Home | History | Annotate | Line # | Download | only in sun3x
pmap.c revision 1.16
      1 /*	$NetBSD: pmap.c,v 1.16 1997/03/13 17:40:41 gwr Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1996, 1997 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jeremy Cooper.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  * 3. All advertising materials mentioning features or use of this software
     19  *    must display the following acknowledgement:
     20  *        This product includes software developed by the NetBSD
     21  *        Foundation, Inc. and its contributors.
     22  * 4. Neither the name of The NetBSD Foundation nor the names of its
     23  *    contributors may be used to endorse or promote products derived
     24  *    from this software without specific prior written permission.
     25  *
     26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36  * POSSIBILITY OF SUCH DAMAGE.
     37  */
     38 
     39 /*
     40  * XXX These comments aren't quite accurate.  Need to change.
     41  * The sun3x uses the MC68851 Memory Management Unit, which is built
     42  * into the CPU.  The 68851 maps virtual to physical addresses using
     43  * a multi-level table lookup, which is stored in the very memory that
     44  * it maps.  The number of levels of lookup is configurable from one
     45  * to four.  In this implementation, we use three, named 'A' through 'C'.
     46  *
     47  * The MMU translates virtual addresses into physical addresses by
     48  * traversing these tables in a proccess called a 'table walk'.  The most
     49  * significant 7 bits of the Virtual Address ('VA') being translated are
     50  * used as an index into the level A table, whose base in physical memory
     51  * is stored in a special MMU register, the 'CPU Root Pointer' or CRP.  The
     52  * address found at that index in the A table is used as the base
     53  * address for the next table, the B table.  The next six bits of the VA are
     54  * used as an index into the B table, which in turn gives the base address
     55  * of the third and final C table.
     56  *
     57  * The next six bits of the VA are used as an index into the C table to
     58  * locate a Page Table Entry (PTE).  The PTE is a physical address in memory
     59  * to which the remaining 13 bits of the VA are added, producing the
     60  * mapped physical address.
     61  *
     62  * To map the entire memory space in this manner would require 2114296 bytes
     63  * of page tables per process - quite expensive.  Instead we will
     64  * allocate a fixed but considerably smaller space for the page tables at
     65  * the time the VM system is initialized.  When the pmap code is asked by
     66  * the kernel to map a VA to a PA, it allocates tables as needed from this
     67  * pool.  When there are no more tables in the pool, tables are stolen
     68  * from the oldest mapped entries in the tree.  This is only possible
     69  * because all memory mappings are stored in the kernel memory map
     70  * structures, independent of the pmap structures.  A VA which references
     71  * one of these invalidated maps will cause a page fault.  The kernel
     72  * will determine that the page fault was caused by a task using a valid
     73  * VA, but for some reason (which does not concern it), that address was
     74  * not mapped.  It will ask the pmap code to re-map the entry and then
     75  * it will resume executing the faulting task.
     76  *
     77  * In this manner the most efficient use of the page table space is
     78  * achieved.  Tasks which do not execute often will have their tables
     79  * stolen and reused by tasks which execute more frequently.  The best
     80  * size for the page table pool will probably be determined by
     81  * experimentation.
     82  *
     83  * You read all of the comments so far.  Good for you.
     84  * Now go play!
     85  */
     86 
     87 /*** A Note About the 68851 Address Translation Cache
     88  * The MC68851 has a 64 entry cache, called the Address Translation Cache
     89  * or 'ATC'.  This cache stores the most recently used page descriptors
     90  * accessed by the MMU when it does translations.  Using a marker called a
     91  * 'task alias' the MMU can store the descriptors from 8 different table
     92  * spaces concurrently.  The task alias is associated with the base
     93  * address of the level A table of that address space.  When an address
     94  * space is currently active (the CRP currently points to its A table)
     95  * the only cached descriptors that will be obeyed are ones which have a
     96  * matching task alias of the current space associated with them.
     97  *
     98  * Since the cache is always consulted before any table lookups are done,
     99  * it is important that it accurately reflect the state of the MMU tables.
    100  * Whenever a change has been made to a table that has been loaded into
    101  * the MMU, the code must be sure to flush any cached entries that are
    102  * affected by the change.  These instances are documented in the code at
    103  * various points.
    104  */
    105 /*** A Note About the Note About the 68851 Address Translation Cache
    106  * 4 months into this code I discovered that the sun3x does not have
    107  * a MC68851 chip. Instead, it has a version of this MMU that is part of the
    108  * the 68030 CPU.
    109  * All though it behaves very similarly to the 68851, it only has 1 task
    110  * alias and a 22 entry cache.  So sadly (or happily), the first paragraph
    111  * of the previous note does not apply to the sun3x pmap.
    112  */
    113 
    114 #include <sys/param.h>
    115 #include <sys/systm.h>
    116 #include <sys/proc.h>
    117 #include <sys/malloc.h>
    118 #include <sys/user.h>
    119 #include <sys/queue.h>
    120 
    121 #include <vm/vm.h>
    122 #include <vm/vm_kern.h>
    123 #include <vm/vm_page.h>
    124 
    125 #include <machine/cpu.h>
    126 #include <machine/pmap.h>
    127 #include <machine/pte.h>
    128 #include <machine/machdep.h>
    129 #include <machine/mon.h>
    130 
    131 #include "pmap_pvt.h"
    132 
    133 /* XXX - What headers declare these? */
    134 extern struct pcb *curpcb;
    135 extern int physmem;
    136 
    137 extern void copypage __P((const void*, void*));
    138 extern void zeropage __P((void*));
    139 
    140 /* Defined in locore.s */
    141 extern char kernel_text[];
    142 
    143 /* Defined by the linker */
    144 extern char etext[], edata[], end[];
    145 extern char *esym;	/* DDB */
    146 
    147 /*************************** DEBUGGING DEFINITIONS ***********************
    148  * Macros, preprocessor defines and variables used in debugging can make *
    149  * code hard to read.  Anything used exclusively for debugging purposes  *
    150  * is defined here to avoid having such mess scattered around the file.  *
    151  *************************************************************************/
    152 #ifdef	PMAP_DEBUG
    153 /*
    154  * To aid the debugging process, macros should be expanded into smaller steps
    155  * that accomplish the same goal, yet provide convenient places for placing
    156  * breakpoints.  When this code is compiled with PMAP_DEBUG mode defined, the
    157  * 'INLINE' keyword is defined to an empty string.  This way, any function
    158  * defined to be a 'static INLINE' will become 'outlined' and compiled as
    159  * a separate function, which is much easier to debug.
    160  */
    161 #define	INLINE	/* nothing */
    162 
    163 /*
    164  * It is sometimes convenient to watch the activity of a particular table
    165  * in the system.  The following variables are used for that purpose.
    166  */
    167 a_tmgr_t *pmap_watch_atbl = 0;
    168 b_tmgr_t *pmap_watch_btbl = 0;
    169 c_tmgr_t *pmap_watch_ctbl = 0;
    170 
    171 int pmap_debug = 0;
    172 #define DPRINT(args) if (pmap_debug) printf args
    173 
    174 #else	/********** Stuff below is defined if NOT debugging **************/
    175 
    176 #define	INLINE	inline
    177 #define DPRINT(args)  /* nada */
    178 
    179 #endif	/* PMAP_DEBUG */
    180 /*********************** END OF DEBUGGING DEFINITIONS ********************/
    181 
    182 /*** Management Structure - Memory Layout
    183  * For every MMU table in the sun3x pmap system there must be a way to
    184  * manage it; we must know which process is using it, what other tables
    185  * depend on it, and whether or not it contains any locked pages.  This
    186  * is solved by the creation of 'table management'  or 'tmgr'
    187  * structures.  One for each MMU table in the system.
    188  *
    189  *                        MAP OF MEMORY USED BY THE PMAP SYSTEM
    190  *
    191  *      towards lower memory
    192  * kernAbase -> +-------------------------------------------------------+
    193  *              | Kernel     MMU A level table                          |
    194  * kernBbase -> +-------------------------------------------------------+
    195  *              | Kernel     MMU B level tables                         |
    196  * kernCbase -> +-------------------------------------------------------+
    197  *              |                                                       |
    198  *              | Kernel     MMU C level tables                         |
    199  *              |                                                       |
    200  * mmuCbase  -> +-------------------------------------------------------+
    201  *              | User       MMU C level tables                         |
    202  * mmuAbase  -> +-------------------------------------------------------+
    203  *              |                                                       |
    204  *              | User       MMU A level tables                         |
    205  *              |                                                       |
    206  * mmuBbase  -> +-------------------------------------------------------+
    207  *              | User       MMU B level tables                         |
    208  * tmgrAbase -> +-------------------------------------------------------+
    209  *              |  TMGR A level table structures                        |
    210  * tmgrBbase -> +-------------------------------------------------------+
    211  *              |  TMGR B level table structures                        |
    212  * tmgrCbase -> +-------------------------------------------------------+
    213  *              |  TMGR C level table structures                        |
    214  * pvbase    -> +-------------------------------------------------------+
    215  *              |  Physical to Virtual mapping table (list heads)       |
    216  * pvebase   -> +-------------------------------------------------------+
    217  *              |  Physical to Virtual mapping table (list elements)    |
    218  *              |                                                       |
    219  *              +-------------------------------------------------------+
    220  *      towards higher memory
    221  *
    222  * For every A table in the MMU A area, there will be a corresponding
    223  * a_tmgr structure in the TMGR A area.  The same will be true for
    224  * the B and C tables.  This arrangement will make it easy to find the
    225  * controling tmgr structure for any table in the system by use of
    226  * (relatively) simple macros.
    227  */
    228 
    229 /*
    230  * Global variables for storing the base addresses for the areas
    231  * labeled above.
    232  */
    233 static vm_offset_t  	kernAphys;
    234 static mmu_long_dte_t	*kernAbase;
    235 static mmu_short_dte_t	*kernBbase;
    236 static mmu_short_pte_t	*kernCbase;
    237 static mmu_short_pte_t	*mmuCbase;
    238 static mmu_short_dte_t	*mmuBbase;
    239 static mmu_long_dte_t	*mmuAbase;
    240 static a_tmgr_t		*Atmgrbase;
    241 static b_tmgr_t		*Btmgrbase;
    242 static c_tmgr_t		*Ctmgrbase;
    243 static pv_t 		*pvbase;
    244 static pv_elem_t	*pvebase;
    245 struct pmap 		kernel_pmap;
    246 
    247 /*
    248  * This holds the CRP currently loaded into the MMU.
    249  */
    250 struct mmu_rootptr kernel_crp;
    251 
    252 /*
    253  * Just all around global variables.
    254  */
    255 static TAILQ_HEAD(a_pool_head_struct, a_tmgr_struct) a_pool;
    256 static TAILQ_HEAD(b_pool_head_struct, b_tmgr_struct) b_pool;
    257 static TAILQ_HEAD(c_pool_head_struct, c_tmgr_struct) c_pool;
    258 
    259 
    260 /*
    261  * Flags used to mark the safety/availability of certain operations or
    262  * resources.
    263  */
    264 static boolean_t
    265     pv_initialized = FALSE,          /* PV system has been initialized. */
    266     tmp_vpages_inuse = FALSE,        /*
    267                                       * Temp. virtual pages are in use.
    268                                       * (see pmap_copy_page, et. al.)
    269                                       */
    270     bootstrap_alloc_enabled = FALSE; /* Safe to use pmap_bootstrap_alloc(). */
    271 
    272 /*
    273  * XXX:  For now, retain the traditional variables that were
    274  * used in the old pmap/vm interface (without NONCONTIG).
    275  */
    276 /* Kernel virtual address space available: */
    277 vm_offset_t	virtual_avail, virtual_end;
    278 /* Physical address space available: */
    279 vm_offset_t	avail_start, avail_end;
    280 
    281 /* This keep track of the end of the contiguously mapped range. */
    282 vm_offset_t virtual_contig_end;
    283 
    284 /* Physical address used by pmap_next_page() */
    285 vm_offset_t avail_next;
    286 
    287 /* These are used by pmap_copy_page(), etc. */
    288 vm_offset_t tmp_vpages[2];
    289 
    290 /*
    291  * The 3/80 is the only member of the sun3x family that has non-contiguous
    292  * physical memory.  Memory is divided into 4 banks which are physically
    293  * locatable on the system board.  Although the size of these banks varies
    294  * with the size of memory they contain, their base addresses are
    295  * permenently fixed.  The following structure, which describes these
    296  * banks, is initialized by pmap_bootstrap() after it reads from a similar
    297  * structure provided by the ROM Monitor.
    298  *
    299  * For the other machines in the sun3x architecture which do have contiguous
    300  * RAM, this list will have only one entry, which will describe the entire
    301  * range of available memory.
    302  */
    303 struct pmap_physmem_struct avail_mem[SUN3X_80_MEM_BANKS];
    304 u_int total_phys_mem;
    305 
    306 /*************************************************************************/
    307 
    308 /*
    309  * XXX - Should "tune" these based on statistics.
    310  *
    311  * My first guess about the relative numbers of these needed is
    312  * based on the fact that a "typical" process will have several
    313  * pages mapped at low virtual addresses (text, data, bss), then
    314  * some mapped shared libraries, and then some stack pages mapped
    315  * near the high end of the VA space.  Each process can use only
    316  * one A table, and most will use only two B tables (maybe three)
    317  * and probably about four C tables.  Therefore, the first guess
    318  * at the relative numbers of these needed is 1:2:4 -gwr
    319  *
    320  * The number of C tables needed is closely related to the amount
    321  * of physical memory available plus a certain amount attributable
    322  * to the use of double mappings.  With a few simulation statistics
    323  * we can find a reasonably good estimation of this unknown value.
    324  * Armed with that and the above ratios, we have a good idea of what
    325  * is needed at each level. -j
    326  *
    327  * Note: It is not physical memory memory size, but the total mapped
    328  * virtual space required by the combined working sets of all the
    329  * currently _runnable_ processes.  (Sleeping ones don't count.)
    330  * The amount of physical memory should be irrelevant. -gwr
    331  */
    332 #define NUM_A_TABLES	16
    333 #define NUM_B_TABLES	32
    334 #define NUM_C_TABLES	64
    335 
    336 /*
    337  * This determines our total virtual mapping capacity.
    338  * Yes, it is a FIXED value so we can pre-allocate.
    339  */
    340 #define NUM_USER_PTES	(NUM_C_TABLES * MMU_C_TBL_SIZE)
    341 
    342 /*
    343  * The size of the Kernel Virtual Address Space (KVAS)
    344  * for purposes of MMU table allocation is -KERNBASE
    345  * (length from KERNBASE to 0xFFFFffff)
    346  */
    347 #define	KVAS_SIZE		(-KERNBASE)
    348 
    349 /* Numbers of kernel MMU tables to support KVAS_SIZE. */
    350 #define KERN_B_TABLES	(KVAS_SIZE >> MMU_TIA_SHIFT)
    351 #define KERN_C_TABLES	(KVAS_SIZE >> MMU_TIB_SHIFT)
    352 #define	NUM_KERN_PTES	(KVAS_SIZE >> MMU_TIC_SHIFT)
    353 
    354 /*************************** MISCELANEOUS MACROS *************************/
    355 #define PMAP_LOCK()	;	/* Nothing, for now */
    356 #define PMAP_UNLOCK()	;	/* same. */
    357 #define	NULL 0
    358 
    359 static INLINE void *      mmu_ptov __P((vm_offset_t pa));
    360 static INLINE vm_offset_t mmu_vtop __P((void * va));
    361 
    362 #if	0
    363 static INLINE a_tmgr_t * mmuA2tmgr __P((mmu_long_dte_t *));
    364 #endif
    365 static INLINE b_tmgr_t * mmuB2tmgr __P((mmu_short_dte_t *));
    366 static INLINE c_tmgr_t * mmuC2tmgr __P((mmu_short_pte_t *));
    367 
    368 static INLINE pv_t *pa2pv __P((vm_offset_t pa));
    369 static INLINE int   pteidx __P((mmu_short_pte_t *));
    370 static INLINE pmap_t current_pmap __P((void));
    371 
    372 /*
    373  * We can always convert between virtual and physical addresses
    374  * for anything in the range [KERNBASE ... avail_start] because
    375  * that range is GUARANTEED to be mapped linearly.
    376  * We rely heavily upon this feature!
    377  */
    378 static INLINE void *
    379 mmu_ptov(pa)
    380 	vm_offset_t pa;
    381 {
    382 	register vm_offset_t va;
    383 
    384 	va = (pa + KERNBASE);
    385 #ifdef	PMAP_DEBUG
    386 	if ((va < KERNBASE) || (va >= virtual_contig_end))
    387 		panic("mmu_ptov");
    388 #endif
    389 	return ((void*)va);
    390 }
    391 static INLINE vm_offset_t
    392 mmu_vtop(vva)
    393 	void *vva;
    394 {
    395 	register vm_offset_t va;
    396 
    397 	va = (vm_offset_t)vva;
    398 #ifdef	PMAP_DEBUG
    399 	if ((va < KERNBASE) || (va >= virtual_contig_end))
    400 		panic("mmu_ptov");
    401 #endif
    402 	return (va - KERNBASE);
    403 }
    404 
    405 /*
    406  * These macros map MMU tables to their corresponding manager structures.
    407  * They are needed quite often because many of the pointers in the pmap
    408  * system reference MMU tables and not the structures that control them.
    409  * There needs to be a way to find one when given the other and these
    410  * macros do so by taking advantage of the memory layout described above.
    411  * Here's a quick step through the first macro, mmuA2tmgr():
    412  *
    413  * 1) find the offset of the given MMU A table from the base of its table
    414  *    pool (table - mmuAbase).
    415  * 2) convert this offset into a table index by dividing it by the
    416  *    size of one MMU 'A' table. (sizeof(mmu_long_dte_t) * MMU_A_TBL_SIZE)
    417  * 3) use this index to select the corresponding 'A' table manager
    418  *    structure from the 'A' table manager pool (Atmgrbase[index]).
    419  */
    420 /*  This function is not currently used. */
    421 #if	0
    422 static INLINE a_tmgr_t *
    423 mmuA2tmgr(mmuAtbl)
    424 	mmu_long_dte_t *mmuAtbl;
    425 {
    426 	register int idx;
    427 
    428 	/* Which table is this in? */
    429 	idx = (mmuAtbl - mmuAbase) / MMU_A_TBL_SIZE;
    430 #ifdef	PMAP_DEBUG
    431 	if ((idx < 0) || (idx >= NUM_A_TABLES))
    432 		panic("mmuA2tmgr");
    433 #endif
    434 	return (&Atmgrbase[idx]);
    435 }
    436 #endif	/* 0 */
    437 
    438 static INLINE b_tmgr_t *
    439 mmuB2tmgr(mmuBtbl)
    440 	mmu_short_dte_t *mmuBtbl;
    441 {
    442 	register int idx;
    443 
    444 	/* Which table is this in? */
    445 	idx = (mmuBtbl - mmuBbase) / MMU_B_TBL_SIZE;
    446 #ifdef	PMAP_DEBUG
    447 	if ((idx < 0) || (idx >= NUM_B_TABLES))
    448 		panic("mmuB2tmgr");
    449 #endif
    450 	return (&Btmgrbase[idx]);
    451 }
    452 
    453 /* mmuC2tmgr			INTERNAL
    454  **
    455  * Given a pte known to belong to a C table, return the address of
    456  * that table's management structure.
    457  */
    458 static INLINE c_tmgr_t *
    459 mmuC2tmgr(mmuCtbl)
    460 	mmu_short_pte_t *mmuCtbl;
    461 {
    462 	register int idx;
    463 
    464 	/* Which table is this in? */
    465 	idx = (mmuCtbl - mmuCbase) / MMU_C_TBL_SIZE;
    466 #ifdef	PMAP_DEBUG
    467 	if ((idx < 0) || (idx >= NUM_C_TABLES))
    468 		panic("mmuC2tmgr");
    469 #endif
    470 	return (&Ctmgrbase[idx]);
    471 }
    472 
    473 /* This is now a function call below.
    474  * #define pa2pv(pa) \
    475  *	(&pvbase[(unsigned long)\
    476  *		_btop(pa)\
    477  *	])
    478  */
    479 
    480 /* pa2pv			INTERNAL
    481  **
    482  * Return the pv_list_head element which manages the given physical
    483  * address.
    484  */
    485 static INLINE pv_t *
    486 pa2pv(pa)
    487 	vm_offset_t pa;
    488 {
    489 	register struct pmap_physmem_struct *bank;
    490 	register int idx;
    491 
    492 	bank = &avail_mem[0];
    493 	while (pa >= bank->pmem_end)
    494 		bank = bank->pmem_next;
    495 
    496 	pa -= bank->pmem_start;
    497 	idx = bank->pmem_pvbase + _btop(pa);
    498 #ifdef	PMAP_DEBUG
    499 	if ((idx < 0) || (idx >= physmem))
    500 		panic("pa2pv");
    501 #endif
    502 	return &pvbase[idx];
    503 }
    504 
    505 /* pteidx			INTERNAL
    506  **
    507  * Return the index of the given PTE within the entire fixed table of
    508  * PTEs.
    509  */
    510 static INLINE int
    511 pteidx(pte)
    512 	mmu_short_pte_t *pte;
    513 {
    514 	return (pte - kernCbase);
    515 }
    516 
    517 /*
    518  * This just offers a place to put some debugging checks,
    519  * and reduces the number of places "curproc" appears...
    520  */
    521 static INLINE pmap_t
    522 current_pmap()
    523 {
    524 	struct proc *p;
    525 	struct vmspace *vm;
    526 	vm_map_t	map;
    527 	pmap_t	pmap;
    528 
    529 	p = curproc;	/* XXX */
    530 	if (p == NULL)
    531 		pmap = &kernel_pmap;
    532 	else {
    533 		vm = p->p_vmspace;
    534 		map = &vm->vm_map;
    535 		pmap = vm_map_pmap(map);
    536 	}
    537 
    538 	return (pmap);
    539 }
    540 
    541 
    542 /*************************** FUNCTION DEFINITIONS ************************
    543  * These appear here merely for the compiler to enforce type checking on *
    544  * all function calls.                                                   *
    545  *************************************************************************/
    546 
    547 /** External functions
    548  ** - functions used within this module but written elsewhere.
    549  **   both of these functions are in locore.s
    550  ** XXX - These functions were later replaced with their more cryptic
    551  **       hp300 counterparts.  They may be removed now.
    552  **/
    553 #if	0	/* deprecated mmu */
    554 void   mmu_seturp __P((vm_offset_t));
    555 void   mmu_flush __P((int, vm_offset_t));
    556 void   mmu_flusha __P((void));
    557 #endif	/* 0 */
    558 
    559 /** Internal functions
    560  ** - all functions used only within this module are defined in
    561  **   pmap_pvt.h
    562  **/
    563 
    564 /** Interface functions
    565  ** - functions required by the Mach VM Pmap interface, with MACHINE_CONTIG
    566  **   defined.
    567  **/
    568 #ifdef INCLUDED_IN_PMAP_H
    569 void   pmap_bootstrap __P((void));
    570 void  *pmap_bootstrap_alloc __P((int));
    571 void   pmap_enter __P((pmap_t, vm_offset_t, vm_offset_t, vm_prot_t, boolean_t));
    572 pmap_t pmap_create __P((vm_size_t));
    573 void   pmap_destroy __P((pmap_t));
    574 void   pmap_reference __P((pmap_t));
    575 boolean_t   pmap_is_referenced __P((vm_offset_t));
    576 boolean_t   pmap_is_modified __P((vm_offset_t));
    577 void   pmap_clear_modify __P((vm_offset_t));
    578 vm_offset_t pmap_extract __P((pmap_t, vm_offset_t));
    579 void   pmap_activate __P((pmap_t));
    580 int    pmap_page_index __P((vm_offset_t));
    581 u_int  pmap_free_pages __P((void));
    582 #endif /* INCLUDED_IN_PMAP_H */
    583 
    584 /********************************** CODE ********************************
    585  * Functions that are called from other parts of the kernel are labeled *
    586  * as 'INTERFACE' functions.  Functions that are only called from       *
    587  * within the pmap module are labeled as 'INTERNAL' functions.          *
    588  * Functions that are internal, but are not (currently) used at all are *
    589  * labeled 'INTERNAL_X'.                                                *
    590  ************************************************************************/
    591 
    592 /* pmap_bootstrap			INTERNAL
    593  **
    594  * Initializes the pmap system.  Called at boot time from _vm_init()
    595  * in _startup.c.
    596  *
    597  * Reminder: having a pmap_bootstrap_alloc() and also having the VM
    598  *           system implement pmap_steal_memory() is redundant.
    599  *           Don't release this code without removing one or the other!
    600  */
    601 void
    602 pmap_bootstrap(nextva)
    603 	vm_offset_t nextva;
    604 {
    605 	struct physmemory *membank;
    606 	struct pmap_physmem_struct *pmap_membank;
    607 	vm_offset_t va, pa, eva;
    608 	int b, c, i, j;	/* running table counts */
    609 	int size;
    610 
    611 	/*
    612 	 * This function is called by __bootstrap after it has
    613 	 * determined the type of machine and made the appropriate
    614 	 * patches to the ROM vectors (XXX- I don't quite know what I meant
    615 	 * by that.)  It allocates and sets up enough of the pmap system
    616 	 * to manage the kernel's address space.
    617 	 */
    618 
    619 	/*
    620 	 * Determine the range of kernel virtual and physical
    621 	 * space available. Note that we ABSOLUTELY DEPEND on
    622 	 * the fact that the first bank of memory (4MB) is
    623 	 * mapped linearly to KERNBASE (which we guaranteed in
    624 	 * the first instructions of locore.s).
    625 	 * That is plenty for our bootstrap work.
    626 	 */
    627 	virtual_avail = _round_page(nextva);
    628 	virtual_contig_end = KERNBASE + 0x400000; /* +4MB */
    629 	virtual_end = VM_MAX_KERNEL_ADDRESS;
    630 	/* Don't need avail_start til later. */
    631 
    632 	/* We may now call pmap_bootstrap_alloc(). */
    633 	bootstrap_alloc_enabled = TRUE;
    634 
    635 	/*
    636 	 * This is a somewhat unwrapped loop to deal with
    637 	 * copying the PROM's 'phsymem' banks into the pmap's
    638 	 * banks.  The following is always assumed:
    639 	 * 1. There is always at least one bank of memory.
    640 	 * 2. There is always a last bank of memory, and its
    641 	 *    pmem_next member must be set to NULL.
    642 	 * XXX - Use: do { ... } while (membank->next) instead?
    643 	 * XXX - Why copy this stuff at all? -gwr
    644 	 *     - It is needed in pa2pv().
    645 	 */
    646 	membank = romVectorPtr->v_physmemory;
    647 	pmap_membank = avail_mem;
    648 	total_phys_mem = 0;
    649 
    650 	while (membank->next) {
    651 		pmap_membank->pmem_start = membank->address;
    652 		pmap_membank->pmem_end = membank->address + membank->size;
    653 		total_phys_mem += membank->size;
    654 		/* This silly syntax arises because pmap_membank
    655 		 * is really a pre-allocated array, but it is put into
    656 		 * use as a linked list.
    657 		 */
    658 		pmap_membank->pmem_next = pmap_membank + 1;
    659 		pmap_membank = pmap_membank->pmem_next;
    660 		membank = membank->next;
    661 	}
    662 
    663 	/*
    664 	 * XXX The last bank of memory should be reduced to exclude the
    665 	 * physical pages needed by the PROM monitor from being used
    666 	 * in the VM system.  XXX - See below - Fix!
    667 	 */
    668 	pmap_membank->pmem_start = membank->address;
    669 	pmap_membank->pmem_end = membank->address + membank->size;
    670 	pmap_membank->pmem_next = NULL;
    671 
    672 #if 0	/* XXX - Need to integrate this! */
    673 	/*
    674 	 * The last few pages of physical memory are "owned" by
    675 	 * the PROM.  The total amount of memory we are allowed
    676 	 * to use is given by the romvec pointer. -gwr
    677 	 *
    678 	 * We should dedicate different variables for 'useable'
    679 	 * and 'physically available'.  Most users are used to the
    680 	 * kernel reporting the amount of memory 'physically available'
    681 	 * as opposed to 'useable by the kernel' at boot time. -j
    682 	 */
    683 	total_phys_mem = *romVectorPtr->memoryAvail;
    684 #endif	/* XXX */
    685 
    686 	total_phys_mem += membank->size;	/* XXX see above */
    687 	physmem = btoc(total_phys_mem);
    688 
    689 	/*
    690 	 * Avail_end is set to the first byte of physical memory
    691 	 * after the end of the last bank.  We use this only to
    692 	 * determine if a physical address is "managed" memory.
    693 	 *
    694 	 * XXX - The setting of avail_end is a temporary ROM saving hack.
    695 	 */
    696 	avail_end = pmap_membank->pmem_end -
    697 		(total_phys_mem - *romVectorPtr->memoryAvail);
    698 	avail_end = _trunc_page(avail_end);
    699 
    700 	/*
    701 	 * First allocate enough kernel MMU tables to map all
    702 	 * of kernel virtual space from KERNBASE to 0xFFFFFFFF.
    703 	 * Note: All must be aligned on 256 byte boundaries.
    704 	 * Start with the level-A table (one of those).
    705 	 */
    706 	size = sizeof(mmu_long_dte_t)  * MMU_A_TBL_SIZE;
    707 	kernAbase = pmap_bootstrap_alloc(size);
    708 	bzero(kernAbase, size);
    709 
    710 	/* Now the level-B kernel tables... */
    711 	size = sizeof(mmu_short_dte_t) * MMU_B_TBL_SIZE * KERN_B_TABLES;
    712 	kernBbase = pmap_bootstrap_alloc(size);
    713 	bzero(kernBbase, size);
    714 
    715 	/* Now the level-C kernel tables... */
    716 	size = sizeof(mmu_short_pte_t) * MMU_C_TBL_SIZE * KERN_C_TABLES;
    717 	kernCbase = pmap_bootstrap_alloc(size);
    718 	bzero(kernCbase, size);
    719 	/*
    720 	 * Note: In order for the PV system to work correctly, the kernel
    721 	 * and user-level C tables must be allocated contiguously.
    722 	 * Nothing should be allocated between here and the allocation of
    723 	 * mmuCbase below.  XXX: Should do this as one allocation, and
    724 	 * then compute a pointer for mmuCbase instead of this...
    725 	 *
    726 	 * Allocate user MMU tables.
    727 	 * These must be contiguous with the preceeding.
    728 	 */
    729 	size = sizeof(mmu_short_pte_t) * MMU_C_TBL_SIZE	* NUM_C_TABLES;
    730 	mmuCbase = pmap_bootstrap_alloc(size);
    731 
    732 	size = sizeof(mmu_short_dte_t) * MMU_B_TBL_SIZE	* NUM_B_TABLES;
    733 	mmuBbase = pmap_bootstrap_alloc(size);
    734 
    735 	size = sizeof(mmu_long_dte_t)  * MMU_A_TBL_SIZE * NUM_A_TABLES;
    736 	mmuAbase = pmap_bootstrap_alloc(size);
    737 
    738 	/*
    739 	 * Fill in the never-changing part of the kernel tables.
    740 	 * For simplicity, the kernel's mappings will be editable as a
    741 	 * flat array of page table entries at kernCbase.  The
    742 	 * higher level 'A' and 'B' tables must be initialized to point
    743 	 * to this lower one.
    744 	 */
    745 	b = c = 0;
    746 
    747 	/*
    748 	 * Invalidate all mappings below KERNBASE in the A table.
    749 	 * This area has already been zeroed out, but it is good
    750 	 * practice to explicitly show that we are interpreting
    751 	 * it as a list of A table descriptors.
    752 	 */
    753 	for (i = 0; i < MMU_TIA(KERNBASE); i++) {
    754 		kernAbase[i].addr.raw = 0;
    755 	}
    756 
    757 	/*
    758 	 * Set up the kernel A and B tables so that they will reference the
    759 	 * correct spots in the contiguous table of PTEs allocated for the
    760 	 * kernel's virtual memory space.
    761 	 */
    762 	for (i = MMU_TIA(KERNBASE); i < MMU_A_TBL_SIZE; i++) {
    763 		kernAbase[i].attr.raw =
    764 			MMU_LONG_DTE_LU | MMU_LONG_DTE_SUPV | MMU_DT_SHORT;
    765 		kernAbase[i].addr.raw = mmu_vtop(&kernBbase[b]);
    766 
    767 		for (j=0; j < MMU_B_TBL_SIZE; j++) {
    768 			kernBbase[b + j].attr.raw = mmu_vtop(&kernCbase[c])
    769 				| MMU_DT_SHORT;
    770 			c += MMU_C_TBL_SIZE;
    771 		}
    772 		b += MMU_B_TBL_SIZE;
    773 	}
    774 
    775 	/* XXX - Doing kernel_pmap a little further down. */
    776 
    777 	pmap_alloc_usermmu();	/* Allocate user MMU tables.        */
    778 	pmap_alloc_usertmgr();	/* Allocate user MMU table managers.*/
    779 	pmap_alloc_pv();	/* Allocate physical->virtual map.  */
    780 
    781 	/*
    782 	 * We are now done with pmap_bootstrap_alloc().  Round up
    783 	 * `virtual_avail' to the nearest page, and set the flag
    784 	 * to prevent use of pmap_bootstrap_alloc() hereafter.
    785 	 */
    786 	pmap_bootstrap_aalign(NBPG);
    787 	bootstrap_alloc_enabled = FALSE;
    788 
    789 	/*
    790 	 * Now that we are done with pmap_bootstrap_alloc(), we
    791 	 * must save the virtual and physical addresses of the
    792 	 * end of the linearly mapped range, which are stored in
    793 	 * virtual_contig_end and avail_start, respectively.
    794 	 * These variables will never change after this point.
    795 	 */
    796 	virtual_contig_end = virtual_avail;
    797 	avail_start = virtual_avail - KERNBASE;
    798 
    799 	/*
    800 	 * `avail_next' is a running pointer used by pmap_next_page() to
    801 	 * keep track of the next available physical page to be handed
    802 	 * to the VM system during its initialization, in which it
    803 	 * asks for physical pages, one at a time.
    804 	 */
    805 	avail_next = avail_start;
    806 
    807 	/*
    808 	 * Now allocate some virtual addresses, but not the physical pages
    809 	 * behind them.  Note that virtual_avail is already page-aligned.
    810 	 *
    811 	 * tmp_vpages[] is an array of two virtual pages used for temporary
    812 	 * kernel mappings in the pmap module to facilitate various physical
    813 	 * address-oritented operations.
    814 	 */
    815 	tmp_vpages[0] = virtual_avail;
    816 	virtual_avail += NBPG;
    817 	tmp_vpages[1] = virtual_avail;
    818 	virtual_avail += NBPG;
    819 
    820 	/** Initialize the PV system **/
    821 	pmap_init_pv();
    822 
    823 	/*
    824 	 * Fill in the kernel_pmap structure and kernel_crp.
    825 	 */
    826 	kernAphys = mmu_vtop(kernAbase);
    827 	kernel_pmap.pm_a_tmgr = NULL;
    828 	kernel_pmap.pm_a_phys = kernAphys;
    829 	kernel_pmap.pm_refcount = 1; /* always in use */
    830 
    831 	kernel_crp.rp_attr = MMU_LONG_DTE_LU | MMU_DT_LONG;
    832 	kernel_crp.rp_addr = kernAphys;
    833 
    834 	/*
    835 	 * Now pmap_enter_kernel() may be used safely and will be
    836 	 * the main interface used hereafter to modify the kernel's
    837 	 * virtual address space.  Note that since we are still running
    838 	 * under the PROM's address table, none of these table modifications
    839 	 * actually take effect until pmap_takeover_mmu() is called.
    840 	 *
    841 	 * Note: Our tables do NOT have the PROM linear mappings!
    842 	 * Only the mappings created here exist in our tables, so
    843 	 * remember to map anything we expect to use.
    844 	 */
    845 	va = (vm_offset_t) KERNBASE;
    846 	pa = 0;
    847 
    848 	/*
    849 	 * The first page of the kernel virtual address space is the msgbuf
    850 	 * page.  The page attributes (data, non-cached) are set here, while
    851 	 * the address is assigned to this global pointer in cpu_startup().
    852 	 * XXX - Make it non-cached?
    853 	 */
    854 	pmap_enter_kernel(va, pa|PMAP_NC, VM_PROT_ALL);
    855 	va += NBPG; pa += NBPG;
    856 
    857 	/* Next page is used as the temporary stack. */
    858 	pmap_enter_kernel(va, pa, VM_PROT_ALL);
    859 	va += NBPG; pa += NBPG;
    860 
    861 	/*
    862 	 * Map all of the kernel's text segment as read-only and cacheable.
    863 	 * (Cacheable is implied by default).  Unfortunately, the last bytes
    864 	 * of kernel text and the first bytes of kernel data will often be
    865 	 * sharing the same page.  Therefore, the last page of kernel text
    866 	 * has to be mapped as read/write, to accomodate the data.
    867 	 */
    868 	eva = _trunc_page((vm_offset_t)etext);
    869 	for (; va < eva; va += NBPG, pa += NBPG)
    870 		pmap_enter_kernel(va, pa, VM_PROT_READ|VM_PROT_EXECUTE);
    871 
    872 	/*
    873 	 * Map all of the kernel's data as read/write and cacheable.
    874 	 * This includes: data, BSS, symbols, and everything in the
    875 	 * contiguous memory used by pmap_bootstrap_alloc()
    876 	 */
    877 	for (; pa < avail_start; va += NBPG, pa += NBPG)
    878 		pmap_enter_kernel(va, pa, VM_PROT_READ|VM_PROT_WRITE);
    879 
    880 	/*
    881 	 * At this point we are almost ready to take over the MMU.  But first
    882 	 * we must save the PROM's address space in our map, as we call its
    883 	 * routines and make references to its data later in the kernel.
    884 	 */
    885 	pmap_bootstrap_copyprom();
    886 	pmap_takeover_mmu();
    887 	pmap_bootstrap_setprom();
    888 
    889 	/* Notify the VM system of our page size. */
    890 	PAGE_SIZE = NBPG;
    891 	vm_set_page_size();
    892 }
    893 
    894 
    895 /* pmap_alloc_usermmu			INTERNAL
    896  **
    897  * Called from pmap_bootstrap() to allocate MMU tables that will
    898  * eventually be used for user mappings.
    899  */
    900 void
    901 pmap_alloc_usermmu()
    902 {
    903 	/* XXX: Moved into caller. */
    904 }
    905 
    906 /* pmap_alloc_pv			INTERNAL
    907  **
    908  * Called from pmap_bootstrap() to allocate the physical
    909  * to virtual mapping list.  Each physical page of memory
    910  * in the system has a corresponding element in this list.
    911  */
    912 void
    913 pmap_alloc_pv()
    914 {
    915 	int	i;
    916 	unsigned int	total_mem;
    917 
    918 	/*
    919 	 * Allocate a pv_head structure for every page of physical
    920 	 * memory that will be managed by the system.  Since memory on
    921 	 * the 3/80 is non-contiguous, we cannot arrive at a total page
    922 	 * count by subtraction of the lowest available address from the
    923 	 * highest, but rather we have to step through each memory
    924 	 * bank and add the number of pages in each to the total.
    925 	 *
    926 	 * At this time we also initialize the offset of each bank's
    927 	 * starting pv_head within the pv_head list so that the physical
    928 	 * memory state routines (pmap_is_referenced(),
    929 	 * pmap_is_modified(), et al.) can quickly find coresponding
    930 	 * pv_heads in spite of the non-contiguity.
    931 	 */
    932 	total_mem = 0;
    933 	for (i = 0; i < SUN3X_80_MEM_BANKS; i++) {
    934 		avail_mem[i].pmem_pvbase = _btop(total_mem);
    935 		total_mem += avail_mem[i].pmem_end -
    936 			avail_mem[i].pmem_start;
    937 		if (avail_mem[i].pmem_next == NULL)
    938 			break;
    939 	}
    940 #ifdef	PMAP_DEBUG
    941 	if (total_mem != total_phys_mem)
    942 		panic("pmap_alloc_pv did not arrive at correct page count");
    943 #endif
    944 
    945 	pvbase = (pv_t *) pmap_bootstrap_alloc(sizeof(pv_t) *
    946 		_btop(total_phys_mem));
    947 }
    948 
    949 /* pmap_alloc_usertmgr			INTERNAL
    950  **
    951  * Called from pmap_bootstrap() to allocate the structures which
    952  * facilitate management of user MMU tables.  Each user MMU table
    953  * in the system has one such structure associated with it.
    954  */
    955 void
    956 pmap_alloc_usertmgr()
    957 {
    958 	/* Allocate user MMU table managers */
    959 	/* It would be a lot simpler to just make these BSS, but */
    960 	/* we may want to change their size at boot time... -j */
    961 	Atmgrbase = (a_tmgr_t *) pmap_bootstrap_alloc(sizeof(a_tmgr_t)
    962 		* NUM_A_TABLES);
    963 	Btmgrbase = (b_tmgr_t *) pmap_bootstrap_alloc(sizeof(b_tmgr_t)
    964 		* NUM_B_TABLES);
    965 	Ctmgrbase = (c_tmgr_t *) pmap_bootstrap_alloc(sizeof(c_tmgr_t)
    966 		* NUM_C_TABLES);
    967 
    968 	/*
    969 	 * Allocate PV list elements for the physical to virtual
    970 	 * mapping system.
    971 	 */
    972 	pvebase = (pv_elem_t *) pmap_bootstrap_alloc(
    973 		sizeof(pv_elem_t) * (NUM_USER_PTES + NUM_KERN_PTES));
    974 }
    975 
    976 /* pmap_bootstrap_copyprom()			INTERNAL
    977  **
    978  * Copy the PROM mappings into our own tables.  Note, we
    979  * can use physical addresses until __bootstrap returns.
    980  */
    981 void
    982 pmap_bootstrap_copyprom()
    983 {
    984 	MachMonRomVector *romp;
    985 	int *mon_ctbl;
    986 	mmu_short_pte_t *kpte;
    987 	int i, len;
    988 
    989 	romp = romVectorPtr;
    990 
    991 	/*
    992 	 * Copy the mappings in MON_KDB_START...MONEND
    993 	 * Note: mon_ctbl[0] maps MON_KDB_START
    994 	 */
    995 	mon_ctbl = *romp->monptaddr;
    996 	i = _btop(MON_KDB_START - KERNBASE);
    997 	kpte = &kernCbase[i];
    998 	len = _btop(MONEND - MON_KDB_START);
    999 
   1000 	for (i = 0; i < len; i++) {
   1001 		kpte[i].attr.raw = mon_ctbl[i];
   1002 	}
   1003 
   1004 	/*
   1005 	 * Copy the mappings at MON_DVMA_BASE (to the end).
   1006 	 * Note, in here, mon_ctbl[0] maps MON_DVMA_BASE.
   1007 	 * XXX - This does not appear to be necessary, but
   1008 	 * I'm not sure yet if it is or not. -gwr
   1009 	 */
   1010 	mon_ctbl = *romp->shadowpteaddr;
   1011 	i = _btop(MON_DVMA_BASE - KERNBASE);
   1012 	kpte = &kernCbase[i];
   1013 	len = _btop(MON_DVMA_SIZE);
   1014 
   1015 	for (i = 0; i < len; i++) {
   1016 		kpte[i].attr.raw = mon_ctbl[i];
   1017 	}
   1018 }
   1019 
   1020 /* pmap_takeover_mmu			INTERNAL
   1021  **
   1022  * Called from pmap_bootstrap() after it has copied enough of the
   1023  * PROM mappings into the kernel map so that we can use our own
   1024  * MMU table.
   1025  */
   1026 void
   1027 pmap_takeover_mmu()
   1028 {
   1029 
   1030 	loadcrp(&kernel_crp);
   1031 }
   1032 
   1033 /* pmap_bootstrap_setprom()			INTERNAL
   1034  **
   1035  * Set the PROM mappings so it can see kernel space.
   1036  * Note that physical addresses are used here, which
   1037  * we can get away with because this runs with the
   1038  * low 1GB set for transparent translation.
   1039  */
   1040 void
   1041 pmap_bootstrap_setprom()
   1042 {
   1043 	mmu_long_dte_t *mon_dte;
   1044 	extern struct mmu_rootptr mon_crp;
   1045 	int i;
   1046 
   1047 	mon_dte = (mmu_long_dte_t *) mon_crp.rp_addr;
   1048 	for (i = MMU_TIA(KERNBASE); i < MMU_TIA(KERN_END); i++) {
   1049 		mon_dte[i].attr.raw = kernAbase[i].attr.raw;
   1050 		mon_dte[i].addr.raw = kernAbase[i].addr.raw;
   1051 	}
   1052 }
   1053 
   1054 
   1055 /* pmap_init			INTERFACE
   1056  **
   1057  * Called at the end of vm_init() to set up the pmap system to go
   1058  * into full time operation.  All initialization of kernel_pmap
   1059  * should be already done by now, so this should just do things
   1060  * needed for user-level pmaps to work.
   1061  */
   1062 void
   1063 pmap_init()
   1064 {
   1065 	/** Initialize the manager pools **/
   1066 	TAILQ_INIT(&a_pool);
   1067 	TAILQ_INIT(&b_pool);
   1068 	TAILQ_INIT(&c_pool);
   1069 
   1070 	/**************************************************************
   1071 	 * Initialize all tmgr structures and MMU tables they manage. *
   1072 	 **************************************************************/
   1073 	/** Initialize A tables **/
   1074 	pmap_init_a_tables();
   1075 	/** Initialize B tables **/
   1076 	pmap_init_b_tables();
   1077 	/** Initialize C tables **/
   1078 	pmap_init_c_tables();
   1079 }
   1080 
   1081 /* pmap_init_a_tables()			INTERNAL
   1082  **
   1083  * Initializes all A managers, their MMU A tables, and inserts
   1084  * them into the A manager pool for use by the system.
   1085  */
   1086 void
   1087 pmap_init_a_tables()
   1088 {
   1089 	int i;
   1090 	a_tmgr_t *a_tbl;
   1091 
   1092 	for (i=0; i < NUM_A_TABLES; i++) {
   1093 		/* Select the next available A manager from the pool */
   1094 		a_tbl = &Atmgrbase[i];
   1095 
   1096 		/*
   1097 		 * Clear its parent entry.  Set its wired and valid
   1098 		 * entry count to zero.
   1099 		 */
   1100 		a_tbl->at_parent = NULL;
   1101 		a_tbl->at_wcnt = a_tbl->at_ecnt = 0;
   1102 
   1103 		/* Assign it the next available MMU A table from the pool */
   1104 		a_tbl->at_dtbl = &mmuAbase[i * MMU_A_TBL_SIZE];
   1105 
   1106 		/*
   1107 		 * Initialize the MMU A table with the table in the `proc0',
   1108 		 * or kernel, mapping.  This ensures that every process has
   1109 		 * the kernel mapped in the top part of its address space.
   1110 		 */
   1111 		bcopy(kernAbase, a_tbl->at_dtbl, MMU_A_TBL_SIZE *
   1112 			sizeof(mmu_long_dte_t));
   1113 
   1114 		/*
   1115 		 * Finally, insert the manager into the A pool,
   1116 		 * making it ready to be used by the system.
   1117 		 */
   1118 		TAILQ_INSERT_TAIL(&a_pool, a_tbl, at_link);
   1119     }
   1120 }
   1121 
   1122 /* pmap_init_b_tables()			INTERNAL
   1123  **
   1124  * Initializes all B table managers, their MMU B tables, and
   1125  * inserts them into the B manager pool for use by the system.
   1126  */
   1127 void
   1128 pmap_init_b_tables()
   1129 {
   1130 	int i,j;
   1131 	b_tmgr_t *b_tbl;
   1132 
   1133 	for (i=0; i < NUM_B_TABLES; i++) {
   1134 		/* Select the next available B manager from the pool */
   1135 		b_tbl = &Btmgrbase[i];
   1136 
   1137 		b_tbl->bt_parent = NULL;	/* clear its parent,  */
   1138 		b_tbl->bt_pidx = 0;		/* parent index,      */
   1139 		b_tbl->bt_wcnt = 0;		/* wired entry count, */
   1140 		b_tbl->bt_ecnt = 0;		/* valid entry count. */
   1141 
   1142 		/* Assign it the next available MMU B table from the pool */
   1143 		b_tbl->bt_dtbl = &mmuBbase[i * MMU_B_TBL_SIZE];
   1144 
   1145 		/* Invalidate every descriptor in the table */
   1146 		for (j=0; j < MMU_B_TBL_SIZE; j++)
   1147 			b_tbl->bt_dtbl[j].attr.raw = MMU_DT_INVALID;
   1148 
   1149 		/* Insert the manager into the B pool */
   1150 		TAILQ_INSERT_TAIL(&b_pool, b_tbl, bt_link);
   1151 	}
   1152 }
   1153 
   1154 /* pmap_init_c_tables()			INTERNAL
   1155  **
   1156  * Initializes all C table managers, their MMU C tables, and
   1157  * inserts them into the C manager pool for use by the system.
   1158  */
   1159 void
   1160 pmap_init_c_tables()
   1161 {
   1162 	int i,j;
   1163 	c_tmgr_t *c_tbl;
   1164 
   1165 	for (i=0; i < NUM_C_TABLES; i++) {
   1166 		/* Select the next available C manager from the pool */
   1167 		c_tbl = &Ctmgrbase[i];
   1168 
   1169 		c_tbl->ct_parent = NULL;	/* clear its parent,  */
   1170 		c_tbl->ct_pidx = 0;		/* parent index,      */
   1171 		c_tbl->ct_wcnt = 0;		/* wired entry count, */
   1172 		c_tbl->ct_ecnt = 0;		/* valid entry count. */
   1173 
   1174 		/* Assign it the next available MMU C table from the pool */
   1175 		c_tbl->ct_dtbl = &mmuCbase[i * MMU_C_TBL_SIZE];
   1176 
   1177 		for (j=0; j < MMU_C_TBL_SIZE; j++)
   1178 			c_tbl->ct_dtbl[j].attr.raw = MMU_DT_INVALID;
   1179 
   1180 		TAILQ_INSERT_TAIL(&c_pool, c_tbl, ct_link);
   1181 	}
   1182 }
   1183 
   1184 /* pmap_init_pv()			INTERNAL
   1185  **
   1186  * Initializes the Physical to Virtual mapping system.
   1187  */
   1188 void
   1189 pmap_init_pv()
   1190 {
   1191 	int	i;
   1192 
   1193 	/* Initialize every PV head. */
   1194 	for (i = 0; i < _btop(total_phys_mem); i++) {
   1195 		pvbase[i].pv_idx = PVE_EOL;	/* Indicate no mappings */
   1196 		pvbase[i].pv_flags = 0;		/* Zero out page flags  */
   1197 	}
   1198 
   1199 	pv_initialized = TRUE;
   1200 }
   1201 
   1202 /* get_a_table			INTERNAL
   1203  **
   1204  * Retrieve and return a level A table for use in a user map.
   1205  */
   1206 a_tmgr_t *
   1207 get_a_table()
   1208 {
   1209 	a_tmgr_t *tbl;
   1210 	pmap_t pmap;
   1211 
   1212 	/* Get the top A table in the pool */
   1213 	tbl = a_pool.tqh_first;
   1214 	if (tbl == NULL) {
   1215 		/*
   1216 		 * XXX - Instead of panicing here and in other get_x_table
   1217 		 * functions, we do have the option of sleeping on the head of
   1218 		 * the table pool.  Any function which updates the table pool
   1219 		 * would then issue a wakeup() on the head, thus waking up any
   1220 		 * processes waiting for a table.
   1221 		 *
   1222 		 * Actually, the place to sleep would be when some process
   1223 		 * asks for a "wired" mapping that would run us short of
   1224 		 * mapping resources.  This design DEPENDS on always having
   1225 		 * some mapping resources in the pool for stealing, so we
   1226 		 * must make sure we NEVER let the pool become empty. -gwr
   1227 		 */
   1228 		panic("get_a_table: out of A tables.");
   1229 	}
   1230 
   1231 	TAILQ_REMOVE(&a_pool, tbl, at_link);
   1232 	/*
   1233 	 * If the table has a non-null parent pointer then it is in use.
   1234 	 * Forcibly abduct it from its parent and clear its entries.
   1235 	 * No re-entrancy worries here.  This table would not be in the
   1236 	 * table pool unless it was available for use.
   1237 	 *
   1238 	 * Note that the second argument to free_a_table() is FALSE.  This
   1239 	 * indicates that the table should not be relinked into the A table
   1240 	 * pool.  That is a job for the function that called us.
   1241 	 */
   1242 	if (tbl->at_parent) {
   1243 		pmap = tbl->at_parent;
   1244 		free_a_table(tbl, FALSE);
   1245 		pmap->pm_a_tmgr = NULL;
   1246 		pmap->pm_a_phys = kernAphys;
   1247 	}
   1248 #ifdef  NON_REENTRANT
   1249 	/*
   1250 	 * If the table isn't to be wired down, re-insert it at the
   1251 	 * end of the pool.
   1252 	 */
   1253 	if (!wired)
   1254 		/*
   1255 		 * Quandary - XXX
   1256 		 * Would it be better to let the calling function insert this
   1257 		 * table into the queue?  By inserting it here, we are allowing
   1258 		 * it to be stolen immediately.  The calling function is
   1259 		 * probably not expecting to use a table that it is not
   1260 		 * assured full control of.
   1261 		 * Answer - In the intrest of re-entrancy, it is best to let
   1262 		 * the calling function determine when a table is available
   1263 		 * for use.  Therefore this code block is not used.
   1264 		 */
   1265 		TAILQ_INSERT_TAIL(&a_pool, tbl, at_link);
   1266 #endif	/* NON_REENTRANT */
   1267 	return tbl;
   1268 }
   1269 
   1270 /* get_b_table			INTERNAL
   1271  **
   1272  * Return a level B table for use.
   1273  */
   1274 b_tmgr_t *
   1275 get_b_table()
   1276 {
   1277 	b_tmgr_t *tbl;
   1278 
   1279 	/* See 'get_a_table' for comments. */
   1280 	tbl = b_pool.tqh_first;
   1281 	if (tbl == NULL)
   1282 		panic("get_b_table: out of B tables.");
   1283 	TAILQ_REMOVE(&b_pool, tbl, bt_link);
   1284 	if (tbl->bt_parent) {
   1285 		tbl->bt_parent->at_dtbl[tbl->bt_pidx].attr.raw = MMU_DT_INVALID;
   1286 		tbl->bt_parent->at_ecnt--;
   1287 		free_b_table(tbl, FALSE);
   1288 	}
   1289 #ifdef	NON_REENTRANT
   1290 	if (!wired)
   1291 		/* XXX see quandary in get_b_table */
   1292 		/* XXX start lock */
   1293 		TAILQ_INSERT_TAIL(&b_pool, tbl, bt_link);
   1294 		/* XXX end lock */
   1295 #endif	/* NON_REENTRANT */
   1296 	return tbl;
   1297 }
   1298 
   1299 /* get_c_table			INTERNAL
   1300  **
   1301  * Return a level C table for use.
   1302  */
   1303 c_tmgr_t *
   1304 get_c_table()
   1305 {
   1306 	c_tmgr_t *tbl;
   1307 
   1308 	/* See 'get_a_table' for comments */
   1309 	tbl = c_pool.tqh_first;
   1310 	if (tbl == NULL)
   1311 		panic("get_c_table: out of C tables.");
   1312 	TAILQ_REMOVE(&c_pool, tbl, ct_link);
   1313 	if (tbl->ct_parent) {
   1314 		tbl->ct_parent->bt_dtbl[tbl->ct_pidx].attr.raw = MMU_DT_INVALID;
   1315 		tbl->ct_parent->bt_ecnt--;
   1316 		free_c_table(tbl, FALSE);
   1317 	}
   1318 #ifdef	NON_REENTRANT
   1319 	if (!wired)
   1320 		/* XXX See quandary in get_a_table */
   1321 		/* XXX start lock */
   1322 		TAILQ_INSERT_TAIL(&c_pool, tbl, c_link);
   1323 		/* XXX end lock */
   1324 #endif	/* NON_REENTRANT */
   1325 
   1326 	return tbl;
   1327 }
   1328 
   1329 /*
   1330  * The following 'free_table' and 'steal_table' functions are called to
   1331  * detach tables from their current obligations (parents and children) and
   1332  * prepare them for reuse in another mapping.
   1333  *
   1334  * Free_table is used when the calling function will handle the fate
   1335  * of the parent table, such as returning it to the free pool when it has
   1336  * no valid entries.  Functions that do not want to handle this should
   1337  * call steal_table, in which the parent table's descriptors and entry
   1338  * count are automatically modified when this table is removed.
   1339  */
   1340 
   1341 /* free_a_table			INTERNAL
   1342  **
   1343  * Unmaps the given A table and all child tables from their current
   1344  * mappings.  Returns the number of pages that were invalidated.
   1345  * If 'relink' is true, the function will return the table to the head
   1346  * of the available table pool.
   1347  *
   1348  * Cache note: The MC68851 will automatically flush all
   1349  * descriptors derived from a given A table from its
   1350  * Automatic Translation Cache (ATC) if we issue a
   1351  * 'PFLUSHR' instruction with the base address of the
   1352  * table.  This function should do, and does so.
   1353  * Note note: We are using an MC68030 - there is no
   1354  * PFLUSHR.
   1355  */
   1356 int
   1357 free_a_table(a_tbl, relink)
   1358 	a_tmgr_t *a_tbl;
   1359 	boolean_t relink;
   1360 {
   1361 	int i, removed_cnt;
   1362 	mmu_long_dte_t	*dte;
   1363 	mmu_short_dte_t *dtbl;
   1364 	b_tmgr_t	*tmgr;
   1365 
   1366 	/*
   1367 	 * Flush the ATC cache of all cached descriptors derived
   1368 	 * from this table.
   1369 	 * XXX - Sun3x does not use 68851's cached table feature
   1370 	 * flush_atc_crp(mmu_vtop(a_tbl->dte));
   1371 	 */
   1372 
   1373 	/*
   1374 	 * Remove any pending cache flushes that were designated
   1375 	 * for the pmap this A table belongs to.
   1376 	 * a_tbl->parent->atc_flushq[0] = 0;
   1377 	 * XXX - Not implemented in sun3x.
   1378 	 */
   1379 
   1380 	/*
   1381 	 * All A tables in the system should retain a map for the
   1382 	 * kernel. If the table contains any valid descriptors
   1383 	 * (other than those for the kernel area), invalidate them all,
   1384 	 * stopping short of the kernel's entries.
   1385 	 */
   1386 	removed_cnt = 0;
   1387 	if (a_tbl->at_ecnt) {
   1388 		dte = a_tbl->at_dtbl;
   1389 		for (i=0; i < MMU_TIA(KERNBASE); i++) {
   1390 			/*
   1391 			 * If a table entry points to a valid B table, free
   1392 			 * it and its children.
   1393 			 */
   1394 			if (MMU_VALID_DT(dte[i])) {
   1395 				/*
   1396 				 * The following block does several things,
   1397 				 * from innermost expression to the
   1398 				 * outermost:
   1399 				 * 1) It extracts the base (cc 1996)
   1400 				 *    address of the B table pointed
   1401 				 *    to in the A table entry dte[i].
   1402 				 * 2) It converts this base address into
   1403 				 *    the virtual address it can be
   1404 				 *    accessed with. (all MMU tables point
   1405 				 *    to physical addresses.)
   1406 				 * 3) It finds the corresponding manager
   1407 				 *    structure which manages this MMU table.
   1408 				 * 4) It frees the manager structure.
   1409 				 *    (This frees the MMU table and all
   1410 				 *    child tables. See 'free_b_table' for
   1411 				 *    details.)
   1412 				 */
   1413 				dtbl = mmu_ptov(dte[i].addr.raw);
   1414 				tmgr = mmuB2tmgr(dtbl);
   1415 				removed_cnt += free_b_table(tmgr, TRUE);
   1416 				dte[i].attr.raw = MMU_DT_INVALID;
   1417 			}
   1418 		}
   1419 		a_tbl->at_ecnt = 0;
   1420 	}
   1421 	if (relink) {
   1422 		a_tbl->at_parent = NULL;
   1423 		TAILQ_REMOVE(&a_pool, a_tbl, at_link);
   1424 		TAILQ_INSERT_HEAD(&a_pool, a_tbl, at_link);
   1425 	}
   1426 	return removed_cnt;
   1427 }
   1428 
   1429 /* free_b_table			INTERNAL
   1430  **
   1431  * Unmaps the given B table and all its children from their current
   1432  * mappings.  Returns the number of pages that were invalidated.
   1433  * (For comments, see 'free_a_table()').
   1434  */
   1435 int
   1436 free_b_table(b_tbl, relink)
   1437 	b_tmgr_t *b_tbl;
   1438 	boolean_t relink;
   1439 {
   1440 	int i, removed_cnt;
   1441 	mmu_short_dte_t *dte;
   1442 	mmu_short_pte_t	*dtbl;
   1443 	c_tmgr_t	*tmgr;
   1444 
   1445 	removed_cnt = 0;
   1446 	if (b_tbl->bt_ecnt) {
   1447 		dte = b_tbl->bt_dtbl;
   1448 		for (i=0; i < MMU_B_TBL_SIZE; i++) {
   1449 			if (MMU_VALID_DT(dte[i])) {
   1450 				dtbl = mmu_ptov(MMU_DTE_PA(dte[i]));
   1451 				tmgr = mmuC2tmgr(dtbl);
   1452 				removed_cnt += free_c_table(tmgr, TRUE);
   1453 				dte[i].attr.raw = MMU_DT_INVALID;
   1454 			}
   1455 		}
   1456 		b_tbl->bt_ecnt = 0;
   1457 	}
   1458 
   1459 	if (relink) {
   1460 		b_tbl->bt_parent = NULL;
   1461 		TAILQ_REMOVE(&b_pool, b_tbl, bt_link);
   1462 		TAILQ_INSERT_HEAD(&b_pool, b_tbl, bt_link);
   1463 	}
   1464 	return removed_cnt;
   1465 }
   1466 
   1467 /* free_c_table			INTERNAL
   1468  **
   1469  * Unmaps the given C table from use and returns it to the pool for
   1470  * re-use.  Returns the number of pages that were invalidated.
   1471  *
   1472  * This function preserves any physical page modification information
   1473  * contained in the page descriptors within the C table by calling
   1474  * 'pmap_remove_pte().'
   1475  */
   1476 int
   1477 free_c_table(c_tbl, relink)
   1478 	c_tmgr_t *c_tbl;
   1479 	boolean_t relink;
   1480 {
   1481 	int i, removed_cnt;
   1482 
   1483 	removed_cnt = 0;
   1484 	if (c_tbl->ct_ecnt) {
   1485 		for (i=0; i < MMU_C_TBL_SIZE; i++) {
   1486 			if (MMU_VALID_DT(c_tbl->ct_dtbl[i])) {
   1487 				pmap_remove_pte(&c_tbl->ct_dtbl[i]);
   1488 				removed_cnt++;
   1489 			}
   1490 		}
   1491 		c_tbl->ct_ecnt = 0;
   1492 	}
   1493 
   1494 	if (relink) {
   1495 		c_tbl->ct_parent = NULL;
   1496 		TAILQ_REMOVE(&c_pool, c_tbl, ct_link);
   1497 		TAILQ_INSERT_HEAD(&c_pool, c_tbl, ct_link);
   1498 	}
   1499 	return removed_cnt;
   1500 }
   1501 
   1502 #if 0
   1503 /* free_c_table_novalid			INTERNAL
   1504  **
   1505  * Frees the given C table manager without checking to see whether
   1506  * or not it contains any valid page descriptors as it is assumed
   1507  * that it does not.
   1508  */
   1509 void
   1510 free_c_table_novalid(c_tbl)
   1511 	c_tmgr_t *c_tbl;
   1512 {
   1513 	TAILQ_REMOVE(&c_pool, c_tbl, ct_link);
   1514 	TAILQ_INSERT_HEAD(&c_pool, c_tbl, ct_link);
   1515 	c_tbl->ct_parent->bt_dtbl[c_tbl->ct_pidx].attr.raw = MMU_DT_INVALID;
   1516 	c_tbl->ct_parent->bt_ecnt--;
   1517 	/*
   1518 	 * XXX - Should call equiv. of 'free_b_table_novalid' here if
   1519 	 * we just removed the last entry of the parent B table.
   1520 	 * But I want to insure that this will not endanger pmap_enter()
   1521 	 * with sudden removal of tables it is working with.
   1522 	 *
   1523 	 * We should probably add another field to each table, indicating
   1524 	 * whether or not it is 'locked', ie. in the process of being
   1525 	 * modified.
   1526 	 */
   1527 	c_tbl->ct_parent = NULL;
   1528 }
   1529 #endif
   1530 
   1531 /* pmap_remove_pte			INTERNAL
   1532  **
   1533  * Unmap the given pte and preserve any page modification
   1534  * information by transfering it to the pv head of the
   1535  * physical page it maps to.  This function does not update
   1536  * any reference counts because it is assumed that the calling
   1537  * function will do so.
   1538  */
   1539 void
   1540 pmap_remove_pte(pte)
   1541 	mmu_short_pte_t *pte;
   1542 {
   1543 	u_short     pv_idx, targ_idx;
   1544 	int         s;
   1545 	vm_offset_t pa;
   1546 	pv_t       *pv;
   1547 
   1548 	pa = MMU_PTE_PA(*pte);
   1549 	if (is_managed(pa)) {
   1550 		pv = pa2pv(pa);
   1551 		targ_idx = pteidx(pte);	/* Index of PTE being removed    */
   1552 
   1553 		/*
   1554 		 * If the PTE being removed is the first (or only) PTE in
   1555 		 * the list of PTEs currently mapped to this page, remove the
   1556 		 * PTE by changing the index found on the PV head.  Otherwise
   1557 		 * a linear search through the list will have to be executed
   1558 		 * in order to find the PVE which points to the PTE being
   1559 		 * removed, so that it may be modified to point to its new
   1560 		 * neighbor.
   1561 		 */
   1562 		s = splimp();
   1563 		pv_idx = pv->pv_idx;	/* Index of first PTE in PV list */
   1564 		if (pv_idx == targ_idx) {
   1565 			pv->pv_idx = pvebase[targ_idx].pve_next;
   1566 		} else {
   1567 			/*
   1568 			 * Find the PV element which points to the target
   1569 			 * element.
   1570 			 */
   1571 			while (pvebase[pv_idx].pve_next != targ_idx) {
   1572 				pv_idx = pvebase[pv_idx].pve_next;
   1573 #ifdef	DIAGNOSTIC
   1574 				if (pv_idx == PVE_EOL)
   1575 					panic("pmap_remove_pte: pv list end!");
   1576 #endif
   1577 			}
   1578 
   1579 			/*
   1580 			 * At this point, pv_idx is the index of the PV
   1581 			 * element just before the target element in the list.
   1582 			 * Unlink the target.
   1583 			 */
   1584 			pvebase[pv_idx].pve_next = pvebase[targ_idx].pve_next;
   1585 		}
   1586 		/*
   1587 		 * Save the mod/ref bits of the pte by simply
   1588 		 * ORing the entire pte onto the pv_flags member
   1589 		 * of the pv structure.
   1590 		 * There is no need to use a separate bit pattern
   1591 		 * for usage information on the pv head than that
   1592 		 * which is used on the MMU ptes.
   1593 		 */
   1594 		pv->pv_flags |= (u_short) pte->attr.raw;
   1595 		splx(s);
   1596 	}
   1597 
   1598 	pte->attr.raw = MMU_DT_INVALID;
   1599 }
   1600 
   1601 #if	0	/* XXX - I am eliminating this function. -j */
   1602 /* pmap_dereference_pte			INTERNAL
   1603  **
   1604  * Update the necessary reference counts in any tables and pmaps to
   1605  * reflect the removal of the given pte.  Only called when no knowledge of
   1606  * the pte's associated pmap is unknown.  This only occurs in the PV call
   1607  * 'pmap_page_protect()' with a protection of VM_PROT_NONE, which means
   1608  * that all references to a given physical page must be removed.
   1609  */
   1610 void
   1611 pmap_dereference_pte(pte)
   1612 	mmu_short_pte_t *pte;
   1613 {
   1614 	vm_offset_t va;
   1615 	c_tmgr_t *c_tbl;
   1616 	pmap_t pmap;
   1617 
   1618 	va = pmap_get_pteinfo(pte, &pmap, &c_tbl);
   1619 	/*
   1620 	 * Flush the translation cache of the page mapped by the PTE, should
   1621 	 * it prove to be in the current pmap.  Kernel mappings appear in
   1622 	 * all address spaces, so they always should be flushed
   1623 	 */
   1624 	if (pmap == pmap_kernel() || pmap == current_pmap())
   1625 		TBIS(va);
   1626 
   1627 	/*
   1628 	 * If the mapping belongs to a user map, update the necessary
   1629 	 * reference counts in the table manager.  XXX - It would be
   1630 	 * much easier to keep the resident count in the c_tmgr_t -gwr
   1631 	 */
   1632 	if (pmap != pmap_kernel()) {
   1633 		/*
   1634 		 * Most of the situations in which pmap_dereference_pte() is
   1635 		 * called are usually temporary removals of a mapping.  Often
   1636 		 * the mapping is reinserted shortly afterwards. If the parent
   1637 		 * C table's valid entry count reaches zero as a result of
   1638 		 * removing this mapping, we could return it to the free pool,
   1639 		 * but we leave it alone because it is likely to be used as
   1640 		 * stated above.
   1641 		 */
   1642 		c_tbl->ct_ecnt--;
   1643 		pmap->pm_stats.resident_count--;
   1644 	}
   1645 }
   1646 #endif	0	/* function elimination */
   1647 
   1648 /* pmap_stroll			INTERNAL
   1649  **
   1650  * Retrieve the addresses of all table managers involved in the mapping of
   1651  * the given virtual address.  If the table walk completed sucessfully,
   1652  * return TRUE.  If it was only partially sucessful, return FALSE.
   1653  * The table walk performed by this function is important to many other
   1654  * functions in this module.
   1655  *
   1656  * Note: This function ought to be easier to read.
   1657  */
   1658 boolean_t
   1659 pmap_stroll(pmap, va, a_tbl, b_tbl, c_tbl, pte, a_idx, b_idx, pte_idx)
   1660 	pmap_t pmap;
   1661 	vm_offset_t va;
   1662 	a_tmgr_t **a_tbl;
   1663 	b_tmgr_t **b_tbl;
   1664 	c_tmgr_t **c_tbl;
   1665 	mmu_short_pte_t **pte;
   1666 	int *a_idx, *b_idx, *pte_idx;
   1667 {
   1668 	mmu_long_dte_t *a_dte;   /* A: long descriptor table          */
   1669 	mmu_short_dte_t *b_dte;  /* B: short descriptor table         */
   1670 
   1671 	if (pmap == pmap_kernel())
   1672 		return FALSE;
   1673 
   1674 	/* Does the given pmap have its own A table? */
   1675 	*a_tbl = pmap->pm_a_tmgr;
   1676 	if (*a_tbl == NULL)
   1677 		return FALSE; /* No.  Return unknown. */
   1678 	/* Does the A table have a valid B table
   1679 	 * under the corresponding table entry?
   1680 	 */
   1681 	*a_idx = MMU_TIA(va);
   1682 	a_dte = &((*a_tbl)->at_dtbl[*a_idx]);
   1683 	if (!MMU_VALID_DT(*a_dte))
   1684 		return FALSE; /* No. Return unknown. */
   1685 	/* Yes. Extract B table from the A table. */
   1686 	*b_tbl = mmuB2tmgr(mmu_ptov(a_dte->addr.raw));
   1687 	/* Does the B table have a valid C table
   1688 	 * under the corresponding table entry?
   1689 	 */
   1690 	*b_idx = MMU_TIB(va);
   1691 	b_dte = &((*b_tbl)->bt_dtbl[*b_idx]);
   1692 	if (!MMU_VALID_DT(*b_dte))
   1693 		return FALSE; /* No. Return unknown. */
   1694 	/* Yes. Extract C table from the B table. */
   1695 	*c_tbl = mmuC2tmgr(mmu_ptov(MMU_DTE_PA(*b_dte)));
   1696 	*pte_idx = MMU_TIC(va);
   1697 	*pte = &((*c_tbl)->ct_dtbl[*pte_idx]);
   1698 
   1699 	return	TRUE;
   1700 }
   1701 
   1702 /* pmap_enter			INTERFACE
   1703  **
   1704  * Called by the kernel to map a virtual address
   1705  * to a physical address in the given process map.
   1706  *
   1707  * Note: this function should apply an exclusive lock
   1708  * on the pmap system for its duration.  (it certainly
   1709  * would save my hair!!)
   1710  * This function ought to be easier to read.
   1711  */
   1712 void
   1713 pmap_enter(pmap, va, pa, prot, wired)
   1714 	pmap_t	pmap;
   1715 	vm_offset_t va;
   1716 	vm_offset_t pa;
   1717 	vm_prot_t prot;
   1718 	boolean_t wired;
   1719 {
   1720 	boolean_t insert, managed; /* Marks the need for PV insertion.*/
   1721 	u_short nidx;            /* PV list index                     */
   1722 	int s;                   /* Used for splimp()/splx()          */
   1723 	int flags;               /* Mapping flags. eg. Cache inhibit  */
   1724 	u_int a_idx, b_idx, pte_idx; /* table indices                 */
   1725 	a_tmgr_t *a_tbl;         /* A: long descriptor table manager  */
   1726 	b_tmgr_t *b_tbl;         /* B: short descriptor table manager */
   1727 	c_tmgr_t *c_tbl;         /* C: short page table manager       */
   1728 	mmu_long_dte_t *a_dte;   /* A: long descriptor table          */
   1729 	mmu_short_dte_t *b_dte;  /* B: short descriptor table         */
   1730 	mmu_short_pte_t *c_pte;  /* C: short page descriptor table    */
   1731 	pv_t      *pv;           /* pv list head                      */
   1732 	enum {NONE, NEWA, NEWB, NEWC} llevel; /* used at end   */
   1733 
   1734 	if (pmap == NULL)
   1735 		return;
   1736 	if (pmap == pmap_kernel()) {
   1737 		pmap_enter_kernel(va, pa, prot);
   1738 		return;
   1739 	}
   1740 
   1741 	flags  = (pa & ~MMU_PAGE_MASK);
   1742 	pa    &= MMU_PAGE_MASK;
   1743 
   1744 	/*
   1745 	 * Determine if the physical address being mapped is managed.
   1746 	 * If it isn't, the mapping should be cache inhibited.  (This is
   1747 	 * applied later in the function.)   XXX - Why non-cached? -gwr
   1748 	 */
   1749 	if ((managed = is_managed(pa)) == FALSE)
   1750 		flags |= PMAP_NC;
   1751 
   1752 	/*
   1753 	 * For user mappings we walk along the MMU tables of the given
   1754 	 * pmap, reaching a PTE which describes the virtual page being
   1755 	 * mapped or changed.  If any level of the walk ends in an invalid
   1756 	 * entry, a table must be allocated and the entry must be updated
   1757 	 * to point to it.
   1758 	 * There is a bit of confusion as to whether this code must be
   1759 	 * re-entrant.  For now we will assume it is.  To support
   1760 	 * re-entrancy we must unlink tables from the table pool before
   1761 	 * we assume we may use them.  Tables are re-linked into the pool
   1762 	 * when we are finished with them at the end of the function.
   1763 	 * But I don't feel like doing that until we have proof that this
   1764 	 * needs to be re-entrant.
   1765 	 * 'llevel' records which tables need to be relinked.
   1766 	 */
   1767 	llevel = NONE;
   1768 
   1769 	/*
   1770 	 * Step 1 - Retrieve the A table from the pmap.  If it has no
   1771 	 * A table, allocate a new one from the available pool.
   1772 	 */
   1773 
   1774 	a_tbl = pmap->pm_a_tmgr;
   1775 	if (a_tbl == NULL) {
   1776 		/*
   1777 		 * This pmap does not currently have an A table.  Allocate
   1778 		 * a new one.
   1779 		 */
   1780 		a_tbl = get_a_table();
   1781 		a_tbl->at_parent = pmap;
   1782 
   1783 		/*
   1784 		 * Assign this new A table to the pmap, and calculate its
   1785 		 * physical address so that loadcrp() can be used to make
   1786 		 * the table active.
   1787 		 */
   1788 		pmap->pm_a_tmgr = a_tbl;
   1789 		pmap->pm_a_phys = mmu_vtop(a_tbl->at_dtbl);
   1790 
   1791 		/*
   1792 		 * If the process receiving a new A table is the current
   1793 		 * process, we are responsible for setting the MMU so that
   1794 		 * it becomes the current address space.  This only adds
   1795 		 * new mappings, so no need to flush anything.
   1796 		 */
   1797 		if (pmap == current_pmap()) {
   1798 			kernel_crp.rp_addr = pmap->pm_a_phys;
   1799 			loadcrp(&kernel_crp);
   1800 		}
   1801 
   1802 		if (!wired)
   1803 			llevel = NEWA;
   1804 	} else {
   1805 		/*
   1806 		 * Use the A table already allocated for this pmap.
   1807 		 * Unlink it from the A table pool if necessary.
   1808 		 */
   1809 		if (wired && !a_tbl->at_wcnt)
   1810 			TAILQ_REMOVE(&a_pool, a_tbl, at_link);
   1811 	}
   1812 
   1813 	/*
   1814 	 * Step 2 - Walk into the B table.  If there is no valid B table,
   1815 	 * allocate one.
   1816 	 */
   1817 
   1818 	a_idx = MMU_TIA(va);            /* Calculate the TIA of the VA. */
   1819 	a_dte = &a_tbl->at_dtbl[a_idx]; /* Retrieve descriptor from table */
   1820 	if (MMU_VALID_DT(*a_dte)) {     /* Is the descriptor valid? */
   1821 		/* The descriptor is valid.  Use the B table it points to. */
   1822 		/*************************************
   1823 		 *               a_idx               *
   1824 		 *                 v                 *
   1825 		 * a_tbl -> +-+-+-+-+-+-+-+-+-+-+-+- *
   1826 		 *          | | | | | | | | | | | |  *
   1827 		 *          +-+-+-+-+-+-+-+-+-+-+-+- *
   1828 		 *                 |                 *
   1829 		 *                 \- b_tbl -> +-+-  *
   1830 		 *                             | |   *
   1831 		 *                             +-+-  *
   1832 		 *************************************/
   1833 		b_dte = mmu_ptov(a_dte->addr.raw);
   1834 		b_tbl = mmuB2tmgr(b_dte);
   1835 
   1836 		/*
   1837 		 * If the requested mapping must be wired, but this table
   1838 		 * being used to map it is not, the table must be removed
   1839 		 * from the available pool and its wired entry count
   1840 		 * incremented.
   1841 		 */
   1842 		if (wired && !b_tbl->bt_wcnt) {
   1843 			TAILQ_REMOVE(&b_pool, b_tbl, bt_link);
   1844 			a_tbl->at_wcnt++;
   1845 		}
   1846 	} else {
   1847 		/* The descriptor is invalid.  Allocate a new B table. */
   1848 		b_tbl = get_b_table();
   1849 
   1850 		/* Point the parent A table descriptor to this new B table. */
   1851 		a_dte->addr.raw = mmu_vtop(b_tbl->bt_dtbl);
   1852 		a_dte->attr.raw = MMU_LONG_DTE_LU | MMU_DT_SHORT;
   1853 		a_tbl->at_ecnt++; /* Update parent's valid entry count */
   1854 
   1855 		/* Create the necessary back references to the parent table */
   1856 		b_tbl->bt_parent = a_tbl;
   1857 		b_tbl->bt_pidx = a_idx;
   1858 
   1859 		/*
   1860 		 * If this table is to be wired, make sure the parent A table
   1861 		 * wired count is updated to reflect that it has another wired
   1862 		 * entry.
   1863 		 */
   1864 		if (wired)
   1865 			a_tbl->at_wcnt++;
   1866 		else if (llevel == NONE)
   1867 			llevel = NEWB;
   1868 	}
   1869 
   1870 	/*
   1871 	 * Step 3 - Walk into the C table, if there is no valid C table,
   1872 	 * allocate one.
   1873 	 */
   1874 
   1875 	b_idx = MMU_TIB(va);            /* Calculate the TIB of the VA */
   1876 	b_dte = &b_tbl->bt_dtbl[b_idx]; /* Retrieve descriptor from table */
   1877 	if (MMU_VALID_DT(*b_dte)) {     /* Is the descriptor valid? */
   1878 		/* The descriptor is valid.  Use the C table it points to. */
   1879 		/**************************************
   1880 		 *               c_idx                *
   1881 		 * |                v                 *
   1882 		 * \- b_tbl -> +-+-+-+-+-+-+-+-+-+-+- *
   1883 		 *             | | | | | | | | | | |  *
   1884 		 *             +-+-+-+-+-+-+-+-+-+-+- *
   1885 		 *                  |                 *
   1886 		 *                  \- c_tbl -> +-+-- *
   1887 		 *                              | | | *
   1888 		 *                              +-+-- *
   1889 		 **************************************/
   1890 		c_pte = mmu_ptov(MMU_PTE_PA(*b_dte));
   1891 		c_tbl = mmuC2tmgr(c_pte);
   1892 
   1893 		/* If mapping is wired and table is not */
   1894 		if (wired && !c_tbl->ct_wcnt) {
   1895 			TAILQ_REMOVE(&c_pool, c_tbl, ct_link);
   1896 			b_tbl->bt_wcnt++;
   1897 		}
   1898 	} else {
   1899 		/* The descriptor is invalid.  Allocate a new C table. */
   1900 		c_tbl = get_c_table();
   1901 
   1902 		/* Point the parent B table descriptor to this new C table. */
   1903 		b_dte->attr.raw = mmu_vtop(c_tbl->ct_dtbl);
   1904 		b_dte->attr.raw |= MMU_DT_SHORT;
   1905 		b_tbl->bt_ecnt++; /* Update parent's valid entry count */
   1906 
   1907 		/* Create the necessary back references to the parent table */
   1908 		c_tbl->ct_parent = b_tbl;
   1909 		c_tbl->ct_pidx = b_idx;
   1910 
   1911 		/*
   1912 		 * If this table is to be wired, make sure the parent B table
   1913 		 * wired count is updated to reflect that it has another wired
   1914 		 * entry.
   1915 		 */
   1916 		if (wired)
   1917 			b_tbl->bt_wcnt++;
   1918 		else if (llevel == NONE)
   1919 			llevel = NEWC;
   1920 	}
   1921 
   1922 	/*
   1923 	 * Step 4 - Deposit a page descriptor (PTE) into the appropriate
   1924 	 * slot of the C table, describing the PA to which the VA is mapped.
   1925 	 */
   1926 
   1927 	pte_idx = MMU_TIC(va);
   1928 	c_pte = &c_tbl->ct_dtbl[pte_idx];
   1929 	if (MMU_VALID_DT(*c_pte)) { /* Is the entry currently valid? */
   1930 		/*
   1931 		 * The PTE is currently valid.  This particular call
   1932 		 * is just a synonym for one (or more) of the following
   1933 		 * operations:
   1934 		 *     change protection of a page
   1935 		 *     change wiring status of a page
   1936 		 *     remove the mapping of a page
   1937 		 *
   1938 		 * XXX - Semi critical: This code should unwire the PTE
   1939 		 * and, possibly, associated parent tables if this is a
   1940 		 * change wiring operation.  Currently it does not.
   1941 		 *
   1942 		 * This may be ok if pmap_change_wiring() is the only
   1943 		 * interface used to UNWIRE a page.
   1944 		 */
   1945 
   1946 		/* First check if this is a wiring operation. */
   1947 		if (wired && (c_pte->attr.raw & MMU_SHORT_PTE_WIRED)) {
   1948 			/*
   1949 			 * The PTE is already wired.  To prevent it from being
   1950 			 * counted as a new wiring operation, reset the 'wired'
   1951 			 * variable.
   1952 			 */
   1953 			wired = FALSE;
   1954 		}
   1955 
   1956 		/* Is the new address the same as the old? */
   1957 		if (MMU_PTE_PA(*c_pte) == pa) {
   1958 			/*
   1959 			 * Yes, mark that it does not need to be reinserted
   1960 			 * into the PV list.
   1961 			 */
   1962 			insert = FALSE;
   1963 
   1964 			/*
   1965 			 * Clear all but the modified, referenced and wired
   1966 			 * bits on the PTE.
   1967 			 */
   1968 			c_pte->attr.raw &= (MMU_SHORT_PTE_M
   1969 				| MMU_SHORT_PTE_USED | MMU_SHORT_PTE_WIRED);
   1970 		} else {
   1971 			/* No, remove the old entry */
   1972 			pmap_remove_pte(c_pte);
   1973 			insert = TRUE;
   1974 		}
   1975 
   1976 		/*
   1977 		 * TLB flush is only necessary if modifying current map.
   1978 		 * However, in pmap_enter(), the pmap almost always IS
   1979 		 * the current pmap, so don't even bother to check.
   1980 		 */
   1981 		TBIS(va);
   1982 	} else {
   1983 		/*
   1984 		 * The PTE is invalid.  Increment the valid entry count in
   1985 		 * the C table manager to reflect the addition of a new entry.
   1986 		 */
   1987 		c_tbl->ct_ecnt++;
   1988 
   1989 		/* XXX - temporarily make sure the PTE is cleared. */
   1990 		c_pte->attr.raw = 0;
   1991 
   1992 		/* It will also need to be inserted into the PV list. */
   1993 		insert = TRUE;
   1994 	}
   1995 
   1996 	/*
   1997 	 * If page is changing from unwired to wired status, set an unused bit
   1998 	 * within the PTE to indicate that it is wired.  Also increment the
   1999 	 * wired entry count in the C table manager.
   2000 	 */
   2001 	if (wired) {
   2002 		c_pte->attr.raw |= MMU_SHORT_PTE_WIRED;
   2003 		c_tbl->ct_wcnt++;
   2004 	}
   2005 
   2006 	/*
   2007 	 * Map the page, being careful to preserve modify/reference/wired
   2008 	 * bits.  At this point it is assumed that the PTE either has no bits
   2009 	 * set, or if there are set bits, they are only modified, reference or
   2010 	 * wired bits.  If not, the following statement will cause erratic
   2011 	 * behavior.
   2012 	 */
   2013 #ifdef	PMAP_DEBUG
   2014 	if (c_pte->attr.raw & ~(MMU_SHORT_PTE_M |
   2015 		MMU_SHORT_PTE_USED | MMU_SHORT_PTE_WIRED)) {
   2016 		printf("pmap_enter: junk left in PTE at %p\n", c_pte);
   2017 		Debugger();
   2018 	}
   2019 #endif
   2020 	c_pte->attr.raw |= ((u_long) pa | MMU_DT_PAGE);
   2021 
   2022 	/*
   2023 	 * If the mapping should be read-only, set the write protect
   2024 	 * bit in the PTE.
   2025 	 */
   2026 	if (!(prot & VM_PROT_WRITE))
   2027 		c_pte->attr.raw |= MMU_SHORT_PTE_WP;
   2028 
   2029 	/*
   2030 	 * If the mapping should be cache inhibited (indicated by the flag
   2031 	 * bits found on the lower order of the physical address.)
   2032 	 * mark the PTE as a cache inhibited page.
   2033 	 */
   2034 	if (flags & PMAP_NC)
   2035 		c_pte->attr.raw |= MMU_SHORT_PTE_CI;
   2036 
   2037 	/*
   2038 	 * If the physical address being mapped is managed by the PV
   2039 	 * system then link the pte into the list of pages mapped to that
   2040 	 * address.
   2041 	 */
   2042 	if (insert && managed) {
   2043 		pv = pa2pv(pa);
   2044 		nidx = pteidx(c_pte);
   2045 
   2046 		s = splimp();
   2047 		pvebase[nidx].pve_next = pv->pv_idx;
   2048 		pv->pv_idx = nidx;
   2049 		splx(s);
   2050 	}
   2051 
   2052 	/* Move any allocated tables back into the active pool. */
   2053 
   2054 	switch (llevel) {
   2055 		case NEWA:
   2056 			TAILQ_INSERT_TAIL(&a_pool, a_tbl, at_link);
   2057 			/* FALLTHROUGH */
   2058 		case NEWB:
   2059 			TAILQ_INSERT_TAIL(&b_pool, b_tbl, bt_link);
   2060 			/* FALLTHROUGH */
   2061 		case NEWC:
   2062 			TAILQ_INSERT_TAIL(&c_pool, c_tbl, ct_link);
   2063 			/* FALLTHROUGH */
   2064 		default:
   2065 			break;
   2066 	}
   2067 }
   2068 
   2069 /* pmap_enter_kernel			INTERNAL
   2070  **
   2071  * Map the given virtual address to the given physical address within the
   2072  * kernel address space.  This function exists because the kernel map does
   2073  * not do dynamic table allocation.  It consists of a contiguous array of ptes
   2074  * and can be edited directly without the need to walk through any tables.
   2075  *
   2076  * XXX: "Danger, Will Robinson!"
   2077  * Note that the kernel should never take a fault on any page
   2078  * between [ KERNBASE .. virtual_avail ] and this is checked in
   2079  * trap.c for kernel-mode MMU faults.  This means that mappings
   2080  * created in that range must be implicily wired. -gwr
   2081  */
   2082 void
   2083 pmap_enter_kernel(va, pa, prot)
   2084 	vm_offset_t va;
   2085 	vm_offset_t pa;
   2086 	vm_prot_t   prot;
   2087 {
   2088 	boolean_t       was_valid, insert;
   2089 	u_short         pte_idx, pv_idx;
   2090 	int             s, flags;
   2091 	mmu_short_pte_t *pte;
   2092 	pv_t            *pv;
   2093 	vm_offset_t     old_pa;
   2094 
   2095 	flags  = (pa & ~MMU_PAGE_MASK);
   2096 	pa    &= MMU_PAGE_MASK;
   2097 
   2098 	/*
   2099 	 * Calculate the index of the PTE being modified.
   2100 	 */
   2101 	pte_idx = (u_long) _btop(va - KERNBASE);
   2102 
   2103 	/* XXX - This array is traditionally named "Sysmap" */
   2104 	pte = &kernCbase[pte_idx];
   2105 
   2106 	s = splimp();
   2107 	if (MMU_VALID_DT(*pte)) {
   2108 		was_valid = TRUE;
   2109 		/*
   2110 		 * If the PTE is already mapped to an address and it differs
   2111 		 * from the address requested, unlink it from the PV list.
   2112 		 *
   2113 		 * This only applies to mappings within virtual_avail
   2114 		 * and VM_MAX_KERNEL_ADDRESS.  All others are not requests
   2115 		 * from the VM system and should not be part of the PV system.
   2116 		 */
   2117 		if ((va >= virtual_avail) && (va < VM_MAX_KERNEL_ADDRESS)) {
   2118 		    old_pa = MMU_PTE_PA(*pte);
   2119 		    if (pa != old_pa) {
   2120 		        if (is_managed(old_pa)) {
   2121 		            /* XXX - Make this into a function call? */
   2122 		            pv = pa2pv(old_pa);
   2123 		            pv_idx = pv->pv_idx;
   2124 		            if (pv_idx == pte_idx) {
   2125 		                pv->pv_idx = pvebase[pte_idx].pve_next;
   2126 		            } else {
   2127 		                while (pvebase[pv_idx].pve_next != pte_idx)
   2128 		                    pv_idx = pvebase[pv_idx].pve_next;
   2129 		                pvebase[pv_idx].pve_next =
   2130 		                    pvebase[pte_idx].pve_next;
   2131 		            }
   2132 		            /* Save modified/reference bits */
   2133 		            pv->pv_flags |= (u_short) pte->attr.raw;
   2134 		        }
   2135 		        if (is_managed(pa))
   2136 		            insert = TRUE;
   2137 		        else
   2138 		            insert = FALSE;
   2139 		        /*
   2140 		         * Clear out any old bits in the PTE.
   2141 		         */
   2142 		        pte->attr.raw = MMU_DT_INVALID;
   2143 		    } else {
   2144 		        /*
   2145 		         * Old PA and new PA are the same.  No need to relink
   2146 		         * the mapping within the PV list.
   2147 		         */
   2148 		        insert = FALSE;
   2149 
   2150 		        /*
   2151 		         * Save any mod/ref bits on the PTE.
   2152 		         */
   2153 		        pte->attr.raw &= (MMU_SHORT_PTE_USED|MMU_SHORT_PTE_M);
   2154 		    }
   2155 		} else {
   2156 		    /*
   2157 		     * If the VA lies below virtual_avail or beyond
   2158 		     * VM_MAX_KERNEL_ADDRESS, it is not a request by the VM
   2159 		     * system and hence does not need to be linked into the PV
   2160 		     * system.
   2161 		     */
   2162 		    insert = FALSE;
   2163 		    pte->attr.raw = MMU_DT_INVALID;
   2164 		}
   2165 	} else {
   2166 		pte->attr.raw = MMU_DT_INVALID;
   2167 		was_valid = FALSE;
   2168 		if ((va >= virtual_avail) && (va < VM_MAX_KERNEL_ADDRESS)) {
   2169 			if (is_managed(pa))
   2170 				insert = TRUE;
   2171 			else
   2172 				insert = FALSE;
   2173 		} else
   2174 			insert = FALSE;
   2175 	}
   2176 
   2177 	/*
   2178 	 * Map the page.  Being careful to preserve modified/referenced bits
   2179 	 * on the PTE.
   2180 	 */
   2181 	pte->attr.raw |= (pa | MMU_DT_PAGE);
   2182 
   2183 	if (!(prot & VM_PROT_WRITE)) /* If access should be read-only */
   2184 		pte->attr.raw |= MMU_SHORT_PTE_WP;
   2185 	if (flags & PMAP_NC)
   2186 		pte->attr.raw |= MMU_SHORT_PTE_CI;
   2187 	if (was_valid)
   2188 		TBIS(va);
   2189 
   2190 	/*
   2191 	 * Insert the PTE into the PV system, if need be.
   2192 	 */
   2193 	if (insert) {
   2194 		pv = pa2pv(pa);
   2195 		pvebase[pte_idx].pve_next = pv->pv_idx;
   2196 		pv->pv_idx = pte_idx;
   2197 	}
   2198 	splx(s);
   2199 
   2200 }
   2201 
   2202 /* pmap_protect			INTERFACE
   2203  **
   2204  * Apply the given protection to the given virtual address range within
   2205  * the given map.
   2206  *
   2207  * It is ok for the protection applied to be stronger than what is
   2208  * specified.  We use this to our advantage when the given map has no
   2209  * mapping for the virtual address.  By skipping a page when this
   2210  * is discovered, we are effectively applying a protection of VM_PROT_NONE,
   2211  * and therefore do not need to map the page just to apply a protection
   2212  * code.  Only pmap_enter() needs to create new mappings if they do not exist.
   2213  *
   2214  * XXX - This function could be speeded up by using pmap_stroll() for inital
   2215  *       setup, and then manual scrolling in the for() loop.
   2216  */
   2217 void
   2218 pmap_protect(pmap, startva, endva, prot)
   2219 	pmap_t pmap;
   2220 	vm_offset_t startva, endva;
   2221 	vm_prot_t prot;
   2222 {
   2223 	boolean_t iscurpmap;
   2224 	int a_idx, b_idx, c_idx;
   2225 	a_tmgr_t *a_tbl;
   2226 	b_tmgr_t *b_tbl;
   2227 	c_tmgr_t *c_tbl;
   2228 	mmu_short_pte_t *pte;
   2229 
   2230 	if (pmap == NULL)
   2231 		return;
   2232 	if (pmap == pmap_kernel()) {
   2233 		pmap_protect_kernel(startva, endva, prot);
   2234 		return;
   2235 	}
   2236 
   2237 	/*
   2238 	 * In this particular pmap implementation, there are only three
   2239 	 * types of memory protection: 'all' (read/write/execute),
   2240 	 * 'read-only' (read/execute) and 'none' (no mapping.)
   2241 	 * It is not possible for us to treat 'executable' as a separate
   2242 	 * protection type.  Therefore, protection requests that seek to
   2243 	 * remove execute permission while retaining read or write, and those
   2244 	 * that make little sense (write-only for example) are ignored.
   2245 	 */
   2246 	switch (prot) {
   2247 		case VM_PROT_NONE:
   2248 			/*
   2249 			 * A request to apply the protection code of
   2250 			 * 'VM_PROT_NONE' is a synonym for pmap_remove().
   2251 			 */
   2252 			pmap_remove(pmap, startva, endva);
   2253 			return;
   2254 		case	VM_PROT_EXECUTE:
   2255 		case	VM_PROT_READ:
   2256 		case	VM_PROT_READ|VM_PROT_EXECUTE:
   2257 			/* continue */
   2258 			break;
   2259 		case	VM_PROT_WRITE:
   2260 		case	VM_PROT_WRITE|VM_PROT_READ:
   2261 		case	VM_PROT_WRITE|VM_PROT_EXECUTE:
   2262 		case	VM_PROT_ALL:
   2263 			/* None of these should happen in a sane system. */
   2264 			return;
   2265 	}
   2266 
   2267 	/*
   2268 	 * If the pmap has no A table, it has no mappings and therefore
   2269 	 * there is nothing to protect.
   2270 	 */
   2271 	if ((a_tbl = pmap->pm_a_tmgr) == NULL)
   2272 		return;
   2273 
   2274 	a_idx = MMU_TIA(startva);
   2275 	b_idx = MMU_TIB(startva);
   2276 	c_idx = MMU_TIC(startva);
   2277 	b_tbl = (b_tmgr_t *) c_tbl = NULL;
   2278 
   2279 	iscurpmap = (pmap == current_pmap());
   2280 	while (startva < endva) {
   2281 		if (b_tbl || MMU_VALID_DT(a_tbl->at_dtbl[a_idx])) {
   2282 		  if (b_tbl == NULL) {
   2283 		    b_tbl = (b_tmgr_t *) a_tbl->at_dtbl[a_idx].addr.raw;
   2284 		    b_tbl = mmu_ptov((vm_offset_t) b_tbl);
   2285 		    b_tbl = mmuB2tmgr((mmu_short_dte_t *) b_tbl);
   2286 		  }
   2287 		  if (c_tbl || MMU_VALID_DT(b_tbl->bt_dtbl[b_idx])) {
   2288 		    if (c_tbl == NULL) {
   2289 		      c_tbl = (c_tmgr_t *) MMU_DTE_PA(b_tbl->bt_dtbl[b_idx]);
   2290 		      c_tbl = mmu_ptov((vm_offset_t) c_tbl);
   2291 		      c_tbl = mmuC2tmgr((mmu_short_pte_t *) c_tbl);
   2292 		    }
   2293 		    if (MMU_VALID_DT(c_tbl->ct_dtbl[c_idx])) {
   2294 		      pte = &c_tbl->ct_dtbl[c_idx];
   2295 		      /* make the mapping read-only */
   2296 		      pte->attr.raw |= MMU_SHORT_PTE_WP;
   2297 		      /*
   2298 		       * If we just modified the current address space,
   2299 		       * flush any translations for the modified page from
   2300 		       * the translation cache and any data from it in the
   2301 		       * data cache.
   2302 		       */
   2303 		      if (iscurpmap)
   2304 		          TBIS(startva);
   2305 		    }
   2306 		    startva += NBPG;
   2307 
   2308 		    if (++c_idx >= MMU_C_TBL_SIZE) { /* exceeded C table? */
   2309 		      c_tbl = NULL;
   2310 		      c_idx = 0;
   2311 		      if (++b_idx >= MMU_B_TBL_SIZE) { /* exceeded B table? */
   2312 		        b_tbl = NULL;
   2313 		        b_idx = 0;
   2314 		      }
   2315 		    }
   2316 		  } else { /* C table wasn't valid */
   2317 		    c_tbl = NULL;
   2318 		    c_idx = 0;
   2319 		    startva += MMU_TIB_RANGE;
   2320 		    if (++b_idx >= MMU_B_TBL_SIZE) { /* exceeded B table? */
   2321 		      b_tbl = NULL;
   2322 		      b_idx = 0;
   2323 		    }
   2324 		  } /* C table */
   2325 		} else { /* B table wasn't valid */
   2326 		  b_tbl = NULL;
   2327 		  b_idx = 0;
   2328 		  startva += MMU_TIA_RANGE;
   2329 		  a_idx++;
   2330 		} /* B table */
   2331 	}
   2332 }
   2333 
   2334 /* pmap_protect_kernel			INTERNAL
   2335  **
   2336  * Apply the given protection code to a kernel address range.
   2337  */
   2338 void
   2339 pmap_protect_kernel(startva, endva, prot)
   2340 	vm_offset_t startva, endva;
   2341 	vm_prot_t prot;
   2342 {
   2343 	vm_offset_t va;
   2344 	mmu_short_pte_t *pte;
   2345 
   2346 	pte = &kernCbase[(unsigned long) _btop(startva - KERNBASE)];
   2347 	for (va = startva; va < endva; va += NBPG, pte++) {
   2348 		if (MMU_VALID_DT(*pte)) {
   2349 		    switch (prot) {
   2350 		        case VM_PROT_ALL:
   2351 		            break;
   2352 		        case VM_PROT_EXECUTE:
   2353 		        case VM_PROT_READ:
   2354 		        case VM_PROT_READ|VM_PROT_EXECUTE:
   2355 		            pte->attr.raw |= MMU_SHORT_PTE_WP;
   2356 		            break;
   2357 		        case VM_PROT_NONE:
   2358 		            /* this is an alias for 'pmap_remove_kernel' */
   2359 		            pmap_remove_pte(pte);
   2360 		            break;
   2361 		        default:
   2362 		            break;
   2363 		    }
   2364 		    /*
   2365 		     * since this is the kernel, immediately flush any cached
   2366 		     * descriptors for this address.
   2367 		     */
   2368 		    TBIS(va);
   2369 		}
   2370 	}
   2371 }
   2372 
   2373 /* pmap_change_wiring			INTERFACE
   2374  **
   2375  * Changes the wiring of the specified page.
   2376  *
   2377  * This function is called from vm_fault.c to unwire
   2378  * a mapping.  It really should be called 'pmap_unwire'
   2379  * because it is never asked to do anything but remove
   2380  * wirings.
   2381  */
   2382 void
   2383 pmap_change_wiring(pmap, va, wire)
   2384 	pmap_t pmap;
   2385 	vm_offset_t va;
   2386 	boolean_t wire;
   2387 {
   2388 	int a_idx, b_idx, c_idx;
   2389 	a_tmgr_t *a_tbl;
   2390 	b_tmgr_t *b_tbl;
   2391 	c_tmgr_t *c_tbl;
   2392 	mmu_short_pte_t *pte;
   2393 
   2394 	/* Kernel mappings always remain wired. */
   2395 	if (pmap == pmap_kernel())
   2396 		return;
   2397 
   2398 #ifdef	PMAP_DEBUG
   2399 	if (wire == TRUE)
   2400 		panic("pmap_change_wiring: wire requested.");
   2401 #endif
   2402 
   2403 	/*
   2404 	 * Walk through the tables.  If the walk terminates without
   2405 	 * a valid PTE then the address wasn't wired in the first place.
   2406 	 * Return immediately.
   2407 	 */
   2408 	if (pmap_stroll(pmap, va, &a_tbl, &b_tbl, &c_tbl, &pte, &a_idx,
   2409 		&b_idx, &c_idx) == FALSE)
   2410 		return;
   2411 
   2412 
   2413 	/* Is the PTE wired?  If not, return. */
   2414 	if (!(pte->attr.raw & MMU_SHORT_PTE_WIRED))
   2415 		return;
   2416 
   2417 	/* Remove the wiring bit. */
   2418 	pte->attr.raw &= ~(MMU_SHORT_PTE_WIRED);
   2419 
   2420 	/*
   2421 	 * Decrement the wired entry count in the C table.
   2422 	 * If it reaches zero the following things happen:
   2423 	 * 1. The table no longer has any wired entries and is considered
   2424 	 *    unwired.
   2425 	 * 2. It is placed on the available queue.
   2426 	 * 3. The parent table's wired entry count is decremented.
   2427 	 * 4. If it reaches zero, this process repeats at step 1 and
   2428 	 *    stops at after reaching the A table.
   2429 	 */
   2430 	if (--c_tbl->ct_wcnt == 0) {
   2431 		TAILQ_INSERT_TAIL(&c_pool, c_tbl, ct_link);
   2432 		if (--b_tbl->bt_wcnt == 0) {
   2433 			TAILQ_INSERT_TAIL(&b_pool, b_tbl, bt_link);
   2434 			if (--a_tbl->at_wcnt == 0) {
   2435 				TAILQ_INSERT_TAIL(&a_pool, a_tbl, at_link);
   2436 			}
   2437 		}
   2438 	}
   2439 }
   2440 
   2441 /* pmap_pageable			INTERFACE
   2442  **
   2443  * Make the specified range of addresses within the given pmap,
   2444  * 'pageable' or 'not-pageable'.  A pageable page must not cause
   2445  * any faults when referenced.  A non-pageable page may.
   2446  *
   2447  * This routine is only advisory.  The VM system will call pmap_enter()
   2448  * to wire or unwire pages that are going to be made pageable before calling
   2449  * this function.  By the time this routine is called, everything that needs
   2450  * to be done has already been done.
   2451  */
   2452 void
   2453 pmap_pageable(pmap, start, end, pageable)
   2454 	pmap_t pmap;
   2455 	vm_offset_t start, end;
   2456 	boolean_t pageable;
   2457 {
   2458 	/* not implemented. */
   2459 }
   2460 
   2461 /* pmap_copy				INTERFACE
   2462  **
   2463  * Copy the mappings of a range of addresses in one pmap, into
   2464  * the destination address of another.
   2465  *
   2466  * This routine is advisory.  Should we one day decide that MMU tables
   2467  * may be shared by more than one pmap, this function should be used to
   2468  * link them together.  Until that day however, we do nothing.
   2469  */
   2470 void
   2471 pmap_copy(pmap_a, pmap_b, dst, len, src)
   2472 	pmap_t pmap_a, pmap_b;
   2473 	vm_offset_t dst;
   2474 	vm_size_t   len;
   2475 	vm_offset_t src;
   2476 {
   2477 	/* not implemented. */
   2478 }
   2479 
   2480 /* pmap_copy_page			INTERFACE
   2481  **
   2482  * Copy the contents of one physical page into another.
   2483  *
   2484  * This function makes use of two virtual pages allocated in pmap_bootstrap()
   2485  * to map the two specified physical pages into the kernel address space.  It
   2486  * then uses bcopy() to copy one into the other.
   2487  *
   2488  * Note: We could use the transparent translation registers to make the
   2489  * mappings.  If we do so, be sure to disable interrupts before using them.
   2490  */
   2491 void
   2492 pmap_copy_page(src, dst)
   2493 	vm_offset_t src, dst;
   2494 {
   2495 	PMAP_LOCK();
   2496 	if (tmp_vpages_inuse)
   2497 		panic("pmap_copy_page: temporary vpages are in use.");
   2498 	tmp_vpages_inuse++;
   2499 
   2500 	/* XXX - Use non-cached mappings to avoid cache polution? */
   2501 	pmap_enter_kernel(tmp_vpages[0], src, VM_PROT_READ);
   2502 	pmap_enter_kernel(tmp_vpages[1], dst, VM_PROT_READ|VM_PROT_WRITE);
   2503 	copypage((char *) tmp_vpages[0], (char *) tmp_vpages[1]);
   2504 
   2505 	tmp_vpages_inuse--;
   2506 	PMAP_UNLOCK();
   2507 }
   2508 
   2509 /* pmap_zero_page			INTERFACE
   2510  **
   2511  * Zero the contents of the specified physical page.
   2512  *
   2513  * Uses one of the virtual pages allocated in pmap_boostrap()
   2514  * to map the specified page into the kernel address space.  Then uses
   2515  * bzero() to zero out the page.
   2516  */
   2517 void
   2518 pmap_zero_page(pa)
   2519 	vm_offset_t pa;
   2520 {
   2521 	PMAP_LOCK();
   2522 	if (tmp_vpages_inuse)
   2523 		panic("pmap_zero_page: temporary vpages are in use.");
   2524 	tmp_vpages_inuse++;
   2525 
   2526 	pmap_enter_kernel(tmp_vpages[0], pa, VM_PROT_READ|VM_PROT_WRITE);
   2527 	zeropage((char *) tmp_vpages[0]);
   2528 
   2529 	tmp_vpages_inuse--;
   2530 	PMAP_UNLOCK();
   2531 }
   2532 
   2533 /* pmap_collect			INTERFACE
   2534  **
   2535  * Called from the VM system when we are about to swap out
   2536  * the process using this pmap.  This should give up any
   2537  * resources held here, including all its MMU tables.
   2538  */
   2539 void
   2540 pmap_collect(pmap)
   2541 	pmap_t pmap;
   2542 {
   2543 	/* XXX - todo... */
   2544 }
   2545 
   2546 /* pmap_create			INTERFACE
   2547  **
   2548  * Create and return a pmap structure.
   2549  */
   2550 pmap_t
   2551 pmap_create(size)
   2552 	vm_size_t size;
   2553 {
   2554 	pmap_t	pmap;
   2555 
   2556 	if (size)
   2557 		return NULL;
   2558 
   2559 	pmap = (pmap_t) malloc(sizeof(struct pmap), M_VMPMAP, M_WAITOK);
   2560 	pmap_pinit(pmap);
   2561 
   2562 	return pmap;
   2563 }
   2564 
   2565 /* pmap_pinit			INTERNAL
   2566  **
   2567  * Initialize a pmap structure.
   2568  */
   2569 void
   2570 pmap_pinit(pmap)
   2571 	pmap_t pmap;
   2572 {
   2573 	bzero(pmap, sizeof(struct pmap));
   2574 	pmap->pm_a_tmgr = NULL;
   2575 	pmap->pm_a_phys = kernAphys;
   2576 }
   2577 
   2578 /* pmap_release				INTERFACE
   2579  **
   2580  * Release any resources held by the given pmap.
   2581  *
   2582  * This is the reverse analog to pmap_pinit.  It does not
   2583  * necessarily mean for the pmap structure to be deallocated,
   2584  * as in pmap_destroy.
   2585  */
   2586 void
   2587 pmap_release(pmap)
   2588 	pmap_t pmap;
   2589 {
   2590 	/*
   2591 	 * As long as the pmap contains no mappings,
   2592 	 * which always should be the case whenever
   2593 	 * this function is called, there really should
   2594 	 * be nothing to do.
   2595 	 *
   2596 	 * XXX - This function is being called while there are
   2597 	 * still valid mappings, so I guess the above must not
   2598 	 * be true.
   2599 	 * XXX - Unless the mappings persist due to a bug here...
   2600 	 *     + That's what was happening.  The map had no mappings,
   2601 	 *       but it still had an A table.  pmap_remove() was not
   2602 	 *       releasing tables when they were empty.
   2603 	 */
   2604 #ifdef	PMAP_DEBUG
   2605 	if (pmap == NULL)
   2606 		return;
   2607 	if (pmap == pmap_kernel())
   2608 		panic("pmap_release: kernel pmap");
   2609 #endif
   2610 	/*
   2611 	 * XXX - If this pmap has an A table, give it back.
   2612 	 * The pmap SHOULD be empty by now, and pmap_remove
   2613 	 * should have already given back the A table...
   2614 	 * However, I see:  pmap->pm_a_tmgr->at_ecnt == 1
   2615 	 * at this point, which means some mapping was not
   2616 	 * removed when it should have been. -gwr
   2617 	 */
   2618 	if (pmap->pm_a_tmgr != NULL) {
   2619 		/* First make sure we are not using it! */
   2620 		if (kernel_crp.rp_addr == pmap->pm_a_phys) {
   2621 			kernel_crp.rp_addr = kernAphys;
   2622 			loadcrp(&kernel_crp);
   2623 		}
   2624 #ifdef	PMAP_DEBUG /* XXX - todo! */
   2625 		/* XXX - Now complain... */
   2626 		printf("pmap_release: still have table\n");
   2627 		Debugger();
   2628 #endif
   2629 		free_a_table(pmap->pm_a_tmgr, TRUE);
   2630 		pmap->pm_a_tmgr = NULL;
   2631 		pmap->pm_a_phys = kernAphys;
   2632 	}
   2633 }
   2634 
   2635 /* pmap_reference			INTERFACE
   2636  **
   2637  * Increment the reference count of a pmap.
   2638  */
   2639 void
   2640 pmap_reference(pmap)
   2641 	pmap_t pmap;
   2642 {
   2643 	if (pmap == NULL)
   2644 		return;
   2645 
   2646 	/* pmap_lock(pmap); */
   2647 	pmap->pm_refcount++;
   2648 	/* pmap_unlock(pmap); */
   2649 }
   2650 
   2651 /* pmap_dereference			INTERNAL
   2652  **
   2653  * Decrease the reference count on the given pmap
   2654  * by one and return the current count.
   2655  */
   2656 int
   2657 pmap_dereference(pmap)
   2658 	pmap_t pmap;
   2659 {
   2660 	int rtn;
   2661 
   2662 	if (pmap == NULL)
   2663 		return 0;
   2664 
   2665 	/* pmap_lock(pmap); */
   2666 	rtn = --pmap->pm_refcount;
   2667 	/* pmap_unlock(pmap); */
   2668 
   2669 	return rtn;
   2670 }
   2671 
   2672 /* pmap_destroy			INTERFACE
   2673  **
   2674  * Decrement a pmap's reference count and delete
   2675  * the pmap if it becomes zero.  Will be called
   2676  * only after all mappings have been removed.
   2677  */
   2678 void
   2679 pmap_destroy(pmap)
   2680 	pmap_t pmap;
   2681 {
   2682 	if (pmap == NULL)
   2683 		return;
   2684 	if (pmap == &kernel_pmap)
   2685 		panic("pmap_destroy: kernel_pmap!");
   2686 	if (pmap_dereference(pmap) == 0) {
   2687 		pmap_release(pmap);
   2688 		free(pmap, M_VMPMAP);
   2689 	}
   2690 }
   2691 
   2692 /* pmap_is_referenced			INTERFACE
   2693  **
   2694  * Determine if the given physical page has been
   2695  * referenced (read from [or written to.])
   2696  */
   2697 boolean_t
   2698 pmap_is_referenced(pa)
   2699 	vm_offset_t pa;
   2700 {
   2701 	pv_t      *pv;
   2702 	int       idx, s;
   2703 
   2704 	if (!pv_initialized)
   2705 		return FALSE;
   2706 	/* XXX - this may be unecessary. */
   2707 	if (!is_managed(pa))
   2708 		return FALSE;
   2709 
   2710 	pv = pa2pv(pa);
   2711 	/*
   2712 	 * Check the flags on the pv head.  If they are set,
   2713 	 * return immediately.  Otherwise a search must be done.
   2714 	 */
   2715 	if (pv->pv_flags & PV_FLAGS_USED)
   2716 		return TRUE;
   2717 	else {
   2718 		s = splimp();
   2719 		/*
   2720 		 * Search through all pv elements pointing
   2721 		 * to this page and query their reference bits
   2722 		 */
   2723 		for (idx = pv->pv_idx; idx != PVE_EOL; idx =
   2724 			pvebase[idx].pve_next)
   2725 			if (MMU_PTE_USED(kernCbase[idx])) {
   2726 				splx(s);
   2727 				return TRUE;
   2728 			}
   2729 		splx(s);
   2730 	}
   2731 
   2732 	return FALSE;
   2733 }
   2734 
   2735 /* pmap_is_modified			INTERFACE
   2736  **
   2737  * Determine if the given physical page has been
   2738  * modified (written to.)
   2739  */
   2740 boolean_t
   2741 pmap_is_modified(pa)
   2742 	vm_offset_t pa;
   2743 {
   2744 	pv_t      *pv;
   2745 	int       idx, s;
   2746 
   2747 	if (!pv_initialized)
   2748 		return FALSE;
   2749 	/* XXX - this may be unecessary. */
   2750 	if (!is_managed(pa))
   2751 		return FALSE;
   2752 
   2753 	/* see comments in pmap_is_referenced() */
   2754 	pv = pa2pv(pa);
   2755 	if (pv->pv_flags & PV_FLAGS_MDFY) {
   2756 		return TRUE;
   2757 	} else {
   2758 		s = splimp();
   2759 		for (idx = pv->pv_idx; idx != PVE_EOL; idx =
   2760 			pvebase[idx].pve_next)
   2761 			if (MMU_PTE_MODIFIED(kernCbase[idx])) {
   2762 				splx(s);
   2763 				return TRUE;
   2764 			}
   2765 		splx(s);
   2766 	}
   2767 
   2768 	return FALSE;
   2769 }
   2770 
   2771 /* pmap_page_protect			INTERFACE
   2772  **
   2773  * Applies the given protection to all mappings to the given
   2774  * physical page.
   2775  */
   2776 void
   2777 pmap_page_protect(pa, prot)
   2778 	vm_offset_t pa;
   2779 	vm_prot_t prot;
   2780 {
   2781 	pv_t      *pv;
   2782 	int       idx, s;
   2783 	vm_offset_t va;
   2784 	struct mmu_short_pte_struct *pte;
   2785 	c_tmgr_t  *c_tbl;
   2786 	pmap_t    pmap, curpmap;
   2787 
   2788 	if (!is_managed(pa))
   2789 		return;
   2790 
   2791 	curpmap = current_pmap();
   2792 	pv = pa2pv(pa);
   2793 	s = splimp();
   2794 	for (idx = pv->pv_idx; idx != PVE_EOL; idx = pvebase[idx].pve_next) {
   2795 		pte = &kernCbase[idx];
   2796 		switch (prot) {
   2797 			case VM_PROT_ALL:
   2798 				/* do nothing */
   2799 				break;
   2800 			case VM_PROT_EXECUTE:
   2801 			case VM_PROT_READ:
   2802 			case VM_PROT_READ|VM_PROT_EXECUTE:
   2803 				pte->attr.raw |= MMU_SHORT_PTE_WP;
   2804 
   2805 				/*
   2806 				 * Determine the virtual address mapped by
   2807 				 * the PTE and flush ATC entries if necessary.
   2808 				 */
   2809 				va = pmap_get_pteinfo(idx, &pmap, &c_tbl);
   2810 				if (pmap == curpmap || pmap == pmap_kernel())
   2811 					TBIS(va);
   2812 				break;
   2813 			case VM_PROT_NONE:
   2814 				/* Save the mod/ref bits. */
   2815 				pv->pv_flags |= pte->attr.raw;
   2816 				/* Invalidate the PTE. */
   2817 				pte->attr.raw = MMU_DT_INVALID;
   2818 
   2819 				/*
   2820 				 * Update table counts.  And flush ATC entries
   2821 				 * if necessary.
   2822 				 */
   2823 				va = pmap_get_pteinfo(idx, &pmap, &c_tbl);
   2824 
   2825 				/*
   2826 				 * If the PTE belongs to the kernel map,
   2827 				 * be sure to flush the page it maps.
   2828 				 */
   2829 				if (pmap == pmap_kernel()) {
   2830 					TBIS(va);
   2831 				} else {
   2832 					/*
   2833 					 * The PTE belongs to a user map.
   2834 					 * update the entry count in the C
   2835 					 * table to which it belongs and flush
   2836 					 * the ATC if the mapping belongs to
   2837 					 * the current pmap.
   2838 					 */
   2839 					c_tbl->ct_ecnt--;
   2840 					if (pmap == curpmap)
   2841 						TBIS(va);
   2842 				}
   2843 				break;
   2844 			default:
   2845 				break;
   2846 		}
   2847 	}
   2848 
   2849 	/*
   2850 	 * If the protection code indicates that all mappings to the page
   2851 	 * be removed, truncate the PV list to zero entries.
   2852 	 */
   2853 	if (prot == VM_PROT_NONE)
   2854 		pv->pv_idx = PVE_EOL;
   2855 	splx(s);
   2856 }
   2857 
   2858 /* pmap_get_pteinfo		INTERNAL
   2859  **
   2860  * Called internally to find the pmap and virtual address within that
   2861  * map to which the pte at the given index maps.  Also includes the PTE's C
   2862  * table manager.
   2863  *
   2864  * Returns the pmap in the argument provided, and the virtual address
   2865  * by return value.
   2866  */
   2867 vm_offset_t
   2868 pmap_get_pteinfo(idx, pmap, tbl)
   2869 	u_int idx;
   2870 	pmap_t *pmap;
   2871 	c_tmgr_t **tbl;
   2872 {
   2873 	a_tmgr_t    *a_tbl;
   2874 	b_tmgr_t    *b_tbl;
   2875 	c_tmgr_t    *c_tbl;
   2876 	vm_offset_t     va = 0;
   2877 
   2878 	/*
   2879 	 * Determine if the PTE is a kernel PTE or a user PTE.
   2880 	 */
   2881 	if (idx >= NUM_KERN_PTES) {
   2882 		/*
   2883 		 * The PTE belongs to a user mapping.
   2884 		 * Find the virtual address by decoding table indices.
   2885 		 * Each successive decode will reveal the address from
   2886 		 * least to most significant bit fashion.
   2887 		 *
   2888 		 * 31                              0
   2889 		 * +-------------------------------+
   2890 		 * |AAAAAAABBBBBBCCCCCC............|
   2891 		 * +-------------------------------+
   2892 		 */
   2893 		/* XXX: c_tbl = mmuC2tmgr(pte); */
   2894 		/* XXX: Would like an inline for this to validate idx... */
   2895 		c_tbl = &Ctmgrbase[(idx - NUM_KERN_PTES) / MMU_C_TBL_SIZE];
   2896 		b_tbl = c_tbl->ct_parent;
   2897 		a_tbl = b_tbl->bt_parent;
   2898 		*pmap = a_tbl->at_parent;
   2899 		*tbl = c_tbl;
   2900 
   2901 		/* Start with the 'C' bits, then add B and A... */
   2902 		va |= ((idx % MMU_C_TBL_SIZE) << MMU_TIC_SHIFT);
   2903 		va |= (c_tbl->ct_pidx << MMU_TIB_SHIFT);
   2904 		va |= (b_tbl->bt_pidx << MMU_TIA_SHIFT);
   2905 	} else {
   2906 		/*
   2907 		 * The PTE belongs to the kernel map.
   2908 		 */
   2909 		*pmap = pmap_kernel();
   2910 
   2911 		va = _ptob(idx);
   2912 		va += KERNBASE;
   2913 	}
   2914 
   2915 	return va;
   2916 }
   2917 
   2918 #if	0	/* XXX - I am eliminating this function. */
   2919 /* pmap_find_tic			INTERNAL
   2920  **
   2921  * Given the address of a pte, find the TIC (level 'C' table index) for
   2922  * the pte within its C table.
   2923  */
   2924 char
   2925 pmap_find_tic(pte)
   2926 	mmu_short_pte_t *pte;
   2927 {
   2928 	return ((pte - mmuCbase) % MMU_C_TBL_SIZE);
   2929 }
   2930 #endif	/* 0 */
   2931 
   2932 
   2933 /* pmap_clear_modify			INTERFACE
   2934  **
   2935  * Clear the modification bit on the page at the specified
   2936  * physical address.
   2937  *
   2938  */
   2939 void
   2940 pmap_clear_modify(pa)
   2941 	vm_offset_t pa;
   2942 {
   2943 	pmap_clear_pv(pa, PV_FLAGS_MDFY);
   2944 }
   2945 
   2946 /* pmap_clear_reference			INTERFACE
   2947  **
   2948  * Clear the referenced bit on the page at the specified
   2949  * physical address.
   2950  */
   2951 void
   2952 pmap_clear_reference(pa)
   2953 	vm_offset_t pa;
   2954 {
   2955 	pmap_clear_pv(pa, PV_FLAGS_USED);
   2956 }
   2957 
   2958 /* pmap_clear_pv			INTERNAL
   2959  **
   2960  * Clears the specified flag from the specified physical address.
   2961  * (Used by pmap_clear_modify() and pmap_clear_reference().)
   2962  *
   2963  * Flag is one of:
   2964  *   PV_FLAGS_MDFY - Page modified bit.
   2965  *   PV_FLAGS_USED - Page used (referenced) bit.
   2966  *
   2967  * This routine must not only clear the flag on the pv list
   2968  * head.  It must also clear the bit on every pte in the pv
   2969  * list associated with the address.
   2970  */
   2971 void
   2972 pmap_clear_pv(pa, flag)
   2973 	vm_offset_t pa;
   2974 	int flag;
   2975 {
   2976 	pv_t      *pv;
   2977 	int       idx, s;
   2978 	vm_offset_t     va;
   2979 	pmap_t          pmap;
   2980 	mmu_short_pte_t *pte;
   2981 	c_tmgr_t        *c_tbl;
   2982 
   2983 	pv = pa2pv(pa);
   2984 
   2985 	s = splimp();
   2986 	pv->pv_flags &= ~(flag);
   2987 	for (idx = pv->pv_idx; idx != PVE_EOL; idx = pvebase[idx].pve_next) {
   2988 		pte = &kernCbase[idx];
   2989 		pte->attr.raw &= ~(flag);
   2990 		/*
   2991 		 * The MC68030 MMU will not set the modified or
   2992 		 * referenced bits on any MMU tables for which it has
   2993 		 * a cached descriptor with its modify bit set.  To insure
   2994 		 * that it will modify these bits on the PTE during the next
   2995 		 * time it is written to or read from, we must flush it from
   2996 		 * the ATC.
   2997 		 *
   2998 		 * Ordinarily it is only necessary to flush the descriptor
   2999 		 * if it is used in the current address space.  But since I
   3000 		 * am not sure that there will always be a notion of
   3001 		 * 'the current address space' when this function is called,
   3002 		 * I will skip the test and always flush the address.  It
   3003 		 * does no harm.
   3004 		 */
   3005 		va = pmap_get_pteinfo(idx, &pmap, &c_tbl);
   3006 		TBIS(va);
   3007 	}
   3008 	splx(s);
   3009 }
   3010 
   3011 /* pmap_extract			INTERFACE
   3012  **
   3013  * Return the physical address mapped by the virtual address
   3014  * in the specified pmap or 0 if it is not known.
   3015  *
   3016  * Note: this function should also apply an exclusive lock
   3017  * on the pmap system during its duration.
   3018  */
   3019 vm_offset_t
   3020 pmap_extract(pmap, va)
   3021 	pmap_t      pmap;
   3022 	vm_offset_t va;
   3023 {
   3024 	int a_idx, b_idx, pte_idx;
   3025 	a_tmgr_t	*a_tbl;
   3026 	b_tmgr_t	*b_tbl;
   3027 	c_tmgr_t	*c_tbl;
   3028 	mmu_short_pte_t	*c_pte;
   3029 
   3030 	if (pmap == pmap_kernel())
   3031 		return pmap_extract_kernel(va);
   3032 	if (pmap == NULL)
   3033 		return 0;
   3034 
   3035 	if (pmap_stroll(pmap, va, &a_tbl, &b_tbl, &c_tbl,
   3036 		&c_pte, &a_idx, &b_idx, &pte_idx) == FALSE)
   3037 		return 0;
   3038 
   3039 	if (!MMU_VALID_DT(*c_pte))
   3040 		return 0;
   3041 
   3042 	return (MMU_PTE_PA(*c_pte));
   3043 }
   3044 
   3045 /* pmap_extract_kernel		INTERNAL
   3046  **
   3047  * Extract a translation from the kernel address space.
   3048  */
   3049 vm_offset_t
   3050 pmap_extract_kernel(va)
   3051 	vm_offset_t va;
   3052 {
   3053 	mmu_short_pte_t *pte;
   3054 
   3055 	pte = &kernCbase[(u_int) _btop(va - KERNBASE)];
   3056 	return MMU_PTE_PA(*pte);
   3057 }
   3058 
   3059 /* pmap_remove_kernel		INTERNAL
   3060  **
   3061  * Remove the mapping of a range of virtual addresses from the kernel map.
   3062  * The arguments are already page-aligned.
   3063  */
   3064 void
   3065 pmap_remove_kernel(sva, eva)
   3066 	vm_offset_t sva;
   3067 	vm_offset_t eva;
   3068 {
   3069 	int idx, eidx;
   3070 
   3071 #ifdef	PMAP_DEBUG
   3072 	if ((sva & PGOFSET) || (eva & PGOFSET))
   3073 		panic("pmap_remove_kernel: alignment");
   3074 #endif
   3075 
   3076 	idx  = _btop(sva - KERNBASE);
   3077 	eidx = _btop(eva - KERNBASE);
   3078 
   3079 	while (idx < eidx)
   3080 		pmap_remove_pte(&kernCbase[idx++]);
   3081 	/* Always flush the ATC when maniplating the kernel address space. */
   3082 	TBIAS();
   3083 }
   3084 
   3085 /* pmap_remove			INTERFACE
   3086  **
   3087  * Remove the mapping of a range of virtual addresses from the given pmap.
   3088  *
   3089  * If the range contains any wired entries, this function will probably create
   3090  * disaster.
   3091  */
   3092 void
   3093 pmap_remove(pmap, start, end)
   3094 	pmap_t pmap;
   3095 	vm_offset_t start;
   3096 	vm_offset_t end;
   3097 {
   3098 
   3099 	if (pmap == pmap_kernel()) {
   3100 		pmap_remove_kernel(start, end);
   3101 		return;
   3102 	}
   3103 
   3104 	/*
   3105 	 * XXX - Temporary(?) statement to prevent panic caused
   3106 	 * by vm_alloc_with_pager() handing us a software map (ie NULL)
   3107 	 * to remove because it couldn't get backing store.
   3108 	 * (I guess.)
   3109 	 */
   3110 	if (pmap == NULL)
   3111 		return;
   3112 
   3113 	/*
   3114 	 * If the pmap doesn't have an A table of its own, it has no mappings
   3115 	 * that can be removed.
   3116 	 */
   3117 	if (pmap->pm_a_tmgr == NULL)
   3118 		return;
   3119 
   3120 	/*
   3121 	 * Remove the specified range from the pmap.  If the function
   3122 	 * returns true, the operation removed all the valid mappings
   3123 	 * in the pmap and freed its A table.  If this happened to the
   3124 	 * currently loaded pmap, the MMU root pointer must be reloaded
   3125 	 * with the default 'kernel' map.
   3126 	 */
   3127 	if (pmap_remove_a(pmap->pm_a_tmgr, start, end)) {
   3128 		if (kernel_crp.rp_addr == pmap->pm_a_phys) {
   3129 			kernel_crp.rp_addr = kernAphys;
   3130 			loadcrp(&kernel_crp);
   3131 			/* will do TLB flush below */
   3132 		}
   3133 		pmap->pm_a_tmgr = NULL;
   3134 		pmap->pm_a_phys = kernAphys;
   3135 	}
   3136 
   3137 	/*
   3138 	 * If we just modified the current address space,
   3139 	 * make sure to flush the MMU cache.
   3140 	 *
   3141 	 * XXX - this could be an unecessarily large flush.
   3142 	 * XXX - Could decide, based on the size of the VA range
   3143 	 * to be removed, whether to flush "by pages" or "all".
   3144 	 */
   3145 	if (pmap == current_pmap())
   3146 		TBIAU();
   3147 }
   3148 
   3149 /* pmap_remove_a			INTERNAL
   3150  **
   3151  * This is function number one in a set of three that removes a range
   3152  * of memory in the most efficient manner by removing the highest possible
   3153  * tables from the memory space.  This particular function attempts to remove
   3154  * as many B tables as it can, delegating the remaining fragmented ranges to
   3155  * pmap_remove_b().
   3156  *
   3157  * If the removal operation results in an empty A table, the function returns
   3158  * TRUE.
   3159  *
   3160  * It's ugly but will do for now.
   3161  */
   3162 boolean_t
   3163 pmap_remove_a(a_tbl, start, end)
   3164 	a_tmgr_t *a_tbl;
   3165 	vm_offset_t start;
   3166 	vm_offset_t end;
   3167 {
   3168 	boolean_t empty;
   3169 	int idx;
   3170 	vm_offset_t nstart, nend;
   3171 	b_tmgr_t *b_tbl;
   3172 	mmu_long_dte_t  *a_dte;
   3173 	mmu_short_dte_t *b_dte;
   3174 
   3175 	/*
   3176 	 * The following code works with what I call a 'granularity
   3177 	 * reduction algorithim'.  A range of addresses will always have
   3178 	 * the following properties, which are classified according to
   3179 	 * how the range relates to the size of the current granularity
   3180 	 * - an A table entry:
   3181 	 *
   3182 	 *            1 2       3 4
   3183 	 * -+---+---+---+---+---+---+---+-
   3184 	 * -+---+---+---+---+---+---+---+-
   3185 	 *
   3186 	 * A range will always start on a granularity boundary, illustrated
   3187 	 * by '+' signs in the table above, or it will start at some point
   3188 	 * inbetween a granularity boundary, as illustrated by point 1.
   3189 	 * The first step in removing a range of addresses is to remove the
   3190 	 * range between 1 and 2, the nearest granularity boundary.  This
   3191 	 * job is handled by the section of code governed by the
   3192 	 * 'if (start < nstart)' statement.
   3193 	 *
   3194 	 * A range will always encompass zero or more intergral granules,
   3195 	 * illustrated by points 2 and 3.  Integral granules are easy to
   3196 	 * remove.  The removal of these granules is the second step, and
   3197 	 * is handled by the code block 'if (nstart < nend)'.
   3198 	 *
   3199 	 * Lastly, a range will always end on a granularity boundary,
   3200 	 * ill. by point 3, or it will fall just beyond one, ill. by point
   3201 	 * 4.  The last step involves removing this range and is handled by
   3202 	 * the code block 'if (nend < end)'.
   3203 	 */
   3204 	nstart = MMU_ROUND_UP_A(start);
   3205 	nend = MMU_ROUND_A(end);
   3206 
   3207 	if (start < nstart) {
   3208 		/*
   3209 		 * This block is executed if the range starts between
   3210 		 * a granularity boundary.
   3211 		 *
   3212 		 * First find the DTE which is responsible for mapping
   3213 		 * the start of the range.
   3214 		 */
   3215 		idx = MMU_TIA(start);
   3216 		a_dte = &a_tbl->at_dtbl[idx];
   3217 
   3218 		/*
   3219 		 * If the DTE is valid then delegate the removal of the sub
   3220 		 * range to pmap_remove_b(), which can remove addresses at
   3221 		 * a finer granularity.
   3222 		 */
   3223 		if (MMU_VALID_DT(*a_dte)) {
   3224 			b_dte = mmu_ptov(a_dte->addr.raw);
   3225 			b_tbl = mmuB2tmgr(b_dte);
   3226 
   3227 			/*
   3228 			 * The sub range to be removed starts at the start
   3229 			 * of the full range we were asked to remove, and ends
   3230 			 * at the greater of:
   3231 			 * 1. The end of the full range, -or-
   3232 			 * 2. The end of the full range, rounded down to the
   3233 			 *    nearest granularity boundary.
   3234 			 */
   3235 			if (end < nstart)
   3236 				empty = pmap_remove_b(b_tbl, start, end);
   3237 			else
   3238 				empty = pmap_remove_b(b_tbl, start, nstart);
   3239 
   3240 			/*
   3241 			 * If the removal resulted in an empty B table,
   3242 			 * invalidate the DTE that points to it and decrement
   3243 			 * the valid entry count of the A table.
   3244 			 */
   3245 			if (empty) {
   3246 				a_dte->attr.raw = MMU_DT_INVALID;
   3247 				a_tbl->at_ecnt--;
   3248 			}
   3249 		}
   3250 		/*
   3251 		 * If the DTE is invalid, the address range is already non-
   3252 		 * existant and can simply be skipped.
   3253 		 */
   3254 	}
   3255 	if (nstart < nend) {
   3256 		/*
   3257 		 * This block is executed if the range spans a whole number
   3258 		 * multiple of granules (A table entries.)
   3259 		 *
   3260 		 * First find the DTE which is responsible for mapping
   3261 		 * the start of the first granule involved.
   3262 		 */
   3263 		idx = MMU_TIA(nstart);
   3264 		a_dte = &a_tbl->at_dtbl[idx];
   3265 
   3266 		/*
   3267 		 * Remove entire sub-granules (B tables) one at a time,
   3268 		 * until reaching the end of the range.
   3269 		 */
   3270 		for (; nstart < nend; a_dte++, nstart += MMU_TIA_RANGE)
   3271 			if (MMU_VALID_DT(*a_dte)) {
   3272 				/*
   3273 				 * Find the B table manager for the
   3274 				 * entry and free it.
   3275 				 */
   3276 				b_dte = mmu_ptov(a_dte->addr.raw);
   3277 				b_tbl = mmuB2tmgr(b_dte);
   3278 				free_b_table(b_tbl, TRUE);
   3279 
   3280 				/*
   3281 				 * Invalidate the DTE that points to the
   3282 				 * B table and decrement the valid entry
   3283 				 * count of the A table.
   3284 				 */
   3285 				a_dte->attr.raw = MMU_DT_INVALID;
   3286 				a_tbl->at_ecnt--;
   3287 			}
   3288 	}
   3289 	if (nend < end) {
   3290 		/*
   3291 		 * This block is executed if the range ends beyond a
   3292 		 * granularity boundary.
   3293 		 *
   3294 		 * First find the DTE which is responsible for mapping
   3295 		 * the start of the nearest (rounded down) granularity
   3296 		 * boundary.
   3297 		 */
   3298 		idx = MMU_TIA(nend);
   3299 		a_dte = &a_tbl->at_dtbl[idx];
   3300 
   3301 		/*
   3302 		 * If the DTE is valid then delegate the removal of the sub
   3303 		 * range to pmap_remove_b(), which can remove addresses at
   3304 		 * a finer granularity.
   3305 		 */
   3306 		if (MMU_VALID_DT(*a_dte)) {
   3307 			/*
   3308 			 * Find the B table manager for the entry
   3309 			 * and hand it to pmap_remove_b() along with
   3310 			 * the sub range.
   3311 			 */
   3312 			b_dte = mmu_ptov(a_dte->addr.raw);
   3313 			b_tbl = mmuB2tmgr(b_dte);
   3314 
   3315 			empty = pmap_remove_b(b_tbl, nend, end);
   3316 
   3317 			/*
   3318 			 * If the removal resulted in an empty B table,
   3319 			 * invalidate the DTE that points to it and decrement
   3320 			 * the valid entry count of the A table.
   3321 			 */
   3322 			if (empty) {
   3323 				a_dte->attr.raw = MMU_DT_INVALID;
   3324 				a_tbl->at_ecnt--;
   3325 			}
   3326 		}
   3327 	}
   3328 
   3329 	/*
   3330 	 * If there are no more entries in the A table, release it
   3331 	 * back to the available pool and return TRUE.
   3332 	 */
   3333 	if (a_tbl->at_ecnt == 0) {
   3334 		a_tbl->at_parent = NULL;
   3335 		TAILQ_REMOVE(&a_pool, a_tbl, at_link);
   3336 		TAILQ_INSERT_HEAD(&a_pool, a_tbl, at_link);
   3337 		empty = TRUE;
   3338 	} else {
   3339 		empty = FALSE;
   3340 	}
   3341 
   3342 	return empty;
   3343 }
   3344 
   3345 /* pmap_remove_b			INTERNAL
   3346  **
   3347  * Remove a range of addresses from an address space, trying to remove entire
   3348  * C tables if possible.
   3349  *
   3350  * If the operation results in an empty B table, the function returns TRUE.
   3351  */
   3352 boolean_t
   3353 pmap_remove_b(b_tbl, start, end)
   3354 	b_tmgr_t *b_tbl;
   3355 	vm_offset_t start;
   3356 	vm_offset_t end;
   3357 {
   3358 	boolean_t empty;
   3359 	int idx;
   3360 	vm_offset_t nstart, nend, rstart;
   3361 	c_tmgr_t *c_tbl;
   3362 	mmu_short_dte_t  *b_dte;
   3363 	mmu_short_pte_t  *c_dte;
   3364 
   3365 
   3366 	nstart = MMU_ROUND_UP_B(start);
   3367 	nend = MMU_ROUND_B(end);
   3368 
   3369 	if (start < nstart) {
   3370 		idx = MMU_TIB(start);
   3371 		b_dte = &b_tbl->bt_dtbl[idx];
   3372 		if (MMU_VALID_DT(*b_dte)) {
   3373 			c_dte = mmu_ptov(MMU_DTE_PA(*b_dte));
   3374 			c_tbl = mmuC2tmgr(c_dte);
   3375 			if (end < nstart)
   3376 				empty = pmap_remove_c(c_tbl, start, end);
   3377 			else
   3378 				empty = pmap_remove_c(c_tbl, start, nstart);
   3379 			if (empty) {
   3380 				b_dte->attr.raw = MMU_DT_INVALID;
   3381 				b_tbl->bt_ecnt--;
   3382 			}
   3383 		}
   3384 	}
   3385 	if (nstart < nend) {
   3386 		idx = MMU_TIB(nstart);
   3387 		b_dte = &b_tbl->bt_dtbl[idx];
   3388 		rstart = nstart;
   3389 		while (rstart < nend) {
   3390 			if (MMU_VALID_DT(*b_dte)) {
   3391 				c_dte = mmu_ptov(MMU_DTE_PA(*b_dte));
   3392 				c_tbl = mmuC2tmgr(c_dte);
   3393 				free_c_table(c_tbl, TRUE);
   3394 				b_dte->attr.raw = MMU_DT_INVALID;
   3395 				b_tbl->bt_ecnt--;
   3396 			}
   3397 			b_dte++;
   3398 			rstart += MMU_TIB_RANGE;
   3399 		}
   3400 	}
   3401 	if (nend < end) {
   3402 		idx = MMU_TIB(nend);
   3403 		b_dte = &b_tbl->bt_dtbl[idx];
   3404 		if (MMU_VALID_DT(*b_dte)) {
   3405 			c_dte = mmu_ptov(MMU_DTE_PA(*b_dte));
   3406 			c_tbl = mmuC2tmgr(c_dte);
   3407 			empty = pmap_remove_c(c_tbl, nend, end);
   3408 			if (empty) {
   3409 				b_dte->attr.raw = MMU_DT_INVALID;
   3410 				b_tbl->bt_ecnt--;
   3411 			}
   3412 		}
   3413 	}
   3414 
   3415 	if (b_tbl->bt_ecnt == 0) {
   3416 		b_tbl->bt_parent = NULL;
   3417 		TAILQ_REMOVE(&b_pool, b_tbl, bt_link);
   3418 		TAILQ_INSERT_HEAD(&b_pool, b_tbl, bt_link);
   3419 		empty = TRUE;
   3420 	} else {
   3421 		empty = FALSE;
   3422 	}
   3423 
   3424 	return empty;
   3425 }
   3426 
   3427 /* pmap_remove_c			INTERNAL
   3428  **
   3429  * Remove a range of addresses from the given C table.
   3430  */
   3431 boolean_t
   3432 pmap_remove_c(c_tbl, start, end)
   3433 	c_tmgr_t *c_tbl;
   3434 	vm_offset_t start;
   3435 	vm_offset_t end;
   3436 {
   3437 	boolean_t empty;
   3438 	int idx;
   3439 	mmu_short_pte_t *c_pte;
   3440 
   3441 	idx = MMU_TIC(start);
   3442 	c_pte = &c_tbl->ct_dtbl[idx];
   3443 	for (;start < end; start += MMU_PAGE_SIZE, c_pte++) {
   3444 		if (MMU_VALID_DT(*c_pte)) {
   3445 			pmap_remove_pte(c_pte);
   3446 			c_tbl->ct_ecnt--;
   3447 		}
   3448 	}
   3449 
   3450 	if (c_tbl->ct_ecnt == 0) {
   3451 		c_tbl->ct_parent = NULL;
   3452 		TAILQ_REMOVE(&c_pool, c_tbl, ct_link);
   3453 		TAILQ_INSERT_HEAD(&c_pool, c_tbl, ct_link);
   3454 		empty = TRUE;
   3455 	} else {
   3456 		empty = FALSE;
   3457 	}
   3458 
   3459 	return empty;
   3460 }
   3461 
   3462 /* is_managed				INTERNAL
   3463  **
   3464  * Determine if the given physical address is managed by the PV system.
   3465  * Note that this logic assumes that no one will ask for the status of
   3466  * addresses which lie in-between the memory banks on the 3/80.  If they
   3467  * do so, it will falsely report that it is managed.
   3468  *
   3469  * Note: A "managed" address is one that was reported to the VM system as
   3470  * a "usable page" during system startup.  As such, the VM system expects the
   3471  * pmap module to keep an accurate track of the useage of those pages.
   3472  * Any page not given to the VM system at startup does not exist (as far as
   3473  * the VM system is concerned) and is therefore "unmanaged."  Examples are
   3474  * those pages which belong to the ROM monitor and the memory allocated before
   3475  * the VM system was started.
   3476  */
   3477 boolean_t
   3478 is_managed(pa)
   3479 	vm_offset_t pa;
   3480 {
   3481 	if (pa >= avail_start && pa < avail_end)
   3482 		return TRUE;
   3483 	else
   3484 		return FALSE;
   3485 }
   3486 
   3487 /* pmap_bootstrap_alloc			INTERNAL
   3488  **
   3489  * Used internally for memory allocation at startup when malloc is not
   3490  * available.  This code will fail once it crosses the first memory
   3491  * bank boundary on the 3/80.  Hopefully by then however, the VM system
   3492  * will be in charge of allocation.
   3493  */
   3494 void *
   3495 pmap_bootstrap_alloc(size)
   3496 	int size;
   3497 {
   3498 	void *rtn;
   3499 
   3500 #ifdef	PMAP_DEBUG
   3501 	if (bootstrap_alloc_enabled == FALSE) {
   3502 		mon_printf("pmap_bootstrap_alloc: disabled\n");
   3503 		sunmon_abort();
   3504 	}
   3505 #endif
   3506 
   3507 	rtn = (void *) virtual_avail;
   3508 	virtual_avail += size;
   3509 
   3510 #ifdef	PMAP_DEBUG
   3511 	if (virtual_avail > virtual_contig_end) {
   3512 		mon_printf("pmap_bootstrap_alloc: out of mem\n");
   3513 		sunmon_abort();
   3514 	}
   3515 #endif
   3516 
   3517 	return rtn;
   3518 }
   3519 
   3520 /* pmap_bootstap_aalign			INTERNAL
   3521  **
   3522  * Used to insure that the next call to pmap_bootstrap_alloc() will
   3523  * return a chunk of memory aligned to the specified size.
   3524  *
   3525  * Note: This function will only support alignment sizes that are powers
   3526  * of two.
   3527  */
   3528 void
   3529 pmap_bootstrap_aalign(size)
   3530 	int size;
   3531 {
   3532 	int off;
   3533 
   3534 	off = virtual_avail & (size - 1);
   3535 	if (off) {
   3536 		(void) pmap_bootstrap_alloc(size - off);
   3537 	}
   3538 }
   3539 
   3540 /* pmap_pa_exists
   3541  **
   3542  * Used by the /dev/mem driver to see if a given PA is memory
   3543  * that can be mapped.  (The PA is not in a hole.)
   3544  */
   3545 int
   3546 pmap_pa_exists(pa)
   3547 	vm_offset_t pa;
   3548 {
   3549 	/* XXX - NOTYET */
   3550 	return (0);
   3551 }
   3552 
   3553 /* pmap_activate			INTERFACE
   3554  **
   3555  * This is called by locore.s:cpu_switch when we are switching to a
   3556  * new process.  This should load the MMU context for the new proc.
   3557  * XXX - Later, this should be done directly in locore.s
   3558  */
   3559 void
   3560 pmap_activate(pmap)
   3561 pmap_t	pmap;
   3562 {
   3563 	u_long rootpa;
   3564 
   3565 	/* Only do reload/flush if we have to. */
   3566 	rootpa = pmap->pm_a_phys;
   3567 	if (kernel_crp.rp_addr != rootpa) {
   3568 		DPRINT(("pmap_activate(%p)\n", pmap));
   3569 		kernel_crp.rp_addr = rootpa;
   3570 		loadcrp(&kernel_crp);
   3571 		TBIAU();
   3572 	}
   3573 }
   3574 
   3575 
   3576 /* pmap_update
   3577  **
   3578  * Apply any delayed changes scheduled for all pmaps immediately.
   3579  *
   3580  * No delayed operations are currently done in this pmap.
   3581  */
   3582 void
   3583 pmap_update()
   3584 {
   3585 	/* not implemented. */
   3586 }
   3587 
   3588 /* pmap_virtual_space			INTERFACE
   3589  **
   3590  * Return the current available range of virtual addresses in the
   3591  * arguuments provided.  Only really called once.
   3592  */
   3593 void
   3594 pmap_virtual_space(vstart, vend)
   3595 	vm_offset_t *vstart, *vend;
   3596 {
   3597 	*vstart = virtual_avail;
   3598 	*vend = virtual_end;
   3599 }
   3600 
   3601 /* pmap_free_pages			INTERFACE
   3602  **
   3603  * Return the number of physical pages still available.
   3604  *
   3605  * This is probably going to be a mess, but it's only called
   3606  * once and it's the only function left that I have to implement!
   3607  */
   3608 u_int
   3609 pmap_free_pages()
   3610 {
   3611 	int i;
   3612 	u_int left;
   3613 	vm_offset_t avail;
   3614 
   3615 	avail = avail_next;
   3616 	left = 0;
   3617 	i = 0;
   3618 	while (avail >= avail_mem[i].pmem_end) {
   3619 		if (avail_mem[i].pmem_next == NULL)
   3620 			return 0;
   3621 		i++;
   3622 	}
   3623 	while (i < SUN3X_80_MEM_BANKS) {
   3624 		if (avail < avail_mem[i].pmem_start) {
   3625 			/* Avail is inside a hole, march it
   3626 			 * up to the next bank.
   3627 			 */
   3628 			avail = avail_mem[i].pmem_start;
   3629 		}
   3630 		left += _btop(avail_mem[i].pmem_end - avail);
   3631 		if (avail_mem[i].pmem_next == NULL)
   3632 			break;
   3633 		i++;
   3634 	}
   3635 
   3636 	return left;
   3637 }
   3638 
   3639 /* pmap_page_index			INTERFACE
   3640  **
   3641  * Return the index of the given physical page in a list of useable
   3642  * physical pages in the system.  Holes in physical memory may be counted
   3643  * if so desired.  As long as pmap_free_pages() and pmap_page_index()
   3644  * agree as to whether holes in memory do or do not count as valid pages,
   3645  * it really doesn't matter.  However, if you like to save a little
   3646  * memory, don't count holes as valid pages.  This is even more true when
   3647  * the holes are large.
   3648  *
   3649  * We will not count holes as valid pages.  We can generate page indices
   3650  * that conform to this by using the memory bank structures initialized
   3651  * in pmap_alloc_pv().
   3652  */
   3653 int
   3654 pmap_page_index(pa)
   3655 	vm_offset_t pa;
   3656 {
   3657 	struct pmap_physmem_struct *bank = avail_mem;
   3658 
   3659 	/* Search for the memory bank with this page. */
   3660 	/* XXX - What if it is not physical memory? */
   3661 	while (pa > bank->pmem_end)
   3662 		bank = bank->pmem_next;
   3663 	pa -= bank->pmem_start;
   3664 
   3665 	return (bank->pmem_pvbase + _btop(pa));
   3666 }
   3667 
   3668 /* pmap_next_page			INTERFACE
   3669  **
   3670  * Place the physical address of the next available page in the
   3671  * argument given.  Returns FALSE if there are no more pages left.
   3672  *
   3673  * This function must jump over any holes in physical memory.
   3674  * Once this function is used, any use of pmap_bootstrap_alloc()
   3675  * is a sin.  Sinners will be punished with erratic behavior.
   3676  */
   3677 boolean_t
   3678 pmap_next_page(pa)
   3679 	vm_offset_t *pa;
   3680 {
   3681 	static struct pmap_physmem_struct *curbank = avail_mem;
   3682 
   3683 	/* XXX - temporary ROM saving hack. */
   3684 	if (avail_next >= avail_end)
   3685 		return FALSE;
   3686 
   3687 	if (avail_next >= curbank->pmem_end)
   3688 		if (curbank->pmem_next == NULL)
   3689 			return FALSE;
   3690 		else {
   3691 			curbank = curbank->pmem_next;
   3692 			avail_next = curbank->pmem_start;
   3693 		}
   3694 
   3695 	*pa = avail_next;
   3696 	avail_next += NBPG;
   3697 	return TRUE;
   3698 }
   3699 
   3700 /* pmap_count			INTERFACE
   3701  **
   3702  * Return the number of resident (valid) pages in the given pmap.
   3703  *
   3704  * Note:  If this function is handed the kernel map, it will report
   3705  * that it has no mappings.  Hopefully the VM system won't ask for kernel
   3706  * map statistics.
   3707  */
   3708 segsz_t
   3709 pmap_count(pmap, type)
   3710 	pmap_t pmap;
   3711 	int    type;
   3712 {
   3713 	u_int     count;
   3714 	int       a_idx, b_idx;
   3715 	a_tmgr_t *a_tbl;
   3716 	b_tmgr_t *b_tbl;
   3717 	c_tmgr_t *c_tbl;
   3718 
   3719 	/*
   3720 	 * If the pmap does not have its own A table manager, it has no
   3721 	 * valid entires.
   3722 	 */
   3723 	if (pmap->pm_a_tmgr == NULL)
   3724 		return 0;
   3725 
   3726 	a_tbl = pmap->pm_a_tmgr;
   3727 
   3728 	count = 0;
   3729 	for (a_idx = 0; a_idx < MMU_TIA(KERNBASE); a_idx++) {
   3730 	    if (MMU_VALID_DT(a_tbl->at_dtbl[a_idx])) {
   3731 	        b_tbl = mmuB2tmgr(mmu_ptov(a_tbl->at_dtbl[a_idx].addr.raw));
   3732 	        for (b_idx = 0; b_idx < MMU_B_TBL_SIZE; b_idx++) {
   3733 	            if (MMU_VALID_DT(b_tbl->bt_dtbl[b_idx])) {
   3734 	                c_tbl = mmuC2tmgr(
   3735 	                    mmu_ptov(MMU_DTE_PA(b_tbl->bt_dtbl[b_idx])));
   3736 	                if (type == 0)
   3737 	                    /*
   3738 	                     * A resident entry count has been requested.
   3739 	                     */
   3740 	                    count += c_tbl->ct_ecnt;
   3741 	                else
   3742 	                    /*
   3743 	                     * A wired entry count has been requested.
   3744 	                     */
   3745 	                    count += c_tbl->ct_wcnt;
   3746 	            }
   3747 	        }
   3748 	    }
   3749 	}
   3750 
   3751 	return count;
   3752 }
   3753 
   3754 /************************ SUN3 COMPATIBILITY ROUTINES ********************
   3755  * The following routines are only used by DDB for tricky kernel text    *
   3756  * text operations in db_memrw.c.  They are provided for sun3            *
   3757  * compatibility.                                                        *
   3758  *************************************************************************/
   3759 /* get_pte			INTERNAL
   3760  **
   3761  * Return the page descriptor the describes the kernel mapping
   3762  * of the given virtual address.
   3763  */
   3764 extern u_long ptest_addr __P((u_long));	/* XXX: locore.s */
   3765 u_long
   3766 get_pte(va)
   3767 	vm_offset_t va;
   3768 {
   3769 	u_long pte_pa;
   3770 	mmu_short_pte_t *pte;
   3771 
   3772 	/* Get the physical address of the PTE */
   3773 	pte_pa = ptest_addr(va & ~PGOFSET);
   3774 
   3775 	/* Convert to a virtual address... */
   3776 	pte = (mmu_short_pte_t *) (KERNBASE + pte_pa);
   3777 
   3778 	/* Make sure it is in our level-C tables... */
   3779 	if ((pte < kernCbase) ||
   3780 		(pte >= &mmuCbase[NUM_USER_PTES]))
   3781 		return 0;
   3782 
   3783 	/* ... and just return its contents. */
   3784 	return (pte->attr.raw);
   3785 }
   3786 
   3787 
   3788 /* set_pte			INTERNAL
   3789  **
   3790  * Set the page descriptor that describes the kernel mapping
   3791  * of the given virtual address.
   3792  */
   3793 void
   3794 set_pte(va, pte)
   3795 	vm_offset_t va;
   3796 	vm_offset_t pte;
   3797 {
   3798 	u_long idx;
   3799 
   3800 	if (va < KERNBASE)
   3801 		return;
   3802 
   3803 	idx = (unsigned long) _btop(va - KERNBASE);
   3804 	kernCbase[idx].attr.raw = pte;
   3805 }
   3806 
   3807 #ifdef	PMAP_DEBUG
   3808 /************************** DEBUGGING ROUTINES **************************
   3809  * The following routines are meant to be an aid to debugging the pmap  *
   3810  * system.  They are callable from the DDB command line and should be   *
   3811  * prepared to be handed unstable or incomplete states of the system.   *
   3812  ************************************************************************/
   3813 
   3814 /* pv_list
   3815  **
   3816  * List all pages found on the pv list for the given physical page.
   3817  * To avoid endless loops, the listing will stop at the end of the list
   3818  * or after 'n' entries - whichever comes first.
   3819  */
   3820 void
   3821 pv_list(pa, n)
   3822 	vm_offset_t pa;
   3823 	int n;
   3824 {
   3825 	int  idx;
   3826 	vm_offset_t va;
   3827 	pv_t *pv;
   3828 	c_tmgr_t *c_tbl;
   3829 	pmap_t pmap;
   3830 
   3831 	pv = pa2pv(pa);
   3832 	idx = pv->pv_idx;
   3833 
   3834 	for (;idx != PVE_EOL && n > 0; idx=pvebase[idx].pve_next, n--) {
   3835 		va = pmap_get_pteinfo(idx, &pmap, &c_tbl);
   3836 		printf("idx %d, pmap 0x%x, va 0x%x, c_tbl %x\n",
   3837 			idx, (u_int) pmap, (u_int) va, (u_int) c_tbl);
   3838 	}
   3839 }
   3840 #endif	/* PMAP_DEBUG */
   3841 
   3842 #ifdef NOT_YET
   3843 /* and maybe not ever */
   3844 /************************** LOW-LEVEL ROUTINES **************************
   3845  * These routines will eventualy be re-written into assembly and placed *
   3846  * in locore.s.  They are here now as stubs so that the pmap module can *
   3847  * be linked as a standalone user program for testing.                  *
   3848  ************************************************************************/
   3849 /* flush_atc_crp			INTERNAL
   3850  **
   3851  * Flush all page descriptors derived from the given CPU Root Pointer
   3852  * (CRP), or 'A' table as it is known here, from the 68851's automatic
   3853  * cache.
   3854  */
   3855 void
   3856 flush_atc_crp(a_tbl)
   3857 {
   3858 	mmu_long_rp_t rp;
   3859 
   3860 	/* Create a temporary root table pointer that points to the
   3861 	 * given A table.
   3862 	 */
   3863 	rp.attr.raw = ~MMU_LONG_RP_LU;
   3864 	rp.addr.raw = (unsigned int) a_tbl;
   3865 
   3866 	mmu_pflushr(&rp);
   3867 	/* mmu_pflushr:
   3868 	 * 	movel   sp(4)@,a0
   3869 	 * 	pflushr a0@
   3870 	 *	rts
   3871 	 */
   3872 }
   3873 #endif /* NOT_YET */
   3874