pmap.c revision 1.111 1 /* $NetBSD: pmap.c,v 1.111 2010/10/15 15:55:53 tsutsui Exp $ */
2
3 /*-
4 * Copyright (c) 1996, 1997 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jeremy Cooper.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * XXX These comments aren't quite accurate. Need to change.
34 * The sun3x uses the MC68851 Memory Management Unit, which is built
35 * into the CPU. The 68851 maps virtual to physical addresses using
36 * a multi-level table lookup, which is stored in the very memory that
37 * it maps. The number of levels of lookup is configurable from one
38 * to four. In this implementation, we use three, named 'A' through 'C'.
39 *
40 * The MMU translates virtual addresses into physical addresses by
41 * traversing these tables in a process called a 'table walk'. The most
42 * significant 7 bits of the Virtual Address ('VA') being translated are
43 * used as an index into the level A table, whose base in physical memory
44 * is stored in a special MMU register, the 'CPU Root Pointer' or CRP. The
45 * address found at that index in the A table is used as the base
46 * address for the next table, the B table. The next six bits of the VA are
47 * used as an index into the B table, which in turn gives the base address
48 * of the third and final C table.
49 *
50 * The next six bits of the VA are used as an index into the C table to
51 * locate a Page Table Entry (PTE). The PTE is a physical address in memory
52 * to which the remaining 13 bits of the VA are added, producing the
53 * mapped physical address.
54 *
55 * To map the entire memory space in this manner would require 2114296 bytes
56 * of page tables per process - quite expensive. Instead we will
57 * allocate a fixed but considerably smaller space for the page tables at
58 * the time the VM system is initialized. When the pmap code is asked by
59 * the kernel to map a VA to a PA, it allocates tables as needed from this
60 * pool. When there are no more tables in the pool, tables are stolen
61 * from the oldest mapped entries in the tree. This is only possible
62 * because all memory mappings are stored in the kernel memory map
63 * structures, independent of the pmap structures. A VA which references
64 * one of these invalidated maps will cause a page fault. The kernel
65 * will determine that the page fault was caused by a task using a valid
66 * VA, but for some reason (which does not concern it), that address was
67 * not mapped. It will ask the pmap code to re-map the entry and then
68 * it will resume executing the faulting task.
69 *
70 * In this manner the most efficient use of the page table space is
71 * achieved. Tasks which do not execute often will have their tables
72 * stolen and reused by tasks which execute more frequently. The best
73 * size for the page table pool will probably be determined by
74 * experimentation.
75 *
76 * You read all of the comments so far. Good for you.
77 * Now go play!
78 */
79
80 /*** A Note About the 68851 Address Translation Cache
81 * The MC68851 has a 64 entry cache, called the Address Translation Cache
82 * or 'ATC'. This cache stores the most recently used page descriptors
83 * accessed by the MMU when it does translations. Using a marker called a
84 * 'task alias' the MMU can store the descriptors from 8 different table
85 * spaces concurrently. The task alias is associated with the base
86 * address of the level A table of that address space. When an address
87 * space is currently active (the CRP currently points to its A table)
88 * the only cached descriptors that will be obeyed are ones which have a
89 * matching task alias of the current space associated with them.
90 *
91 * Since the cache is always consulted before any table lookups are done,
92 * it is important that it accurately reflect the state of the MMU tables.
93 * Whenever a change has been made to a table that has been loaded into
94 * the MMU, the code must be sure to flush any cached entries that are
95 * affected by the change. These instances are documented in the code at
96 * various points.
97 */
98 /*** A Note About the Note About the 68851 Address Translation Cache
99 * 4 months into this code I discovered that the sun3x does not have
100 * a MC68851 chip. Instead, it has a version of this MMU that is part of the
101 * the 68030 CPU.
102 * All though it behaves very similarly to the 68851, it only has 1 task
103 * alias and a 22 entry cache. So sadly (or happily), the first paragraph
104 * of the previous note does not apply to the sun3x pmap.
105 */
106
107 #include <sys/cdefs.h>
108 __KERNEL_RCSID(0, "$NetBSD: pmap.c,v 1.111 2010/10/15 15:55:53 tsutsui Exp $");
109
110 #include "opt_ddb.h"
111 #include "opt_pmap_debug.h"
112
113 #include <sys/param.h>
114 #include <sys/systm.h>
115 #include <sys/proc.h>
116 #include <sys/malloc.h>
117 #include <sys/pool.h>
118 #include <sys/queue.h>
119 #include <sys/kcore.h>
120
121 #include <uvm/uvm.h>
122
123 #include <machine/cpu.h>
124 #include <machine/kcore.h>
125 #include <machine/mon.h>
126 #include <machine/pmap.h>
127 #include <machine/pte.h>
128 #include <machine/vmparam.h>
129 #include <m68k/cacheops.h>
130
131 #include <sun3/sun3/cache.h>
132 #include <sun3/sun3/machdep.h>
133
134 #include "pmap_pvt.h"
135
136 /* XXX - What headers declare these? */
137 extern struct pcb *curpcb;
138
139 /* Defined in locore.s */
140 extern char kernel_text[];
141
142 /* Defined by the linker */
143 extern char etext[], edata[], end[];
144 extern char *esym; /* DDB */
145
146 /*************************** DEBUGGING DEFINITIONS ***********************
147 * Macros, preprocessor defines and variables used in debugging can make *
148 * code hard to read. Anything used exclusively for debugging purposes *
149 * is defined here to avoid having such mess scattered around the file. *
150 *************************************************************************/
151 #ifdef PMAP_DEBUG
152 /*
153 * To aid the debugging process, macros should be expanded into smaller steps
154 * that accomplish the same goal, yet provide convenient places for placing
155 * breakpoints. When this code is compiled with PMAP_DEBUG mode defined, the
156 * 'INLINE' keyword is defined to an empty string. This way, any function
157 * defined to be a 'static INLINE' will become 'outlined' and compiled as
158 * a separate function, which is much easier to debug.
159 */
160 #define INLINE /* nothing */
161
162 /*
163 * It is sometimes convenient to watch the activity of a particular table
164 * in the system. The following variables are used for that purpose.
165 */
166 a_tmgr_t *pmap_watch_atbl = 0;
167 b_tmgr_t *pmap_watch_btbl = 0;
168 c_tmgr_t *pmap_watch_ctbl = 0;
169
170 int pmap_debug = 0;
171 #define DPRINT(args) if (pmap_debug) printf args
172
173 #else /********** Stuff below is defined if NOT debugging **************/
174
175 #define INLINE inline
176 #define DPRINT(args) /* nada */
177
178 #endif /* PMAP_DEBUG */
179 /*********************** END OF DEBUGGING DEFINITIONS ********************/
180
181 /*** Management Structure - Memory Layout
182 * For every MMU table in the sun3x pmap system there must be a way to
183 * manage it; we must know which process is using it, what other tables
184 * depend on it, and whether or not it contains any locked pages. This
185 * is solved by the creation of 'table management' or 'tmgr'
186 * structures. One for each MMU table in the system.
187 *
188 * MAP OF MEMORY USED BY THE PMAP SYSTEM
189 *
190 * towards lower memory
191 * kernAbase -> +-------------------------------------------------------+
192 * | Kernel MMU A level table |
193 * kernBbase -> +-------------------------------------------------------+
194 * | Kernel MMU B level tables |
195 * kernCbase -> +-------------------------------------------------------+
196 * | |
197 * | Kernel MMU C level tables |
198 * | |
199 * mmuCbase -> +-------------------------------------------------------+
200 * | User MMU C level tables |
201 * mmuAbase -> +-------------------------------------------------------+
202 * | |
203 * | User MMU A level tables |
204 * | |
205 * mmuBbase -> +-------------------------------------------------------+
206 * | User MMU B level tables |
207 * tmgrAbase -> +-------------------------------------------------------+
208 * | TMGR A level table structures |
209 * tmgrBbase -> +-------------------------------------------------------+
210 * | TMGR B level table structures |
211 * tmgrCbase -> +-------------------------------------------------------+
212 * | TMGR C level table structures |
213 * pvbase -> +-------------------------------------------------------+
214 * | Physical to Virtual mapping table (list heads) |
215 * pvebase -> +-------------------------------------------------------+
216 * | Physical to Virtual mapping table (list elements) |
217 * | |
218 * +-------------------------------------------------------+
219 * towards higher memory
220 *
221 * For every A table in the MMU A area, there will be a corresponding
222 * a_tmgr structure in the TMGR A area. The same will be true for
223 * the B and C tables. This arrangement will make it easy to find the
224 * controling tmgr structure for any table in the system by use of
225 * (relatively) simple macros.
226 */
227
228 /*
229 * Global variables for storing the base addresses for the areas
230 * labeled above.
231 */
232 static vaddr_t kernAphys;
233 static mmu_long_dte_t *kernAbase;
234 static mmu_short_dte_t *kernBbase;
235 static mmu_short_pte_t *kernCbase;
236 static mmu_short_pte_t *mmuCbase;
237 static mmu_short_dte_t *mmuBbase;
238 static mmu_long_dte_t *mmuAbase;
239 static a_tmgr_t *Atmgrbase;
240 static b_tmgr_t *Btmgrbase;
241 static c_tmgr_t *Ctmgrbase;
242 static pv_t *pvbase;
243 static pv_elem_t *pvebase;
244 static struct pmap kernel_pmap;
245 struct pmap *const kernel_pmap_ptr = &kernel_pmap;
246
247 /*
248 * This holds the CRP currently loaded into the MMU.
249 */
250 struct mmu_rootptr kernel_crp;
251
252 /*
253 * Just all around global variables.
254 */
255 static TAILQ_HEAD(a_pool_head_struct, a_tmgr_struct) a_pool;
256 static TAILQ_HEAD(b_pool_head_struct, b_tmgr_struct) b_pool;
257 static TAILQ_HEAD(c_pool_head_struct, c_tmgr_struct) c_pool;
258
259
260 /*
261 * Flags used to mark the safety/availability of certain operations or
262 * resources.
263 */
264 /* Safe to use pmap_bootstrap_alloc(). */
265 static bool bootstrap_alloc_enabled = false;
266 /* Temporary virtual pages are in use */
267 int tmp_vpages_inuse;
268
269 /*
270 * XXX: For now, retain the traditional variables that were
271 * used in the old pmap/vm interface (without NONCONTIG).
272 */
273 /* Kernel virtual address space available: */
274 vaddr_t virtual_avail, virtual_end;
275 /* Physical address space available: */
276 paddr_t avail_start, avail_end;
277
278 /* This keep track of the end of the contiguously mapped range. */
279 vaddr_t virtual_contig_end;
280
281 /* Physical address used by pmap_next_page() */
282 paddr_t avail_next;
283
284 /* These are used by pmap_copy_page(), etc. */
285 vaddr_t tmp_vpages[2];
286
287 /* memory pool for pmap structures */
288 struct pool pmap_pmap_pool;
289
290 /*
291 * The 3/80 is the only member of the sun3x family that has non-contiguous
292 * physical memory. Memory is divided into 4 banks which are physically
293 * locatable on the system board. Although the size of these banks varies
294 * with the size of memory they contain, their base addresses are
295 * permenently fixed. The following structure, which describes these
296 * banks, is initialized by pmap_bootstrap() after it reads from a similar
297 * structure provided by the ROM Monitor.
298 *
299 * For the other machines in the sun3x architecture which do have contiguous
300 * RAM, this list will have only one entry, which will describe the entire
301 * range of available memory.
302 */
303 struct pmap_physmem_struct avail_mem[SUN3X_NPHYS_RAM_SEGS];
304 u_int total_phys_mem;
305
306 /*************************************************************************/
307
308 /*
309 * XXX - Should "tune" these based on statistics.
310 *
311 * My first guess about the relative numbers of these needed is
312 * based on the fact that a "typical" process will have several
313 * pages mapped at low virtual addresses (text, data, bss), then
314 * some mapped shared libraries, and then some stack pages mapped
315 * near the high end of the VA space. Each process can use only
316 * one A table, and most will use only two B tables (maybe three)
317 * and probably about four C tables. Therefore, the first guess
318 * at the relative numbers of these needed is 1:2:4 -gwr
319 *
320 * The number of C tables needed is closely related to the amount
321 * of physical memory available plus a certain amount attributable
322 * to the use of double mappings. With a few simulation statistics
323 * we can find a reasonably good estimation of this unknown value.
324 * Armed with that and the above ratios, we have a good idea of what
325 * is needed at each level. -j
326 *
327 * Note: It is not physical memory memory size, but the total mapped
328 * virtual space required by the combined working sets of all the
329 * currently _runnable_ processes. (Sleeping ones don't count.)
330 * The amount of physical memory should be irrelevant. -gwr
331 */
332 #ifdef FIXED_NTABLES
333 #define NUM_A_TABLES 16
334 #define NUM_B_TABLES 32
335 #define NUM_C_TABLES 64
336 #else
337 unsigned int NUM_A_TABLES, NUM_B_TABLES, NUM_C_TABLES;
338 #endif /* FIXED_NTABLES */
339
340 /*
341 * This determines our total virtual mapping capacity.
342 * Yes, it is a FIXED value so we can pre-allocate.
343 */
344 #define NUM_USER_PTES (NUM_C_TABLES * MMU_C_TBL_SIZE)
345
346 /*
347 * The size of the Kernel Virtual Address Space (KVAS)
348 * for purposes of MMU table allocation is -KERNBASE
349 * (length from KERNBASE to 0xFFFFffff)
350 */
351 #define KVAS_SIZE (-KERNBASE3X)
352
353 /* Numbers of kernel MMU tables to support KVAS_SIZE. */
354 #define KERN_B_TABLES (KVAS_SIZE >> MMU_TIA_SHIFT)
355 #define KERN_C_TABLES (KVAS_SIZE >> MMU_TIB_SHIFT)
356 #define NUM_KERN_PTES (KVAS_SIZE >> MMU_TIC_SHIFT)
357
358 /*************************** MISCELANEOUS MACROS *************************/
359 #define pmap_lock(pmap) simple_lock(&pmap->pm_lock)
360 #define pmap_unlock(pmap) simple_unlock(&pmap->pm_lock)
361 #define pmap_add_ref(pmap) ++pmap->pm_refcount
362 #define pmap_del_ref(pmap) --pmap->pm_refcount
363 #define pmap_refcount(pmap) pmap->pm_refcount
364
365 void *pmap_bootstrap_alloc(int);
366
367 static INLINE void *mmu_ptov(paddr_t);
368 static INLINE paddr_t mmu_vtop(void *);
369
370 #if 0
371 static INLINE a_tmgr_t *mmuA2tmgr(mmu_long_dte_t *);
372 #endif /* 0 */
373 static INLINE b_tmgr_t *mmuB2tmgr(mmu_short_dte_t *);
374 static INLINE c_tmgr_t *mmuC2tmgr(mmu_short_pte_t *);
375
376 static INLINE pv_t *pa2pv(paddr_t);
377 static INLINE int pteidx(mmu_short_pte_t *);
378 static INLINE pmap_t current_pmap(void);
379
380 /*
381 * We can always convert between virtual and physical addresses
382 * for anything in the range [KERNBASE ... avail_start] because
383 * that range is GUARANTEED to be mapped linearly.
384 * We rely heavily upon this feature!
385 */
386 static INLINE void *
387 mmu_ptov(paddr_t pa)
388 {
389 vaddr_t va;
390
391 va = (pa + KERNBASE3X);
392 #ifdef PMAP_DEBUG
393 if ((va < KERNBASE3X) || (va >= virtual_contig_end))
394 panic("mmu_ptov");
395 #endif
396 return (void *)va;
397 }
398
399 static INLINE paddr_t
400 mmu_vtop(void *vva)
401 {
402 vaddr_t va;
403
404 va = (vaddr_t)vva;
405 #ifdef PMAP_DEBUG
406 if ((va < KERNBASE3X) || (va >= virtual_contig_end))
407 panic("mmu_vtop");
408 #endif
409 return va - KERNBASE3X;
410 }
411
412 /*
413 * These macros map MMU tables to their corresponding manager structures.
414 * They are needed quite often because many of the pointers in the pmap
415 * system reference MMU tables and not the structures that control them.
416 * There needs to be a way to find one when given the other and these
417 * macros do so by taking advantage of the memory layout described above.
418 * Here's a quick step through the first macro, mmuA2tmgr():
419 *
420 * 1) find the offset of the given MMU A table from the base of its table
421 * pool (table - mmuAbase).
422 * 2) convert this offset into a table index by dividing it by the
423 * size of one MMU 'A' table. (sizeof(mmu_long_dte_t) * MMU_A_TBL_SIZE)
424 * 3) use this index to select the corresponding 'A' table manager
425 * structure from the 'A' table manager pool (Atmgrbase[index]).
426 */
427 /* This function is not currently used. */
428 #if 0
429 static INLINE a_tmgr_t *
430 mmuA2tmgr(mmu_long_dte_t *mmuAtbl)
431 {
432 int idx;
433
434 /* Which table is this in? */
435 idx = (mmuAtbl - mmuAbase) / MMU_A_TBL_SIZE;
436 #ifdef PMAP_DEBUG
437 if ((idx < 0) || (idx >= NUM_A_TABLES))
438 panic("mmuA2tmgr");
439 #endif
440 return &Atmgrbase[idx];
441 }
442 #endif /* 0 */
443
444 static INLINE b_tmgr_t *
445 mmuB2tmgr(mmu_short_dte_t *mmuBtbl)
446 {
447 int idx;
448
449 /* Which table is this in? */
450 idx = (mmuBtbl - mmuBbase) / MMU_B_TBL_SIZE;
451 #ifdef PMAP_DEBUG
452 if ((idx < 0) || (idx >= NUM_B_TABLES))
453 panic("mmuB2tmgr");
454 #endif
455 return &Btmgrbase[idx];
456 }
457
458 /* mmuC2tmgr INTERNAL
459 **
460 * Given a pte known to belong to a C table, return the address of
461 * that table's management structure.
462 */
463 static INLINE c_tmgr_t *
464 mmuC2tmgr(mmu_short_pte_t *mmuCtbl)
465 {
466 int idx;
467
468 /* Which table is this in? */
469 idx = (mmuCtbl - mmuCbase) / MMU_C_TBL_SIZE;
470 #ifdef PMAP_DEBUG
471 if ((idx < 0) || (idx >= NUM_C_TABLES))
472 panic("mmuC2tmgr");
473 #endif
474 return &Ctmgrbase[idx];
475 }
476
477 /* This is now a function call below.
478 * #define pa2pv(pa) \
479 * (&pvbase[(unsigned long)\
480 * m68k_btop(pa)\
481 * ])
482 */
483
484 /* pa2pv INTERNAL
485 **
486 * Return the pv_list_head element which manages the given physical
487 * address.
488 */
489 static INLINE pv_t *
490 pa2pv(paddr_t pa)
491 {
492 struct pmap_physmem_struct *bank;
493 int idx;
494
495 bank = &avail_mem[0];
496 while (pa >= bank->pmem_end)
497 bank = bank->pmem_next;
498
499 pa -= bank->pmem_start;
500 idx = bank->pmem_pvbase + m68k_btop(pa);
501 #ifdef PMAP_DEBUG
502 if ((idx < 0) || (idx >= physmem))
503 panic("pa2pv");
504 #endif
505 return &pvbase[idx];
506 }
507
508 /* pteidx INTERNAL
509 **
510 * Return the index of the given PTE within the entire fixed table of
511 * PTEs.
512 */
513 static INLINE int
514 pteidx(mmu_short_pte_t *pte)
515 {
516
517 return pte - kernCbase;
518 }
519
520 /*
521 * This just offers a place to put some debugging checks,
522 * and reduces the number of places "curlwp" appears...
523 */
524 static INLINE pmap_t
525 current_pmap(void)
526 {
527 struct vmspace *vm;
528 struct vm_map *map;
529 pmap_t pmap;
530
531 vm = curproc->p_vmspace;
532 map = &vm->vm_map;
533 pmap = vm_map_pmap(map);
534
535 return pmap;
536 }
537
538
539 /*************************** FUNCTION DEFINITIONS ************************
540 * These appear here merely for the compiler to enforce type checking on *
541 * all function calls. *
542 *************************************************************************/
543
544 /*
545 * Internal functions
546 */
547 a_tmgr_t *get_a_table(void);
548 b_tmgr_t *get_b_table(void);
549 c_tmgr_t *get_c_table(void);
550 int free_a_table(a_tmgr_t *, bool);
551 int free_b_table(b_tmgr_t *, bool);
552 int free_c_table(c_tmgr_t *, bool);
553
554 void pmap_bootstrap_aalign(int);
555 void pmap_alloc_usermmu(void);
556 void pmap_alloc_usertmgr(void);
557 void pmap_alloc_pv(void);
558 void pmap_init_a_tables(void);
559 void pmap_init_b_tables(void);
560 void pmap_init_c_tables(void);
561 void pmap_init_pv(void);
562 void pmap_clear_pv(paddr_t, int);
563 static INLINE bool is_managed(paddr_t);
564
565 bool pmap_remove_a(a_tmgr_t *, vaddr_t, vaddr_t);
566 bool pmap_remove_b(b_tmgr_t *, vaddr_t, vaddr_t);
567 bool pmap_remove_c(c_tmgr_t *, vaddr_t, vaddr_t);
568 void pmap_remove_pte(mmu_short_pte_t *);
569
570 void pmap_enter_kernel(vaddr_t, paddr_t, vm_prot_t);
571 static INLINE void pmap_remove_kernel(vaddr_t, vaddr_t);
572 static INLINE void pmap_protect_kernel(vaddr_t, vaddr_t, vm_prot_t);
573 static INLINE bool pmap_extract_kernel(vaddr_t, paddr_t *);
574 vaddr_t pmap_get_pteinfo(u_int, pmap_t *, c_tmgr_t **);
575 static INLINE int pmap_dereference(pmap_t);
576
577 bool pmap_stroll(pmap_t, vaddr_t, a_tmgr_t **, b_tmgr_t **, c_tmgr_t **,
578 mmu_short_pte_t **, int *, int *, int *);
579 void pmap_bootstrap_copyprom(void);
580 void pmap_takeover_mmu(void);
581 void pmap_bootstrap_setprom(void);
582 static void pmap_page_upload(void);
583
584 #ifdef PMAP_DEBUG
585 /* Debugging function definitions */
586 void pv_list(paddr_t, int);
587 #endif /* PMAP_DEBUG */
588
589 /** Interface functions
590 ** - functions required by the Mach VM Pmap interface, with MACHINE_CONTIG
591 ** defined.
592 ** The new UVM doesn't require them so now INTERNAL.
593 **/
594 static INLINE void pmap_pinit(pmap_t);
595 static INLINE void pmap_release(pmap_t);
596
597 /********************************** CODE ********************************
598 * Functions that are called from other parts of the kernel are labeled *
599 * as 'INTERFACE' functions. Functions that are only called from *
600 * within the pmap module are labeled as 'INTERNAL' functions. *
601 * Functions that are internal, but are not (currently) used at all are *
602 * labeled 'INTERNAL_X'. *
603 ************************************************************************/
604
605 /* pmap_bootstrap INTERNAL
606 **
607 * Initializes the pmap system. Called at boot time from
608 * locore2.c:_vm_init()
609 *
610 * Reminder: having a pmap_bootstrap_alloc() and also having the VM
611 * system implement pmap_steal_memory() is redundant.
612 * Don't release this code without removing one or the other!
613 */
614 void
615 pmap_bootstrap(vaddr_t nextva)
616 {
617 struct physmemory *membank;
618 struct pmap_physmem_struct *pmap_membank;
619 vaddr_t va, eva;
620 paddr_t pa;
621 int b, c, i, j; /* running table counts */
622 int size, resvmem;
623
624 /*
625 * This function is called by __bootstrap after it has
626 * determined the type of machine and made the appropriate
627 * patches to the ROM vectors (XXX- I don't quite know what I meant
628 * by that.) It allocates and sets up enough of the pmap system
629 * to manage the kernel's address space.
630 */
631
632 /*
633 * Determine the range of kernel virtual and physical
634 * space available. Note that we ABSOLUTELY DEPEND on
635 * the fact that the first bank of memory (4MB) is
636 * mapped linearly to KERNBASE (which we guaranteed in
637 * the first instructions of locore.s).
638 * That is plenty for our bootstrap work.
639 */
640 virtual_avail = m68k_round_page(nextva);
641 virtual_contig_end = KERNBASE3X + 0x400000; /* +4MB */
642 virtual_end = VM_MAX_KERNEL_ADDRESS;
643 /* Don't need avail_start til later. */
644
645 /* We may now call pmap_bootstrap_alloc(). */
646 bootstrap_alloc_enabled = true;
647
648 /*
649 * This is a somewhat unwrapped loop to deal with
650 * copying the PROM's 'phsymem' banks into the pmap's
651 * banks. The following is always assumed:
652 * 1. There is always at least one bank of memory.
653 * 2. There is always a last bank of memory, and its
654 * pmem_next member must be set to NULL.
655 */
656 membank = romVectorPtr->v_physmemory;
657 pmap_membank = avail_mem;
658 total_phys_mem = 0;
659
660 for (;;) { /* break on !membank */
661 pmap_membank->pmem_start = membank->address;
662 pmap_membank->pmem_end = membank->address + membank->size;
663 total_phys_mem += membank->size;
664 membank = membank->next;
665 if (!membank)
666 break;
667 /* This silly syntax arises because pmap_membank
668 * is really a pre-allocated array, but it is put into
669 * use as a linked list.
670 */
671 pmap_membank->pmem_next = pmap_membank + 1;
672 pmap_membank = pmap_membank->pmem_next;
673 }
674 /* This is the last element. */
675 pmap_membank->pmem_next = NULL;
676
677 /*
678 * Note: total_phys_mem, physmem represent
679 * actual physical memory, including that
680 * reserved for the PROM monitor.
681 */
682 physmem = btoc(total_phys_mem);
683
684 /*
685 * Avail_end is set to the first byte of physical memory
686 * after the end of the last bank. We use this only to
687 * determine if a physical address is "managed" memory.
688 * This address range should be reduced to prevent the
689 * physical pages needed by the PROM monitor from being used
690 * in the VM system.
691 */
692 resvmem = total_phys_mem - *(romVectorPtr->memoryAvail);
693 resvmem = m68k_round_page(resvmem);
694 avail_end = pmap_membank->pmem_end - resvmem;
695
696 /*
697 * First allocate enough kernel MMU tables to map all
698 * of kernel virtual space from KERNBASE to 0xFFFFFFFF.
699 * Note: All must be aligned on 256 byte boundaries.
700 * Start with the level-A table (one of those).
701 */
702 size = sizeof(mmu_long_dte_t) * MMU_A_TBL_SIZE;
703 kernAbase = pmap_bootstrap_alloc(size);
704 memset(kernAbase, 0, size);
705
706 /* Now the level-B kernel tables... */
707 size = sizeof(mmu_short_dte_t) * MMU_B_TBL_SIZE * KERN_B_TABLES;
708 kernBbase = pmap_bootstrap_alloc(size);
709 memset(kernBbase, 0, size);
710
711 /* Now the level-C kernel tables... */
712 size = sizeof(mmu_short_pte_t) * MMU_C_TBL_SIZE * KERN_C_TABLES;
713 kernCbase = pmap_bootstrap_alloc(size);
714 memset(kernCbase, 0, size);
715 /*
716 * Note: In order for the PV system to work correctly, the kernel
717 * and user-level C tables must be allocated contiguously.
718 * Nothing should be allocated between here and the allocation of
719 * mmuCbase below. XXX: Should do this as one allocation, and
720 * then compute a pointer for mmuCbase instead of this...
721 *
722 * Allocate user MMU tables.
723 * These must be contiguous with the preceding.
724 */
725
726 #ifndef FIXED_NTABLES
727 /*
728 * The number of user-level C tables that should be allocated is
729 * related to the size of physical memory. In general, there should
730 * be enough tables to map four times the amount of available RAM.
731 * The extra amount is needed because some table space is wasted by
732 * fragmentation.
733 */
734 NUM_C_TABLES = (total_phys_mem * 4) / (MMU_C_TBL_SIZE * MMU_PAGE_SIZE);
735 NUM_B_TABLES = NUM_C_TABLES / 2;
736 NUM_A_TABLES = NUM_B_TABLES / 2;
737 #endif /* !FIXED_NTABLES */
738
739 size = sizeof(mmu_short_pte_t) * MMU_C_TBL_SIZE * NUM_C_TABLES;
740 mmuCbase = pmap_bootstrap_alloc(size);
741
742 size = sizeof(mmu_short_dte_t) * MMU_B_TBL_SIZE * NUM_B_TABLES;
743 mmuBbase = pmap_bootstrap_alloc(size);
744
745 size = sizeof(mmu_long_dte_t) * MMU_A_TBL_SIZE * NUM_A_TABLES;
746 mmuAbase = pmap_bootstrap_alloc(size);
747
748 /*
749 * Fill in the never-changing part of the kernel tables.
750 * For simplicity, the kernel's mappings will be editable as a
751 * flat array of page table entries at kernCbase. The
752 * higher level 'A' and 'B' tables must be initialized to point
753 * to this lower one.
754 */
755 b = c = 0;
756
757 /*
758 * Invalidate all mappings below KERNBASE in the A table.
759 * This area has already been zeroed out, but it is good
760 * practice to explicitly show that we are interpreting
761 * it as a list of A table descriptors.
762 */
763 for (i = 0; i < MMU_TIA(KERNBASE3X); i++) {
764 kernAbase[i].addr.raw = 0;
765 }
766
767 /*
768 * Set up the kernel A and B tables so that they will reference the
769 * correct spots in the contiguous table of PTEs allocated for the
770 * kernel's virtual memory space.
771 */
772 for (i = MMU_TIA(KERNBASE3X); i < MMU_A_TBL_SIZE; i++) {
773 kernAbase[i].attr.raw =
774 MMU_LONG_DTE_LU | MMU_LONG_DTE_SUPV | MMU_DT_SHORT;
775 kernAbase[i].addr.raw = mmu_vtop(&kernBbase[b]);
776
777 for (j = 0; j < MMU_B_TBL_SIZE; j++) {
778 kernBbase[b + j].attr.raw =
779 mmu_vtop(&kernCbase[c]) | MMU_DT_SHORT;
780 c += MMU_C_TBL_SIZE;
781 }
782 b += MMU_B_TBL_SIZE;
783 }
784
785 pmap_alloc_usermmu(); /* Allocate user MMU tables. */
786 pmap_alloc_usertmgr(); /* Allocate user MMU table managers.*/
787 pmap_alloc_pv(); /* Allocate physical->virtual map. */
788
789 /*
790 * We are now done with pmap_bootstrap_alloc(). Round up
791 * `virtual_avail' to the nearest page, and set the flag
792 * to prevent use of pmap_bootstrap_alloc() hereafter.
793 */
794 pmap_bootstrap_aalign(PAGE_SIZE);
795 bootstrap_alloc_enabled = false;
796
797 /*
798 * Now that we are done with pmap_bootstrap_alloc(), we
799 * must save the virtual and physical addresses of the
800 * end of the linearly mapped range, which are stored in
801 * virtual_contig_end and avail_start, respectively.
802 * These variables will never change after this point.
803 */
804 virtual_contig_end = virtual_avail;
805 avail_start = virtual_avail - KERNBASE3X;
806
807 /*
808 * `avail_next' is a running pointer used by pmap_next_page() to
809 * keep track of the next available physical page to be handed
810 * to the VM system during its initialization, in which it
811 * asks for physical pages, one at a time.
812 */
813 avail_next = avail_start;
814
815 /*
816 * Now allocate some virtual addresses, but not the physical pages
817 * behind them. Note that virtual_avail is already page-aligned.
818 *
819 * tmp_vpages[] is an array of two virtual pages used for temporary
820 * kernel mappings in the pmap module to facilitate various physical
821 * address-oritented operations.
822 */
823 tmp_vpages[0] = virtual_avail;
824 virtual_avail += PAGE_SIZE;
825 tmp_vpages[1] = virtual_avail;
826 virtual_avail += PAGE_SIZE;
827
828 /** Initialize the PV system **/
829 pmap_init_pv();
830
831 /*
832 * Fill in the kernel_pmap structure and kernel_crp.
833 */
834 kernAphys = mmu_vtop(kernAbase);
835 kernel_pmap.pm_a_tmgr = NULL;
836 kernel_pmap.pm_a_phys = kernAphys;
837 kernel_pmap.pm_refcount = 1; /* always in use */
838 simple_lock_init(&kernel_pmap.pm_lock);
839
840 kernel_crp.rp_attr = MMU_LONG_DTE_LU | MMU_DT_LONG;
841 kernel_crp.rp_addr = kernAphys;
842
843 /*
844 * Now pmap_enter_kernel() may be used safely and will be
845 * the main interface used hereafter to modify the kernel's
846 * virtual address space. Note that since we are still running
847 * under the PROM's address table, none of these table modifications
848 * actually take effect until pmap_takeover_mmu() is called.
849 *
850 * Note: Our tables do NOT have the PROM linear mappings!
851 * Only the mappings created here exist in our tables, so
852 * remember to map anything we expect to use.
853 */
854 va = (vaddr_t)KERNBASE3X;
855 pa = 0;
856
857 /*
858 * The first page of the kernel virtual address space is the msgbuf
859 * page. The page attributes (data, non-cached) are set here, while
860 * the address is assigned to this global pointer in cpu_startup().
861 * It is non-cached, mostly due to paranoia.
862 */
863 pmap_enter_kernel(va, pa|PMAP_NC, VM_PROT_ALL);
864 va += PAGE_SIZE;
865 pa += PAGE_SIZE;
866
867 /* Next page is used as the temporary stack. */
868 pmap_enter_kernel(va, pa, VM_PROT_ALL);
869 va += PAGE_SIZE;
870 pa += PAGE_SIZE;
871
872 /*
873 * Map all of the kernel's text segment as read-only and cacheable.
874 * (Cacheable is implied by default). Unfortunately, the last bytes
875 * of kernel text and the first bytes of kernel data will often be
876 * sharing the same page. Therefore, the last page of kernel text
877 * has to be mapped as read/write, to accommodate the data.
878 */
879 eva = m68k_trunc_page((vaddr_t)etext);
880 for (; va < eva; va += PAGE_SIZE, pa += PAGE_SIZE)
881 pmap_enter_kernel(va, pa, VM_PROT_READ|VM_PROT_EXECUTE);
882
883 /*
884 * Map all of the kernel's data as read/write and cacheable.
885 * This includes: data, BSS, symbols, and everything in the
886 * contiguous memory used by pmap_bootstrap_alloc()
887 */
888 for (; pa < avail_start; va += PAGE_SIZE, pa += PAGE_SIZE)
889 pmap_enter_kernel(va, pa, VM_PROT_READ|VM_PROT_WRITE);
890
891 /*
892 * At this point we are almost ready to take over the MMU. But first
893 * we must save the PROM's address space in our map, as we call its
894 * routines and make references to its data later in the kernel.
895 */
896 pmap_bootstrap_copyprom();
897 pmap_takeover_mmu();
898 pmap_bootstrap_setprom();
899
900 /* Notify the VM system of our page size. */
901 uvmexp.pagesize = PAGE_SIZE;
902 uvm_setpagesize();
903
904 pmap_page_upload();
905 }
906
907
908 /* pmap_alloc_usermmu INTERNAL
909 **
910 * Called from pmap_bootstrap() to allocate MMU tables that will
911 * eventually be used for user mappings.
912 */
913 void
914 pmap_alloc_usermmu(void)
915 {
916
917 /* XXX: Moved into caller. */
918 }
919
920 /* pmap_alloc_pv INTERNAL
921 **
922 * Called from pmap_bootstrap() to allocate the physical
923 * to virtual mapping list. Each physical page of memory
924 * in the system has a corresponding element in this list.
925 */
926 void
927 pmap_alloc_pv(void)
928 {
929 int i;
930 unsigned int total_mem;
931
932 /*
933 * Allocate a pv_head structure for every page of physical
934 * memory that will be managed by the system. Since memory on
935 * the 3/80 is non-contiguous, we cannot arrive at a total page
936 * count by subtraction of the lowest available address from the
937 * highest, but rather we have to step through each memory
938 * bank and add the number of pages in each to the total.
939 *
940 * At this time we also initialize the offset of each bank's
941 * starting pv_head within the pv_head list so that the physical
942 * memory state routines (pmap_is_referenced(),
943 * pmap_is_modified(), et al.) can quickly find coresponding
944 * pv_heads in spite of the non-contiguity.
945 */
946 total_mem = 0;
947 for (i = 0; i < SUN3X_NPHYS_RAM_SEGS; i++) {
948 avail_mem[i].pmem_pvbase = m68k_btop(total_mem);
949 total_mem += avail_mem[i].pmem_end - avail_mem[i].pmem_start;
950 if (avail_mem[i].pmem_next == NULL)
951 break;
952 }
953 pvbase = (pv_t *)pmap_bootstrap_alloc(sizeof(pv_t) *
954 m68k_btop(total_phys_mem));
955 }
956
957 /* pmap_alloc_usertmgr INTERNAL
958 **
959 * Called from pmap_bootstrap() to allocate the structures which
960 * facilitate management of user MMU tables. Each user MMU table
961 * in the system has one such structure associated with it.
962 */
963 void
964 pmap_alloc_usertmgr(void)
965 {
966 /* Allocate user MMU table managers */
967 /* It would be a lot simpler to just make these BSS, but */
968 /* we may want to change their size at boot time... -j */
969 Atmgrbase =
970 (a_tmgr_t *)pmap_bootstrap_alloc(sizeof(a_tmgr_t) * NUM_A_TABLES);
971 Btmgrbase =
972 (b_tmgr_t *)pmap_bootstrap_alloc(sizeof(b_tmgr_t) * NUM_B_TABLES);
973 Ctmgrbase =
974 (c_tmgr_t *)pmap_bootstrap_alloc(sizeof(c_tmgr_t) * NUM_C_TABLES);
975
976 /*
977 * Allocate PV list elements for the physical to virtual
978 * mapping system.
979 */
980 pvebase = (pv_elem_t *)pmap_bootstrap_alloc(sizeof(pv_elem_t) *
981 (NUM_USER_PTES + NUM_KERN_PTES));
982 }
983
984 /* pmap_bootstrap_copyprom() INTERNAL
985 **
986 * Copy the PROM mappings into our own tables. Note, we
987 * can use physical addresses until __bootstrap returns.
988 */
989 void
990 pmap_bootstrap_copyprom(void)
991 {
992 struct sunromvec *romp;
993 int *mon_ctbl;
994 mmu_short_pte_t *kpte;
995 int i, len;
996
997 romp = romVectorPtr;
998
999 /*
1000 * Copy the mappings in SUN3X_MON_KDB_BASE...SUN3X_MONEND
1001 * Note: mon_ctbl[0] maps SUN3X_MON_KDB_BASE
1002 */
1003 mon_ctbl = *romp->monptaddr;
1004 i = m68k_btop(SUN3X_MON_KDB_BASE - KERNBASE3X);
1005 kpte = &kernCbase[i];
1006 len = m68k_btop(SUN3X_MONEND - SUN3X_MON_KDB_BASE);
1007
1008 for (i = 0; i < len; i++) {
1009 kpte[i].attr.raw = mon_ctbl[i];
1010 }
1011
1012 /*
1013 * Copy the mappings at MON_DVMA_BASE (to the end).
1014 * Note, in here, mon_ctbl[0] maps MON_DVMA_BASE.
1015 * Actually, we only want the last page, which the
1016 * PROM has set up for use by the "ie" driver.
1017 * (The i82686 needs its SCP there.)
1018 * If we copy all the mappings, pmap_enter_kernel
1019 * may complain about finding valid PTEs that are
1020 * not recorded in our PV lists...
1021 */
1022 mon_ctbl = *romp->shadowpteaddr;
1023 i = m68k_btop(SUN3X_MON_DVMA_BASE - KERNBASE3X);
1024 kpte = &kernCbase[i];
1025 len = m68k_btop(SUN3X_MON_DVMA_SIZE);
1026 for (i = (len - 1); i < len; i++) {
1027 kpte[i].attr.raw = mon_ctbl[i];
1028 }
1029 }
1030
1031 /* pmap_takeover_mmu INTERNAL
1032 **
1033 * Called from pmap_bootstrap() after it has copied enough of the
1034 * PROM mappings into the kernel map so that we can use our own
1035 * MMU table.
1036 */
1037 void
1038 pmap_takeover_mmu(void)
1039 {
1040
1041 loadcrp(&kernel_crp);
1042 }
1043
1044 /* pmap_bootstrap_setprom() INTERNAL
1045 **
1046 * Set the PROM mappings so it can see kernel space.
1047 * Note that physical addresses are used here, which
1048 * we can get away with because this runs with the
1049 * low 1GB set for transparent translation.
1050 */
1051 void
1052 pmap_bootstrap_setprom(void)
1053 {
1054 mmu_long_dte_t *mon_dte;
1055 extern struct mmu_rootptr mon_crp;
1056 int i;
1057
1058 mon_dte = (mmu_long_dte_t *)mon_crp.rp_addr;
1059 for (i = MMU_TIA(KERNBASE3X); i < MMU_TIA(KERN_END3X); i++) {
1060 mon_dte[i].attr.raw = kernAbase[i].attr.raw;
1061 mon_dte[i].addr.raw = kernAbase[i].addr.raw;
1062 }
1063 }
1064
1065
1066 /* pmap_init INTERFACE
1067 **
1068 * Called at the end of vm_init() to set up the pmap system to go
1069 * into full time operation. All initialization of kernel_pmap
1070 * should be already done by now, so this should just do things
1071 * needed for user-level pmaps to work.
1072 */
1073 void
1074 pmap_init(void)
1075 {
1076
1077 /** Initialize the manager pools **/
1078 TAILQ_INIT(&a_pool);
1079 TAILQ_INIT(&b_pool);
1080 TAILQ_INIT(&c_pool);
1081
1082 /**************************************************************
1083 * Initialize all tmgr structures and MMU tables they manage. *
1084 **************************************************************/
1085 /** Initialize A tables **/
1086 pmap_init_a_tables();
1087 /** Initialize B tables **/
1088 pmap_init_b_tables();
1089 /** Initialize C tables **/
1090 pmap_init_c_tables();
1091
1092 /** Initialize the pmap pools **/
1093 pool_init(&pmap_pmap_pool, sizeof(struct pmap), 0, 0, 0, "pmappl",
1094 &pool_allocator_nointr, IPL_NONE);
1095 }
1096
1097 /* pmap_init_a_tables() INTERNAL
1098 **
1099 * Initializes all A managers, their MMU A tables, and inserts
1100 * them into the A manager pool for use by the system.
1101 */
1102 void
1103 pmap_init_a_tables(void)
1104 {
1105 int i;
1106 a_tmgr_t *a_tbl;
1107
1108 for (i = 0; i < NUM_A_TABLES; i++) {
1109 /* Select the next available A manager from the pool */
1110 a_tbl = &Atmgrbase[i];
1111
1112 /*
1113 * Clear its parent entry. Set its wired and valid
1114 * entry count to zero.
1115 */
1116 a_tbl->at_parent = NULL;
1117 a_tbl->at_wcnt = a_tbl->at_ecnt = 0;
1118
1119 /* Assign it the next available MMU A table from the pool */
1120 a_tbl->at_dtbl = &mmuAbase[i * MMU_A_TBL_SIZE];
1121
1122 /*
1123 * Initialize the MMU A table with the table in the `lwp0',
1124 * or kernel, mapping. This ensures that every process has
1125 * the kernel mapped in the top part of its address space.
1126 */
1127 memcpy(a_tbl->at_dtbl, kernAbase,
1128 MMU_A_TBL_SIZE * sizeof(mmu_long_dte_t));
1129
1130 /*
1131 * Finally, insert the manager into the A pool,
1132 * making it ready to be used by the system.
1133 */
1134 TAILQ_INSERT_TAIL(&a_pool, a_tbl, at_link);
1135 }
1136 }
1137
1138 /* pmap_init_b_tables() INTERNAL
1139 **
1140 * Initializes all B table managers, their MMU B tables, and
1141 * inserts them into the B manager pool for use by the system.
1142 */
1143 void
1144 pmap_init_b_tables(void)
1145 {
1146 int i, j;
1147 b_tmgr_t *b_tbl;
1148
1149 for (i = 0; i < NUM_B_TABLES; i++) {
1150 /* Select the next available B manager from the pool */
1151 b_tbl = &Btmgrbase[i];
1152
1153 b_tbl->bt_parent = NULL; /* clear its parent, */
1154 b_tbl->bt_pidx = 0; /* parent index, */
1155 b_tbl->bt_wcnt = 0; /* wired entry count, */
1156 b_tbl->bt_ecnt = 0; /* valid entry count. */
1157
1158 /* Assign it the next available MMU B table from the pool */
1159 b_tbl->bt_dtbl = &mmuBbase[i * MMU_B_TBL_SIZE];
1160
1161 /* Invalidate every descriptor in the table */
1162 for (j = 0; j < MMU_B_TBL_SIZE; j++)
1163 b_tbl->bt_dtbl[j].attr.raw = MMU_DT_INVALID;
1164
1165 /* Insert the manager into the B pool */
1166 TAILQ_INSERT_TAIL(&b_pool, b_tbl, bt_link);
1167 }
1168 }
1169
1170 /* pmap_init_c_tables() INTERNAL
1171 **
1172 * Initializes all C table managers, their MMU C tables, and
1173 * inserts them into the C manager pool for use by the system.
1174 */
1175 void
1176 pmap_init_c_tables(void)
1177 {
1178 int i, j;
1179 c_tmgr_t *c_tbl;
1180
1181 for (i = 0; i < NUM_C_TABLES; i++) {
1182 /* Select the next available C manager from the pool */
1183 c_tbl = &Ctmgrbase[i];
1184
1185 c_tbl->ct_parent = NULL; /* clear its parent, */
1186 c_tbl->ct_pidx = 0; /* parent index, */
1187 c_tbl->ct_wcnt = 0; /* wired entry count, */
1188 c_tbl->ct_ecnt = 0; /* valid entry count, */
1189 c_tbl->ct_pmap = NULL; /* parent pmap, */
1190 c_tbl->ct_va = 0; /* base of managed range */
1191
1192 /* Assign it the next available MMU C table from the pool */
1193 c_tbl->ct_dtbl = &mmuCbase[i * MMU_C_TBL_SIZE];
1194
1195 for (j = 0; j < MMU_C_TBL_SIZE; j++)
1196 c_tbl->ct_dtbl[j].attr.raw = MMU_DT_INVALID;
1197
1198 TAILQ_INSERT_TAIL(&c_pool, c_tbl, ct_link);
1199 }
1200 }
1201
1202 /* pmap_init_pv() INTERNAL
1203 **
1204 * Initializes the Physical to Virtual mapping system.
1205 */
1206 void
1207 pmap_init_pv(void)
1208 {
1209 int i;
1210
1211 /* Initialize every PV head. */
1212 for (i = 0; i < m68k_btop(total_phys_mem); i++) {
1213 pvbase[i].pv_idx = PVE_EOL; /* Indicate no mappings */
1214 pvbase[i].pv_flags = 0; /* Zero out page flags */
1215 }
1216 }
1217
1218 /* is_managed INTERNAL
1219 **
1220 * Determine if the given physical address is managed by the PV system.
1221 * Note that this logic assumes that no one will ask for the status of
1222 * addresses which lie in-between the memory banks on the 3/80. If they
1223 * do so, it will falsely report that it is managed.
1224 *
1225 * Note: A "managed" address is one that was reported to the VM system as
1226 * a "usable page" during system startup. As such, the VM system expects the
1227 * pmap module to keep an accurate track of the useage of those pages.
1228 * Any page not given to the VM system at startup does not exist (as far as
1229 * the VM system is concerned) and is therefore "unmanaged." Examples are
1230 * those pages which belong to the ROM monitor and the memory allocated before
1231 * the VM system was started.
1232 */
1233 static INLINE bool
1234 is_managed(paddr_t pa)
1235 {
1236 if (pa >= avail_start && pa < avail_end)
1237 return true;
1238 else
1239 return false;
1240 }
1241
1242 /* get_a_table INTERNAL
1243 **
1244 * Retrieve and return a level A table for use in a user map.
1245 */
1246 a_tmgr_t *
1247 get_a_table(void)
1248 {
1249 a_tmgr_t *tbl;
1250 pmap_t pmap;
1251
1252 /* Get the top A table in the pool */
1253 tbl = TAILQ_FIRST(&a_pool);
1254 if (tbl == NULL) {
1255 /*
1256 * XXX - Instead of panicking here and in other get_x_table
1257 * functions, we do have the option of sleeping on the head of
1258 * the table pool. Any function which updates the table pool
1259 * would then issue a wakeup() on the head, thus waking up any
1260 * processes waiting for a table.
1261 *
1262 * Actually, the place to sleep would be when some process
1263 * asks for a "wired" mapping that would run us short of
1264 * mapping resources. This design DEPENDS on always having
1265 * some mapping resources in the pool for stealing, so we
1266 * must make sure we NEVER let the pool become empty. -gwr
1267 */
1268 panic("get_a_table: out of A tables.");
1269 }
1270
1271 TAILQ_REMOVE(&a_pool, tbl, at_link);
1272 /*
1273 * If the table has a non-null parent pointer then it is in use.
1274 * Forcibly abduct it from its parent and clear its entries.
1275 * No re-entrancy worries here. This table would not be in the
1276 * table pool unless it was available for use.
1277 *
1278 * Note that the second argument to free_a_table() is false. This
1279 * indicates that the table should not be relinked into the A table
1280 * pool. That is a job for the function that called us.
1281 */
1282 if (tbl->at_parent) {
1283 KASSERT(tbl->at_wcnt == 0);
1284 pmap = tbl->at_parent;
1285 free_a_table(tbl, false);
1286 pmap->pm_a_tmgr = NULL;
1287 pmap->pm_a_phys = kernAphys;
1288 }
1289 return tbl;
1290 }
1291
1292 /* get_b_table INTERNAL
1293 **
1294 * Return a level B table for use.
1295 */
1296 b_tmgr_t *
1297 get_b_table(void)
1298 {
1299 b_tmgr_t *tbl;
1300
1301 /* See 'get_a_table' for comments. */
1302 tbl = TAILQ_FIRST(&b_pool);
1303 if (tbl == NULL)
1304 panic("get_b_table: out of B tables.");
1305 TAILQ_REMOVE(&b_pool, tbl, bt_link);
1306 if (tbl->bt_parent) {
1307 KASSERT(tbl->bt_wcnt == 0);
1308 tbl->bt_parent->at_dtbl[tbl->bt_pidx].attr.raw = MMU_DT_INVALID;
1309 tbl->bt_parent->at_ecnt--;
1310 free_b_table(tbl, false);
1311 }
1312 return tbl;
1313 }
1314
1315 /* get_c_table INTERNAL
1316 **
1317 * Return a level C table for use.
1318 */
1319 c_tmgr_t *
1320 get_c_table(void)
1321 {
1322 c_tmgr_t *tbl;
1323
1324 /* See 'get_a_table' for comments */
1325 tbl = TAILQ_FIRST(&c_pool);
1326 if (tbl == NULL)
1327 panic("get_c_table: out of C tables.");
1328 TAILQ_REMOVE(&c_pool, tbl, ct_link);
1329 if (tbl->ct_parent) {
1330 KASSERT(tbl->ct_wcnt == 0);
1331 tbl->ct_parent->bt_dtbl[tbl->ct_pidx].attr.raw = MMU_DT_INVALID;
1332 tbl->ct_parent->bt_ecnt--;
1333 free_c_table(tbl, false);
1334 }
1335 return tbl;
1336 }
1337
1338 /*
1339 * The following 'free_table' and 'steal_table' functions are called to
1340 * detach tables from their current obligations (parents and children) and
1341 * prepare them for reuse in another mapping.
1342 *
1343 * Free_table is used when the calling function will handle the fate
1344 * of the parent table, such as returning it to the free pool when it has
1345 * no valid entries. Functions that do not want to handle this should
1346 * call steal_table, in which the parent table's descriptors and entry
1347 * count are automatically modified when this table is removed.
1348 */
1349
1350 /* free_a_table INTERNAL
1351 **
1352 * Unmaps the given A table and all child tables from their current
1353 * mappings. Returns the number of pages that were invalidated.
1354 * If 'relink' is true, the function will return the table to the head
1355 * of the available table pool.
1356 *
1357 * Cache note: The MC68851 will automatically flush all
1358 * descriptors derived from a given A table from its
1359 * Automatic Translation Cache (ATC) if we issue a
1360 * 'PFLUSHR' instruction with the base address of the
1361 * table. This function should do, and does so.
1362 * Note note: We are using an MC68030 - there is no
1363 * PFLUSHR.
1364 */
1365 int
1366 free_a_table(a_tmgr_t *a_tbl, bool relink)
1367 {
1368 int i, removed_cnt;
1369 mmu_long_dte_t *dte;
1370 mmu_short_dte_t *dtbl;
1371 b_tmgr_t *b_tbl;
1372 uint8_t at_wired, bt_wired;
1373
1374 /*
1375 * Flush the ATC cache of all cached descriptors derived
1376 * from this table.
1377 * Sun3x does not use 68851's cached table feature
1378 * flush_atc_crp(mmu_vtop(a_tbl->dte));
1379 */
1380
1381 /*
1382 * Remove any pending cache flushes that were designated
1383 * for the pmap this A table belongs to.
1384 * a_tbl->parent->atc_flushq[0] = 0;
1385 * Not implemented in sun3x.
1386 */
1387
1388 /*
1389 * All A tables in the system should retain a map for the
1390 * kernel. If the table contains any valid descriptors
1391 * (other than those for the kernel area), invalidate them all,
1392 * stopping short of the kernel's entries.
1393 */
1394 removed_cnt = 0;
1395 at_wired = a_tbl->at_wcnt;
1396 if (a_tbl->at_ecnt) {
1397 dte = a_tbl->at_dtbl;
1398 for (i = 0; i < MMU_TIA(KERNBASE3X); i++) {
1399 /*
1400 * If a table entry points to a valid B table, free
1401 * it and its children.
1402 */
1403 if (MMU_VALID_DT(dte[i])) {
1404 /*
1405 * The following block does several things,
1406 * from innermost expression to the
1407 * outermost:
1408 * 1) It extracts the base (cc 1996)
1409 * address of the B table pointed
1410 * to in the A table entry dte[i].
1411 * 2) It converts this base address into
1412 * the virtual address it can be
1413 * accessed with. (all MMU tables point
1414 * to physical addresses.)
1415 * 3) It finds the corresponding manager
1416 * structure which manages this MMU table.
1417 * 4) It frees the manager structure.
1418 * (This frees the MMU table and all
1419 * child tables. See 'free_b_table' for
1420 * details.)
1421 */
1422 dtbl = mmu_ptov(dte[i].addr.raw);
1423 b_tbl = mmuB2tmgr(dtbl);
1424 bt_wired = b_tbl->bt_wcnt;
1425 removed_cnt += free_b_table(b_tbl, true);
1426 if (bt_wired)
1427 a_tbl->at_wcnt--;
1428 dte[i].attr.raw = MMU_DT_INVALID;
1429 }
1430 }
1431 a_tbl->at_ecnt = 0;
1432 }
1433 KASSERT(a_tbl->at_wcnt == 0);
1434
1435 if (relink) {
1436 a_tbl->at_parent = NULL;
1437 if (!at_wired)
1438 TAILQ_REMOVE(&a_pool, a_tbl, at_link);
1439 TAILQ_INSERT_HEAD(&a_pool, a_tbl, at_link);
1440 }
1441 return removed_cnt;
1442 }
1443
1444 /* free_b_table INTERNAL
1445 **
1446 * Unmaps the given B table and all its children from their current
1447 * mappings. Returns the number of pages that were invalidated.
1448 * (For comments, see 'free_a_table()').
1449 */
1450 int
1451 free_b_table(b_tmgr_t *b_tbl, bool relink)
1452 {
1453 int i, removed_cnt;
1454 mmu_short_dte_t *dte;
1455 mmu_short_pte_t *dtbl;
1456 c_tmgr_t *c_tbl;
1457 uint8_t bt_wired, ct_wired;
1458
1459 removed_cnt = 0;
1460 bt_wired = b_tbl->bt_wcnt;
1461 if (b_tbl->bt_ecnt) {
1462 dte = b_tbl->bt_dtbl;
1463 for (i = 0; i < MMU_B_TBL_SIZE; i++) {
1464 if (MMU_VALID_DT(dte[i])) {
1465 dtbl = mmu_ptov(MMU_DTE_PA(dte[i]));
1466 c_tbl = mmuC2tmgr(dtbl);
1467 ct_wired = c_tbl->ct_wcnt;
1468 removed_cnt += free_c_table(c_tbl, true);
1469 if (ct_wired)
1470 b_tbl->bt_wcnt--;
1471 dte[i].attr.raw = MMU_DT_INVALID;
1472 }
1473 }
1474 b_tbl->bt_ecnt = 0;
1475 }
1476 KASSERT(b_tbl->bt_wcnt == 0);
1477
1478 if (relink) {
1479 b_tbl->bt_parent = NULL;
1480 if (!bt_wired)
1481 TAILQ_REMOVE(&b_pool, b_tbl, bt_link);
1482 TAILQ_INSERT_HEAD(&b_pool, b_tbl, bt_link);
1483 }
1484 return removed_cnt;
1485 }
1486
1487 /* free_c_table INTERNAL
1488 **
1489 * Unmaps the given C table from use and returns it to the pool for
1490 * re-use. Returns the number of pages that were invalidated.
1491 *
1492 * This function preserves any physical page modification information
1493 * contained in the page descriptors within the C table by calling
1494 * 'pmap_remove_pte().'
1495 */
1496 int
1497 free_c_table(c_tmgr_t *c_tbl, bool relink)
1498 {
1499 mmu_short_pte_t *c_pte;
1500 int i, removed_cnt;
1501 uint8_t ct_wired;
1502
1503 removed_cnt = 0;
1504 ct_wired = c_tbl->ct_wcnt;
1505 if (c_tbl->ct_ecnt) {
1506 for (i = 0; i < MMU_C_TBL_SIZE; i++) {
1507 c_pte = &c_tbl->ct_dtbl[i];
1508 if (MMU_VALID_DT(*c_pte)) {
1509 if (c_pte->attr.raw & MMU_SHORT_PTE_WIRED)
1510 c_tbl->ct_wcnt--;
1511 pmap_remove_pte(c_pte);
1512 removed_cnt++;
1513 }
1514 }
1515 c_tbl->ct_ecnt = 0;
1516 }
1517 KASSERT(c_tbl->ct_wcnt == 0);
1518
1519 if (relink) {
1520 c_tbl->ct_parent = NULL;
1521 if (!ct_wired)
1522 TAILQ_REMOVE(&c_pool, c_tbl, ct_link);
1523 TAILQ_INSERT_HEAD(&c_pool, c_tbl, ct_link);
1524 }
1525 return removed_cnt;
1526 }
1527
1528
1529 /* pmap_remove_pte INTERNAL
1530 **
1531 * Unmap the given pte and preserve any page modification
1532 * information by transfering it to the pv head of the
1533 * physical page it maps to. This function does not update
1534 * any reference counts because it is assumed that the calling
1535 * function will do so.
1536 */
1537 void
1538 pmap_remove_pte(mmu_short_pte_t *pte)
1539 {
1540 u_short pv_idx, targ_idx;
1541 paddr_t pa;
1542 pv_t *pv;
1543
1544 pa = MMU_PTE_PA(*pte);
1545 if (is_managed(pa)) {
1546 pv = pa2pv(pa);
1547 targ_idx = pteidx(pte); /* Index of PTE being removed */
1548
1549 /*
1550 * If the PTE being removed is the first (or only) PTE in
1551 * the list of PTEs currently mapped to this page, remove the
1552 * PTE by changing the index found on the PV head. Otherwise
1553 * a linear search through the list will have to be executed
1554 * in order to find the PVE which points to the PTE being
1555 * removed, so that it may be modified to point to its new
1556 * neighbor.
1557 */
1558
1559 pv_idx = pv->pv_idx; /* Index of first PTE in PV list */
1560 if (pv_idx == targ_idx) {
1561 pv->pv_idx = pvebase[targ_idx].pve_next;
1562 } else {
1563
1564 /*
1565 * Find the PV element pointing to the target
1566 * element. Note: may have pv_idx==PVE_EOL
1567 */
1568
1569 for (;;) {
1570 if (pv_idx == PVE_EOL) {
1571 goto pv_not_found;
1572 }
1573 if (pvebase[pv_idx].pve_next == targ_idx)
1574 break;
1575 pv_idx = pvebase[pv_idx].pve_next;
1576 }
1577
1578 /*
1579 * At this point, pv_idx is the index of the PV
1580 * element just before the target element in the list.
1581 * Unlink the target.
1582 */
1583
1584 pvebase[pv_idx].pve_next = pvebase[targ_idx].pve_next;
1585 }
1586
1587 /*
1588 * Save the mod/ref bits of the pte by simply
1589 * ORing the entire pte onto the pv_flags member
1590 * of the pv structure.
1591 * There is no need to use a separate bit pattern
1592 * for usage information on the pv head than that
1593 * which is used on the MMU ptes.
1594 */
1595
1596 pv_not_found:
1597 pv->pv_flags |= (u_short) pte->attr.raw;
1598 }
1599 pte->attr.raw = MMU_DT_INVALID;
1600 }
1601
1602 /* pmap_stroll INTERNAL
1603 **
1604 * Retrieve the addresses of all table managers involved in the mapping of
1605 * the given virtual address. If the table walk completed successfully,
1606 * return true. If it was only partially successful, return false.
1607 * The table walk performed by this function is important to many other
1608 * functions in this module.
1609 *
1610 * Note: This function ought to be easier to read.
1611 */
1612 bool
1613 pmap_stroll(pmap_t pmap, vaddr_t va, a_tmgr_t **a_tbl, b_tmgr_t **b_tbl,
1614 c_tmgr_t **c_tbl, mmu_short_pte_t **pte, int *a_idx, int *b_idx,
1615 int *pte_idx)
1616 {
1617 mmu_long_dte_t *a_dte; /* A: long descriptor table */
1618 mmu_short_dte_t *b_dte; /* B: short descriptor table */
1619
1620 if (pmap == pmap_kernel())
1621 return false;
1622
1623 /* Does the given pmap have its own A table? */
1624 *a_tbl = pmap->pm_a_tmgr;
1625 if (*a_tbl == NULL)
1626 return false; /* No. Return unknown. */
1627 /* Does the A table have a valid B table
1628 * under the corresponding table entry?
1629 */
1630 *a_idx = MMU_TIA(va);
1631 a_dte = &((*a_tbl)->at_dtbl[*a_idx]);
1632 if (!MMU_VALID_DT(*a_dte))
1633 return false; /* No. Return unknown. */
1634 /* Yes. Extract B table from the A table. */
1635 *b_tbl = mmuB2tmgr(mmu_ptov(a_dte->addr.raw));
1636 /*
1637 * Does the B table have a valid C table
1638 * under the corresponding table entry?
1639 */
1640 *b_idx = MMU_TIB(va);
1641 b_dte = &((*b_tbl)->bt_dtbl[*b_idx]);
1642 if (!MMU_VALID_DT(*b_dte))
1643 return false; /* No. Return unknown. */
1644 /* Yes. Extract C table from the B table. */
1645 *c_tbl = mmuC2tmgr(mmu_ptov(MMU_DTE_PA(*b_dte)));
1646 *pte_idx = MMU_TIC(va);
1647 *pte = &((*c_tbl)->ct_dtbl[*pte_idx]);
1648
1649 return true;
1650 }
1651
1652 /* pmap_enter INTERFACE
1653 **
1654 * Called by the kernel to map a virtual address
1655 * to a physical address in the given process map.
1656 *
1657 * Note: this function should apply an exclusive lock
1658 * on the pmap system for its duration. (it certainly
1659 * would save my hair!!)
1660 * This function ought to be easier to read.
1661 */
1662 int
1663 pmap_enter(pmap_t pmap, vaddr_t va, paddr_t pa, vm_prot_t prot, u_int flags)
1664 {
1665 bool insert, managed; /* Marks the need for PV insertion.*/
1666 u_short nidx; /* PV list index */
1667 int mapflags; /* Flags for the mapping (see NOTE1) */
1668 u_int a_idx, b_idx, pte_idx; /* table indices */
1669 a_tmgr_t *a_tbl; /* A: long descriptor table manager */
1670 b_tmgr_t *b_tbl; /* B: short descriptor table manager */
1671 c_tmgr_t *c_tbl; /* C: short page table manager */
1672 mmu_long_dte_t *a_dte; /* A: long descriptor table */
1673 mmu_short_dte_t *b_dte; /* B: short descriptor table */
1674 mmu_short_pte_t *c_pte; /* C: short page descriptor table */
1675 pv_t *pv; /* pv list head */
1676 bool wired; /* is the mapping to be wired? */
1677 enum {NONE, NEWA, NEWB, NEWC} llevel; /* used at end */
1678
1679 if (pmap == pmap_kernel()) {
1680 pmap_enter_kernel(va, pa, prot);
1681 return 0;
1682 }
1683
1684 /*
1685 * Determine if the mapping should be wired.
1686 */
1687 wired = ((flags & PMAP_WIRED) != 0);
1688
1689 /*
1690 * NOTE1:
1691 *
1692 * On November 13, 1999, someone changed the pmap_enter() API such
1693 * that it now accepts a 'flags' argument. This new argument
1694 * contains bit-flags for the architecture-independent (UVM) system to
1695 * use in signalling certain mapping requirements to the architecture-
1696 * dependent (pmap) system. The argument it replaces, 'wired', is now
1697 * one of the flags within it.
1698 *
1699 * In addition to flags signaled by the architecture-independent
1700 * system, parts of the architecture-dependent section of the sun3x
1701 * kernel pass their own flags in the lower, unused bits of the
1702 * physical address supplied to this function. These flags are
1703 * extracted and stored in the temporary variable 'mapflags'.
1704 *
1705 * Extract sun3x specific flags from the physical address.
1706 */
1707 mapflags = (pa & ~MMU_PAGE_MASK);
1708 pa &= MMU_PAGE_MASK;
1709
1710 /*
1711 * Determine if the physical address being mapped is on-board RAM.
1712 * Any other area of the address space is likely to belong to a
1713 * device and hence it would be disasterous to cache its contents.
1714 */
1715 if ((managed = is_managed(pa)) == false)
1716 mapflags |= PMAP_NC;
1717
1718 /*
1719 * For user mappings we walk along the MMU tables of the given
1720 * pmap, reaching a PTE which describes the virtual page being
1721 * mapped or changed. If any level of the walk ends in an invalid
1722 * entry, a table must be allocated and the entry must be updated
1723 * to point to it.
1724 * There is a bit of confusion as to whether this code must be
1725 * re-entrant. For now we will assume it is. To support
1726 * re-entrancy we must unlink tables from the table pool before
1727 * we assume we may use them. Tables are re-linked into the pool
1728 * when we are finished with them at the end of the function.
1729 * But I don't feel like doing that until we have proof that this
1730 * needs to be re-entrant.
1731 * 'llevel' records which tables need to be relinked.
1732 */
1733 llevel = NONE;
1734
1735 /*
1736 * Step 1 - Retrieve the A table from the pmap. If it has no
1737 * A table, allocate a new one from the available pool.
1738 */
1739
1740 a_tbl = pmap->pm_a_tmgr;
1741 if (a_tbl == NULL) {
1742 /*
1743 * This pmap does not currently have an A table. Allocate
1744 * a new one.
1745 */
1746 a_tbl = get_a_table();
1747 a_tbl->at_parent = pmap;
1748
1749 /*
1750 * Assign this new A table to the pmap, and calculate its
1751 * physical address so that loadcrp() can be used to make
1752 * the table active.
1753 */
1754 pmap->pm_a_tmgr = a_tbl;
1755 pmap->pm_a_phys = mmu_vtop(a_tbl->at_dtbl);
1756
1757 /*
1758 * If the process receiving a new A table is the current
1759 * process, we are responsible for setting the MMU so that
1760 * it becomes the current address space. This only adds
1761 * new mappings, so no need to flush anything.
1762 */
1763 if (pmap == current_pmap()) {
1764 kernel_crp.rp_addr = pmap->pm_a_phys;
1765 loadcrp(&kernel_crp);
1766 }
1767
1768 if (!wired)
1769 llevel = NEWA;
1770 } else {
1771 /*
1772 * Use the A table already allocated for this pmap.
1773 * Unlink it from the A table pool if necessary.
1774 */
1775 if (wired && !a_tbl->at_wcnt)
1776 TAILQ_REMOVE(&a_pool, a_tbl, at_link);
1777 }
1778
1779 /*
1780 * Step 2 - Walk into the B table. If there is no valid B table,
1781 * allocate one.
1782 */
1783
1784 a_idx = MMU_TIA(va); /* Calculate the TIA of the VA. */
1785 a_dte = &a_tbl->at_dtbl[a_idx]; /* Retrieve descriptor from table */
1786 if (MMU_VALID_DT(*a_dte)) { /* Is the descriptor valid? */
1787 /* The descriptor is valid. Use the B table it points to. */
1788 /*************************************
1789 * a_idx *
1790 * v *
1791 * a_tbl -> +-+-+-+-+-+-+-+-+-+-+-+- *
1792 * | | | | | | | | | | | | *
1793 * +-+-+-+-+-+-+-+-+-+-+-+- *
1794 * | *
1795 * \- b_tbl -> +-+- *
1796 * | | *
1797 * +-+- *
1798 *************************************/
1799 b_dte = mmu_ptov(a_dte->addr.raw);
1800 b_tbl = mmuB2tmgr(b_dte);
1801
1802 /*
1803 * If the requested mapping must be wired, but this table
1804 * being used to map it is not, the table must be removed
1805 * from the available pool and its wired entry count
1806 * incremented.
1807 */
1808 if (wired && !b_tbl->bt_wcnt) {
1809 TAILQ_REMOVE(&b_pool, b_tbl, bt_link);
1810 a_tbl->at_wcnt++;
1811 }
1812 } else {
1813 /* The descriptor is invalid. Allocate a new B table. */
1814 b_tbl = get_b_table();
1815
1816 /* Point the parent A table descriptor to this new B table. */
1817 a_dte->addr.raw = mmu_vtop(b_tbl->bt_dtbl);
1818 a_dte->attr.raw = MMU_LONG_DTE_LU | MMU_DT_SHORT;
1819 a_tbl->at_ecnt++; /* Update parent's valid entry count */
1820
1821 /* Create the necessary back references to the parent table */
1822 b_tbl->bt_parent = a_tbl;
1823 b_tbl->bt_pidx = a_idx;
1824
1825 /*
1826 * If this table is to be wired, make sure the parent A table
1827 * wired count is updated to reflect that it has another wired
1828 * entry.
1829 */
1830 if (wired)
1831 a_tbl->at_wcnt++;
1832 else if (llevel == NONE)
1833 llevel = NEWB;
1834 }
1835
1836 /*
1837 * Step 3 - Walk into the C table, if there is no valid C table,
1838 * allocate one.
1839 */
1840
1841 b_idx = MMU_TIB(va); /* Calculate the TIB of the VA */
1842 b_dte = &b_tbl->bt_dtbl[b_idx]; /* Retrieve descriptor from table */
1843 if (MMU_VALID_DT(*b_dte)) { /* Is the descriptor valid? */
1844 /* The descriptor is valid. Use the C table it points to. */
1845 /**************************************
1846 * c_idx *
1847 * | v *
1848 * \- b_tbl -> +-+-+-+-+-+-+-+-+-+-+- *
1849 * | | | | | | | | | | | *
1850 * +-+-+-+-+-+-+-+-+-+-+- *
1851 * | *
1852 * \- c_tbl -> +-+-- *
1853 * | | | *
1854 * +-+-- *
1855 **************************************/
1856 c_pte = mmu_ptov(MMU_PTE_PA(*b_dte));
1857 c_tbl = mmuC2tmgr(c_pte);
1858
1859 /* If mapping is wired and table is not */
1860 if (wired && !c_tbl->ct_wcnt) {
1861 TAILQ_REMOVE(&c_pool, c_tbl, ct_link);
1862 b_tbl->bt_wcnt++;
1863 }
1864 } else {
1865 /* The descriptor is invalid. Allocate a new C table. */
1866 c_tbl = get_c_table();
1867
1868 /* Point the parent B table descriptor to this new C table. */
1869 b_dte->attr.raw = mmu_vtop(c_tbl->ct_dtbl);
1870 b_dte->attr.raw |= MMU_DT_SHORT;
1871 b_tbl->bt_ecnt++; /* Update parent's valid entry count */
1872
1873 /* Create the necessary back references to the parent table */
1874 c_tbl->ct_parent = b_tbl;
1875 c_tbl->ct_pidx = b_idx;
1876 /*
1877 * Store the pmap and base virtual managed address for faster
1878 * retrieval in the PV functions.
1879 */
1880 c_tbl->ct_pmap = pmap;
1881 c_tbl->ct_va = (va & (MMU_TIA_MASK|MMU_TIB_MASK));
1882
1883 /*
1884 * If this table is to be wired, make sure the parent B table
1885 * wired count is updated to reflect that it has another wired
1886 * entry.
1887 */
1888 if (wired)
1889 b_tbl->bt_wcnt++;
1890 else if (llevel == NONE)
1891 llevel = NEWC;
1892 }
1893
1894 /*
1895 * Step 4 - Deposit a page descriptor (PTE) into the appropriate
1896 * slot of the C table, describing the PA to which the VA is mapped.
1897 */
1898
1899 pte_idx = MMU_TIC(va);
1900 c_pte = &c_tbl->ct_dtbl[pte_idx];
1901 if (MMU_VALID_DT(*c_pte)) { /* Is the entry currently valid? */
1902 /*
1903 * The PTE is currently valid. This particular call
1904 * is just a synonym for one (or more) of the following
1905 * operations:
1906 * change protection of a page
1907 * change wiring status of a page
1908 * remove the mapping of a page
1909 */
1910
1911 /* First check if this is a wiring operation. */
1912 if (c_pte->attr.raw & MMU_SHORT_PTE_WIRED) {
1913 /*
1914 * The existing mapping is wired, so adjust wired
1915 * entry count here. If new mapping is still wired,
1916 * wired entry count will be incremented again later.
1917 */
1918 c_tbl->ct_wcnt--;
1919 if (!wired) {
1920 /*
1921 * The mapping of this PTE is being changed
1922 * from wired to unwired.
1923 * Adjust wired entry counts in each table and
1924 * set llevel flag to put unwired tables back
1925 * into the active pool.
1926 */
1927 if (c_tbl->ct_wcnt == 0) {
1928 llevel = NEWC;
1929 if (--b_tbl->bt_wcnt == 0) {
1930 llevel = NEWB;
1931 if (--a_tbl->at_wcnt == 0) {
1932 llevel = NEWA;
1933 }
1934 }
1935 }
1936 }
1937 }
1938
1939 /* Is the new address the same as the old? */
1940 if (MMU_PTE_PA(*c_pte) == pa) {
1941 /*
1942 * Yes, mark that it does not need to be reinserted
1943 * into the PV list.
1944 */
1945 insert = false;
1946
1947 /*
1948 * Clear all but the modified, referenced and wired
1949 * bits on the PTE.
1950 */
1951 c_pte->attr.raw &= (MMU_SHORT_PTE_M
1952 | MMU_SHORT_PTE_USED | MMU_SHORT_PTE_WIRED);
1953 } else {
1954 /* No, remove the old entry */
1955 pmap_remove_pte(c_pte);
1956 insert = true;
1957 }
1958
1959 /*
1960 * TLB flush is only necessary if modifying current map.
1961 * However, in pmap_enter(), the pmap almost always IS
1962 * the current pmap, so don't even bother to check.
1963 */
1964 TBIS(va);
1965 } else {
1966 /*
1967 * The PTE is invalid. Increment the valid entry count in
1968 * the C table manager to reflect the addition of a new entry.
1969 */
1970 c_tbl->ct_ecnt++;
1971
1972 /* XXX - temporarily make sure the PTE is cleared. */
1973 c_pte->attr.raw = 0;
1974
1975 /* It will also need to be inserted into the PV list. */
1976 insert = true;
1977 }
1978
1979 /*
1980 * If page is changing from unwired to wired status, set an unused bit
1981 * within the PTE to indicate that it is wired. Also increment the
1982 * wired entry count in the C table manager.
1983 */
1984 if (wired) {
1985 c_pte->attr.raw |= MMU_SHORT_PTE_WIRED;
1986 c_tbl->ct_wcnt++;
1987 }
1988
1989 /*
1990 * Map the page, being careful to preserve modify/reference/wired
1991 * bits. At this point it is assumed that the PTE either has no bits
1992 * set, or if there are set bits, they are only modified, reference or
1993 * wired bits. If not, the following statement will cause erratic
1994 * behavior.
1995 */
1996 #ifdef PMAP_DEBUG
1997 if (c_pte->attr.raw & ~(MMU_SHORT_PTE_M |
1998 MMU_SHORT_PTE_USED | MMU_SHORT_PTE_WIRED)) {
1999 printf("pmap_enter: junk left in PTE at %p\n", c_pte);
2000 Debugger();
2001 }
2002 #endif
2003 c_pte->attr.raw |= ((u_long) pa | MMU_DT_PAGE);
2004
2005 /*
2006 * If the mapping should be read-only, set the write protect
2007 * bit in the PTE.
2008 */
2009 if (!(prot & VM_PROT_WRITE))
2010 c_pte->attr.raw |= MMU_SHORT_PTE_WP;
2011
2012 /*
2013 * Mark the PTE as used and/or modified as specified by the flags arg.
2014 */
2015 if (flags & VM_PROT_ALL) {
2016 c_pte->attr.raw |= MMU_SHORT_PTE_USED;
2017 if (flags & VM_PROT_WRITE) {
2018 c_pte->attr.raw |= MMU_SHORT_PTE_M;
2019 }
2020 }
2021
2022 /*
2023 * If the mapping should be cache inhibited (indicated by the flag
2024 * bits found on the lower order of the physical address.)
2025 * mark the PTE as a cache inhibited page.
2026 */
2027 if (mapflags & PMAP_NC)
2028 c_pte->attr.raw |= MMU_SHORT_PTE_CI;
2029
2030 /*
2031 * If the physical address being mapped is managed by the PV
2032 * system then link the pte into the list of pages mapped to that
2033 * address.
2034 */
2035 if (insert && managed) {
2036 pv = pa2pv(pa);
2037 nidx = pteidx(c_pte);
2038
2039 pvebase[nidx].pve_next = pv->pv_idx;
2040 pv->pv_idx = nidx;
2041 }
2042
2043 /* Move any allocated or unwired tables back into the active pool. */
2044
2045 switch (llevel) {
2046 case NEWA:
2047 TAILQ_INSERT_TAIL(&a_pool, a_tbl, at_link);
2048 /* FALLTHROUGH */
2049 case NEWB:
2050 TAILQ_INSERT_TAIL(&b_pool, b_tbl, bt_link);
2051 /* FALLTHROUGH */
2052 case NEWC:
2053 TAILQ_INSERT_TAIL(&c_pool, c_tbl, ct_link);
2054 /* FALLTHROUGH */
2055 default:
2056 break;
2057 }
2058
2059 return 0;
2060 }
2061
2062 /* pmap_enter_kernel INTERNAL
2063 **
2064 * Map the given virtual address to the given physical address within the
2065 * kernel address space. This function exists because the kernel map does
2066 * not do dynamic table allocation. It consists of a contiguous array of ptes
2067 * and can be edited directly without the need to walk through any tables.
2068 *
2069 * XXX: "Danger, Will Robinson!"
2070 * Note that the kernel should never take a fault on any page
2071 * between [ KERNBASE .. virtual_avail ] and this is checked in
2072 * trap.c for kernel-mode MMU faults. This means that mappings
2073 * created in that range must be implicily wired. -gwr
2074 */
2075 void
2076 pmap_enter_kernel(vaddr_t va, paddr_t pa, vm_prot_t prot)
2077 {
2078 bool was_valid, insert;
2079 u_short pte_idx;
2080 int flags;
2081 mmu_short_pte_t *pte;
2082 pv_t *pv;
2083 paddr_t old_pa;
2084
2085 flags = (pa & ~MMU_PAGE_MASK);
2086 pa &= MMU_PAGE_MASK;
2087
2088 if (is_managed(pa))
2089 insert = true;
2090 else
2091 insert = false;
2092
2093 /*
2094 * Calculate the index of the PTE being modified.
2095 */
2096 pte_idx = (u_long)m68k_btop(va - KERNBASE3X);
2097
2098 /* This array is traditionally named "Sysmap" */
2099 pte = &kernCbase[pte_idx];
2100
2101 if (MMU_VALID_DT(*pte)) {
2102 was_valid = true;
2103 /*
2104 * If the PTE already maps a different
2105 * physical address, umap and pv_unlink.
2106 */
2107 old_pa = MMU_PTE_PA(*pte);
2108 if (pa != old_pa)
2109 pmap_remove_pte(pte);
2110 else {
2111 /*
2112 * Old PA and new PA are the same. No need to
2113 * relink the mapping within the PV list.
2114 */
2115 insert = false;
2116
2117 /*
2118 * Save any mod/ref bits on the PTE.
2119 */
2120 pte->attr.raw &= (MMU_SHORT_PTE_USED|MMU_SHORT_PTE_M);
2121 }
2122 } else {
2123 pte->attr.raw = MMU_DT_INVALID;
2124 was_valid = false;
2125 }
2126
2127 /*
2128 * Map the page. Being careful to preserve modified/referenced bits
2129 * on the PTE.
2130 */
2131 pte->attr.raw |= (pa | MMU_DT_PAGE);
2132
2133 if (!(prot & VM_PROT_WRITE)) /* If access should be read-only */
2134 pte->attr.raw |= MMU_SHORT_PTE_WP;
2135 if (flags & PMAP_NC)
2136 pte->attr.raw |= MMU_SHORT_PTE_CI;
2137 if (was_valid)
2138 TBIS(va);
2139
2140 /*
2141 * Insert the PTE into the PV system, if need be.
2142 */
2143 if (insert) {
2144 pv = pa2pv(pa);
2145 pvebase[pte_idx].pve_next = pv->pv_idx;
2146 pv->pv_idx = pte_idx;
2147 }
2148 }
2149
2150 void
2151 pmap_kenter_pa(vaddr_t va, paddr_t pa, vm_prot_t prot, u_int flags)
2152 {
2153 mmu_short_pte_t *pte;
2154
2155 /* This array is traditionally named "Sysmap" */
2156 pte = &kernCbase[(u_long)m68k_btop(va - KERNBASE3X)];
2157
2158 KASSERT(!MMU_VALID_DT(*pte));
2159 pte->attr.raw = MMU_DT_INVALID | MMU_DT_PAGE | (pa & MMU_PAGE_MASK);
2160 if (!(prot & VM_PROT_WRITE))
2161 pte->attr.raw |= MMU_SHORT_PTE_WP;
2162 }
2163
2164 void
2165 pmap_kremove(vaddr_t va, vsize_t len)
2166 {
2167 int idx, eidx;
2168
2169 #ifdef PMAP_DEBUG
2170 if ((va & PGOFSET) || (len & PGOFSET))
2171 panic("pmap_kremove: alignment");
2172 #endif
2173
2174 idx = m68k_btop(va - KERNBASE3X);
2175 eidx = m68k_btop(va + len - KERNBASE3X);
2176
2177 while (idx < eidx) {
2178 kernCbase[idx++].attr.raw = MMU_DT_INVALID;
2179 TBIS(va);
2180 va += PAGE_SIZE;
2181 }
2182 }
2183
2184 /* pmap_map INTERNAL
2185 **
2186 * Map a contiguous range of physical memory into a contiguous range of
2187 * the kernel virtual address space.
2188 *
2189 * Used for device mappings and early mapping of the kernel text/data/bss.
2190 * Returns the first virtual address beyond the end of the range.
2191 */
2192 vaddr_t
2193 pmap_map(vaddr_t va, paddr_t pa, paddr_t endpa, int prot)
2194 {
2195 int sz;
2196
2197 sz = endpa - pa;
2198 do {
2199 pmap_enter_kernel(va, pa, prot);
2200 va += PAGE_SIZE;
2201 pa += PAGE_SIZE;
2202 sz -= PAGE_SIZE;
2203 } while (sz > 0);
2204 pmap_update(pmap_kernel());
2205 return va;
2206 }
2207
2208 /* pmap_protect_kernel INTERNAL
2209 **
2210 * Apply the given protection code to a kernel address range.
2211 */
2212 static INLINE void
2213 pmap_protect_kernel(vaddr_t startva, vaddr_t endva, vm_prot_t prot)
2214 {
2215 vaddr_t va;
2216 mmu_short_pte_t *pte;
2217
2218 pte = &kernCbase[(unsigned long) m68k_btop(startva - KERNBASE3X)];
2219 for (va = startva; va < endva; va += PAGE_SIZE, pte++) {
2220 if (MMU_VALID_DT(*pte)) {
2221 switch (prot) {
2222 case VM_PROT_ALL:
2223 break;
2224 case VM_PROT_EXECUTE:
2225 case VM_PROT_READ:
2226 case VM_PROT_READ|VM_PROT_EXECUTE:
2227 pte->attr.raw |= MMU_SHORT_PTE_WP;
2228 break;
2229 case VM_PROT_NONE:
2230 /* this is an alias for 'pmap_remove_kernel' */
2231 pmap_remove_pte(pte);
2232 break;
2233 default:
2234 break;
2235 }
2236 /*
2237 * since this is the kernel, immediately flush any cached
2238 * descriptors for this address.
2239 */
2240 TBIS(va);
2241 }
2242 }
2243 }
2244
2245 /* pmap_protect INTERFACE
2246 **
2247 * Apply the given protection to the given virtual address range within
2248 * the given map.
2249 *
2250 * It is ok for the protection applied to be stronger than what is
2251 * specified. We use this to our advantage when the given map has no
2252 * mapping for the virtual address. By skipping a page when this
2253 * is discovered, we are effectively applying a protection of VM_PROT_NONE,
2254 * and therefore do not need to map the page just to apply a protection
2255 * code. Only pmap_enter() needs to create new mappings if they do not exist.
2256 *
2257 * XXX - This function could be speeded up by using pmap_stroll() for inital
2258 * setup, and then manual scrolling in the for() loop.
2259 */
2260 void
2261 pmap_protect(pmap_t pmap, vaddr_t startva, vaddr_t endva, vm_prot_t prot)
2262 {
2263 bool iscurpmap;
2264 int a_idx, b_idx, c_idx;
2265 a_tmgr_t *a_tbl;
2266 b_tmgr_t *b_tbl;
2267 c_tmgr_t *c_tbl;
2268 mmu_short_pte_t *pte;
2269
2270 if (pmap == pmap_kernel()) {
2271 pmap_protect_kernel(startva, endva, prot);
2272 return;
2273 }
2274
2275 /*
2276 * In this particular pmap implementation, there are only three
2277 * types of memory protection: 'all' (read/write/execute),
2278 * 'read-only' (read/execute) and 'none' (no mapping.)
2279 * It is not possible for us to treat 'executable' as a separate
2280 * protection type. Therefore, protection requests that seek to
2281 * remove execute permission while retaining read or write, and those
2282 * that make little sense (write-only for example) are ignored.
2283 */
2284 switch (prot) {
2285 case VM_PROT_NONE:
2286 /*
2287 * A request to apply the protection code of
2288 * 'VM_PROT_NONE' is a synonym for pmap_remove().
2289 */
2290 pmap_remove(pmap, startva, endva);
2291 return;
2292 case VM_PROT_EXECUTE:
2293 case VM_PROT_READ:
2294 case VM_PROT_READ|VM_PROT_EXECUTE:
2295 /* continue */
2296 break;
2297 case VM_PROT_WRITE:
2298 case VM_PROT_WRITE|VM_PROT_READ:
2299 case VM_PROT_WRITE|VM_PROT_EXECUTE:
2300 case VM_PROT_ALL:
2301 /* None of these should happen in a sane system. */
2302 return;
2303 }
2304
2305 /*
2306 * If the pmap has no A table, it has no mappings and therefore
2307 * there is nothing to protect.
2308 */
2309 if ((a_tbl = pmap->pm_a_tmgr) == NULL)
2310 return;
2311
2312 a_idx = MMU_TIA(startva);
2313 b_idx = MMU_TIB(startva);
2314 c_idx = MMU_TIC(startva);
2315 b_tbl = NULL;
2316 c_tbl = NULL;
2317
2318 iscurpmap = (pmap == current_pmap());
2319 while (startva < endva) {
2320 if (b_tbl || MMU_VALID_DT(a_tbl->at_dtbl[a_idx])) {
2321 if (b_tbl == NULL) {
2322 b_tbl = (b_tmgr_t *) a_tbl->at_dtbl[a_idx].addr.raw;
2323 b_tbl = mmu_ptov((vaddr_t)b_tbl);
2324 b_tbl = mmuB2tmgr((mmu_short_dte_t *)b_tbl);
2325 }
2326 if (c_tbl || MMU_VALID_DT(b_tbl->bt_dtbl[b_idx])) {
2327 if (c_tbl == NULL) {
2328 c_tbl = (c_tmgr_t *) MMU_DTE_PA(b_tbl->bt_dtbl[b_idx]);
2329 c_tbl = mmu_ptov((vaddr_t)c_tbl);
2330 c_tbl = mmuC2tmgr((mmu_short_pte_t *)c_tbl);
2331 }
2332 if (MMU_VALID_DT(c_tbl->ct_dtbl[c_idx])) {
2333 pte = &c_tbl->ct_dtbl[c_idx];
2334 /* make the mapping read-only */
2335 pte->attr.raw |= MMU_SHORT_PTE_WP;
2336 /*
2337 * If we just modified the current address space,
2338 * flush any translations for the modified page from
2339 * the translation cache and any data from it in the
2340 * data cache.
2341 */
2342 if (iscurpmap)
2343 TBIS(startva);
2344 }
2345 startva += PAGE_SIZE;
2346
2347 if (++c_idx >= MMU_C_TBL_SIZE) { /* exceeded C table? */
2348 c_tbl = NULL;
2349 c_idx = 0;
2350 if (++b_idx >= MMU_B_TBL_SIZE) { /* exceeded B table? */
2351 b_tbl = NULL;
2352 b_idx = 0;
2353 }
2354 }
2355 } else { /* C table wasn't valid */
2356 c_tbl = NULL;
2357 c_idx = 0;
2358 startva += MMU_TIB_RANGE;
2359 if (++b_idx >= MMU_B_TBL_SIZE) { /* exceeded B table? */
2360 b_tbl = NULL;
2361 b_idx = 0;
2362 }
2363 } /* C table */
2364 } else { /* B table wasn't valid */
2365 b_tbl = NULL;
2366 b_idx = 0;
2367 startva += MMU_TIA_RANGE;
2368 a_idx++;
2369 } /* B table */
2370 }
2371 }
2372
2373 /* pmap_unwire INTERFACE
2374 **
2375 * Clear the wired attribute of the specified page.
2376 *
2377 * This function is called from vm_fault.c to unwire
2378 * a mapping.
2379 */
2380 void
2381 pmap_unwire(pmap_t pmap, vaddr_t va)
2382 {
2383 int a_idx, b_idx, c_idx;
2384 a_tmgr_t *a_tbl;
2385 b_tmgr_t *b_tbl;
2386 c_tmgr_t *c_tbl;
2387 mmu_short_pte_t *pte;
2388
2389 /* Kernel mappings always remain wired. */
2390 if (pmap == pmap_kernel())
2391 return;
2392
2393 /*
2394 * Walk through the tables. If the walk terminates without
2395 * a valid PTE then the address wasn't wired in the first place.
2396 * Return immediately.
2397 */
2398 if (pmap_stroll(pmap, va, &a_tbl, &b_tbl, &c_tbl, &pte, &a_idx,
2399 &b_idx, &c_idx) == false)
2400 return;
2401
2402
2403 /* Is the PTE wired? If not, return. */
2404 if (!(pte->attr.raw & MMU_SHORT_PTE_WIRED))
2405 return;
2406
2407 /* Remove the wiring bit. */
2408 pte->attr.raw &= ~(MMU_SHORT_PTE_WIRED);
2409
2410 /*
2411 * Decrement the wired entry count in the C table.
2412 * If it reaches zero the following things happen:
2413 * 1. The table no longer has any wired entries and is considered
2414 * unwired.
2415 * 2. It is placed on the available queue.
2416 * 3. The parent table's wired entry count is decremented.
2417 * 4. If it reaches zero, this process repeats at step 1 and
2418 * stops at after reaching the A table.
2419 */
2420 if (--c_tbl->ct_wcnt == 0) {
2421 TAILQ_INSERT_TAIL(&c_pool, c_tbl, ct_link);
2422 if (--b_tbl->bt_wcnt == 0) {
2423 TAILQ_INSERT_TAIL(&b_pool, b_tbl, bt_link);
2424 if (--a_tbl->at_wcnt == 0) {
2425 TAILQ_INSERT_TAIL(&a_pool, a_tbl, at_link);
2426 }
2427 }
2428 }
2429 }
2430
2431 /* pmap_copy INTERFACE
2432 **
2433 * Copy the mappings of a range of addresses in one pmap, into
2434 * the destination address of another.
2435 *
2436 * This routine is advisory. Should we one day decide that MMU tables
2437 * may be shared by more than one pmap, this function should be used to
2438 * link them together. Until that day however, we do nothing.
2439 */
2440 void
2441 pmap_copy(pmap_t pmap_a, pmap_t pmap_b, vaddr_t dst, vsize_t len, vaddr_t src)
2442 {
2443
2444 /* not implemented. */
2445 }
2446
2447 /* pmap_copy_page INTERFACE
2448 **
2449 * Copy the contents of one physical page into another.
2450 *
2451 * This function makes use of two virtual pages allocated in pmap_bootstrap()
2452 * to map the two specified physical pages into the kernel address space.
2453 *
2454 * Note: We could use the transparent translation registers to make the
2455 * mappings. If we do so, be sure to disable interrupts before using them.
2456 */
2457 void
2458 pmap_copy_page(paddr_t srcpa, paddr_t dstpa)
2459 {
2460 vaddr_t srcva, dstva;
2461 int s;
2462
2463 srcva = tmp_vpages[0];
2464 dstva = tmp_vpages[1];
2465
2466 s = splvm();
2467 #ifdef DIAGNOSTIC
2468 if (tmp_vpages_inuse++)
2469 panic("pmap_copy_page: temporary vpages are in use.");
2470 #endif
2471
2472 /* Map pages as non-cacheable to avoid cache polution? */
2473 pmap_kenter_pa(srcva, srcpa, VM_PROT_READ, 0);
2474 pmap_kenter_pa(dstva, dstpa, VM_PROT_READ | VM_PROT_WRITE, 0);
2475
2476 /* Hand-optimized version of memcpy(dst, src, PAGE_SIZE) */
2477 copypage((char *)srcva, (char *)dstva);
2478
2479 pmap_kremove(srcva, PAGE_SIZE);
2480 pmap_kremove(dstva, PAGE_SIZE);
2481
2482 #ifdef DIAGNOSTIC
2483 --tmp_vpages_inuse;
2484 #endif
2485 splx(s);
2486 }
2487
2488 /* pmap_zero_page INTERFACE
2489 **
2490 * Zero the contents of the specified physical page.
2491 *
2492 * Uses one of the virtual pages allocated in pmap_boostrap()
2493 * to map the specified page into the kernel address space.
2494 */
2495 void
2496 pmap_zero_page(paddr_t dstpa)
2497 {
2498 vaddr_t dstva;
2499 int s;
2500
2501 dstva = tmp_vpages[1];
2502 s = splvm();
2503 #ifdef DIAGNOSTIC
2504 if (tmp_vpages_inuse++)
2505 panic("pmap_zero_page: temporary vpages are in use.");
2506 #endif
2507
2508 /* The comments in pmap_copy_page() above apply here also. */
2509 pmap_kenter_pa(dstva, dstpa, VM_PROT_READ | VM_PROT_WRITE, 0);
2510
2511 /* Hand-optimized version of memset(ptr, 0, PAGE_SIZE) */
2512 zeropage((char *)dstva);
2513
2514 pmap_kremove(dstva, PAGE_SIZE);
2515 #ifdef DIAGNOSTIC
2516 --tmp_vpages_inuse;
2517 #endif
2518 splx(s);
2519 }
2520
2521 /* pmap_pinit INTERNAL
2522 **
2523 * Initialize a pmap structure.
2524 */
2525 static INLINE void
2526 pmap_pinit(pmap_t pmap)
2527 {
2528
2529 memset(pmap, 0, sizeof(struct pmap));
2530 pmap->pm_a_tmgr = NULL;
2531 pmap->pm_a_phys = kernAphys;
2532 pmap->pm_refcount = 1;
2533 simple_lock_init(&pmap->pm_lock);
2534 }
2535
2536 /* pmap_create INTERFACE
2537 **
2538 * Create and return a pmap structure.
2539 */
2540 pmap_t
2541 pmap_create(void)
2542 {
2543 pmap_t pmap;
2544
2545 pmap = pool_get(&pmap_pmap_pool, PR_WAITOK);
2546 pmap_pinit(pmap);
2547 return pmap;
2548 }
2549
2550 /* pmap_release INTERNAL
2551 **
2552 * Release any resources held by the given pmap.
2553 *
2554 * This is the reverse analog to pmap_pinit. It does not
2555 * necessarily mean for the pmap structure to be deallocated,
2556 * as in pmap_destroy.
2557 */
2558 static INLINE void
2559 pmap_release(pmap_t pmap)
2560 {
2561
2562 /*
2563 * As long as the pmap contains no mappings,
2564 * which always should be the case whenever
2565 * this function is called, there really should
2566 * be nothing to do.
2567 */
2568 #ifdef PMAP_DEBUG
2569 if (pmap == pmap_kernel())
2570 panic("pmap_release: kernel pmap");
2571 #endif
2572 /*
2573 * XXX - If this pmap has an A table, give it back.
2574 * The pmap SHOULD be empty by now, and pmap_remove
2575 * should have already given back the A table...
2576 * However, I see: pmap->pm_a_tmgr->at_ecnt == 1
2577 * at this point, which means some mapping was not
2578 * removed when it should have been. -gwr
2579 */
2580 if (pmap->pm_a_tmgr != NULL) {
2581 /* First make sure we are not using it! */
2582 if (kernel_crp.rp_addr == pmap->pm_a_phys) {
2583 kernel_crp.rp_addr = kernAphys;
2584 loadcrp(&kernel_crp);
2585 }
2586 #ifdef PMAP_DEBUG /* XXX - todo! */
2587 /* XXX - Now complain... */
2588 printf("pmap_release: still have table\n");
2589 Debugger();
2590 #endif
2591 free_a_table(pmap->pm_a_tmgr, true);
2592 pmap->pm_a_tmgr = NULL;
2593 pmap->pm_a_phys = kernAphys;
2594 }
2595 }
2596
2597 /* pmap_reference INTERFACE
2598 **
2599 * Increment the reference count of a pmap.
2600 */
2601 void
2602 pmap_reference(pmap_t pmap)
2603 {
2604 pmap_lock(pmap);
2605 pmap_add_ref(pmap);
2606 pmap_unlock(pmap);
2607 }
2608
2609 /* pmap_dereference INTERNAL
2610 **
2611 * Decrease the reference count on the given pmap
2612 * by one and return the current count.
2613 */
2614 static INLINE int
2615 pmap_dereference(pmap_t pmap)
2616 {
2617 int rtn;
2618
2619 pmap_lock(pmap);
2620 rtn = pmap_del_ref(pmap);
2621 pmap_unlock(pmap);
2622
2623 return rtn;
2624 }
2625
2626 /* pmap_destroy INTERFACE
2627 **
2628 * Decrement a pmap's reference count and delete
2629 * the pmap if it becomes zero. Will be called
2630 * only after all mappings have been removed.
2631 */
2632 void
2633 pmap_destroy(pmap_t pmap)
2634 {
2635
2636 if (pmap_dereference(pmap) == 0) {
2637 pmap_release(pmap);
2638 pool_put(&pmap_pmap_pool, pmap);
2639 }
2640 }
2641
2642 /* pmap_is_referenced INTERFACE
2643 **
2644 * Determine if the given physical page has been
2645 * referenced (read from [or written to.])
2646 */
2647 bool
2648 pmap_is_referenced(struct vm_page *pg)
2649 {
2650 paddr_t pa = VM_PAGE_TO_PHYS(pg);
2651 pv_t *pv;
2652 int idx;
2653
2654 /*
2655 * Check the flags on the pv head. If they are set,
2656 * return immediately. Otherwise a search must be done.
2657 */
2658
2659 pv = pa2pv(pa);
2660 if (pv->pv_flags & PV_FLAGS_USED)
2661 return true;
2662
2663 /*
2664 * Search through all pv elements pointing
2665 * to this page and query their reference bits
2666 */
2667
2668 for (idx = pv->pv_idx; idx != PVE_EOL; idx = pvebase[idx].pve_next) {
2669 if (MMU_PTE_USED(kernCbase[idx])) {
2670 return true;
2671 }
2672 }
2673 return false;
2674 }
2675
2676 /* pmap_is_modified INTERFACE
2677 **
2678 * Determine if the given physical page has been
2679 * modified (written to.)
2680 */
2681 bool
2682 pmap_is_modified(struct vm_page *pg)
2683 {
2684 paddr_t pa = VM_PAGE_TO_PHYS(pg);
2685 pv_t *pv;
2686 int idx;
2687
2688 /* see comments in pmap_is_referenced() */
2689 pv = pa2pv(pa);
2690 if (pv->pv_flags & PV_FLAGS_MDFY)
2691 return true;
2692
2693 for (idx = pv->pv_idx;
2694 idx != PVE_EOL;
2695 idx = pvebase[idx].pve_next) {
2696
2697 if (MMU_PTE_MODIFIED(kernCbase[idx])) {
2698 return true;
2699 }
2700 }
2701
2702 return false;
2703 }
2704
2705 /* pmap_page_protect INTERFACE
2706 **
2707 * Applies the given protection to all mappings to the given
2708 * physical page.
2709 */
2710 void
2711 pmap_page_protect(struct vm_page *pg, vm_prot_t prot)
2712 {
2713 paddr_t pa = VM_PAGE_TO_PHYS(pg);
2714 pv_t *pv;
2715 int idx;
2716 vaddr_t va;
2717 struct mmu_short_pte_struct *pte;
2718 c_tmgr_t *c_tbl;
2719 pmap_t pmap, curpmap;
2720
2721 curpmap = current_pmap();
2722 pv = pa2pv(pa);
2723
2724 for (idx = pv->pv_idx; idx != PVE_EOL; idx = pvebase[idx].pve_next) {
2725 pte = &kernCbase[idx];
2726 switch (prot) {
2727 case VM_PROT_ALL:
2728 /* do nothing */
2729 break;
2730 case VM_PROT_EXECUTE:
2731 case VM_PROT_READ:
2732 case VM_PROT_READ|VM_PROT_EXECUTE:
2733 /*
2734 * Determine the virtual address mapped by
2735 * the PTE and flush ATC entries if necessary.
2736 */
2737 va = pmap_get_pteinfo(idx, &pmap, &c_tbl);
2738 pte->attr.raw |= MMU_SHORT_PTE_WP;
2739 if (pmap == curpmap || pmap == pmap_kernel())
2740 TBIS(va);
2741 break;
2742 case VM_PROT_NONE:
2743 /* Save the mod/ref bits. */
2744 pv->pv_flags |= pte->attr.raw;
2745 /* Invalidate the PTE. */
2746 pte->attr.raw = MMU_DT_INVALID;
2747
2748 /*
2749 * Update table counts. And flush ATC entries
2750 * if necessary.
2751 */
2752 va = pmap_get_pteinfo(idx, &pmap, &c_tbl);
2753
2754 /*
2755 * If the PTE belongs to the kernel map,
2756 * be sure to flush the page it maps.
2757 */
2758 if (pmap == pmap_kernel()) {
2759 TBIS(va);
2760 } else {
2761 /*
2762 * The PTE belongs to a user map.
2763 * update the entry count in the C
2764 * table to which it belongs and flush
2765 * the ATC if the mapping belongs to
2766 * the current pmap.
2767 */
2768 c_tbl->ct_ecnt--;
2769 if (pmap == curpmap)
2770 TBIS(va);
2771 }
2772 break;
2773 default:
2774 break;
2775 }
2776 }
2777
2778 /*
2779 * If the protection code indicates that all mappings to the page
2780 * be removed, truncate the PV list to zero entries.
2781 */
2782 if (prot == VM_PROT_NONE)
2783 pv->pv_idx = PVE_EOL;
2784 }
2785
2786 /* pmap_get_pteinfo INTERNAL
2787 **
2788 * Called internally to find the pmap and virtual address within that
2789 * map to which the pte at the given index maps. Also includes the PTE's C
2790 * table manager.
2791 *
2792 * Returns the pmap in the argument provided, and the virtual address
2793 * by return value.
2794 */
2795 vaddr_t
2796 pmap_get_pteinfo(u_int idx, pmap_t *pmap, c_tmgr_t **tbl)
2797 {
2798 vaddr_t va = 0;
2799
2800 /*
2801 * Determine if the PTE is a kernel PTE or a user PTE.
2802 */
2803 if (idx >= NUM_KERN_PTES) {
2804 /*
2805 * The PTE belongs to a user mapping.
2806 */
2807 /* XXX: Would like an inline for this to validate idx... */
2808 *tbl = &Ctmgrbase[(idx - NUM_KERN_PTES) / MMU_C_TBL_SIZE];
2809
2810 *pmap = (*tbl)->ct_pmap;
2811 /*
2812 * To find the va to which the PTE maps, we first take
2813 * the table's base virtual address mapping which is stored
2814 * in ct_va. We then increment this address by a page for
2815 * every slot skipped until we reach the PTE.
2816 */
2817 va = (*tbl)->ct_va;
2818 va += m68k_ptob(idx % MMU_C_TBL_SIZE);
2819 } else {
2820 /*
2821 * The PTE belongs to the kernel map.
2822 */
2823 *pmap = pmap_kernel();
2824
2825 va = m68k_ptob(idx);
2826 va += KERNBASE3X;
2827 }
2828
2829 return va;
2830 }
2831
2832 /* pmap_clear_modify INTERFACE
2833 **
2834 * Clear the modification bit on the page at the specified
2835 * physical address.
2836 *
2837 */
2838 bool
2839 pmap_clear_modify(struct vm_page *pg)
2840 {
2841 paddr_t pa = VM_PAGE_TO_PHYS(pg);
2842 bool rv;
2843
2844 rv = pmap_is_modified(pg);
2845 pmap_clear_pv(pa, PV_FLAGS_MDFY);
2846 return rv;
2847 }
2848
2849 /* pmap_clear_reference INTERFACE
2850 **
2851 * Clear the referenced bit on the page at the specified
2852 * physical address.
2853 */
2854 bool
2855 pmap_clear_reference(struct vm_page *pg)
2856 {
2857 paddr_t pa = VM_PAGE_TO_PHYS(pg);
2858 bool rv;
2859
2860 rv = pmap_is_referenced(pg);
2861 pmap_clear_pv(pa, PV_FLAGS_USED);
2862 return rv;
2863 }
2864
2865 /* pmap_clear_pv INTERNAL
2866 **
2867 * Clears the specified flag from the specified physical address.
2868 * (Used by pmap_clear_modify() and pmap_clear_reference().)
2869 *
2870 * Flag is one of:
2871 * PV_FLAGS_MDFY - Page modified bit.
2872 * PV_FLAGS_USED - Page used (referenced) bit.
2873 *
2874 * This routine must not only clear the flag on the pv list
2875 * head. It must also clear the bit on every pte in the pv
2876 * list associated with the address.
2877 */
2878 void
2879 pmap_clear_pv(paddr_t pa, int flag)
2880 {
2881 pv_t *pv;
2882 int idx;
2883 vaddr_t va;
2884 pmap_t pmap;
2885 mmu_short_pte_t *pte;
2886 c_tmgr_t *c_tbl;
2887
2888 pv = pa2pv(pa);
2889 pv->pv_flags &= ~(flag);
2890 for (idx = pv->pv_idx; idx != PVE_EOL; idx = pvebase[idx].pve_next) {
2891 pte = &kernCbase[idx];
2892 pte->attr.raw &= ~(flag);
2893
2894 /*
2895 * The MC68030 MMU will not set the modified or
2896 * referenced bits on any MMU tables for which it has
2897 * a cached descriptor with its modify bit set. To insure
2898 * that it will modify these bits on the PTE during the next
2899 * time it is written to or read from, we must flush it from
2900 * the ATC.
2901 *
2902 * Ordinarily it is only necessary to flush the descriptor
2903 * if it is used in the current address space. But since I
2904 * am not sure that there will always be a notion of
2905 * 'the current address space' when this function is called,
2906 * I will skip the test and always flush the address. It
2907 * does no harm.
2908 */
2909
2910 va = pmap_get_pteinfo(idx, &pmap, &c_tbl);
2911 TBIS(va);
2912 }
2913 }
2914
2915 /* pmap_extract_kernel INTERNAL
2916 **
2917 * Extract a translation from the kernel address space.
2918 */
2919 static INLINE bool
2920 pmap_extract_kernel(vaddr_t va, paddr_t *pap)
2921 {
2922 mmu_short_pte_t *pte;
2923
2924 pte = &kernCbase[(u_int)m68k_btop(va - KERNBASE3X)];
2925 if (!MMU_VALID_DT(*pte))
2926 return false;
2927 if (pap != NULL)
2928 *pap = MMU_PTE_PA(*pte);
2929 return true;
2930 }
2931
2932 /* pmap_extract INTERFACE
2933 **
2934 * Return the physical address mapped by the virtual address
2935 * in the specified pmap.
2936 *
2937 * Note: this function should also apply an exclusive lock
2938 * on the pmap system during its duration.
2939 */
2940 bool
2941 pmap_extract(pmap_t pmap, vaddr_t va, paddr_t *pap)
2942 {
2943 int a_idx, b_idx, pte_idx;
2944 a_tmgr_t *a_tbl;
2945 b_tmgr_t *b_tbl;
2946 c_tmgr_t *c_tbl;
2947 mmu_short_pte_t *c_pte;
2948
2949 if (pmap == pmap_kernel())
2950 return pmap_extract_kernel(va, pap);
2951
2952 if (pmap_stroll(pmap, va, &a_tbl, &b_tbl, &c_tbl,
2953 &c_pte, &a_idx, &b_idx, &pte_idx) == false)
2954 return false;
2955
2956 if (!MMU_VALID_DT(*c_pte))
2957 return false;
2958
2959 if (pap != NULL)
2960 *pap = MMU_PTE_PA(*c_pte);
2961 return true;
2962 }
2963
2964 /* pmap_remove_kernel INTERNAL
2965 **
2966 * Remove the mapping of a range of virtual addresses from the kernel map.
2967 * The arguments are already page-aligned.
2968 */
2969 static INLINE void
2970 pmap_remove_kernel(vaddr_t sva, vaddr_t eva)
2971 {
2972 int idx, eidx;
2973
2974 #ifdef PMAP_DEBUG
2975 if ((sva & PGOFSET) || (eva & PGOFSET))
2976 panic("pmap_remove_kernel: alignment");
2977 #endif
2978
2979 idx = m68k_btop(sva - KERNBASE3X);
2980 eidx = m68k_btop(eva - KERNBASE3X);
2981
2982 while (idx < eidx) {
2983 pmap_remove_pte(&kernCbase[idx++]);
2984 TBIS(sva);
2985 sva += PAGE_SIZE;
2986 }
2987 }
2988
2989 /* pmap_remove INTERFACE
2990 **
2991 * Remove the mapping of a range of virtual addresses from the given pmap.
2992 *
2993 */
2994 void
2995 pmap_remove(pmap_t pmap, vaddr_t sva, vaddr_t eva)
2996 {
2997
2998 if (pmap == pmap_kernel()) {
2999 pmap_remove_kernel(sva, eva);
3000 return;
3001 }
3002
3003 /*
3004 * If the pmap doesn't have an A table of its own, it has no mappings
3005 * that can be removed.
3006 */
3007 if (pmap->pm_a_tmgr == NULL)
3008 return;
3009
3010 /*
3011 * Remove the specified range from the pmap. If the function
3012 * returns true, the operation removed all the valid mappings
3013 * in the pmap and freed its A table. If this happened to the
3014 * currently loaded pmap, the MMU root pointer must be reloaded
3015 * with the default 'kernel' map.
3016 */
3017 if (pmap_remove_a(pmap->pm_a_tmgr, sva, eva)) {
3018 if (kernel_crp.rp_addr == pmap->pm_a_phys) {
3019 kernel_crp.rp_addr = kernAphys;
3020 loadcrp(&kernel_crp);
3021 /* will do TLB flush below */
3022 }
3023 pmap->pm_a_tmgr = NULL;
3024 pmap->pm_a_phys = kernAphys;
3025 }
3026
3027 /*
3028 * If we just modified the current address space,
3029 * make sure to flush the MMU cache.
3030 *
3031 * XXX - this could be an unecessarily large flush.
3032 * XXX - Could decide, based on the size of the VA range
3033 * to be removed, whether to flush "by pages" or "all".
3034 */
3035 if (pmap == current_pmap())
3036 TBIAU();
3037 }
3038
3039 /* pmap_remove_a INTERNAL
3040 **
3041 * This is function number one in a set of three that removes a range
3042 * of memory in the most efficient manner by removing the highest possible
3043 * tables from the memory space. This particular function attempts to remove
3044 * as many B tables as it can, delegating the remaining fragmented ranges to
3045 * pmap_remove_b().
3046 *
3047 * If the removal operation results in an empty A table, the function returns
3048 * true.
3049 *
3050 * It's ugly but will do for now.
3051 */
3052 bool
3053 pmap_remove_a(a_tmgr_t *a_tbl, vaddr_t sva, vaddr_t eva)
3054 {
3055 bool empty;
3056 int idx;
3057 vaddr_t nstart, nend;
3058 b_tmgr_t *b_tbl;
3059 mmu_long_dte_t *a_dte;
3060 mmu_short_dte_t *b_dte;
3061 uint8_t at_wired, bt_wired;
3062
3063 /*
3064 * The following code works with what I call a 'granularity
3065 * reduction algorithim'. A range of addresses will always have
3066 * the following properties, which are classified according to
3067 * how the range relates to the size of the current granularity
3068 * - an A table entry:
3069 *
3070 * 1 2 3 4
3071 * -+---+---+---+---+---+---+---+-
3072 * -+---+---+---+---+---+---+---+-
3073 *
3074 * A range will always start on a granularity boundary, illustrated
3075 * by '+' signs in the table above, or it will start at some point
3076 * inbetween a granularity boundary, as illustrated by point 1.
3077 * The first step in removing a range of addresses is to remove the
3078 * range between 1 and 2, the nearest granularity boundary. This
3079 * job is handled by the section of code governed by the
3080 * 'if (start < nstart)' statement.
3081 *
3082 * A range will always encompass zero or more intergral granules,
3083 * illustrated by points 2 and 3. Integral granules are easy to
3084 * remove. The removal of these granules is the second step, and
3085 * is handled by the code block 'if (nstart < nend)'.
3086 *
3087 * Lastly, a range will always end on a granularity boundary,
3088 * ill. by point 3, or it will fall just beyond one, ill. by point
3089 * 4. The last step involves removing this range and is handled by
3090 * the code block 'if (nend < end)'.
3091 */
3092 nstart = MMU_ROUND_UP_A(sva);
3093 nend = MMU_ROUND_A(eva);
3094
3095 at_wired = a_tbl->at_wcnt;
3096
3097 if (sva < nstart) {
3098 /*
3099 * This block is executed if the range starts between
3100 * a granularity boundary.
3101 *
3102 * First find the DTE which is responsible for mapping
3103 * the start of the range.
3104 */
3105 idx = MMU_TIA(sva);
3106 a_dte = &a_tbl->at_dtbl[idx];
3107
3108 /*
3109 * If the DTE is valid then delegate the removal of the sub
3110 * range to pmap_remove_b(), which can remove addresses at
3111 * a finer granularity.
3112 */
3113 if (MMU_VALID_DT(*a_dte)) {
3114 b_dte = mmu_ptov(a_dte->addr.raw);
3115 b_tbl = mmuB2tmgr(b_dte);
3116 bt_wired = b_tbl->bt_wcnt;
3117
3118 /*
3119 * The sub range to be removed starts at the start
3120 * of the full range we were asked to remove, and ends
3121 * at the greater of:
3122 * 1. The end of the full range, -or-
3123 * 2. The end of the full range, rounded down to the
3124 * nearest granularity boundary.
3125 */
3126 if (eva < nstart)
3127 empty = pmap_remove_b(b_tbl, sva, eva);
3128 else
3129 empty = pmap_remove_b(b_tbl, sva, nstart);
3130
3131 /*
3132 * If the child table no longer has wired entries,
3133 * decrement wired entry count.
3134 */
3135 if (bt_wired && b_tbl->bt_wcnt == 0)
3136 a_tbl->at_wcnt--;
3137
3138 /*
3139 * If the removal resulted in an empty B table,
3140 * invalidate the DTE that points to it and decrement
3141 * the valid entry count of the A table.
3142 */
3143 if (empty) {
3144 a_dte->attr.raw = MMU_DT_INVALID;
3145 a_tbl->at_ecnt--;
3146 }
3147 }
3148 /*
3149 * If the DTE is invalid, the address range is already non-
3150 * existent and can simply be skipped.
3151 */
3152 }
3153 if (nstart < nend) {
3154 /*
3155 * This block is executed if the range spans a whole number
3156 * multiple of granules (A table entries.)
3157 *
3158 * First find the DTE which is responsible for mapping
3159 * the start of the first granule involved.
3160 */
3161 idx = MMU_TIA(nstart);
3162 a_dte = &a_tbl->at_dtbl[idx];
3163
3164 /*
3165 * Remove entire sub-granules (B tables) one at a time,
3166 * until reaching the end of the range.
3167 */
3168 for (; nstart < nend; a_dte++, nstart += MMU_TIA_RANGE)
3169 if (MMU_VALID_DT(*a_dte)) {
3170 /*
3171 * Find the B table manager for the
3172 * entry and free it.
3173 */
3174 b_dte = mmu_ptov(a_dte->addr.raw);
3175 b_tbl = mmuB2tmgr(b_dte);
3176 bt_wired = b_tbl->bt_wcnt;
3177
3178 free_b_table(b_tbl, true);
3179
3180 /*
3181 * All child entries has been removed.
3182 * If there were any wired entries in it,
3183 * decrement wired entry count.
3184 */
3185 if (bt_wired)
3186 a_tbl->at_wcnt--;
3187
3188 /*
3189 * Invalidate the DTE that points to the
3190 * B table and decrement the valid entry
3191 * count of the A table.
3192 */
3193 a_dte->attr.raw = MMU_DT_INVALID;
3194 a_tbl->at_ecnt--;
3195 }
3196 }
3197 if (nend < eva) {
3198 /*
3199 * This block is executed if the range ends beyond a
3200 * granularity boundary.
3201 *
3202 * First find the DTE which is responsible for mapping
3203 * the start of the nearest (rounded down) granularity
3204 * boundary.
3205 */
3206 idx = MMU_TIA(nend);
3207 a_dte = &a_tbl->at_dtbl[idx];
3208
3209 /*
3210 * If the DTE is valid then delegate the removal of the sub
3211 * range to pmap_remove_b(), which can remove addresses at
3212 * a finer granularity.
3213 */
3214 if (MMU_VALID_DT(*a_dte)) {
3215 /*
3216 * Find the B table manager for the entry
3217 * and hand it to pmap_remove_b() along with
3218 * the sub range.
3219 */
3220 b_dte = mmu_ptov(a_dte->addr.raw);
3221 b_tbl = mmuB2tmgr(b_dte);
3222 bt_wired = b_tbl->bt_wcnt;
3223
3224 empty = pmap_remove_b(b_tbl, nend, eva);
3225
3226 /*
3227 * If the child table no longer has wired entries,
3228 * decrement wired entry count.
3229 */
3230 if (bt_wired && b_tbl->bt_wcnt == 0)
3231 a_tbl->at_wcnt--;
3232 /*
3233 * If the removal resulted in an empty B table,
3234 * invalidate the DTE that points to it and decrement
3235 * the valid entry count of the A table.
3236 */
3237 if (empty) {
3238 a_dte->attr.raw = MMU_DT_INVALID;
3239 a_tbl->at_ecnt--;
3240 }
3241 }
3242 }
3243
3244 /*
3245 * If there are no more entries in the A table, release it
3246 * back to the available pool and return true.
3247 */
3248 if (a_tbl->at_ecnt == 0) {
3249 KASSERT(a_tbl->at_wcnt == 0);
3250 a_tbl->at_parent = NULL;
3251 if (!at_wired)
3252 TAILQ_REMOVE(&a_pool, a_tbl, at_link);
3253 TAILQ_INSERT_HEAD(&a_pool, a_tbl, at_link);
3254 empty = true;
3255 } else {
3256 /*
3257 * If the table doesn't have wired entries any longer
3258 * but still has unwired entries, put it back into
3259 * the available queue.
3260 */
3261 if (at_wired && a_tbl->at_wcnt == 0)
3262 TAILQ_INSERT_TAIL(&a_pool, a_tbl, at_link);
3263 empty = false;
3264 }
3265
3266 return empty;
3267 }
3268
3269 /* pmap_remove_b INTERNAL
3270 **
3271 * Remove a range of addresses from an address space, trying to remove entire
3272 * C tables if possible.
3273 *
3274 * If the operation results in an empty B table, the function returns true.
3275 */
3276 bool
3277 pmap_remove_b(b_tmgr_t *b_tbl, vaddr_t sva, vaddr_t eva)
3278 {
3279 bool empty;
3280 int idx;
3281 vaddr_t nstart, nend, rstart;
3282 c_tmgr_t *c_tbl;
3283 mmu_short_dte_t *b_dte;
3284 mmu_short_pte_t *c_dte;
3285 uint8_t bt_wired, ct_wired;
3286
3287 nstart = MMU_ROUND_UP_B(sva);
3288 nend = MMU_ROUND_B(eva);
3289
3290 bt_wired = b_tbl->bt_wcnt;
3291
3292 if (sva < nstart) {
3293 idx = MMU_TIB(sva);
3294 b_dte = &b_tbl->bt_dtbl[idx];
3295 if (MMU_VALID_DT(*b_dte)) {
3296 c_dte = mmu_ptov(MMU_DTE_PA(*b_dte));
3297 c_tbl = mmuC2tmgr(c_dte);
3298 ct_wired = c_tbl->ct_wcnt;
3299
3300 if (eva < nstart)
3301 empty = pmap_remove_c(c_tbl, sva, eva);
3302 else
3303 empty = pmap_remove_c(c_tbl, sva, nstart);
3304
3305 /*
3306 * If the child table no longer has wired entries,
3307 * decrement wired entry count.
3308 */
3309 if (ct_wired && c_tbl->ct_wcnt == 0)
3310 b_tbl->bt_wcnt--;
3311
3312 if (empty) {
3313 b_dte->attr.raw = MMU_DT_INVALID;
3314 b_tbl->bt_ecnt--;
3315 }
3316 }
3317 }
3318 if (nstart < nend) {
3319 idx = MMU_TIB(nstart);
3320 b_dte = &b_tbl->bt_dtbl[idx];
3321 rstart = nstart;
3322 while (rstart < nend) {
3323 if (MMU_VALID_DT(*b_dte)) {
3324 c_dte = mmu_ptov(MMU_DTE_PA(*b_dte));
3325 c_tbl = mmuC2tmgr(c_dte);
3326 ct_wired = c_tbl->ct_wcnt;
3327
3328 free_c_table(c_tbl, true);
3329
3330 /*
3331 * All child entries has been removed.
3332 * If there were any wired entries in it,
3333 * decrement wired entry count.
3334 */
3335 if (ct_wired)
3336 b_tbl->bt_wcnt--;
3337
3338 b_dte->attr.raw = MMU_DT_INVALID;
3339 b_tbl->bt_ecnt--;
3340 }
3341 b_dte++;
3342 rstart += MMU_TIB_RANGE;
3343 }
3344 }
3345 if (nend < eva) {
3346 idx = MMU_TIB(nend);
3347 b_dte = &b_tbl->bt_dtbl[idx];
3348 if (MMU_VALID_DT(*b_dte)) {
3349 c_dte = mmu_ptov(MMU_DTE_PA(*b_dte));
3350 c_tbl = mmuC2tmgr(c_dte);
3351 ct_wired = c_tbl->ct_wcnt;
3352 empty = pmap_remove_c(c_tbl, nend, eva);
3353
3354 /*
3355 * If the child table no longer has wired entries,
3356 * decrement wired entry count.
3357 */
3358 if (ct_wired && c_tbl->ct_wcnt == 0)
3359 b_tbl->bt_wcnt--;
3360
3361 if (empty) {
3362 b_dte->attr.raw = MMU_DT_INVALID;
3363 b_tbl->bt_ecnt--;
3364 }
3365 }
3366 }
3367
3368 if (b_tbl->bt_ecnt == 0) {
3369 KASSERT(b_tbl->bt_wcnt == 0);
3370 b_tbl->bt_parent = NULL;
3371 if (!bt_wired)
3372 TAILQ_REMOVE(&b_pool, b_tbl, bt_link);
3373 TAILQ_INSERT_HEAD(&b_pool, b_tbl, bt_link);
3374 empty = true;
3375 } else {
3376 /*
3377 * If the table doesn't have wired entries any longer
3378 * but still has unwired entries, put it back into
3379 * the available queue.
3380 */
3381 if (bt_wired && b_tbl->bt_wcnt == 0)
3382 TAILQ_INSERT_TAIL(&b_pool, b_tbl, bt_link);
3383
3384 empty = false;
3385 }
3386
3387 return empty;
3388 }
3389
3390 /* pmap_remove_c INTERNAL
3391 **
3392 * Remove a range of addresses from the given C table.
3393 */
3394 bool
3395 pmap_remove_c(c_tmgr_t *c_tbl, vaddr_t sva, vaddr_t eva)
3396 {
3397 bool empty;
3398 int idx;
3399 mmu_short_pte_t *c_pte;
3400 uint8_t ct_wired;
3401
3402 ct_wired = c_tbl->ct_wcnt;
3403
3404 idx = MMU_TIC(sva);
3405 c_pte = &c_tbl->ct_dtbl[idx];
3406 for (; sva < eva; sva += MMU_PAGE_SIZE, c_pte++) {
3407 if (MMU_VALID_DT(*c_pte)) {
3408 if (c_pte->attr.raw & MMU_SHORT_PTE_WIRED)
3409 c_tbl->ct_wcnt--;
3410 pmap_remove_pte(c_pte);
3411 c_tbl->ct_ecnt--;
3412 }
3413 }
3414
3415 if (c_tbl->ct_ecnt == 0) {
3416 KASSERT(c_tbl->ct_wcnt == 0);
3417 c_tbl->ct_parent = NULL;
3418 if (!ct_wired)
3419 TAILQ_REMOVE(&c_pool, c_tbl, ct_link);
3420 TAILQ_INSERT_HEAD(&c_pool, c_tbl, ct_link);
3421 empty = true;
3422 } else {
3423 /*
3424 * If the table doesn't have wired entries any longer
3425 * but still has unwired entries, put it back into
3426 * the available queue.
3427 */
3428 if (ct_wired && c_tbl->ct_wcnt == 0)
3429 TAILQ_INSERT_TAIL(&c_pool, c_tbl, ct_link);
3430 empty = false;
3431 }
3432
3433 return empty;
3434 }
3435
3436 /* pmap_bootstrap_alloc INTERNAL
3437 **
3438 * Used internally for memory allocation at startup when malloc is not
3439 * available. This code will fail once it crosses the first memory
3440 * bank boundary on the 3/80. Hopefully by then however, the VM system
3441 * will be in charge of allocation.
3442 */
3443 void *
3444 pmap_bootstrap_alloc(int size)
3445 {
3446 void *rtn;
3447
3448 #ifdef PMAP_DEBUG
3449 if (bootstrap_alloc_enabled == false) {
3450 mon_printf("pmap_bootstrap_alloc: disabled\n");
3451 sunmon_abort();
3452 }
3453 #endif
3454
3455 rtn = (void *) virtual_avail;
3456 virtual_avail += size;
3457
3458 #ifdef PMAP_DEBUG
3459 if (virtual_avail > virtual_contig_end) {
3460 mon_printf("pmap_bootstrap_alloc: out of mem\n");
3461 sunmon_abort();
3462 }
3463 #endif
3464
3465 return rtn;
3466 }
3467
3468 /* pmap_bootstap_aalign INTERNAL
3469 **
3470 * Used to insure that the next call to pmap_bootstrap_alloc() will
3471 * return a chunk of memory aligned to the specified size.
3472 *
3473 * Note: This function will only support alignment sizes that are powers
3474 * of two.
3475 */
3476 void
3477 pmap_bootstrap_aalign(int size)
3478 {
3479 int off;
3480
3481 off = virtual_avail & (size - 1);
3482 if (off) {
3483 (void)pmap_bootstrap_alloc(size - off);
3484 }
3485 }
3486
3487 /* pmap_pa_exists
3488 **
3489 * Used by the /dev/mem driver to see if a given PA is memory
3490 * that can be mapped. (The PA is not in a hole.)
3491 */
3492 int
3493 pmap_pa_exists(paddr_t pa)
3494 {
3495 int i;
3496
3497 for (i = 0; i < SUN3X_NPHYS_RAM_SEGS; i++) {
3498 if ((pa >= avail_mem[i].pmem_start) &&
3499 (pa < avail_mem[i].pmem_end))
3500 return 1;
3501 if (avail_mem[i].pmem_next == NULL)
3502 break;
3503 }
3504 return 0;
3505 }
3506
3507 /* Called only from locore.s and pmap.c */
3508 void _pmap_switch(pmap_t pmap);
3509
3510 /*
3511 * _pmap_switch INTERNAL
3512 *
3513 * This is called by locore.s:cpu_switch() when it is
3514 * switching to a new process. Load new translations.
3515 * Note: done in-line by locore.s unless PMAP_DEBUG
3516 *
3517 * Note that we do NOT allocate a context here, but
3518 * share the "kernel only" context until we really
3519 * need our own context for user-space mappings in
3520 * pmap_enter_user(). [ s/context/mmu A table/ ]
3521 */
3522 void
3523 _pmap_switch(pmap_t pmap)
3524 {
3525 u_long rootpa;
3526
3527 /*
3528 * Only do reload/flush if we have to.
3529 * Note that if the old and new process
3530 * were BOTH using the "null" context,
3531 * then this will NOT flush the TLB.
3532 */
3533 rootpa = pmap->pm_a_phys;
3534 if (kernel_crp.rp_addr != rootpa) {
3535 DPRINT(("pmap_activate(%p)\n", pmap));
3536 kernel_crp.rp_addr = rootpa;
3537 loadcrp(&kernel_crp);
3538 TBIAU();
3539 }
3540 }
3541
3542 /*
3543 * Exported version of pmap_activate(). This is called from the
3544 * machine-independent VM code when a process is given a new pmap.
3545 * If (p == curlwp) do like cpu_switch would do; otherwise just
3546 * take this as notification that the process has a new pmap.
3547 */
3548 void
3549 pmap_activate(struct lwp *l)
3550 {
3551
3552 if (l->l_proc == curproc) {
3553 _pmap_switch(l->l_proc->p_vmspace->vm_map.pmap);
3554 }
3555 }
3556
3557 /*
3558 * pmap_deactivate INTERFACE
3559 **
3560 * This is called to deactivate the specified process's address space.
3561 */
3562 void
3563 pmap_deactivate(struct lwp *l)
3564 {
3565
3566 /* Nothing to do. */
3567 }
3568
3569 /*
3570 * Fill in the sun3x-specific part of the kernel core header
3571 * for dumpsys(). (See machdep.c for the rest.)
3572 */
3573 void
3574 pmap_kcore_hdr(struct sun3x_kcore_hdr *sh)
3575 {
3576 u_long spa, len;
3577 int i;
3578
3579 sh->pg_frame = MMU_SHORT_PTE_BASEADDR;
3580 sh->pg_valid = MMU_DT_PAGE;
3581 sh->contig_end = virtual_contig_end;
3582 sh->kernCbase = (u_long)kernCbase;
3583 for (i = 0; i < SUN3X_NPHYS_RAM_SEGS; i++) {
3584 spa = avail_mem[i].pmem_start;
3585 spa = m68k_trunc_page(spa);
3586 len = avail_mem[i].pmem_end - spa;
3587 len = m68k_round_page(len);
3588 sh->ram_segs[i].start = spa;
3589 sh->ram_segs[i].size = len;
3590 }
3591 }
3592
3593
3594 /* pmap_virtual_space INTERFACE
3595 **
3596 * Return the current available range of virtual addresses in the
3597 * arguuments provided. Only really called once.
3598 */
3599 void
3600 pmap_virtual_space(vaddr_t *vstart, vaddr_t *vend)
3601 {
3602
3603 *vstart = virtual_avail;
3604 *vend = virtual_end;
3605 }
3606
3607 /*
3608 * Provide memory to the VM system.
3609 *
3610 * Assume avail_start is always in the
3611 * first segment as pmap_bootstrap does.
3612 */
3613 static void
3614 pmap_page_upload(void)
3615 {
3616 paddr_t a, b; /* memory range */
3617 int i;
3618
3619 /* Supply the memory in segments. */
3620 for (i = 0; i < SUN3X_NPHYS_RAM_SEGS; i++) {
3621 a = atop(avail_mem[i].pmem_start);
3622 b = atop(avail_mem[i].pmem_end);
3623 if (i == 0)
3624 a = atop(avail_start);
3625 if (avail_mem[i].pmem_end > avail_end)
3626 b = atop(avail_end);
3627
3628 uvm_page_physload(a, b, a, b, VM_FREELIST_DEFAULT);
3629
3630 if (avail_mem[i].pmem_next == NULL)
3631 break;
3632 }
3633 }
3634
3635 /* pmap_count INTERFACE
3636 **
3637 * Return the number of resident (valid) pages in the given pmap.
3638 *
3639 * Note: If this function is handed the kernel map, it will report
3640 * that it has no mappings. Hopefully the VM system won't ask for kernel
3641 * map statistics.
3642 */
3643 segsz_t
3644 pmap_count(pmap_t pmap, int type)
3645 {
3646 u_int count;
3647 int a_idx, b_idx;
3648 a_tmgr_t *a_tbl;
3649 b_tmgr_t *b_tbl;
3650 c_tmgr_t *c_tbl;
3651
3652 /*
3653 * If the pmap does not have its own A table manager, it has no
3654 * valid entires.
3655 */
3656 if (pmap->pm_a_tmgr == NULL)
3657 return 0;
3658
3659 a_tbl = pmap->pm_a_tmgr;
3660
3661 count = 0;
3662 for (a_idx = 0; a_idx < MMU_TIA(KERNBASE3X); a_idx++) {
3663 if (MMU_VALID_DT(a_tbl->at_dtbl[a_idx])) {
3664 b_tbl = mmuB2tmgr(mmu_ptov(a_tbl->at_dtbl[a_idx].addr.raw));
3665 for (b_idx = 0; b_idx < MMU_B_TBL_SIZE; b_idx++) {
3666 if (MMU_VALID_DT(b_tbl->bt_dtbl[b_idx])) {
3667 c_tbl = mmuC2tmgr(
3668 mmu_ptov(MMU_DTE_PA(b_tbl->bt_dtbl[b_idx])));
3669 if (type == 0)
3670 /*
3671 * A resident entry count has been requested.
3672 */
3673 count += c_tbl->ct_ecnt;
3674 else
3675 /*
3676 * A wired entry count has been requested.
3677 */
3678 count += c_tbl->ct_wcnt;
3679 }
3680 }
3681 }
3682 }
3683
3684 return count;
3685 }
3686
3687 /************************ SUN3 COMPATIBILITY ROUTINES ********************
3688 * The following routines are only used by DDB for tricky kernel text *
3689 * text operations in db_memrw.c. They are provided for sun3 *
3690 * compatibility. *
3691 *************************************************************************/
3692 /* get_pte INTERNAL
3693 **
3694 * Return the page descriptor the describes the kernel mapping
3695 * of the given virtual address.
3696 */
3697 extern u_long ptest_addr(u_long); /* XXX: locore.s */
3698 u_int
3699 get_pte(vaddr_t va)
3700 {
3701 u_long pte_pa;
3702 mmu_short_pte_t *pte;
3703
3704 /* Get the physical address of the PTE */
3705 pte_pa = ptest_addr(va & ~PGOFSET);
3706
3707 /* Convert to a virtual address... */
3708 pte = (mmu_short_pte_t *) (KERNBASE3X + pte_pa);
3709
3710 /* Make sure it is in our level-C tables... */
3711 if ((pte < kernCbase) ||
3712 (pte >= &mmuCbase[NUM_USER_PTES]))
3713 return 0;
3714
3715 /* ... and just return its contents. */
3716 return (pte->attr.raw);
3717 }
3718
3719
3720 /* set_pte INTERNAL
3721 **
3722 * Set the page descriptor that describes the kernel mapping
3723 * of the given virtual address.
3724 */
3725 void
3726 set_pte(vaddr_t va, u_int pte)
3727 {
3728 u_long idx;
3729
3730 if (va < KERNBASE3X)
3731 return;
3732
3733 idx = (unsigned long) m68k_btop(va - KERNBASE3X);
3734 kernCbase[idx].attr.raw = pte;
3735 TBIS(va);
3736 }
3737
3738 /*
3739 * Routine: pmap_procwr
3740 *
3741 * Function:
3742 * Synchronize caches corresponding to [addr, addr+len) in p.
3743 */
3744 void
3745 pmap_procwr(struct proc *p, vaddr_t va, size_t len)
3746 {
3747
3748 (void)cachectl1(0x80000004, va, len, p);
3749 }
3750
3751
3752 #ifdef PMAP_DEBUG
3753 /************************** DEBUGGING ROUTINES **************************
3754 * The following routines are meant to be an aid to debugging the pmap *
3755 * system. They are callable from the DDB command line and should be *
3756 * prepared to be handed unstable or incomplete states of the system. *
3757 ************************************************************************/
3758
3759 /* pv_list
3760 **
3761 * List all pages found on the pv list for the given physical page.
3762 * To avoid endless loops, the listing will stop at the end of the list
3763 * or after 'n' entries - whichever comes first.
3764 */
3765 void
3766 pv_list(paddr_t pa, int n)
3767 {
3768 int idx;
3769 vaddr_t va;
3770 pv_t *pv;
3771 c_tmgr_t *c_tbl;
3772 pmap_t pmap;
3773
3774 pv = pa2pv(pa);
3775 idx = pv->pv_idx;
3776 for (; idx != PVE_EOL && n > 0; idx = pvebase[idx].pve_next, n--) {
3777 va = pmap_get_pteinfo(idx, &pmap, &c_tbl);
3778 printf("idx %d, pmap 0x%x, va 0x%x, c_tbl %x\n",
3779 idx, (u_int) pmap, (u_int) va, (u_int) c_tbl);
3780 }
3781 }
3782 #endif /* PMAP_DEBUG */
3783
3784 #ifdef NOT_YET
3785 /* and maybe not ever */
3786 /************************** LOW-LEVEL ROUTINES **************************
3787 * These routines will eventually be re-written into assembly and placed*
3788 * in locore.s. They are here now as stubs so that the pmap module can *
3789 * be linked as a standalone user program for testing. *
3790 ************************************************************************/
3791 /* flush_atc_crp INTERNAL
3792 **
3793 * Flush all page descriptors derived from the given CPU Root Pointer
3794 * (CRP), or 'A' table as it is known here, from the 68851's automatic
3795 * cache.
3796 */
3797 void
3798 flush_atc_crp(int a_tbl)
3799 {
3800 mmu_long_rp_t rp;
3801
3802 /* Create a temporary root table pointer that points to the
3803 * given A table.
3804 */
3805 rp.attr.raw = ~MMU_LONG_RP_LU;
3806 rp.addr.raw = (unsigned int) a_tbl;
3807
3808 mmu_pflushr(&rp);
3809 /* mmu_pflushr:
3810 * movel sp(4)@,a0
3811 * pflushr a0@
3812 * rts
3813 */
3814 }
3815 #endif /* NOT_YET */
3816