Home | History | Annotate | Line # | Download | only in sun3x
pmap.c revision 1.118
      1 /*	$NetBSD: pmap.c,v 1.118 2021/12/05 04:37:11 msaitoh Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1996, 1997 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jeremy Cooper.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * XXX These comments aren't quite accurate.  Need to change.
     34  * The sun3x uses the MC68851 Memory Management Unit, which is built
     35  * into the CPU.  The 68851 maps virtual to physical addresses using
     36  * a multi-level table lookup, which is stored in the very memory that
     37  * it maps.  The number of levels of lookup is configurable from one
     38  * to four.  In this implementation, we use three, named 'A' through 'C'.
     39  *
     40  * The MMU translates virtual addresses into physical addresses by
     41  * traversing these tables in a process called a 'table walk'.  The most
     42  * significant 7 bits of the Virtual Address ('VA') being translated are
     43  * used as an index into the level A table, whose base in physical memory
     44  * is stored in a special MMU register, the 'CPU Root Pointer' or CRP.  The
     45  * address found at that index in the A table is used as the base
     46  * address for the next table, the B table.  The next six bits of the VA are
     47  * used as an index into the B table, which in turn gives the base address
     48  * of the third and final C table.
     49  *
     50  * The next six bits of the VA are used as an index into the C table to
     51  * locate a Page Table Entry (PTE).  The PTE is a physical address in memory
     52  * to which the remaining 13 bits of the VA are added, producing the
     53  * mapped physical address.
     54  *
     55  * To map the entire memory space in this manner would require 2114296 bytes
     56  * of page tables per process - quite expensive.  Instead we will
     57  * allocate a fixed but considerably smaller space for the page tables at
     58  * the time the VM system is initialized.  When the pmap code is asked by
     59  * the kernel to map a VA to a PA, it allocates tables as needed from this
     60  * pool.  When there are no more tables in the pool, tables are stolen
     61  * from the oldest mapped entries in the tree.  This is only possible
     62  * because all memory mappings are stored in the kernel memory map
     63  * structures, independent of the pmap structures.  A VA which references
     64  * one of these invalidated maps will cause a page fault.  The kernel
     65  * will determine that the page fault was caused by a task using a valid
     66  * VA, but for some reason (which does not concern it), that address was
     67  * not mapped.  It will ask the pmap code to re-map the entry and then
     68  * it will resume executing the faulting task.
     69  *
     70  * In this manner the most efficient use of the page table space is
     71  * achieved.  Tasks which do not execute often will have their tables
     72  * stolen and reused by tasks which execute more frequently.  The best
     73  * size for the page table pool will probably be determined by
     74  * experimentation.
     75  *
     76  * You read all of the comments so far.  Good for you.
     77  * Now go play!
     78  */
     79 
     80 /*** A Note About the 68851 Address Translation Cache
     81  * The MC68851 has a 64 entry cache, called the Address Translation Cache
     82  * or 'ATC'.  This cache stores the most recently used page descriptors
     83  * accessed by the MMU when it does translations.  Using a marker called a
     84  * 'task alias' the MMU can store the descriptors from 8 different table
     85  * spaces concurrently.  The task alias is associated with the base
     86  * address of the level A table of that address space.  When an address
     87  * space is currently active (the CRP currently points to its A table)
     88  * the only cached descriptors that will be obeyed are ones which have a
     89  * matching task alias of the current space associated with them.
     90  *
     91  * Since the cache is always consulted before any table lookups are done,
     92  * it is important that it accurately reflect the state of the MMU tables.
     93  * Whenever a change has been made to a table that has been loaded into
     94  * the MMU, the code must be sure to flush any cached entries that are
     95  * affected by the change.  These instances are documented in the code at
     96  * various points.
     97  */
     98 /*** A Note About the Note About the 68851 Address Translation Cache
     99  * 4 months into this code I discovered that the sun3x does not have
    100  * a MC68851 chip. Instead, it has a version of this MMU that is part of the
    101  * the 68030 CPU.
    102  * All though it behaves very similarly to the 68851, it only has 1 task
    103  * alias and a 22 entry cache.  So sadly (or happily), the first paragraph
    104  * of the previous note does not apply to the sun3x pmap.
    105  */
    106 
    107 #include <sys/cdefs.h>
    108 __KERNEL_RCSID(0, "$NetBSD: pmap.c,v 1.118 2021/12/05 04:37:11 msaitoh Exp $");
    109 
    110 #include "opt_ddb.h"
    111 #include "opt_pmap_debug.h"
    112 
    113 #include <sys/param.h>
    114 #include <sys/systm.h>
    115 #include <sys/proc.h>
    116 #include <sys/malloc.h>
    117 #include <sys/pool.h>
    118 #include <sys/queue.h>
    119 #include <sys/kcore.h>
    120 #include <sys/atomic.h>
    121 
    122 #include <uvm/uvm.h>
    123 
    124 #include <machine/cpu.h>
    125 #include <machine/kcore.h>
    126 #include <machine/mon.h>
    127 #include <machine/pmap.h>
    128 #include <machine/pte.h>
    129 #include <machine/vmparam.h>
    130 #include <m68k/cacheops.h>
    131 
    132 #include <sun3/sun3/cache.h>
    133 #include <sun3/sun3/machdep.h>
    134 
    135 #include "pmap_pvt.h"
    136 
    137 /* XXX - What headers declare these? */
    138 extern struct pcb *curpcb;
    139 
    140 /* Defined in locore.s */
    141 extern char kernel_text[];
    142 
    143 /* Defined by the linker */
    144 extern char etext[], edata[], end[];
    145 extern char *esym;	/* DDB */
    146 
    147 /*************************** DEBUGGING DEFINITIONS ***********************
    148  * Macros, preprocessor defines and variables used in debugging can make *
    149  * code hard to read.  Anything used exclusively for debugging purposes  *
    150  * is defined here to avoid having such mess scattered around the file.  *
    151  *************************************************************************/
    152 #ifdef	PMAP_DEBUG
    153 /*
    154  * To aid the debugging process, macros should be expanded into smaller steps
    155  * that accomplish the same goal, yet provide convenient places for placing
    156  * breakpoints.  When this code is compiled with PMAP_DEBUG mode defined, the
    157  * 'INLINE' keyword is defined to an empty string.  This way, any function
    158  * defined to be a 'static INLINE' will become 'outlined' and compiled as
    159  * a separate function, which is much easier to debug.
    160  */
    161 #define	INLINE	/* nothing */
    162 
    163 /*
    164  * It is sometimes convenient to watch the activity of a particular table
    165  * in the system.  The following variables are used for that purpose.
    166  */
    167 a_tmgr_t *pmap_watch_atbl = 0;
    168 b_tmgr_t *pmap_watch_btbl = 0;
    169 c_tmgr_t *pmap_watch_ctbl = 0;
    170 
    171 int pmap_debug = 0;
    172 #define DPRINT(args) if (pmap_debug) printf args
    173 
    174 #else	/********** Stuff below is defined if NOT debugging **************/
    175 
    176 #define	INLINE	inline
    177 #define DPRINT(args)  /* nada */
    178 
    179 #endif	/* PMAP_DEBUG */
    180 /*********************** END OF DEBUGGING DEFINITIONS ********************/
    181 
    182 /*** Management Structure - Memory Layout
    183  * For every MMU table in the sun3x pmap system there must be a way to
    184  * manage it; we must know which process is using it, what other tables
    185  * depend on it, and whether or not it contains any locked pages.  This
    186  * is solved by the creation of 'table management'  or 'tmgr'
    187  * structures.  One for each MMU table in the system.
    188  *
    189  *                        MAP OF MEMORY USED BY THE PMAP SYSTEM
    190  *
    191  *      towards lower memory
    192  * kernAbase -> +-------------------------------------------------------+
    193  *              | Kernel     MMU A level table                          |
    194  * kernBbase -> +-------------------------------------------------------+
    195  *              | Kernel     MMU B level tables                         |
    196  * kernCbase -> +-------------------------------------------------------+
    197  *              |                                                       |
    198  *              | Kernel     MMU C level tables                         |
    199  *              |                                                       |
    200  * mmuCbase  -> +-------------------------------------------------------+
    201  *              | User       MMU C level tables                         |
    202  * mmuAbase  -> +-------------------------------------------------------+
    203  *              |                                                       |
    204  *              | User       MMU A level tables                         |
    205  *              |                                                       |
    206  * mmuBbase  -> +-------------------------------------------------------+
    207  *              | User       MMU B level tables                         |
    208  * tmgrAbase -> +-------------------------------------------------------+
    209  *              |  TMGR A level table structures                        |
    210  * tmgrBbase -> +-------------------------------------------------------+
    211  *              |  TMGR B level table structures                        |
    212  * tmgrCbase -> +-------------------------------------------------------+
    213  *              |  TMGR C level table structures                        |
    214  * pvbase    -> +-------------------------------------------------------+
    215  *              |  Physical to Virtual mapping table (list heads)       |
    216  * pvebase   -> +-------------------------------------------------------+
    217  *              |  Physical to Virtual mapping table (list elements)    |
    218  *              |                                                       |
    219  *              +-------------------------------------------------------+
    220  *      towards higher memory
    221  *
    222  * For every A table in the MMU A area, there will be a corresponding
    223  * a_tmgr structure in the TMGR A area.  The same will be true for
    224  * the B and C tables.  This arrangement will make it easy to find the
    225  * controling tmgr structure for any table in the system by use of
    226  * (relatively) simple macros.
    227  */
    228 
    229 /*
    230  * Global variables for storing the base addresses for the areas
    231  * labeled above.
    232  */
    233 static vaddr_t  	kernAphys;
    234 static mmu_long_dte_t	*kernAbase;
    235 static mmu_short_dte_t	*kernBbase;
    236 static mmu_short_pte_t	*kernCbase;
    237 static mmu_short_pte_t	*mmuCbase;
    238 static mmu_short_dte_t	*mmuBbase;
    239 static mmu_long_dte_t	*mmuAbase;
    240 static a_tmgr_t		*Atmgrbase;
    241 static b_tmgr_t		*Btmgrbase;
    242 static c_tmgr_t		*Ctmgrbase;
    243 static pv_t 		*pvbase;
    244 static pv_elem_t	*pvebase;
    245 static struct pmap	kernel_pmap;
    246 struct pmap		*const kernel_pmap_ptr = &kernel_pmap;
    247 
    248 /*
    249  * This holds the CRP currently loaded into the MMU.
    250  */
    251 struct mmu_rootptr kernel_crp;
    252 
    253 /*
    254  * Just all around global variables.
    255  */
    256 static TAILQ_HEAD(a_pool_head_struct, a_tmgr_struct) a_pool;
    257 static TAILQ_HEAD(b_pool_head_struct, b_tmgr_struct) b_pool;
    258 static TAILQ_HEAD(c_pool_head_struct, c_tmgr_struct) c_pool;
    259 
    260 
    261 /*
    262  * Flags used to mark the safety/availability of certain operations or
    263  * resources.
    264  */
    265 /* Safe to use pmap_bootstrap_alloc(). */
    266 static bool bootstrap_alloc_enabled = false;
    267 /* Temporary virtual pages are in use */
    268 int tmp_vpages_inuse;
    269 
    270 /*
    271  * XXX:  For now, retain the traditional variables that were
    272  * used in the old pmap/vm interface (without NONCONTIG).
    273  */
    274 /* Kernel virtual address space available: */
    275 vaddr_t	virtual_avail, virtual_end;
    276 /* Physical address space available: */
    277 paddr_t	avail_start, avail_end;
    278 
    279 /* This keep track of the end of the contiguously mapped range. */
    280 vaddr_t virtual_contig_end;
    281 
    282 /* Physical address used by pmap_next_page() */
    283 paddr_t avail_next;
    284 
    285 /* These are used by pmap_copy_page(), etc. */
    286 vaddr_t tmp_vpages[2];
    287 
    288 /* memory pool for pmap structures */
    289 struct pool	pmap_pmap_pool;
    290 
    291 /*
    292  * The 3/80 is the only member of the sun3x family that has non-contiguous
    293  * physical memory.  Memory is divided into 4 banks which are physically
    294  * locatable on the system board.  Although the size of these banks varies
    295  * with the size of memory they contain, their base addresses are
    296  * permenently fixed.  The following structure, which describes these
    297  * banks, is initialized by pmap_bootstrap() after it reads from a similar
    298  * structure provided by the ROM Monitor.
    299  *
    300  * For the other machines in the sun3x architecture which do have contiguous
    301  * RAM, this list will have only one entry, which will describe the entire
    302  * range of available memory.
    303  */
    304 struct pmap_physmem_struct avail_mem[SUN3X_NPHYS_RAM_SEGS];
    305 u_int total_phys_mem;
    306 
    307 /*************************************************************************/
    308 
    309 /*
    310  * XXX - Should "tune" these based on statistics.
    311  *
    312  * My first guess about the relative numbers of these needed is
    313  * based on the fact that a "typical" process will have several
    314  * pages mapped at low virtual addresses (text, data, bss), then
    315  * some mapped shared libraries, and then some stack pages mapped
    316  * near the high end of the VA space.  Each process can use only
    317  * one A table, and most will use only two B tables (maybe three)
    318  * and probably about four C tables.  Therefore, the first guess
    319  * at the relative numbers of these needed is 1:2:4 -gwr
    320  *
    321  * The number of C tables needed is closely related to the amount
    322  * of physical memory available plus a certain amount attributable
    323  * to the use of double mappings.  With a few simulation statistics
    324  * we can find a reasonably good estimation of this unknown value.
    325  * Armed with that and the above ratios, we have a good idea of what
    326  * is needed at each level. -j
    327  *
    328  * Note: It is not physical memory memory size, but the total mapped
    329  * virtual space required by the combined working sets of all the
    330  * currently _runnable_ processes.  (Sleeping ones don't count.)
    331  * The amount of physical memory should be irrelevant. -gwr
    332  */
    333 #ifdef	FIXED_NTABLES
    334 #define NUM_A_TABLES	16
    335 #define NUM_B_TABLES	32
    336 #define NUM_C_TABLES	64
    337 #else
    338 unsigned int	NUM_A_TABLES, NUM_B_TABLES, NUM_C_TABLES;
    339 #endif	/* FIXED_NTABLES */
    340 
    341 /*
    342  * This determines our total virtual mapping capacity.
    343  * Yes, it is a FIXED value so we can pre-allocate.
    344  */
    345 #define NUM_USER_PTES	(NUM_C_TABLES * MMU_C_TBL_SIZE)
    346 
    347 /*
    348  * The size of the Kernel Virtual Address Space (KVAS)
    349  * for purposes of MMU table allocation is -KERNBASE
    350  * (length from KERNBASE to 0xFFFFffff)
    351  */
    352 #define	KVAS_SIZE		(-KERNBASE3X)
    353 
    354 /* Numbers of kernel MMU tables to support KVAS_SIZE. */
    355 #define KERN_B_TABLES	(KVAS_SIZE >> MMU_TIA_SHIFT)
    356 #define KERN_C_TABLES	(KVAS_SIZE >> MMU_TIB_SHIFT)
    357 #define	NUM_KERN_PTES	(KVAS_SIZE >> MMU_TIC_SHIFT)
    358 
    359 /*************************** MISCELLANEOUS MACROS *************************/
    360 void *pmap_bootstrap_alloc(int);
    361 
    362 static INLINE void *mmu_ptov(paddr_t);
    363 static INLINE paddr_t mmu_vtop(void *);
    364 
    365 #if	0
    366 static INLINE a_tmgr_t *mmuA2tmgr(mmu_long_dte_t *);
    367 #endif /* 0 */
    368 static INLINE b_tmgr_t *mmuB2tmgr(mmu_short_dte_t *);
    369 static INLINE c_tmgr_t *mmuC2tmgr(mmu_short_pte_t *);
    370 
    371 static INLINE pv_t *pa2pv(paddr_t);
    372 static INLINE int   pteidx(mmu_short_pte_t *);
    373 static INLINE pmap_t current_pmap(void);
    374 
    375 /*
    376  * We can always convert between virtual and physical addresses
    377  * for anything in the range [KERNBASE ... avail_start] because
    378  * that range is GUARANTEED to be mapped linearly.
    379  * We rely heavily upon this feature!
    380  */
    381 static INLINE void *
    382 mmu_ptov(paddr_t pa)
    383 {
    384 	vaddr_t va;
    385 
    386 	va = (pa + KERNBASE3X);
    387 #ifdef	PMAP_DEBUG
    388 	if ((va < KERNBASE3X) || (va >= virtual_contig_end))
    389 		panic("mmu_ptov");
    390 #endif
    391 	return (void *)va;
    392 }
    393 
    394 static INLINE paddr_t
    395 mmu_vtop(void *vva)
    396 {
    397 	vaddr_t va;
    398 
    399 	va = (vaddr_t)vva;
    400 #ifdef	PMAP_DEBUG
    401 	if ((va < KERNBASE3X) || (va >= virtual_contig_end))
    402 		panic("mmu_vtop");
    403 #endif
    404 	return va - KERNBASE3X;
    405 }
    406 
    407 /*
    408  * These macros map MMU tables to their corresponding manager structures.
    409  * They are needed quite often because many of the pointers in the pmap
    410  * system reference MMU tables and not the structures that control them.
    411  * There needs to be a way to find one when given the other and these
    412  * macros do so by taking advantage of the memory layout described above.
    413  * Here's a quick step through the first macro, mmuA2tmgr():
    414  *
    415  * 1) find the offset of the given MMU A table from the base of its table
    416  *    pool (table - mmuAbase).
    417  * 2) convert this offset into a table index by dividing it by the
    418  *    size of one MMU 'A' table. (sizeof(mmu_long_dte_t) * MMU_A_TBL_SIZE)
    419  * 3) use this index to select the corresponding 'A' table manager
    420  *    structure from the 'A' table manager pool (Atmgrbase[index]).
    421  */
    422 /*  This function is not currently used. */
    423 #if	0
    424 static INLINE a_tmgr_t *
    425 mmuA2tmgr(mmu_long_dte_t *mmuAtbl)
    426 {
    427 	int idx;
    428 
    429 	/* Which table is this in? */
    430 	idx = (mmuAtbl - mmuAbase) / MMU_A_TBL_SIZE;
    431 #ifdef	PMAP_DEBUG
    432 	if ((idx < 0) || (idx >= NUM_A_TABLES))
    433 		panic("mmuA2tmgr");
    434 #endif
    435 	return &Atmgrbase[idx];
    436 }
    437 #endif	/* 0 */
    438 
    439 static INLINE b_tmgr_t *
    440 mmuB2tmgr(mmu_short_dte_t *mmuBtbl)
    441 {
    442 	int idx;
    443 
    444 	/* Which table is this in? */
    445 	idx = (mmuBtbl - mmuBbase) / MMU_B_TBL_SIZE;
    446 #ifdef	PMAP_DEBUG
    447 	if ((idx < 0) || (idx >= NUM_B_TABLES))
    448 		panic("mmuB2tmgr");
    449 #endif
    450 	return &Btmgrbase[idx];
    451 }
    452 
    453 /* mmuC2tmgr			INTERNAL
    454  **
    455  * Given a pte known to belong to a C table, return the address of
    456  * that table's management structure.
    457  */
    458 static INLINE c_tmgr_t *
    459 mmuC2tmgr(mmu_short_pte_t *mmuCtbl)
    460 {
    461 	int idx;
    462 
    463 	/* Which table is this in? */
    464 	idx = (mmuCtbl - mmuCbase) / MMU_C_TBL_SIZE;
    465 #ifdef	PMAP_DEBUG
    466 	if ((idx < 0) || (idx >= NUM_C_TABLES))
    467 		panic("mmuC2tmgr");
    468 #endif
    469 	return &Ctmgrbase[idx];
    470 }
    471 
    472 /* This is now a function call below.
    473  * #define pa2pv(pa) \
    474  *	(&pvbase[(unsigned long)\
    475  *		m68k_btop(pa)\
    476  *	])
    477  */
    478 
    479 /* pa2pv			INTERNAL
    480  **
    481  * Return the pv_list_head element which manages the given physical
    482  * address.
    483  */
    484 static INLINE pv_t *
    485 pa2pv(paddr_t pa)
    486 {
    487 	struct pmap_physmem_struct *bank;
    488 	int idx;
    489 
    490 	bank = &avail_mem[0];
    491 	while (pa >= bank->pmem_end)
    492 		bank = bank->pmem_next;
    493 
    494 	pa -= bank->pmem_start;
    495 	idx = bank->pmem_pvbase + m68k_btop(pa);
    496 #ifdef	PMAP_DEBUG
    497 	if ((idx < 0) || (idx >= physmem))
    498 		panic("pa2pv");
    499 #endif
    500 	return &pvbase[idx];
    501 }
    502 
    503 /* pteidx			INTERNAL
    504  **
    505  * Return the index of the given PTE within the entire fixed table of
    506  * PTEs.
    507  */
    508 static INLINE int
    509 pteidx(mmu_short_pte_t *pte)
    510 {
    511 
    512 	return pte - kernCbase;
    513 }
    514 
    515 /*
    516  * This just offers a place to put some debugging checks,
    517  * and reduces the number of places "curlwp" appears...
    518  */
    519 static INLINE pmap_t
    520 current_pmap(void)
    521 {
    522 	struct vmspace *vm;
    523 	struct vm_map *map;
    524 	pmap_t	pmap;
    525 
    526 	vm = curproc->p_vmspace;
    527 	map = &vm->vm_map;
    528 	pmap = vm_map_pmap(map);
    529 
    530 	return pmap;
    531 }
    532 
    533 
    534 /*************************** FUNCTION DEFINITIONS ************************
    535  * These appear here merely for the compiler to enforce type checking on *
    536  * all function calls.                                                   *
    537  *************************************************************************/
    538 
    539 /*
    540  * Internal functions
    541  */
    542 a_tmgr_t *get_a_table(void);
    543 b_tmgr_t *get_b_table(void);
    544 c_tmgr_t *get_c_table(void);
    545 int free_a_table(a_tmgr_t *, bool);
    546 int free_b_table(b_tmgr_t *, bool);
    547 int free_c_table(c_tmgr_t *, bool);
    548 
    549 void pmap_bootstrap_aalign(int);
    550 void pmap_alloc_usermmu(void);
    551 void pmap_alloc_usertmgr(void);
    552 void pmap_alloc_pv(void);
    553 void pmap_init_a_tables(void);
    554 void pmap_init_b_tables(void);
    555 void pmap_init_c_tables(void);
    556 void pmap_init_pv(void);
    557 void pmap_clear_pv(paddr_t, int);
    558 static INLINE bool is_managed(paddr_t);
    559 
    560 bool pmap_remove_a(a_tmgr_t *, vaddr_t, vaddr_t);
    561 bool pmap_remove_b(b_tmgr_t *, vaddr_t, vaddr_t);
    562 bool pmap_remove_c(c_tmgr_t *, vaddr_t, vaddr_t);
    563 void pmap_remove_pte(mmu_short_pte_t *);
    564 
    565 void pmap_enter_kernel(vaddr_t, paddr_t, vm_prot_t);
    566 static INLINE void pmap_remove_kernel(vaddr_t, vaddr_t);
    567 static INLINE void pmap_protect_kernel(vaddr_t, vaddr_t, vm_prot_t);
    568 static INLINE bool pmap_extract_kernel(vaddr_t, paddr_t *);
    569 vaddr_t pmap_get_pteinfo(u_int, pmap_t *, c_tmgr_t **);
    570 static INLINE int pmap_dereference(pmap_t);
    571 
    572 bool pmap_stroll(pmap_t, vaddr_t, a_tmgr_t **, b_tmgr_t **, c_tmgr_t **,
    573     mmu_short_pte_t **, int *, int *, int *);
    574 void pmap_bootstrap_copyprom(void);
    575 void pmap_takeover_mmu(void);
    576 void pmap_bootstrap_setprom(void);
    577 static void pmap_page_upload(void);
    578 
    579 #ifdef PMAP_DEBUG
    580 /* Debugging function definitions */
    581 void  pv_list(paddr_t, int);
    582 #endif /* PMAP_DEBUG */
    583 
    584 /** Interface functions
    585  ** - functions required by the Mach VM Pmap interface, with MACHINE_CONTIG
    586  **   defined.
    587  **   The new UVM doesn't require them so now INTERNAL.
    588  **/
    589 static INLINE void pmap_pinit(pmap_t);
    590 static INLINE void pmap_release(pmap_t);
    591 
    592 /********************************** CODE ********************************
    593  * Functions that are called from other parts of the kernel are labeled *
    594  * as 'INTERFACE' functions.  Functions that are only called from       *
    595  * within the pmap module are labeled as 'INTERNAL' functions.          *
    596  * Functions that are internal, but are not (currently) used at all are *
    597  * labeled 'INTERNAL_X'.                                                *
    598  ************************************************************************/
    599 
    600 /* pmap_bootstrap			INTERNAL
    601  **
    602  * Initializes the pmap system.  Called at boot time from
    603  * locore2.c:_vm_init()
    604  *
    605  * Reminder: having a pmap_bootstrap_alloc() and also having the VM
    606  *           system implement pmap_steal_memory() is redundant.
    607  *           Don't release this code without removing one or the other!
    608  */
    609 void
    610 pmap_bootstrap(vaddr_t nextva)
    611 {
    612 	struct physmemory *membank;
    613 	struct pmap_physmem_struct *pmap_membank;
    614 	vaddr_t va, eva;
    615 	paddr_t pa;
    616 	int b, c, i, j;	/* running table counts */
    617 	int size, resvmem;
    618 
    619 	/*
    620 	 * This function is called by __bootstrap after it has
    621 	 * determined the type of machine and made the appropriate
    622 	 * patches to the ROM vectors (XXX- I don't quite know what I meant
    623 	 * by that.)  It allocates and sets up enough of the pmap system
    624 	 * to manage the kernel's address space.
    625 	 */
    626 
    627 	/*
    628 	 * Determine the range of kernel virtual and physical
    629 	 * space available. Note that we ABSOLUTELY DEPEND on
    630 	 * the fact that the first bank of memory (4MB) is
    631 	 * mapped linearly to KERNBASE (which we guaranteed in
    632 	 * the first instructions of locore.s).
    633 	 * That is plenty for our bootstrap work.
    634 	 */
    635 	virtual_avail = m68k_round_page(nextva);
    636 	virtual_contig_end = KERNBASE3X + 0x400000; /* +4MB */
    637 	virtual_end = VM_MAX_KERNEL_ADDRESS;
    638 	/* Don't need avail_start til later. */
    639 
    640 	/* We may now call pmap_bootstrap_alloc(). */
    641 	bootstrap_alloc_enabled = true;
    642 
    643 	/*
    644 	 * This is a somewhat unwrapped loop to deal with
    645 	 * copying the PROM's 'phsymem' banks into the pmap's
    646 	 * banks.  The following is always assumed:
    647 	 * 1. There is always at least one bank of memory.
    648 	 * 2. There is always a last bank of memory, and its
    649 	 *    pmem_next member must be set to NULL.
    650 	 */
    651 	membank = romVectorPtr->v_physmemory;
    652 	pmap_membank = avail_mem;
    653 	total_phys_mem = 0;
    654 
    655 	for (;;) { /* break on !membank */
    656 		pmap_membank->pmem_start = membank->address;
    657 		pmap_membank->pmem_end = membank->address + membank->size;
    658 		total_phys_mem += membank->size;
    659 		membank = membank->next;
    660 		if (!membank)
    661 			break;
    662 		/* This silly syntax arises because pmap_membank
    663 		 * is really a pre-allocated array, but it is put into
    664 		 * use as a linked list.
    665 		 */
    666 		pmap_membank->pmem_next = pmap_membank + 1;
    667 		pmap_membank = pmap_membank->pmem_next;
    668 	}
    669 	/* This is the last element. */
    670 	pmap_membank->pmem_next = NULL;
    671 
    672 	/*
    673 	 * Note: total_phys_mem, physmem represent
    674 	 * actual physical memory, including that
    675 	 * reserved for the PROM monitor.
    676 	 */
    677 	physmem = btoc(total_phys_mem);
    678 
    679 	/*
    680 	 * Avail_end is set to the first byte of physical memory
    681 	 * after the end of the last bank.  We use this only to
    682 	 * determine if a physical address is "managed" memory.
    683 	 * This address range should be reduced to prevent the
    684 	 * physical pages needed by the PROM monitor from being used
    685 	 * in the VM system.
    686 	 */
    687 	resvmem = total_phys_mem - *(romVectorPtr->memoryAvail);
    688 	resvmem = m68k_round_page(resvmem);
    689 	avail_end = pmap_membank->pmem_end - resvmem;
    690 
    691 	/*
    692 	 * First allocate enough kernel MMU tables to map all
    693 	 * of kernel virtual space from KERNBASE to 0xFFFFFFFF.
    694 	 * Note: All must be aligned on 256 byte boundaries.
    695 	 * Start with the level-A table (one of those).
    696 	 */
    697 	size = sizeof(mmu_long_dte_t) * MMU_A_TBL_SIZE;
    698 	kernAbase = pmap_bootstrap_alloc(size);
    699 	memset(kernAbase, 0, size);
    700 
    701 	/* Now the level-B kernel tables... */
    702 	size = sizeof(mmu_short_dte_t) * MMU_B_TBL_SIZE * KERN_B_TABLES;
    703 	kernBbase = pmap_bootstrap_alloc(size);
    704 	memset(kernBbase, 0, size);
    705 
    706 	/* Now the level-C kernel tables... */
    707 	size = sizeof(mmu_short_pte_t) * MMU_C_TBL_SIZE * KERN_C_TABLES;
    708 	kernCbase = pmap_bootstrap_alloc(size);
    709 	memset(kernCbase, 0, size);
    710 	/*
    711 	 * Note: In order for the PV system to work correctly, the kernel
    712 	 * and user-level C tables must be allocated contiguously.
    713 	 * Nothing should be allocated between here and the allocation of
    714 	 * mmuCbase below.  XXX: Should do this as one allocation, and
    715 	 * then compute a pointer for mmuCbase instead of this...
    716 	 *
    717 	 * Allocate user MMU tables.
    718 	 * These must be contiguous with the preceding.
    719 	 */
    720 
    721 #ifndef	FIXED_NTABLES
    722 	/*
    723 	 * The number of user-level C tables that should be allocated is
    724 	 * related to the size of physical memory.  In general, there should
    725 	 * be enough tables to map four times the amount of available RAM.
    726 	 * The extra amount is needed because some table space is wasted by
    727 	 * fragmentation.
    728 	 */
    729 	NUM_C_TABLES = (total_phys_mem * 4) / (MMU_C_TBL_SIZE * MMU_PAGE_SIZE);
    730 	NUM_B_TABLES = NUM_C_TABLES / 2;
    731 	NUM_A_TABLES = NUM_B_TABLES / 2;
    732 #endif	/* !FIXED_NTABLES */
    733 
    734 	size = sizeof(mmu_short_pte_t) * MMU_C_TBL_SIZE	* NUM_C_TABLES;
    735 	mmuCbase = pmap_bootstrap_alloc(size);
    736 
    737 	size = sizeof(mmu_short_dte_t) * MMU_B_TBL_SIZE	* NUM_B_TABLES;
    738 	mmuBbase = pmap_bootstrap_alloc(size);
    739 
    740 	size = sizeof(mmu_long_dte_t) * MMU_A_TBL_SIZE * NUM_A_TABLES;
    741 	mmuAbase = pmap_bootstrap_alloc(size);
    742 
    743 	/*
    744 	 * Fill in the never-changing part of the kernel tables.
    745 	 * For simplicity, the kernel's mappings will be editable as a
    746 	 * flat array of page table entries at kernCbase.  The
    747 	 * higher level 'A' and 'B' tables must be initialized to point
    748 	 * to this lower one.
    749 	 */
    750 	b = c = 0;
    751 
    752 	/*
    753 	 * Invalidate all mappings below KERNBASE in the A table.
    754 	 * This area has already been zeroed out, but it is good
    755 	 * practice to explicitly show that we are interpreting
    756 	 * it as a list of A table descriptors.
    757 	 */
    758 	for (i = 0; i < MMU_TIA(KERNBASE3X); i++) {
    759 		kernAbase[i].addr.raw = 0;
    760 	}
    761 
    762 	/*
    763 	 * Set up the kernel A and B tables so that they will reference the
    764 	 * correct spots in the contiguous table of PTEs allocated for the
    765 	 * kernel's virtual memory space.
    766 	 */
    767 	for (i = MMU_TIA(KERNBASE3X); i < MMU_A_TBL_SIZE; i++) {
    768 		kernAbase[i].attr.raw =
    769 		    MMU_LONG_DTE_LU | MMU_LONG_DTE_SUPV | MMU_DT_SHORT;
    770 		kernAbase[i].addr.raw = mmu_vtop(&kernBbase[b]);
    771 
    772 		for (j = 0; j < MMU_B_TBL_SIZE; j++) {
    773 			kernBbase[b + j].attr.raw =
    774 			    mmu_vtop(&kernCbase[c]) | MMU_DT_SHORT;
    775 			c += MMU_C_TBL_SIZE;
    776 		}
    777 		b += MMU_B_TBL_SIZE;
    778 	}
    779 
    780 	pmap_alloc_usermmu();	/* Allocate user MMU tables.        */
    781 	pmap_alloc_usertmgr();	/* Allocate user MMU table managers.*/
    782 	pmap_alloc_pv();	/* Allocate physical->virtual map.  */
    783 
    784 	/*
    785 	 * We are now done with pmap_bootstrap_alloc().  Round up
    786 	 * `virtual_avail' to the nearest page, and set the flag
    787 	 * to prevent use of pmap_bootstrap_alloc() hereafter.
    788 	 */
    789 	pmap_bootstrap_aalign(PAGE_SIZE);
    790 	bootstrap_alloc_enabled = false;
    791 
    792 	/*
    793 	 * Now that we are done with pmap_bootstrap_alloc(), we
    794 	 * must save the virtual and physical addresses of the
    795 	 * end of the linearly mapped range, which are stored in
    796 	 * virtual_contig_end and avail_start, respectively.
    797 	 * These variables will never change after this point.
    798 	 */
    799 	virtual_contig_end = virtual_avail;
    800 	avail_start = virtual_avail - KERNBASE3X;
    801 
    802 	/*
    803 	 * `avail_next' is a running pointer used by pmap_next_page() to
    804 	 * keep track of the next available physical page to be handed
    805 	 * to the VM system during its initialization, in which it
    806 	 * asks for physical pages, one at a time.
    807 	 */
    808 	avail_next = avail_start;
    809 
    810 	/*
    811 	 * Now allocate some virtual addresses, but not the physical pages
    812 	 * behind them.  Note that virtual_avail is already page-aligned.
    813 	 *
    814 	 * tmp_vpages[] is an array of two virtual pages used for temporary
    815 	 * kernel mappings in the pmap module to facilitate various physical
    816 	 * address-oritented operations.
    817 	 */
    818 	tmp_vpages[0] = virtual_avail;
    819 	virtual_avail += PAGE_SIZE;
    820 	tmp_vpages[1] = virtual_avail;
    821 	virtual_avail += PAGE_SIZE;
    822 
    823 	/** Initialize the PV system **/
    824 	pmap_init_pv();
    825 
    826 	/*
    827 	 * Fill in the kernel_pmap structure and kernel_crp.
    828 	 */
    829 	kernAphys = mmu_vtop(kernAbase);
    830 	kernel_pmap.pm_a_tmgr = NULL;
    831 	kernel_pmap.pm_a_phys = kernAphys;
    832 	kernel_pmap.pm_refcount = 1; /* always in use */
    833 
    834 	kernel_crp.rp_attr = MMU_LONG_DTE_LU | MMU_DT_LONG;
    835 	kernel_crp.rp_addr = kernAphys;
    836 
    837 	/*
    838 	 * Now pmap_enter_kernel() may be used safely and will be
    839 	 * the main interface used hereafter to modify the kernel's
    840 	 * virtual address space.  Note that since we are still running
    841 	 * under the PROM's address table, none of these table modifications
    842 	 * actually take effect until pmap_takeover_mmu() is called.
    843 	 *
    844 	 * Note: Our tables do NOT have the PROM linear mappings!
    845 	 * Only the mappings created here exist in our tables, so
    846 	 * remember to map anything we expect to use.
    847 	 */
    848 	va = (vaddr_t)KERNBASE3X;
    849 	pa = 0;
    850 
    851 	/*
    852 	 * The first page of the kernel virtual address space is the msgbuf
    853 	 * page.  The page attributes (data, non-cached) are set here, while
    854 	 * the address is assigned to this global pointer in cpu_startup().
    855 	 * It is non-cached, mostly due to paranoia.
    856 	 */
    857 	pmap_enter_kernel(va, pa|PMAP_NC, VM_PROT_ALL);
    858 	va += PAGE_SIZE;
    859 	pa += PAGE_SIZE;
    860 
    861 	/* Next page is used as the temporary stack. */
    862 	pmap_enter_kernel(va, pa, VM_PROT_ALL);
    863 	va += PAGE_SIZE;
    864 	pa += PAGE_SIZE;
    865 
    866 	/*
    867 	 * Map all of the kernel's text segment as read-only and cacheable.
    868 	 * (Cacheable is implied by default).  Unfortunately, the last bytes
    869 	 * of kernel text and the first bytes of kernel data will often be
    870 	 * sharing the same page.  Therefore, the last page of kernel text
    871 	 * has to be mapped as read/write, to accommodate the data.
    872 	 */
    873 	eva = m68k_trunc_page((vaddr_t)etext);
    874 	for (; va < eva; va += PAGE_SIZE, pa += PAGE_SIZE)
    875 		pmap_enter_kernel(va, pa, VM_PROT_READ|VM_PROT_EXECUTE);
    876 
    877 	/*
    878 	 * Map all of the kernel's data as read/write and cacheable.
    879 	 * This includes: data, BSS, symbols, and everything in the
    880 	 * contiguous memory used by pmap_bootstrap_alloc()
    881 	 */
    882 	for (; pa < avail_start; va += PAGE_SIZE, pa += PAGE_SIZE)
    883 		pmap_enter_kernel(va, pa, VM_PROT_READ|VM_PROT_WRITE);
    884 
    885 	/*
    886 	 * At this point we are almost ready to take over the MMU.  But first
    887 	 * we must save the PROM's address space in our map, as we call its
    888 	 * routines and make references to its data later in the kernel.
    889 	 */
    890 	pmap_bootstrap_copyprom();
    891 	pmap_takeover_mmu();
    892 	pmap_bootstrap_setprom();
    893 
    894 	/* Notify the VM system of our page size. */
    895 	uvmexp.pagesize = PAGE_SIZE;
    896 	uvm_md_init();
    897 
    898 	pmap_page_upload();
    899 }
    900 
    901 
    902 /* pmap_alloc_usermmu			INTERNAL
    903  **
    904  * Called from pmap_bootstrap() to allocate MMU tables that will
    905  * eventually be used for user mappings.
    906  */
    907 void
    908 pmap_alloc_usermmu(void)
    909 {
    910 
    911 	/* XXX: Moved into caller. */
    912 }
    913 
    914 /* pmap_alloc_pv			INTERNAL
    915  **
    916  * Called from pmap_bootstrap() to allocate the physical
    917  * to virtual mapping list.  Each physical page of memory
    918  * in the system has a corresponding element in this list.
    919  */
    920 void
    921 pmap_alloc_pv(void)
    922 {
    923 	int	i;
    924 	unsigned int	total_mem;
    925 
    926 	/*
    927 	 * Allocate a pv_head structure for every page of physical
    928 	 * memory that will be managed by the system.  Since memory on
    929 	 * the 3/80 is non-contiguous, we cannot arrive at a total page
    930 	 * count by subtraction of the lowest available address from the
    931 	 * highest, but rather we have to step through each memory
    932 	 * bank and add the number of pages in each to the total.
    933 	 *
    934 	 * At this time we also initialize the offset of each bank's
    935 	 * starting pv_head within the pv_head list so that the physical
    936 	 * memory state routines (pmap_is_referenced(),
    937 	 * pmap_is_modified(), et al.) can quickly find corresponding
    938 	 * pv_heads in spite of the non-contiguity.
    939 	 */
    940 	total_mem = 0;
    941 	for (i = 0; i < SUN3X_NPHYS_RAM_SEGS; i++) {
    942 		avail_mem[i].pmem_pvbase = m68k_btop(total_mem);
    943 		total_mem += avail_mem[i].pmem_end - avail_mem[i].pmem_start;
    944 		if (avail_mem[i].pmem_next == NULL)
    945 			break;
    946 	}
    947 	pvbase = (pv_t *)pmap_bootstrap_alloc(sizeof(pv_t) *
    948 	    m68k_btop(total_phys_mem));
    949 }
    950 
    951 /* pmap_alloc_usertmgr			INTERNAL
    952  **
    953  * Called from pmap_bootstrap() to allocate the structures which
    954  * facilitate management of user MMU tables.  Each user MMU table
    955  * in the system has one such structure associated with it.
    956  */
    957 void
    958 pmap_alloc_usertmgr(void)
    959 {
    960 	/* Allocate user MMU table managers */
    961 	/* It would be a lot simpler to just make these BSS, but */
    962 	/* we may want to change their size at boot time... -j */
    963 	Atmgrbase =
    964 	    (a_tmgr_t *)pmap_bootstrap_alloc(sizeof(a_tmgr_t) * NUM_A_TABLES);
    965 	Btmgrbase =
    966 	    (b_tmgr_t *)pmap_bootstrap_alloc(sizeof(b_tmgr_t) * NUM_B_TABLES);
    967 	Ctmgrbase =
    968 	    (c_tmgr_t *)pmap_bootstrap_alloc(sizeof(c_tmgr_t) * NUM_C_TABLES);
    969 
    970 	/*
    971 	 * Allocate PV list elements for the physical to virtual
    972 	 * mapping system.
    973 	 */
    974 	pvebase = (pv_elem_t *)pmap_bootstrap_alloc(sizeof(pv_elem_t) *
    975 	    (NUM_USER_PTES + NUM_KERN_PTES));
    976 }
    977 
    978 /* pmap_bootstrap_copyprom()			INTERNAL
    979  **
    980  * Copy the PROM mappings into our own tables.  Note, we
    981  * can use physical addresses until __bootstrap returns.
    982  */
    983 void
    984 pmap_bootstrap_copyprom(void)
    985 {
    986 	struct sunromvec *romp;
    987 	int *mon_ctbl;
    988 	mmu_short_pte_t *kpte;
    989 	int i, len;
    990 
    991 	romp = romVectorPtr;
    992 
    993 	/*
    994 	 * Copy the mappings in SUN3X_MON_KDB_BASE...SUN3X_MONEND
    995 	 * Note: mon_ctbl[0] maps SUN3X_MON_KDB_BASE
    996 	 */
    997 	mon_ctbl = *romp->monptaddr;
    998 	i = m68k_btop(SUN3X_MON_KDB_BASE - KERNBASE3X);
    999 	kpte = &kernCbase[i];
   1000 	len = m68k_btop(SUN3X_MONEND - SUN3X_MON_KDB_BASE);
   1001 
   1002 	for (i = 0; i < len; i++) {
   1003 		kpte[i].attr.raw = mon_ctbl[i];
   1004 	}
   1005 
   1006 	/*
   1007 	 * Copy the mappings at MON_DVMA_BASE (to the end).
   1008 	 * Note, in here, mon_ctbl[0] maps MON_DVMA_BASE.
   1009 	 * Actually, we only want the last page, which the
   1010 	 * PROM has set up for use by the "ie" driver.
   1011 	 * (The i82686 needs its SCP there.)
   1012 	 * If we copy all the mappings, pmap_enter_kernel
   1013 	 * may complain about finding valid PTEs that are
   1014 	 * not recorded in our PV lists...
   1015 	 */
   1016 	mon_ctbl = *romp->shadowpteaddr;
   1017 	i = m68k_btop(SUN3X_MON_DVMA_BASE - KERNBASE3X);
   1018 	kpte = &kernCbase[i];
   1019 	len = m68k_btop(SUN3X_MON_DVMA_SIZE);
   1020 	for (i = (len - 1); i < len; i++) {
   1021 		kpte[i].attr.raw = mon_ctbl[i];
   1022 	}
   1023 }
   1024 
   1025 /* pmap_takeover_mmu			INTERNAL
   1026  **
   1027  * Called from pmap_bootstrap() after it has copied enough of the
   1028  * PROM mappings into the kernel map so that we can use our own
   1029  * MMU table.
   1030  */
   1031 void
   1032 pmap_takeover_mmu(void)
   1033 {
   1034 
   1035 	loadcrp(&kernel_crp);
   1036 }
   1037 
   1038 /* pmap_bootstrap_setprom()			INTERNAL
   1039  **
   1040  * Set the PROM mappings so it can see kernel space.
   1041  * Note that physical addresses are used here, which
   1042  * we can get away with because this runs with the
   1043  * low 1GB set for transparent translation.
   1044  */
   1045 void
   1046 pmap_bootstrap_setprom(void)
   1047 {
   1048 	mmu_long_dte_t *mon_dte;
   1049 	extern struct mmu_rootptr mon_crp;
   1050 	int i;
   1051 
   1052 	mon_dte = (mmu_long_dte_t *)mon_crp.rp_addr;
   1053 	for (i = MMU_TIA(KERNBASE3X); i < MMU_TIA(KERN_END3X); i++) {
   1054 		mon_dte[i].attr.raw = kernAbase[i].attr.raw;
   1055 		mon_dte[i].addr.raw = kernAbase[i].addr.raw;
   1056 	}
   1057 }
   1058 
   1059 
   1060 /* pmap_init			INTERFACE
   1061  **
   1062  * Called at the end of vm_init() to set up the pmap system to go
   1063  * into full time operation.  All initialization of kernel_pmap
   1064  * should be already done by now, so this should just do things
   1065  * needed for user-level pmaps to work.
   1066  */
   1067 void
   1068 pmap_init(void)
   1069 {
   1070 
   1071 	/** Initialize the manager pools **/
   1072 	TAILQ_INIT(&a_pool);
   1073 	TAILQ_INIT(&b_pool);
   1074 	TAILQ_INIT(&c_pool);
   1075 
   1076 	/**************************************************************
   1077 	 * Initialize all tmgr structures and MMU tables they manage. *
   1078 	 **************************************************************/
   1079 	/** Initialize A tables **/
   1080 	pmap_init_a_tables();
   1081 	/** Initialize B tables **/
   1082 	pmap_init_b_tables();
   1083 	/** Initialize C tables **/
   1084 	pmap_init_c_tables();
   1085 
   1086 	/** Initialize the pmap pools **/
   1087 	pool_init(&pmap_pmap_pool, sizeof(struct pmap), 0, 0, 0, "pmappl",
   1088 	    &pool_allocator_nointr, IPL_NONE);
   1089 }
   1090 
   1091 /* pmap_init_a_tables()			INTERNAL
   1092  **
   1093  * Initializes all A managers, their MMU A tables, and inserts
   1094  * them into the A manager pool for use by the system.
   1095  */
   1096 void
   1097 pmap_init_a_tables(void)
   1098 {
   1099 	int i;
   1100 	a_tmgr_t *a_tbl;
   1101 
   1102 	for (i = 0; i < NUM_A_TABLES; i++) {
   1103 		/* Select the next available A manager from the pool */
   1104 		a_tbl = &Atmgrbase[i];
   1105 
   1106 		/*
   1107 		 * Clear its parent entry.  Set its wired and valid
   1108 		 * entry count to zero.
   1109 		 */
   1110 		a_tbl->at_parent = NULL;
   1111 		a_tbl->at_wcnt = a_tbl->at_ecnt = 0;
   1112 
   1113 		/* Assign it the next available MMU A table from the pool */
   1114 		a_tbl->at_dtbl = &mmuAbase[i * MMU_A_TBL_SIZE];
   1115 
   1116 		/*
   1117 		 * Initialize the MMU A table with the table in the `lwp0',
   1118 		 * or kernel, mapping.  This ensures that every process has
   1119 		 * the kernel mapped in the top part of its address space.
   1120 		 */
   1121 		memcpy(a_tbl->at_dtbl, kernAbase,
   1122 		    MMU_A_TBL_SIZE * sizeof(mmu_long_dte_t));
   1123 
   1124 		/*
   1125 		 * Finally, insert the manager into the A pool,
   1126 		 * making it ready to be used by the system.
   1127 		 */
   1128 		TAILQ_INSERT_TAIL(&a_pool, a_tbl, at_link);
   1129 	}
   1130 }
   1131 
   1132 /* pmap_init_b_tables()			INTERNAL
   1133  **
   1134  * Initializes all B table managers, their MMU B tables, and
   1135  * inserts them into the B manager pool for use by the system.
   1136  */
   1137 void
   1138 pmap_init_b_tables(void)
   1139 {
   1140 	int i, j;
   1141 	b_tmgr_t *b_tbl;
   1142 
   1143 	for (i = 0; i < NUM_B_TABLES; i++) {
   1144 		/* Select the next available B manager from the pool */
   1145 		b_tbl = &Btmgrbase[i];
   1146 
   1147 		b_tbl->bt_parent = NULL;	/* clear its parent,  */
   1148 		b_tbl->bt_pidx = 0;		/* parent index,      */
   1149 		b_tbl->bt_wcnt = 0;		/* wired entry count, */
   1150 		b_tbl->bt_ecnt = 0;		/* valid entry count. */
   1151 
   1152 		/* Assign it the next available MMU B table from the pool */
   1153 		b_tbl->bt_dtbl = &mmuBbase[i * MMU_B_TBL_SIZE];
   1154 
   1155 		/* Invalidate every descriptor in the table */
   1156 		for (j = 0; j < MMU_B_TBL_SIZE; j++)
   1157 			b_tbl->bt_dtbl[j].attr.raw = MMU_DT_INVALID;
   1158 
   1159 		/* Insert the manager into the B pool */
   1160 		TAILQ_INSERT_TAIL(&b_pool, b_tbl, bt_link);
   1161 	}
   1162 }
   1163 
   1164 /* pmap_init_c_tables()			INTERNAL
   1165  **
   1166  * Initializes all C table managers, their MMU C tables, and
   1167  * inserts them into the C manager pool for use by the system.
   1168  */
   1169 void
   1170 pmap_init_c_tables(void)
   1171 {
   1172 	int i, j;
   1173 	c_tmgr_t *c_tbl;
   1174 
   1175 	for (i = 0; i < NUM_C_TABLES; i++) {
   1176 		/* Select the next available C manager from the pool */
   1177 		c_tbl = &Ctmgrbase[i];
   1178 
   1179 		c_tbl->ct_parent = NULL;	/* clear its parent,  */
   1180 		c_tbl->ct_pidx = 0;		/* parent index,      */
   1181 		c_tbl->ct_wcnt = 0;		/* wired entry count, */
   1182 		c_tbl->ct_ecnt = 0;		/* valid entry count, */
   1183 		c_tbl->ct_pmap = NULL;		/* parent pmap,       */
   1184 		c_tbl->ct_va = 0;		/* base of managed range */
   1185 
   1186 		/* Assign it the next available MMU C table from the pool */
   1187 		c_tbl->ct_dtbl = &mmuCbase[i * MMU_C_TBL_SIZE];
   1188 
   1189 		for (j = 0; j < MMU_C_TBL_SIZE; j++)
   1190 			c_tbl->ct_dtbl[j].attr.raw = MMU_DT_INVALID;
   1191 
   1192 		TAILQ_INSERT_TAIL(&c_pool, c_tbl, ct_link);
   1193 	}
   1194 }
   1195 
   1196 /* pmap_init_pv()			INTERNAL
   1197  **
   1198  * Initializes the Physical to Virtual mapping system.
   1199  */
   1200 void
   1201 pmap_init_pv(void)
   1202 {
   1203 	int i;
   1204 
   1205 	/* Initialize every PV head. */
   1206 	for (i = 0; i < m68k_btop(total_phys_mem); i++) {
   1207 		pvbase[i].pv_idx = PVE_EOL;	/* Indicate no mappings */
   1208 		pvbase[i].pv_flags = 0;		/* Zero out page flags  */
   1209 	}
   1210 }
   1211 
   1212 /* is_managed				INTERNAL
   1213  **
   1214  * Determine if the given physical address is managed by the PV system.
   1215  * Note that this logic assumes that no one will ask for the status of
   1216  * addresses which lie in-between the memory banks on the 3/80.  If they
   1217  * do so, it will falsely report that it is managed.
   1218  *
   1219  * Note: A "managed" address is one that was reported to the VM system as
   1220  * a "usable page" during system startup.  As such, the VM system expects the
   1221  * pmap module to keep an accurate track of the useage of those pages.
   1222  * Any page not given to the VM system at startup does not exist (as far as
   1223  * the VM system is concerned) and is therefore "unmanaged."  Examples are
   1224  * those pages which belong to the ROM monitor and the memory allocated before
   1225  * the VM system was started.
   1226  */
   1227 static INLINE bool
   1228 is_managed(paddr_t pa)
   1229 {
   1230 	if (pa >= avail_start && pa < avail_end)
   1231 		return true;
   1232 	else
   1233 		return false;
   1234 }
   1235 
   1236 /* get_a_table			INTERNAL
   1237  **
   1238  * Retrieve and return a level A table for use in a user map.
   1239  */
   1240 a_tmgr_t *
   1241 get_a_table(void)
   1242 {
   1243 	a_tmgr_t *tbl;
   1244 	pmap_t pmap;
   1245 
   1246 	/* Get the top A table in the pool */
   1247 	tbl = TAILQ_FIRST(&a_pool);
   1248 	if (tbl == NULL) {
   1249 		/*
   1250 		 * XXX - Instead of panicking here and in other get_x_table
   1251 		 * functions, we do have the option of sleeping on the head of
   1252 		 * the table pool.  Any function which updates the table pool
   1253 		 * would then issue a wakeup() on the head, thus waking up any
   1254 		 * processes waiting for a table.
   1255 		 *
   1256 		 * Actually, the place to sleep would be when some process
   1257 		 * asks for a "wired" mapping that would run us short of
   1258 		 * mapping resources.  This design DEPENDS on always having
   1259 		 * some mapping resources in the pool for stealing, so we
   1260 		 * must make sure we NEVER let the pool become empty. -gwr
   1261 		 */
   1262 		panic("get_a_table: out of A tables.");
   1263 	}
   1264 
   1265 	TAILQ_REMOVE(&a_pool, tbl, at_link);
   1266 	/*
   1267 	 * If the table has a non-null parent pointer then it is in use.
   1268 	 * Forcibly abduct it from its parent and clear its entries.
   1269 	 * No re-entrancy worries here.  This table would not be in the
   1270 	 * table pool unless it was available for use.
   1271 	 *
   1272 	 * Note that the second argument to free_a_table() is false.  This
   1273 	 * indicates that the table should not be relinked into the A table
   1274 	 * pool.  That is a job for the function that called us.
   1275 	 */
   1276 	if (tbl->at_parent) {
   1277 		KASSERT(tbl->at_wcnt == 0);
   1278 		pmap = tbl->at_parent;
   1279 		free_a_table(tbl, false);
   1280 		pmap->pm_a_tmgr = NULL;
   1281 		pmap->pm_a_phys = kernAphys;
   1282 	}
   1283 	return tbl;
   1284 }
   1285 
   1286 /* get_b_table			INTERNAL
   1287  **
   1288  * Return a level B table for use.
   1289  */
   1290 b_tmgr_t *
   1291 get_b_table(void)
   1292 {
   1293 	b_tmgr_t *tbl;
   1294 
   1295 	/* See 'get_a_table' for comments. */
   1296 	tbl = TAILQ_FIRST(&b_pool);
   1297 	if (tbl == NULL)
   1298 		panic("get_b_table: out of B tables.");
   1299 	TAILQ_REMOVE(&b_pool, tbl, bt_link);
   1300 	if (tbl->bt_parent) {
   1301 		KASSERT(tbl->bt_wcnt == 0);
   1302 		tbl->bt_parent->at_dtbl[tbl->bt_pidx].attr.raw = MMU_DT_INVALID;
   1303 		tbl->bt_parent->at_ecnt--;
   1304 		free_b_table(tbl, false);
   1305 	}
   1306 	return tbl;
   1307 }
   1308 
   1309 /* get_c_table			INTERNAL
   1310  **
   1311  * Return a level C table for use.
   1312  */
   1313 c_tmgr_t *
   1314 get_c_table(void)
   1315 {
   1316 	c_tmgr_t *tbl;
   1317 
   1318 	/* See 'get_a_table' for comments */
   1319 	tbl = TAILQ_FIRST(&c_pool);
   1320 	if (tbl == NULL)
   1321 		panic("get_c_table: out of C tables.");
   1322 	TAILQ_REMOVE(&c_pool, tbl, ct_link);
   1323 	if (tbl->ct_parent) {
   1324 		KASSERT(tbl->ct_wcnt == 0);
   1325 		tbl->ct_parent->bt_dtbl[tbl->ct_pidx].attr.raw = MMU_DT_INVALID;
   1326 		tbl->ct_parent->bt_ecnt--;
   1327 		free_c_table(tbl, false);
   1328 	}
   1329 	return tbl;
   1330 }
   1331 
   1332 /*
   1333  * The following 'free_table' and 'steal_table' functions are called to
   1334  * detach tables from their current obligations (parents and children) and
   1335  * prepare them for reuse in another mapping.
   1336  *
   1337  * Free_table is used when the calling function will handle the fate
   1338  * of the parent table, such as returning it to the free pool when it has
   1339  * no valid entries.  Functions that do not want to handle this should
   1340  * call steal_table, in which the parent table's descriptors and entry
   1341  * count are automatically modified when this table is removed.
   1342  */
   1343 
   1344 /* free_a_table			INTERNAL
   1345  **
   1346  * Unmaps the given A table and all child tables from their current
   1347  * mappings.  Returns the number of pages that were invalidated.
   1348  * If 'relink' is true, the function will return the table to the head
   1349  * of the available table pool.
   1350  *
   1351  * Cache note: The MC68851 will automatically flush all
   1352  * descriptors derived from a given A table from its
   1353  * Automatic Translation Cache (ATC) if we issue a
   1354  * 'PFLUSHR' instruction with the base address of the
   1355  * table.  This function should do, and does so.
   1356  * Note note: We are using an MC68030 - there is no
   1357  * PFLUSHR.
   1358  */
   1359 int
   1360 free_a_table(a_tmgr_t *a_tbl, bool relink)
   1361 {
   1362 	int i, removed_cnt;
   1363 	mmu_long_dte_t	*dte;
   1364 	mmu_short_dte_t *dtbl;
   1365 	b_tmgr_t	*b_tbl;
   1366 	uint8_t at_wired, bt_wired;
   1367 
   1368 	/*
   1369 	 * Flush the ATC cache of all cached descriptors derived
   1370 	 * from this table.
   1371 	 * Sun3x does not use 68851's cached table feature
   1372 	 * flush_atc_crp(mmu_vtop(a_tbl->dte));
   1373 	 */
   1374 
   1375 	/*
   1376 	 * Remove any pending cache flushes that were designated
   1377 	 * for the pmap this A table belongs to.
   1378 	 * a_tbl->parent->atc_flushq[0] = 0;
   1379 	 * Not implemented in sun3x.
   1380 	 */
   1381 
   1382 	/*
   1383 	 * All A tables in the system should retain a map for the
   1384 	 * kernel. If the table contains any valid descriptors
   1385 	 * (other than those for the kernel area), invalidate them all,
   1386 	 * stopping short of the kernel's entries.
   1387 	 */
   1388 	removed_cnt = 0;
   1389 	at_wired = a_tbl->at_wcnt;
   1390 	if (a_tbl->at_ecnt) {
   1391 		dte = a_tbl->at_dtbl;
   1392 		for (i = 0; i < MMU_TIA(KERNBASE3X); i++) {
   1393 			/*
   1394 			 * If a table entry points to a valid B table, free
   1395 			 * it and its children.
   1396 			 */
   1397 			if (MMU_VALID_DT(dte[i])) {
   1398 				/*
   1399 				 * The following block does several things,
   1400 				 * from innermost expression to the
   1401 				 * outermost:
   1402 				 * 1) It extracts the base (cc 1996)
   1403 				 *    address of the B table pointed
   1404 				 *    to in the A table entry dte[i].
   1405 				 * 2) It converts this base address into
   1406 				 *    the virtual address it can be
   1407 				 *    accessed with. (all MMU tables point
   1408 				 *    to physical addresses.)
   1409 				 * 3) It finds the corresponding manager
   1410 				 *    structure which manages this MMU table.
   1411 				 * 4) It frees the manager structure.
   1412 				 *    (This frees the MMU table and all
   1413 				 *    child tables. See 'free_b_table' for
   1414 				 *    details.)
   1415 				 */
   1416 				dtbl = mmu_ptov(dte[i].addr.raw);
   1417 				b_tbl = mmuB2tmgr(dtbl);
   1418 				bt_wired = b_tbl->bt_wcnt;
   1419 				removed_cnt += free_b_table(b_tbl, true);
   1420 				if (bt_wired)
   1421 					a_tbl->at_wcnt--;
   1422 				dte[i].attr.raw = MMU_DT_INVALID;
   1423 			}
   1424 		}
   1425 		a_tbl->at_ecnt = 0;
   1426 	}
   1427 	KASSERT(a_tbl->at_wcnt == 0);
   1428 
   1429 	if (relink) {
   1430 		a_tbl->at_parent = NULL;
   1431 		if (!at_wired)
   1432 			TAILQ_REMOVE(&a_pool, a_tbl, at_link);
   1433 		TAILQ_INSERT_HEAD(&a_pool, a_tbl, at_link);
   1434 	}
   1435 	return removed_cnt;
   1436 }
   1437 
   1438 /* free_b_table			INTERNAL
   1439  **
   1440  * Unmaps the given B table and all its children from their current
   1441  * mappings.  Returns the number of pages that were invalidated.
   1442  * (For comments, see 'free_a_table()').
   1443  */
   1444 int
   1445 free_b_table(b_tmgr_t *b_tbl, bool relink)
   1446 {
   1447 	int i, removed_cnt;
   1448 	mmu_short_dte_t *dte;
   1449 	mmu_short_pte_t	*dtbl;
   1450 	c_tmgr_t	*c_tbl;
   1451 	uint8_t bt_wired, ct_wired;
   1452 
   1453 	removed_cnt = 0;
   1454 	bt_wired = b_tbl->bt_wcnt;
   1455 	if (b_tbl->bt_ecnt) {
   1456 		dte = b_tbl->bt_dtbl;
   1457 		for (i = 0; i < MMU_B_TBL_SIZE; i++) {
   1458 			if (MMU_VALID_DT(dte[i])) {
   1459 				dtbl = mmu_ptov(MMU_DTE_PA(dte[i]));
   1460 				c_tbl = mmuC2tmgr(dtbl);
   1461 				ct_wired = c_tbl->ct_wcnt;
   1462 				removed_cnt += free_c_table(c_tbl, true);
   1463 				if (ct_wired)
   1464 					b_tbl->bt_wcnt--;
   1465 				dte[i].attr.raw = MMU_DT_INVALID;
   1466 			}
   1467 		}
   1468 		b_tbl->bt_ecnt = 0;
   1469 	}
   1470 	KASSERT(b_tbl->bt_wcnt == 0);
   1471 
   1472 	if (relink) {
   1473 		b_tbl->bt_parent = NULL;
   1474 		if (!bt_wired)
   1475 			TAILQ_REMOVE(&b_pool, b_tbl, bt_link);
   1476 		TAILQ_INSERT_HEAD(&b_pool, b_tbl, bt_link);
   1477 	}
   1478 	return removed_cnt;
   1479 }
   1480 
   1481 /* free_c_table			INTERNAL
   1482  **
   1483  * Unmaps the given C table from use and returns it to the pool for
   1484  * re-use.  Returns the number of pages that were invalidated.
   1485  *
   1486  * This function preserves any physical page modification information
   1487  * contained in the page descriptors within the C table by calling
   1488  * 'pmap_remove_pte().'
   1489  */
   1490 int
   1491 free_c_table(c_tmgr_t *c_tbl, bool relink)
   1492 {
   1493 	mmu_short_pte_t *c_pte;
   1494 	int i, removed_cnt;
   1495 	uint8_t ct_wired;
   1496 
   1497 	removed_cnt = 0;
   1498 	ct_wired = c_tbl->ct_wcnt;
   1499 	if (c_tbl->ct_ecnt) {
   1500 		for (i = 0; i < MMU_C_TBL_SIZE; i++) {
   1501 			c_pte = &c_tbl->ct_dtbl[i];
   1502 			if (MMU_VALID_DT(*c_pte)) {
   1503 				if (c_pte->attr.raw & MMU_SHORT_PTE_WIRED)
   1504 					c_tbl->ct_wcnt--;
   1505 				pmap_remove_pte(c_pte);
   1506 				removed_cnt++;
   1507 			}
   1508 		}
   1509 		c_tbl->ct_ecnt = 0;
   1510 	}
   1511 	KASSERT(c_tbl->ct_wcnt == 0);
   1512 
   1513 	if (relink) {
   1514 		c_tbl->ct_parent = NULL;
   1515 		if (!ct_wired)
   1516 			TAILQ_REMOVE(&c_pool, c_tbl, ct_link);
   1517 		TAILQ_INSERT_HEAD(&c_pool, c_tbl, ct_link);
   1518 	}
   1519 	return removed_cnt;
   1520 }
   1521 
   1522 
   1523 /* pmap_remove_pte			INTERNAL
   1524  **
   1525  * Unmap the given pte and preserve any page modification
   1526  * information by transfering it to the pv head of the
   1527  * physical page it maps to.  This function does not update
   1528  * any reference counts because it is assumed that the calling
   1529  * function will do so.
   1530  */
   1531 void
   1532 pmap_remove_pte(mmu_short_pte_t *pte)
   1533 {
   1534 	u_short     pv_idx, targ_idx;
   1535 	paddr_t     pa;
   1536 	pv_t       *pv;
   1537 
   1538 	pa = MMU_PTE_PA(*pte);
   1539 	if (is_managed(pa)) {
   1540 		pv = pa2pv(pa);
   1541 		targ_idx = pteidx(pte);	/* Index of PTE being removed    */
   1542 
   1543 		/*
   1544 		 * If the PTE being removed is the first (or only) PTE in
   1545 		 * the list of PTEs currently mapped to this page, remove the
   1546 		 * PTE by changing the index found on the PV head.  Otherwise
   1547 		 * a linear search through the list will have to be executed
   1548 		 * in order to find the PVE which points to the PTE being
   1549 		 * removed, so that it may be modified to point to its new
   1550 		 * neighbor.
   1551 		 */
   1552 
   1553 		pv_idx = pv->pv_idx;	/* Index of first PTE in PV list */
   1554 		if (pv_idx == targ_idx) {
   1555 			pv->pv_idx = pvebase[targ_idx].pve_next;
   1556 		} else {
   1557 
   1558 			/*
   1559 			 * Find the PV element pointing to the target
   1560 			 * element.  Note: may have pv_idx==PVE_EOL
   1561 			 */
   1562 
   1563 			for (;;) {
   1564 				if (pv_idx == PVE_EOL) {
   1565 					goto pv_not_found;
   1566 				}
   1567 				if (pvebase[pv_idx].pve_next == targ_idx)
   1568 					break;
   1569 				pv_idx = pvebase[pv_idx].pve_next;
   1570 			}
   1571 
   1572 			/*
   1573 			 * At this point, pv_idx is the index of the PV
   1574 			 * element just before the target element in the list.
   1575 			 * Unlink the target.
   1576 			 */
   1577 
   1578 			pvebase[pv_idx].pve_next = pvebase[targ_idx].pve_next;
   1579 		}
   1580 
   1581 		/*
   1582 		 * Save the mod/ref bits of the pte by simply
   1583 		 * ORing the entire pte onto the pv_flags member
   1584 		 * of the pv structure.
   1585 		 * There is no need to use a separate bit pattern
   1586 		 * for usage information on the pv head than that
   1587 		 * which is used on the MMU ptes.
   1588 		 */
   1589 
   1590  pv_not_found:
   1591 		pv->pv_flags |= (u_short) pte->attr.raw;
   1592 	}
   1593 	pte->attr.raw = MMU_DT_INVALID;
   1594 }
   1595 
   1596 /* pmap_stroll			INTERNAL
   1597  **
   1598  * Retrieve the addresses of all table managers involved in the mapping of
   1599  * the given virtual address.  If the table walk completed successfully,
   1600  * return true.  If it was only partially successful, return false.
   1601  * The table walk performed by this function is important to many other
   1602  * functions in this module.
   1603  *
   1604  * Note: This function ought to be easier to read.
   1605  */
   1606 bool
   1607 pmap_stroll(pmap_t pmap, vaddr_t va, a_tmgr_t **a_tbl, b_tmgr_t **b_tbl,
   1608     c_tmgr_t **c_tbl, mmu_short_pte_t **pte, int *a_idx, int *b_idx,
   1609     int *pte_idx)
   1610 {
   1611 	mmu_long_dte_t *a_dte;   /* A: long descriptor table          */
   1612 	mmu_short_dte_t *b_dte;  /* B: short descriptor table         */
   1613 
   1614 	if (pmap == pmap_kernel())
   1615 		return false;
   1616 
   1617 	/* Does the given pmap have its own A table? */
   1618 	*a_tbl = pmap->pm_a_tmgr;
   1619 	if (*a_tbl == NULL)
   1620 		return false; /* No.  Return unknown. */
   1621 	/* Does the A table have a valid B table
   1622 	 * under the corresponding table entry?
   1623 	 */
   1624 	*a_idx = MMU_TIA(va);
   1625 	a_dte = &((*a_tbl)->at_dtbl[*a_idx]);
   1626 	if (!MMU_VALID_DT(*a_dte))
   1627 		return false; /* No. Return unknown. */
   1628 	/* Yes. Extract B table from the A table. */
   1629 	*b_tbl = mmuB2tmgr(mmu_ptov(a_dte->addr.raw));
   1630 	/*
   1631 	 * Does the B table have a valid C table
   1632 	 * under the corresponding table entry?
   1633 	 */
   1634 	*b_idx = MMU_TIB(va);
   1635 	b_dte = &((*b_tbl)->bt_dtbl[*b_idx]);
   1636 	if (!MMU_VALID_DT(*b_dte))
   1637 		return false; /* No. Return unknown. */
   1638 	/* Yes. Extract C table from the B table. */
   1639 	*c_tbl = mmuC2tmgr(mmu_ptov(MMU_DTE_PA(*b_dte)));
   1640 	*pte_idx = MMU_TIC(va);
   1641 	*pte = &((*c_tbl)->ct_dtbl[*pte_idx]);
   1642 
   1643 	return true;
   1644 }
   1645 
   1646 /* pmap_enter			INTERFACE
   1647  **
   1648  * Called by the kernel to map a virtual address
   1649  * to a physical address in the given process map.
   1650  *
   1651  * Note: this function should apply an exclusive lock
   1652  * on the pmap system for its duration.  (it certainly
   1653  * would save my hair!!)
   1654  * This function ought to be easier to read.
   1655  */
   1656 int
   1657 pmap_enter(pmap_t pmap, vaddr_t va, paddr_t pa, vm_prot_t prot, u_int flags)
   1658 {
   1659 	bool insert, managed; /* Marks the need for PV insertion.*/
   1660 	u_short nidx;            /* PV list index                     */
   1661 	int mapflags;            /* Flags for the mapping (see NOTE1) */
   1662 	u_int a_idx, b_idx, pte_idx; /* table indices                 */
   1663 	a_tmgr_t *a_tbl;         /* A: long descriptor table manager  */
   1664 	b_tmgr_t *b_tbl;         /* B: short descriptor table manager */
   1665 	c_tmgr_t *c_tbl;         /* C: short page table manager       */
   1666 	mmu_long_dte_t *a_dte;   /* A: long descriptor table          */
   1667 	mmu_short_dte_t *b_dte;  /* B: short descriptor table         */
   1668 	mmu_short_pte_t *c_pte;  /* C: short page descriptor table    */
   1669 	pv_t      *pv;           /* pv list head                      */
   1670 	bool wired;         /* is the mapping to be wired?       */
   1671 	enum {NONE, NEWA, NEWB, NEWC} llevel; /* used at end   */
   1672 
   1673 	if (pmap == pmap_kernel()) {
   1674 		pmap_enter_kernel(va, pa, prot);
   1675 		return 0;
   1676 	}
   1677 
   1678 	/*
   1679 	 * Determine if the mapping should be wired.
   1680 	 */
   1681 	wired = ((flags & PMAP_WIRED) != 0);
   1682 
   1683 	/*
   1684 	 * NOTE1:
   1685 	 *
   1686 	 * On November 13, 1999, someone changed the pmap_enter() API such
   1687 	 * that it now accepts a 'flags' argument.  This new argument
   1688 	 * contains bit-flags for the architecture-independent (UVM) system to
   1689 	 * use in signalling certain mapping requirements to the architecture-
   1690 	 * dependent (pmap) system.  The argument it replaces, 'wired', is now
   1691 	 * one of the flags within it.
   1692 	 *
   1693 	 * In addition to flags signaled by the architecture-independent
   1694 	 * system, parts of the architecture-dependent section of the sun3x
   1695 	 * kernel pass their own flags in the lower, unused bits of the
   1696 	 * physical address supplied to this function.  These flags are
   1697 	 * extracted and stored in the temporary variable 'mapflags'.
   1698 	 *
   1699 	 * Extract sun3x specific flags from the physical address.
   1700 	 */
   1701 	mapflags = (pa & ~MMU_PAGE_MASK);
   1702 	pa &= MMU_PAGE_MASK;
   1703 
   1704 	/*
   1705 	 * Determine if the physical address being mapped is on-board RAM.
   1706 	 * Any other area of the address space is likely to belong to a
   1707 	 * device and hence it would be disasterous to cache its contents.
   1708 	 */
   1709 	if ((managed = is_managed(pa)) == false)
   1710 		mapflags |= PMAP_NC;
   1711 
   1712 	/*
   1713 	 * For user mappings we walk along the MMU tables of the given
   1714 	 * pmap, reaching a PTE which describes the virtual page being
   1715 	 * mapped or changed.  If any level of the walk ends in an invalid
   1716 	 * entry, a table must be allocated and the entry must be updated
   1717 	 * to point to it.
   1718 	 * There is a bit of confusion as to whether this code must be
   1719 	 * re-entrant.  For now we will assume it is.  To support
   1720 	 * re-entrancy we must unlink tables from the table pool before
   1721 	 * we assume we may use them.  Tables are re-linked into the pool
   1722 	 * when we are finished with them at the end of the function.
   1723 	 * But I don't feel like doing that until we have proof that this
   1724 	 * needs to be re-entrant.
   1725 	 * 'llevel' records which tables need to be relinked.
   1726 	 */
   1727 	llevel = NONE;
   1728 
   1729 	/*
   1730 	 * Step 1 - Retrieve the A table from the pmap.  If it has no
   1731 	 * A table, allocate a new one from the available pool.
   1732 	 */
   1733 
   1734 	a_tbl = pmap->pm_a_tmgr;
   1735 	if (a_tbl == NULL) {
   1736 		/*
   1737 		 * This pmap does not currently have an A table.  Allocate
   1738 		 * a new one.
   1739 		 */
   1740 		a_tbl = get_a_table();
   1741 		a_tbl->at_parent = pmap;
   1742 
   1743 		/*
   1744 		 * Assign this new A table to the pmap, and calculate its
   1745 		 * physical address so that loadcrp() can be used to make
   1746 		 * the table active.
   1747 		 */
   1748 		pmap->pm_a_tmgr = a_tbl;
   1749 		pmap->pm_a_phys = mmu_vtop(a_tbl->at_dtbl);
   1750 
   1751 		/*
   1752 		 * If the process receiving a new A table is the current
   1753 		 * process, we are responsible for setting the MMU so that
   1754 		 * it becomes the current address space.  This only adds
   1755 		 * new mappings, so no need to flush anything.
   1756 		 */
   1757 		if (pmap == current_pmap()) {
   1758 			kernel_crp.rp_addr = pmap->pm_a_phys;
   1759 			loadcrp(&kernel_crp);
   1760 		}
   1761 
   1762 		if (!wired)
   1763 			llevel = NEWA;
   1764 	} else {
   1765 		/*
   1766 		 * Use the A table already allocated for this pmap.
   1767 		 * Unlink it from the A table pool if necessary.
   1768 		 */
   1769 		if (wired && !a_tbl->at_wcnt)
   1770 			TAILQ_REMOVE(&a_pool, a_tbl, at_link);
   1771 	}
   1772 
   1773 	/*
   1774 	 * Step 2 - Walk into the B table.  If there is no valid B table,
   1775 	 * allocate one.
   1776 	 */
   1777 
   1778 	a_idx = MMU_TIA(va);            /* Calculate the TIA of the VA. */
   1779 	a_dte = &a_tbl->at_dtbl[a_idx]; /* Retrieve descriptor from table */
   1780 	if (MMU_VALID_DT(*a_dte)) {     /* Is the descriptor valid? */
   1781 		/* The descriptor is valid.  Use the B table it points to. */
   1782 		/*************************************
   1783 		 *               a_idx               *
   1784 		 *                 v                 *
   1785 		 * a_tbl -> +-+-+-+-+-+-+-+-+-+-+-+- *
   1786 		 *          | | | | | | | | | | | |  *
   1787 		 *          +-+-+-+-+-+-+-+-+-+-+-+- *
   1788 		 *                 |                 *
   1789 		 *                 \- b_tbl -> +-+-  *
   1790 		 *                             | |   *
   1791 		 *                             +-+-  *
   1792 		 *************************************/
   1793 		b_dte = mmu_ptov(a_dte->addr.raw);
   1794 		b_tbl = mmuB2tmgr(b_dte);
   1795 
   1796 		/*
   1797 		 * If the requested mapping must be wired, but this table
   1798 		 * being used to map it is not, the table must be removed
   1799 		 * from the available pool and its wired entry count
   1800 		 * incremented.
   1801 		 */
   1802 		if (wired && !b_tbl->bt_wcnt) {
   1803 			TAILQ_REMOVE(&b_pool, b_tbl, bt_link);
   1804 			a_tbl->at_wcnt++;
   1805 		}
   1806 	} else {
   1807 		/* The descriptor is invalid.  Allocate a new B table. */
   1808 		b_tbl = get_b_table();
   1809 
   1810 		/* Point the parent A table descriptor to this new B table. */
   1811 		a_dte->addr.raw = mmu_vtop(b_tbl->bt_dtbl);
   1812 		a_dte->attr.raw = MMU_LONG_DTE_LU | MMU_DT_SHORT;
   1813 		a_tbl->at_ecnt++; /* Update parent's valid entry count */
   1814 
   1815 		/* Create the necessary back references to the parent table */
   1816 		b_tbl->bt_parent = a_tbl;
   1817 		b_tbl->bt_pidx = a_idx;
   1818 
   1819 		/*
   1820 		 * If this table is to be wired, make sure the parent A table
   1821 		 * wired count is updated to reflect that it has another wired
   1822 		 * entry.
   1823 		 */
   1824 		if (wired)
   1825 			a_tbl->at_wcnt++;
   1826 		else if (llevel == NONE)
   1827 			llevel = NEWB;
   1828 	}
   1829 
   1830 	/*
   1831 	 * Step 3 - Walk into the C table, if there is no valid C table,
   1832 	 * allocate one.
   1833 	 */
   1834 
   1835 	b_idx = MMU_TIB(va);            /* Calculate the TIB of the VA */
   1836 	b_dte = &b_tbl->bt_dtbl[b_idx]; /* Retrieve descriptor from table */
   1837 	if (MMU_VALID_DT(*b_dte)) {     /* Is the descriptor valid? */
   1838 		/* The descriptor is valid.  Use the C table it points to. */
   1839 		/**************************************
   1840 		 *               c_idx                *
   1841 		 * |                v                 *
   1842 		 * \- b_tbl -> +-+-+-+-+-+-+-+-+-+-+- *
   1843 		 *             | | | | | | | | | | |  *
   1844 		 *             +-+-+-+-+-+-+-+-+-+-+- *
   1845 		 *                  |                 *
   1846 		 *                  \- c_tbl -> +-+-- *
   1847 		 *                              | | | *
   1848 		 *                              +-+-- *
   1849 		 **************************************/
   1850 		c_pte = mmu_ptov(MMU_PTE_PA(*b_dte));
   1851 		c_tbl = mmuC2tmgr(c_pte);
   1852 
   1853 		/* If mapping is wired and table is not */
   1854 		if (wired && !c_tbl->ct_wcnt) {
   1855 			TAILQ_REMOVE(&c_pool, c_tbl, ct_link);
   1856 			b_tbl->bt_wcnt++;
   1857 		}
   1858 	} else {
   1859 		/* The descriptor is invalid.  Allocate a new C table. */
   1860 		c_tbl = get_c_table();
   1861 
   1862 		/* Point the parent B table descriptor to this new C table. */
   1863 		b_dte->attr.raw = mmu_vtop(c_tbl->ct_dtbl);
   1864 		b_dte->attr.raw |= MMU_DT_SHORT;
   1865 		b_tbl->bt_ecnt++; /* Update parent's valid entry count */
   1866 
   1867 		/* Create the necessary back references to the parent table */
   1868 		c_tbl->ct_parent = b_tbl;
   1869 		c_tbl->ct_pidx = b_idx;
   1870 		/*
   1871 		 * Store the pmap and base virtual managed address for faster
   1872 		 * retrieval in the PV functions.
   1873 		 */
   1874 		c_tbl->ct_pmap = pmap;
   1875 		c_tbl->ct_va = (va & (MMU_TIA_MASK|MMU_TIB_MASK));
   1876 
   1877 		/*
   1878 		 * If this table is to be wired, make sure the parent B table
   1879 		 * wired count is updated to reflect that it has another wired
   1880 		 * entry.
   1881 		 */
   1882 		if (wired)
   1883 			b_tbl->bt_wcnt++;
   1884 		else if (llevel == NONE)
   1885 			llevel = NEWC;
   1886 	}
   1887 
   1888 	/*
   1889 	 * Step 4 - Deposit a page descriptor (PTE) into the appropriate
   1890 	 * slot of the C table, describing the PA to which the VA is mapped.
   1891 	 */
   1892 
   1893 	pte_idx = MMU_TIC(va);
   1894 	c_pte = &c_tbl->ct_dtbl[pte_idx];
   1895 	if (MMU_VALID_DT(*c_pte)) { /* Is the entry currently valid? */
   1896 		/*
   1897 		 * The PTE is currently valid.  This particular call
   1898 		 * is just a synonym for one (or more) of the following
   1899 		 * operations:
   1900 		 *     change protection of a page
   1901 		 *     change wiring status of a page
   1902 		 *     remove the mapping of a page
   1903 		 */
   1904 
   1905 		/* First check if this is a wiring operation. */
   1906 		if (c_pte->attr.raw & MMU_SHORT_PTE_WIRED) {
   1907 			/*
   1908 			 * The existing mapping is wired, so adjust wired
   1909 			 * entry count here. If new mapping is still wired,
   1910 			 * wired entry count will be incremented again later.
   1911 			 */
   1912 			c_tbl->ct_wcnt--;
   1913 			if (!wired) {
   1914 				/*
   1915 				 * The mapping of this PTE is being changed
   1916 				 * from wired to unwired.
   1917 				 * Adjust wired entry counts in each table and
   1918 				 * set llevel flag to put unwired tables back
   1919 				 * into the active pool.
   1920 				 */
   1921 				if (c_tbl->ct_wcnt == 0) {
   1922 					llevel = NEWC;
   1923 					if (--b_tbl->bt_wcnt == 0) {
   1924 						llevel = NEWB;
   1925 						if (--a_tbl->at_wcnt == 0) {
   1926 							llevel = NEWA;
   1927 						}
   1928 					}
   1929 				}
   1930 			}
   1931 		}
   1932 
   1933 		/* Is the new address the same as the old? */
   1934 		if (MMU_PTE_PA(*c_pte) == pa) {
   1935 			/*
   1936 			 * Yes, mark that it does not need to be reinserted
   1937 			 * into the PV list.
   1938 			 */
   1939 			insert = false;
   1940 
   1941 			/*
   1942 			 * Clear all but the modified, referenced and wired
   1943 			 * bits on the PTE.
   1944 			 */
   1945 			c_pte->attr.raw &= (MMU_SHORT_PTE_M
   1946 			    | MMU_SHORT_PTE_USED | MMU_SHORT_PTE_WIRED);
   1947 		} else {
   1948 			/* No, remove the old entry */
   1949 			pmap_remove_pte(c_pte);
   1950 			insert = true;
   1951 		}
   1952 
   1953 		/*
   1954 		 * TLB flush is only necessary if modifying current map.
   1955 		 * However, in pmap_enter(), the pmap almost always IS
   1956 		 * the current pmap, so don't even bother to check.
   1957 		 */
   1958 		TBIS(va);
   1959 	} else {
   1960 		/*
   1961 		 * The PTE is invalid.  Increment the valid entry count in
   1962 		 * the C table manager to reflect the addition of a new entry.
   1963 		 */
   1964 		c_tbl->ct_ecnt++;
   1965 
   1966 		/* XXX - temporarily make sure the PTE is cleared. */
   1967 		c_pte->attr.raw = 0;
   1968 
   1969 		/* It will also need to be inserted into the PV list. */
   1970 		insert = true;
   1971 	}
   1972 
   1973 	/*
   1974 	 * If page is changing from unwired to wired status, set an unused bit
   1975 	 * within the PTE to indicate that it is wired.  Also increment the
   1976 	 * wired entry count in the C table manager.
   1977 	 */
   1978 	if (wired) {
   1979 		c_pte->attr.raw |= MMU_SHORT_PTE_WIRED;
   1980 		c_tbl->ct_wcnt++;
   1981 	}
   1982 
   1983 	/*
   1984 	 * Map the page, being careful to preserve modify/reference/wired
   1985 	 * bits.  At this point it is assumed that the PTE either has no bits
   1986 	 * set, or if there are set bits, they are only modified, reference or
   1987 	 * wired bits.  If not, the following statement will cause erratic
   1988 	 * behavior.
   1989 	 */
   1990 #ifdef	PMAP_DEBUG
   1991 	if (c_pte->attr.raw & ~(MMU_SHORT_PTE_M |
   1992 		MMU_SHORT_PTE_USED | MMU_SHORT_PTE_WIRED)) {
   1993 		printf("pmap_enter: junk left in PTE at %p\n", c_pte);
   1994 		Debugger();
   1995 	}
   1996 #endif
   1997 	c_pte->attr.raw |= ((u_long) pa | MMU_DT_PAGE);
   1998 
   1999 	/*
   2000 	 * If the mapping should be read-only, set the write protect
   2001 	 * bit in the PTE.
   2002 	 */
   2003 	if (!(prot & VM_PROT_WRITE))
   2004 		c_pte->attr.raw |= MMU_SHORT_PTE_WP;
   2005 
   2006 	/*
   2007 	 * Mark the PTE as used and/or modified as specified by the flags arg.
   2008 	 */
   2009 	if (flags & VM_PROT_ALL) {
   2010 		c_pte->attr.raw |= MMU_SHORT_PTE_USED;
   2011 		if (flags & VM_PROT_WRITE) {
   2012 			c_pte->attr.raw |= MMU_SHORT_PTE_M;
   2013 		}
   2014 	}
   2015 
   2016 	/*
   2017 	 * If the mapping should be cache inhibited (indicated by the flag
   2018 	 * bits found on the lower order of the physical address.)
   2019 	 * mark the PTE as a cache inhibited page.
   2020 	 */
   2021 	if (mapflags & PMAP_NC)
   2022 		c_pte->attr.raw |= MMU_SHORT_PTE_CI;
   2023 
   2024 	/*
   2025 	 * If the physical address being mapped is managed by the PV
   2026 	 * system then link the pte into the list of pages mapped to that
   2027 	 * address.
   2028 	 */
   2029 	if (insert && managed) {
   2030 		pv = pa2pv(pa);
   2031 		nidx = pteidx(c_pte);
   2032 
   2033 		pvebase[nidx].pve_next = pv->pv_idx;
   2034 		pv->pv_idx = nidx;
   2035 	}
   2036 
   2037 	/* Move any allocated or unwired tables back into the active pool. */
   2038 
   2039 	switch (llevel) {
   2040 		case NEWA:
   2041 			TAILQ_INSERT_TAIL(&a_pool, a_tbl, at_link);
   2042 			/* FALLTHROUGH */
   2043 		case NEWB:
   2044 			TAILQ_INSERT_TAIL(&b_pool, b_tbl, bt_link);
   2045 			/* FALLTHROUGH */
   2046 		case NEWC:
   2047 			TAILQ_INSERT_TAIL(&c_pool, c_tbl, ct_link);
   2048 			/* FALLTHROUGH */
   2049 		default:
   2050 			break;
   2051 	}
   2052 
   2053 	return 0;
   2054 }
   2055 
   2056 /* pmap_enter_kernel			INTERNAL
   2057  **
   2058  * Map the given virtual address to the given physical address within the
   2059  * kernel address space.  This function exists because the kernel map does
   2060  * not do dynamic table allocation.  It consists of a contiguous array of ptes
   2061  * and can be edited directly without the need to walk through any tables.
   2062  *
   2063  * XXX: "Danger, Will Robinson!"
   2064  * Note that the kernel should never take a fault on any page
   2065  * between [ KERNBASE .. virtual_avail ] and this is checked in
   2066  * trap.c for kernel-mode MMU faults.  This means that mappings
   2067  * created in that range must be implicily wired. -gwr
   2068  */
   2069 void
   2070 pmap_enter_kernel(vaddr_t va, paddr_t pa, vm_prot_t prot)
   2071 {
   2072 	bool       was_valid, insert;
   2073 	u_short         pte_idx;
   2074 	int             flags;
   2075 	mmu_short_pte_t *pte;
   2076 	pv_t            *pv;
   2077 	paddr_t     old_pa;
   2078 
   2079 	flags = (pa & ~MMU_PAGE_MASK);
   2080 	pa &= MMU_PAGE_MASK;
   2081 
   2082 	if (is_managed(pa))
   2083 		insert = true;
   2084 	else
   2085 		insert = false;
   2086 
   2087 	/*
   2088 	 * Calculate the index of the PTE being modified.
   2089 	 */
   2090 	pte_idx = (u_long)m68k_btop(va - KERNBASE3X);
   2091 
   2092 	/* This array is traditionally named "Sysmap" */
   2093 	pte = &kernCbase[pte_idx];
   2094 
   2095 	if (MMU_VALID_DT(*pte)) {
   2096 		was_valid = true;
   2097 		/*
   2098 		 * If the PTE already maps a different
   2099 		 * physical address, umap and pv_unlink.
   2100 		 */
   2101 		old_pa = MMU_PTE_PA(*pte);
   2102 		if (pa != old_pa)
   2103 			pmap_remove_pte(pte);
   2104 		else {
   2105 		    /*
   2106 		     * Old PA and new PA are the same.  No need to
   2107 		     * relink the mapping within the PV list.
   2108 		     */
   2109 		     insert = false;
   2110 
   2111 		    /*
   2112 		     * Save any mod/ref bits on the PTE.
   2113 		     */
   2114 		    pte->attr.raw &= (MMU_SHORT_PTE_USED|MMU_SHORT_PTE_M);
   2115 		}
   2116 	} else {
   2117 		pte->attr.raw = MMU_DT_INVALID;
   2118 		was_valid = false;
   2119 	}
   2120 
   2121 	/*
   2122 	 * Map the page.  Being careful to preserve modified/referenced bits
   2123 	 * on the PTE.
   2124 	 */
   2125 	pte->attr.raw |= (pa | MMU_DT_PAGE);
   2126 
   2127 	if (!(prot & VM_PROT_WRITE)) /* If access should be read-only */
   2128 		pte->attr.raw |= MMU_SHORT_PTE_WP;
   2129 	if (flags & PMAP_NC)
   2130 		pte->attr.raw |= MMU_SHORT_PTE_CI;
   2131 	if (was_valid)
   2132 		TBIS(va);
   2133 
   2134 	/*
   2135 	 * Insert the PTE into the PV system, if need be.
   2136 	 */
   2137 	if (insert) {
   2138 		pv = pa2pv(pa);
   2139 		pvebase[pte_idx].pve_next = pv->pv_idx;
   2140 		pv->pv_idx = pte_idx;
   2141 	}
   2142 }
   2143 
   2144 void
   2145 pmap_kenter_pa(vaddr_t va, paddr_t pa, vm_prot_t prot, u_int flags)
   2146 {
   2147 	mmu_short_pte_t	*pte;
   2148 	u_int mapflags;
   2149 
   2150 	/* XXX: MD PMAP_NC should be replaced by MI PMAP_NOCACHE in flags. */
   2151 	mapflags = (pa & ~MMU_PAGE_MASK);
   2152 	if ((mapflags & PMAP_NC) != 0)
   2153 		flags |= PMAP_NOCACHE;
   2154 
   2155 	/* This array is traditionally named "Sysmap" */
   2156 	pte = &kernCbase[(u_long)m68k_btop(va - KERNBASE3X)];
   2157 
   2158 	KASSERT(!MMU_VALID_DT(*pte));
   2159 	pte->attr.raw = MMU_DT_INVALID | MMU_DT_PAGE | (pa & MMU_PAGE_MASK);
   2160 	if (!(prot & VM_PROT_WRITE))
   2161 		pte->attr.raw |= MMU_SHORT_PTE_WP;
   2162 	if ((flags & PMAP_NOCACHE) != 0)
   2163 		pte->attr.raw |= MMU_SHORT_PTE_CI;
   2164 }
   2165 
   2166 void
   2167 pmap_kremove(vaddr_t va, vsize_t len)
   2168 {
   2169 	int idx, eidx;
   2170 
   2171 #ifdef	PMAP_DEBUG
   2172 	if ((va & PGOFSET) || (len & PGOFSET))
   2173 		panic("pmap_kremove: alignment");
   2174 #endif
   2175 
   2176 	idx  = m68k_btop(va - KERNBASE3X);
   2177 	eidx = m68k_btop(va + len - KERNBASE3X);
   2178 
   2179 	while (idx < eidx) {
   2180 		kernCbase[idx++].attr.raw = MMU_DT_INVALID;
   2181 		TBIS(va);
   2182 		va += PAGE_SIZE;
   2183 	}
   2184 }
   2185 
   2186 /* pmap_map			INTERNAL
   2187  **
   2188  * Map a contiguous range of physical memory into a contiguous range of
   2189  * the kernel virtual address space.
   2190  *
   2191  * Used for device mappings and early mapping of the kernel text/data/bss.
   2192  * Returns the first virtual address beyond the end of the range.
   2193  */
   2194 vaddr_t
   2195 pmap_map(vaddr_t va, paddr_t pa, paddr_t endpa, int prot)
   2196 {
   2197 	int sz;
   2198 
   2199 	sz = endpa - pa;
   2200 	do {
   2201 		pmap_enter_kernel(va, pa, prot);
   2202 		va += PAGE_SIZE;
   2203 		pa += PAGE_SIZE;
   2204 		sz -= PAGE_SIZE;
   2205 	} while (sz > 0);
   2206 	pmap_update(pmap_kernel());
   2207 	return va;
   2208 }
   2209 
   2210 /* pmap_protect_kernel			INTERNAL
   2211  **
   2212  * Apply the given protection code to a kernel address range.
   2213  */
   2214 static INLINE void
   2215 pmap_protect_kernel(vaddr_t startva, vaddr_t endva, vm_prot_t prot)
   2216 {
   2217 	vaddr_t va;
   2218 	mmu_short_pte_t *pte;
   2219 
   2220 	pte = &kernCbase[(unsigned long) m68k_btop(startva - KERNBASE3X)];
   2221 	for (va = startva; va < endva; va += PAGE_SIZE, pte++) {
   2222 		if (MMU_VALID_DT(*pte)) {
   2223 		    switch (prot) {
   2224 		        case VM_PROT_ALL:
   2225 		            break;
   2226 		        case VM_PROT_EXECUTE:
   2227 		        case VM_PROT_READ:
   2228 		        case VM_PROT_READ|VM_PROT_EXECUTE:
   2229 		            pte->attr.raw |= MMU_SHORT_PTE_WP;
   2230 		            break;
   2231 		        case VM_PROT_NONE:
   2232 		            /* this is an alias for 'pmap_remove_kernel' */
   2233 		            pmap_remove_pte(pte);
   2234 		            break;
   2235 		        default:
   2236 		            break;
   2237 		    }
   2238 		    /*
   2239 		     * since this is the kernel, immediately flush any cached
   2240 		     * descriptors for this address.
   2241 		     */
   2242 		    TBIS(va);
   2243 		}
   2244 	}
   2245 }
   2246 
   2247 /* pmap_protect			INTERFACE
   2248  **
   2249  * Apply the given protection to the given virtual address range within
   2250  * the given map.
   2251  *
   2252  * It is ok for the protection applied to be stronger than what is
   2253  * specified.  We use this to our advantage when the given map has no
   2254  * mapping for the virtual address.  By skipping a page when this
   2255  * is discovered, we are effectively applying a protection of VM_PROT_NONE,
   2256  * and therefore do not need to map the page just to apply a protection
   2257  * code.  Only pmap_enter() needs to create new mappings if they do not exist.
   2258  *
   2259  * XXX - This function could be speeded up by using pmap_stroll() for inital
   2260  *       setup, and then manual scrolling in the for() loop.
   2261  */
   2262 void
   2263 pmap_protect(pmap_t pmap, vaddr_t startva, vaddr_t endva, vm_prot_t prot)
   2264 {
   2265 	bool iscurpmap;
   2266 	int a_idx, b_idx, c_idx;
   2267 	a_tmgr_t *a_tbl;
   2268 	b_tmgr_t *b_tbl;
   2269 	c_tmgr_t *c_tbl;
   2270 	mmu_short_pte_t *pte;
   2271 
   2272 	if (pmap == pmap_kernel()) {
   2273 		pmap_protect_kernel(startva, endva, prot);
   2274 		return;
   2275 	}
   2276 
   2277 	/*
   2278 	 * In this particular pmap implementation, there are only three
   2279 	 * types of memory protection: 'all' (read/write/execute),
   2280 	 * 'read-only' (read/execute) and 'none' (no mapping.)
   2281 	 * It is not possible for us to treat 'executable' as a separate
   2282 	 * protection type.  Therefore, protection requests that seek to
   2283 	 * remove execute permission while retaining read or write, and those
   2284 	 * that make little sense (write-only for example) are ignored.
   2285 	 */
   2286 	switch (prot) {
   2287 		case VM_PROT_NONE:
   2288 			/*
   2289 			 * A request to apply the protection code of
   2290 			 * 'VM_PROT_NONE' is a synonym for pmap_remove().
   2291 			 */
   2292 			pmap_remove(pmap, startva, endva);
   2293 			return;
   2294 		case	VM_PROT_EXECUTE:
   2295 		case	VM_PROT_READ:
   2296 		case	VM_PROT_READ|VM_PROT_EXECUTE:
   2297 			/* continue */
   2298 			break;
   2299 		case	VM_PROT_WRITE:
   2300 		case	VM_PROT_WRITE|VM_PROT_READ:
   2301 		case	VM_PROT_WRITE|VM_PROT_EXECUTE:
   2302 		case	VM_PROT_ALL:
   2303 			/* None of these should happen in a sane system. */
   2304 			return;
   2305 	}
   2306 
   2307 	/*
   2308 	 * If the pmap has no A table, it has no mappings and therefore
   2309 	 * there is nothing to protect.
   2310 	 */
   2311 	if ((a_tbl = pmap->pm_a_tmgr) == NULL)
   2312 		return;
   2313 
   2314 	a_idx = MMU_TIA(startva);
   2315 	b_idx = MMU_TIB(startva);
   2316 	c_idx = MMU_TIC(startva);
   2317 	b_tbl = NULL;
   2318 	c_tbl = NULL;
   2319 
   2320 	iscurpmap = (pmap == current_pmap());
   2321 	while (startva < endva) {
   2322 		if (b_tbl || MMU_VALID_DT(a_tbl->at_dtbl[a_idx])) {
   2323 		  if (b_tbl == NULL) {
   2324 		    b_tbl = (b_tmgr_t *) a_tbl->at_dtbl[a_idx].addr.raw;
   2325 		    b_tbl = mmu_ptov((vaddr_t)b_tbl);
   2326 		    b_tbl = mmuB2tmgr((mmu_short_dte_t *)b_tbl);
   2327 		  }
   2328 		  if (c_tbl || MMU_VALID_DT(b_tbl->bt_dtbl[b_idx])) {
   2329 		    if (c_tbl == NULL) {
   2330 		      c_tbl = (c_tmgr_t *) MMU_DTE_PA(b_tbl->bt_dtbl[b_idx]);
   2331 		      c_tbl = mmu_ptov((vaddr_t)c_tbl);
   2332 		      c_tbl = mmuC2tmgr((mmu_short_pte_t *)c_tbl);
   2333 		    }
   2334 		    if (MMU_VALID_DT(c_tbl->ct_dtbl[c_idx])) {
   2335 		      pte = &c_tbl->ct_dtbl[c_idx];
   2336 		      /* make the mapping read-only */
   2337 		      pte->attr.raw |= MMU_SHORT_PTE_WP;
   2338 		      /*
   2339 		       * If we just modified the current address space,
   2340 		       * flush any translations for the modified page from
   2341 		       * the translation cache and any data from it in the
   2342 		       * data cache.
   2343 		       */
   2344 		      if (iscurpmap)
   2345 		          TBIS(startva);
   2346 		    }
   2347 		    startva += PAGE_SIZE;
   2348 
   2349 		    if (++c_idx >= MMU_C_TBL_SIZE) { /* exceeded C table? */
   2350 		      c_tbl = NULL;
   2351 		      c_idx = 0;
   2352 		      if (++b_idx >= MMU_B_TBL_SIZE) { /* exceeded B table? */
   2353 		        b_tbl = NULL;
   2354 		        b_idx = 0;
   2355 		      }
   2356 		    }
   2357 		  } else { /* C table wasn't valid */
   2358 		    c_tbl = NULL;
   2359 		    c_idx = 0;
   2360 		    startva += MMU_TIB_RANGE;
   2361 		    if (++b_idx >= MMU_B_TBL_SIZE) { /* exceeded B table? */
   2362 		      b_tbl = NULL;
   2363 		      b_idx = 0;
   2364 		    }
   2365 		  } /* C table */
   2366 		} else { /* B table wasn't valid */
   2367 		  b_tbl = NULL;
   2368 		  b_idx = 0;
   2369 		  startva += MMU_TIA_RANGE;
   2370 		  a_idx++;
   2371 		} /* B table */
   2372 	}
   2373 }
   2374 
   2375 /* pmap_unwire				INTERFACE
   2376  **
   2377  * Clear the wired attribute of the specified page.
   2378  *
   2379  * This function is called from vm_fault.c to unwire
   2380  * a mapping.
   2381  */
   2382 void
   2383 pmap_unwire(pmap_t pmap, vaddr_t va)
   2384 {
   2385 	int a_idx, b_idx, c_idx;
   2386 	a_tmgr_t *a_tbl;
   2387 	b_tmgr_t *b_tbl;
   2388 	c_tmgr_t *c_tbl;
   2389 	mmu_short_pte_t *pte;
   2390 
   2391 	/* Kernel mappings always remain wired. */
   2392 	if (pmap == pmap_kernel())
   2393 		return;
   2394 
   2395 	/*
   2396 	 * Walk through the tables.  If the walk terminates without
   2397 	 * a valid PTE then the address wasn't wired in the first place.
   2398 	 * Return immediately.
   2399 	 */
   2400 	if (pmap_stroll(pmap, va, &a_tbl, &b_tbl, &c_tbl, &pte, &a_idx,
   2401 		&b_idx, &c_idx) == false)
   2402 		return;
   2403 
   2404 
   2405 	/* Is the PTE wired?  If not, return. */
   2406 	if (!(pte->attr.raw & MMU_SHORT_PTE_WIRED))
   2407 		return;
   2408 
   2409 	/* Remove the wiring bit. */
   2410 	pte->attr.raw &= ~(MMU_SHORT_PTE_WIRED);
   2411 
   2412 	/*
   2413 	 * Decrement the wired entry count in the C table.
   2414 	 * If it reaches zero the following things happen:
   2415 	 * 1. The table no longer has any wired entries and is considered
   2416 	 *    unwired.
   2417 	 * 2. It is placed on the available queue.
   2418 	 * 3. The parent table's wired entry count is decremented.
   2419 	 * 4. If it reaches zero, this process repeats at step 1 and
   2420 	 *    stops at after reaching the A table.
   2421 	 */
   2422 	if (--c_tbl->ct_wcnt == 0) {
   2423 		TAILQ_INSERT_TAIL(&c_pool, c_tbl, ct_link);
   2424 		if (--b_tbl->bt_wcnt == 0) {
   2425 			TAILQ_INSERT_TAIL(&b_pool, b_tbl, bt_link);
   2426 			if (--a_tbl->at_wcnt == 0) {
   2427 				TAILQ_INSERT_TAIL(&a_pool, a_tbl, at_link);
   2428 			}
   2429 		}
   2430 	}
   2431 }
   2432 
   2433 /* pmap_copy				INTERFACE
   2434  **
   2435  * Copy the mappings of a range of addresses in one pmap, into
   2436  * the destination address of another.
   2437  *
   2438  * This routine is advisory.  Should we one day decide that MMU tables
   2439  * may be shared by more than one pmap, this function should be used to
   2440  * link them together.  Until that day however, we do nothing.
   2441  */
   2442 void
   2443 pmap_copy(pmap_t pmap_a, pmap_t pmap_b, vaddr_t dst, vsize_t len, vaddr_t src)
   2444 {
   2445 
   2446 	/* not implemented. */
   2447 }
   2448 
   2449 /* pmap_copy_page			INTERFACE
   2450  **
   2451  * Copy the contents of one physical page into another.
   2452  *
   2453  * This function makes use of two virtual pages allocated in pmap_bootstrap()
   2454  * to map the two specified physical pages into the kernel address space.
   2455  *
   2456  * Note: We could use the transparent translation registers to make the
   2457  * mappings.  If we do so, be sure to disable interrupts before using them.
   2458  */
   2459 void
   2460 pmap_copy_page(paddr_t srcpa, paddr_t dstpa)
   2461 {
   2462 	vaddr_t srcva, dstva;
   2463 	int s;
   2464 
   2465 	srcva = tmp_vpages[0];
   2466 	dstva = tmp_vpages[1];
   2467 
   2468 	s = splvm();
   2469 #ifdef DIAGNOSTIC
   2470 	if (tmp_vpages_inuse++)
   2471 		panic("pmap_copy_page: temporary vpages are in use.");
   2472 #endif
   2473 
   2474 	/* Map pages as non-cacheable to avoid cache polution? */
   2475 	pmap_kenter_pa(srcva, srcpa, VM_PROT_READ, 0);
   2476 	pmap_kenter_pa(dstva, dstpa, VM_PROT_READ | VM_PROT_WRITE, 0);
   2477 
   2478 	/* Hand-optimized version of memcpy(dst, src, PAGE_SIZE) */
   2479 	copypage((char *)srcva, (char *)dstva);
   2480 
   2481 	pmap_kremove(srcva, PAGE_SIZE);
   2482 	pmap_kremove(dstva, PAGE_SIZE);
   2483 
   2484 #ifdef DIAGNOSTIC
   2485 	--tmp_vpages_inuse;
   2486 #endif
   2487 	splx(s);
   2488 }
   2489 
   2490 /* pmap_zero_page			INTERFACE
   2491  **
   2492  * Zero the contents of the specified physical page.
   2493  *
   2494  * Uses one of the virtual pages allocated in pmap_bootstrap()
   2495  * to map the specified page into the kernel address space.
   2496  */
   2497 void
   2498 pmap_zero_page(paddr_t dstpa)
   2499 {
   2500 	vaddr_t dstva;
   2501 	int s;
   2502 
   2503 	dstva = tmp_vpages[1];
   2504 	s = splvm();
   2505 #ifdef DIAGNOSTIC
   2506 	if (tmp_vpages_inuse++)
   2507 		panic("pmap_zero_page: temporary vpages are in use.");
   2508 #endif
   2509 
   2510 	/* The comments in pmap_copy_page() above apply here also. */
   2511 	pmap_kenter_pa(dstva, dstpa, VM_PROT_READ | VM_PROT_WRITE, 0);
   2512 
   2513 	/* Hand-optimized version of memset(ptr, 0, PAGE_SIZE) */
   2514 	zeropage((char *)dstva);
   2515 
   2516 	pmap_kremove(dstva, PAGE_SIZE);
   2517 #ifdef DIAGNOSTIC
   2518 	--tmp_vpages_inuse;
   2519 #endif
   2520 	splx(s);
   2521 }
   2522 
   2523 /* pmap_pinit			INTERNAL
   2524  **
   2525  * Initialize a pmap structure.
   2526  */
   2527 static INLINE void
   2528 pmap_pinit(pmap_t pmap)
   2529 {
   2530 
   2531 	memset(pmap, 0, sizeof(struct pmap));
   2532 	pmap->pm_a_tmgr = NULL;
   2533 	pmap->pm_a_phys = kernAphys;
   2534 	pmap->pm_refcount = 1;
   2535 }
   2536 
   2537 /* pmap_create			INTERFACE
   2538  **
   2539  * Create and return a pmap structure.
   2540  */
   2541 pmap_t
   2542 pmap_create(void)
   2543 {
   2544 	pmap_t	pmap;
   2545 
   2546 	pmap = pool_get(&pmap_pmap_pool, PR_WAITOK);
   2547 	pmap_pinit(pmap);
   2548 	return pmap;
   2549 }
   2550 
   2551 /* pmap_release				INTERNAL
   2552  **
   2553  * Release any resources held by the given pmap.
   2554  *
   2555  * This is the reverse analog to pmap_pinit.  It does not
   2556  * necessarily mean for the pmap structure to be deallocated,
   2557  * as in pmap_destroy.
   2558  */
   2559 static INLINE void
   2560 pmap_release(pmap_t pmap)
   2561 {
   2562 
   2563 	/*
   2564 	 * As long as the pmap contains no mappings,
   2565 	 * which always should be the case whenever
   2566 	 * this function is called, there really should
   2567 	 * be nothing to do.
   2568 	 */
   2569 #ifdef	PMAP_DEBUG
   2570 	if (pmap == pmap_kernel())
   2571 		panic("pmap_release: kernel pmap");
   2572 #endif
   2573 	/*
   2574 	 * XXX - If this pmap has an A table, give it back.
   2575 	 * The pmap SHOULD be empty by now, and pmap_remove
   2576 	 * should have already given back the A table...
   2577 	 * However, I see:  pmap->pm_a_tmgr->at_ecnt == 1
   2578 	 * at this point, which means some mapping was not
   2579 	 * removed when it should have been. -gwr
   2580 	 */
   2581 	if (pmap->pm_a_tmgr != NULL) {
   2582 		/* First make sure we are not using it! */
   2583 		if (kernel_crp.rp_addr == pmap->pm_a_phys) {
   2584 			kernel_crp.rp_addr = kernAphys;
   2585 			loadcrp(&kernel_crp);
   2586 		}
   2587 #ifdef	PMAP_DEBUG /* XXX - todo! */
   2588 		/* XXX - Now complain... */
   2589 		printf("pmap_release: still have table\n");
   2590 		Debugger();
   2591 #endif
   2592 		free_a_table(pmap->pm_a_tmgr, true);
   2593 		pmap->pm_a_tmgr = NULL;
   2594 		pmap->pm_a_phys = kernAphys;
   2595 	}
   2596 }
   2597 
   2598 /* pmap_reference			INTERFACE
   2599  **
   2600  * Increment the reference count of a pmap.
   2601  */
   2602 void
   2603 pmap_reference(pmap_t pmap)
   2604 {
   2605 
   2606 	atomic_inc_uint(&pmap->pm_refcount);
   2607 }
   2608 
   2609 /* pmap_dereference			INTERNAL
   2610  **
   2611  * Decrease the reference count on the given pmap
   2612  * by one and return the current count.
   2613  */
   2614 static INLINE int
   2615 pmap_dereference(pmap_t pmap)
   2616 {
   2617 	int rtn;
   2618 
   2619 	rtn = atomic_dec_uint_nv(&pmap->pm_refcount);
   2620 
   2621 	return rtn;
   2622 }
   2623 
   2624 /* pmap_destroy			INTERFACE
   2625  **
   2626  * Decrement a pmap's reference count and delete
   2627  * the pmap if it becomes zero.  Will be called
   2628  * only after all mappings have been removed.
   2629  */
   2630 void
   2631 pmap_destroy(pmap_t pmap)
   2632 {
   2633 
   2634 	if (pmap_dereference(pmap) == 0) {
   2635 		pmap_release(pmap);
   2636 		pool_put(&pmap_pmap_pool, pmap);
   2637 	}
   2638 }
   2639 
   2640 /* pmap_is_referenced			INTERFACE
   2641  **
   2642  * Determine if the given physical page has been
   2643  * referenced (read from [or written to.])
   2644  */
   2645 bool
   2646 pmap_is_referenced(struct vm_page *pg)
   2647 {
   2648 	paddr_t   pa = VM_PAGE_TO_PHYS(pg);
   2649 	pv_t      *pv;
   2650 	int       idx;
   2651 
   2652 	/*
   2653 	 * Check the flags on the pv head.  If they are set,
   2654 	 * return immediately.  Otherwise a search must be done.
   2655 	 */
   2656 
   2657 	pv = pa2pv(pa);
   2658 	if (pv->pv_flags & PV_FLAGS_USED)
   2659 		return true;
   2660 
   2661 	/*
   2662 	 * Search through all pv elements pointing
   2663 	 * to this page and query their reference bits
   2664 	 */
   2665 
   2666 	for (idx = pv->pv_idx; idx != PVE_EOL; idx = pvebase[idx].pve_next) {
   2667 		if (MMU_PTE_USED(kernCbase[idx])) {
   2668 			return true;
   2669 		}
   2670 	}
   2671 	return false;
   2672 }
   2673 
   2674 /* pmap_is_modified			INTERFACE
   2675  **
   2676  * Determine if the given physical page has been
   2677  * modified (written to.)
   2678  */
   2679 bool
   2680 pmap_is_modified(struct vm_page *pg)
   2681 {
   2682 	paddr_t   pa = VM_PAGE_TO_PHYS(pg);
   2683 	pv_t      *pv;
   2684 	int       idx;
   2685 
   2686 	/* see comments in pmap_is_referenced() */
   2687 	pv = pa2pv(pa);
   2688 	if (pv->pv_flags & PV_FLAGS_MDFY)
   2689 		return true;
   2690 
   2691 	for (idx = pv->pv_idx;
   2692 		 idx != PVE_EOL;
   2693 		 idx = pvebase[idx].pve_next) {
   2694 
   2695 		if (MMU_PTE_MODIFIED(kernCbase[idx])) {
   2696 			return true;
   2697 		}
   2698 	}
   2699 
   2700 	return false;
   2701 }
   2702 
   2703 /* pmap_page_protect			INTERFACE
   2704  **
   2705  * Applies the given protection to all mappings to the given
   2706  * physical page.
   2707  */
   2708 void
   2709 pmap_page_protect(struct vm_page *pg, vm_prot_t prot)
   2710 {
   2711 	paddr_t   pa = VM_PAGE_TO_PHYS(pg);
   2712 	pv_t      *pv;
   2713 	int       idx;
   2714 	vaddr_t va;
   2715 	struct mmu_short_pte_struct *pte;
   2716 	c_tmgr_t  *c_tbl;
   2717 	pmap_t    pmap, curpmap;
   2718 
   2719 	curpmap = current_pmap();
   2720 	pv = pa2pv(pa);
   2721 
   2722 	for (idx = pv->pv_idx; idx != PVE_EOL; idx = pvebase[idx].pve_next) {
   2723 		pte = &kernCbase[idx];
   2724 		switch (prot) {
   2725 			case VM_PROT_ALL:
   2726 				/* do nothing */
   2727 				break;
   2728 			case VM_PROT_EXECUTE:
   2729 			case VM_PROT_READ:
   2730 			case VM_PROT_READ|VM_PROT_EXECUTE:
   2731 				/*
   2732 				 * Determine the virtual address mapped by
   2733 				 * the PTE and flush ATC entries if necessary.
   2734 				 */
   2735 				va = pmap_get_pteinfo(idx, &pmap, &c_tbl);
   2736 				pte->attr.raw |= MMU_SHORT_PTE_WP;
   2737 				if (pmap == curpmap || pmap == pmap_kernel())
   2738 					TBIS(va);
   2739 				break;
   2740 			case VM_PROT_NONE:
   2741 				/* Save the mod/ref bits. */
   2742 				pv->pv_flags |= pte->attr.raw;
   2743 				/* Invalidate the PTE. */
   2744 				pte->attr.raw = MMU_DT_INVALID;
   2745 
   2746 				/*
   2747 				 * Update table counts.  And flush ATC entries
   2748 				 * if necessary.
   2749 				 */
   2750 				va = pmap_get_pteinfo(idx, &pmap, &c_tbl);
   2751 
   2752 				/*
   2753 				 * If the PTE belongs to the kernel map,
   2754 				 * be sure to flush the page it maps.
   2755 				 */
   2756 				if (pmap == pmap_kernel()) {
   2757 					TBIS(va);
   2758 				} else {
   2759 					/*
   2760 					 * The PTE belongs to a user map.
   2761 					 * update the entry count in the C
   2762 					 * table to which it belongs and flush
   2763 					 * the ATC if the mapping belongs to
   2764 					 * the current pmap.
   2765 					 */
   2766 					c_tbl->ct_ecnt--;
   2767 					if (pmap == curpmap)
   2768 						TBIS(va);
   2769 				}
   2770 				break;
   2771 			default:
   2772 				break;
   2773 		}
   2774 	}
   2775 
   2776 	/*
   2777 	 * If the protection code indicates that all mappings to the page
   2778 	 * be removed, truncate the PV list to zero entries.
   2779 	 */
   2780 	if (prot == VM_PROT_NONE)
   2781 		pv->pv_idx = PVE_EOL;
   2782 }
   2783 
   2784 /* pmap_get_pteinfo		INTERNAL
   2785  **
   2786  * Called internally to find the pmap and virtual address within that
   2787  * map to which the pte at the given index maps.  Also includes the PTE's C
   2788  * table manager.
   2789  *
   2790  * Returns the pmap in the argument provided, and the virtual address
   2791  * by return value.
   2792  */
   2793 vaddr_t
   2794 pmap_get_pteinfo(u_int idx, pmap_t *pmap, c_tmgr_t **tbl)
   2795 {
   2796 	vaddr_t     va = 0;
   2797 
   2798 	/*
   2799 	 * Determine if the PTE is a kernel PTE or a user PTE.
   2800 	 */
   2801 	if (idx >= NUM_KERN_PTES) {
   2802 		/*
   2803 		 * The PTE belongs to a user mapping.
   2804 		 */
   2805 		/* XXX: Would like an inline for this to validate idx... */
   2806 		*tbl = &Ctmgrbase[(idx - NUM_KERN_PTES) / MMU_C_TBL_SIZE];
   2807 
   2808 		*pmap = (*tbl)->ct_pmap;
   2809 		/*
   2810 		 * To find the va to which the PTE maps, we first take
   2811 		 * the table's base virtual address mapping which is stored
   2812 		 * in ct_va.  We then increment this address by a page for
   2813 		 * every slot skipped until we reach the PTE.
   2814 		 */
   2815 		va = (*tbl)->ct_va;
   2816 		va += m68k_ptob(idx % MMU_C_TBL_SIZE);
   2817 	} else {
   2818 		/*
   2819 		 * The PTE belongs to the kernel map.
   2820 		 */
   2821 		*pmap = pmap_kernel();
   2822 
   2823 		va = m68k_ptob(idx);
   2824 		va += KERNBASE3X;
   2825 	}
   2826 
   2827 	return va;
   2828 }
   2829 
   2830 /* pmap_clear_modify			INTERFACE
   2831  **
   2832  * Clear the modification bit on the page at the specified
   2833  * physical address.
   2834  *
   2835  */
   2836 bool
   2837 pmap_clear_modify(struct vm_page *pg)
   2838 {
   2839 	paddr_t pa = VM_PAGE_TO_PHYS(pg);
   2840 	bool rv;
   2841 
   2842 	rv = pmap_is_modified(pg);
   2843 	pmap_clear_pv(pa, PV_FLAGS_MDFY);
   2844 	return rv;
   2845 }
   2846 
   2847 /* pmap_clear_reference			INTERFACE
   2848  **
   2849  * Clear the referenced bit on the page at the specified
   2850  * physical address.
   2851  */
   2852 bool
   2853 pmap_clear_reference(struct vm_page *pg)
   2854 {
   2855 	paddr_t pa = VM_PAGE_TO_PHYS(pg);
   2856 	bool rv;
   2857 
   2858 	rv = pmap_is_referenced(pg);
   2859 	pmap_clear_pv(pa, PV_FLAGS_USED);
   2860 	return rv;
   2861 }
   2862 
   2863 /* pmap_clear_pv			INTERNAL
   2864  **
   2865  * Clears the specified flag from the specified physical address.
   2866  * (Used by pmap_clear_modify() and pmap_clear_reference().)
   2867  *
   2868  * Flag is one of:
   2869  *   PV_FLAGS_MDFY - Page modified bit.
   2870  *   PV_FLAGS_USED - Page used (referenced) bit.
   2871  *
   2872  * This routine must not only clear the flag on the pv list
   2873  * head.  It must also clear the bit on every pte in the pv
   2874  * list associated with the address.
   2875  */
   2876 void
   2877 pmap_clear_pv(paddr_t pa, int flag)
   2878 {
   2879 	pv_t      *pv;
   2880 	int       idx;
   2881 	vaddr_t   va;
   2882 	pmap_t          pmap;
   2883 	mmu_short_pte_t *pte;
   2884 	c_tmgr_t        *c_tbl;
   2885 
   2886 	pv = pa2pv(pa);
   2887 	pv->pv_flags &= ~(flag);
   2888 	for (idx = pv->pv_idx; idx != PVE_EOL; idx = pvebase[idx].pve_next) {
   2889 		pte = &kernCbase[idx];
   2890 		pte->attr.raw &= ~(flag);
   2891 
   2892 		/*
   2893 		 * The MC68030 MMU will not set the modified or
   2894 		 * referenced bits on any MMU tables for which it has
   2895 		 * a cached descriptor with its modify bit set.  To insure
   2896 		 * that it will modify these bits on the PTE during the next
   2897 		 * time it is written to or read from, we must flush it from
   2898 		 * the ATC.
   2899 		 *
   2900 		 * Ordinarily it is only necessary to flush the descriptor
   2901 		 * if it is used in the current address space.  But since I
   2902 		 * am not sure that there will always be a notion of
   2903 		 * 'the current address space' when this function is called,
   2904 		 * I will skip the test and always flush the address.  It
   2905 		 * does no harm.
   2906 		 */
   2907 
   2908 		va = pmap_get_pteinfo(idx, &pmap, &c_tbl);
   2909 		TBIS(va);
   2910 	}
   2911 }
   2912 
   2913 /* pmap_extract_kernel		INTERNAL
   2914  **
   2915  * Extract a translation from the kernel address space.
   2916  */
   2917 static INLINE bool
   2918 pmap_extract_kernel(vaddr_t va, paddr_t *pap)
   2919 {
   2920 	mmu_short_pte_t *pte;
   2921 
   2922 	pte = &kernCbase[(u_int)m68k_btop(va - KERNBASE3X)];
   2923 	if (!MMU_VALID_DT(*pte))
   2924 		return false;
   2925 	if (pap != NULL)
   2926 		*pap = MMU_PTE_PA(*pte);
   2927 	return true;
   2928 }
   2929 
   2930 /* pmap_extract			INTERFACE
   2931  **
   2932  * Return the physical address mapped by the virtual address
   2933  * in the specified pmap.
   2934  *
   2935  * Note: this function should also apply an exclusive lock
   2936  * on the pmap system during its duration.
   2937  */
   2938 bool
   2939 pmap_extract(pmap_t pmap, vaddr_t va, paddr_t *pap)
   2940 {
   2941 	int a_idx, b_idx, pte_idx;
   2942 	a_tmgr_t	*a_tbl;
   2943 	b_tmgr_t	*b_tbl;
   2944 	c_tmgr_t	*c_tbl;
   2945 	mmu_short_pte_t	*c_pte;
   2946 
   2947 	if (pmap == pmap_kernel())
   2948 		return pmap_extract_kernel(va, pap);
   2949 
   2950 	if (pmap_stroll(pmap, va, &a_tbl, &b_tbl, &c_tbl,
   2951 		&c_pte, &a_idx, &b_idx, &pte_idx) == false)
   2952 		return false;
   2953 
   2954 	if (!MMU_VALID_DT(*c_pte))
   2955 		return false;
   2956 
   2957 	if (pap != NULL)
   2958 		*pap = MMU_PTE_PA(*c_pte);
   2959 	return true;
   2960 }
   2961 
   2962 /* pmap_remove_kernel		INTERNAL
   2963  **
   2964  * Remove the mapping of a range of virtual addresses from the kernel map.
   2965  * The arguments are already page-aligned.
   2966  */
   2967 static INLINE void
   2968 pmap_remove_kernel(vaddr_t sva, vaddr_t eva)
   2969 {
   2970 	int idx, eidx;
   2971 
   2972 #ifdef	PMAP_DEBUG
   2973 	if ((sva & PGOFSET) || (eva & PGOFSET))
   2974 		panic("pmap_remove_kernel: alignment");
   2975 #endif
   2976 
   2977 	idx  = m68k_btop(sva - KERNBASE3X);
   2978 	eidx = m68k_btop(eva - KERNBASE3X);
   2979 
   2980 	while (idx < eidx) {
   2981 		pmap_remove_pte(&kernCbase[idx++]);
   2982 		TBIS(sva);
   2983 		sva += PAGE_SIZE;
   2984 	}
   2985 }
   2986 
   2987 /* pmap_remove			INTERFACE
   2988  **
   2989  * Remove the mapping of a range of virtual addresses from the given pmap.
   2990  *
   2991  */
   2992 void
   2993 pmap_remove(pmap_t pmap, vaddr_t sva, vaddr_t eva)
   2994 {
   2995 
   2996 	if (pmap == pmap_kernel()) {
   2997 		pmap_remove_kernel(sva, eva);
   2998 		return;
   2999 	}
   3000 
   3001 	/*
   3002 	 * If the pmap doesn't have an A table of its own, it has no mappings
   3003 	 * that can be removed.
   3004 	 */
   3005 	if (pmap->pm_a_tmgr == NULL)
   3006 		return;
   3007 
   3008 	/*
   3009 	 * Remove the specified range from the pmap.  If the function
   3010 	 * returns true, the operation removed all the valid mappings
   3011 	 * in the pmap and freed its A table.  If this happened to the
   3012 	 * currently loaded pmap, the MMU root pointer must be reloaded
   3013 	 * with the default 'kernel' map.
   3014 	 */
   3015 	if (pmap_remove_a(pmap->pm_a_tmgr, sva, eva)) {
   3016 		if (kernel_crp.rp_addr == pmap->pm_a_phys) {
   3017 			kernel_crp.rp_addr = kernAphys;
   3018 			loadcrp(&kernel_crp);
   3019 			/* will do TLB flush below */
   3020 		}
   3021 		pmap->pm_a_tmgr = NULL;
   3022 		pmap->pm_a_phys = kernAphys;
   3023 	}
   3024 
   3025 	/*
   3026 	 * If we just modified the current address space,
   3027 	 * make sure to flush the MMU cache.
   3028 	 *
   3029 	 * XXX - this could be an unecessarily large flush.
   3030 	 * XXX - Could decide, based on the size of the VA range
   3031 	 * to be removed, whether to flush "by pages" or "all".
   3032 	 */
   3033 	if (pmap == current_pmap())
   3034 		TBIAU();
   3035 }
   3036 
   3037 /* pmap_remove_a			INTERNAL
   3038  **
   3039  * This is function number one in a set of three that removes a range
   3040  * of memory in the most efficient manner by removing the highest possible
   3041  * tables from the memory space.  This particular function attempts to remove
   3042  * as many B tables as it can, delegating the remaining fragmented ranges to
   3043  * pmap_remove_b().
   3044  *
   3045  * If the removal operation results in an empty A table, the function returns
   3046  * true.
   3047  *
   3048  * It's ugly but will do for now.
   3049  */
   3050 bool
   3051 pmap_remove_a(a_tmgr_t *a_tbl, vaddr_t sva, vaddr_t eva)
   3052 {
   3053 	bool empty;
   3054 	int idx;
   3055 	vaddr_t nstart, nend;
   3056 	b_tmgr_t *b_tbl;
   3057 	mmu_long_dte_t  *a_dte;
   3058 	mmu_short_dte_t *b_dte;
   3059 	uint8_t at_wired, bt_wired;
   3060 
   3061 	/*
   3062 	 * The following code works with what I call a 'granularity
   3063 	 * reduction algorithim'.  A range of addresses will always have
   3064 	 * the following properties, which are classified according to
   3065 	 * how the range relates to the size of the current granularity
   3066 	 * - an A table entry:
   3067 	 *
   3068 	 *            1 2       3 4
   3069 	 * -+---+---+---+---+---+---+---+-
   3070 	 * -+---+---+---+---+---+---+---+-
   3071 	 *
   3072 	 * A range will always start on a granularity boundary, illustrated
   3073 	 * by '+' signs in the table above, or it will start at some point
   3074 	 * inbetween a granularity boundary, as illustrated by point 1.
   3075 	 * The first step in removing a range of addresses is to remove the
   3076 	 * range between 1 and 2, the nearest granularity boundary.  This
   3077 	 * job is handled by the section of code governed by the
   3078 	 * 'if (start < nstart)' statement.
   3079 	 *
   3080 	 * A range will always encompass zero or more intergral granules,
   3081 	 * illustrated by points 2 and 3.  Integral granules are easy to
   3082 	 * remove.  The removal of these granules is the second step, and
   3083 	 * is handled by the code block 'if (nstart < nend)'.
   3084 	 *
   3085 	 * Lastly, a range will always end on a granularity boundary,
   3086 	 * ill. by point 3, or it will fall just beyond one, ill. by point
   3087 	 * 4.  The last step involves removing this range and is handled by
   3088 	 * the code block 'if (nend < end)'.
   3089 	 */
   3090 	nstart = MMU_ROUND_UP_A(sva);
   3091 	nend = MMU_ROUND_A(eva);
   3092 
   3093 	at_wired = a_tbl->at_wcnt;
   3094 
   3095 	if (sva < nstart) {
   3096 		/*
   3097 		 * This block is executed if the range starts between
   3098 		 * a granularity boundary.
   3099 		 *
   3100 		 * First find the DTE which is responsible for mapping
   3101 		 * the start of the range.
   3102 		 */
   3103 		idx = MMU_TIA(sva);
   3104 		a_dte = &a_tbl->at_dtbl[idx];
   3105 
   3106 		/*
   3107 		 * If the DTE is valid then delegate the removal of the sub
   3108 		 * range to pmap_remove_b(), which can remove addresses at
   3109 		 * a finer granularity.
   3110 		 */
   3111 		if (MMU_VALID_DT(*a_dte)) {
   3112 			b_dte = mmu_ptov(a_dte->addr.raw);
   3113 			b_tbl = mmuB2tmgr(b_dte);
   3114 			bt_wired = b_tbl->bt_wcnt;
   3115 
   3116 			/*
   3117 			 * The sub range to be removed starts at the start
   3118 			 * of the full range we were asked to remove, and ends
   3119 			 * at the greater of:
   3120 			 * 1. The end of the full range, -or-
   3121 			 * 2. The end of the full range, rounded down to the
   3122 			 *    nearest granularity boundary.
   3123 			 */
   3124 			if (eva < nstart)
   3125 				empty = pmap_remove_b(b_tbl, sva, eva);
   3126 			else
   3127 				empty = pmap_remove_b(b_tbl, sva, nstart);
   3128 
   3129 			/*
   3130 			 * If the child table no longer has wired entries,
   3131 			 * decrement wired entry count.
   3132 			 */
   3133 			if (bt_wired && b_tbl->bt_wcnt == 0)
   3134 				a_tbl->at_wcnt--;
   3135 
   3136 			/*
   3137 			 * If the removal resulted in an empty B table,
   3138 			 * invalidate the DTE that points to it and decrement
   3139 			 * the valid entry count of the A table.
   3140 			 */
   3141 			if (empty) {
   3142 				a_dte->attr.raw = MMU_DT_INVALID;
   3143 				a_tbl->at_ecnt--;
   3144 			}
   3145 		}
   3146 		/*
   3147 		 * If the DTE is invalid, the address range is already non-
   3148 		 * existent and can simply be skipped.
   3149 		 */
   3150 	}
   3151 	if (nstart < nend) {
   3152 		/*
   3153 		 * This block is executed if the range spans a whole number
   3154 		 * multiple of granules (A table entries.)
   3155 		 *
   3156 		 * First find the DTE which is responsible for mapping
   3157 		 * the start of the first granule involved.
   3158 		 */
   3159 		idx = MMU_TIA(nstart);
   3160 		a_dte = &a_tbl->at_dtbl[idx];
   3161 
   3162 		/*
   3163 		 * Remove entire sub-granules (B tables) one at a time,
   3164 		 * until reaching the end of the range.
   3165 		 */
   3166 		for (; nstart < nend; a_dte++, nstart += MMU_TIA_RANGE)
   3167 			if (MMU_VALID_DT(*a_dte)) {
   3168 				/*
   3169 				 * Find the B table manager for the
   3170 				 * entry and free it.
   3171 				 */
   3172 				b_dte = mmu_ptov(a_dte->addr.raw);
   3173 				b_tbl = mmuB2tmgr(b_dte);
   3174 				bt_wired = b_tbl->bt_wcnt;
   3175 
   3176 				free_b_table(b_tbl, true);
   3177 
   3178 				/*
   3179 				 * All child entries has been removed.
   3180 				 * If there were any wired entries in it,
   3181 				 * decrement wired entry count.
   3182 				 */
   3183 				if (bt_wired)
   3184 					a_tbl->at_wcnt--;
   3185 
   3186 				/*
   3187 				 * Invalidate the DTE that points to the
   3188 				 * B table and decrement the valid entry
   3189 				 * count of the A table.
   3190 				 */
   3191 				a_dte->attr.raw = MMU_DT_INVALID;
   3192 				a_tbl->at_ecnt--;
   3193 			}
   3194 	}
   3195 	if (nend < eva) {
   3196 		/*
   3197 		 * This block is executed if the range ends beyond a
   3198 		 * granularity boundary.
   3199 		 *
   3200 		 * First find the DTE which is responsible for mapping
   3201 		 * the start of the nearest (rounded down) granularity
   3202 		 * boundary.
   3203 		 */
   3204 		idx = MMU_TIA(nend);
   3205 		a_dte = &a_tbl->at_dtbl[idx];
   3206 
   3207 		/*
   3208 		 * If the DTE is valid then delegate the removal of the sub
   3209 		 * range to pmap_remove_b(), which can remove addresses at
   3210 		 * a finer granularity.
   3211 		 */
   3212 		if (MMU_VALID_DT(*a_dte)) {
   3213 			/*
   3214 			 * Find the B table manager for the entry
   3215 			 * and hand it to pmap_remove_b() along with
   3216 			 * the sub range.
   3217 			 */
   3218 			b_dte = mmu_ptov(a_dte->addr.raw);
   3219 			b_tbl = mmuB2tmgr(b_dte);
   3220 			bt_wired = b_tbl->bt_wcnt;
   3221 
   3222 			empty = pmap_remove_b(b_tbl, nend, eva);
   3223 
   3224 			/*
   3225 			 * If the child table no longer has wired entries,
   3226 			 * decrement wired entry count.
   3227 			 */
   3228 			if (bt_wired && b_tbl->bt_wcnt == 0)
   3229 				a_tbl->at_wcnt--;
   3230 			/*
   3231 			 * If the removal resulted in an empty B table,
   3232 			 * invalidate the DTE that points to it and decrement
   3233 			 * the valid entry count of the A table.
   3234 			 */
   3235 			if (empty) {
   3236 				a_dte->attr.raw = MMU_DT_INVALID;
   3237 				a_tbl->at_ecnt--;
   3238 			}
   3239 		}
   3240 	}
   3241 
   3242 	/*
   3243 	 * If there are no more entries in the A table, release it
   3244 	 * back to the available pool and return true.
   3245 	 */
   3246 	if (a_tbl->at_ecnt == 0) {
   3247 		KASSERT(a_tbl->at_wcnt == 0);
   3248 		a_tbl->at_parent = NULL;
   3249 		if (!at_wired)
   3250 			TAILQ_REMOVE(&a_pool, a_tbl, at_link);
   3251 		TAILQ_INSERT_HEAD(&a_pool, a_tbl, at_link);
   3252 		empty = true;
   3253 	} else {
   3254 		/*
   3255 		 * If the table doesn't have wired entries any longer
   3256 		 * but still has unwired entries, put it back into
   3257 		 * the available queue.
   3258 		 */
   3259 		if (at_wired && a_tbl->at_wcnt == 0)
   3260 			TAILQ_INSERT_TAIL(&a_pool, a_tbl, at_link);
   3261 		empty = false;
   3262 	}
   3263 
   3264 	return empty;
   3265 }
   3266 
   3267 /* pmap_remove_b			INTERNAL
   3268  **
   3269  * Remove a range of addresses from an address space, trying to remove entire
   3270  * C tables if possible.
   3271  *
   3272  * If the operation results in an empty B table, the function returns true.
   3273  */
   3274 bool
   3275 pmap_remove_b(b_tmgr_t *b_tbl, vaddr_t sva, vaddr_t eva)
   3276 {
   3277 	bool empty;
   3278 	int idx;
   3279 	vaddr_t nstart, nend, rstart;
   3280 	c_tmgr_t *c_tbl;
   3281 	mmu_short_dte_t  *b_dte;
   3282 	mmu_short_pte_t  *c_dte;
   3283 	uint8_t bt_wired, ct_wired;
   3284 
   3285 	nstart = MMU_ROUND_UP_B(sva);
   3286 	nend = MMU_ROUND_B(eva);
   3287 
   3288 	bt_wired = b_tbl->bt_wcnt;
   3289 
   3290 	if (sva < nstart) {
   3291 		idx = MMU_TIB(sva);
   3292 		b_dte = &b_tbl->bt_dtbl[idx];
   3293 		if (MMU_VALID_DT(*b_dte)) {
   3294 			c_dte = mmu_ptov(MMU_DTE_PA(*b_dte));
   3295 			c_tbl = mmuC2tmgr(c_dte);
   3296 			ct_wired = c_tbl->ct_wcnt;
   3297 
   3298 			if (eva < nstart)
   3299 				empty = pmap_remove_c(c_tbl, sva, eva);
   3300 			else
   3301 				empty = pmap_remove_c(c_tbl, sva, nstart);
   3302 
   3303 			/*
   3304 			 * If the child table no longer has wired entries,
   3305 			 * decrement wired entry count.
   3306 			 */
   3307 			if (ct_wired && c_tbl->ct_wcnt == 0)
   3308 				b_tbl->bt_wcnt--;
   3309 
   3310 			if (empty) {
   3311 				b_dte->attr.raw = MMU_DT_INVALID;
   3312 				b_tbl->bt_ecnt--;
   3313 			}
   3314 		}
   3315 	}
   3316 	if (nstart < nend) {
   3317 		idx = MMU_TIB(nstart);
   3318 		b_dte = &b_tbl->bt_dtbl[idx];
   3319 		rstart = nstart;
   3320 		while (rstart < nend) {
   3321 			if (MMU_VALID_DT(*b_dte)) {
   3322 				c_dte = mmu_ptov(MMU_DTE_PA(*b_dte));
   3323 				c_tbl = mmuC2tmgr(c_dte);
   3324 				ct_wired = c_tbl->ct_wcnt;
   3325 
   3326 				free_c_table(c_tbl, true);
   3327 
   3328 				/*
   3329 				 * All child entries has been removed.
   3330 				 * If there were any wired entries in it,
   3331 				 * decrement wired entry count.
   3332 				 */
   3333 				if (ct_wired)
   3334 					b_tbl->bt_wcnt--;
   3335 
   3336 				b_dte->attr.raw = MMU_DT_INVALID;
   3337 				b_tbl->bt_ecnt--;
   3338 			}
   3339 			b_dte++;
   3340 			rstart += MMU_TIB_RANGE;
   3341 		}
   3342 	}
   3343 	if (nend < eva) {
   3344 		idx = MMU_TIB(nend);
   3345 		b_dte = &b_tbl->bt_dtbl[idx];
   3346 		if (MMU_VALID_DT(*b_dte)) {
   3347 			c_dte = mmu_ptov(MMU_DTE_PA(*b_dte));
   3348 			c_tbl = mmuC2tmgr(c_dte);
   3349 			ct_wired = c_tbl->ct_wcnt;
   3350 			empty = pmap_remove_c(c_tbl, nend, eva);
   3351 
   3352 			/*
   3353 			 * If the child table no longer has wired entries,
   3354 			 * decrement wired entry count.
   3355 			 */
   3356 			if (ct_wired && c_tbl->ct_wcnt == 0)
   3357 				b_tbl->bt_wcnt--;
   3358 
   3359 			if (empty) {
   3360 				b_dte->attr.raw = MMU_DT_INVALID;
   3361 				b_tbl->bt_ecnt--;
   3362 			}
   3363 		}
   3364 	}
   3365 
   3366 	if (b_tbl->bt_ecnt == 0) {
   3367 		KASSERT(b_tbl->bt_wcnt == 0);
   3368 		b_tbl->bt_parent = NULL;
   3369 		if (!bt_wired)
   3370 			TAILQ_REMOVE(&b_pool, b_tbl, bt_link);
   3371 		TAILQ_INSERT_HEAD(&b_pool, b_tbl, bt_link);
   3372 		empty = true;
   3373 	} else {
   3374 		/*
   3375 		 * If the table doesn't have wired entries any longer
   3376 		 * but still has unwired entries, put it back into
   3377 		 * the available queue.
   3378 		 */
   3379 		if (bt_wired && b_tbl->bt_wcnt == 0)
   3380 			TAILQ_INSERT_TAIL(&b_pool, b_tbl, bt_link);
   3381 
   3382 		empty = false;
   3383 	}
   3384 
   3385 	return empty;
   3386 }
   3387 
   3388 /* pmap_remove_c			INTERNAL
   3389  **
   3390  * Remove a range of addresses from the given C table.
   3391  */
   3392 bool
   3393 pmap_remove_c(c_tmgr_t *c_tbl, vaddr_t sva, vaddr_t eva)
   3394 {
   3395 	bool empty;
   3396 	int idx;
   3397 	mmu_short_pte_t *c_pte;
   3398 	uint8_t ct_wired;
   3399 
   3400 	ct_wired = c_tbl->ct_wcnt;
   3401 
   3402 	idx = MMU_TIC(sva);
   3403 	c_pte = &c_tbl->ct_dtbl[idx];
   3404 	for (; sva < eva; sva += MMU_PAGE_SIZE, c_pte++) {
   3405 		if (MMU_VALID_DT(*c_pte)) {
   3406 			if (c_pte->attr.raw & MMU_SHORT_PTE_WIRED)
   3407 				c_tbl->ct_wcnt--;
   3408 			pmap_remove_pte(c_pte);
   3409 			c_tbl->ct_ecnt--;
   3410 		}
   3411 	}
   3412 
   3413 	if (c_tbl->ct_ecnt == 0) {
   3414 		KASSERT(c_tbl->ct_wcnt == 0);
   3415 		c_tbl->ct_parent = NULL;
   3416 		if (!ct_wired)
   3417 			TAILQ_REMOVE(&c_pool, c_tbl, ct_link);
   3418 		TAILQ_INSERT_HEAD(&c_pool, c_tbl, ct_link);
   3419 		empty = true;
   3420 	} else {
   3421 		/*
   3422 		 * If the table doesn't have wired entries any longer
   3423 		 * but still has unwired entries, put it back into
   3424 		 * the available queue.
   3425 		 */
   3426 		if (ct_wired && c_tbl->ct_wcnt == 0)
   3427 			TAILQ_INSERT_TAIL(&c_pool, c_tbl, ct_link);
   3428 		empty = false;
   3429 	}
   3430 
   3431 	return empty;
   3432 }
   3433 
   3434 /* pmap_bootstrap_alloc			INTERNAL
   3435  **
   3436  * Used internally for memory allocation at startup when malloc is not
   3437  * available.  This code will fail once it crosses the first memory
   3438  * bank boundary on the 3/80.  Hopefully by then however, the VM system
   3439  * will be in charge of allocation.
   3440  */
   3441 void *
   3442 pmap_bootstrap_alloc(int size)
   3443 {
   3444 	void *rtn;
   3445 
   3446 #ifdef	PMAP_DEBUG
   3447 	if (bootstrap_alloc_enabled == false) {
   3448 		mon_printf("pmap_bootstrap_alloc: disabled\n");
   3449 		sunmon_abort();
   3450 	}
   3451 #endif
   3452 
   3453 	rtn = (void *) virtual_avail;
   3454 	virtual_avail += size;
   3455 
   3456 #ifdef	PMAP_DEBUG
   3457 	if (virtual_avail > virtual_contig_end) {
   3458 		mon_printf("pmap_bootstrap_alloc: out of mem\n");
   3459 		sunmon_abort();
   3460 	}
   3461 #endif
   3462 
   3463 	return rtn;
   3464 }
   3465 
   3466 /* pmap_bootstap_aalign			INTERNAL
   3467  **
   3468  * Used to insure that the next call to pmap_bootstrap_alloc() will
   3469  * return a chunk of memory aligned to the specified size.
   3470  *
   3471  * Note: This function will only support alignment sizes that are powers
   3472  * of two.
   3473  */
   3474 void
   3475 pmap_bootstrap_aalign(int size)
   3476 {
   3477 	int off;
   3478 
   3479 	off = virtual_avail & (size - 1);
   3480 	if (off) {
   3481 		(void)pmap_bootstrap_alloc(size - off);
   3482 	}
   3483 }
   3484 
   3485 /* pmap_pa_exists
   3486  **
   3487  * Used by the /dev/mem driver to see if a given PA is memory
   3488  * that can be mapped.  (The PA is not in a hole.)
   3489  */
   3490 int
   3491 pmap_pa_exists(paddr_t pa)
   3492 {
   3493 	int i;
   3494 
   3495 	for (i = 0; i < SUN3X_NPHYS_RAM_SEGS; i++) {
   3496 		if ((pa >= avail_mem[i].pmem_start) &&
   3497 			(pa <  avail_mem[i].pmem_end))
   3498 			return 1;
   3499 		if (avail_mem[i].pmem_next == NULL)
   3500 			break;
   3501 	}
   3502 	return 0;
   3503 }
   3504 
   3505 /* Called only from locore.s and pmap.c */
   3506 void	_pmap_switch(pmap_t pmap);
   3507 
   3508 /*
   3509  * _pmap_switch			INTERNAL
   3510  *
   3511  * This is called by locore.s:cpu_switch() when it is
   3512  * switching to a new process.  Load new translations.
   3513  * Note: done in-line by locore.s unless PMAP_DEBUG
   3514  *
   3515  * Note that we do NOT allocate a context here, but
   3516  * share the "kernel only" context until we really
   3517  * need our own context for user-space mappings in
   3518  * pmap_enter_user().  [ s/context/mmu A table/ ]
   3519  */
   3520 void
   3521 _pmap_switch(pmap_t pmap)
   3522 {
   3523 	u_long rootpa;
   3524 
   3525 	/*
   3526 	 * Only do reload/flush if we have to.
   3527 	 * Note that if the old and new process
   3528 	 * were BOTH using the "null" context,
   3529 	 * then this will NOT flush the TLB.
   3530 	 */
   3531 	rootpa = pmap->pm_a_phys;
   3532 	if (kernel_crp.rp_addr != rootpa) {
   3533 		DPRINT(("pmap_activate(%p)\n", pmap));
   3534 		kernel_crp.rp_addr = rootpa;
   3535 		loadcrp(&kernel_crp);
   3536 		TBIAU();
   3537 	}
   3538 }
   3539 
   3540 /*
   3541  * Exported version of pmap_activate().  This is called from the
   3542  * machine-independent VM code when a process is given a new pmap.
   3543  * If (p == curlwp) do like cpu_switch would do; otherwise just
   3544  * take this as notification that the process has a new pmap.
   3545  */
   3546 void
   3547 pmap_activate(struct lwp *l)
   3548 {
   3549 
   3550 	if (l->l_proc == curproc) {
   3551 		_pmap_switch(l->l_proc->p_vmspace->vm_map.pmap);
   3552 	}
   3553 }
   3554 
   3555 /*
   3556  * pmap_deactivate			INTERFACE
   3557  **
   3558  * This is called to deactivate the specified process's address space.
   3559  */
   3560 void
   3561 pmap_deactivate(struct lwp *l)
   3562 {
   3563 
   3564 	/* Nothing to do. */
   3565 }
   3566 
   3567 /*
   3568  * Fill in the sun3x-specific part of the kernel core header
   3569  * for dumpsys().  (See machdep.c for the rest.)
   3570  */
   3571 void
   3572 pmap_kcore_hdr(struct sun3x_kcore_hdr *sh)
   3573 {
   3574 	u_long spa, len;
   3575 	int i;
   3576 
   3577 	sh->pg_frame = MMU_SHORT_PTE_BASEADDR;
   3578 	sh->pg_valid = MMU_DT_PAGE;
   3579 	sh->contig_end = virtual_contig_end;
   3580 	sh->kernCbase = (u_long)kernCbase;
   3581 	for (i = 0; i < SUN3X_NPHYS_RAM_SEGS; i++) {
   3582 		spa = avail_mem[i].pmem_start;
   3583 		spa = m68k_trunc_page(spa);
   3584 		len = avail_mem[i].pmem_end - spa;
   3585 		len = m68k_round_page(len);
   3586 		sh->ram_segs[i].start = spa;
   3587 		sh->ram_segs[i].size  = len;
   3588 	}
   3589 }
   3590 
   3591 
   3592 /* pmap_virtual_space			INTERFACE
   3593  **
   3594  * Return the current available range of virtual addresses in the
   3595  * arguuments provided.  Only really called once.
   3596  */
   3597 void
   3598 pmap_virtual_space(vaddr_t *vstart, vaddr_t *vend)
   3599 {
   3600 
   3601 	*vstart = virtual_avail;
   3602 	*vend = virtual_end;
   3603 }
   3604 
   3605 /*
   3606  * Provide memory to the VM system.
   3607  *
   3608  * Assume avail_start is always in the
   3609  * first segment as pmap_bootstrap does.
   3610  */
   3611 static void
   3612 pmap_page_upload(void)
   3613 {
   3614 	paddr_t	a, b;	/* memory range */
   3615 	int i;
   3616 
   3617 	/* Supply the memory in segments. */
   3618 	for (i = 0; i < SUN3X_NPHYS_RAM_SEGS; i++) {
   3619 		a = atop(avail_mem[i].pmem_start);
   3620 		b = atop(avail_mem[i].pmem_end);
   3621 		if (i == 0)
   3622 			a = atop(avail_start);
   3623 		if (avail_mem[i].pmem_end > avail_end)
   3624 			b = atop(avail_end);
   3625 
   3626 		uvm_page_physload(a, b, a, b, VM_FREELIST_DEFAULT);
   3627 
   3628 		if (avail_mem[i].pmem_next == NULL)
   3629 			break;
   3630 	}
   3631 }
   3632 
   3633 /* pmap_count			INTERFACE
   3634  **
   3635  * Return the number of resident (valid) pages in the given pmap.
   3636  *
   3637  * Note:  If this function is handed the kernel map, it will report
   3638  * that it has no mappings.  Hopefully the VM system won't ask for kernel
   3639  * map statistics.
   3640  */
   3641 segsz_t
   3642 pmap_count(pmap_t pmap, int type)
   3643 {
   3644 	u_int     count;
   3645 	int       a_idx, b_idx;
   3646 	a_tmgr_t *a_tbl;
   3647 	b_tmgr_t *b_tbl;
   3648 	c_tmgr_t *c_tbl;
   3649 
   3650 	/*
   3651 	 * If the pmap does not have its own A table manager, it has no
   3652 	 * valid entires.
   3653 	 */
   3654 	if (pmap->pm_a_tmgr == NULL)
   3655 		return 0;
   3656 
   3657 	a_tbl = pmap->pm_a_tmgr;
   3658 
   3659 	count = 0;
   3660 	for (a_idx = 0; a_idx < MMU_TIA(KERNBASE3X); a_idx++) {
   3661 	    if (MMU_VALID_DT(a_tbl->at_dtbl[a_idx])) {
   3662 	        b_tbl = mmuB2tmgr(mmu_ptov(a_tbl->at_dtbl[a_idx].addr.raw));
   3663 	        for (b_idx = 0; b_idx < MMU_B_TBL_SIZE; b_idx++) {
   3664 	            if (MMU_VALID_DT(b_tbl->bt_dtbl[b_idx])) {
   3665 	                c_tbl = mmuC2tmgr(
   3666 	                    mmu_ptov(MMU_DTE_PA(b_tbl->bt_dtbl[b_idx])));
   3667 	                if (type == 0)
   3668 	                    /*
   3669 	                     * A resident entry count has been requested.
   3670 	                     */
   3671 	                    count += c_tbl->ct_ecnt;
   3672 	                else
   3673 	                    /*
   3674 	                     * A wired entry count has been requested.
   3675 	                     */
   3676 	                    count += c_tbl->ct_wcnt;
   3677 	            }
   3678 	        }
   3679 	    }
   3680 	}
   3681 
   3682 	return count;
   3683 }
   3684 
   3685 /************************ SUN3 COMPATIBILITY ROUTINES ********************
   3686  * The following routines are only used by DDB for tricky kernel text    *
   3687  * text operations in db_memrw.c.  They are provided for sun3            *
   3688  * compatibility.                                                        *
   3689  *************************************************************************/
   3690 /* get_pte			INTERNAL
   3691  **
   3692  * Return the page descriptor the describes the kernel mapping
   3693  * of the given virtual address.
   3694  */
   3695 extern u_long ptest_addr(u_long);	/* XXX: locore.s */
   3696 u_int
   3697 get_pte(vaddr_t va)
   3698 {
   3699 	u_long pte_pa;
   3700 	mmu_short_pte_t *pte;
   3701 
   3702 	/* Get the physical address of the PTE */
   3703 	pte_pa = ptest_addr(va & ~PGOFSET);
   3704 
   3705 	/* Convert to a virtual address... */
   3706 	pte = (mmu_short_pte_t *) (KERNBASE3X + pte_pa);
   3707 
   3708 	/* Make sure it is in our level-C tables... */
   3709 	if ((pte < kernCbase) ||
   3710 		(pte >= &mmuCbase[NUM_USER_PTES]))
   3711 		return 0;
   3712 
   3713 	/* ... and just return its contents. */
   3714 	return (pte->attr.raw);
   3715 }
   3716 
   3717 
   3718 /* set_pte			INTERNAL
   3719  **
   3720  * Set the page descriptor that describes the kernel mapping
   3721  * of the given virtual address.
   3722  */
   3723 void
   3724 set_pte(vaddr_t va, u_int pte)
   3725 {
   3726 	u_long idx;
   3727 
   3728 	if (va < KERNBASE3X)
   3729 		return;
   3730 
   3731 	idx = (unsigned long) m68k_btop(va - KERNBASE3X);
   3732 	kernCbase[idx].attr.raw = pte;
   3733 	TBIS(va);
   3734 }
   3735 
   3736 /*
   3737  *	Routine:        pmap_procwr
   3738  *
   3739  *	Function:
   3740  *		Synchronize caches corresponding to [addr, addr+len) in p.
   3741  */
   3742 void
   3743 pmap_procwr(struct proc *p, vaddr_t va, size_t len)
   3744 {
   3745 
   3746 	(void)cachectl1(0x80000004, va, len, p);
   3747 }
   3748 
   3749 
   3750 #ifdef	PMAP_DEBUG
   3751 /************************** DEBUGGING ROUTINES **************************
   3752  * The following routines are meant to be an aid to debugging the pmap  *
   3753  * system.  They are callable from the DDB command line and should be   *
   3754  * prepared to be handed unstable or incomplete states of the system.   *
   3755  ************************************************************************/
   3756 
   3757 /* pv_list
   3758  **
   3759  * List all pages found on the pv list for the given physical page.
   3760  * To avoid endless loops, the listing will stop at the end of the list
   3761  * or after 'n' entries - whichever comes first.
   3762  */
   3763 void
   3764 pv_list(paddr_t pa, int n)
   3765 {
   3766 	int  idx;
   3767 	vaddr_t va;
   3768 	pv_t *pv;
   3769 	c_tmgr_t *c_tbl;
   3770 	pmap_t pmap;
   3771 
   3772 	pv = pa2pv(pa);
   3773 	idx = pv->pv_idx;
   3774 	for (; idx != PVE_EOL && n > 0; idx = pvebase[idx].pve_next, n--) {
   3775 		va = pmap_get_pteinfo(idx, &pmap, &c_tbl);
   3776 		printf("idx %d, pmap 0x%x, va 0x%x, c_tbl %x\n",
   3777 			idx, (u_int) pmap, (u_int) va, (u_int) c_tbl);
   3778 	}
   3779 }
   3780 #endif	/* PMAP_DEBUG */
   3781 
   3782 #ifdef NOT_YET
   3783 /* and maybe not ever */
   3784 /************************** LOW-LEVEL ROUTINES **************************
   3785  * These routines will eventually be re-written into assembly and placed*
   3786  * in locore.s.  They are here now as stubs so that the pmap module can *
   3787  * be linked as a standalone user program for testing.                  *
   3788  ************************************************************************/
   3789 /* flush_atc_crp			INTERNAL
   3790  **
   3791  * Flush all page descriptors derived from the given CPU Root Pointer
   3792  * (CRP), or 'A' table as it is known here, from the 68851's automatic
   3793  * cache.
   3794  */
   3795 void
   3796 flush_atc_crp(int a_tbl)
   3797 {
   3798 	mmu_long_rp_t rp;
   3799 
   3800 	/* Create a temporary root table pointer that points to the
   3801 	 * given A table.
   3802 	 */
   3803 	rp.attr.raw = ~MMU_LONG_RP_LU;
   3804 	rp.addr.raw = (unsigned int) a_tbl;
   3805 
   3806 	mmu_pflushr(&rp);
   3807 	/* mmu_pflushr:
   3808 	 * 	movel   sp(4)@,a0
   3809 	 * 	pflushr a0@
   3810 	 *	rts
   3811 	 */
   3812 }
   3813 #endif /* NOT_YET */
   3814