.
   2868  */
   2869 bool
   2870 pmap_clear_reference(struct vm_page *pg)
   2871 {
   2872 	paddr_t pa = VM_PAGE_TO_PHYS(pg);
   2873 	bool rv;
   2874 
   2875 	rv = pmap_is_referenced(pg);
   2876 	pmap_clear_pv(pa, PV_FLAGS_USED);
   2877 	return rv;
   2878 }
   2879 
   2880 /* pmap_clear_pv			INTERNAL
   2881  **
   2882  * Clears the specified flag from the specified physical address.
   2883  * (Used by pmap_clear_modify() and pmap_clear_reference().)
   2884  *
   2885  * Flag is one of:
   2886  *   PV_FLAGS_MDFY - Page modified bit.
   2887  *   PV_FLAGS_USED - Page used (referenced) bit.
   2888  *
   2889  * This routine must not only clear the flag on the pv list
   2890  * head.  It must also clear the bit on every pte in the pv
   2891  * list associated with the address.
   2892  */
   2893 void
   2894 pmap_clear_pv(paddr_t pa, int flag)
   2895 {
   2896 	pv_t      *pv;
   2897 	int       idx;
   2898 	vaddr_t   va;
   2899 	pmap_t          pmap;
   2900 	mmu_short_pte_t *pte;
   2901 	c_tmgr_t        *c_tbl;
   2902 
   2903 	pv = pa2pv(pa);
   2904 	pv->pv_flags &= ~(flag);
   2905 	for (idx = pv->pv_idx; idx != PVE_EOL; idx = pvebase[idx].pve_next) {
   2906 		pte = &kernCbase[idx];
   2907 		pte->attr.raw &= ~(flag);
   2908 
   2909 		/*
   2910 		 * The MC68030 MMU will not set the modified or
   2911 		 * referenced bits on any MMU tables for which it has
   2912 		 * a cached descriptor with its modify bit set.  To insure
   2913 		 * that it will modify these bits on the PTE during the next
   2914 		 * time it is written to or read from, we must flush it from
   2915 		 * the ATC.
   2916 		 *
   2917 		 * Ordinarily it is only necessary to flush the descriptor
   2918 		 * if it is used in the current address space.  But since I
   2919 		 * am not sure that there will always be a notion of
   2920 		 * 'the current address space' when this function is called,
   2921 		 * I will skip the test and always flush the address.  It
   2922 		 * does no harm.
   2923 		 */
   2924 
   2925 		va = pmap_get_pteinfo(idx, &pmap, &c_tbl);
   2926 		TBIS(va);
   2927 	}
   2928 }
   2929 
   2930 /* pmap_extract_kernel		INTERNAL
   2931  **
   2932  * Extract a translation from the kernel address space.
   2933  */
   2934 static INLINE bool
   2935 pmap_extract_kernel(vaddr_t va, paddr_t *pap)
   2936 {
   2937 	mmu_short_pte_t *pte;
   2938 
   2939 	pte = &kernCbase[(u_int)m68k_btop(va - KERNBASE)];
   2940 	if (!MMU_VALID_DT(*pte))
   2941 		return false;
   2942 	if (pap != NULL)
   2943 		*pap = MMU_PTE_PA(*pte);
   2944 	return true;
   2945 }
   2946 
   2947 /* pmap_extract			INTERFACE
   2948  **
   2949  * Return the physical address mapped by the virtual address
   2950  * in the specified pmap.
   2951  *
   2952  * Note: this function should also apply an exclusive lock
   2953  * on the pmap system during its duration.
   2954  */
   2955 bool
   2956 pmap_extract(pmap_t pmap, vaddr_t va, paddr_t *pap)
   2957 {
   2958 	int a_idx, b_idx, pte_idx;
   2959 	a_tmgr_t	*a_tbl;
   2960 	b_tmgr_t	*b_tbl;
   2961 	c_tmgr_t	*c_tbl;
   2962 	mmu_short_pte_t	*c_pte;
   2963 
   2964 	if (pmap == pmap_kernel())
   2965 		return pmap_extract_kernel(va, pap);
   2966 
   2967 	if (pmap_stroll(pmap, va, &a_tbl, &b_tbl, &c_tbl,
   2968 		&c_pte, &a_idx, &b_idx, &pte_idx) == false)
   2969 		return false;
   2970 
   2971 	if (!MMU_VALID_DT(*c_pte))
   2972 		return false;
   2973 
   2974 	if (pap != NULL)
   2975 		*pap = MMU_PTE_PA(*c_pte);
   2976 	return true;
   2977 }
   2978 
   2979 /* pmap_remove_kernel		INTERNAL
   2980  **
   2981  * Remove the mapping of a range of virtual addresses from the kernel map.
   2982  * The arguments are already page-aligned.
   2983  */
   2984 static INLINE void
   2985 pmap_remove_kernel(vaddr_t sva, vaddr_t eva)
   2986 {
   2987 	int idx, eidx;
   2988 
   2989 #ifdef	PMAP_DEBUG
   2990 	if ((sva & PGOFSET) || (eva & PGOFSET))
   2991 		panic("pmap_remove_kernel: alignment");
   2992 #endif
   2993 
   2994 	idx  = m68k_btop(sva - KERNBASE);
   2995 	eidx = m68k_btop(eva - KERNBASE);
   2996 
   2997 	while (idx < eidx) {
   2998 		pmap_remove_pte(&kernCbase[idx++]);
   2999 		TBIS(sva);
   3000 		sva += PAGE_SIZE;
   3001 	}
   3002 }
   3003 
   3004 /* pmap_remove			INTERFACE
   3005  **
   3006  * Remove the mapping of a range of virtual addresses from the given pmap.
   3007  *
   3008  */
   3009 void
   3010 pmap_remove(pmap_t pmap, vaddr_t sva, vaddr_t eva)
   3011 {
   3012 
   3013 	if (pmap == pmap_kernel()) {
   3014 		pmap_remove_kernel(sva, eva);
   3015 		return;
   3016 	}
   3017 
   3018 	/*
   3019 	 * If the pmap doesn't have an A table of its own, it has no mappings
   3020 	 * that can be removed.
   3021 	 */
   3022 	if (pmap->pm_a_tmgr == NULL)
   3023 		return;
   3024 
   3025 	/*
   3026 	 * Remove the specified range from the pmap.  If the function
   3027 	 * returns true, the operation removed all the valid mappings
   3028 	 * in the pmap and freed its A table.  If this happened to the
   3029 	 * currently loaded pmap, the MMU root pointer must be reloaded
   3030 	 * with the default 'kernel' map.
   3031 	 */
   3032 	if (pmap_remove_a(pmap->pm_a_tmgr, sva, eva)) {
   3033 		if (kernel_crp.rp_addr == pmap->pm_a_phys) {
   3034 			kernel_crp.rp_addr = kernAphys;
   3035 			loadcrp(&kernel_crp);
   3036 			/* will do TLB flush below */
   3037 		}
   3038 		pmap->pm_a_tmgr = NULL;
   3039 		pmap->pm_a_phys = kernAphys;
   3040 	}
   3041 
   3042 	/*
   3043 	 * If we just modified the current address space,
   3044 	 * make sure to flush the MMU cache.
   3045 	 *
   3046 	 * XXX - this could be an unecessarily large flush.
   3047 	 * XXX - Could decide, based on the size of the VA range
   3048 	 * to be removed, whether to flush "by pages" or "all".
   3049 	 */
   3050 	if (pmap == current_pmap())
   3051 		TBIAU();
   3052 }
   3053 
   3054 /* pmap_remove_a			INTERNAL
   3055  **
   3056  * This is function number one in a set of three that removes a range
   3057  * of memory in the most efficient manner by removing the highest possible
   3058  * tables from the memory space.  This particular function attempts to remove
   3059  * as many B tables as it can, delegating the remaining fragmented ranges to
   3060  * pmap_remove_b().
   3061  *
   3062  * If the removal operation results in an empty A table, the function returns
   3063  * true.
   3064  *
   3065  * It's ugly but will do for now.
   3066  */
   3067 bool
   3068 pmap_remove_a(a_tmgr_t *a_tbl, vaddr_t sva, vaddr_t eva)
   3069 {
   3070 	bool empty;
   3071 	int idx;
   3072 	vaddr_t nstart, nend;
   3073 	b_tmgr_t *b_tbl;
   3074 	mmu_long_dte_t  *a_dte;
   3075 	mmu_short_dte_t *b_dte;
   3076 	uint8_t at_wired, bt_wired;
   3077 
   3078 	/*
   3079 	 * The following code works with what I call a 'granularity
   3080 	 * reduction algorithim'.  A range of addresses will always have
   3081 	 * the following properties, which are classified according to
   3082 	 * how the range relates to the size of the current granularity
   3083 	 * - an A table entry:
   3084 	 *
   3085 	 *            1 2       3 4
   3086 	 * -+---+---+---+---+---+---+---+-
   3087 	 * -+---+---+---+---+---+---+---+-
   3088 	 *
   3089 	 * A range will always start on a granularity boundary, illustrated
   3090 	 * by '+' signs in the table above, or it will start at some point
   3091 	 * inbetween a granularity boundary, as illustrated by point 1.
   3092 	 * The first step in removing a range of addresses is to remove the
   3093 	 * range between 1 and 2, the nearest granularity boundary.  This
   3094 	 * job is handled by the section of code governed by the
   3095 	 * 'if (start < nstart)' statement.
   3096 	 *
   3097 	 * A range will always encompass zero or more intergral granules,
   3098 	 * illustrated by points 2 and 3.  Integral granules are easy to
   3099 	 * remove.  The removal of these granules is the second step, and
   3100 	 * is handled by the code block 'if (nstart < nend)'.
   3101 	 *
   3102 	 * Lastly, a range will always end on a granularity boundary,
   3103 	 * ill. by point 3, or it will fall just beyond one, ill. by point
   3104 	 * 4.  The last step involves removing this range and is handled by
   3105 	 * the code block 'if (nend < end)'.
   3106 	 */
   3107 	nstart = MMU_ROUND_UP_A(sva);
   3108 	nend = MMU_ROUND_A(eva);
   3109 
   3110 	at_wired = a_tbl->at_wcnt;
   3111 
   3112 	if (sva < nstart) {
   3113 		/*
   3114 		 * This block is executed if the range starts between
   3115 		 * a granularity boundary.
   3116 		 *
   3117 		 * First find the DTE which is responsible for mapping
   3118 		 * the start of the range.
   3119 		 */
   3120 		idx = MMU_TIA(sva);
   3121 		a_dte = &a_tbl->at_dtbl[idx];
   3122 
   3123 		/*
   3124 		 * If the DTE is valid then delegate the removal of the sub
   3125 		 * range to pmap_remove_b(), which can remove addresses at
   3126 		 * a finer granularity.
   3127 		 */
   3128 		if (MMU_VALID_DT(*a_dte)) {
   3129 			b_dte = mmu_ptov(a_dte->addr.raw);
   3130 			b_tbl = mmuB2tmgr(b_dte);
   3131 			bt_wired = b_tbl->bt_wcnt;
   3132 
   3133 			/*
   3134 			 * The sub range to be removed starts at the start
   3135 			 * of the full range we were asked to remove, and ends
   3136 			 * at the greater of:
   3137 			 * 1. The end of the full range, -or-
   3138 			 * 2. The end of the full range, rounded down to the
   3139 			 *    nearest granularity boundary.
   3140 			 */
   3141 			if (eva < nstart)
   3142 				empty = pmap_remove_b(b_tbl, sva, eva);
   3143 			else
   3144 				empty = pmap_remove_b(b_tbl, sva, nstart);
   3145 
   3146 			/*
   3147 			 * If the child table no longer has wired entries,
   3148 			 * decrement wired entry count.
   3149 			 */
   3150 			if (bt_wired && b_tbl->bt_wcnt == 0)
   3151 				a_tbl->at_wcnt--;
   3152 
   3153 			/*
   3154 			 * If the removal resulted in an empty B table,
   3155 			 * invalidate the DTE that points to it and decrement
   3156 			 * the valid entry count of the A table.
   3157 			 */
   3158 			if (empty) {
   3159 				a_dte->attr.raw = MMU_DT_INVALID;
   3160 				a_tbl->at_ecnt--;
   3161 			}
   3162 		}
   3163 		/*
   3164 		 * If the DTE is invalid, the address range is already non-
   3165 		 * existent and can simply be skipped.
   3166 		 */
   3167 	}
   3168 	if (nstart < nend) {
   3169 		/*
   3170 		 * This block is executed if the range spans a whole number
   3171 		 * multiple of granules (A table entries.)
   3172 		 *
   3173 		 * First find the DTE which is responsible for mapping
   3174 		 * the start of the first granule involved.
   3175 		 */
   3176 		idx = MMU_TIA(nstart);
   3177 		a_dte = &a_tbl->at_dtbl[idx];
   3178 
   3179 		/*
   3180 		 * Remove entire sub-granules (B tables) one at a time,
   3181 		 * until reaching the end of the range.
   3182 		 */
   3183 		for (; nstart < nend; a_dte++, nstart += MMU_TIA_RANGE)
   3184 			if (MMU_VALID_DT(*a_dte)) {
   3185 				/*
   3186 				 * Find the B table manager for the
   3187 				 * entry and free it.
   3188 				 */
   3189 				b_dte = mmu_ptov(a_dte->addr.raw);
   3190 				b_tbl = mmuB2tmgr(b_dte);
   3191 				bt_wired = b_tbl->bt_wcnt;
   3192 
   3193 				free_b_table(b_tbl, true);
   3194 
   3195 				/*
   3196 				 * All child entries has been removed.
   3197 				 * If there were any wired entries in it,
   3198 				 * decrement wired entry count.
   3199 				 */
   3200 				if (bt_wired)
   3201 					a_tbl->at_wcnt--;
   3202 
   3203 				/*
   3204 				 * Invalidate the DTE that points to the
   3205 				 * B table and decrement the valid entry
   3206 				 * count of the A table.
   3207 				 */
   3208 				a_dte->attr.raw = MMU_DT_INVALID;
   3209 				a_tbl->at_ecnt--;
   3210 			}
   3211 	}
   3212 	if (nend < eva) {
   3213 		/*
   3214 		 * This block is executed if the range ends beyond a
   3215 		 * granularity boundary.
   3216 		 *
   3217 		 * First find the DTE which is responsible for mapping
   3218 		 * the start of the nearest (rounded down) granularity
   3219 		 * boundary.
   3220 		 */
   3221 		idx = MMU_TIA(nend);
   3222 		a_dte = &a_tbl->at_dtbl[idx];
   3223 
   3224 		/*
   3225 		 * If the DTE is valid then delegate the removal of the sub
   3226 		 * range to pmap_remove_b(), which can remove addresses at
   3227 		 * a finer granularity.
   3228 		 */
   3229 		if (MMU_VALID_DT(*a_dte)) {
   3230 			/*
   3231 			 * Find the B table manager for the entry
   3232 			 * and hand it to pmap_remove_b() along with
   3233 			 * the sub range.
   3234 			 */
   3235 			b_dte = mmu_ptov(a_dte->addr.raw);
   3236 			b_tbl = mmuB2tmgr(b_dte);
   3237 			bt_wired = b_tbl->bt_wcnt;
   3238 
   3239 			empty = pmap_remove_b(b_tbl, nend, eva);
   3240 
   3241 			/*
   3242 			 * If the child table no longer has wired entries,
   3243 			 * decrement wired entry count.
   3244 			 */
   3245 			if (bt_wired && b_tbl->bt_wcnt == 0)
   3246 				a_tbl->at_wcnt--;
   3247 			/*
   3248 			 * If the removal resulted in an empty B table,
   3249 			 * invalidate the DTE that points to it and decrement
   3250 			 * the valid entry count of the A table.
   3251 			 */
   3252 			if (empty) {
   3253 				a_dte->attr.raw = MMU_DT_INVALID;
   3254 				a_tbl->at_ecnt--;
   3255 			}
   3256 		}
   3257 	}
   3258 
   3259 	/*
   3260 	 * If there are no more entries in the A table, release it
   3261 	 * back to the available pool and return true.
   3262 	 */
   3263 	if (a_tbl->at_ecnt == 0) {
   3264 		KASSERT(a_tbl->at_wcnt == 0);
   3265 		a_tbl->at_parent = NULL;
   3266 		if (!at_wired)
   3267 			TAILQ_REMOVE(&a_pool, a_tbl, at_link);
   3268 		TAILQ_INSERT_HEAD(&a_pool, a_tbl, at_link);
   3269 		empty = true;
   3270 	} else {
   3271 		/*
   3272 		 * If the table doesn't have wired entries any longer
   3273 		 * but still has unwired entries, put it back into
   3274 		 * the available queue.
   3275 		 */
   3276 		if (at_wired && a_tbl->at_wcnt == 0)
   3277 			TAILQ_INSERT_TAIL(&a_pool, a_tbl, at_link);
   3278 		empty = false;
   3279 	}
   3280 
   3281 	return empty;
   3282 }
   3283 
   3284 /* pmap_remove_b			INTERNAL
   3285  **
   3286  * Remove a range of addresses from an address space, trying to remove entire
   3287  * C tables if possible.
   3288  *
   3289  * If the operation results in an empty B table, the function returns true.
   3290  */
   3291 bool
   3292 pmap_remove_b(b_tmgr_t *b_tbl, vaddr_t sva, vaddr_t eva)
   3293 {
   3294 	bool empty;
   3295 	int idx;
   3296 	vaddr_t nstart, nend, rstart;
   3297 	c_tmgr_t *c_tbl;
   3298 	mmu_short_dte_t  *b_dte;
   3299 	mmu_short_pte_t  *c_dte;
   3300 	uint8_t bt_wired, ct_wired;
   3301 
   3302 	nstart = MMU_ROUND_UP_B(sva);
   3303 	nend = MMU_ROUND_B(eva);
   3304 
   3305 	bt_wired = b_tbl->bt_wcnt;
   3306 
   3307 	if (sva < nstart) {
   3308 		idx = MMU_TIB(sva);
   3309 		b_dte = &b_tbl->bt_dtbl[idx];
   3310 		if (MMU_VALID_DT(*b_dte)) {
   3311 			c_dte = mmu_ptov(MMU_DTE_PA(*b_dte));
   3312 			c_tbl = mmuC2tmgr(c_dte);
   3313 			ct_wired = c_tbl->ct_wcnt;
   3314 
   3315 			if (eva < nstart)
   3316 				empty = pmap_remove_c(c_tbl, sva, eva);
   3317 			else
   3318 				empty = pmap_remove_c(c_tbl, sva, nstart);
   3319 
   3320 			/*
   3321 			 * If the child table no longer has wired entries,
   3322 			 * decrement wired entry count.
   3323 			 */
   3324 			if (ct_wired && c_tbl->ct_wcnt == 0)
   3325 				b_tbl->bt_wcnt--;
   3326 
   3327 			if (empty) {
   3328 				b_dte->attr.raw = MMU_DT_INVALID;
   3329 				b_tbl->bt_ecnt--;
   3330 			}
   3331 		}
   3332 	}
   3333 	if (nstart < nend) {
   3334 		idx = MMU_TIB(nstart);
   3335 		b_dte = &b_tbl->bt_dtbl[idx];
   3336 		rstart = nstart;
   3337 		while (rstart < nend) {
   3338 			if (MMU_VALID_DT(*b_dte)) {
   3339 				c_dte = mmu_ptov(MMU_DTE_PA(*b_dte));
   3340 				c_tbl = mmuC2tmgr(c_dte);
   3341 				ct_wired = c_tbl->ct_wcnt;
   3342 
   3343 				free_c_table(c_tbl, true);
   3344 
   3345 				/*
   3346 				 * All child entries has been removed.
   3347 				 * If there were any wired entries in it,
   3348 				 * decrement wired entry count.
   3349 				 */
   3350 				if (ct_wired)
   3351 					b_tbl->bt_wcnt--;
   3352 
   3353 				b_dte->attr.raw = MMU_DT_INVALID;
   3354 				b_tbl->bt_ecnt--;
   3355 			}
   3356 			b_dte++;
   3357 			rstart += MMU_TIB_RANGE;
   3358 		}
   3359 	}
   3360 	if (nend < eva) {
   3361 		idx = MMU_TIB(nend);
   3362 		b_dte = &b_tbl->bt_dtbl[idx];
   3363 		if (MMU_VALID_DT(*b_dte)) {
   3364 			c_dte = mmu_ptov(MMU_DTE_PA(*b_dte));
   3365 			c_tbl = mmuC2tmgr(c_dte);
   3366 			ct_wired = c_tbl->ct_wcnt;
   3367 			empty = pmap_remove_c(c_tbl, nend, eva);
   3368 
   3369 			/*
   3370 			 * If the child table no longer has wired entries,
   3371 			 * decrement wired entry count.
   3372 			 */
   3373 			if (ct_wired && c_tbl->ct_wcnt == 0)
   3374 				b_tbl->bt_wcnt--;
   3375 
   3376 			if (empty) {
   3377 				b_dte->attr.raw = MMU_DT_INVALID;
   3378 				b_tbl->bt_ecnt--;
   3379 			}
   3380 		}
   3381 	}
   3382 
   3383 	if (b_tbl->bt_ecnt == 0) {
   3384 		KASSERT(b_tbl->bt_wcnt == 0);
   3385 		b_tbl->bt_parent = NULL;
   3386 		if (!bt_wired)
   3387 			TAILQ_REMOVE(&b_pool, b_tbl, bt_link);
   3388 		TAILQ_INSERT_HEAD(&b_pool, b_tbl, bt_link);
   3389 		empty = true;
   3390 	} else {
   3391 		/*
   3392 		 * If the table doesn't have wired entries any longer
   3393 		 * but still has unwired entries, put it back into
   3394 		 * the available queue.
   3395 		 */
   3396 		if (bt_wired && b_tbl->bt_wcnt == 0)
   3397 			TAILQ_INSERT_TAIL(&b_pool, b_tbl, bt_link);
   3398 
   3399 		empty = false;
   3400 	}
   3401 
   3402 	return empty;
   3403 }
   3404 
   3405 /* pmap_remove_c			INTERNAL
   3406  **
   3407  * Remove a range of addresses from the given C table.
   3408  */
   3409 bool
   3410 pmap_remove_c(c_tmgr_t *c_tbl, vaddr_t sva, vaddr_t eva)
   3411 {
   3412 	bool empty;
   3413 	int idx;
   3414 	mmu_short_pte_t *c_pte;
   3415 	uint8_t ct_wired;
   3416 
   3417 	ct_wired = c_tbl->ct_wcnt;
   3418 
   3419 	idx = MMU_TIC(sva);
   3420 	c_pte = &c_tbl->ct_dtbl[idx];
   3421 	for (; sva < eva; sva += MMU_PAGE_SIZE, c_pte++) {
   3422 		if (MMU_VALID_DT(*c_pte)) {
   3423 			if (c_pte->attr.raw & MMU_SHORT_PTE_WIRED)
   3424 				c_tbl->ct_wcnt--;
   3425 			pmap_remove_pte(c_pte);
   3426 			c_tbl->ct_ecnt--;
   3427 		}
   3428 	}
   3429 
   3430 	if (c_tbl->ct_ecnt == 0) {
   3431 		KASSERT(c_tbl->ct_wcnt == 0);
   3432 		c_tbl->ct_parent = NULL;
   3433 		if (!ct_wired)
   3434 			TAILQ_REMOVE(&c_pool, c_tbl, ct_link);
   3435 		TAILQ_INSERT_HEAD(&c_pool, c_tbl, ct_link);
   3436 		empty = true;
   3437 	} else {
   3438 		/*
   3439 		 * If the table doesn't have wired entries any longer
   3440 		 * but still has unwired entries, put it back into
   3441 		 * the available queue.
   3442 		 */
   3443 		if (ct_wired && c_tbl->ct_wcnt == 0)
   3444 			TAILQ_INSERT_TAIL(&c_pool, c_tbl, ct_link);
   3445 		empty = false;
   3446 	}
   3447 
   3448 	return empty;
   3449 }
   3450 
   3451 /* pmap_bootstrap_alloc			INTERNAL
   3452  **
   3453  * Used internally for memory allocation at startup when malloc is not
   3454  * available.  This code will fail once it crosses the first memory
   3455  * bank boundary on the 3/80.  Hopefully by then however, the VM system
   3456  * will be in charge of allocation.
   3457  */
   3458 void *
   3459 pmap_bootstrap_alloc(int size)
   3460 {
   3461 	void *rtn;
   3462 
   3463 #ifdef	PMAP_DEBUG
   3464 	if (bootstrap_alloc_enabled == false) {
   3465 		mon_printf("pmap_bootstrap_alloc: disabled\n");
   3466 		sunmon_abort();
   3467 	}
   3468 #endif
   3469 
   3470 	rtn = (void *) virtual_avail;
   3471 	virtual_avail += size;
   3472 
   3473 #ifdef	PMAP_DEBUG
   3474 	if (virtual_avail > virtual_contig_end) {
   3475 		mon_printf("pmap_bootstrap_alloc: out of mem\n");
   3476 		sunmon_abort();
   3477 	}
   3478 #endif
   3479 
   3480 	return rtn;
   3481 }
   3482 
   3483 /* pmap_bootstap_aalign			INTERNAL
   3484  **
   3485  * Used to insure that the next call to pmap_bootstrap_alloc() will
   3486  * return a chunk of memory aligned to the specified size.
   3487  *
   3488  * Note: This function will only support alignment sizes that are powers
   3489  * of two.
   3490  */
   3491 void
   3492 pmap_bootstrap_aalign(int size)
   3493 {
   3494 	int off;
   3495 
   3496 	off = virtual_avail & (size - 1);
   3497 	if (off) {
   3498 		(void)pmap_bootstrap_alloc(size - off);
   3499 	}
   3500 }
   3501 
   3502 /* pmap_pa_exists
   3503  **
   3504  * Used by the /dev/mem driver to see if a given PA is memory
   3505  * that can be mapped.  (The PA is not in a hole.)
   3506  */
   3507 int
   3508 pmap_pa_exists(paddr_t pa)
   3509 {
   3510 	int i;
   3511 
   3512 	for (i = 0; i < SUN3X_NPHYS_RAM_SEGS; i++) {
   3513 		if ((pa >= avail_mem[i].pmem_start) &&
   3514 			(pa <  avail_mem[i].pmem_end))
   3515 			return 1;
   3516 		if (avail_mem[i].pmem_next == NULL)
   3517 			break;
   3518 	}
   3519 	return 0;
   3520 }
   3521 
   3522 /* Called only from locore.s and pmap.c */
   3523 void	_pmap_switch(pmap_t pmap);
   3524 
   3525 /*
   3526  * _pmap_switch			INTERNAL
   3527  *
   3528  * This is called by locore.s:cpu_switch() when it is
   3529  * switching to a new process.  Load new translations.
   3530  * Note: done in-line by locore.s unless PMAP_DEBUG
   3531  *
   3532  * Note that we do NOT allocate a context here, but
   3533  * share the "kernel only" context until we really
   3534  * need our own context for user-space mappings in
   3535  * pmap_enter_user().  [ s/context/mmu A table/ ]
   3536  */
   3537 void
   3538 _pmap_switch(pmap_t pmap)
   3539 {
   3540 	u_long rootpa;
   3541 
   3542 	/*
   3543 	 * Only do reload/flush if we have to.
   3544 	 * Note that if the old and new process
   3545 	 * were BOTH using the "null" context,
   3546 	 * then this will NOT flush the TLB.
   3547 	 */
   3548 	rootpa = pmap->pm_a_phys;
   3549 	if (kernel_crp.rp_addr != rootpa) {
   3550 		DPRINT(("pmap_activate(%p)\n", pmap));
   3551 		kernel_crp.rp_addr = rootpa;
   3552 		loadcrp(&kernel_crp);
   3553 		TBIAU();
   3554 	}
   3555 }
   3556 
   3557 /*
   3558  * Exported version of pmap_activate().  This is called from the
   3559  * machine-independent VM code when a process is given a new pmap.
   3560  * If (p == curlwp) do like cpu_switch would do; otherwise just
   3561  * take this as notification that the process has a new pmap.
   3562  */
   3563 void
   3564 pmap_activate(struct lwp *l)
   3565 {
   3566 
   3567 	if (l->l_proc == curproc) {
   3568 		_pmap_switch(l->l_proc->p_vmspace->vm_map.pmap);
   3569 	}
   3570 }
   3571 
   3572 /*
   3573  * pmap_deactivate			INTERFACE
   3574  **
   3575  * This is called to deactivate the specified process's address space.
   3576  */
   3577 void
   3578 pmap_deactivate(struct lwp *l)
   3579 {
   3580 
   3581 	/* Nothing to do. */
   3582 }
   3583 
   3584 /*
   3585  * Fill in the sun3x-specific part of the kernel core header
   3586  * for dumpsys().  (See machdep.c for the rest.)
   3587  */
   3588 void
   3589 pmap_kcore_hdr(struct sun3x_kcore_hdr *sh)
   3590 {
   3591 	u_long spa, len;
   3592 	int i;
   3593 
   3594 	sh->pg_frame = MMU_SHORT_PTE_BASEADDR;
   3595 	sh->pg_valid = MMU_DT_PAGE;
   3596 	sh->contig_end = virtual_contig_end;
   3597 	sh->kernCbase = (u_long)kernCbase;
   3598 	for (i = 0; i < SUN3X_NPHYS_RAM_SEGS; i++) {
   3599 		spa = avail_mem[i].pmem_start;
   3600 		spa = m68k_trunc_page(spa);
   3601 		len = avail_mem[i].pmem_end - spa;
   3602 		len = m68k_round_page(len);
   3603 		sh->ram_segs[i].start = spa;
   3604 		sh->ram_segs[i].size  = len;
   3605 	}
   3606 }
   3607 
   3608 
   3609 /* pmap_virtual_space			INTERFACE
   3610  **
   3611  * Return the current available range of virtual addresses in the
   3612  * arguuments provided.  Only really called once.
   3613  */
   3614 void
   3615 pmap_virtual_space(vaddr_t *vstart, vaddr_t *vend)
   3616 {
   3617 
   3618 	*vstart = virtual_avail;
   3619 	*vend = virtual_end;
   3620 }
   3621 
   3622 /*
   3623  * Provide memory to the VM system.
   3624  *
   3625  * Assume avail_start is always in the
   3626  * first segment as pmap_bootstrap does.
   3627  */
   3628 static void
   3629 pmap_page_upload(void)
   3630 {
   3631 	paddr_t	a, b;	/* memory range */
   3632 	int i;
   3633 
   3634 	/* Supply the memory in segments. */
   3635 	for (i = 0; i < SUN3X_NPHYS_RAM_SEGS; i++) {
   3636 		a = atop(avail_mem[i].pmem_start);
   3637 		b = atop(avail_mem[i].pmem_end);
   3638 		if (i == 0)
   3639 			a = atop(avail_start);
   3640 		if (avail_mem[i].pmem_end > avail_end)
   3641 			b = atop(avail_end);
   3642 
   3643 		uvm_page_physload(a, b, a, b, VM_FREELIST_DEFAULT);
   3644 
   3645 		if (avail_mem[i].pmem_next == NULL)
   3646 			break;
   3647 	}
   3648 }
   3649 
   3650 /* pmap_count			INTERFACE
   3651  **
   3652  * Return the number of resident (valid) pages in the given pmap.
   3653  *
   3654  * Note:  If this function is handed the kernel map, it will report
   3655  * that it has no mappings.  Hopefully the VM system won't ask for kernel
   3656  * map statistics.
   3657  */
   3658 segsz_t
   3659 pmap_count(pmap_t pmap, int type)
   3660 {
   3661 	u_int     count;
   3662 	int       a_idx, b_idx;
   3663 	a_tmgr_t *a_tbl;
   3664 	b_tmgr_t *b_tbl;
   3665 	c_tmgr_t *c_tbl;
   3666 
   3667 	/*
   3668 	 * If the pmap does not have its own A table manager, it has no
   3669 	 * valid entires.
   3670 	 */
   3671 	if (pmap->pm_a_tmgr == NULL)
   3672 		return 0;
   3673 
   3674 	a_tbl = pmap->pm_a_tmgr;
   3675 
   3676 	count = 0;
   3677 	for (a_idx = 0; a_idx < MMU_TIA(KERNBASE); a_idx++) {
   3678 	    if (MMU_VALID_DT(a_tbl->at_dtbl[a_idx])) {
   3679 	        b_tbl = mmuB2tmgr(mmu_ptov(a_tbl->at_dtbl[a_idx].addr.raw));
   3680 	        for (b_idx = 0; b_idx < MMU_B_TBL_SIZE; b_idx++) {
   3681 	            if (MMU_VALID_DT(b_tbl->bt_dtbl[b_idx])) {
   3682 	                c_tbl = mmuC2tmgr(
   3683 	                    mmu_ptov(MMU_DTE_PA(b_tbl->bt_dtbl[b_idx])));
   3684 	                if (type == 0)
   3685 	                    /*
   3686 	                     * A resident entry count has been requested.
   3687 	                     */
   3688 	                    count += c_tbl->ct_ecnt;
   3689 	                else
   3690 	                    /*
   3691 	                     * A wired entry count has been requested.
   3692 	                     */
   3693 	                    count += c_tbl->ct_wcnt;
   3694 	            }
   3695 	        }
   3696 	    }
   3697 	}
   3698 
   3699 	return count;
   3700 }
   3701 
   3702 /************************ SUN3 COMPATIBILITY ROUTINES ********************
   3703  * The following routines are only used by DDB for tricky kernel text    *
   3704  * text operations in db_memrw.c.  They are provided for sun3            *
   3705  * compatibility.                                                        *
   3706  *************************************************************************/
   3707 /* get_pte			INTERNAL
   3708  **
   3709  * Return the page descriptor the describes the kernel mapping
   3710  * of the given virtual address.
   3711  */
   3712 extern u_long ptest_addr(u_long);	/* XXX: locore.s */
   3713 u_int
   3714 get_pte(vaddr_t va)
   3715 {
   3716 	u_long pte_pa;
   3717 	mmu_short_pte_t *pte;
   3718 
   3719 	/* Get the physical address of the PTE */
   3720 	pte_pa = ptest_addr(va & ~PGOFSET);
   3721 
   3722 	/* Convert to a virtual address... */
   3723 	pte = (mmu_short_pte_t *) (KERNBASE + pte_pa);
   3724 
   3725 	/* Make sure it is in our level-C tables... */
   3726 	if ((pte < kernCbase) ||
   3727 		(pte >= &mmuCbase[NUM_USER_PTES]))
   3728 		return 0;
   3729 
   3730 	/* ... and just return its contents. */
   3731 	return (pte->attr.raw);
   3732 }
   3733 
   3734 
   3735 /* set_pte			INTERNAL
   3736  **
   3737  * Set the page descriptor that describes the kernel mapping
   3738  * of the given virtual address.
   3739  */
   3740 void
   3741 set_pte(vaddr_t va, u_int pte)
   3742 {
   3743 	u_long idx;
   3744 
   3745 	if (va < KERNBASE)
   3746 		return;
   3747 
   3748 	idx = (unsigned long) m68k_btop(va - KERNBASE);
   3749 	kernCbase[idx].attr.raw = pte;
   3750 	TBIS(va);
   3751 }
   3752 
   3753 /*
   3754  *	Routine:        pmap_procwr
   3755  *
   3756  *	Function:
   3757  *		Synchronize caches corresponding to [addr, addr+len) in p.
   3758  */
   3759 void
   3760 pmap_procwr(struct proc *p, vaddr_t va, size_t len)
   3761 {
   3762 
   3763 	(void)cachectl1(0x80000004, va, len, p);
   3764 }
   3765 
   3766 
   3767 #ifdef	PMAP_DEBUG
   3768 /************************** DEBUGGING ROUTINES **************************
   3769  * The following routines are meant to be an aid to debugging the pmap  *
   3770  * system.  They are callable from the DDB command line and should be   *
   3771  * prepared to be handed unstable or incomplete states of the system.   *
   3772  ************************************************************************/
   3773 
   3774 /* pv_list
   3775  **
   3776  * List all pages found on the pv list for the given physical page.
   3777  * To avoid endless loops, the listing will stop at the end of the list
   3778  * or after 'n' entries - whichever comes first.
   3779  */
   3780 void
   3781 pv_list(paddr_t pa, int n)
   3782 {
   3783 	int  idx;
   3784 	vaddr_t va;
   3785 	pv_t *pv;
   3786 	c_tmgr_t *c_tbl;
   3787 	pmap_t pmap;
   3788 
   3789 	pv = pa2pv(pa);
   3790 	idx = pv->pv_idx;
   3791 	for (; idx != PVE_EOL && n > 0; idx = pvebase[idx].pve_next, n--) {
   3792 		va = pmap_get_pteinfo(idx, &pmap, &c_tbl);
   3793 		printf("idx %d, pmap 0x%x, va 0x%x, c_tbl %x\n",
   3794 			idx, (u_int) pmap, (u_int) va, (u_int) c_tbl);
   3795 	}
   3796 }
   3797 #endif	/* PMAP_DEBUG */
   3798 
   3799 #ifdef NOT_YET
   3800 /* and maybe not ever */
   3801 /************************** LOW-LEVEL ROUTINES **************************
   3802  * These routines will eventually be re-written into assembly and placed*
   3803  * in locore.s.  They are here now as stubs so that the pmap module can *
   3804  * be linked as a standalone user program for testing.                  *
   3805  ************************************************************************/
   3806 /* flush_atc_crp			INTERNAL
   3807  **
   3808  * Flush all page descriptors derived from the given CPU Root Pointer
   3809  * (CRP), or 'A' table as it is known here, from the 68851's automatic
   3810  * cache.
   3811  */
   3812 void
   3813 flush_atc_crp(int a_tbl)
   3814 {
   3815 	mmu_long_rp_t rp;
   3816 
   3817 	/* Create a temporary root table pointer that points to the
   3818 	 * given A table.
   3819 	 */
   3820 	rp.attr.raw = ~MMU_LONG_RP_LU;
   3821 	rp.addr.raw = (unsigned int) a_tbl;
   3822 
   3823 	mmu_pflushr(&rp);
   3824 	/* mmu_pflushr:
   3825 	 * 	movel   sp(4)@,a0
   3826 	 * 	pflushr a0@
   3827 	 *	rts
   3828 	 */
   3829 }
   3830 #endif /* NOT_YET */
   3831