pmap.c revision 1.14 1 /* $NetBSD: pmap.c,v 1.14 1997/03/06 00:15:56 gwr Exp $ */
2
3 /*-
4 * Copyright (c) 1996, 1997 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jeremy Cooper.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * XXX These comments aren't quite accurate. Need to change.
41 * The sun3x uses the MC68851 Memory Management Unit, which is built
42 * into the CPU. The 68851 maps virtual to physical addresses using
43 * a multi-level table lookup, which is stored in the very memory that
44 * it maps. The number of levels of lookup is configurable from one
45 * to four. In this implementation, we use three, named 'A' through 'C'.
46 *
47 * The MMU translates virtual addresses into physical addresses by
48 * traversing these tables in a proccess called a 'table walk'. The most
49 * significant 7 bits of the Virtual Address ('VA') being translated are
50 * used as an index into the level A table, whose base in physical memory
51 * is stored in a special MMU register, the 'CPU Root Pointer' or CRP. The
52 * address found at that index in the A table is used as the base
53 * address for the next table, the B table. The next six bits of the VA are
54 * used as an index into the B table, which in turn gives the base address
55 * of the third and final C table.
56 *
57 * The next six bits of the VA are used as an index into the C table to
58 * locate a Page Table Entry (PTE). The PTE is a physical address in memory
59 * to which the remaining 13 bits of the VA are added, producing the
60 * mapped physical address.
61 *
62 * To map the entire memory space in this manner would require 2114296 bytes
63 * of page tables per process - quite expensive. Instead we will
64 * allocate a fixed but considerably smaller space for the page tables at
65 * the time the VM system is initialized. When the pmap code is asked by
66 * the kernel to map a VA to a PA, it allocates tables as needed from this
67 * pool. When there are no more tables in the pool, tables are stolen
68 * from the oldest mapped entries in the tree. This is only possible
69 * because all memory mappings are stored in the kernel memory map
70 * structures, independent of the pmap structures. A VA which references
71 * one of these invalidated maps will cause a page fault. The kernel
72 * will determine that the page fault was caused by a task using a valid
73 * VA, but for some reason (which does not concern it), that address was
74 * not mapped. It will ask the pmap code to re-map the entry and then
75 * it will resume executing the faulting task.
76 *
77 * In this manner the most efficient use of the page table space is
78 * achieved. Tasks which do not execute often will have their tables
79 * stolen and reused by tasks which execute more frequently. The best
80 * size for the page table pool will probably be determined by
81 * experimentation.
82 *
83 * You read all of the comments so far. Good for you.
84 * Now go play!
85 */
86
87 /*** A Note About the 68851 Address Translation Cache
88 * The MC68851 has a 64 entry cache, called the Address Translation Cache
89 * or 'ATC'. This cache stores the most recently used page descriptors
90 * accessed by the MMU when it does translations. Using a marker called a
91 * 'task alias' the MMU can store the descriptors from 8 different table
92 * spaces concurrently. The task alias is associated with the base
93 * address of the level A table of that address space. When an address
94 * space is currently active (the CRP currently points to its A table)
95 * the only cached descriptors that will be obeyed are ones which have a
96 * matching task alias of the current space associated with them.
97 *
98 * Since the cache is always consulted before any table lookups are done,
99 * it is important that it accurately reflect the state of the MMU tables.
100 * Whenever a change has been made to a table that has been loaded into
101 * the MMU, the code must be sure to flush any cached entries that are
102 * affected by the change. These instances are documented in the code at
103 * various points.
104 */
105 /*** A Note About the Note About the 68851 Address Translation Cache
106 * 4 months into this code I discovered that the sun3x does not have
107 * a MC68851 chip. Instead, it has a version of this MMU that is part of the
108 * the 68030 CPU.
109 * All though it behaves very similarly to the 68851, it only has 1 task
110 * alias and a 22 entry cache. So sadly (or happily), the first paragraph
111 * of the previous note does not apply to the sun3x pmap.
112 */
113
114 #include <sys/param.h>
115 #include <sys/systm.h>
116 #include <sys/proc.h>
117 #include <sys/malloc.h>
118 #include <sys/user.h>
119 #include <sys/queue.h>
120
121 #include <vm/vm.h>
122 #include <vm/vm_kern.h>
123 #include <vm/vm_page.h>
124
125 #include <machine/cpu.h>
126 #include <machine/pmap.h>
127 #include <machine/pte.h>
128 #include <machine/machdep.h>
129 #include <machine/mon.h>
130
131 #include "pmap_pvt.h"
132
133 /* XXX - What headers declare these? */
134 extern struct pcb *curpcb;
135 extern int physmem;
136
137 extern void copypage __P((const void*, void*));
138 extern void zeropage __P((void*));
139
140 /* Defined in locore.s */
141 extern char kernel_text[];
142
143 /* Defined by the linker */
144 extern char etext[], edata[], end[];
145 extern char *esym; /* DDB */
146
147 /*************************** DEBUGGING DEFINITIONS ***********************
148 * Macros, preprocessor defines and variables used in debugging can make *
149 * code hard to read. Anything used exclusively for debugging purposes *
150 * is defined here to avoid having such mess scattered around the file. *
151 *************************************************************************/
152 #ifdef PMAP_DEBUG
153 /*
154 * To aid the debugging process, macros should be expanded into smaller steps
155 * that accomplish the same goal, yet provide convenient places for placing
156 * breakpoints. When this code is compiled with PMAP_DEBUG mode defined, the
157 * 'INLINE' keyword is defined to an empty string. This way, any function
158 * defined to be a 'static INLINE' will become 'outlined' and compiled as
159 * a separate function, which is much easier to debug.
160 */
161 #define INLINE /* nothing */
162
163 /*
164 * It is sometimes convenient to watch the activity of a particular table
165 * in the system. The following variables are used for that purpose.
166 */
167 a_tmgr_t *pmap_watch_atbl = 0;
168 b_tmgr_t *pmap_watch_btbl = 0;
169 c_tmgr_t *pmap_watch_ctbl = 0;
170
171 int pmap_debug = 0;
172 #define DPRINT(args) if (pmap_debug) printf args
173
174 #else /********** Stuff below is defined if NOT debugging **************/
175
176 #define INLINE inline
177 #define DPRINT(args) /* nada */
178
179 #endif /* PMAP_DEBUG */
180 /*********************** END OF DEBUGGING DEFINITIONS ********************/
181
182 /*** Management Structure - Memory Layout
183 * For every MMU table in the sun3x pmap system there must be a way to
184 * manage it; we must know which process is using it, what other tables
185 * depend on it, and whether or not it contains any locked pages. This
186 * is solved by the creation of 'table management' or 'tmgr'
187 * structures. One for each MMU table in the system.
188 *
189 * MAP OF MEMORY USED BY THE PMAP SYSTEM
190 *
191 * towards lower memory
192 * kernAbase -> +-------------------------------------------------------+
193 * | Kernel MMU A level table |
194 * kernBbase -> +-------------------------------------------------------+
195 * | Kernel MMU B level tables |
196 * kernCbase -> +-------------------------------------------------------+
197 * | |
198 * | Kernel MMU C level tables |
199 * | |
200 * mmuCbase -> +-------------------------------------------------------+
201 * | User MMU C level tables |
202 * mmuAbase -> +-------------------------------------------------------+
203 * | |
204 * | User MMU A level tables |
205 * | |
206 * mmuBbase -> +-------------------------------------------------------+
207 * | User MMU B level tables |
208 * tmgrAbase -> +-------------------------------------------------------+
209 * | TMGR A level table structures |
210 * tmgrBbase -> +-------------------------------------------------------+
211 * | TMGR B level table structures |
212 * tmgrCbase -> +-------------------------------------------------------+
213 * | TMGR C level table structures |
214 * pvbase -> +-------------------------------------------------------+
215 * | Physical to Virtual mapping table (list heads) |
216 * pvebase -> +-------------------------------------------------------+
217 * | Physical to Virtual mapping table (list elements) |
218 * | |
219 * +-------------------------------------------------------+
220 * towards higher memory
221 *
222 * For every A table in the MMU A area, there will be a corresponding
223 * a_tmgr structure in the TMGR A area. The same will be true for
224 * the B and C tables. This arrangement will make it easy to find the
225 * controling tmgr structure for any table in the system by use of
226 * (relatively) simple macros.
227 */
228
229 /*
230 * Global variables for storing the base addresses for the areas
231 * labeled above.
232 */
233 static vm_offset_t kernAphys;
234 static mmu_long_dte_t *kernAbase;
235 static mmu_short_dte_t *kernBbase;
236 static mmu_short_pte_t *kernCbase;
237 static mmu_long_dte_t *mmuAbase;
238 static mmu_short_dte_t *mmuBbase;
239 static mmu_short_pte_t *mmuCbase;
240 static a_tmgr_t *Atmgrbase;
241 static b_tmgr_t *Btmgrbase;
242 static c_tmgr_t *Ctmgrbase;
243 static pv_t *pvbase;
244 static pv_elem_t *pvebase;
245 struct pmap kernel_pmap;
246
247 /*
248 * This holds the CRP currently loaded into the MMU.
249 */
250 struct mmu_rootptr kernel_crp;
251
252 /*
253 * Just all around global variables.
254 */
255 static TAILQ_HEAD(a_pool_head_struct, a_tmgr_struct) a_pool;
256 static TAILQ_HEAD(b_pool_head_struct, b_tmgr_struct) b_pool;
257 static TAILQ_HEAD(c_pool_head_struct, c_tmgr_struct) c_pool;
258
259
260 /*
261 * Flags used to mark the safety/availability of certain operations or
262 * resources.
263 */
264 static boolean_t
265 pv_initialized = FALSE, /* PV system has been initialized. */
266 tmp_vpages_inuse = FALSE, /*
267 * Temp. virtual pages are in use.
268 * (see pmap_copy_page, et. al.)
269 */
270 bootstrap_alloc_enabled = FALSE; /* Safe to use pmap_bootstrap_alloc(). */
271
272 /*
273 * XXX: For now, retain the traditional variables that were
274 * used in the old pmap/vm interface (without NONCONTIG).
275 */
276 /* Kernel virtual address space available: */
277 vm_offset_t virtual_avail, virtual_end;
278 /* Physical address space available: */
279 vm_offset_t avail_start, avail_end;
280
281 /* This keep track of the end of the contiguously mapped range. */
282 vm_offset_t virtual_contig_end;
283
284 /* Physical address used by pmap_next_page() */
285 vm_offset_t avail_next;
286
287 /* These are used by pmap_copy_page(), etc. */
288 vm_offset_t tmp_vpages[2];
289
290 /*
291 * The 3/80 is the only member of the sun3x family that has non-contiguous
292 * physical memory. Memory is divided into 4 banks which are physically
293 * locatable on the system board. Although the size of these banks varies
294 * with the size of memory they contain, their base addresses are
295 * permenently fixed. The following structure, which describes these
296 * banks, is initialized by pmap_bootstrap() after it reads from a similar
297 * structure provided by the ROM Monitor.
298 *
299 * For the other machines in the sun3x architecture which do have contiguous
300 * RAM, this list will have only one entry, which will describe the entire
301 * range of available memory.
302 */
303 struct pmap_physmem_struct avail_mem[SUN3X_80_MEM_BANKS];
304 u_int total_phys_mem;
305
306 /*************************************************************************/
307
308 /*
309 * XXX - Should "tune" these based on statistics.
310 *
311 * My first guess about the relative numbers of these needed is
312 * based on the fact that a "typical" process will have several
313 * pages mapped at low virtual addresses (text, data, bss), then
314 * some mapped shared libraries, and then some stack pages mapped
315 * near the high end of the VA space. Each process can use only
316 * one A table, and most will use only two B tables (maybe three)
317 * and probably about four C tables. Therefore, the first guess
318 * at the relative numbers of these needed is 1:2:4 -gwr
319 *
320 * The number of C tables needed is closely related to the amount
321 * of physical memory available plus a certain amount attributable
322 * to the use of double mappings. With a few simulation statistics
323 * we can find a reasonably good estimation of this unknown value.
324 * Armed with that and the above ratios, we have a good idea of what
325 * is needed at each level. -j
326 *
327 * Note: It is not physical memory memory size, but the total mapped
328 * virtual space required by the combined working sets of all the
329 * currently _runnable_ processes. (Sleeping ones don't count.)
330 * The amount of physical memory should be irrelevant. -gwr
331 */
332 #define NUM_A_TABLES 16
333 #define NUM_B_TABLES 32
334 #define NUM_C_TABLES 64
335
336 /*
337 * This determines our total virtual mapping capacity.
338 * Yes, it is a FIXED value so we can pre-allocate.
339 */
340 #define NUM_USER_PTES (NUM_C_TABLES * MMU_C_TBL_SIZE)
341 #define NUM_KERN_PTES (sun3x_btop(KERN_END - KERNBASE))
342
343 /*************************** MISCELANEOUS MACROS *************************/
344 #define PMAP_LOCK() ; /* Nothing, for now */
345 #define PMAP_UNLOCK() ; /* same. */
346 #define NULL 0
347
348 static INLINE void * mmu_ptov __P((vm_offset_t pa));
349 static INLINE vm_offset_t mmu_vtop __P((void * va));
350
351 #if 0
352 static INLINE a_tmgr_t * mmuA2tmgr __P((mmu_long_dte_t *));
353 #endif
354 static INLINE b_tmgr_t * mmuB2tmgr __P((mmu_short_dte_t *));
355 static INLINE c_tmgr_t * mmuC2tmgr __P((mmu_short_pte_t *));
356
357 static INLINE pv_t *pa2pv __P((vm_offset_t pa));
358 static INLINE int pteidx __P((mmu_short_pte_t *));
359 static INLINE pmap_t current_pmap __P((void));
360
361 /*
362 * We can always convert between virtual and physical addresses
363 * for anything in the range [KERNBASE ... avail_start] because
364 * that range is GUARANTEED to be mapped linearly.
365 * We rely heavily upon this feature!
366 */
367 static INLINE void *
368 mmu_ptov(pa)
369 vm_offset_t pa;
370 {
371 register vm_offset_t va;
372
373 va = (pa + KERNBASE);
374 #ifdef PMAP_DEBUG
375 if ((va < KERNBASE) || (va >= virtual_contig_end))
376 panic("mmu_ptov");
377 #endif
378 return ((void*)va);
379 }
380 static INLINE vm_offset_t
381 mmu_vtop(vva)
382 void *vva;
383 {
384 register vm_offset_t va;
385
386 va = (vm_offset_t)vva;
387 #ifdef PMAP_DEBUG
388 if ((va < KERNBASE) || (va >= virtual_contig_end))
389 panic("mmu_ptov");
390 #endif
391 return (va - KERNBASE);
392 }
393
394 /*
395 * These macros map MMU tables to their corresponding manager structures.
396 * They are needed quite often because many of the pointers in the pmap
397 * system reference MMU tables and not the structures that control them.
398 * There needs to be a way to find one when given the other and these
399 * macros do so by taking advantage of the memory layout described above.
400 * Here's a quick step through the first macro, mmuA2tmgr():
401 *
402 * 1) find the offset of the given MMU A table from the base of its table
403 * pool (table - mmuAbase).
404 * 2) convert this offset into a table index by dividing it by the
405 * size of one MMU 'A' table. (sizeof(mmu_long_dte_t) * MMU_A_TBL_SIZE)
406 * 3) use this index to select the corresponding 'A' table manager
407 * structure from the 'A' table manager pool (Atmgrbase[index]).
408 */
409 /* This function is not currently used. */
410 #if 0
411 static INLINE a_tmgr_t *
412 mmuA2tmgr(mmuAtbl)
413 mmu_long_dte_t *mmuAtbl;
414 {
415 register int idx;
416
417 /* Which table is this in? */
418 idx = (mmuAtbl - mmuAbase) / MMU_A_TBL_SIZE;
419 #ifdef PMAP_DEBUG
420 if ((idx < 0) || (idx >= NUM_A_TABLES))
421 panic("mmuA2tmgr");
422 #endif
423 return (&Atmgrbase[idx]);
424 }
425 #endif /* 0 */
426
427 static INLINE b_tmgr_t *
428 mmuB2tmgr(mmuBtbl)
429 mmu_short_dte_t *mmuBtbl;
430 {
431 register int idx;
432
433 /* Which table is this in? */
434 idx = (mmuBtbl - mmuBbase) / MMU_B_TBL_SIZE;
435 #ifdef PMAP_DEBUG
436 if ((idx < 0) || (idx >= NUM_B_TABLES))
437 panic("mmuB2tmgr");
438 #endif
439 return (&Btmgrbase[idx]);
440 }
441
442 /* mmuC2tmgr INTERNAL
443 **
444 * Given a pte known to belong to a C table, return the address of
445 * that table's management structure.
446 */
447 static INLINE c_tmgr_t *
448 mmuC2tmgr(mmuCtbl)
449 mmu_short_pte_t *mmuCtbl;
450 {
451 register int idx;
452
453 /* Which table is this in? */
454 idx = (mmuCtbl - mmuCbase) / MMU_C_TBL_SIZE;
455 #ifdef PMAP_DEBUG
456 if ((idx < 0) || (idx >= NUM_C_TABLES))
457 panic("mmuC2tmgr");
458 #endif
459 return (&Ctmgrbase[idx]);
460 }
461
462 /* This is now a function call below.
463 * #define pa2pv(pa) \
464 * (&pvbase[(unsigned long)\
465 * sun3x_btop(pa)\
466 * ])
467 */
468
469 /* pa2pv INTERNAL
470 **
471 * Return the pv_list_head element which manages the given physical
472 * address.
473 */
474 static INLINE pv_t *
475 pa2pv(pa)
476 vm_offset_t pa;
477 {
478 register struct pmap_physmem_struct *bank;
479 register int idx;
480
481 bank = &avail_mem[0];
482 while (pa >= bank->pmem_end)
483 bank = bank->pmem_next;
484
485 pa -= bank->pmem_start;
486 idx = bank->pmem_pvbase + sun3x_btop(pa);
487 #ifdef PMAP_DEBUG
488 if ((idx < 0) || (idx >= physmem))
489 panic("pa2pv");
490 #endif
491 return &pvbase[idx];
492 }
493
494 /* pteidx INTERNAL
495 **
496 * Return the index of the given PTE within the entire fixed table of
497 * PTEs.
498 */
499 static INLINE int
500 pteidx(pte)
501 mmu_short_pte_t *pte;
502 {
503 return (pte - kernCbase);
504 }
505
506 /*
507 * This just offers a place to put some debugging checks,
508 * and reduces the number of places "curproc" appears...
509 */
510 static INLINE pmap_t
511 current_pmap()
512 {
513 struct proc *p;
514 struct vmspace *vm;
515 vm_map_t map;
516 pmap_t pmap;
517
518 p = curproc; /* XXX */
519 if (p == NULL)
520 pmap = &kernel_pmap;
521 else {
522 vm = p->p_vmspace;
523 map = &vm->vm_map;
524 pmap = vm_map_pmap(map);
525 }
526
527 return (pmap);
528 }
529
530
531 /*************************** FUNCTION DEFINITIONS ************************
532 * These appear here merely for the compiler to enforce type checking on *
533 * all function calls. *
534 *************************************************************************/
535
536 /** External functions
537 ** - functions used within this module but written elsewhere.
538 ** both of these functions are in locore.s
539 ** XXX - These functions were later replaced with their more cryptic
540 ** hp300 counterparts. They may be removed now.
541 **/
542 #if 0 /* deprecated mmu */
543 void mmu_seturp __P((vm_offset_t));
544 void mmu_flush __P((int, vm_offset_t));
545 void mmu_flusha __P((void));
546 #endif /* 0 */
547
548 /** Internal functions
549 ** - all functions used only within this module are defined in
550 ** pmap_pvt.h
551 **/
552
553 /** Interface functions
554 ** - functions required by the Mach VM Pmap interface, with MACHINE_CONTIG
555 ** defined.
556 **/
557 #ifdef INCLUDED_IN_PMAP_H
558 void pmap_bootstrap __P((void));
559 void *pmap_bootstrap_alloc __P((int));
560 void pmap_enter __P((pmap_t, vm_offset_t, vm_offset_t, vm_prot_t, boolean_t));
561 pmap_t pmap_create __P((vm_size_t));
562 void pmap_destroy __P((pmap_t));
563 void pmap_reference __P((pmap_t));
564 boolean_t pmap_is_referenced __P((vm_offset_t));
565 boolean_t pmap_is_modified __P((vm_offset_t));
566 void pmap_clear_modify __P((vm_offset_t));
567 vm_offset_t pmap_extract __P((pmap_t, vm_offset_t));
568 void pmap_activate __P((pmap_t));
569 int pmap_page_index __P((vm_offset_t));
570 u_int pmap_free_pages __P((void));
571 #endif /* INCLUDED_IN_PMAP_H */
572
573 /********************************** CODE ********************************
574 * Functions that are called from other parts of the kernel are labeled *
575 * as 'INTERFACE' functions. Functions that are only called from *
576 * within the pmap module are labeled as 'INTERNAL' functions. *
577 * Functions that are internal, but are not (currently) used at all are *
578 * labeled 'INTERNAL_X'. *
579 ************************************************************************/
580
581 /* pmap_bootstrap INTERNAL
582 **
583 * Initializes the pmap system. Called at boot time from sun3x_vm_init()
584 * in _startup.c.
585 *
586 * Reminder: having a pmap_bootstrap_alloc() and also having the VM
587 * system implement pmap_steal_memory() is redundant.
588 * Don't release this code without removing one or the other!
589 */
590 void
591 pmap_bootstrap(nextva)
592 vm_offset_t nextva;
593 {
594 struct physmemory *membank;
595 struct pmap_physmem_struct *pmap_membank;
596 vm_offset_t va, pa, eva;
597 int b, c, i, j; /* running table counts */
598 int size;
599
600 /*
601 * This function is called by __bootstrap after it has
602 * determined the type of machine and made the appropriate
603 * patches to the ROM vectors (XXX- I don't quite know what I meant
604 * by that.) It allocates and sets up enough of the pmap system
605 * to manage the kernel's address space.
606 */
607
608 /*
609 * Determine the range of kernel virtual and physical
610 * space available. Note that we ABSOLUTELY DEPEND on
611 * the fact that the first bank of memory (4MB) is
612 * mapped linearly to KERNBASE (which we guaranteed in
613 * the first instructions of locore.s).
614 * That is plenty for our bootstrap work.
615 */
616 virtual_avail = sun3x_round_page(nextva);
617 virtual_contig_end = KERNBASE + 0x400000; /* +4MB */
618 virtual_end = VM_MAX_KERNEL_ADDRESS;
619 /* Don't need avail_start til later. */
620
621 /* We may now call pmap_bootstrap_alloc(). */
622 bootstrap_alloc_enabled = TRUE;
623
624 /*
625 * This is a somewhat unwrapped loop to deal with
626 * copying the PROM's 'phsymem' banks into the pmap's
627 * banks. The following is always assumed:
628 * 1. There is always at least one bank of memory.
629 * 2. There is always a last bank of memory, and its
630 * pmem_next member must be set to NULL.
631 * XXX - Use: do { ... } while (membank->next) instead?
632 * XXX - Why copy this stuff at all? -gwr
633 * - It is needed in pa2pv().
634 */
635 membank = romVectorPtr->v_physmemory;
636 pmap_membank = avail_mem;
637 total_phys_mem = 0;
638
639 while (membank->next) {
640 pmap_membank->pmem_start = membank->address;
641 pmap_membank->pmem_end = membank->address + membank->size;
642 total_phys_mem += membank->size;
643 /* This silly syntax arises because pmap_membank
644 * is really a pre-allocated array, but it is put into
645 * use as a linked list.
646 */
647 pmap_membank->pmem_next = pmap_membank + 1;
648 pmap_membank = pmap_membank->pmem_next;
649 membank = membank->next;
650 }
651
652 /*
653 * XXX The last bank of memory should be reduced to exclude the
654 * physical pages needed by the PROM monitor from being used
655 * in the VM system. XXX - See below - Fix!
656 */
657 pmap_membank->pmem_start = membank->address;
658 pmap_membank->pmem_end = membank->address + membank->size;
659 pmap_membank->pmem_next = NULL;
660
661 #if 0 /* XXX - Need to integrate this! */
662 /*
663 * The last few pages of physical memory are "owned" by
664 * the PROM. The total amount of memory we are allowed
665 * to use is given by the romvec pointer. -gwr
666 *
667 * We should dedicate different variables for 'useable'
668 * and 'physically available'. Most users are used to the
669 * kernel reporting the amount of memory 'physically available'
670 * as opposed to 'useable by the kernel' at boot time. -j
671 */
672 total_phys_mem = *romVectorPtr->memoryAvail;
673 #endif /* XXX */
674
675 total_phys_mem += membank->size; /* XXX see above */
676 physmem = btoc(total_phys_mem);
677
678 /*
679 * Avail_end is set to the first byte of physical memory
680 * after the end of the last bank. We use this only to
681 * determine if a physical address is "managed" memory.
682 *
683 * XXX - The setting of avail_end is a temporary ROM saving hack.
684 */
685 avail_end = pmap_membank->pmem_end -
686 (total_phys_mem - *romVectorPtr->memoryAvail);
687 avail_end = sun3x_trunc_page(avail_end);
688
689 /*
690 * The first step is to allocate MMU tables.
691 * Note: All must be aligned on 256 byte boundaries.
692 *
693 * Start with the top level, or 'A' table.
694 */
695 size = sizeof(mmu_long_dte_t) * MMU_A_TBL_SIZE;
696 kernAbase = pmap_bootstrap_alloc(size);
697 bzero(kernAbase, size);
698
699 /*
700 * Allocate enough B tables to map from KERNBASE to
701 * the end of VM.
702 */
703 size = sizeof(mmu_short_dte_t) *
704 (MMU_A_TBL_SIZE - MMU_TIA(KERNBASE)) * MMU_B_TBL_SIZE;
705 kernBbase = pmap_bootstrap_alloc(size);
706 bzero(kernBbase, size);
707
708 /*
709 * Allocate enough C tables.
710 * Note: In order for the PV system to work correctly, the kernel
711 * and user-level C tables must be allocated contiguously.
712 * Nothing should be allocated between here and the allocation of
713 * mmuCbase below. XXX: Should do this as one allocation, and
714 * then compute a pointer for mmuCbase instead of this...
715 */
716 size = sizeof (mmu_short_pte_t) *
717 (MMU_A_TBL_SIZE - MMU_TIA(KERNBASE))
718 * MMU_B_TBL_SIZE * MMU_C_TBL_SIZE;
719 kernCbase = pmap_bootstrap_alloc(size);
720 bzero(kernCbase, size);
721
722 /*
723 * Allocate user MMU tables.
724 * These must be aligned on 256 byte boundaries.
725 *
726 * As noted in the comment preceding the allocation of the kernel
727 * C tables in pmap_bootstrap(), user-level C tables must be the
728 * flush with (up against) the kernel-level C tables.
729 */
730 mmuCbase = (mmu_short_pte_t *)
731 pmap_bootstrap_alloc(sizeof(mmu_short_pte_t)
732 * MMU_C_TBL_SIZE
733 * NUM_C_TABLES);
734 mmuAbase = (mmu_long_dte_t *)
735 pmap_bootstrap_alloc(sizeof(mmu_long_dte_t)
736 * MMU_A_TBL_SIZE
737 * NUM_A_TABLES);
738 mmuBbase = (mmu_short_dte_t *)
739 pmap_bootstrap_alloc(sizeof(mmu_short_dte_t)
740 * MMU_B_TBL_SIZE
741 * NUM_B_TABLES);
742
743 /*
744 * Fill in the never-changing part of the kernel tables.
745 * For simplicity, the kernel's mappings will be editable as a
746 * flat array of page table entries at kernCbase. The
747 * higher level 'A' and 'B' tables must be initialized to point
748 * to this lower one.
749 */
750 b = c = 0;
751
752 /*
753 * Invalidate all mappings below KERNBASE in the A table.
754 * This area has already been zeroed out, but it is good
755 * practice to explicitly show that we are interpreting
756 * it as a list of A table descriptors.
757 */
758 for (i = 0; i < MMU_TIA(KERNBASE); i++) {
759 kernAbase[i].addr.raw = 0;
760 }
761
762 /*
763 * Set up the kernel A and B tables so that they will reference the
764 * correct spots in the contiguous table of PTEs allocated for the
765 * kernel's virtual memory space.
766 */
767 for (i = MMU_TIA(KERNBASE); i < MMU_A_TBL_SIZE; i++) {
768 kernAbase[i].attr.raw =
769 MMU_LONG_DTE_LU | MMU_LONG_DTE_SUPV | MMU_DT_SHORT;
770 kernAbase[i].addr.raw = mmu_vtop(&kernBbase[b]);
771
772 for (j=0; j < MMU_B_TBL_SIZE; j++) {
773 kernBbase[b + j].attr.raw = mmu_vtop(&kernCbase[c])
774 | MMU_DT_SHORT;
775 c += MMU_C_TBL_SIZE;
776 }
777 b += MMU_B_TBL_SIZE;
778 }
779
780 /* XXX - Doing kernel_pmap a little further down. */
781
782 pmap_alloc_usermmu(); /* Allocate user MMU tables. */
783 pmap_alloc_usertmgr(); /* Allocate user MMU table managers.*/
784 pmap_alloc_pv(); /* Allocate physical->virtual map. */
785
786 /*
787 * We are now done with pmap_bootstrap_alloc(). Round up
788 * `virtual_avail' to the nearest page, and set the flag
789 * to prevent use of pmap_bootstrap_alloc() hereafter.
790 */
791 pmap_bootstrap_aalign(NBPG);
792 bootstrap_alloc_enabled = FALSE;
793
794 /*
795 * Now that we are done with pmap_bootstrap_alloc(), we
796 * must save the virtual and physical addresses of the
797 * end of the linearly mapped range, which are stored in
798 * virtual_contig_end and avail_start, respectively.
799 * These variables will never change after this point.
800 */
801 virtual_contig_end = virtual_avail;
802 avail_start = virtual_avail - KERNBASE;
803
804 /*
805 * `avail_next' is a running pointer used by pmap_next_page() to
806 * keep track of the next available physical page to be handed
807 * to the VM system during its initialization, in which it
808 * asks for physical pages, one at a time.
809 */
810 avail_next = avail_start;
811
812 /*
813 * Now allocate some virtual addresses, but not the physical pages
814 * behind them. Note that virtual_avail is already page-aligned.
815 *
816 * tmp_vpages[] is an array of two virtual pages used for temporary
817 * kernel mappings in the pmap module to facilitate various physical
818 * address-oritented operations.
819 */
820 tmp_vpages[0] = virtual_avail;
821 virtual_avail += NBPG;
822 tmp_vpages[1] = virtual_avail;
823 virtual_avail += NBPG;
824
825 /** Initialize the PV system **/
826 pmap_init_pv();
827
828 /*
829 * Fill in the kernel_pmap structure and kernel_crp.
830 */
831 kernAphys = mmu_vtop(kernAbase);
832 kernel_pmap.pm_a_tmgr = NULL;
833 kernel_pmap.pm_a_phys = kernAphys;
834 kernel_pmap.pm_refcount = 1; /* always in use */
835
836 kernel_crp.rp_attr = MMU_LONG_DTE_LU | MMU_DT_LONG;
837 kernel_crp.rp_addr = kernAphys;
838
839 /*
840 * Now pmap_enter_kernel() may be used safely and will be
841 * the main interface used hereafter to modify the kernel's
842 * virtual address space. Note that since we are still running
843 * under the PROM's address table, none of these table modifications
844 * actually take effect until pmap_takeover_mmu() is called.
845 *
846 * Note: Our tables do NOT have the PROM linear mappings!
847 * Only the mappings created here exist in our tables, so
848 * remember to map anything we expect to use.
849 */
850 va = (vm_offset_t) KERNBASE;
851 pa = 0;
852
853 /*
854 * The first page of the kernel virtual address space is the msgbuf
855 * page. The page attributes (data, non-cached) are set here, while
856 * the address is assigned to this global pointer in cpu_startup().
857 * XXX - Make it non-cached?
858 */
859 pmap_enter_kernel(va, pa|PMAP_NC, VM_PROT_ALL);
860 va += NBPG; pa += NBPG;
861
862 /* Next page is used as the temporary stack. */
863 pmap_enter_kernel(va, pa, VM_PROT_ALL);
864 va += NBPG; pa += NBPG;
865
866 /*
867 * Map all of the kernel's text segment as read-only and cacheable.
868 * (Cacheable is implied by default). Unfortunately, the last bytes
869 * of kernel text and the first bytes of kernel data will often be
870 * sharing the same page. Therefore, the last page of kernel text
871 * has to be mapped as read/write, to accomodate the data.
872 */
873 eva = sun3x_trunc_page((vm_offset_t)etext);
874 for (; va < eva; va += NBPG, pa += NBPG)
875 pmap_enter_kernel(va, pa, VM_PROT_READ|VM_PROT_EXECUTE);
876
877 /*
878 * Map all of the kernel's data as read/write and cacheable.
879 * This includes: data, BSS, symbols, and everything in the
880 * contiguous memory used by pmap_bootstrap_alloc()
881 */
882 for (; pa < avail_start; va += NBPG, pa += NBPG)
883 pmap_enter_kernel(va, pa, VM_PROT_READ|VM_PROT_WRITE);
884
885 /*
886 * At this point we are almost ready to take over the MMU. But first
887 * we must save the PROM's address space in our map, as we call its
888 * routines and make references to its data later in the kernel.
889 */
890 pmap_bootstrap_copyprom();
891 pmap_takeover_mmu();
892 pmap_bootstrap_setprom();
893
894 /* Notify the VM system of our page size. */
895 PAGE_SIZE = NBPG;
896 vm_set_page_size();
897 }
898
899
900 /* pmap_alloc_usermmu INTERNAL
901 **
902 * Called from pmap_bootstrap() to allocate MMU tables that will
903 * eventually be used for user mappings.
904 */
905 void
906 pmap_alloc_usermmu()
907 {
908 /* XXX: Moved into caller. */
909 }
910
911 /* pmap_alloc_pv INTERNAL
912 **
913 * Called from pmap_bootstrap() to allocate the physical
914 * to virtual mapping list. Each physical page of memory
915 * in the system has a corresponding element in this list.
916 */
917 void
918 pmap_alloc_pv()
919 {
920 int i;
921 unsigned int total_mem;
922
923 /*
924 * Allocate a pv_head structure for every page of physical
925 * memory that will be managed by the system. Since memory on
926 * the 3/80 is non-contiguous, we cannot arrive at a total page
927 * count by subtraction of the lowest available address from the
928 * highest, but rather we have to step through each memory
929 * bank and add the number of pages in each to the total.
930 *
931 * At this time we also initialize the offset of each bank's
932 * starting pv_head within the pv_head list so that the physical
933 * memory state routines (pmap_is_referenced(),
934 * pmap_is_modified(), et al.) can quickly find coresponding
935 * pv_heads in spite of the non-contiguity.
936 */
937 total_mem = 0;
938 for (i = 0; i < SUN3X_80_MEM_BANKS; i++) {
939 avail_mem[i].pmem_pvbase = sun3x_btop(total_mem);
940 total_mem += avail_mem[i].pmem_end -
941 avail_mem[i].pmem_start;
942 if (avail_mem[i].pmem_next == NULL)
943 break;
944 }
945 #ifdef PMAP_DEBUG
946 if (total_mem != total_phys_mem)
947 panic("pmap_alloc_pv did not arrive at correct page count");
948 #endif
949
950 pvbase = (pv_t *) pmap_bootstrap_alloc(sizeof(pv_t) *
951 sun3x_btop(total_phys_mem));
952 }
953
954 /* pmap_alloc_usertmgr INTERNAL
955 **
956 * Called from pmap_bootstrap() to allocate the structures which
957 * facilitate management of user MMU tables. Each user MMU table
958 * in the system has one such structure associated with it.
959 */
960 void
961 pmap_alloc_usertmgr()
962 {
963 /* Allocate user MMU table managers */
964 /* It would be a lot simpler to just make these BSS, but */
965 /* we may want to change their size at boot time... -j */
966 Atmgrbase = (a_tmgr_t *) pmap_bootstrap_alloc(sizeof(a_tmgr_t)
967 * NUM_A_TABLES);
968 Btmgrbase = (b_tmgr_t *) pmap_bootstrap_alloc(sizeof(b_tmgr_t)
969 * NUM_B_TABLES);
970 Ctmgrbase = (c_tmgr_t *) pmap_bootstrap_alloc(sizeof(c_tmgr_t)
971 * NUM_C_TABLES);
972
973 /*
974 * Allocate PV list elements for the physical to virtual
975 * mapping system.
976 */
977 pvebase = (pv_elem_t *) pmap_bootstrap_alloc(
978 sizeof(pv_elem_t) * (NUM_USER_PTES + NUM_KERN_PTES));
979 }
980
981 /* pmap_bootstrap_copyprom() INTERNAL
982 **
983 * Copy the PROM mappings into our own tables. Note, we
984 * can use physical addresses until __bootstrap returns.
985 */
986 void
987 pmap_bootstrap_copyprom()
988 {
989 MachMonRomVector *romp;
990 int *mon_ctbl;
991 mmu_short_pte_t *kpte;
992 int i, len;
993
994 romp = romVectorPtr;
995
996 /*
997 * Copy the mappings in MON_KDB_START...MONEND
998 * Note: mon_ctbl[0] maps MON_KDB_START
999 */
1000 mon_ctbl = *romp->monptaddr;
1001 i = sun3x_btop(MON_KDB_START - KERNBASE);
1002 kpte = &kernCbase[i];
1003 len = sun3x_btop(MONEND - MON_KDB_START);
1004
1005 for (i = 0; i < len; i++) {
1006 kpte[i].attr.raw = mon_ctbl[i];
1007 }
1008
1009 /*
1010 * Copy the mappings at MON_DVMA_BASE (to the end).
1011 * Note, in here, mon_ctbl[0] maps MON_DVMA_BASE.
1012 * XXX - This does not appear to be necessary, but
1013 * I'm not sure yet if it is or not. -gwr
1014 */
1015 mon_ctbl = *romp->shadowpteaddr;
1016 i = sun3x_btop(MON_DVMA_BASE - KERNBASE);
1017 kpte = &kernCbase[i];
1018 len = sun3x_btop(MON_DVMA_SIZE);
1019
1020 for (i = 0; i < len; i++) {
1021 kpte[i].attr.raw = mon_ctbl[i];
1022 }
1023 }
1024
1025 /* pmap_takeover_mmu INTERNAL
1026 **
1027 * Called from pmap_bootstrap() after it has copied enough of the
1028 * PROM mappings into the kernel map so that we can use our own
1029 * MMU table.
1030 */
1031 void
1032 pmap_takeover_mmu()
1033 {
1034
1035 loadcrp(&kernel_crp);
1036 }
1037
1038 /* pmap_bootstrap_setprom() INTERNAL
1039 **
1040 * Set the PROM mappings so it can see kernel space.
1041 * Note that physical addresses are used here, which
1042 * we can get away with because this runs with the
1043 * low 1GB set for transparent translation.
1044 */
1045 void
1046 pmap_bootstrap_setprom()
1047 {
1048 mmu_long_dte_t *mon_dte;
1049 extern struct mmu_rootptr mon_crp;
1050 int i;
1051
1052 mon_dte = (mmu_long_dte_t *) mon_crp.rp_addr;
1053 for (i = MMU_TIA(KERNBASE); i < MMU_TIA(KERN_END); i++) {
1054 mon_dte[i].attr.raw = kernAbase[i].attr.raw;
1055 mon_dte[i].addr.raw = kernAbase[i].addr.raw;
1056 }
1057 }
1058
1059
1060 /* pmap_init INTERFACE
1061 **
1062 * Called at the end of vm_init() to set up the pmap system to go
1063 * into full time operation. All initialization of kernel_pmap
1064 * should be already done by now, so this should just do things
1065 * needed for user-level pmaps to work.
1066 */
1067 void
1068 pmap_init()
1069 {
1070 /** Initialize the manager pools **/
1071 TAILQ_INIT(&a_pool);
1072 TAILQ_INIT(&b_pool);
1073 TAILQ_INIT(&c_pool);
1074
1075 /**************************************************************
1076 * Initialize all tmgr structures and MMU tables they manage. *
1077 **************************************************************/
1078 /** Initialize A tables **/
1079 pmap_init_a_tables();
1080 /** Initialize B tables **/
1081 pmap_init_b_tables();
1082 /** Initialize C tables **/
1083 pmap_init_c_tables();
1084 }
1085
1086 /* pmap_init_a_tables() INTERNAL
1087 **
1088 * Initializes all A managers, their MMU A tables, and inserts
1089 * them into the A manager pool for use by the system.
1090 */
1091 void
1092 pmap_init_a_tables()
1093 {
1094 int i;
1095 a_tmgr_t *a_tbl;
1096
1097 for (i=0; i < NUM_A_TABLES; i++) {
1098 /* Select the next available A manager from the pool */
1099 a_tbl = &Atmgrbase[i];
1100
1101 /*
1102 * Clear its parent entry. Set its wired and valid
1103 * entry count to zero.
1104 */
1105 a_tbl->at_parent = NULL;
1106 a_tbl->at_wcnt = a_tbl->at_ecnt = 0;
1107
1108 /* Assign it the next available MMU A table from the pool */
1109 a_tbl->at_dtbl = &mmuAbase[i * MMU_A_TBL_SIZE];
1110
1111 /*
1112 * Initialize the MMU A table with the table in the `proc0',
1113 * or kernel, mapping. This ensures that every process has
1114 * the kernel mapped in the top part of its address space.
1115 */
1116 bcopy(kernAbase, a_tbl->at_dtbl, MMU_A_TBL_SIZE *
1117 sizeof(mmu_long_dte_t));
1118
1119 /*
1120 * Finally, insert the manager into the A pool,
1121 * making it ready to be used by the system.
1122 */
1123 TAILQ_INSERT_TAIL(&a_pool, a_tbl, at_link);
1124 }
1125 }
1126
1127 /* pmap_init_b_tables() INTERNAL
1128 **
1129 * Initializes all B table managers, their MMU B tables, and
1130 * inserts them into the B manager pool for use by the system.
1131 */
1132 void
1133 pmap_init_b_tables()
1134 {
1135 int i,j;
1136 b_tmgr_t *b_tbl;
1137
1138 for (i=0; i < NUM_B_TABLES; i++) {
1139 /* Select the next available B manager from the pool */
1140 b_tbl = &Btmgrbase[i];
1141
1142 b_tbl->bt_parent = NULL; /* clear its parent, */
1143 b_tbl->bt_pidx = 0; /* parent index, */
1144 b_tbl->bt_wcnt = 0; /* wired entry count, */
1145 b_tbl->bt_ecnt = 0; /* valid entry count. */
1146
1147 /* Assign it the next available MMU B table from the pool */
1148 b_tbl->bt_dtbl = &mmuBbase[i * MMU_B_TBL_SIZE];
1149
1150 /* Invalidate every descriptor in the table */
1151 for (j=0; j < MMU_B_TBL_SIZE; j++)
1152 b_tbl->bt_dtbl[j].attr.raw = MMU_DT_INVALID;
1153
1154 /* Insert the manager into the B pool */
1155 TAILQ_INSERT_TAIL(&b_pool, b_tbl, bt_link);
1156 }
1157 }
1158
1159 /* pmap_init_c_tables() INTERNAL
1160 **
1161 * Initializes all C table managers, their MMU C tables, and
1162 * inserts them into the C manager pool for use by the system.
1163 */
1164 void
1165 pmap_init_c_tables()
1166 {
1167 int i,j;
1168 c_tmgr_t *c_tbl;
1169
1170 for (i=0; i < NUM_C_TABLES; i++) {
1171 /* Select the next available C manager from the pool */
1172 c_tbl = &Ctmgrbase[i];
1173
1174 c_tbl->ct_parent = NULL; /* clear its parent, */
1175 c_tbl->ct_pidx = 0; /* parent index, */
1176 c_tbl->ct_wcnt = 0; /* wired entry count, */
1177 c_tbl->ct_ecnt = 0; /* valid entry count. */
1178
1179 /* Assign it the next available MMU C table from the pool */
1180 c_tbl->ct_dtbl = &mmuCbase[i * MMU_C_TBL_SIZE];
1181
1182 for (j=0; j < MMU_C_TBL_SIZE; j++)
1183 c_tbl->ct_dtbl[j].attr.raw = MMU_DT_INVALID;
1184
1185 TAILQ_INSERT_TAIL(&c_pool, c_tbl, ct_link);
1186 }
1187 }
1188
1189 /* pmap_init_pv() INTERNAL
1190 **
1191 * Initializes the Physical to Virtual mapping system.
1192 */
1193 void
1194 pmap_init_pv()
1195 {
1196 int i;
1197
1198 /* Initialize every PV head. */
1199 for (i = 0; i < sun3x_btop(total_phys_mem); i++) {
1200 pvbase[i].pv_idx = PVE_EOL; /* Indicate no mappings */
1201 pvbase[i].pv_flags = 0; /* Zero out page flags */
1202 }
1203
1204 pv_initialized = TRUE;
1205 }
1206
1207 /* get_a_table INTERNAL
1208 **
1209 * Retrieve and return a level A table for use in a user map.
1210 */
1211 a_tmgr_t *
1212 get_a_table()
1213 {
1214 a_tmgr_t *tbl;
1215 pmap_t pmap;
1216
1217 /* Get the top A table in the pool */
1218 tbl = a_pool.tqh_first;
1219 if (tbl == NULL) {
1220 /*
1221 * XXX - Instead of panicing here and in other get_x_table
1222 * functions, we do have the option of sleeping on the head of
1223 * the table pool. Any function which updates the table pool
1224 * would then issue a wakeup() on the head, thus waking up any
1225 * processes waiting for a table.
1226 *
1227 * Actually, the place to sleep would be when some process
1228 * asks for a "wired" mapping that would run us short of
1229 * mapping resources. This design DEPENDS on always having
1230 * some mapping resources in the pool for stealing, so we
1231 * must make sure we NEVER let the pool become empty. -gwr
1232 */
1233 panic("get_a_table: out of A tables.");
1234 }
1235
1236 TAILQ_REMOVE(&a_pool, tbl, at_link);
1237 /*
1238 * If the table has a non-null parent pointer then it is in use.
1239 * Forcibly abduct it from its parent and clear its entries.
1240 * No re-entrancy worries here. This table would not be in the
1241 * table pool unless it was available for use.
1242 *
1243 * Note that the second argument to free_a_table() is FALSE. This
1244 * indicates that the table should not be relinked into the A table
1245 * pool. That is a job for the function that called us.
1246 */
1247 if (tbl->at_parent) {
1248 pmap = tbl->at_parent;
1249 free_a_table(tbl, FALSE);
1250 pmap->pm_a_tmgr = NULL;
1251 pmap->pm_a_phys = kernAphys;
1252 }
1253 #ifdef NON_REENTRANT
1254 /*
1255 * If the table isn't to be wired down, re-insert it at the
1256 * end of the pool.
1257 */
1258 if (!wired)
1259 /*
1260 * Quandary - XXX
1261 * Would it be better to let the calling function insert this
1262 * table into the queue? By inserting it here, we are allowing
1263 * it to be stolen immediately. The calling function is
1264 * probably not expecting to use a table that it is not
1265 * assured full control of.
1266 * Answer - In the intrest of re-entrancy, it is best to let
1267 * the calling function determine when a table is available
1268 * for use. Therefore this code block is not used.
1269 */
1270 TAILQ_INSERT_TAIL(&a_pool, tbl, at_link);
1271 #endif /* NON_REENTRANT */
1272 return tbl;
1273 }
1274
1275 /* get_b_table INTERNAL
1276 **
1277 * Return a level B table for use.
1278 */
1279 b_tmgr_t *
1280 get_b_table()
1281 {
1282 b_tmgr_t *tbl;
1283
1284 /* See 'get_a_table' for comments. */
1285 tbl = b_pool.tqh_first;
1286 if (tbl == NULL)
1287 panic("get_b_table: out of B tables.");
1288 TAILQ_REMOVE(&b_pool, tbl, bt_link);
1289 if (tbl->bt_parent) {
1290 tbl->bt_parent->at_dtbl[tbl->bt_pidx].attr.raw = MMU_DT_INVALID;
1291 tbl->bt_parent->at_ecnt--;
1292 free_b_table(tbl, FALSE);
1293 }
1294 #ifdef NON_REENTRANT
1295 if (!wired)
1296 /* XXX see quandary in get_b_table */
1297 /* XXX start lock */
1298 TAILQ_INSERT_TAIL(&b_pool, tbl, bt_link);
1299 /* XXX end lock */
1300 #endif /* NON_REENTRANT */
1301 return tbl;
1302 }
1303
1304 /* get_c_table INTERNAL
1305 **
1306 * Return a level C table for use.
1307 */
1308 c_tmgr_t *
1309 get_c_table()
1310 {
1311 c_tmgr_t *tbl;
1312
1313 /* See 'get_a_table' for comments */
1314 tbl = c_pool.tqh_first;
1315 if (tbl == NULL)
1316 panic("get_c_table: out of C tables.");
1317 TAILQ_REMOVE(&c_pool, tbl, ct_link);
1318 if (tbl->ct_parent) {
1319 tbl->ct_parent->bt_dtbl[tbl->ct_pidx].attr.raw = MMU_DT_INVALID;
1320 tbl->ct_parent->bt_ecnt--;
1321 free_c_table(tbl, FALSE);
1322 }
1323 #ifdef NON_REENTRANT
1324 if (!wired)
1325 /* XXX See quandary in get_a_table */
1326 /* XXX start lock */
1327 TAILQ_INSERT_TAIL(&c_pool, tbl, c_link);
1328 /* XXX end lock */
1329 #endif /* NON_REENTRANT */
1330
1331 return tbl;
1332 }
1333
1334 /*
1335 * The following 'free_table' and 'steal_table' functions are called to
1336 * detach tables from their current obligations (parents and children) and
1337 * prepare them for reuse in another mapping.
1338 *
1339 * Free_table is used when the calling function will handle the fate
1340 * of the parent table, such as returning it to the free pool when it has
1341 * no valid entries. Functions that do not want to handle this should
1342 * call steal_table, in which the parent table's descriptors and entry
1343 * count are automatically modified when this table is removed.
1344 */
1345
1346 /* free_a_table INTERNAL
1347 **
1348 * Unmaps the given A table and all child tables from their current
1349 * mappings. Returns the number of pages that were invalidated.
1350 * If 'relink' is true, the function will return the table to the head
1351 * of the available table pool.
1352 *
1353 * Cache note: The MC68851 will automatically flush all
1354 * descriptors derived from a given A table from its
1355 * Automatic Translation Cache (ATC) if we issue a
1356 * 'PFLUSHR' instruction with the base address of the
1357 * table. This function should do, and does so.
1358 * Note note: We are using an MC68030 - there is no
1359 * PFLUSHR.
1360 */
1361 int
1362 free_a_table(a_tbl, relink)
1363 a_tmgr_t *a_tbl;
1364 boolean_t relink;
1365 {
1366 int i, removed_cnt;
1367 mmu_long_dte_t *dte;
1368 mmu_short_dte_t *dtbl;
1369 b_tmgr_t *tmgr;
1370
1371 /*
1372 * Flush the ATC cache of all cached descriptors derived
1373 * from this table.
1374 * XXX - Sun3x does not use 68851's cached table feature
1375 * flush_atc_crp(mmu_vtop(a_tbl->dte));
1376 */
1377
1378 /*
1379 * Remove any pending cache flushes that were designated
1380 * for the pmap this A table belongs to.
1381 * a_tbl->parent->atc_flushq[0] = 0;
1382 * XXX - Not implemented in sun3x.
1383 */
1384
1385 /*
1386 * All A tables in the system should retain a map for the
1387 * kernel. If the table contains any valid descriptors
1388 * (other than those for the kernel area), invalidate them all,
1389 * stopping short of the kernel's entries.
1390 */
1391 removed_cnt = 0;
1392 if (a_tbl->at_ecnt) {
1393 dte = a_tbl->at_dtbl;
1394 for (i=0; i < MMU_TIA(KERNBASE); i++) {
1395 /*
1396 * If a table entry points to a valid B table, free
1397 * it and its children.
1398 */
1399 if (MMU_VALID_DT(dte[i])) {
1400 /*
1401 * The following block does several things,
1402 * from innermost expression to the
1403 * outermost:
1404 * 1) It extracts the base (cc 1996)
1405 * address of the B table pointed
1406 * to in the A table entry dte[i].
1407 * 2) It converts this base address into
1408 * the virtual address it can be
1409 * accessed with. (all MMU tables point
1410 * to physical addresses.)
1411 * 3) It finds the corresponding manager
1412 * structure which manages this MMU table.
1413 * 4) It frees the manager structure.
1414 * (This frees the MMU table and all
1415 * child tables. See 'free_b_table' for
1416 * details.)
1417 */
1418 dtbl = mmu_ptov(dte[i].addr.raw);
1419 tmgr = mmuB2tmgr(dtbl);
1420 removed_cnt += free_b_table(tmgr, TRUE);
1421 dte[i].attr.raw = MMU_DT_INVALID;
1422 }
1423 }
1424 a_tbl->at_ecnt = 0;
1425 }
1426 if (relink) {
1427 a_tbl->at_parent = NULL;
1428 TAILQ_REMOVE(&a_pool, a_tbl, at_link);
1429 TAILQ_INSERT_HEAD(&a_pool, a_tbl, at_link);
1430 }
1431 return removed_cnt;
1432 }
1433
1434 /* free_b_table INTERNAL
1435 **
1436 * Unmaps the given B table and all its children from their current
1437 * mappings. Returns the number of pages that were invalidated.
1438 * (For comments, see 'free_a_table()').
1439 */
1440 int
1441 free_b_table(b_tbl, relink)
1442 b_tmgr_t *b_tbl;
1443 boolean_t relink;
1444 {
1445 int i, removed_cnt;
1446 mmu_short_dte_t *dte;
1447 mmu_short_pte_t *dtbl;
1448 c_tmgr_t *tmgr;
1449
1450 removed_cnt = 0;
1451 if (b_tbl->bt_ecnt) {
1452 dte = b_tbl->bt_dtbl;
1453 for (i=0; i < MMU_B_TBL_SIZE; i++) {
1454 if (MMU_VALID_DT(dte[i])) {
1455 dtbl = mmu_ptov(MMU_DTE_PA(dte[i]));
1456 tmgr = mmuC2tmgr(dtbl);
1457 removed_cnt += free_c_table(tmgr, TRUE);
1458 dte[i].attr.raw = MMU_DT_INVALID;
1459 }
1460 }
1461 b_tbl->bt_ecnt = 0;
1462 }
1463
1464 if (relink) {
1465 b_tbl->bt_parent = NULL;
1466 TAILQ_REMOVE(&b_pool, b_tbl, bt_link);
1467 TAILQ_INSERT_HEAD(&b_pool, b_tbl, bt_link);
1468 }
1469 return removed_cnt;
1470 }
1471
1472 /* free_c_table INTERNAL
1473 **
1474 * Unmaps the given C table from use and returns it to the pool for
1475 * re-use. Returns the number of pages that were invalidated.
1476 *
1477 * This function preserves any physical page modification information
1478 * contained in the page descriptors within the C table by calling
1479 * 'pmap_remove_pte().'
1480 */
1481 int
1482 free_c_table(c_tbl, relink)
1483 c_tmgr_t *c_tbl;
1484 boolean_t relink;
1485 {
1486 int i, removed_cnt;
1487
1488 removed_cnt = 0;
1489 if (c_tbl->ct_ecnt) {
1490 for (i=0; i < MMU_C_TBL_SIZE; i++) {
1491 if (MMU_VALID_DT(c_tbl->ct_dtbl[i])) {
1492 pmap_remove_pte(&c_tbl->ct_dtbl[i]);
1493 removed_cnt++;
1494 }
1495 }
1496 c_tbl->ct_ecnt = 0;
1497 }
1498
1499 if (relink) {
1500 c_tbl->ct_parent = NULL;
1501 TAILQ_REMOVE(&c_pool, c_tbl, ct_link);
1502 TAILQ_INSERT_HEAD(&c_pool, c_tbl, ct_link);
1503 }
1504 return removed_cnt;
1505 }
1506
1507 #if 0
1508 /* free_c_table_novalid INTERNAL
1509 **
1510 * Frees the given C table manager without checking to see whether
1511 * or not it contains any valid page descriptors as it is assumed
1512 * that it does not.
1513 */
1514 void
1515 free_c_table_novalid(c_tbl)
1516 c_tmgr_t *c_tbl;
1517 {
1518 TAILQ_REMOVE(&c_pool, c_tbl, ct_link);
1519 TAILQ_INSERT_HEAD(&c_pool, c_tbl, ct_link);
1520 c_tbl->ct_parent->bt_dtbl[c_tbl->ct_pidx].attr.raw = MMU_DT_INVALID;
1521 c_tbl->ct_parent->bt_ecnt--;
1522 /*
1523 * XXX - Should call equiv. of 'free_b_table_novalid' here if
1524 * we just removed the last entry of the parent B table.
1525 * But I want to insure that this will not endanger pmap_enter()
1526 * with sudden removal of tables it is working with.
1527 *
1528 * We should probably add another field to each table, indicating
1529 * whether or not it is 'locked', ie. in the process of being
1530 * modified.
1531 */
1532 c_tbl->ct_parent = NULL;
1533 }
1534 #endif
1535
1536 /* pmap_remove_pte INTERNAL
1537 **
1538 * Unmap the given pte and preserve any page modification
1539 * information by transfering it to the pv head of the
1540 * physical page it maps to. This function does not update
1541 * any reference counts because it is assumed that the calling
1542 * function will do so.
1543 */
1544 void
1545 pmap_remove_pte(pte)
1546 mmu_short_pte_t *pte;
1547 {
1548 u_short pv_idx, targ_idx;
1549 int s;
1550 vm_offset_t pa;
1551 pv_t *pv;
1552
1553 pa = MMU_PTE_PA(*pte);
1554 if (is_managed(pa)) {
1555 pv = pa2pv(pa);
1556 targ_idx = pteidx(pte); /* Index of PTE being removed */
1557
1558 /*
1559 * If the PTE being removed is the first (or only) PTE in
1560 * the list of PTEs currently mapped to this page, remove the
1561 * PTE by changing the index found on the PV head. Otherwise
1562 * a linear search through the list will have to be executed
1563 * in order to find the PVE which points to the PTE being
1564 * removed, so that it may be modified to point to its new
1565 * neighbor.
1566 */
1567 s = splimp();
1568 pv_idx = pv->pv_idx; /* Index of first PTE in PV list */
1569 if (pv_idx == targ_idx) {
1570 pv->pv_idx = pvebase[targ_idx].pve_next;
1571 } else {
1572 /*
1573 * Find the PV element which points to the target
1574 * element.
1575 */
1576 while (pvebase[pv_idx].pve_next != targ_idx) {
1577 pv_idx = pvebase[pv_idx].pve_next;
1578 #ifdef DIAGNOSTIC
1579 if (pv_idx == PVE_EOL)
1580 panic("pmap_remove_pte: pv list end!");
1581 #endif
1582 }
1583
1584 /*
1585 * At this point, pv_idx is the index of the PV
1586 * element just before the target element in the list.
1587 * Unlink the target.
1588 */
1589 pvebase[pv_idx].pve_next = pvebase[targ_idx].pve_next;
1590 }
1591 /*
1592 * Save the mod/ref bits of the pte by simply
1593 * ORing the entire pte onto the pv_flags member
1594 * of the pv structure.
1595 * There is no need to use a separate bit pattern
1596 * for usage information on the pv head than that
1597 * which is used on the MMU ptes.
1598 */
1599 pv->pv_flags |= (u_short) pte->attr.raw;
1600 splx(s);
1601 }
1602
1603 pte->attr.raw = MMU_DT_INVALID;
1604 }
1605
1606 #if 0 /* XXX - I am eliminating this function. -j */
1607 /* pmap_dereference_pte INTERNAL
1608 **
1609 * Update the necessary reference counts in any tables and pmaps to
1610 * reflect the removal of the given pte. Only called when no knowledge of
1611 * the pte's associated pmap is unknown. This only occurs in the PV call
1612 * 'pmap_page_protect()' with a protection of VM_PROT_NONE, which means
1613 * that all references to a given physical page must be removed.
1614 */
1615 void
1616 pmap_dereference_pte(pte)
1617 mmu_short_pte_t *pte;
1618 {
1619 vm_offset_t va;
1620 c_tmgr_t *c_tbl;
1621 pmap_t pmap;
1622
1623 va = pmap_get_pteinfo(pte, &pmap, &c_tbl);
1624 /*
1625 * Flush the translation cache of the page mapped by the PTE, should
1626 * it prove to be in the current pmap. Kernel mappings appear in
1627 * all address spaces, so they always should be flushed
1628 */
1629 if (pmap == pmap_kernel() || pmap == current_pmap())
1630 TBIS(va);
1631
1632 /*
1633 * If the mapping belongs to a user map, update the necessary
1634 * reference counts in the table manager. XXX - It would be
1635 * much easier to keep the resident count in the c_tmgr_t -gwr
1636 */
1637 if (pmap != pmap_kernel()) {
1638 /*
1639 * Most of the situations in which pmap_dereference_pte() is
1640 * called are usually temporary removals of a mapping. Often
1641 * the mapping is reinserted shortly afterwards. If the parent
1642 * C table's valid entry count reaches zero as a result of
1643 * removing this mapping, we could return it to the free pool,
1644 * but we leave it alone because it is likely to be used as
1645 * stated above.
1646 */
1647 c_tbl->ct_ecnt--;
1648 pmap->pm_stats.resident_count--;
1649 }
1650 }
1651 #endif 0 /* function elimination */
1652
1653 /* pmap_stroll INTERNAL
1654 **
1655 * Retrieve the addresses of all table managers involved in the mapping of
1656 * the given virtual address. If the table walk completed sucessfully,
1657 * return TRUE. If it was only partially sucessful, return FALSE.
1658 * The table walk performed by this function is important to many other
1659 * functions in this module.
1660 *
1661 * Note: This function ought to be easier to read.
1662 */
1663 boolean_t
1664 pmap_stroll(pmap, va, a_tbl, b_tbl, c_tbl, pte, a_idx, b_idx, pte_idx)
1665 pmap_t pmap;
1666 vm_offset_t va;
1667 a_tmgr_t **a_tbl;
1668 b_tmgr_t **b_tbl;
1669 c_tmgr_t **c_tbl;
1670 mmu_short_pte_t **pte;
1671 int *a_idx, *b_idx, *pte_idx;
1672 {
1673 mmu_long_dte_t *a_dte; /* A: long descriptor table */
1674 mmu_short_dte_t *b_dte; /* B: short descriptor table */
1675
1676 if (pmap == pmap_kernel())
1677 return FALSE;
1678
1679 /* Does the given pmap have its own A table? */
1680 *a_tbl = pmap->pm_a_tmgr;
1681 if (*a_tbl == NULL)
1682 return FALSE; /* No. Return unknown. */
1683 /* Does the A table have a valid B table
1684 * under the corresponding table entry?
1685 */
1686 *a_idx = MMU_TIA(va);
1687 a_dte = &((*a_tbl)->at_dtbl[*a_idx]);
1688 if (!MMU_VALID_DT(*a_dte))
1689 return FALSE; /* No. Return unknown. */
1690 /* Yes. Extract B table from the A table. */
1691 *b_tbl = mmuB2tmgr(mmu_ptov(a_dte->addr.raw));
1692 /* Does the B table have a valid C table
1693 * under the corresponding table entry?
1694 */
1695 *b_idx = MMU_TIB(va);
1696 b_dte = &((*b_tbl)->bt_dtbl[*b_idx]);
1697 if (!MMU_VALID_DT(*b_dte))
1698 return FALSE; /* No. Return unknown. */
1699 /* Yes. Extract C table from the B table. */
1700 *c_tbl = mmuC2tmgr(mmu_ptov(MMU_DTE_PA(*b_dte)));
1701 *pte_idx = MMU_TIC(va);
1702 *pte = &((*c_tbl)->ct_dtbl[*pte_idx]);
1703
1704 return TRUE;
1705 }
1706
1707 /* pmap_enter INTERFACE
1708 **
1709 * Called by the kernel to map a virtual address
1710 * to a physical address in the given process map.
1711 *
1712 * Note: this function should apply an exclusive lock
1713 * on the pmap system for its duration. (it certainly
1714 * would save my hair!!)
1715 * This function ought to be easier to read.
1716 */
1717 void
1718 pmap_enter(pmap, va, pa, prot, wired)
1719 pmap_t pmap;
1720 vm_offset_t va;
1721 vm_offset_t pa;
1722 vm_prot_t prot;
1723 boolean_t wired;
1724 {
1725 boolean_t insert, managed; /* Marks the need for PV insertion.*/
1726 u_short nidx; /* PV list index */
1727 int s; /* Used for splimp()/splx() */
1728 int flags; /* Mapping flags. eg. Cache inhibit */
1729 u_int a_idx, b_idx, pte_idx; /* table indices */
1730 a_tmgr_t *a_tbl; /* A: long descriptor table manager */
1731 b_tmgr_t *b_tbl; /* B: short descriptor table manager */
1732 c_tmgr_t *c_tbl; /* C: short page table manager */
1733 mmu_long_dte_t *a_dte; /* A: long descriptor table */
1734 mmu_short_dte_t *b_dte; /* B: short descriptor table */
1735 mmu_short_pte_t *c_pte; /* C: short page descriptor table */
1736 pv_t *pv; /* pv list head */
1737 enum {NONE, NEWA, NEWB, NEWC} llevel; /* used at end */
1738
1739 if (pmap == NULL)
1740 return;
1741 if (pmap == pmap_kernel()) {
1742 pmap_enter_kernel(va, pa, prot);
1743 return;
1744 }
1745
1746 flags = (pa & ~MMU_PAGE_MASK);
1747 pa &= MMU_PAGE_MASK;
1748
1749 /*
1750 * Determine if the physical address being mapped is managed.
1751 * If it isn't, the mapping should be cache inhibited. (This is
1752 * applied later in the function.) XXX - Why non-cached? -gwr
1753 */
1754 if ((managed = is_managed(pa)) == FALSE)
1755 flags |= PMAP_NC;
1756
1757 /*
1758 * For user mappings we walk along the MMU tables of the given
1759 * pmap, reaching a PTE which describes the virtual page being
1760 * mapped or changed. If any level of the walk ends in an invalid
1761 * entry, a table must be allocated and the entry must be updated
1762 * to point to it.
1763 * There is a bit of confusion as to whether this code must be
1764 * re-entrant. For now we will assume it is. To support
1765 * re-entrancy we must unlink tables from the table pool before
1766 * we assume we may use them. Tables are re-linked into the pool
1767 * when we are finished with them at the end of the function.
1768 * But I don't feel like doing that until we have proof that this
1769 * needs to be re-entrant.
1770 * 'llevel' records which tables need to be relinked.
1771 */
1772 llevel = NONE;
1773
1774 /*
1775 * Step 1 - Retrieve the A table from the pmap. If it has no
1776 * A table, allocate a new one from the available pool.
1777 */
1778
1779 a_tbl = pmap->pm_a_tmgr;
1780 if (a_tbl == NULL) {
1781 /*
1782 * This pmap does not currently have an A table. Allocate
1783 * a new one.
1784 */
1785 a_tbl = get_a_table();
1786 a_tbl->at_parent = pmap;
1787
1788 /*
1789 * Assign this new A table to the pmap, and calculate its
1790 * physical address so that loadcrp() can be used to make
1791 * the table active.
1792 */
1793 pmap->pm_a_tmgr = a_tbl;
1794 pmap->pm_a_phys = mmu_vtop(a_tbl->at_dtbl);
1795
1796 /*
1797 * If the process receiving a new A table is the current
1798 * process, we are responsible for setting the MMU so that
1799 * it becomes the current address space. This only adds
1800 * new mappings, so no need to flush anything.
1801 */
1802 if (pmap == current_pmap()) {
1803 kernel_crp.rp_addr = pmap->pm_a_phys;
1804 loadcrp(&kernel_crp);
1805 }
1806
1807 if (!wired)
1808 llevel = NEWA;
1809 } else {
1810 /*
1811 * Use the A table already allocated for this pmap.
1812 * Unlink it from the A table pool if necessary.
1813 */
1814 if (wired && !a_tbl->at_wcnt)
1815 TAILQ_REMOVE(&a_pool, a_tbl, at_link);
1816 }
1817
1818 /*
1819 * Step 2 - Walk into the B table. If there is no valid B table,
1820 * allocate one.
1821 */
1822
1823 a_idx = MMU_TIA(va); /* Calculate the TIA of the VA. */
1824 a_dte = &a_tbl->at_dtbl[a_idx]; /* Retrieve descriptor from table */
1825 if (MMU_VALID_DT(*a_dte)) { /* Is the descriptor valid? */
1826 /* The descriptor is valid. Use the B table it points to. */
1827 /*************************************
1828 * a_idx *
1829 * v *
1830 * a_tbl -> +-+-+-+-+-+-+-+-+-+-+-+- *
1831 * | | | | | | | | | | | | *
1832 * +-+-+-+-+-+-+-+-+-+-+-+- *
1833 * | *
1834 * \- b_tbl -> +-+- *
1835 * | | *
1836 * +-+- *
1837 *************************************/
1838 b_dte = mmu_ptov(a_dte->addr.raw);
1839 b_tbl = mmuB2tmgr(b_dte);
1840
1841 /*
1842 * If the requested mapping must be wired, but this table
1843 * being used to map it is not, the table must be removed
1844 * from the available pool and its wired entry count
1845 * incremented.
1846 */
1847 if (wired && !b_tbl->bt_wcnt) {
1848 TAILQ_REMOVE(&b_pool, b_tbl, bt_link);
1849 a_tbl->at_wcnt++;
1850 }
1851 } else {
1852 /* The descriptor is invalid. Allocate a new B table. */
1853 b_tbl = get_b_table();
1854
1855 /* Point the parent A table descriptor to this new B table. */
1856 a_dte->addr.raw = mmu_vtop(b_tbl->bt_dtbl);
1857 a_dte->attr.raw = MMU_LONG_DTE_LU | MMU_DT_SHORT;
1858 a_tbl->at_ecnt++; /* Update parent's valid entry count */
1859
1860 /* Create the necessary back references to the parent table */
1861 b_tbl->bt_parent = a_tbl;
1862 b_tbl->bt_pidx = a_idx;
1863
1864 /*
1865 * If this table is to be wired, make sure the parent A table
1866 * wired count is updated to reflect that it has another wired
1867 * entry.
1868 */
1869 if (wired)
1870 a_tbl->at_wcnt++;
1871 else if (llevel == NONE)
1872 llevel = NEWB;
1873 }
1874
1875 /*
1876 * Step 3 - Walk into the C table, if there is no valid C table,
1877 * allocate one.
1878 */
1879
1880 b_idx = MMU_TIB(va); /* Calculate the TIB of the VA */
1881 b_dte = &b_tbl->bt_dtbl[b_idx]; /* Retrieve descriptor from table */
1882 if (MMU_VALID_DT(*b_dte)) { /* Is the descriptor valid? */
1883 /* The descriptor is valid. Use the C table it points to. */
1884 /**************************************
1885 * c_idx *
1886 * | v *
1887 * \- b_tbl -> +-+-+-+-+-+-+-+-+-+-+- *
1888 * | | | | | | | | | | | *
1889 * +-+-+-+-+-+-+-+-+-+-+- *
1890 * | *
1891 * \- c_tbl -> +-+-- *
1892 * | | | *
1893 * +-+-- *
1894 **************************************/
1895 c_pte = mmu_ptov(MMU_PTE_PA(*b_dte));
1896 c_tbl = mmuC2tmgr(c_pte);
1897
1898 /* If mapping is wired and table is not */
1899 if (wired && !c_tbl->ct_wcnt) {
1900 TAILQ_REMOVE(&c_pool, c_tbl, ct_link);
1901 b_tbl->bt_wcnt++;
1902 }
1903 } else {
1904 /* The descriptor is invalid. Allocate a new C table. */
1905 c_tbl = get_c_table();
1906
1907 /* Point the parent B table descriptor to this new C table. */
1908 b_dte->attr.raw = mmu_vtop(c_tbl->ct_dtbl);
1909 b_dte->attr.raw |= MMU_DT_SHORT;
1910 b_tbl->bt_ecnt++; /* Update parent's valid entry count */
1911
1912 /* Create the necessary back references to the parent table */
1913 c_tbl->ct_parent = b_tbl;
1914 c_tbl->ct_pidx = b_idx;
1915
1916 /*
1917 * If this table is to be wired, make sure the parent B table
1918 * wired count is updated to reflect that it has another wired
1919 * entry.
1920 */
1921 if (wired)
1922 b_tbl->bt_wcnt++;
1923 else if (llevel == NONE)
1924 llevel = NEWC;
1925 }
1926
1927 /*
1928 * Step 4 - Deposit a page descriptor (PTE) into the appropriate
1929 * slot of the C table, describing the PA to which the VA is mapped.
1930 */
1931
1932 pte_idx = MMU_TIC(va);
1933 c_pte = &c_tbl->ct_dtbl[pte_idx];
1934 if (MMU_VALID_DT(*c_pte)) { /* Is the entry currently valid? */
1935 /*
1936 * The PTE is currently valid. This particular call
1937 * is just a synonym for one (or more) of the following
1938 * operations:
1939 * change protection of a page
1940 * change wiring status of a page
1941 * remove the mapping of a page
1942 *
1943 * XXX - Semi critical: This code should unwire the PTE
1944 * and, possibly, associated parent tables if this is a
1945 * change wiring operation. Currently it does not.
1946 *
1947 * This may be ok if pmap_change_wiring() is the only
1948 * interface used to UNWIRE a page.
1949 */
1950
1951 /* First check if this is a wiring operation. */
1952 if (wired && (c_pte->attr.raw & MMU_SHORT_PTE_WIRED)) {
1953 /*
1954 * The PTE is already wired. To prevent it from being
1955 * counted as a new wiring operation, reset the 'wired'
1956 * variable.
1957 */
1958 wired = FALSE;
1959 }
1960
1961 /* Is the new address the same as the old? */
1962 if (MMU_PTE_PA(*c_pte) == pa) {
1963 /*
1964 * Yes, mark that it does not need to be reinserted
1965 * into the PV list.
1966 */
1967 insert = FALSE;
1968
1969 /*
1970 * Clear all but the modified, referenced and wired
1971 * bits on the PTE.
1972 */
1973 c_pte->attr.raw &= (MMU_SHORT_PTE_M
1974 | MMU_SHORT_PTE_USED | MMU_SHORT_PTE_WIRED);
1975 } else {
1976 /* No, remove the old entry */
1977 pmap_remove_pte(c_pte);
1978 insert = TRUE;
1979 }
1980
1981 /*
1982 * TLB flush is only necessary if modifying current map.
1983 * However, in pmap_enter(), the pmap almost always IS
1984 * the current pmap, so don't even bother to check.
1985 */
1986 TBIS(va);
1987 } else {
1988 /*
1989 * The PTE is invalid. Increment the valid entry count in
1990 * the C table manager to reflect the addition of a new entry.
1991 */
1992 c_tbl->ct_ecnt++;
1993
1994 /* XXX - temporarily make sure the PTE is cleared. */
1995 c_pte->attr.raw = 0;
1996
1997 /* It will also need to be inserted into the PV list. */
1998 insert = TRUE;
1999 }
2000
2001 /*
2002 * If page is changing from unwired to wired status, set an unused bit
2003 * within the PTE to indicate that it is wired. Also increment the
2004 * wired entry count in the C table manager.
2005 */
2006 if (wired) {
2007 c_pte->attr.raw |= MMU_SHORT_PTE_WIRED;
2008 c_tbl->ct_wcnt++;
2009 }
2010
2011 /*
2012 * Map the page, being careful to preserve modify/reference/wired
2013 * bits. At this point it is assumed that the PTE either has no bits
2014 * set, or if there are set bits, they are only modified, reference or
2015 * wired bits. If not, the following statement will cause erratic
2016 * behavior.
2017 */
2018 #ifdef PMAP_DEBUG
2019 if (c_pte->attr.raw & ~(MMU_SHORT_PTE_M |
2020 MMU_SHORT_PTE_USED | MMU_SHORT_PTE_WIRED)) {
2021 printf("pmap_enter: junk left in PTE at %p\n", c_pte);
2022 Debugger();
2023 }
2024 #endif
2025 c_pte->attr.raw |= ((u_long) pa | MMU_DT_PAGE);
2026
2027 /*
2028 * If the mapping should be read-only, set the write protect
2029 * bit in the PTE.
2030 */
2031 if (!(prot & VM_PROT_WRITE))
2032 c_pte->attr.raw |= MMU_SHORT_PTE_WP;
2033
2034 /*
2035 * If the mapping should be cache inhibited (indicated by the flag
2036 * bits found on the lower order of the physical address.)
2037 * mark the PTE as a cache inhibited page.
2038 */
2039 if (flags & PMAP_NC)
2040 c_pte->attr.raw |= MMU_SHORT_PTE_CI;
2041
2042 /*
2043 * If the physical address being mapped is managed by the PV
2044 * system then link the pte into the list of pages mapped to that
2045 * address.
2046 */
2047 if (insert && managed) {
2048 pv = pa2pv(pa);
2049 nidx = pteidx(c_pte);
2050
2051 s = splimp();
2052 pvebase[nidx].pve_next = pv->pv_idx;
2053 pv->pv_idx = nidx;
2054 splx(s);
2055 }
2056
2057 /* Move any allocated tables back into the active pool. */
2058
2059 switch (llevel) {
2060 case NEWA:
2061 TAILQ_INSERT_TAIL(&a_pool, a_tbl, at_link);
2062 /* FALLTHROUGH */
2063 case NEWB:
2064 TAILQ_INSERT_TAIL(&b_pool, b_tbl, bt_link);
2065 /* FALLTHROUGH */
2066 case NEWC:
2067 TAILQ_INSERT_TAIL(&c_pool, c_tbl, ct_link);
2068 /* FALLTHROUGH */
2069 default:
2070 break;
2071 }
2072 }
2073
2074 /* pmap_enter_kernel INTERNAL
2075 **
2076 * Map the given virtual address to the given physical address within the
2077 * kernel address space. This function exists because the kernel map does
2078 * not do dynamic table allocation. It consists of a contiguous array of ptes
2079 * and can be edited directly without the need to walk through any tables.
2080 *
2081 * XXX: "Danger, Will Robinson!"
2082 * Note that the kernel should never take a fault on any page
2083 * between [ KERNBASE .. virtual_avail ] and this is checked in
2084 * trap.c for kernel-mode MMU faults. This means that mappings
2085 * created in that range must be implicily wired. -gwr
2086 */
2087 void
2088 pmap_enter_kernel(va, pa, prot)
2089 vm_offset_t va;
2090 vm_offset_t pa;
2091 vm_prot_t prot;
2092 {
2093 boolean_t was_valid, insert;
2094 u_short pte_idx, pv_idx;
2095 int s, flags;
2096 mmu_short_pte_t *pte;
2097 pv_t *pv;
2098 vm_offset_t old_pa;
2099
2100 flags = (pa & ~MMU_PAGE_MASK);
2101 pa &= MMU_PAGE_MASK;
2102
2103 /*
2104 * Calculate the index of the PTE being modified.
2105 */
2106 pte_idx = (u_long) sun3x_btop(va - KERNBASE);
2107
2108 /* XXX - This array is traditionally named "Sysmap" */
2109 pte = &kernCbase[pte_idx];
2110
2111 s = splimp();
2112 if (MMU_VALID_DT(*pte)) {
2113 was_valid = TRUE;
2114 /*
2115 * If the PTE is already mapped to an address and it differs
2116 * from the address requested, unlink it from the PV list.
2117 *
2118 * This only applies to mappings within virtual_avail
2119 * and VM_MAX_KERNEL_ADDRESS. All others are not requests
2120 * from the VM system and should not be part of the PV system.
2121 */
2122 if ((va >= virtual_avail) && (va < VM_MAX_KERNEL_ADDRESS)) {
2123 old_pa = MMU_PTE_PA(*pte);
2124 if (pa != old_pa) {
2125 if (is_managed(old_pa)) {
2126 /* XXX - Make this into a function call? */
2127 pv = pa2pv(old_pa);
2128 pv_idx = pv->pv_idx;
2129 if (pv_idx == pte_idx) {
2130 pv->pv_idx = pvebase[pte_idx].pve_next;
2131 } else {
2132 while (pvebase[pv_idx].pve_next != pte_idx)
2133 pv_idx = pvebase[pv_idx].pve_next;
2134 pvebase[pv_idx].pve_next =
2135 pvebase[pte_idx].pve_next;
2136 }
2137 /* Save modified/reference bits */
2138 pv->pv_flags |= (u_short) pte->attr.raw;
2139 }
2140 if (is_managed(pa))
2141 insert = TRUE;
2142 else
2143 insert = FALSE;
2144 /*
2145 * Clear out any old bits in the PTE.
2146 */
2147 pte->attr.raw = MMU_DT_INVALID;
2148 } else {
2149 /*
2150 * Old PA and new PA are the same. No need to relink
2151 * the mapping within the PV list.
2152 */
2153 insert = FALSE;
2154
2155 /*
2156 * Save any mod/ref bits on the PTE.
2157 */
2158 pte->attr.raw &= (MMU_SHORT_PTE_USED|MMU_SHORT_PTE_M);
2159 }
2160 } else {
2161 /*
2162 * If the VA lies below virtual_avail or beyond
2163 * VM_MAX_KERNEL_ADDRESS, it is not a request by the VM
2164 * system and hence does not need to be linked into the PV
2165 * system.
2166 */
2167 insert = FALSE;
2168 pte->attr.raw = MMU_DT_INVALID;
2169 }
2170 } else {
2171 pte->attr.raw = MMU_DT_INVALID;
2172 was_valid = FALSE;
2173 if ((va >= virtual_avail) && (va < VM_MAX_KERNEL_ADDRESS)) {
2174 if (is_managed(pa))
2175 insert = TRUE;
2176 else
2177 insert = FALSE;
2178 } else
2179 insert = FALSE;
2180 }
2181
2182 /*
2183 * Map the page. Being careful to preserve modified/referenced bits
2184 * on the PTE.
2185 */
2186 pte->attr.raw |= (pa | MMU_DT_PAGE);
2187
2188 if (!(prot & VM_PROT_WRITE)) /* If access should be read-only */
2189 pte->attr.raw |= MMU_SHORT_PTE_WP;
2190 if (flags & PMAP_NC)
2191 pte->attr.raw |= MMU_SHORT_PTE_CI;
2192 if (was_valid)
2193 TBIS(va);
2194
2195 /*
2196 * Insert the PTE into the PV system, if need be.
2197 */
2198 if (insert) {
2199 pv = pa2pv(pa);
2200 pvebase[pte_idx].pve_next = pv->pv_idx;
2201 pv->pv_idx = pte_idx;
2202 }
2203 splx(s);
2204
2205 }
2206
2207 /* pmap_protect INTERFACE
2208 **
2209 * Apply the given protection to the given virtual address range within
2210 * the given map.
2211 *
2212 * It is ok for the protection applied to be stronger than what is
2213 * specified. We use this to our advantage when the given map has no
2214 * mapping for the virtual address. By skipping a page when this
2215 * is discovered, we are effectively applying a protection of VM_PROT_NONE,
2216 * and therefore do not need to map the page just to apply a protection
2217 * code. Only pmap_enter() needs to create new mappings if they do not exist.
2218 *
2219 * XXX - This function could be speeded up by using pmap_stroll() for inital
2220 * setup, and then manual scrolling in the for() loop.
2221 */
2222 void
2223 pmap_protect(pmap, startva, endva, prot)
2224 pmap_t pmap;
2225 vm_offset_t startva, endva;
2226 vm_prot_t prot;
2227 {
2228 boolean_t iscurpmap;
2229 int a_idx, b_idx, c_idx;
2230 a_tmgr_t *a_tbl;
2231 b_tmgr_t *b_tbl;
2232 c_tmgr_t *c_tbl;
2233 mmu_short_pte_t *pte;
2234
2235 if (pmap == NULL)
2236 return;
2237 if (pmap == pmap_kernel()) {
2238 pmap_protect_kernel(startva, endva, prot);
2239 return;
2240 }
2241
2242 /*
2243 * In this particular pmap implementation, there are only three
2244 * types of memory protection: 'all' (read/write/execute),
2245 * 'read-only' (read/execute) and 'none' (no mapping.)
2246 * It is not possible for us to treat 'executable' as a separate
2247 * protection type. Therefore, protection requests that seek to
2248 * remove execute permission while retaining read or write, and those
2249 * that make little sense (write-only for example) are ignored.
2250 */
2251 switch (prot) {
2252 case VM_PROT_NONE:
2253 /*
2254 * A request to apply the protection code of
2255 * 'VM_PROT_NONE' is a synonym for pmap_remove().
2256 */
2257 pmap_remove(pmap, startva, endva);
2258 return;
2259 case VM_PROT_EXECUTE:
2260 case VM_PROT_READ:
2261 case VM_PROT_READ|VM_PROT_EXECUTE:
2262 /* continue */
2263 break;
2264 case VM_PROT_WRITE:
2265 case VM_PROT_WRITE|VM_PROT_READ:
2266 case VM_PROT_WRITE|VM_PROT_EXECUTE:
2267 case VM_PROT_ALL:
2268 /* None of these should happen in a sane system. */
2269 return;
2270 }
2271
2272 /*
2273 * If the pmap has no A table, it has no mappings and therefore
2274 * there is nothing to protect.
2275 */
2276 if ((a_tbl = pmap->pm_a_tmgr) == NULL)
2277 return;
2278
2279 a_idx = MMU_TIA(startva);
2280 b_idx = MMU_TIB(startva);
2281 c_idx = MMU_TIC(startva);
2282 b_tbl = (b_tmgr_t *) c_tbl = NULL;
2283
2284 iscurpmap = (pmap == current_pmap());
2285 while (startva < endva) {
2286 if (b_tbl || MMU_VALID_DT(a_tbl->at_dtbl[a_idx])) {
2287 if (b_tbl == NULL) {
2288 b_tbl = (b_tmgr_t *) a_tbl->at_dtbl[a_idx].addr.raw;
2289 b_tbl = mmu_ptov((vm_offset_t) b_tbl);
2290 b_tbl = mmuB2tmgr((mmu_short_dte_t *) b_tbl);
2291 }
2292 if (c_tbl || MMU_VALID_DT(b_tbl->bt_dtbl[b_idx])) {
2293 if (c_tbl == NULL) {
2294 c_tbl = (c_tmgr_t *) MMU_DTE_PA(b_tbl->bt_dtbl[b_idx]);
2295 c_tbl = mmu_ptov((vm_offset_t) c_tbl);
2296 c_tbl = mmuC2tmgr((mmu_short_pte_t *) c_tbl);
2297 }
2298 if (MMU_VALID_DT(c_tbl->ct_dtbl[c_idx])) {
2299 pte = &c_tbl->ct_dtbl[c_idx];
2300 /* make the mapping read-only */
2301 pte->attr.raw |= MMU_SHORT_PTE_WP;
2302 /*
2303 * If we just modified the current address space,
2304 * flush any translations for the modified page from
2305 * the translation cache and any data from it in the
2306 * data cache.
2307 */
2308 if (iscurpmap)
2309 TBIS(startva);
2310 }
2311 startva += NBPG;
2312
2313 if (++c_idx >= MMU_C_TBL_SIZE) { /* exceeded C table? */
2314 c_tbl = NULL;
2315 c_idx = 0;
2316 if (++b_idx >= MMU_B_TBL_SIZE) { /* exceeded B table? */
2317 b_tbl = NULL;
2318 b_idx = 0;
2319 }
2320 }
2321 } else { /* C table wasn't valid */
2322 c_tbl = NULL;
2323 c_idx = 0;
2324 startva += MMU_TIB_RANGE;
2325 if (++b_idx >= MMU_B_TBL_SIZE) { /* exceeded B table? */
2326 b_tbl = NULL;
2327 b_idx = 0;
2328 }
2329 } /* C table */
2330 } else { /* B table wasn't valid */
2331 b_tbl = NULL;
2332 b_idx = 0;
2333 startva += MMU_TIA_RANGE;
2334 a_idx++;
2335 } /* B table */
2336 }
2337 }
2338
2339 /* pmap_protect_kernel INTERNAL
2340 **
2341 * Apply the given protection code to a kernel address range.
2342 */
2343 void
2344 pmap_protect_kernel(startva, endva, prot)
2345 vm_offset_t startva, endva;
2346 vm_prot_t prot;
2347 {
2348 vm_offset_t va;
2349 mmu_short_pte_t *pte;
2350
2351 pte = &kernCbase[(unsigned long) sun3x_btop(startva - KERNBASE)];
2352 for (va = startva; va < endva; va += NBPG, pte++) {
2353 if (MMU_VALID_DT(*pte)) {
2354 switch (prot) {
2355 case VM_PROT_ALL:
2356 break;
2357 case VM_PROT_EXECUTE:
2358 case VM_PROT_READ:
2359 case VM_PROT_READ|VM_PROT_EXECUTE:
2360 pte->attr.raw |= MMU_SHORT_PTE_WP;
2361 break;
2362 case VM_PROT_NONE:
2363 /* this is an alias for 'pmap_remove_kernel' */
2364 pmap_remove_pte(pte);
2365 break;
2366 default:
2367 break;
2368 }
2369 /*
2370 * since this is the kernel, immediately flush any cached
2371 * descriptors for this address.
2372 */
2373 TBIS(va);
2374 }
2375 }
2376 }
2377
2378 /* pmap_change_wiring INTERFACE
2379 **
2380 * Changes the wiring of the specified page.
2381 *
2382 * This function is called from vm_fault.c to unwire
2383 * a mapping. It really should be called 'pmap_unwire'
2384 * because it is never asked to do anything but remove
2385 * wirings.
2386 */
2387 void
2388 pmap_change_wiring(pmap, va, wire)
2389 pmap_t pmap;
2390 vm_offset_t va;
2391 boolean_t wire;
2392 {
2393 int a_idx, b_idx, c_idx;
2394 a_tmgr_t *a_tbl;
2395 b_tmgr_t *b_tbl;
2396 c_tmgr_t *c_tbl;
2397 mmu_short_pte_t *pte;
2398
2399 /* Kernel mappings always remain wired. */
2400 if (pmap == pmap_kernel())
2401 return;
2402
2403 #ifdef PMAP_DEBUG
2404 if (wire == TRUE)
2405 panic("pmap_change_wiring: wire requested.");
2406 #endif
2407
2408 /*
2409 * Walk through the tables. If the walk terminates without
2410 * a valid PTE then the address wasn't wired in the first place.
2411 * Return immediately.
2412 */
2413 if (pmap_stroll(pmap, va, &a_tbl, &b_tbl, &c_tbl, &pte, &a_idx,
2414 &b_idx, &c_idx) == FALSE)
2415 return;
2416
2417
2418 /* Is the PTE wired? If not, return. */
2419 if (!(pte->attr.raw & MMU_SHORT_PTE_WIRED))
2420 return;
2421
2422 /* Remove the wiring bit. */
2423 pte->attr.raw &= ~(MMU_SHORT_PTE_WIRED);
2424
2425 /*
2426 * Decrement the wired entry count in the C table.
2427 * If it reaches zero the following things happen:
2428 * 1. The table no longer has any wired entries and is considered
2429 * unwired.
2430 * 2. It is placed on the available queue.
2431 * 3. The parent table's wired entry count is decremented.
2432 * 4. If it reaches zero, this process repeats at step 1 and
2433 * stops at after reaching the A table.
2434 */
2435 if (--c_tbl->ct_wcnt == 0) {
2436 TAILQ_INSERT_TAIL(&c_pool, c_tbl, ct_link);
2437 if (--b_tbl->bt_wcnt == 0) {
2438 TAILQ_INSERT_TAIL(&b_pool, b_tbl, bt_link);
2439 if (--a_tbl->at_wcnt == 0) {
2440 TAILQ_INSERT_TAIL(&a_pool, a_tbl, at_link);
2441 }
2442 }
2443 }
2444 }
2445
2446 /* pmap_pageable INTERFACE
2447 **
2448 * Make the specified range of addresses within the given pmap,
2449 * 'pageable' or 'not-pageable'. A pageable page must not cause
2450 * any faults when referenced. A non-pageable page may.
2451 *
2452 * This routine is only advisory. The VM system will call pmap_enter()
2453 * to wire or unwire pages that are going to be made pageable before calling
2454 * this function. By the time this routine is called, everything that needs
2455 * to be done has already been done.
2456 */
2457 void
2458 pmap_pageable(pmap, start, end, pageable)
2459 pmap_t pmap;
2460 vm_offset_t start, end;
2461 boolean_t pageable;
2462 {
2463 /* not implemented. */
2464 }
2465
2466 /* pmap_copy INTERFACE
2467 **
2468 * Copy the mappings of a range of addresses in one pmap, into
2469 * the destination address of another.
2470 *
2471 * This routine is advisory. Should we one day decide that MMU tables
2472 * may be shared by more than one pmap, this function should be used to
2473 * link them together. Until that day however, we do nothing.
2474 */
2475 void
2476 pmap_copy(pmap_a, pmap_b, dst, len, src)
2477 pmap_t pmap_a, pmap_b;
2478 vm_offset_t dst;
2479 vm_size_t len;
2480 vm_offset_t src;
2481 {
2482 /* not implemented. */
2483 }
2484
2485 /* pmap_copy_page INTERFACE
2486 **
2487 * Copy the contents of one physical page into another.
2488 *
2489 * This function makes use of two virtual pages allocated in pmap_bootstrap()
2490 * to map the two specified physical pages into the kernel address space. It
2491 * then uses bcopy() to copy one into the other.
2492 *
2493 * Note: We could use the transparent translation registers to make the
2494 * mappings. If we do so, be sure to disable interrupts before using them.
2495 */
2496 void
2497 pmap_copy_page(src, dst)
2498 vm_offset_t src, dst;
2499 {
2500 PMAP_LOCK();
2501 if (tmp_vpages_inuse)
2502 panic("pmap_copy_page: temporary vpages are in use.");
2503 tmp_vpages_inuse++;
2504
2505 /* XXX - Use non-cached mappings to avoid cache polution? */
2506 pmap_enter_kernel(tmp_vpages[0], src, VM_PROT_READ);
2507 pmap_enter_kernel(tmp_vpages[1], dst, VM_PROT_READ|VM_PROT_WRITE);
2508 copypage((char *) tmp_vpages[0], (char *) tmp_vpages[1]);
2509
2510 tmp_vpages_inuse--;
2511 PMAP_UNLOCK();
2512 }
2513
2514 /* pmap_zero_page INTERFACE
2515 **
2516 * Zero the contents of the specified physical page.
2517 *
2518 * Uses one of the virtual pages allocated in pmap_boostrap()
2519 * to map the specified page into the kernel address space. Then uses
2520 * bzero() to zero out the page.
2521 */
2522 void
2523 pmap_zero_page(pa)
2524 vm_offset_t pa;
2525 {
2526 PMAP_LOCK();
2527 if (tmp_vpages_inuse)
2528 panic("pmap_zero_page: temporary vpages are in use.");
2529 tmp_vpages_inuse++;
2530
2531 pmap_enter_kernel(tmp_vpages[0], pa, VM_PROT_READ|VM_PROT_WRITE);
2532 zeropage((char *) tmp_vpages[0]);
2533
2534 tmp_vpages_inuse--;
2535 PMAP_UNLOCK();
2536 }
2537
2538 /* pmap_collect INTERFACE
2539 **
2540 * Called from the VM system when we are about to swap out
2541 * the process using this pmap. This should give up any
2542 * resources held here, including all its MMU tables.
2543 */
2544 void
2545 pmap_collect(pmap)
2546 pmap_t pmap;
2547 {
2548 /* XXX - todo... */
2549 }
2550
2551 /* pmap_create INTERFACE
2552 **
2553 * Create and return a pmap structure.
2554 */
2555 pmap_t
2556 pmap_create(size)
2557 vm_size_t size;
2558 {
2559 pmap_t pmap;
2560
2561 if (size)
2562 return NULL;
2563
2564 pmap = (pmap_t) malloc(sizeof(struct pmap), M_VMPMAP, M_WAITOK);
2565 pmap_pinit(pmap);
2566
2567 return pmap;
2568 }
2569
2570 /* pmap_pinit INTERNAL
2571 **
2572 * Initialize a pmap structure.
2573 */
2574 void
2575 pmap_pinit(pmap)
2576 pmap_t pmap;
2577 {
2578 bzero(pmap, sizeof(struct pmap));
2579 pmap->pm_a_tmgr = NULL;
2580 pmap->pm_a_phys = kernAphys;
2581 }
2582
2583 /* pmap_release INTERFACE
2584 **
2585 * Release any resources held by the given pmap.
2586 *
2587 * This is the reverse analog to pmap_pinit. It does not
2588 * necessarily mean for the pmap structure to be deallocated,
2589 * as in pmap_destroy.
2590 */
2591 void
2592 pmap_release(pmap)
2593 pmap_t pmap;
2594 {
2595 /*
2596 * As long as the pmap contains no mappings,
2597 * which always should be the case whenever
2598 * this function is called, there really should
2599 * be nothing to do.
2600 *
2601 * XXX - This function is being called while there are
2602 * still valid mappings, so I guess the above must not
2603 * be true.
2604 * XXX - Unless the mappings persist due to a bug here...
2605 * + That's what was happening. The map had no mappings,
2606 * but it still had an A table. pmap_remove() was not
2607 * releasing tables when they were empty.
2608 */
2609 #ifdef PMAP_DEBUG
2610 if (pmap == NULL)
2611 return;
2612 if (pmap == pmap_kernel())
2613 panic("pmap_release: kernel pmap");
2614 #endif
2615 /*
2616 * XXX - If this pmap has an A table, give it back.
2617 * The pmap SHOULD be empty by now, and pmap_remove
2618 * should have already given back the A table...
2619 * However, I see: pmap->pm_a_tmgr->at_ecnt == 1
2620 * at this point, which means some mapping was not
2621 * removed when it should have been. -gwr
2622 */
2623 if (pmap->pm_a_tmgr != NULL) {
2624 /* First make sure we are not using it! */
2625 if (kernel_crp.rp_addr == pmap->pm_a_phys) {
2626 kernel_crp.rp_addr = kernAphys;
2627 loadcrp(&kernel_crp);
2628 }
2629 #ifdef PMAP_DEBUG /* XXX - todo! */
2630 /* XXX - Now complain... */
2631 printf("pmap_release: still have table\n");
2632 Debugger();
2633 #endif
2634 free_a_table(pmap->pm_a_tmgr, TRUE);
2635 pmap->pm_a_tmgr = NULL;
2636 pmap->pm_a_phys = kernAphys;
2637 }
2638 }
2639
2640 /* pmap_reference INTERFACE
2641 **
2642 * Increment the reference count of a pmap.
2643 */
2644 void
2645 pmap_reference(pmap)
2646 pmap_t pmap;
2647 {
2648 if (pmap == NULL)
2649 return;
2650
2651 /* pmap_lock(pmap); */
2652 pmap->pm_refcount++;
2653 /* pmap_unlock(pmap); */
2654 }
2655
2656 /* pmap_dereference INTERNAL
2657 **
2658 * Decrease the reference count on the given pmap
2659 * by one and return the current count.
2660 */
2661 int
2662 pmap_dereference(pmap)
2663 pmap_t pmap;
2664 {
2665 int rtn;
2666
2667 if (pmap == NULL)
2668 return 0;
2669
2670 /* pmap_lock(pmap); */
2671 rtn = --pmap->pm_refcount;
2672 /* pmap_unlock(pmap); */
2673
2674 return rtn;
2675 }
2676
2677 /* pmap_destroy INTERFACE
2678 **
2679 * Decrement a pmap's reference count and delete
2680 * the pmap if it becomes zero. Will be called
2681 * only after all mappings have been removed.
2682 */
2683 void
2684 pmap_destroy(pmap)
2685 pmap_t pmap;
2686 {
2687 if (pmap == NULL)
2688 return;
2689 if (pmap == &kernel_pmap)
2690 panic("pmap_destroy: kernel_pmap!");
2691 if (pmap_dereference(pmap) == 0) {
2692 pmap_release(pmap);
2693 free(pmap, M_VMPMAP);
2694 }
2695 }
2696
2697 /* pmap_is_referenced INTERFACE
2698 **
2699 * Determine if the given physical page has been
2700 * referenced (read from [or written to.])
2701 */
2702 boolean_t
2703 pmap_is_referenced(pa)
2704 vm_offset_t pa;
2705 {
2706 pv_t *pv;
2707 int idx, s;
2708
2709 if (!pv_initialized)
2710 return FALSE;
2711 /* XXX - this may be unecessary. */
2712 if (!is_managed(pa))
2713 return FALSE;
2714
2715 pv = pa2pv(pa);
2716 /*
2717 * Check the flags on the pv head. If they are set,
2718 * return immediately. Otherwise a search must be done.
2719 */
2720 if (pv->pv_flags & PV_FLAGS_USED)
2721 return TRUE;
2722 else {
2723 s = splimp();
2724 /*
2725 * Search through all pv elements pointing
2726 * to this page and query their reference bits
2727 */
2728 for (idx = pv->pv_idx; idx != PVE_EOL; idx =
2729 pvebase[idx].pve_next)
2730 if (MMU_PTE_USED(kernCbase[idx])) {
2731 splx(s);
2732 return TRUE;
2733 }
2734 splx(s);
2735 }
2736
2737 return FALSE;
2738 }
2739
2740 /* pmap_is_modified INTERFACE
2741 **
2742 * Determine if the given physical page has been
2743 * modified (written to.)
2744 */
2745 boolean_t
2746 pmap_is_modified(pa)
2747 vm_offset_t pa;
2748 {
2749 pv_t *pv;
2750 int idx, s;
2751
2752 if (!pv_initialized)
2753 return FALSE;
2754 /* XXX - this may be unecessary. */
2755 if (!is_managed(pa))
2756 return FALSE;
2757
2758 /* see comments in pmap_is_referenced() */
2759 pv = pa2pv(pa);
2760 if (pv->pv_flags & PV_FLAGS_MDFY) {
2761 return TRUE;
2762 } else {
2763 s = splimp();
2764 for (idx = pv->pv_idx; idx != PVE_EOL; idx =
2765 pvebase[idx].pve_next)
2766 if (MMU_PTE_MODIFIED(kernCbase[idx])) {
2767 splx(s);
2768 return TRUE;
2769 }
2770 splx(s);
2771 }
2772
2773 return FALSE;
2774 }
2775
2776 /* pmap_page_protect INTERFACE
2777 **
2778 * Applies the given protection to all mappings to the given
2779 * physical page.
2780 */
2781 void
2782 pmap_page_protect(pa, prot)
2783 vm_offset_t pa;
2784 vm_prot_t prot;
2785 {
2786 pv_t *pv;
2787 int idx, s;
2788 vm_offset_t va;
2789 struct mmu_short_pte_struct *pte;
2790 c_tmgr_t *c_tbl;
2791 pmap_t pmap, curpmap;
2792
2793 if (!is_managed(pa))
2794 return;
2795
2796 curpmap = current_pmap();
2797 pv = pa2pv(pa);
2798 s = splimp();
2799 for (idx = pv->pv_idx; idx != PVE_EOL; idx = pvebase[idx].pve_next) {
2800 pte = &kernCbase[idx];
2801 switch (prot) {
2802 case VM_PROT_ALL:
2803 /* do nothing */
2804 break;
2805 case VM_PROT_EXECUTE:
2806 case VM_PROT_READ:
2807 case VM_PROT_READ|VM_PROT_EXECUTE:
2808 pte->attr.raw |= MMU_SHORT_PTE_WP;
2809
2810 /*
2811 * Determine the virtual address mapped by
2812 * the PTE and flush ATC entries if necessary.
2813 */
2814 va = pmap_get_pteinfo(idx, &pmap, &c_tbl);
2815 if (pmap == curpmap || pmap == pmap_kernel())
2816 TBIS(va);
2817 break;
2818 case VM_PROT_NONE:
2819 /* Save the mod/ref bits. */
2820 pv->pv_flags |= pte->attr.raw;
2821 /* Invalidate the PTE. */
2822 pte->attr.raw = MMU_DT_INVALID;
2823
2824 /*
2825 * Update table counts. And flush ATC entries
2826 * if necessary.
2827 */
2828 va = pmap_get_pteinfo(idx, &pmap, &c_tbl);
2829
2830 /*
2831 * If the PTE belongs to the kernel map,
2832 * be sure to flush the page it maps.
2833 */
2834 if (pmap == pmap_kernel()) {
2835 TBIS(va);
2836 } else {
2837 /*
2838 * The PTE belongs to a user map.
2839 * update the entry count in the C
2840 * table to which it belongs and flush
2841 * the ATC if the mapping belongs to
2842 * the current pmap.
2843 */
2844 c_tbl->ct_ecnt--;
2845 if (pmap == curpmap)
2846 TBIS(va);
2847 }
2848 break;
2849 default:
2850 break;
2851 }
2852 }
2853
2854 /*
2855 * If the protection code indicates that all mappings to the page
2856 * be removed, truncate the PV list to zero entries.
2857 */
2858 if (prot == VM_PROT_NONE)
2859 pv->pv_idx = PVE_EOL;
2860 splx(s);
2861 }
2862
2863 /* pmap_get_pteinfo INTERNAL
2864 **
2865 * Called internally to find the pmap and virtual address within that
2866 * map to which the pte at the given index maps. Also includes the PTE's C
2867 * table manager.
2868 *
2869 * Returns the pmap in the argument provided, and the virtual address
2870 * by return value.
2871 */
2872 vm_offset_t
2873 pmap_get_pteinfo(idx, pmap, tbl)
2874 u_int idx;
2875 pmap_t *pmap;
2876 c_tmgr_t **tbl;
2877 {
2878 a_tmgr_t *a_tbl;
2879 b_tmgr_t *b_tbl;
2880 c_tmgr_t *c_tbl;
2881 vm_offset_t va = 0;
2882
2883 /*
2884 * Determine if the PTE is a kernel PTE or a user PTE.
2885 */
2886 if (idx >= NUM_KERN_PTES) {
2887 /*
2888 * The PTE belongs to a user mapping.
2889 * Find the virtual address by decoding table indices.
2890 * Each successive decode will reveal the address from
2891 * least to most significant bit fashion.
2892 *
2893 * 31 0
2894 * +-------------------------------+
2895 * |AAAAAAABBBBBBCCCCCC............|
2896 * +-------------------------------+
2897 */
2898 /* XXX: c_tbl = mmuC2tmgr(pte); */
2899 /* XXX: Would like an inline for this to validate idx... */
2900 c_tbl = &Ctmgrbase[(idx - NUM_KERN_PTES) / MMU_C_TBL_SIZE];
2901 b_tbl = c_tbl->ct_parent;
2902 a_tbl = b_tbl->bt_parent;
2903 *pmap = a_tbl->at_parent;
2904 *tbl = c_tbl;
2905
2906 /* Start with the 'C' bits, then add B and A... */
2907 va |= ((idx % MMU_C_TBL_SIZE) << MMU_TIC_SHIFT);
2908 va |= (c_tbl->ct_pidx << MMU_TIB_SHIFT);
2909 va |= (b_tbl->bt_pidx << MMU_TIA_SHIFT);
2910 } else {
2911 /*
2912 * The PTE belongs to the kernel map.
2913 */
2914 *pmap = pmap_kernel();
2915
2916 va = sun3x_ptob(idx);
2917 va += KERNBASE;
2918 }
2919
2920 return va;
2921 }
2922
2923 #if 0 /* XXX - I am eliminating this function. */
2924 /* pmap_find_tic INTERNAL
2925 **
2926 * Given the address of a pte, find the TIC (level 'C' table index) for
2927 * the pte within its C table.
2928 */
2929 char
2930 pmap_find_tic(pte)
2931 mmu_short_pte_t *pte;
2932 {
2933 return ((pte - mmuCbase) % MMU_C_TBL_SIZE);
2934 }
2935 #endif /* 0 */
2936
2937
2938 /* pmap_clear_modify INTERFACE
2939 **
2940 * Clear the modification bit on the page at the specified
2941 * physical address.
2942 *
2943 */
2944 void
2945 pmap_clear_modify(pa)
2946 vm_offset_t pa;
2947 {
2948 pmap_clear_pv(pa, PV_FLAGS_MDFY);
2949 }
2950
2951 /* pmap_clear_reference INTERFACE
2952 **
2953 * Clear the referenced bit on the page at the specified
2954 * physical address.
2955 */
2956 void
2957 pmap_clear_reference(pa)
2958 vm_offset_t pa;
2959 {
2960 pmap_clear_pv(pa, PV_FLAGS_USED);
2961 }
2962
2963 /* pmap_clear_pv INTERNAL
2964 **
2965 * Clears the specified flag from the specified physical address.
2966 * (Used by pmap_clear_modify() and pmap_clear_reference().)
2967 *
2968 * Flag is one of:
2969 * PV_FLAGS_MDFY - Page modified bit.
2970 * PV_FLAGS_USED - Page used (referenced) bit.
2971 *
2972 * This routine must not only clear the flag on the pv list
2973 * head. It must also clear the bit on every pte in the pv
2974 * list associated with the address.
2975 */
2976 void
2977 pmap_clear_pv(pa, flag)
2978 vm_offset_t pa;
2979 int flag;
2980 {
2981 pv_t *pv;
2982 int idx, s;
2983 vm_offset_t va;
2984 pmap_t pmap;
2985 mmu_short_pte_t *pte;
2986 c_tmgr_t *c_tbl;
2987
2988 pv = pa2pv(pa);
2989
2990 s = splimp();
2991 pv->pv_flags &= ~(flag);
2992 for (idx = pv->pv_idx; idx != PVE_EOL; idx = pvebase[idx].pve_next) {
2993 pte = &kernCbase[idx];
2994 pte->attr.raw &= ~(flag);
2995 /*
2996 * The MC68030 MMU will not set the modified or
2997 * referenced bits on any MMU tables for which it has
2998 * a cached descriptor with its modify bit set. To insure
2999 * that it will modify these bits on the PTE during the next
3000 * time it is written to or read from, we must flush it from
3001 * the ATC.
3002 *
3003 * Ordinarily it is only necessary to flush the descriptor
3004 * if it is used in the current address space. But since I
3005 * am not sure that there will always be a notion of
3006 * 'the current address space' when this function is called,
3007 * I will skip the test and always flush the address. It
3008 * does no harm.
3009 */
3010 va = pmap_get_pteinfo(idx, &pmap, &c_tbl);
3011 TBIS(va);
3012 }
3013 splx(s);
3014 }
3015
3016 /* pmap_extract INTERFACE
3017 **
3018 * Return the physical address mapped by the virtual address
3019 * in the specified pmap or 0 if it is not known.
3020 *
3021 * Note: this function should also apply an exclusive lock
3022 * on the pmap system during its duration.
3023 */
3024 vm_offset_t
3025 pmap_extract(pmap, va)
3026 pmap_t pmap;
3027 vm_offset_t va;
3028 {
3029 int a_idx, b_idx, pte_idx;
3030 a_tmgr_t *a_tbl;
3031 b_tmgr_t *b_tbl;
3032 c_tmgr_t *c_tbl;
3033 mmu_short_pte_t *c_pte;
3034
3035 if (pmap == pmap_kernel())
3036 return pmap_extract_kernel(va);
3037 if (pmap == NULL)
3038 return 0;
3039
3040 if (pmap_stroll(pmap, va, &a_tbl, &b_tbl, &c_tbl,
3041 &c_pte, &a_idx, &b_idx, &pte_idx) == FALSE)
3042 return 0;
3043
3044 if (!MMU_VALID_DT(*c_pte))
3045 return 0;
3046
3047 return (MMU_PTE_PA(*c_pte));
3048 }
3049
3050 /* pmap_extract_kernel INTERNAL
3051 **
3052 * Extract a translation from the kernel address space.
3053 */
3054 vm_offset_t
3055 pmap_extract_kernel(va)
3056 vm_offset_t va;
3057 {
3058 mmu_short_pte_t *pte;
3059
3060 pte = &kernCbase[(u_int) sun3x_btop(va - KERNBASE)];
3061 return MMU_PTE_PA(*pte);
3062 }
3063
3064 /* pmap_remove_kernel INTERNAL
3065 **
3066 * Remove the mapping of a range of virtual addresses from the kernel map.
3067 * The arguments are already page-aligned.
3068 */
3069 void
3070 pmap_remove_kernel(sva, eva)
3071 vm_offset_t sva;
3072 vm_offset_t eva;
3073 {
3074 int idx, eidx;
3075
3076 #ifdef PMAP_DEBUG
3077 if ((sva & PGOFSET) || (eva & PGOFSET))
3078 panic("pmap_remove_kernel: alignment");
3079 #endif
3080
3081 idx = sun3x_btop(sva - KERNBASE);
3082 eidx = sun3x_btop(eva - KERNBASE);
3083
3084 while (idx < eidx)
3085 pmap_remove_pte(&kernCbase[idx++]);
3086 /* Always flush the ATC when maniplating the kernel address space. */
3087 TBIAS();
3088 }
3089
3090 /* pmap_remove INTERFACE
3091 **
3092 * Remove the mapping of a range of virtual addresses from the given pmap.
3093 *
3094 * If the range contains any wired entries, this function will probably create
3095 * disaster.
3096 */
3097 void
3098 pmap_remove(pmap, start, end)
3099 pmap_t pmap;
3100 vm_offset_t start;
3101 vm_offset_t end;
3102 {
3103
3104 if (pmap == pmap_kernel()) {
3105 pmap_remove_kernel(start, end);
3106 return;
3107 }
3108
3109 /*
3110 * XXX - Temporary(?) statement to prevent panic caused
3111 * by vm_alloc_with_pager() handing us a software map (ie NULL)
3112 * to remove because it couldn't get backing store.
3113 * (I guess.)
3114 */
3115 if (pmap == NULL)
3116 return;
3117
3118 /*
3119 * If the pmap doesn't have an A table of its own, it has no mappings
3120 * that can be removed.
3121 */
3122 if (pmap->pm_a_tmgr == NULL)
3123 return;
3124
3125 /*
3126 * Remove the specified range from the pmap. If the function
3127 * returns true, the operation removed all the valid mappings
3128 * in the pmap and freed its A table. If this happened to the
3129 * currently loaded pmap, the MMU root pointer must be reloaded
3130 * with the default 'kernel' map.
3131 */
3132 if (pmap_remove_a(pmap->pm_a_tmgr, start, end)) {
3133 if (kernel_crp.rp_addr == pmap->pm_a_phys) {
3134 kernel_crp.rp_addr = kernAphys;
3135 loadcrp(&kernel_crp);
3136 /* will do TLB flush below */
3137 }
3138 pmap->pm_a_tmgr = NULL;
3139 pmap->pm_a_phys = kernAphys;
3140 }
3141
3142 /*
3143 * If we just modified the current address space,
3144 * make sure to flush the MMU cache.
3145 *
3146 * XXX - this could be an unecessarily large flush.
3147 * XXX - Could decide, based on the size of the VA range
3148 * to be removed, whether to flush "by pages" or "all".
3149 */
3150 if (pmap == current_pmap())
3151 TBIAU();
3152 }
3153
3154 /* pmap_remove_a INTERNAL
3155 **
3156 * This is function number one in a set of three that removes a range
3157 * of memory in the most efficient manner by removing the highest possible
3158 * tables from the memory space. This particular function attempts to remove
3159 * as many B tables as it can, delegating the remaining fragmented ranges to
3160 * pmap_remove_b().
3161 *
3162 * If the removal operation results in an empty A table, the function returns
3163 * TRUE.
3164 *
3165 * It's ugly but will do for now.
3166 */
3167 boolean_t
3168 pmap_remove_a(a_tbl, start, end)
3169 a_tmgr_t *a_tbl;
3170 vm_offset_t start;
3171 vm_offset_t end;
3172 {
3173 boolean_t empty;
3174 int idx;
3175 vm_offset_t nstart, nend;
3176 b_tmgr_t *b_tbl;
3177 mmu_long_dte_t *a_dte;
3178 mmu_short_dte_t *b_dte;
3179
3180 /*
3181 * The following code works with what I call a 'granularity
3182 * reduction algorithim'. A range of addresses will always have
3183 * the following properties, which are classified according to
3184 * how the range relates to the size of the current granularity
3185 * - an A table entry:
3186 *
3187 * 1 2 3 4
3188 * -+---+---+---+---+---+---+---+-
3189 * -+---+---+---+---+---+---+---+-
3190 *
3191 * A range will always start on a granularity boundary, illustrated
3192 * by '+' signs in the table above, or it will start at some point
3193 * inbetween a granularity boundary, as illustrated by point 1.
3194 * The first step in removing a range of addresses is to remove the
3195 * range between 1 and 2, the nearest granularity boundary. This
3196 * job is handled by the section of code governed by the
3197 * 'if (start < nstart)' statement.
3198 *
3199 * A range will always encompass zero or more intergral granules,
3200 * illustrated by points 2 and 3. Integral granules are easy to
3201 * remove. The removal of these granules is the second step, and
3202 * is handled by the code block 'if (nstart < nend)'.
3203 *
3204 * Lastly, a range will always end on a granularity boundary,
3205 * ill. by point 3, or it will fall just beyond one, ill. by point
3206 * 4. The last step involves removing this range and is handled by
3207 * the code block 'if (nend < end)'.
3208 */
3209 nstart = MMU_ROUND_UP_A(start);
3210 nend = MMU_ROUND_A(end);
3211
3212 if (start < nstart) {
3213 /*
3214 * This block is executed if the range starts between
3215 * a granularity boundary.
3216 *
3217 * First find the DTE which is responsible for mapping
3218 * the start of the range.
3219 */
3220 idx = MMU_TIA(start);
3221 a_dte = &a_tbl->at_dtbl[idx];
3222
3223 /*
3224 * If the DTE is valid then delegate the removal of the sub
3225 * range to pmap_remove_b(), which can remove addresses at
3226 * a finer granularity.
3227 */
3228 if (MMU_VALID_DT(*a_dte)) {
3229 b_dte = mmu_ptov(a_dte->addr.raw);
3230 b_tbl = mmuB2tmgr(b_dte);
3231
3232 /*
3233 * The sub range to be removed starts at the start
3234 * of the full range we were asked to remove, and ends
3235 * at the greater of:
3236 * 1. The end of the full range, -or-
3237 * 2. The end of the full range, rounded down to the
3238 * nearest granularity boundary.
3239 */
3240 if (end < nstart)
3241 empty = pmap_remove_b(b_tbl, start, end);
3242 else
3243 empty = pmap_remove_b(b_tbl, start, nstart);
3244
3245 /*
3246 * If the removal resulted in an empty B table,
3247 * invalidate the DTE that points to it and decrement
3248 * the valid entry count of the A table.
3249 */
3250 if (empty) {
3251 a_dte->attr.raw = MMU_DT_INVALID;
3252 a_tbl->at_ecnt--;
3253 }
3254 }
3255 /*
3256 * If the DTE is invalid, the address range is already non-
3257 * existant and can simply be skipped.
3258 */
3259 }
3260 if (nstart < nend) {
3261 /*
3262 * This block is executed if the range spans a whole number
3263 * multiple of granules (A table entries.)
3264 *
3265 * First find the DTE which is responsible for mapping
3266 * the start of the first granule involved.
3267 */
3268 idx = MMU_TIA(nstart);
3269 a_dte = &a_tbl->at_dtbl[idx];
3270
3271 /*
3272 * Remove entire sub-granules (B tables) one at a time,
3273 * until reaching the end of the range.
3274 */
3275 for (; nstart < nend; a_dte++, nstart += MMU_TIA_RANGE)
3276 if (MMU_VALID_DT(*a_dte)) {
3277 /*
3278 * Find the B table manager for the
3279 * entry and free it.
3280 */
3281 b_dte = mmu_ptov(a_dte->addr.raw);
3282 b_tbl = mmuB2tmgr(b_dte);
3283 free_b_table(b_tbl, TRUE);
3284
3285 /*
3286 * Invalidate the DTE that points to the
3287 * B table and decrement the valid entry
3288 * count of the A table.
3289 */
3290 a_dte->attr.raw = MMU_DT_INVALID;
3291 a_tbl->at_ecnt--;
3292 }
3293 }
3294 if (nend < end) {
3295 /*
3296 * This block is executed if the range ends beyond a
3297 * granularity boundary.
3298 *
3299 * First find the DTE which is responsible for mapping
3300 * the start of the nearest (rounded down) granularity
3301 * boundary.
3302 */
3303 idx = MMU_TIA(nend);
3304 a_dte = &a_tbl->at_dtbl[idx];
3305
3306 /*
3307 * If the DTE is valid then delegate the removal of the sub
3308 * range to pmap_remove_b(), which can remove addresses at
3309 * a finer granularity.
3310 */
3311 if (MMU_VALID_DT(*a_dte)) {
3312 /*
3313 * Find the B table manager for the entry
3314 * and hand it to pmap_remove_b() along with
3315 * the sub range.
3316 */
3317 b_dte = mmu_ptov(a_dte->addr.raw);
3318 b_tbl = mmuB2tmgr(b_dte);
3319
3320 empty = pmap_remove_b(b_tbl, nend, end);
3321
3322 /*
3323 * If the removal resulted in an empty B table,
3324 * invalidate the DTE that points to it and decrement
3325 * the valid entry count of the A table.
3326 */
3327 if (empty) {
3328 a_dte->attr.raw = MMU_DT_INVALID;
3329 a_tbl->at_ecnt--;
3330 }
3331 }
3332 }
3333
3334 /*
3335 * If there are no more entries in the A table, release it
3336 * back to the available pool and return TRUE.
3337 */
3338 if (a_tbl->at_ecnt == 0) {
3339 a_tbl->at_parent = NULL;
3340 TAILQ_REMOVE(&a_pool, a_tbl, at_link);
3341 TAILQ_INSERT_HEAD(&a_pool, a_tbl, at_link);
3342 empty = TRUE;
3343 } else {
3344 empty = FALSE;
3345 }
3346
3347 return empty;
3348 }
3349
3350 /* pmap_remove_b INTERNAL
3351 **
3352 * Remove a range of addresses from an address space, trying to remove entire
3353 * C tables if possible.
3354 *
3355 * If the operation results in an empty B table, the function returns TRUE.
3356 */
3357 boolean_t
3358 pmap_remove_b(b_tbl, start, end)
3359 b_tmgr_t *b_tbl;
3360 vm_offset_t start;
3361 vm_offset_t end;
3362 {
3363 boolean_t empty;
3364 int idx;
3365 vm_offset_t nstart, nend, rstart;
3366 c_tmgr_t *c_tbl;
3367 mmu_short_dte_t *b_dte;
3368 mmu_short_pte_t *c_dte;
3369
3370
3371 nstart = MMU_ROUND_UP_B(start);
3372 nend = MMU_ROUND_B(end);
3373
3374 if (start < nstart) {
3375 idx = MMU_TIB(start);
3376 b_dte = &b_tbl->bt_dtbl[idx];
3377 if (MMU_VALID_DT(*b_dte)) {
3378 c_dte = mmu_ptov(MMU_DTE_PA(*b_dte));
3379 c_tbl = mmuC2tmgr(c_dte);
3380 if (end < nstart)
3381 empty = pmap_remove_c(c_tbl, start, end);
3382 else
3383 empty = pmap_remove_c(c_tbl, start, nstart);
3384 if (empty) {
3385 b_dte->attr.raw = MMU_DT_INVALID;
3386 b_tbl->bt_ecnt--;
3387 }
3388 }
3389 }
3390 if (nstart < nend) {
3391 idx = MMU_TIB(nstart);
3392 b_dte = &b_tbl->bt_dtbl[idx];
3393 rstart = nstart;
3394 while (rstart < nend) {
3395 if (MMU_VALID_DT(*b_dte)) {
3396 c_dte = mmu_ptov(MMU_DTE_PA(*b_dte));
3397 c_tbl = mmuC2tmgr(c_dte);
3398 free_c_table(c_tbl, TRUE);
3399 b_dte->attr.raw = MMU_DT_INVALID;
3400 b_tbl->bt_ecnt--;
3401 }
3402 b_dte++;
3403 rstart += MMU_TIB_RANGE;
3404 }
3405 }
3406 if (nend < end) {
3407 idx = MMU_TIB(nend);
3408 b_dte = &b_tbl->bt_dtbl[idx];
3409 if (MMU_VALID_DT(*b_dte)) {
3410 c_dte = mmu_ptov(MMU_DTE_PA(*b_dte));
3411 c_tbl = mmuC2tmgr(c_dte);
3412 empty = pmap_remove_c(c_tbl, nend, end);
3413 if (empty) {
3414 b_dte->attr.raw = MMU_DT_INVALID;
3415 b_tbl->bt_ecnt--;
3416 }
3417 }
3418 }
3419
3420 if (b_tbl->bt_ecnt == 0) {
3421 b_tbl->bt_parent = NULL;
3422 TAILQ_REMOVE(&b_pool, b_tbl, bt_link);
3423 TAILQ_INSERT_HEAD(&b_pool, b_tbl, bt_link);
3424 empty = TRUE;
3425 } else {
3426 empty = FALSE;
3427 }
3428
3429 return empty;
3430 }
3431
3432 /* pmap_remove_c INTERNAL
3433 **
3434 * Remove a range of addresses from the given C table.
3435 */
3436 boolean_t
3437 pmap_remove_c(c_tbl, start, end)
3438 c_tmgr_t *c_tbl;
3439 vm_offset_t start;
3440 vm_offset_t end;
3441 {
3442 boolean_t empty;
3443 int idx;
3444 mmu_short_pte_t *c_pte;
3445
3446 idx = MMU_TIC(start);
3447 c_pte = &c_tbl->ct_dtbl[idx];
3448 for (;start < end; start += MMU_PAGE_SIZE, c_pte++) {
3449 if (MMU_VALID_DT(*c_pte)) {
3450 pmap_remove_pte(c_pte);
3451 c_tbl->ct_ecnt--;
3452 }
3453 }
3454
3455 if (c_tbl->ct_ecnt == 0) {
3456 c_tbl->ct_parent = NULL;
3457 TAILQ_REMOVE(&c_pool, c_tbl, ct_link);
3458 TAILQ_INSERT_HEAD(&c_pool, c_tbl, ct_link);
3459 empty = TRUE;
3460 } else {
3461 empty = FALSE;
3462 }
3463
3464 return empty;
3465 }
3466
3467 /* is_managed INTERNAL
3468 **
3469 * Determine if the given physical address is managed by the PV system.
3470 * Note that this logic assumes that no one will ask for the status of
3471 * addresses which lie in-between the memory banks on the 3/80. If they
3472 * do so, it will falsely report that it is managed.
3473 *
3474 * Note: A "managed" address is one that was reported to the VM system as
3475 * a "usable page" during system startup. As such, the VM system expects the
3476 * pmap module to keep an accurate track of the useage of those pages.
3477 * Any page not given to the VM system at startup does not exist (as far as
3478 * the VM system is concerned) and is therefore "unmanaged." Examples are
3479 * those pages which belong to the ROM monitor and the memory allocated before
3480 * the VM system was started.
3481 */
3482 boolean_t
3483 is_managed(pa)
3484 vm_offset_t pa;
3485 {
3486 if (pa >= avail_start && pa < avail_end)
3487 return TRUE;
3488 else
3489 return FALSE;
3490 }
3491
3492 /* pmap_bootstrap_alloc INTERNAL
3493 **
3494 * Used internally for memory allocation at startup when malloc is not
3495 * available. This code will fail once it crosses the first memory
3496 * bank boundary on the 3/80. Hopefully by then however, the VM system
3497 * will be in charge of allocation.
3498 */
3499 void *
3500 pmap_bootstrap_alloc(size)
3501 int size;
3502 {
3503 void *rtn;
3504
3505 #ifdef PMAP_DEBUG
3506 if (bootstrap_alloc_enabled == FALSE) {
3507 mon_printf("pmap_bootstrap_alloc: disabled\n");
3508 sunmon_abort();
3509 }
3510 #endif
3511
3512 rtn = (void *) virtual_avail;
3513 virtual_avail += size;
3514
3515 #ifdef PMAP_DEBUG
3516 if (virtual_avail > virtual_contig_end) {
3517 mon_printf("pmap_bootstrap_alloc: out of mem\n");
3518 sunmon_abort();
3519 }
3520 #endif
3521
3522 return rtn;
3523 }
3524
3525 /* pmap_bootstap_aalign INTERNAL
3526 **
3527 * Used to insure that the next call to pmap_bootstrap_alloc() will
3528 * return a chunk of memory aligned to the specified size.
3529 *
3530 * Note: This function will only support alignment sizes that are powers
3531 * of two.
3532 */
3533 void
3534 pmap_bootstrap_aalign(size)
3535 int size;
3536 {
3537 int off;
3538
3539 off = virtual_avail & (size - 1);
3540 if (off) {
3541 (void) pmap_bootstrap_alloc(size - off);
3542 }
3543 }
3544
3545 /* pmap_pa_exists
3546 **
3547 * Used by the /dev/mem driver to see if a given PA is memory
3548 * that can be mapped. (The PA is not in a hole.)
3549 */
3550 int
3551 pmap_pa_exists(pa)
3552 vm_offset_t pa;
3553 {
3554 /* XXX - NOTYET */
3555 return (0);
3556 }
3557
3558 /* pmap_activate INTERFACE
3559 **
3560 * This is called by locore.s:cpu_switch when we are switching to a
3561 * new process. This should load the MMU context for the new proc.
3562 * XXX - Later, this should be done directly in locore.s
3563 */
3564 void
3565 pmap_activate(pmap)
3566 pmap_t pmap;
3567 {
3568 u_long rootpa;
3569
3570 /* Only do reload/flush if we have to. */
3571 rootpa = pmap->pm_a_phys;
3572 if (kernel_crp.rp_addr != rootpa) {
3573 DPRINT(("pmap_activate(%p)\n", pmap));
3574 kernel_crp.rp_addr = rootpa;
3575 loadcrp(&kernel_crp);
3576 TBIAU();
3577 }
3578 }
3579
3580
3581 /* pmap_update
3582 **
3583 * Apply any delayed changes scheduled for all pmaps immediately.
3584 *
3585 * No delayed operations are currently done in this pmap.
3586 */
3587 void
3588 pmap_update()
3589 {
3590 /* not implemented. */
3591 }
3592
3593 /* pmap_virtual_space INTERFACE
3594 **
3595 * Return the current available range of virtual addresses in the
3596 * arguuments provided. Only really called once.
3597 */
3598 void
3599 pmap_virtual_space(vstart, vend)
3600 vm_offset_t *vstart, *vend;
3601 {
3602 *vstart = virtual_avail;
3603 *vend = virtual_end;
3604 }
3605
3606 /* pmap_free_pages INTERFACE
3607 **
3608 * Return the number of physical pages still available.
3609 *
3610 * This is probably going to be a mess, but it's only called
3611 * once and it's the only function left that I have to implement!
3612 */
3613 u_int
3614 pmap_free_pages()
3615 {
3616 int i;
3617 u_int left;
3618 vm_offset_t avail;
3619
3620 avail = avail_next;
3621 left = 0;
3622 i = 0;
3623 while (avail >= avail_mem[i].pmem_end) {
3624 if (avail_mem[i].pmem_next == NULL)
3625 return 0;
3626 i++;
3627 }
3628 while (i < SUN3X_80_MEM_BANKS) {
3629 if (avail < avail_mem[i].pmem_start) {
3630 /* Avail is inside a hole, march it
3631 * up to the next bank.
3632 */
3633 avail = avail_mem[i].pmem_start;
3634 }
3635 left += sun3x_btop(avail_mem[i].pmem_end - avail);
3636 if (avail_mem[i].pmem_next == NULL)
3637 break;
3638 i++;
3639 }
3640
3641 return left;
3642 }
3643
3644 /* pmap_page_index INTERFACE
3645 **
3646 * Return the index of the given physical page in a list of useable
3647 * physical pages in the system. Holes in physical memory may be counted
3648 * if so desired. As long as pmap_free_pages() and pmap_page_index()
3649 * agree as to whether holes in memory do or do not count as valid pages,
3650 * it really doesn't matter. However, if you like to save a little
3651 * memory, don't count holes as valid pages. This is even more true when
3652 * the holes are large.
3653 *
3654 * We will not count holes as valid pages. We can generate page indices
3655 * that conform to this by using the memory bank structures initialized
3656 * in pmap_alloc_pv().
3657 */
3658 int
3659 pmap_page_index(pa)
3660 vm_offset_t pa;
3661 {
3662 struct pmap_physmem_struct *bank = avail_mem;
3663
3664 /* Search for the memory bank with this page. */
3665 /* XXX - What if it is not physical memory? */
3666 while (pa > bank->pmem_end)
3667 bank = bank->pmem_next;
3668 pa -= bank->pmem_start;
3669
3670 return (bank->pmem_pvbase + sun3x_btop(pa));
3671 }
3672
3673 /* pmap_next_page INTERFACE
3674 **
3675 * Place the physical address of the next available page in the
3676 * argument given. Returns FALSE if there are no more pages left.
3677 *
3678 * This function must jump over any holes in physical memory.
3679 * Once this function is used, any use of pmap_bootstrap_alloc()
3680 * is a sin. Sinners will be punished with erratic behavior.
3681 */
3682 boolean_t
3683 pmap_next_page(pa)
3684 vm_offset_t *pa;
3685 {
3686 static struct pmap_physmem_struct *curbank = avail_mem;
3687
3688 /* XXX - temporary ROM saving hack. */
3689 if (avail_next >= avail_end)
3690 return FALSE;
3691
3692 if (avail_next >= curbank->pmem_end)
3693 if (curbank->pmem_next == NULL)
3694 return FALSE;
3695 else {
3696 curbank = curbank->pmem_next;
3697 avail_next = curbank->pmem_start;
3698 }
3699
3700 *pa = avail_next;
3701 avail_next += NBPG;
3702 return TRUE;
3703 }
3704
3705 /* pmap_count INTERFACE
3706 **
3707 * Return the number of resident (valid) pages in the given pmap.
3708 *
3709 * Note: If this function is handed the kernel map, it will report
3710 * that it has no mappings. Hopefully the VM system won't ask for kernel
3711 * map statistics.
3712 */
3713 segsz_t
3714 pmap_count(pmap, type)
3715 pmap_t pmap;
3716 int type;
3717 {
3718 u_int count;
3719 int a_idx, b_idx;
3720 a_tmgr_t *a_tbl;
3721 b_tmgr_t *b_tbl;
3722 c_tmgr_t *c_tbl;
3723
3724 /*
3725 * If the pmap does not have its own A table manager, it has no
3726 * valid entires.
3727 */
3728 if (pmap->pm_a_tmgr == NULL)
3729 return 0;
3730
3731 a_tbl = pmap->pm_a_tmgr;
3732
3733 count = 0;
3734 for (a_idx = 0; a_idx < MMU_TIA(KERNBASE); a_idx++) {
3735 if (MMU_VALID_DT(a_tbl->at_dtbl[a_idx])) {
3736 b_tbl = mmuB2tmgr(mmu_ptov(a_tbl->at_dtbl[a_idx].addr.raw));
3737 for (b_idx = 0; b_idx < MMU_B_TBL_SIZE; b_idx++) {
3738 if (MMU_VALID_DT(b_tbl->bt_dtbl[b_idx])) {
3739 c_tbl = mmuC2tmgr(
3740 mmu_ptov(MMU_DTE_PA(b_tbl->bt_dtbl[b_idx])));
3741 if (type == 0)
3742 /*
3743 * A resident entry count has been requested.
3744 */
3745 count += c_tbl->ct_ecnt;
3746 else
3747 /*
3748 * A wired entry count has been requested.
3749 */
3750 count += c_tbl->ct_wcnt;
3751 }
3752 }
3753 }
3754 }
3755
3756 return count;
3757 }
3758
3759 /************************ SUN3 COMPATIBILITY ROUTINES ********************
3760 * The following routines are only used by DDB for tricky kernel text *
3761 * text operations in db_memrw.c. They are provided for sun3 *
3762 * compatibility. *
3763 *************************************************************************/
3764 /* get_pte INTERNAL
3765 **
3766 * Return the page descriptor the describes the kernel mapping
3767 * of the given virtual address.
3768 */
3769 extern u_long ptest_addr __P((u_long)); /* XXX: locore.s */
3770 u_long
3771 get_pte(va)
3772 vm_offset_t va;
3773 {
3774 u_long pte_pa;
3775 mmu_short_pte_t *pte;
3776
3777 /* Get the physical address of the PTE */
3778 pte_pa = ptest_addr(va & ~PGOFSET);
3779
3780 /* Convert to a virtual address... */
3781 pte = (mmu_short_pte_t *) (KERNBASE + pte_pa);
3782
3783 /* Make sure it is in our level-C tables... */
3784 if ((pte < kernCbase) ||
3785 (pte >= &mmuCbase[NUM_USER_PTES]))
3786 return 0;
3787
3788 /* ... and just return its contents. */
3789 return (pte->attr.raw);
3790 }
3791
3792
3793 /* set_pte INTERNAL
3794 **
3795 * Set the page descriptor that describes the kernel mapping
3796 * of the given virtual address.
3797 */
3798 void
3799 set_pte(va, pte)
3800 vm_offset_t va;
3801 vm_offset_t pte;
3802 {
3803 u_long idx;
3804
3805 if (va < KERNBASE)
3806 return;
3807
3808 idx = (unsigned long) sun3x_btop(va - KERNBASE);
3809 kernCbase[idx].attr.raw = pte;
3810 }
3811
3812 #ifdef PMAP_DEBUG
3813 /************************** DEBUGGING ROUTINES **************************
3814 * The following routines are meant to be an aid to debugging the pmap *
3815 * system. They are callable from the DDB command line and should be *
3816 * prepared to be handed unstable or incomplete states of the system. *
3817 ************************************************************************/
3818
3819 /* pv_list
3820 **
3821 * List all pages found on the pv list for the given physical page.
3822 * To avoid endless loops, the listing will stop at the end of the list
3823 * or after 'n' entries - whichever comes first.
3824 */
3825 void
3826 pv_list(pa, n)
3827 vm_offset_t pa;
3828 int n;
3829 {
3830 int idx;
3831 vm_offset_t va;
3832 pv_t *pv;
3833 c_tmgr_t *c_tbl;
3834 pmap_t pmap;
3835
3836 pv = pa2pv(pa);
3837 idx = pv->pv_idx;
3838
3839 for (;idx != PVE_EOL && n > 0; idx=pvebase[idx].pve_next, n--) {
3840 va = pmap_get_pteinfo(idx, &pmap, &c_tbl);
3841 printf("idx %d, pmap 0x%x, va 0x%x, c_tbl %x\n",
3842 idx, (u_int) pmap, (u_int) va, (u_int) c_tbl);
3843 }
3844 }
3845 #endif /* PMAP_DEBUG */
3846
3847 #ifdef NOT_YET
3848 /* and maybe not ever */
3849 /************************** LOW-LEVEL ROUTINES **************************
3850 * These routines will eventualy be re-written into assembly and placed *
3851 * in locore.s. They are here now as stubs so that the pmap module can *
3852 * be linked as a standalone user program for testing. *
3853 ************************************************************************/
3854 /* flush_atc_crp INTERNAL
3855 **
3856 * Flush all page descriptors derived from the given CPU Root Pointer
3857 * (CRP), or 'A' table as it is known here, from the 68851's automatic
3858 * cache.
3859 */
3860 void
3861 flush_atc_crp(a_tbl)
3862 {
3863 mmu_long_rp_t rp;
3864
3865 /* Create a temporary root table pointer that points to the
3866 * given A table.
3867 */
3868 rp.attr.raw = ~MMU_LONG_RP_LU;
3869 rp.addr.raw = (unsigned int) a_tbl;
3870
3871 mmu_pflushr(&rp);
3872 /* mmu_pflushr:
3873 * movel sp(4)@,a0
3874 * pflushr a0@
3875 * rts
3876 */
3877 }
3878 #endif /* NOT_YET */
3879