Home | History | Annotate | Line # | Download | only in sun3x
pmap.c revision 1.18
      1 /*	$NetBSD: pmap.c,v 1.18 1997/03/26 23:27:12 gwr Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1996, 1997 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jeremy Cooper.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  * 3. All advertising materials mentioning features or use of this software
     19  *    must display the following acknowledgement:
     20  *        This product includes software developed by the NetBSD
     21  *        Foundation, Inc. and its contributors.
     22  * 4. Neither the name of The NetBSD Foundation nor the names of its
     23  *    contributors may be used to endorse or promote products derived
     24  *    from this software without specific prior written permission.
     25  *
     26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36  * POSSIBILITY OF SUCH DAMAGE.
     37  */
     38 
     39 /*
     40  * XXX These comments aren't quite accurate.  Need to change.
     41  * The sun3x uses the MC68851 Memory Management Unit, which is built
     42  * into the CPU.  The 68851 maps virtual to physical addresses using
     43  * a multi-level table lookup, which is stored in the very memory that
     44  * it maps.  The number of levels of lookup is configurable from one
     45  * to four.  In this implementation, we use three, named 'A' through 'C'.
     46  *
     47  * The MMU translates virtual addresses into physical addresses by
     48  * traversing these tables in a proccess called a 'table walk'.  The most
     49  * significant 7 bits of the Virtual Address ('VA') being translated are
     50  * used as an index into the level A table, whose base in physical memory
     51  * is stored in a special MMU register, the 'CPU Root Pointer' or CRP.  The
     52  * address found at that index in the A table is used as the base
     53  * address for the next table, the B table.  The next six bits of the VA are
     54  * used as an index into the B table, which in turn gives the base address
     55  * of the third and final C table.
     56  *
     57  * The next six bits of the VA are used as an index into the C table to
     58  * locate a Page Table Entry (PTE).  The PTE is a physical address in memory
     59  * to which the remaining 13 bits of the VA are added, producing the
     60  * mapped physical address.
     61  *
     62  * To map the entire memory space in this manner would require 2114296 bytes
     63  * of page tables per process - quite expensive.  Instead we will
     64  * allocate a fixed but considerably smaller space for the page tables at
     65  * the time the VM system is initialized.  When the pmap code is asked by
     66  * the kernel to map a VA to a PA, it allocates tables as needed from this
     67  * pool.  When there are no more tables in the pool, tables are stolen
     68  * from the oldest mapped entries in the tree.  This is only possible
     69  * because all memory mappings are stored in the kernel memory map
     70  * structures, independent of the pmap structures.  A VA which references
     71  * one of these invalidated maps will cause a page fault.  The kernel
     72  * will determine that the page fault was caused by a task using a valid
     73  * VA, but for some reason (which does not concern it), that address was
     74  * not mapped.  It will ask the pmap code to re-map the entry and then
     75  * it will resume executing the faulting task.
     76  *
     77  * In this manner the most efficient use of the page table space is
     78  * achieved.  Tasks which do not execute often will have their tables
     79  * stolen and reused by tasks which execute more frequently.  The best
     80  * size for the page table pool will probably be determined by
     81  * experimentation.
     82  *
     83  * You read all of the comments so far.  Good for you.
     84  * Now go play!
     85  */
     86 
     87 /*** A Note About the 68851 Address Translation Cache
     88  * The MC68851 has a 64 entry cache, called the Address Translation Cache
     89  * or 'ATC'.  This cache stores the most recently used page descriptors
     90  * accessed by the MMU when it does translations.  Using a marker called a
     91  * 'task alias' the MMU can store the descriptors from 8 different table
     92  * spaces concurrently.  The task alias is associated with the base
     93  * address of the level A table of that address space.  When an address
     94  * space is currently active (the CRP currently points to its A table)
     95  * the only cached descriptors that will be obeyed are ones which have a
     96  * matching task alias of the current space associated with them.
     97  *
     98  * Since the cache is always consulted before any table lookups are done,
     99  * it is important that it accurately reflect the state of the MMU tables.
    100  * Whenever a change has been made to a table that has been loaded into
    101  * the MMU, the code must be sure to flush any cached entries that are
    102  * affected by the change.  These instances are documented in the code at
    103  * various points.
    104  */
    105 /*** A Note About the Note About the 68851 Address Translation Cache
    106  * 4 months into this code I discovered that the sun3x does not have
    107  * a MC68851 chip. Instead, it has a version of this MMU that is part of the
    108  * the 68030 CPU.
    109  * All though it behaves very similarly to the 68851, it only has 1 task
    110  * alias and a 22 entry cache.  So sadly (or happily), the first paragraph
    111  * of the previous note does not apply to the sun3x pmap.
    112  */
    113 
    114 #include <sys/param.h>
    115 #include <sys/systm.h>
    116 #include <sys/proc.h>
    117 #include <sys/malloc.h>
    118 #include <sys/user.h>
    119 #include <sys/queue.h>
    120 
    121 #include <vm/vm.h>
    122 #include <vm/vm_kern.h>
    123 #include <vm/vm_page.h>
    124 
    125 #include <machine/cpu.h>
    126 #include <machine/kcore.h>
    127 #include <machine/pmap.h>
    128 #include <machine/pte.h>
    129 #include <machine/machdep.h>
    130 #include <machine/mon.h>
    131 
    132 #include "pmap_pvt.h"
    133 
    134 /* XXX - What headers declare these? */
    135 extern struct pcb *curpcb;
    136 extern int physmem;
    137 
    138 extern void copypage __P((const void*, void*));
    139 extern void zeropage __P((void*));
    140 
    141 /* Defined in locore.s */
    142 extern char kernel_text[];
    143 
    144 /* Defined by the linker */
    145 extern char etext[], edata[], end[];
    146 extern char *esym;	/* DDB */
    147 
    148 /*************************** DEBUGGING DEFINITIONS ***********************
    149  * Macros, preprocessor defines and variables used in debugging can make *
    150  * code hard to read.  Anything used exclusively for debugging purposes  *
    151  * is defined here to avoid having such mess scattered around the file.  *
    152  *************************************************************************/
    153 #ifdef	PMAP_DEBUG
    154 /*
    155  * To aid the debugging process, macros should be expanded into smaller steps
    156  * that accomplish the same goal, yet provide convenient places for placing
    157  * breakpoints.  When this code is compiled with PMAP_DEBUG mode defined, the
    158  * 'INLINE' keyword is defined to an empty string.  This way, any function
    159  * defined to be a 'static INLINE' will become 'outlined' and compiled as
    160  * a separate function, which is much easier to debug.
    161  */
    162 #define	INLINE	/* nothing */
    163 
    164 /*
    165  * It is sometimes convenient to watch the activity of a particular table
    166  * in the system.  The following variables are used for that purpose.
    167  */
    168 a_tmgr_t *pmap_watch_atbl = 0;
    169 b_tmgr_t *pmap_watch_btbl = 0;
    170 c_tmgr_t *pmap_watch_ctbl = 0;
    171 
    172 int pmap_debug = 0;
    173 #define DPRINT(args) if (pmap_debug) printf args
    174 
    175 #else	/********** Stuff below is defined if NOT debugging **************/
    176 
    177 #define	INLINE	inline
    178 #define DPRINT(args)  /* nada */
    179 
    180 #endif	/* PMAP_DEBUG */
    181 /*********************** END OF DEBUGGING DEFINITIONS ********************/
    182 
    183 /*** Management Structure - Memory Layout
    184  * For every MMU table in the sun3x pmap system there must be a way to
    185  * manage it; we must know which process is using it, what other tables
    186  * depend on it, and whether or not it contains any locked pages.  This
    187  * is solved by the creation of 'table management'  or 'tmgr'
    188  * structures.  One for each MMU table in the system.
    189  *
    190  *                        MAP OF MEMORY USED BY THE PMAP SYSTEM
    191  *
    192  *      towards lower memory
    193  * kernAbase -> +-------------------------------------------------------+
    194  *              | Kernel     MMU A level table                          |
    195  * kernBbase -> +-------------------------------------------------------+
    196  *              | Kernel     MMU B level tables                         |
    197  * kernCbase -> +-------------------------------------------------------+
    198  *              |                                                       |
    199  *              | Kernel     MMU C level tables                         |
    200  *              |                                                       |
    201  * mmuCbase  -> +-------------------------------------------------------+
    202  *              | User       MMU C level tables                         |
    203  * mmuAbase  -> +-------------------------------------------------------+
    204  *              |                                                       |
    205  *              | User       MMU A level tables                         |
    206  *              |                                                       |
    207  * mmuBbase  -> +-------------------------------------------------------+
    208  *              | User       MMU B level tables                         |
    209  * tmgrAbase -> +-------------------------------------------------------+
    210  *              |  TMGR A level table structures                        |
    211  * tmgrBbase -> +-------------------------------------------------------+
    212  *              |  TMGR B level table structures                        |
    213  * tmgrCbase -> +-------------------------------------------------------+
    214  *              |  TMGR C level table structures                        |
    215  * pvbase    -> +-------------------------------------------------------+
    216  *              |  Physical to Virtual mapping table (list heads)       |
    217  * pvebase   -> +-------------------------------------------------------+
    218  *              |  Physical to Virtual mapping table (list elements)    |
    219  *              |                                                       |
    220  *              +-------------------------------------------------------+
    221  *      towards higher memory
    222  *
    223  * For every A table in the MMU A area, there will be a corresponding
    224  * a_tmgr structure in the TMGR A area.  The same will be true for
    225  * the B and C tables.  This arrangement will make it easy to find the
    226  * controling tmgr structure for any table in the system by use of
    227  * (relatively) simple macros.
    228  */
    229 
    230 /*
    231  * Global variables for storing the base addresses for the areas
    232  * labeled above.
    233  */
    234 static vm_offset_t  	kernAphys;
    235 static mmu_long_dte_t	*kernAbase;
    236 static mmu_short_dte_t	*kernBbase;
    237 static mmu_short_pte_t	*kernCbase;
    238 static mmu_short_pte_t	*mmuCbase;
    239 static mmu_short_dte_t	*mmuBbase;
    240 static mmu_long_dte_t	*mmuAbase;
    241 static a_tmgr_t		*Atmgrbase;
    242 static b_tmgr_t		*Btmgrbase;
    243 static c_tmgr_t		*Ctmgrbase;
    244 static pv_t 		*pvbase;
    245 static pv_elem_t	*pvebase;
    246 struct pmap 		kernel_pmap;
    247 
    248 /*
    249  * This holds the CRP currently loaded into the MMU.
    250  */
    251 struct mmu_rootptr kernel_crp;
    252 
    253 /*
    254  * Just all around global variables.
    255  */
    256 static TAILQ_HEAD(a_pool_head_struct, a_tmgr_struct) a_pool;
    257 static TAILQ_HEAD(b_pool_head_struct, b_tmgr_struct) b_pool;
    258 static TAILQ_HEAD(c_pool_head_struct, c_tmgr_struct) c_pool;
    259 
    260 
    261 /*
    262  * Flags used to mark the safety/availability of certain operations or
    263  * resources.
    264  */
    265 static boolean_t
    266     pv_initialized = FALSE,          /* PV system has been initialized. */
    267     tmp_vpages_inuse = FALSE,        /*
    268                                       * Temp. virtual pages are in use.
    269                                       * (see pmap_copy_page, et. al.)
    270                                       */
    271     bootstrap_alloc_enabled = FALSE; /* Safe to use pmap_bootstrap_alloc(). */
    272 
    273 /*
    274  * XXX:  For now, retain the traditional variables that were
    275  * used in the old pmap/vm interface (without NONCONTIG).
    276  */
    277 /* Kernel virtual address space available: */
    278 vm_offset_t	virtual_avail, virtual_end;
    279 /* Physical address space available: */
    280 vm_offset_t	avail_start, avail_end;
    281 
    282 /* This keep track of the end of the contiguously mapped range. */
    283 vm_offset_t virtual_contig_end;
    284 
    285 /* Physical address used by pmap_next_page() */
    286 vm_offset_t avail_next;
    287 
    288 /* These are used by pmap_copy_page(), etc. */
    289 vm_offset_t tmp_vpages[2];
    290 
    291 /*
    292  * The 3/80 is the only member of the sun3x family that has non-contiguous
    293  * physical memory.  Memory is divided into 4 banks which are physically
    294  * locatable on the system board.  Although the size of these banks varies
    295  * with the size of memory they contain, their base addresses are
    296  * permenently fixed.  The following structure, which describes these
    297  * banks, is initialized by pmap_bootstrap() after it reads from a similar
    298  * structure provided by the ROM Monitor.
    299  *
    300  * For the other machines in the sun3x architecture which do have contiguous
    301  * RAM, this list will have only one entry, which will describe the entire
    302  * range of available memory.
    303  */
    304 struct pmap_physmem_struct avail_mem[NPHYS_RAM_SEGS];
    305 u_int total_phys_mem;
    306 
    307 /*************************************************************************/
    308 
    309 /*
    310  * XXX - Should "tune" these based on statistics.
    311  *
    312  * My first guess about the relative numbers of these needed is
    313  * based on the fact that a "typical" process will have several
    314  * pages mapped at low virtual addresses (text, data, bss), then
    315  * some mapped shared libraries, and then some stack pages mapped
    316  * near the high end of the VA space.  Each process can use only
    317  * one A table, and most will use only two B tables (maybe three)
    318  * and probably about four C tables.  Therefore, the first guess
    319  * at the relative numbers of these needed is 1:2:4 -gwr
    320  *
    321  * The number of C tables needed is closely related to the amount
    322  * of physical memory available plus a certain amount attributable
    323  * to the use of double mappings.  With a few simulation statistics
    324  * we can find a reasonably good estimation of this unknown value.
    325  * Armed with that and the above ratios, we have a good idea of what
    326  * is needed at each level. -j
    327  *
    328  * Note: It is not physical memory memory size, but the total mapped
    329  * virtual space required by the combined working sets of all the
    330  * currently _runnable_ processes.  (Sleeping ones don't count.)
    331  * The amount of physical memory should be irrelevant. -gwr
    332  */
    333 #define NUM_A_TABLES	16
    334 #define NUM_B_TABLES	32
    335 #define NUM_C_TABLES	64
    336 
    337 /*
    338  * This determines our total virtual mapping capacity.
    339  * Yes, it is a FIXED value so we can pre-allocate.
    340  */
    341 #define NUM_USER_PTES	(NUM_C_TABLES * MMU_C_TBL_SIZE)
    342 
    343 /*
    344  * The size of the Kernel Virtual Address Space (KVAS)
    345  * for purposes of MMU table allocation is -KERNBASE
    346  * (length from KERNBASE to 0xFFFFffff)
    347  */
    348 #define	KVAS_SIZE		(-KERNBASE)
    349 
    350 /* Numbers of kernel MMU tables to support KVAS_SIZE. */
    351 #define KERN_B_TABLES	(KVAS_SIZE >> MMU_TIA_SHIFT)
    352 #define KERN_C_TABLES	(KVAS_SIZE >> MMU_TIB_SHIFT)
    353 #define	NUM_KERN_PTES	(KVAS_SIZE >> MMU_TIC_SHIFT)
    354 
    355 /*************************** MISCELANEOUS MACROS *************************/
    356 #define PMAP_LOCK()	;	/* Nothing, for now */
    357 #define PMAP_UNLOCK()	;	/* same. */
    358 #define	NULL 0
    359 
    360 static INLINE void *      mmu_ptov __P((vm_offset_t pa));
    361 static INLINE vm_offset_t mmu_vtop __P((void * va));
    362 
    363 #if	0
    364 static INLINE a_tmgr_t * mmuA2tmgr __P((mmu_long_dte_t *));
    365 #endif
    366 static INLINE b_tmgr_t * mmuB2tmgr __P((mmu_short_dte_t *));
    367 static INLINE c_tmgr_t * mmuC2tmgr __P((mmu_short_pte_t *));
    368 
    369 static INLINE pv_t *pa2pv __P((vm_offset_t pa));
    370 static INLINE int   pteidx __P((mmu_short_pte_t *));
    371 static INLINE pmap_t current_pmap __P((void));
    372 
    373 /*
    374  * We can always convert between virtual and physical addresses
    375  * for anything in the range [KERNBASE ... avail_start] because
    376  * that range is GUARANTEED to be mapped linearly.
    377  * We rely heavily upon this feature!
    378  */
    379 static INLINE void *
    380 mmu_ptov(pa)
    381 	vm_offset_t pa;
    382 {
    383 	register vm_offset_t va;
    384 
    385 	va = (pa + KERNBASE);
    386 #ifdef	PMAP_DEBUG
    387 	if ((va < KERNBASE) || (va >= virtual_contig_end))
    388 		panic("mmu_ptov");
    389 #endif
    390 	return ((void*)va);
    391 }
    392 static INLINE vm_offset_t
    393 mmu_vtop(vva)
    394 	void *vva;
    395 {
    396 	register vm_offset_t va;
    397 
    398 	va = (vm_offset_t)vva;
    399 #ifdef	PMAP_DEBUG
    400 	if ((va < KERNBASE) || (va >= virtual_contig_end))
    401 		panic("mmu_ptov");
    402 #endif
    403 	return (va - KERNBASE);
    404 }
    405 
    406 /*
    407  * These macros map MMU tables to their corresponding manager structures.
    408  * They are needed quite often because many of the pointers in the pmap
    409  * system reference MMU tables and not the structures that control them.
    410  * There needs to be a way to find one when given the other and these
    411  * macros do so by taking advantage of the memory layout described above.
    412  * Here's a quick step through the first macro, mmuA2tmgr():
    413  *
    414  * 1) find the offset of the given MMU A table from the base of its table
    415  *    pool (table - mmuAbase).
    416  * 2) convert this offset into a table index by dividing it by the
    417  *    size of one MMU 'A' table. (sizeof(mmu_long_dte_t) * MMU_A_TBL_SIZE)
    418  * 3) use this index to select the corresponding 'A' table manager
    419  *    structure from the 'A' table manager pool (Atmgrbase[index]).
    420  */
    421 /*  This function is not currently used. */
    422 #if	0
    423 static INLINE a_tmgr_t *
    424 mmuA2tmgr(mmuAtbl)
    425 	mmu_long_dte_t *mmuAtbl;
    426 {
    427 	register int idx;
    428 
    429 	/* Which table is this in? */
    430 	idx = (mmuAtbl - mmuAbase) / MMU_A_TBL_SIZE;
    431 #ifdef	PMAP_DEBUG
    432 	if ((idx < 0) || (idx >= NUM_A_TABLES))
    433 		panic("mmuA2tmgr");
    434 #endif
    435 	return (&Atmgrbase[idx]);
    436 }
    437 #endif	/* 0 */
    438 
    439 static INLINE b_tmgr_t *
    440 mmuB2tmgr(mmuBtbl)
    441 	mmu_short_dte_t *mmuBtbl;
    442 {
    443 	register int idx;
    444 
    445 	/* Which table is this in? */
    446 	idx = (mmuBtbl - mmuBbase) / MMU_B_TBL_SIZE;
    447 #ifdef	PMAP_DEBUG
    448 	if ((idx < 0) || (idx >= NUM_B_TABLES))
    449 		panic("mmuB2tmgr");
    450 #endif
    451 	return (&Btmgrbase[idx]);
    452 }
    453 
    454 /* mmuC2tmgr			INTERNAL
    455  **
    456  * Given a pte known to belong to a C table, return the address of
    457  * that table's management structure.
    458  */
    459 static INLINE c_tmgr_t *
    460 mmuC2tmgr(mmuCtbl)
    461 	mmu_short_pte_t *mmuCtbl;
    462 {
    463 	register int idx;
    464 
    465 	/* Which table is this in? */
    466 	idx = (mmuCtbl - mmuCbase) / MMU_C_TBL_SIZE;
    467 #ifdef	PMAP_DEBUG
    468 	if ((idx < 0) || (idx >= NUM_C_TABLES))
    469 		panic("mmuC2tmgr");
    470 #endif
    471 	return (&Ctmgrbase[idx]);
    472 }
    473 
    474 /* This is now a function call below.
    475  * #define pa2pv(pa) \
    476  *	(&pvbase[(unsigned long)\
    477  *		_btop(pa)\
    478  *	])
    479  */
    480 
    481 /* pa2pv			INTERNAL
    482  **
    483  * Return the pv_list_head element which manages the given physical
    484  * address.
    485  */
    486 static INLINE pv_t *
    487 pa2pv(pa)
    488 	vm_offset_t pa;
    489 {
    490 	register struct pmap_physmem_struct *bank;
    491 	register int idx;
    492 
    493 	bank = &avail_mem[0];
    494 	while (pa >= bank->pmem_end)
    495 		bank = bank->pmem_next;
    496 
    497 	pa -= bank->pmem_start;
    498 	idx = bank->pmem_pvbase + _btop(pa);
    499 #ifdef	PMAP_DEBUG
    500 	if ((idx < 0) || (idx >= physmem))
    501 		panic("pa2pv");
    502 #endif
    503 	return &pvbase[idx];
    504 }
    505 
    506 /* pteidx			INTERNAL
    507  **
    508  * Return the index of the given PTE within the entire fixed table of
    509  * PTEs.
    510  */
    511 static INLINE int
    512 pteidx(pte)
    513 	mmu_short_pte_t *pte;
    514 {
    515 	return (pte - kernCbase);
    516 }
    517 
    518 /*
    519  * This just offers a place to put some debugging checks,
    520  * and reduces the number of places "curproc" appears...
    521  */
    522 static INLINE pmap_t
    523 current_pmap()
    524 {
    525 	struct proc *p;
    526 	struct vmspace *vm;
    527 	vm_map_t	map;
    528 	pmap_t	pmap;
    529 
    530 	p = curproc;	/* XXX */
    531 	if (p == NULL)
    532 		pmap = &kernel_pmap;
    533 	else {
    534 		vm = p->p_vmspace;
    535 		map = &vm->vm_map;
    536 		pmap = vm_map_pmap(map);
    537 	}
    538 
    539 	return (pmap);
    540 }
    541 
    542 
    543 /*************************** FUNCTION DEFINITIONS ************************
    544  * These appear here merely for the compiler to enforce type checking on *
    545  * all function calls.                                                   *
    546  *************************************************************************/
    547 
    548 /** External functions
    549  ** - functions used within this module but written elsewhere.
    550  **   both of these functions are in locore.s
    551  ** XXX - These functions were later replaced with their more cryptic
    552  **       hp300 counterparts.  They may be removed now.
    553  **/
    554 #if	0	/* deprecated mmu */
    555 void   mmu_seturp __P((vm_offset_t));
    556 void   mmu_flush __P((int, vm_offset_t));
    557 void   mmu_flusha __P((void));
    558 #endif	/* 0 */
    559 
    560 /** Internal functions
    561  ** - all functions used only within this module are defined in
    562  **   pmap_pvt.h
    563  **/
    564 
    565 /** Interface functions
    566  ** - functions required by the Mach VM Pmap interface, with MACHINE_CONTIG
    567  **   defined.
    568  **/
    569 #ifdef INCLUDED_IN_PMAP_H
    570 void   pmap_bootstrap __P((void));
    571 void  *pmap_bootstrap_alloc __P((int));
    572 void   pmap_enter __P((pmap_t, vm_offset_t, vm_offset_t, vm_prot_t, boolean_t));
    573 pmap_t pmap_create __P((vm_size_t));
    574 void   pmap_destroy __P((pmap_t));
    575 void   pmap_reference __P((pmap_t));
    576 boolean_t   pmap_is_referenced __P((vm_offset_t));
    577 boolean_t   pmap_is_modified __P((vm_offset_t));
    578 void   pmap_clear_modify __P((vm_offset_t));
    579 vm_offset_t pmap_extract __P((pmap_t, vm_offset_t));
    580 void   pmap_activate __P((pmap_t));
    581 int    pmap_page_index __P((vm_offset_t));
    582 u_int  pmap_free_pages __P((void));
    583 #endif /* INCLUDED_IN_PMAP_H */
    584 
    585 /********************************** CODE ********************************
    586  * Functions that are called from other parts of the kernel are labeled *
    587  * as 'INTERFACE' functions.  Functions that are only called from       *
    588  * within the pmap module are labeled as 'INTERNAL' functions.          *
    589  * Functions that are internal, but are not (currently) used at all are *
    590  * labeled 'INTERNAL_X'.                                                *
    591  ************************************************************************/
    592 
    593 /* pmap_bootstrap			INTERNAL
    594  **
    595  * Initializes the pmap system.  Called at boot time from _vm_init()
    596  * in _startup.c.
    597  *
    598  * Reminder: having a pmap_bootstrap_alloc() and also having the VM
    599  *           system implement pmap_steal_memory() is redundant.
    600  *           Don't release this code without removing one or the other!
    601  */
    602 void
    603 pmap_bootstrap(nextva)
    604 	vm_offset_t nextva;
    605 {
    606 	struct physmemory *membank;
    607 	struct pmap_physmem_struct *pmap_membank;
    608 	vm_offset_t va, pa, eva;
    609 	int b, c, i, j;	/* running table counts */
    610 	int size;
    611 
    612 	/*
    613 	 * This function is called by __bootstrap after it has
    614 	 * determined the type of machine and made the appropriate
    615 	 * patches to the ROM vectors (XXX- I don't quite know what I meant
    616 	 * by that.)  It allocates and sets up enough of the pmap system
    617 	 * to manage the kernel's address space.
    618 	 */
    619 
    620 	/*
    621 	 * Determine the range of kernel virtual and physical
    622 	 * space available. Note that we ABSOLUTELY DEPEND on
    623 	 * the fact that the first bank of memory (4MB) is
    624 	 * mapped linearly to KERNBASE (which we guaranteed in
    625 	 * the first instructions of locore.s).
    626 	 * That is plenty for our bootstrap work.
    627 	 */
    628 	virtual_avail = _round_page(nextva);
    629 	virtual_contig_end = KERNBASE + 0x400000; /* +4MB */
    630 	virtual_end = VM_MAX_KERNEL_ADDRESS;
    631 	/* Don't need avail_start til later. */
    632 
    633 	/* We may now call pmap_bootstrap_alloc(). */
    634 	bootstrap_alloc_enabled = TRUE;
    635 
    636 	/*
    637 	 * This is a somewhat unwrapped loop to deal with
    638 	 * copying the PROM's 'phsymem' banks into the pmap's
    639 	 * banks.  The following is always assumed:
    640 	 * 1. There is always at least one bank of memory.
    641 	 * 2. There is always a last bank of memory, and its
    642 	 *    pmem_next member must be set to NULL.
    643 	 * XXX - Use: do { ... } while (membank->next) instead?
    644 	 * XXX - Why copy this stuff at all? -gwr
    645 	 *     - It is needed in pa2pv().
    646 	 */
    647 	membank = romVectorPtr->v_physmemory;
    648 	pmap_membank = avail_mem;
    649 	total_phys_mem = 0;
    650 
    651 	while (membank->next) {
    652 		pmap_membank->pmem_start = membank->address;
    653 		pmap_membank->pmem_end = membank->address + membank->size;
    654 		total_phys_mem += membank->size;
    655 		/* This silly syntax arises because pmap_membank
    656 		 * is really a pre-allocated array, but it is put into
    657 		 * use as a linked list.
    658 		 */
    659 		pmap_membank->pmem_next = pmap_membank + 1;
    660 		pmap_membank = pmap_membank->pmem_next;
    661 		membank = membank->next;
    662 	}
    663 
    664 	/*
    665 	 * XXX The last bank of memory should be reduced to exclude the
    666 	 * physical pages needed by the PROM monitor from being used
    667 	 * in the VM system.  XXX - See below - Fix!
    668 	 */
    669 	pmap_membank->pmem_start = membank->address;
    670 	pmap_membank->pmem_end = membank->address + membank->size;
    671 	pmap_membank->pmem_next = NULL;
    672 
    673 #if 0	/* XXX - Need to integrate this! */
    674 	/*
    675 	 * The last few pages of physical memory are "owned" by
    676 	 * the PROM.  The total amount of memory we are allowed
    677 	 * to use is given by the romvec pointer. -gwr
    678 	 *
    679 	 * We should dedicate different variables for 'useable'
    680 	 * and 'physically available'.  Most users are used to the
    681 	 * kernel reporting the amount of memory 'physically available'
    682 	 * as opposed to 'useable by the kernel' at boot time. -j
    683 	 */
    684 	total_phys_mem = *romVectorPtr->memoryAvail;
    685 #endif	/* XXX */
    686 
    687 	total_phys_mem += membank->size;	/* XXX see above */
    688 	physmem = btoc(total_phys_mem);
    689 
    690 	/*
    691 	 * Avail_end is set to the first byte of physical memory
    692 	 * after the end of the last bank.  We use this only to
    693 	 * determine if a physical address is "managed" memory.
    694 	 *
    695 	 * XXX - The setting of avail_end is a temporary ROM saving hack.
    696 	 */
    697 	avail_end = pmap_membank->pmem_end -
    698 		(total_phys_mem - *romVectorPtr->memoryAvail);
    699 	avail_end = _trunc_page(avail_end);
    700 
    701 	/*
    702 	 * First allocate enough kernel MMU tables to map all
    703 	 * of kernel virtual space from KERNBASE to 0xFFFFFFFF.
    704 	 * Note: All must be aligned on 256 byte boundaries.
    705 	 * Start with the level-A table (one of those).
    706 	 */
    707 	size = sizeof(mmu_long_dte_t)  * MMU_A_TBL_SIZE;
    708 	kernAbase = pmap_bootstrap_alloc(size);
    709 	bzero(kernAbase, size);
    710 
    711 	/* Now the level-B kernel tables... */
    712 	size = sizeof(mmu_short_dte_t) * MMU_B_TBL_SIZE * KERN_B_TABLES;
    713 	kernBbase = pmap_bootstrap_alloc(size);
    714 	bzero(kernBbase, size);
    715 
    716 	/* Now the level-C kernel tables... */
    717 	size = sizeof(mmu_short_pte_t) * MMU_C_TBL_SIZE * KERN_C_TABLES;
    718 	kernCbase = pmap_bootstrap_alloc(size);
    719 	bzero(kernCbase, size);
    720 	/*
    721 	 * Note: In order for the PV system to work correctly, the kernel
    722 	 * and user-level C tables must be allocated contiguously.
    723 	 * Nothing should be allocated between here and the allocation of
    724 	 * mmuCbase below.  XXX: Should do this as one allocation, and
    725 	 * then compute a pointer for mmuCbase instead of this...
    726 	 *
    727 	 * Allocate user MMU tables.
    728 	 * These must be contiguous with the preceeding.
    729 	 */
    730 	size = sizeof(mmu_short_pte_t) * MMU_C_TBL_SIZE	* NUM_C_TABLES;
    731 	mmuCbase = pmap_bootstrap_alloc(size);
    732 
    733 	size = sizeof(mmu_short_dte_t) * MMU_B_TBL_SIZE	* NUM_B_TABLES;
    734 	mmuBbase = pmap_bootstrap_alloc(size);
    735 
    736 	size = sizeof(mmu_long_dte_t)  * MMU_A_TBL_SIZE * NUM_A_TABLES;
    737 	mmuAbase = pmap_bootstrap_alloc(size);
    738 
    739 	/*
    740 	 * Fill in the never-changing part of the kernel tables.
    741 	 * For simplicity, the kernel's mappings will be editable as a
    742 	 * flat array of page table entries at kernCbase.  The
    743 	 * higher level 'A' and 'B' tables must be initialized to point
    744 	 * to this lower one.
    745 	 */
    746 	b = c = 0;
    747 
    748 	/*
    749 	 * Invalidate all mappings below KERNBASE in the A table.
    750 	 * This area has already been zeroed out, but it is good
    751 	 * practice to explicitly show that we are interpreting
    752 	 * it as a list of A table descriptors.
    753 	 */
    754 	for (i = 0; i < MMU_TIA(KERNBASE); i++) {
    755 		kernAbase[i].addr.raw = 0;
    756 	}
    757 
    758 	/*
    759 	 * Set up the kernel A and B tables so that they will reference the
    760 	 * correct spots in the contiguous table of PTEs allocated for the
    761 	 * kernel's virtual memory space.
    762 	 */
    763 	for (i = MMU_TIA(KERNBASE); i < MMU_A_TBL_SIZE; i++) {
    764 		kernAbase[i].attr.raw =
    765 			MMU_LONG_DTE_LU | MMU_LONG_DTE_SUPV | MMU_DT_SHORT;
    766 		kernAbase[i].addr.raw = mmu_vtop(&kernBbase[b]);
    767 
    768 		for (j=0; j < MMU_B_TBL_SIZE; j++) {
    769 			kernBbase[b + j].attr.raw = mmu_vtop(&kernCbase[c])
    770 				| MMU_DT_SHORT;
    771 			c += MMU_C_TBL_SIZE;
    772 		}
    773 		b += MMU_B_TBL_SIZE;
    774 	}
    775 
    776 	/* XXX - Doing kernel_pmap a little further down. */
    777 
    778 	pmap_alloc_usermmu();	/* Allocate user MMU tables.        */
    779 	pmap_alloc_usertmgr();	/* Allocate user MMU table managers.*/
    780 	pmap_alloc_pv();	/* Allocate physical->virtual map.  */
    781 
    782 	/*
    783 	 * We are now done with pmap_bootstrap_alloc().  Round up
    784 	 * `virtual_avail' to the nearest page, and set the flag
    785 	 * to prevent use of pmap_bootstrap_alloc() hereafter.
    786 	 */
    787 	pmap_bootstrap_aalign(NBPG);
    788 	bootstrap_alloc_enabled = FALSE;
    789 
    790 	/*
    791 	 * Now that we are done with pmap_bootstrap_alloc(), we
    792 	 * must save the virtual and physical addresses of the
    793 	 * end of the linearly mapped range, which are stored in
    794 	 * virtual_contig_end and avail_start, respectively.
    795 	 * These variables will never change after this point.
    796 	 */
    797 	virtual_contig_end = virtual_avail;
    798 	avail_start = virtual_avail - KERNBASE;
    799 
    800 	/*
    801 	 * `avail_next' is a running pointer used by pmap_next_page() to
    802 	 * keep track of the next available physical page to be handed
    803 	 * to the VM system during its initialization, in which it
    804 	 * asks for physical pages, one at a time.
    805 	 */
    806 	avail_next = avail_start;
    807 
    808 	/*
    809 	 * Now allocate some virtual addresses, but not the physical pages
    810 	 * behind them.  Note that virtual_avail is already page-aligned.
    811 	 *
    812 	 * tmp_vpages[] is an array of two virtual pages used for temporary
    813 	 * kernel mappings in the pmap module to facilitate various physical
    814 	 * address-oritented operations.
    815 	 */
    816 	tmp_vpages[0] = virtual_avail;
    817 	virtual_avail += NBPG;
    818 	tmp_vpages[1] = virtual_avail;
    819 	virtual_avail += NBPG;
    820 
    821 	/** Initialize the PV system **/
    822 	pmap_init_pv();
    823 
    824 	/*
    825 	 * Fill in the kernel_pmap structure and kernel_crp.
    826 	 */
    827 	kernAphys = mmu_vtop(kernAbase);
    828 	kernel_pmap.pm_a_tmgr = NULL;
    829 	kernel_pmap.pm_a_phys = kernAphys;
    830 	kernel_pmap.pm_refcount = 1; /* always in use */
    831 
    832 	kernel_crp.rp_attr = MMU_LONG_DTE_LU | MMU_DT_LONG;
    833 	kernel_crp.rp_addr = kernAphys;
    834 
    835 	/*
    836 	 * Now pmap_enter_kernel() may be used safely and will be
    837 	 * the main interface used hereafter to modify the kernel's
    838 	 * virtual address space.  Note that since we are still running
    839 	 * under the PROM's address table, none of these table modifications
    840 	 * actually take effect until pmap_takeover_mmu() is called.
    841 	 *
    842 	 * Note: Our tables do NOT have the PROM linear mappings!
    843 	 * Only the mappings created here exist in our tables, so
    844 	 * remember to map anything we expect to use.
    845 	 */
    846 	va = (vm_offset_t) KERNBASE;
    847 	pa = 0;
    848 
    849 	/*
    850 	 * The first page of the kernel virtual address space is the msgbuf
    851 	 * page.  The page attributes (data, non-cached) are set here, while
    852 	 * the address is assigned to this global pointer in cpu_startup().
    853 	 * XXX - Make it non-cached?
    854 	 */
    855 	pmap_enter_kernel(va, pa|PMAP_NC, VM_PROT_ALL);
    856 	va += NBPG; pa += NBPG;
    857 
    858 	/* Next page is used as the temporary stack. */
    859 	pmap_enter_kernel(va, pa, VM_PROT_ALL);
    860 	va += NBPG; pa += NBPG;
    861 
    862 	/*
    863 	 * Map all of the kernel's text segment as read-only and cacheable.
    864 	 * (Cacheable is implied by default).  Unfortunately, the last bytes
    865 	 * of kernel text and the first bytes of kernel data will often be
    866 	 * sharing the same page.  Therefore, the last page of kernel text
    867 	 * has to be mapped as read/write, to accomodate the data.
    868 	 */
    869 	eva = _trunc_page((vm_offset_t)etext);
    870 	for (; va < eva; va += NBPG, pa += NBPG)
    871 		pmap_enter_kernel(va, pa, VM_PROT_READ|VM_PROT_EXECUTE);
    872 
    873 	/*
    874 	 * Map all of the kernel's data as read/write and cacheable.
    875 	 * This includes: data, BSS, symbols, and everything in the
    876 	 * contiguous memory used by pmap_bootstrap_alloc()
    877 	 */
    878 	for (; pa < avail_start; va += NBPG, pa += NBPG)
    879 		pmap_enter_kernel(va, pa, VM_PROT_READ|VM_PROT_WRITE);
    880 
    881 	/*
    882 	 * At this point we are almost ready to take over the MMU.  But first
    883 	 * we must save the PROM's address space in our map, as we call its
    884 	 * routines and make references to its data later in the kernel.
    885 	 */
    886 	pmap_bootstrap_copyprom();
    887 	pmap_takeover_mmu();
    888 	pmap_bootstrap_setprom();
    889 
    890 	/* Notify the VM system of our page size. */
    891 	PAGE_SIZE = NBPG;
    892 	vm_set_page_size();
    893 }
    894 
    895 
    896 /* pmap_alloc_usermmu			INTERNAL
    897  **
    898  * Called from pmap_bootstrap() to allocate MMU tables that will
    899  * eventually be used for user mappings.
    900  */
    901 void
    902 pmap_alloc_usermmu()
    903 {
    904 	/* XXX: Moved into caller. */
    905 }
    906 
    907 /* pmap_alloc_pv			INTERNAL
    908  **
    909  * Called from pmap_bootstrap() to allocate the physical
    910  * to virtual mapping list.  Each physical page of memory
    911  * in the system has a corresponding element in this list.
    912  */
    913 void
    914 pmap_alloc_pv()
    915 {
    916 	int	i;
    917 	unsigned int	total_mem;
    918 
    919 	/*
    920 	 * Allocate a pv_head structure for every page of physical
    921 	 * memory that will be managed by the system.  Since memory on
    922 	 * the 3/80 is non-contiguous, we cannot arrive at a total page
    923 	 * count by subtraction of the lowest available address from the
    924 	 * highest, but rather we have to step through each memory
    925 	 * bank and add the number of pages in each to the total.
    926 	 *
    927 	 * At this time we also initialize the offset of each bank's
    928 	 * starting pv_head within the pv_head list so that the physical
    929 	 * memory state routines (pmap_is_referenced(),
    930 	 * pmap_is_modified(), et al.) can quickly find coresponding
    931 	 * pv_heads in spite of the non-contiguity.
    932 	 */
    933 	total_mem = 0;
    934 	for (i = 0; i < NPHYS_RAM_SEGS; i++) {
    935 		avail_mem[i].pmem_pvbase = _btop(total_mem);
    936 		total_mem += avail_mem[i].pmem_end -
    937 			avail_mem[i].pmem_start;
    938 		if (avail_mem[i].pmem_next == NULL)
    939 			break;
    940 	}
    941 #ifdef	PMAP_DEBUG
    942 	if (total_mem != total_phys_mem)
    943 		panic("pmap_alloc_pv did not arrive at correct page count");
    944 #endif
    945 
    946 	pvbase = (pv_t *) pmap_bootstrap_alloc(sizeof(pv_t) *
    947 		_btop(total_phys_mem));
    948 }
    949 
    950 /* pmap_alloc_usertmgr			INTERNAL
    951  **
    952  * Called from pmap_bootstrap() to allocate the structures which
    953  * facilitate management of user MMU tables.  Each user MMU table
    954  * in the system has one such structure associated with it.
    955  */
    956 void
    957 pmap_alloc_usertmgr()
    958 {
    959 	/* Allocate user MMU table managers */
    960 	/* It would be a lot simpler to just make these BSS, but */
    961 	/* we may want to change their size at boot time... -j */
    962 	Atmgrbase = (a_tmgr_t *) pmap_bootstrap_alloc(sizeof(a_tmgr_t)
    963 		* NUM_A_TABLES);
    964 	Btmgrbase = (b_tmgr_t *) pmap_bootstrap_alloc(sizeof(b_tmgr_t)
    965 		* NUM_B_TABLES);
    966 	Ctmgrbase = (c_tmgr_t *) pmap_bootstrap_alloc(sizeof(c_tmgr_t)
    967 		* NUM_C_TABLES);
    968 
    969 	/*
    970 	 * Allocate PV list elements for the physical to virtual
    971 	 * mapping system.
    972 	 */
    973 	pvebase = (pv_elem_t *) pmap_bootstrap_alloc(
    974 		sizeof(pv_elem_t) * (NUM_USER_PTES + NUM_KERN_PTES));
    975 }
    976 
    977 /* pmap_bootstrap_copyprom()			INTERNAL
    978  **
    979  * Copy the PROM mappings into our own tables.  Note, we
    980  * can use physical addresses until __bootstrap returns.
    981  */
    982 void
    983 pmap_bootstrap_copyprom()
    984 {
    985 	MachMonRomVector *romp;
    986 	int *mon_ctbl;
    987 	mmu_short_pte_t *kpte;
    988 	int i, len;
    989 
    990 	romp = romVectorPtr;
    991 
    992 	/*
    993 	 * Copy the mappings in MON_KDB_START...MONEND
    994 	 * Note: mon_ctbl[0] maps MON_KDB_START
    995 	 */
    996 	mon_ctbl = *romp->monptaddr;
    997 	i = _btop(MON_KDB_START - KERNBASE);
    998 	kpte = &kernCbase[i];
    999 	len = _btop(MONEND - MON_KDB_START);
   1000 
   1001 	for (i = 0; i < len; i++) {
   1002 		kpte[i].attr.raw = mon_ctbl[i];
   1003 	}
   1004 
   1005 	/*
   1006 	 * Copy the mappings at MON_DVMA_BASE (to the end).
   1007 	 * Note, in here, mon_ctbl[0] maps MON_DVMA_BASE.
   1008 	 * XXX - This does not appear to be necessary, but
   1009 	 * I'm not sure yet if it is or not. -gwr
   1010 	 */
   1011 	mon_ctbl = *romp->shadowpteaddr;
   1012 	i = _btop(MON_DVMA_BASE - KERNBASE);
   1013 	kpte = &kernCbase[i];
   1014 	len = _btop(MON_DVMA_SIZE);
   1015 
   1016 	for (i = 0; i < len; i++) {
   1017 		kpte[i].attr.raw = mon_ctbl[i];
   1018 	}
   1019 }
   1020 
   1021 /* pmap_takeover_mmu			INTERNAL
   1022  **
   1023  * Called from pmap_bootstrap() after it has copied enough of the
   1024  * PROM mappings into the kernel map so that we can use our own
   1025  * MMU table.
   1026  */
   1027 void
   1028 pmap_takeover_mmu()
   1029 {
   1030 
   1031 	loadcrp(&kernel_crp);
   1032 }
   1033 
   1034 /* pmap_bootstrap_setprom()			INTERNAL
   1035  **
   1036  * Set the PROM mappings so it can see kernel space.
   1037  * Note that physical addresses are used here, which
   1038  * we can get away with because this runs with the
   1039  * low 1GB set for transparent translation.
   1040  */
   1041 void
   1042 pmap_bootstrap_setprom()
   1043 {
   1044 	mmu_long_dte_t *mon_dte;
   1045 	extern struct mmu_rootptr mon_crp;
   1046 	int i;
   1047 
   1048 	mon_dte = (mmu_long_dte_t *) mon_crp.rp_addr;
   1049 	for (i = MMU_TIA(KERNBASE); i < MMU_TIA(KERN_END); i++) {
   1050 		mon_dte[i].attr.raw = kernAbase[i].attr.raw;
   1051 		mon_dte[i].addr.raw = kernAbase[i].addr.raw;
   1052 	}
   1053 }
   1054 
   1055 
   1056 /* pmap_init			INTERFACE
   1057  **
   1058  * Called at the end of vm_init() to set up the pmap system to go
   1059  * into full time operation.  All initialization of kernel_pmap
   1060  * should be already done by now, so this should just do things
   1061  * needed for user-level pmaps to work.
   1062  */
   1063 void
   1064 pmap_init()
   1065 {
   1066 	/** Initialize the manager pools **/
   1067 	TAILQ_INIT(&a_pool);
   1068 	TAILQ_INIT(&b_pool);
   1069 	TAILQ_INIT(&c_pool);
   1070 
   1071 	/**************************************************************
   1072 	 * Initialize all tmgr structures and MMU tables they manage. *
   1073 	 **************************************************************/
   1074 	/** Initialize A tables **/
   1075 	pmap_init_a_tables();
   1076 	/** Initialize B tables **/
   1077 	pmap_init_b_tables();
   1078 	/** Initialize C tables **/
   1079 	pmap_init_c_tables();
   1080 }
   1081 
   1082 /* pmap_init_a_tables()			INTERNAL
   1083  **
   1084  * Initializes all A managers, their MMU A tables, and inserts
   1085  * them into the A manager pool for use by the system.
   1086  */
   1087 void
   1088 pmap_init_a_tables()
   1089 {
   1090 	int i;
   1091 	a_tmgr_t *a_tbl;
   1092 
   1093 	for (i=0; i < NUM_A_TABLES; i++) {
   1094 		/* Select the next available A manager from the pool */
   1095 		a_tbl = &Atmgrbase[i];
   1096 
   1097 		/*
   1098 		 * Clear its parent entry.  Set its wired and valid
   1099 		 * entry count to zero.
   1100 		 */
   1101 		a_tbl->at_parent = NULL;
   1102 		a_tbl->at_wcnt = a_tbl->at_ecnt = 0;
   1103 
   1104 		/* Assign it the next available MMU A table from the pool */
   1105 		a_tbl->at_dtbl = &mmuAbase[i * MMU_A_TBL_SIZE];
   1106 
   1107 		/*
   1108 		 * Initialize the MMU A table with the table in the `proc0',
   1109 		 * or kernel, mapping.  This ensures that every process has
   1110 		 * the kernel mapped in the top part of its address space.
   1111 		 */
   1112 		bcopy(kernAbase, a_tbl->at_dtbl, MMU_A_TBL_SIZE *
   1113 			sizeof(mmu_long_dte_t));
   1114 
   1115 		/*
   1116 		 * Finally, insert the manager into the A pool,
   1117 		 * making it ready to be used by the system.
   1118 		 */
   1119 		TAILQ_INSERT_TAIL(&a_pool, a_tbl, at_link);
   1120     }
   1121 }
   1122 
   1123 /* pmap_init_b_tables()			INTERNAL
   1124  **
   1125  * Initializes all B table managers, their MMU B tables, and
   1126  * inserts them into the B manager pool for use by the system.
   1127  */
   1128 void
   1129 pmap_init_b_tables()
   1130 {
   1131 	int i,j;
   1132 	b_tmgr_t *b_tbl;
   1133 
   1134 	for (i=0; i < NUM_B_TABLES; i++) {
   1135 		/* Select the next available B manager from the pool */
   1136 		b_tbl = &Btmgrbase[i];
   1137 
   1138 		b_tbl->bt_parent = NULL;	/* clear its parent,  */
   1139 		b_tbl->bt_pidx = 0;		/* parent index,      */
   1140 		b_tbl->bt_wcnt = 0;		/* wired entry count, */
   1141 		b_tbl->bt_ecnt = 0;		/* valid entry count. */
   1142 
   1143 		/* Assign it the next available MMU B table from the pool */
   1144 		b_tbl->bt_dtbl = &mmuBbase[i * MMU_B_TBL_SIZE];
   1145 
   1146 		/* Invalidate every descriptor in the table */
   1147 		for (j=0; j < MMU_B_TBL_SIZE; j++)
   1148 			b_tbl->bt_dtbl[j].attr.raw = MMU_DT_INVALID;
   1149 
   1150 		/* Insert the manager into the B pool */
   1151 		TAILQ_INSERT_TAIL(&b_pool, b_tbl, bt_link);
   1152 	}
   1153 }
   1154 
   1155 /* pmap_init_c_tables()			INTERNAL
   1156  **
   1157  * Initializes all C table managers, their MMU C tables, and
   1158  * inserts them into the C manager pool for use by the system.
   1159  */
   1160 void
   1161 pmap_init_c_tables()
   1162 {
   1163 	int i,j;
   1164 	c_tmgr_t *c_tbl;
   1165 
   1166 	for (i=0; i < NUM_C_TABLES; i++) {
   1167 		/* Select the next available C manager from the pool */
   1168 		c_tbl = &Ctmgrbase[i];
   1169 
   1170 		c_tbl->ct_parent = NULL;	/* clear its parent,  */
   1171 		c_tbl->ct_pidx = 0;		/* parent index,      */
   1172 		c_tbl->ct_wcnt = 0;		/* wired entry count, */
   1173 		c_tbl->ct_ecnt = 0;		/* valid entry count. */
   1174 
   1175 		/* Assign it the next available MMU C table from the pool */
   1176 		c_tbl->ct_dtbl = &mmuCbase[i * MMU_C_TBL_SIZE];
   1177 
   1178 		for (j=0; j < MMU_C_TBL_SIZE; j++)
   1179 			c_tbl->ct_dtbl[j].attr.raw = MMU_DT_INVALID;
   1180 
   1181 		TAILQ_INSERT_TAIL(&c_pool, c_tbl, ct_link);
   1182 	}
   1183 }
   1184 
   1185 /* pmap_init_pv()			INTERNAL
   1186  **
   1187  * Initializes the Physical to Virtual mapping system.
   1188  */
   1189 void
   1190 pmap_init_pv()
   1191 {
   1192 	int	i;
   1193 
   1194 	/* Initialize every PV head. */
   1195 	for (i = 0; i < _btop(total_phys_mem); i++) {
   1196 		pvbase[i].pv_idx = PVE_EOL;	/* Indicate no mappings */
   1197 		pvbase[i].pv_flags = 0;		/* Zero out page flags  */
   1198 	}
   1199 
   1200 	pv_initialized = TRUE;
   1201 }
   1202 
   1203 /* get_a_table			INTERNAL
   1204  **
   1205  * Retrieve and return a level A table for use in a user map.
   1206  */
   1207 a_tmgr_t *
   1208 get_a_table()
   1209 {
   1210 	a_tmgr_t *tbl;
   1211 	pmap_t pmap;
   1212 
   1213 	/* Get the top A table in the pool */
   1214 	tbl = a_pool.tqh_first;
   1215 	if (tbl == NULL) {
   1216 		/*
   1217 		 * XXX - Instead of panicing here and in other get_x_table
   1218 		 * functions, we do have the option of sleeping on the head of
   1219 		 * the table pool.  Any function which updates the table pool
   1220 		 * would then issue a wakeup() on the head, thus waking up any
   1221 		 * processes waiting for a table.
   1222 		 *
   1223 		 * Actually, the place to sleep would be when some process
   1224 		 * asks for a "wired" mapping that would run us short of
   1225 		 * mapping resources.  This design DEPENDS on always having
   1226 		 * some mapping resources in the pool for stealing, so we
   1227 		 * must make sure we NEVER let the pool become empty. -gwr
   1228 		 */
   1229 		panic("get_a_table: out of A tables.");
   1230 	}
   1231 
   1232 	TAILQ_REMOVE(&a_pool, tbl, at_link);
   1233 	/*
   1234 	 * If the table has a non-null parent pointer then it is in use.
   1235 	 * Forcibly abduct it from its parent and clear its entries.
   1236 	 * No re-entrancy worries here.  This table would not be in the
   1237 	 * table pool unless it was available for use.
   1238 	 *
   1239 	 * Note that the second argument to free_a_table() is FALSE.  This
   1240 	 * indicates that the table should not be relinked into the A table
   1241 	 * pool.  That is a job for the function that called us.
   1242 	 */
   1243 	if (tbl->at_parent) {
   1244 		pmap = tbl->at_parent;
   1245 		free_a_table(tbl, FALSE);
   1246 		pmap->pm_a_tmgr = NULL;
   1247 		pmap->pm_a_phys = kernAphys;
   1248 	}
   1249 #ifdef  NON_REENTRANT
   1250 	/*
   1251 	 * If the table isn't to be wired down, re-insert it at the
   1252 	 * end of the pool.
   1253 	 */
   1254 	if (!wired)
   1255 		/*
   1256 		 * Quandary - XXX
   1257 		 * Would it be better to let the calling function insert this
   1258 		 * table into the queue?  By inserting it here, we are allowing
   1259 		 * it to be stolen immediately.  The calling function is
   1260 		 * probably not expecting to use a table that it is not
   1261 		 * assured full control of.
   1262 		 * Answer - In the intrest of re-entrancy, it is best to let
   1263 		 * the calling function determine when a table is available
   1264 		 * for use.  Therefore this code block is not used.
   1265 		 */
   1266 		TAILQ_INSERT_TAIL(&a_pool, tbl, at_link);
   1267 #endif	/* NON_REENTRANT */
   1268 	return tbl;
   1269 }
   1270 
   1271 /* get_b_table			INTERNAL
   1272  **
   1273  * Return a level B table for use.
   1274  */
   1275 b_tmgr_t *
   1276 get_b_table()
   1277 {
   1278 	b_tmgr_t *tbl;
   1279 
   1280 	/* See 'get_a_table' for comments. */
   1281 	tbl = b_pool.tqh_first;
   1282 	if (tbl == NULL)
   1283 		panic("get_b_table: out of B tables.");
   1284 	TAILQ_REMOVE(&b_pool, tbl, bt_link);
   1285 	if (tbl->bt_parent) {
   1286 		tbl->bt_parent->at_dtbl[tbl->bt_pidx].attr.raw = MMU_DT_INVALID;
   1287 		tbl->bt_parent->at_ecnt--;
   1288 		free_b_table(tbl, FALSE);
   1289 	}
   1290 #ifdef	NON_REENTRANT
   1291 	if (!wired)
   1292 		/* XXX see quandary in get_b_table */
   1293 		/* XXX start lock */
   1294 		TAILQ_INSERT_TAIL(&b_pool, tbl, bt_link);
   1295 		/* XXX end lock */
   1296 #endif	/* NON_REENTRANT */
   1297 	return tbl;
   1298 }
   1299 
   1300 /* get_c_table			INTERNAL
   1301  **
   1302  * Return a level C table for use.
   1303  */
   1304 c_tmgr_t *
   1305 get_c_table()
   1306 {
   1307 	c_tmgr_t *tbl;
   1308 
   1309 	/* See 'get_a_table' for comments */
   1310 	tbl = c_pool.tqh_first;
   1311 	if (tbl == NULL)
   1312 		panic("get_c_table: out of C tables.");
   1313 	TAILQ_REMOVE(&c_pool, tbl, ct_link);
   1314 	if (tbl->ct_parent) {
   1315 		tbl->ct_parent->bt_dtbl[tbl->ct_pidx].attr.raw = MMU_DT_INVALID;
   1316 		tbl->ct_parent->bt_ecnt--;
   1317 		free_c_table(tbl, FALSE);
   1318 	}
   1319 #ifdef	NON_REENTRANT
   1320 	if (!wired)
   1321 		/* XXX See quandary in get_a_table */
   1322 		/* XXX start lock */
   1323 		TAILQ_INSERT_TAIL(&c_pool, tbl, c_link);
   1324 		/* XXX end lock */
   1325 #endif	/* NON_REENTRANT */
   1326 
   1327 	return tbl;
   1328 }
   1329 
   1330 /*
   1331  * The following 'free_table' and 'steal_table' functions are called to
   1332  * detach tables from their current obligations (parents and children) and
   1333  * prepare them for reuse in another mapping.
   1334  *
   1335  * Free_table is used when the calling function will handle the fate
   1336  * of the parent table, such as returning it to the free pool when it has
   1337  * no valid entries.  Functions that do not want to handle this should
   1338  * call steal_table, in which the parent table's descriptors and entry
   1339  * count are automatically modified when this table is removed.
   1340  */
   1341 
   1342 /* free_a_table			INTERNAL
   1343  **
   1344  * Unmaps the given A table and all child tables from their current
   1345  * mappings.  Returns the number of pages that were invalidated.
   1346  * If 'relink' is true, the function will return the table to the head
   1347  * of the available table pool.
   1348  *
   1349  * Cache note: The MC68851 will automatically flush all
   1350  * descriptors derived from a given A table from its
   1351  * Automatic Translation Cache (ATC) if we issue a
   1352  * 'PFLUSHR' instruction with the base address of the
   1353  * table.  This function should do, and does so.
   1354  * Note note: We are using an MC68030 - there is no
   1355  * PFLUSHR.
   1356  */
   1357 int
   1358 free_a_table(a_tbl, relink)
   1359 	a_tmgr_t *a_tbl;
   1360 	boolean_t relink;
   1361 {
   1362 	int i, removed_cnt;
   1363 	mmu_long_dte_t	*dte;
   1364 	mmu_short_dte_t *dtbl;
   1365 	b_tmgr_t	*tmgr;
   1366 
   1367 	/*
   1368 	 * Flush the ATC cache of all cached descriptors derived
   1369 	 * from this table.
   1370 	 * XXX - Sun3x does not use 68851's cached table feature
   1371 	 * flush_atc_crp(mmu_vtop(a_tbl->dte));
   1372 	 */
   1373 
   1374 	/*
   1375 	 * Remove any pending cache flushes that were designated
   1376 	 * for the pmap this A table belongs to.
   1377 	 * a_tbl->parent->atc_flushq[0] = 0;
   1378 	 * XXX - Not implemented in sun3x.
   1379 	 */
   1380 
   1381 	/*
   1382 	 * All A tables in the system should retain a map for the
   1383 	 * kernel. If the table contains any valid descriptors
   1384 	 * (other than those for the kernel area), invalidate them all,
   1385 	 * stopping short of the kernel's entries.
   1386 	 */
   1387 	removed_cnt = 0;
   1388 	if (a_tbl->at_ecnt) {
   1389 		dte = a_tbl->at_dtbl;
   1390 		for (i=0; i < MMU_TIA(KERNBASE); i++) {
   1391 			/*
   1392 			 * If a table entry points to a valid B table, free
   1393 			 * it and its children.
   1394 			 */
   1395 			if (MMU_VALID_DT(dte[i])) {
   1396 				/*
   1397 				 * The following block does several things,
   1398 				 * from innermost expression to the
   1399 				 * outermost:
   1400 				 * 1) It extracts the base (cc 1996)
   1401 				 *    address of the B table pointed
   1402 				 *    to in the A table entry dte[i].
   1403 				 * 2) It converts this base address into
   1404 				 *    the virtual address it can be
   1405 				 *    accessed with. (all MMU tables point
   1406 				 *    to physical addresses.)
   1407 				 * 3) It finds the corresponding manager
   1408 				 *    structure which manages this MMU table.
   1409 				 * 4) It frees the manager structure.
   1410 				 *    (This frees the MMU table and all
   1411 				 *    child tables. See 'free_b_table' for
   1412 				 *    details.)
   1413 				 */
   1414 				dtbl = mmu_ptov(dte[i].addr.raw);
   1415 				tmgr = mmuB2tmgr(dtbl);
   1416 				removed_cnt += free_b_table(tmgr, TRUE);
   1417 				dte[i].attr.raw = MMU_DT_INVALID;
   1418 			}
   1419 		}
   1420 		a_tbl->at_ecnt = 0;
   1421 	}
   1422 	if (relink) {
   1423 		a_tbl->at_parent = NULL;
   1424 		TAILQ_REMOVE(&a_pool, a_tbl, at_link);
   1425 		TAILQ_INSERT_HEAD(&a_pool, a_tbl, at_link);
   1426 	}
   1427 	return removed_cnt;
   1428 }
   1429 
   1430 /* free_b_table			INTERNAL
   1431  **
   1432  * Unmaps the given B table and all its children from their current
   1433  * mappings.  Returns the number of pages that were invalidated.
   1434  * (For comments, see 'free_a_table()').
   1435  */
   1436 int
   1437 free_b_table(b_tbl, relink)
   1438 	b_tmgr_t *b_tbl;
   1439 	boolean_t relink;
   1440 {
   1441 	int i, removed_cnt;
   1442 	mmu_short_dte_t *dte;
   1443 	mmu_short_pte_t	*dtbl;
   1444 	c_tmgr_t	*tmgr;
   1445 
   1446 	removed_cnt = 0;
   1447 	if (b_tbl->bt_ecnt) {
   1448 		dte = b_tbl->bt_dtbl;
   1449 		for (i=0; i < MMU_B_TBL_SIZE; i++) {
   1450 			if (MMU_VALID_DT(dte[i])) {
   1451 				dtbl = mmu_ptov(MMU_DTE_PA(dte[i]));
   1452 				tmgr = mmuC2tmgr(dtbl);
   1453 				removed_cnt += free_c_table(tmgr, TRUE);
   1454 				dte[i].attr.raw = MMU_DT_INVALID;
   1455 			}
   1456 		}
   1457 		b_tbl->bt_ecnt = 0;
   1458 	}
   1459 
   1460 	if (relink) {
   1461 		b_tbl->bt_parent = NULL;
   1462 		TAILQ_REMOVE(&b_pool, b_tbl, bt_link);
   1463 		TAILQ_INSERT_HEAD(&b_pool, b_tbl, bt_link);
   1464 	}
   1465 	return removed_cnt;
   1466 }
   1467 
   1468 /* free_c_table			INTERNAL
   1469  **
   1470  * Unmaps the given C table from use and returns it to the pool for
   1471  * re-use.  Returns the number of pages that were invalidated.
   1472  *
   1473  * This function preserves any physical page modification information
   1474  * contained in the page descriptors within the C table by calling
   1475  * 'pmap_remove_pte().'
   1476  */
   1477 int
   1478 free_c_table(c_tbl, relink)
   1479 	c_tmgr_t *c_tbl;
   1480 	boolean_t relink;
   1481 {
   1482 	int i, removed_cnt;
   1483 
   1484 	removed_cnt = 0;
   1485 	if (c_tbl->ct_ecnt) {
   1486 		for (i=0; i < MMU_C_TBL_SIZE; i++) {
   1487 			if (MMU_VALID_DT(c_tbl->ct_dtbl[i])) {
   1488 				pmap_remove_pte(&c_tbl->ct_dtbl[i]);
   1489 				removed_cnt++;
   1490 			}
   1491 		}
   1492 		c_tbl->ct_ecnt = 0;
   1493 	}
   1494 
   1495 	if (relink) {
   1496 		c_tbl->ct_parent = NULL;
   1497 		TAILQ_REMOVE(&c_pool, c_tbl, ct_link);
   1498 		TAILQ_INSERT_HEAD(&c_pool, c_tbl, ct_link);
   1499 	}
   1500 	return removed_cnt;
   1501 }
   1502 
   1503 #if 0
   1504 /* free_c_table_novalid			INTERNAL
   1505  **
   1506  * Frees the given C table manager without checking to see whether
   1507  * or not it contains any valid page descriptors as it is assumed
   1508  * that it does not.
   1509  */
   1510 void
   1511 free_c_table_novalid(c_tbl)
   1512 	c_tmgr_t *c_tbl;
   1513 {
   1514 	TAILQ_REMOVE(&c_pool, c_tbl, ct_link);
   1515 	TAILQ_INSERT_HEAD(&c_pool, c_tbl, ct_link);
   1516 	c_tbl->ct_parent->bt_dtbl[c_tbl->ct_pidx].attr.raw = MMU_DT_INVALID;
   1517 	c_tbl->ct_parent->bt_ecnt--;
   1518 	/*
   1519 	 * XXX - Should call equiv. of 'free_b_table_novalid' here if
   1520 	 * we just removed the last entry of the parent B table.
   1521 	 * But I want to insure that this will not endanger pmap_enter()
   1522 	 * with sudden removal of tables it is working with.
   1523 	 *
   1524 	 * We should probably add another field to each table, indicating
   1525 	 * whether or not it is 'locked', ie. in the process of being
   1526 	 * modified.
   1527 	 */
   1528 	c_tbl->ct_parent = NULL;
   1529 }
   1530 #endif
   1531 
   1532 /* pmap_remove_pte			INTERNAL
   1533  **
   1534  * Unmap the given pte and preserve any page modification
   1535  * information by transfering it to the pv head of the
   1536  * physical page it maps to.  This function does not update
   1537  * any reference counts because it is assumed that the calling
   1538  * function will do so.
   1539  */
   1540 void
   1541 pmap_remove_pte(pte)
   1542 	mmu_short_pte_t *pte;
   1543 {
   1544 	u_short     pv_idx, targ_idx;
   1545 	int         s;
   1546 	vm_offset_t pa;
   1547 	pv_t       *pv;
   1548 
   1549 	pa = MMU_PTE_PA(*pte);
   1550 	if (is_managed(pa)) {
   1551 		pv = pa2pv(pa);
   1552 		targ_idx = pteidx(pte);	/* Index of PTE being removed    */
   1553 
   1554 		/*
   1555 		 * If the PTE being removed is the first (or only) PTE in
   1556 		 * the list of PTEs currently mapped to this page, remove the
   1557 		 * PTE by changing the index found on the PV head.  Otherwise
   1558 		 * a linear search through the list will have to be executed
   1559 		 * in order to find the PVE which points to the PTE being
   1560 		 * removed, so that it may be modified to point to its new
   1561 		 * neighbor.
   1562 		 */
   1563 		s = splimp();
   1564 		pv_idx = pv->pv_idx;	/* Index of first PTE in PV list */
   1565 		if (pv_idx == targ_idx) {
   1566 			pv->pv_idx = pvebase[targ_idx].pve_next;
   1567 		} else {
   1568 			/*
   1569 			 * Find the PV element which points to the target
   1570 			 * element.
   1571 			 */
   1572 			while (pvebase[pv_idx].pve_next != targ_idx) {
   1573 				pv_idx = pvebase[pv_idx].pve_next;
   1574 #ifdef	DIAGNOSTIC
   1575 				if (pv_idx == PVE_EOL)
   1576 					panic("pmap_remove_pte: pv list end!");
   1577 #endif
   1578 			}
   1579 
   1580 			/*
   1581 			 * At this point, pv_idx is the index of the PV
   1582 			 * element just before the target element in the list.
   1583 			 * Unlink the target.
   1584 			 */
   1585 			pvebase[pv_idx].pve_next = pvebase[targ_idx].pve_next;
   1586 		}
   1587 		/*
   1588 		 * Save the mod/ref bits of the pte by simply
   1589 		 * ORing the entire pte onto the pv_flags member
   1590 		 * of the pv structure.
   1591 		 * There is no need to use a separate bit pattern
   1592 		 * for usage information on the pv head than that
   1593 		 * which is used on the MMU ptes.
   1594 		 */
   1595 		pv->pv_flags |= (u_short) pte->attr.raw;
   1596 		splx(s);
   1597 	}
   1598 
   1599 	pte->attr.raw = MMU_DT_INVALID;
   1600 }
   1601 
   1602 #if	0	/* XXX - I am eliminating this function. -j */
   1603 /* pmap_dereference_pte			INTERNAL
   1604  **
   1605  * Update the necessary reference counts in any tables and pmaps to
   1606  * reflect the removal of the given pte.  Only called when no knowledge of
   1607  * the pte's associated pmap is unknown.  This only occurs in the PV call
   1608  * 'pmap_page_protect()' with a protection of VM_PROT_NONE, which means
   1609  * that all references to a given physical page must be removed.
   1610  */
   1611 void
   1612 pmap_dereference_pte(pte)
   1613 	mmu_short_pte_t *pte;
   1614 {
   1615 	vm_offset_t va;
   1616 	c_tmgr_t *c_tbl;
   1617 	pmap_t pmap;
   1618 
   1619 	va = pmap_get_pteinfo(pte, &pmap, &c_tbl);
   1620 	/*
   1621 	 * Flush the translation cache of the page mapped by the PTE, should
   1622 	 * it prove to be in the current pmap.  Kernel mappings appear in
   1623 	 * all address spaces, so they always should be flushed
   1624 	 */
   1625 	if (pmap == pmap_kernel() || pmap == current_pmap())
   1626 		TBIS(va);
   1627 
   1628 	/*
   1629 	 * If the mapping belongs to a user map, update the necessary
   1630 	 * reference counts in the table manager.  XXX - It would be
   1631 	 * much easier to keep the resident count in the c_tmgr_t -gwr
   1632 	 */
   1633 	if (pmap != pmap_kernel()) {
   1634 		/*
   1635 		 * Most of the situations in which pmap_dereference_pte() is
   1636 		 * called are usually temporary removals of a mapping.  Often
   1637 		 * the mapping is reinserted shortly afterwards. If the parent
   1638 		 * C table's valid entry count reaches zero as a result of
   1639 		 * removing this mapping, we could return it to the free pool,
   1640 		 * but we leave it alone because it is likely to be used as
   1641 		 * stated above.
   1642 		 */
   1643 		c_tbl->ct_ecnt--;
   1644 		pmap->pm_stats.resident_count--;
   1645 	}
   1646 }
   1647 #endif	0	/* function elimination */
   1648 
   1649 /* pmap_stroll			INTERNAL
   1650  **
   1651  * Retrieve the addresses of all table managers involved in the mapping of
   1652  * the given virtual address.  If the table walk completed sucessfully,
   1653  * return TRUE.  If it was only partially sucessful, return FALSE.
   1654  * The table walk performed by this function is important to many other
   1655  * functions in this module.
   1656  *
   1657  * Note: This function ought to be easier to read.
   1658  */
   1659 boolean_t
   1660 pmap_stroll(pmap, va, a_tbl, b_tbl, c_tbl, pte, a_idx, b_idx, pte_idx)
   1661 	pmap_t pmap;
   1662 	vm_offset_t va;
   1663 	a_tmgr_t **a_tbl;
   1664 	b_tmgr_t **b_tbl;
   1665 	c_tmgr_t **c_tbl;
   1666 	mmu_short_pte_t **pte;
   1667 	int *a_idx, *b_idx, *pte_idx;
   1668 {
   1669 	mmu_long_dte_t *a_dte;   /* A: long descriptor table          */
   1670 	mmu_short_dte_t *b_dte;  /* B: short descriptor table         */
   1671 
   1672 	if (pmap == pmap_kernel())
   1673 		return FALSE;
   1674 
   1675 	/* Does the given pmap have its own A table? */
   1676 	*a_tbl = pmap->pm_a_tmgr;
   1677 	if (*a_tbl == NULL)
   1678 		return FALSE; /* No.  Return unknown. */
   1679 	/* Does the A table have a valid B table
   1680 	 * under the corresponding table entry?
   1681 	 */
   1682 	*a_idx = MMU_TIA(va);
   1683 	a_dte = &((*a_tbl)->at_dtbl[*a_idx]);
   1684 	if (!MMU_VALID_DT(*a_dte))
   1685 		return FALSE; /* No. Return unknown. */
   1686 	/* Yes. Extract B table from the A table. */
   1687 	*b_tbl = mmuB2tmgr(mmu_ptov(a_dte->addr.raw));
   1688 	/* Does the B table have a valid C table
   1689 	 * under the corresponding table entry?
   1690 	 */
   1691 	*b_idx = MMU_TIB(va);
   1692 	b_dte = &((*b_tbl)->bt_dtbl[*b_idx]);
   1693 	if (!MMU_VALID_DT(*b_dte))
   1694 		return FALSE; /* No. Return unknown. */
   1695 	/* Yes. Extract C table from the B table. */
   1696 	*c_tbl = mmuC2tmgr(mmu_ptov(MMU_DTE_PA(*b_dte)));
   1697 	*pte_idx = MMU_TIC(va);
   1698 	*pte = &((*c_tbl)->ct_dtbl[*pte_idx]);
   1699 
   1700 	return	TRUE;
   1701 }
   1702 
   1703 /* pmap_enter			INTERFACE
   1704  **
   1705  * Called by the kernel to map a virtual address
   1706  * to a physical address in the given process map.
   1707  *
   1708  * Note: this function should apply an exclusive lock
   1709  * on the pmap system for its duration.  (it certainly
   1710  * would save my hair!!)
   1711  * This function ought to be easier to read.
   1712  */
   1713 void
   1714 pmap_enter(pmap, va, pa, prot, wired)
   1715 	pmap_t	pmap;
   1716 	vm_offset_t va;
   1717 	vm_offset_t pa;
   1718 	vm_prot_t prot;
   1719 	boolean_t wired;
   1720 {
   1721 	boolean_t insert, managed; /* Marks the need for PV insertion.*/
   1722 	u_short nidx;            /* PV list index                     */
   1723 	int s;                   /* Used for splimp()/splx()          */
   1724 	int flags;               /* Mapping flags. eg. Cache inhibit  */
   1725 	u_int a_idx, b_idx, pte_idx; /* table indices                 */
   1726 	a_tmgr_t *a_tbl;         /* A: long descriptor table manager  */
   1727 	b_tmgr_t *b_tbl;         /* B: short descriptor table manager */
   1728 	c_tmgr_t *c_tbl;         /* C: short page table manager       */
   1729 	mmu_long_dte_t *a_dte;   /* A: long descriptor table          */
   1730 	mmu_short_dte_t *b_dte;  /* B: short descriptor table         */
   1731 	mmu_short_pte_t *c_pte;  /* C: short page descriptor table    */
   1732 	pv_t      *pv;           /* pv list head                      */
   1733 	enum {NONE, NEWA, NEWB, NEWC} llevel; /* used at end   */
   1734 
   1735 	if (pmap == NULL)
   1736 		return;
   1737 	if (pmap == pmap_kernel()) {
   1738 		pmap_enter_kernel(va, pa, prot);
   1739 		return;
   1740 	}
   1741 
   1742 	flags  = (pa & ~MMU_PAGE_MASK);
   1743 	pa    &= MMU_PAGE_MASK;
   1744 
   1745 	/*
   1746 	 * Determine if the physical address being mapped is managed.
   1747 	 * If it isn't, the mapping should be cache inhibited.  (This is
   1748 	 * applied later in the function.)   XXX - Why non-cached? -gwr
   1749 	 */
   1750 	if ((managed = is_managed(pa)) == FALSE)
   1751 		flags |= PMAP_NC;
   1752 
   1753 	/*
   1754 	 * For user mappings we walk along the MMU tables of the given
   1755 	 * pmap, reaching a PTE which describes the virtual page being
   1756 	 * mapped or changed.  If any level of the walk ends in an invalid
   1757 	 * entry, a table must be allocated and the entry must be updated
   1758 	 * to point to it.
   1759 	 * There is a bit of confusion as to whether this code must be
   1760 	 * re-entrant.  For now we will assume it is.  To support
   1761 	 * re-entrancy we must unlink tables from the table pool before
   1762 	 * we assume we may use them.  Tables are re-linked into the pool
   1763 	 * when we are finished with them at the end of the function.
   1764 	 * But I don't feel like doing that until we have proof that this
   1765 	 * needs to be re-entrant.
   1766 	 * 'llevel' records which tables need to be relinked.
   1767 	 */
   1768 	llevel = NONE;
   1769 
   1770 	/*
   1771 	 * Step 1 - Retrieve the A table from the pmap.  If it has no
   1772 	 * A table, allocate a new one from the available pool.
   1773 	 */
   1774 
   1775 	a_tbl = pmap->pm_a_tmgr;
   1776 	if (a_tbl == NULL) {
   1777 		/*
   1778 		 * This pmap does not currently have an A table.  Allocate
   1779 		 * a new one.
   1780 		 */
   1781 		a_tbl = get_a_table();
   1782 		a_tbl->at_parent = pmap;
   1783 
   1784 		/*
   1785 		 * Assign this new A table to the pmap, and calculate its
   1786 		 * physical address so that loadcrp() can be used to make
   1787 		 * the table active.
   1788 		 */
   1789 		pmap->pm_a_tmgr = a_tbl;
   1790 		pmap->pm_a_phys = mmu_vtop(a_tbl->at_dtbl);
   1791 
   1792 		/*
   1793 		 * If the process receiving a new A table is the current
   1794 		 * process, we are responsible for setting the MMU so that
   1795 		 * it becomes the current address space.  This only adds
   1796 		 * new mappings, so no need to flush anything.
   1797 		 */
   1798 		if (pmap == current_pmap()) {
   1799 			kernel_crp.rp_addr = pmap->pm_a_phys;
   1800 			loadcrp(&kernel_crp);
   1801 		}
   1802 
   1803 		if (!wired)
   1804 			llevel = NEWA;
   1805 	} else {
   1806 		/*
   1807 		 * Use the A table already allocated for this pmap.
   1808 		 * Unlink it from the A table pool if necessary.
   1809 		 */
   1810 		if (wired && !a_tbl->at_wcnt)
   1811 			TAILQ_REMOVE(&a_pool, a_tbl, at_link);
   1812 	}
   1813 
   1814 	/*
   1815 	 * Step 2 - Walk into the B table.  If there is no valid B table,
   1816 	 * allocate one.
   1817 	 */
   1818 
   1819 	a_idx = MMU_TIA(va);            /* Calculate the TIA of the VA. */
   1820 	a_dte = &a_tbl->at_dtbl[a_idx]; /* Retrieve descriptor from table */
   1821 	if (MMU_VALID_DT(*a_dte)) {     /* Is the descriptor valid? */
   1822 		/* The descriptor is valid.  Use the B table it points to. */
   1823 		/*************************************
   1824 		 *               a_idx               *
   1825 		 *                 v                 *
   1826 		 * a_tbl -> +-+-+-+-+-+-+-+-+-+-+-+- *
   1827 		 *          | | | | | | | | | | | |  *
   1828 		 *          +-+-+-+-+-+-+-+-+-+-+-+- *
   1829 		 *                 |                 *
   1830 		 *                 \- b_tbl -> +-+-  *
   1831 		 *                             | |   *
   1832 		 *                             +-+-  *
   1833 		 *************************************/
   1834 		b_dte = mmu_ptov(a_dte->addr.raw);
   1835 		b_tbl = mmuB2tmgr(b_dte);
   1836 
   1837 		/*
   1838 		 * If the requested mapping must be wired, but this table
   1839 		 * being used to map it is not, the table must be removed
   1840 		 * from the available pool and its wired entry count
   1841 		 * incremented.
   1842 		 */
   1843 		if (wired && !b_tbl->bt_wcnt) {
   1844 			TAILQ_REMOVE(&b_pool, b_tbl, bt_link);
   1845 			a_tbl->at_wcnt++;
   1846 		}
   1847 	} else {
   1848 		/* The descriptor is invalid.  Allocate a new B table. */
   1849 		b_tbl = get_b_table();
   1850 
   1851 		/* Point the parent A table descriptor to this new B table. */
   1852 		a_dte->addr.raw = mmu_vtop(b_tbl->bt_dtbl);
   1853 		a_dte->attr.raw = MMU_LONG_DTE_LU | MMU_DT_SHORT;
   1854 		a_tbl->at_ecnt++; /* Update parent's valid entry count */
   1855 
   1856 		/* Create the necessary back references to the parent table */
   1857 		b_tbl->bt_parent = a_tbl;
   1858 		b_tbl->bt_pidx = a_idx;
   1859 
   1860 		/*
   1861 		 * If this table is to be wired, make sure the parent A table
   1862 		 * wired count is updated to reflect that it has another wired
   1863 		 * entry.
   1864 		 */
   1865 		if (wired)
   1866 			a_tbl->at_wcnt++;
   1867 		else if (llevel == NONE)
   1868 			llevel = NEWB;
   1869 	}
   1870 
   1871 	/*
   1872 	 * Step 3 - Walk into the C table, if there is no valid C table,
   1873 	 * allocate one.
   1874 	 */
   1875 
   1876 	b_idx = MMU_TIB(va);            /* Calculate the TIB of the VA */
   1877 	b_dte = &b_tbl->bt_dtbl[b_idx]; /* Retrieve descriptor from table */
   1878 	if (MMU_VALID_DT(*b_dte)) {     /* Is the descriptor valid? */
   1879 		/* The descriptor is valid.  Use the C table it points to. */
   1880 		/**************************************
   1881 		 *               c_idx                *
   1882 		 * |                v                 *
   1883 		 * \- b_tbl -> +-+-+-+-+-+-+-+-+-+-+- *
   1884 		 *             | | | | | | | | | | |  *
   1885 		 *             +-+-+-+-+-+-+-+-+-+-+- *
   1886 		 *                  |                 *
   1887 		 *                  \- c_tbl -> +-+-- *
   1888 		 *                              | | | *
   1889 		 *                              +-+-- *
   1890 		 **************************************/
   1891 		c_pte = mmu_ptov(MMU_PTE_PA(*b_dte));
   1892 		c_tbl = mmuC2tmgr(c_pte);
   1893 
   1894 		/* If mapping is wired and table is not */
   1895 		if (wired && !c_tbl->ct_wcnt) {
   1896 			TAILQ_REMOVE(&c_pool, c_tbl, ct_link);
   1897 			b_tbl->bt_wcnt++;
   1898 		}
   1899 	} else {
   1900 		/* The descriptor is invalid.  Allocate a new C table. */
   1901 		c_tbl = get_c_table();
   1902 
   1903 		/* Point the parent B table descriptor to this new C table. */
   1904 		b_dte->attr.raw = mmu_vtop(c_tbl->ct_dtbl);
   1905 		b_dte->attr.raw |= MMU_DT_SHORT;
   1906 		b_tbl->bt_ecnt++; /* Update parent's valid entry count */
   1907 
   1908 		/* Create the necessary back references to the parent table */
   1909 		c_tbl->ct_parent = b_tbl;
   1910 		c_tbl->ct_pidx = b_idx;
   1911 
   1912 		/*
   1913 		 * If this table is to be wired, make sure the parent B table
   1914 		 * wired count is updated to reflect that it has another wired
   1915 		 * entry.
   1916 		 */
   1917 		if (wired)
   1918 			b_tbl->bt_wcnt++;
   1919 		else if (llevel == NONE)
   1920 			llevel = NEWC;
   1921 	}
   1922 
   1923 	/*
   1924 	 * Step 4 - Deposit a page descriptor (PTE) into the appropriate
   1925 	 * slot of the C table, describing the PA to which the VA is mapped.
   1926 	 */
   1927 
   1928 	pte_idx = MMU_TIC(va);
   1929 	c_pte = &c_tbl->ct_dtbl[pte_idx];
   1930 	if (MMU_VALID_DT(*c_pte)) { /* Is the entry currently valid? */
   1931 		/*
   1932 		 * The PTE is currently valid.  This particular call
   1933 		 * is just a synonym for one (or more) of the following
   1934 		 * operations:
   1935 		 *     change protection of a page
   1936 		 *     change wiring status of a page
   1937 		 *     remove the mapping of a page
   1938 		 *
   1939 		 * XXX - Semi critical: This code should unwire the PTE
   1940 		 * and, possibly, associated parent tables if this is a
   1941 		 * change wiring operation.  Currently it does not.
   1942 		 *
   1943 		 * This may be ok if pmap_change_wiring() is the only
   1944 		 * interface used to UNWIRE a page.
   1945 		 */
   1946 
   1947 		/* First check if this is a wiring operation. */
   1948 		if (wired && (c_pte->attr.raw & MMU_SHORT_PTE_WIRED)) {
   1949 			/*
   1950 			 * The PTE is already wired.  To prevent it from being
   1951 			 * counted as a new wiring operation, reset the 'wired'
   1952 			 * variable.
   1953 			 */
   1954 			wired = FALSE;
   1955 		}
   1956 
   1957 		/* Is the new address the same as the old? */
   1958 		if (MMU_PTE_PA(*c_pte) == pa) {
   1959 			/*
   1960 			 * Yes, mark that it does not need to be reinserted
   1961 			 * into the PV list.
   1962 			 */
   1963 			insert = FALSE;
   1964 
   1965 			/*
   1966 			 * Clear all but the modified, referenced and wired
   1967 			 * bits on the PTE.
   1968 			 */
   1969 			c_pte->attr.raw &= (MMU_SHORT_PTE_M
   1970 				| MMU_SHORT_PTE_USED | MMU_SHORT_PTE_WIRED);
   1971 		} else {
   1972 			/* No, remove the old entry */
   1973 			pmap_remove_pte(c_pte);
   1974 			insert = TRUE;
   1975 		}
   1976 
   1977 		/*
   1978 		 * TLB flush is only necessary if modifying current map.
   1979 		 * However, in pmap_enter(), the pmap almost always IS
   1980 		 * the current pmap, so don't even bother to check.
   1981 		 */
   1982 		TBIS(va);
   1983 	} else {
   1984 		/*
   1985 		 * The PTE is invalid.  Increment the valid entry count in
   1986 		 * the C table manager to reflect the addition of a new entry.
   1987 		 */
   1988 		c_tbl->ct_ecnt++;
   1989 
   1990 		/* XXX - temporarily make sure the PTE is cleared. */
   1991 		c_pte->attr.raw = 0;
   1992 
   1993 		/* It will also need to be inserted into the PV list. */
   1994 		insert = TRUE;
   1995 	}
   1996 
   1997 	/*
   1998 	 * If page is changing from unwired to wired status, set an unused bit
   1999 	 * within the PTE to indicate that it is wired.  Also increment the
   2000 	 * wired entry count in the C table manager.
   2001 	 */
   2002 	if (wired) {
   2003 		c_pte->attr.raw |= MMU_SHORT_PTE_WIRED;
   2004 		c_tbl->ct_wcnt++;
   2005 	}
   2006 
   2007 	/*
   2008 	 * Map the page, being careful to preserve modify/reference/wired
   2009 	 * bits.  At this point it is assumed that the PTE either has no bits
   2010 	 * set, or if there are set bits, they are only modified, reference or
   2011 	 * wired bits.  If not, the following statement will cause erratic
   2012 	 * behavior.
   2013 	 */
   2014 #ifdef	PMAP_DEBUG
   2015 	if (c_pte->attr.raw & ~(MMU_SHORT_PTE_M |
   2016 		MMU_SHORT_PTE_USED | MMU_SHORT_PTE_WIRED)) {
   2017 		printf("pmap_enter: junk left in PTE at %p\n", c_pte);
   2018 		Debugger();
   2019 	}
   2020 #endif
   2021 	c_pte->attr.raw |= ((u_long) pa | MMU_DT_PAGE);
   2022 
   2023 	/*
   2024 	 * If the mapping should be read-only, set the write protect
   2025 	 * bit in the PTE.
   2026 	 */
   2027 	if (!(prot & VM_PROT_WRITE))
   2028 		c_pte->attr.raw |= MMU_SHORT_PTE_WP;
   2029 
   2030 	/*
   2031 	 * If the mapping should be cache inhibited (indicated by the flag
   2032 	 * bits found on the lower order of the physical address.)
   2033 	 * mark the PTE as a cache inhibited page.
   2034 	 */
   2035 	if (flags & PMAP_NC)
   2036 		c_pte->attr.raw |= MMU_SHORT_PTE_CI;
   2037 
   2038 	/*
   2039 	 * If the physical address being mapped is managed by the PV
   2040 	 * system then link the pte into the list of pages mapped to that
   2041 	 * address.
   2042 	 */
   2043 	if (insert && managed) {
   2044 		pv = pa2pv(pa);
   2045 		nidx = pteidx(c_pte);
   2046 
   2047 		s = splimp();
   2048 		pvebase[nidx].pve_next = pv->pv_idx;
   2049 		pv->pv_idx = nidx;
   2050 		splx(s);
   2051 	}
   2052 
   2053 	/* Move any allocated tables back into the active pool. */
   2054 
   2055 	switch (llevel) {
   2056 		case NEWA:
   2057 			TAILQ_INSERT_TAIL(&a_pool, a_tbl, at_link);
   2058 			/* FALLTHROUGH */
   2059 		case NEWB:
   2060 			TAILQ_INSERT_TAIL(&b_pool, b_tbl, bt_link);
   2061 			/* FALLTHROUGH */
   2062 		case NEWC:
   2063 			TAILQ_INSERT_TAIL(&c_pool, c_tbl, ct_link);
   2064 			/* FALLTHROUGH */
   2065 		default:
   2066 			break;
   2067 	}
   2068 }
   2069 
   2070 /* pmap_enter_kernel			INTERNAL
   2071  **
   2072  * Map the given virtual address to the given physical address within the
   2073  * kernel address space.  This function exists because the kernel map does
   2074  * not do dynamic table allocation.  It consists of a contiguous array of ptes
   2075  * and can be edited directly without the need to walk through any tables.
   2076  *
   2077  * XXX: "Danger, Will Robinson!"
   2078  * Note that the kernel should never take a fault on any page
   2079  * between [ KERNBASE .. virtual_avail ] and this is checked in
   2080  * trap.c for kernel-mode MMU faults.  This means that mappings
   2081  * created in that range must be implicily wired. -gwr
   2082  */
   2083 void
   2084 pmap_enter_kernel(va, pa, prot)
   2085 	vm_offset_t va;
   2086 	vm_offset_t pa;
   2087 	vm_prot_t   prot;
   2088 {
   2089 	boolean_t       was_valid, insert;
   2090 	u_short         pte_idx, pv_idx;
   2091 	int             s, flags;
   2092 	mmu_short_pte_t *pte;
   2093 	pv_t            *pv;
   2094 	vm_offset_t     old_pa;
   2095 
   2096 	flags  = (pa & ~MMU_PAGE_MASK);
   2097 	pa    &= MMU_PAGE_MASK;
   2098 
   2099 	/*
   2100 	 * Calculate the index of the PTE being modified.
   2101 	 */
   2102 	pte_idx = (u_long) _btop(va - KERNBASE);
   2103 
   2104 	/* XXX - This array is traditionally named "Sysmap" */
   2105 	pte = &kernCbase[pte_idx];
   2106 
   2107 	s = splimp();
   2108 	if (MMU_VALID_DT(*pte)) {
   2109 		was_valid = TRUE;
   2110 		/*
   2111 		 * If the PTE is already mapped to an address and it differs
   2112 		 * from the address requested, unlink it from the PV list.
   2113 		 *
   2114 		 * This only applies to mappings within virtual_avail
   2115 		 * and VM_MAX_KERNEL_ADDRESS.  All others are not requests
   2116 		 * from the VM system and should not be part of the PV system.
   2117 		 */
   2118 		if ((va >= virtual_avail) && (va < VM_MAX_KERNEL_ADDRESS)) {
   2119 		    old_pa = MMU_PTE_PA(*pte);
   2120 		    if (pa != old_pa) {
   2121 		        if (is_managed(old_pa)) {
   2122 		            /* XXX - Make this into a function call? */
   2123 		            pv = pa2pv(old_pa);
   2124 		            pv_idx = pv->pv_idx;
   2125 		            if (pv_idx == pte_idx) {
   2126 		                pv->pv_idx = pvebase[pte_idx].pve_next;
   2127 		            } else {
   2128 		                while (pvebase[pv_idx].pve_next != pte_idx)
   2129 		                    pv_idx = pvebase[pv_idx].pve_next;
   2130 		                pvebase[pv_idx].pve_next =
   2131 		                    pvebase[pte_idx].pve_next;
   2132 		            }
   2133 		            /* Save modified/reference bits */
   2134 		            pv->pv_flags |= (u_short) pte->attr.raw;
   2135 		        }
   2136 		        if (is_managed(pa))
   2137 		            insert = TRUE;
   2138 		        else
   2139 		            insert = FALSE;
   2140 		        /*
   2141 		         * Clear out any old bits in the PTE.
   2142 		         */
   2143 		        pte->attr.raw = MMU_DT_INVALID;
   2144 		    } else {
   2145 		        /*
   2146 		         * Old PA and new PA are the same.  No need to relink
   2147 		         * the mapping within the PV list.
   2148 		         */
   2149 		        insert = FALSE;
   2150 
   2151 		        /*
   2152 		         * Save any mod/ref bits on the PTE.
   2153 		         */
   2154 		        pte->attr.raw &= (MMU_SHORT_PTE_USED|MMU_SHORT_PTE_M);
   2155 		    }
   2156 		} else {
   2157 		    /*
   2158 		     * If the VA lies below virtual_avail or beyond
   2159 		     * VM_MAX_KERNEL_ADDRESS, it is not a request by the VM
   2160 		     * system and hence does not need to be linked into the PV
   2161 		     * system.
   2162 		     */
   2163 		    insert = FALSE;
   2164 		    pte->attr.raw = MMU_DT_INVALID;
   2165 		}
   2166 	} else {
   2167 		pte->attr.raw = MMU_DT_INVALID;
   2168 		was_valid = FALSE;
   2169 		if ((va >= virtual_avail) && (va < VM_MAX_KERNEL_ADDRESS)) {
   2170 			if (is_managed(pa))
   2171 				insert = TRUE;
   2172 			else
   2173 				insert = FALSE;
   2174 		} else
   2175 			insert = FALSE;
   2176 	}
   2177 
   2178 	/*
   2179 	 * Map the page.  Being careful to preserve modified/referenced bits
   2180 	 * on the PTE.
   2181 	 */
   2182 	pte->attr.raw |= (pa | MMU_DT_PAGE);
   2183 
   2184 	if (!(prot & VM_PROT_WRITE)) /* If access should be read-only */
   2185 		pte->attr.raw |= MMU_SHORT_PTE_WP;
   2186 	if (flags & PMAP_NC)
   2187 		pte->attr.raw |= MMU_SHORT_PTE_CI;
   2188 	if (was_valid)
   2189 		TBIS(va);
   2190 
   2191 	/*
   2192 	 * Insert the PTE into the PV system, if need be.
   2193 	 */
   2194 	if (insert) {
   2195 		pv = pa2pv(pa);
   2196 		pvebase[pte_idx].pve_next = pv->pv_idx;
   2197 		pv->pv_idx = pte_idx;
   2198 	}
   2199 	splx(s);
   2200 
   2201 }
   2202 
   2203 /* pmap_protect			INTERFACE
   2204  **
   2205  * Apply the given protection to the given virtual address range within
   2206  * the given map.
   2207  *
   2208  * It is ok for the protection applied to be stronger than what is
   2209  * specified.  We use this to our advantage when the given map has no
   2210  * mapping for the virtual address.  By skipping a page when this
   2211  * is discovered, we are effectively applying a protection of VM_PROT_NONE,
   2212  * and therefore do not need to map the page just to apply a protection
   2213  * code.  Only pmap_enter() needs to create new mappings if they do not exist.
   2214  *
   2215  * XXX - This function could be speeded up by using pmap_stroll() for inital
   2216  *       setup, and then manual scrolling in the for() loop.
   2217  */
   2218 void
   2219 pmap_protect(pmap, startva, endva, prot)
   2220 	pmap_t pmap;
   2221 	vm_offset_t startva, endva;
   2222 	vm_prot_t prot;
   2223 {
   2224 	boolean_t iscurpmap;
   2225 	int a_idx, b_idx, c_idx;
   2226 	a_tmgr_t *a_tbl;
   2227 	b_tmgr_t *b_tbl;
   2228 	c_tmgr_t *c_tbl;
   2229 	mmu_short_pte_t *pte;
   2230 
   2231 	if (pmap == NULL)
   2232 		return;
   2233 	if (pmap == pmap_kernel()) {
   2234 		pmap_protect_kernel(startva, endva, prot);
   2235 		return;
   2236 	}
   2237 
   2238 	/*
   2239 	 * In this particular pmap implementation, there are only three
   2240 	 * types of memory protection: 'all' (read/write/execute),
   2241 	 * 'read-only' (read/execute) and 'none' (no mapping.)
   2242 	 * It is not possible for us to treat 'executable' as a separate
   2243 	 * protection type.  Therefore, protection requests that seek to
   2244 	 * remove execute permission while retaining read or write, and those
   2245 	 * that make little sense (write-only for example) are ignored.
   2246 	 */
   2247 	switch (prot) {
   2248 		case VM_PROT_NONE:
   2249 			/*
   2250 			 * A request to apply the protection code of
   2251 			 * 'VM_PROT_NONE' is a synonym for pmap_remove().
   2252 			 */
   2253 			pmap_remove(pmap, startva, endva);
   2254 			return;
   2255 		case	VM_PROT_EXECUTE:
   2256 		case	VM_PROT_READ:
   2257 		case	VM_PROT_READ|VM_PROT_EXECUTE:
   2258 			/* continue */
   2259 			break;
   2260 		case	VM_PROT_WRITE:
   2261 		case	VM_PROT_WRITE|VM_PROT_READ:
   2262 		case	VM_PROT_WRITE|VM_PROT_EXECUTE:
   2263 		case	VM_PROT_ALL:
   2264 			/* None of these should happen in a sane system. */
   2265 			return;
   2266 	}
   2267 
   2268 	/*
   2269 	 * If the pmap has no A table, it has no mappings and therefore
   2270 	 * there is nothing to protect.
   2271 	 */
   2272 	if ((a_tbl = pmap->pm_a_tmgr) == NULL)
   2273 		return;
   2274 
   2275 	a_idx = MMU_TIA(startva);
   2276 	b_idx = MMU_TIB(startva);
   2277 	c_idx = MMU_TIC(startva);
   2278 	b_tbl = (b_tmgr_t *) c_tbl = NULL;
   2279 
   2280 	iscurpmap = (pmap == current_pmap());
   2281 	while (startva < endva) {
   2282 		if (b_tbl || MMU_VALID_DT(a_tbl->at_dtbl[a_idx])) {
   2283 		  if (b_tbl == NULL) {
   2284 		    b_tbl = (b_tmgr_t *) a_tbl->at_dtbl[a_idx].addr.raw;
   2285 		    b_tbl = mmu_ptov((vm_offset_t) b_tbl);
   2286 		    b_tbl = mmuB2tmgr((mmu_short_dte_t *) b_tbl);
   2287 		  }
   2288 		  if (c_tbl || MMU_VALID_DT(b_tbl->bt_dtbl[b_idx])) {
   2289 		    if (c_tbl == NULL) {
   2290 		      c_tbl = (c_tmgr_t *) MMU_DTE_PA(b_tbl->bt_dtbl[b_idx]);
   2291 		      c_tbl = mmu_ptov((vm_offset_t) c_tbl);
   2292 		      c_tbl = mmuC2tmgr((mmu_short_pte_t *) c_tbl);
   2293 		    }
   2294 		    if (MMU_VALID_DT(c_tbl->ct_dtbl[c_idx])) {
   2295 		      pte = &c_tbl->ct_dtbl[c_idx];
   2296 		      /* make the mapping read-only */
   2297 		      pte->attr.raw |= MMU_SHORT_PTE_WP;
   2298 		      /*
   2299 		       * If we just modified the current address space,
   2300 		       * flush any translations for the modified page from
   2301 		       * the translation cache and any data from it in the
   2302 		       * data cache.
   2303 		       */
   2304 		      if (iscurpmap)
   2305 		          TBIS(startva);
   2306 		    }
   2307 		    startva += NBPG;
   2308 
   2309 		    if (++c_idx >= MMU_C_TBL_SIZE) { /* exceeded C table? */
   2310 		      c_tbl = NULL;
   2311 		      c_idx = 0;
   2312 		      if (++b_idx >= MMU_B_TBL_SIZE) { /* exceeded B table? */
   2313 		        b_tbl = NULL;
   2314 		        b_idx = 0;
   2315 		      }
   2316 		    }
   2317 		  } else { /* C table wasn't valid */
   2318 		    c_tbl = NULL;
   2319 		    c_idx = 0;
   2320 		    startva += MMU_TIB_RANGE;
   2321 		    if (++b_idx >= MMU_B_TBL_SIZE) { /* exceeded B table? */
   2322 		      b_tbl = NULL;
   2323 		      b_idx = 0;
   2324 		    }
   2325 		  } /* C table */
   2326 		} else { /* B table wasn't valid */
   2327 		  b_tbl = NULL;
   2328 		  b_idx = 0;
   2329 		  startva += MMU_TIA_RANGE;
   2330 		  a_idx++;
   2331 		} /* B table */
   2332 	}
   2333 }
   2334 
   2335 /* pmap_protect_kernel			INTERNAL
   2336  **
   2337  * Apply the given protection code to a kernel address range.
   2338  */
   2339 void
   2340 pmap_protect_kernel(startva, endva, prot)
   2341 	vm_offset_t startva, endva;
   2342 	vm_prot_t prot;
   2343 {
   2344 	vm_offset_t va;
   2345 	mmu_short_pte_t *pte;
   2346 
   2347 	pte = &kernCbase[(unsigned long) _btop(startva - KERNBASE)];
   2348 	for (va = startva; va < endva; va += NBPG, pte++) {
   2349 		if (MMU_VALID_DT(*pte)) {
   2350 		    switch (prot) {
   2351 		        case VM_PROT_ALL:
   2352 		            break;
   2353 		        case VM_PROT_EXECUTE:
   2354 		        case VM_PROT_READ:
   2355 		        case VM_PROT_READ|VM_PROT_EXECUTE:
   2356 		            pte->attr.raw |= MMU_SHORT_PTE_WP;
   2357 		            break;
   2358 		        case VM_PROT_NONE:
   2359 		            /* this is an alias for 'pmap_remove_kernel' */
   2360 		            pmap_remove_pte(pte);
   2361 		            break;
   2362 		        default:
   2363 		            break;
   2364 		    }
   2365 		    /*
   2366 		     * since this is the kernel, immediately flush any cached
   2367 		     * descriptors for this address.
   2368 		     */
   2369 		    TBIS(va);
   2370 		}
   2371 	}
   2372 }
   2373 
   2374 /* pmap_change_wiring			INTERFACE
   2375  **
   2376  * Changes the wiring of the specified page.
   2377  *
   2378  * This function is called from vm_fault.c to unwire
   2379  * a mapping.  It really should be called 'pmap_unwire'
   2380  * because it is never asked to do anything but remove
   2381  * wirings.
   2382  */
   2383 void
   2384 pmap_change_wiring(pmap, va, wire)
   2385 	pmap_t pmap;
   2386 	vm_offset_t va;
   2387 	boolean_t wire;
   2388 {
   2389 	int a_idx, b_idx, c_idx;
   2390 	a_tmgr_t *a_tbl;
   2391 	b_tmgr_t *b_tbl;
   2392 	c_tmgr_t *c_tbl;
   2393 	mmu_short_pte_t *pte;
   2394 
   2395 	/* Kernel mappings always remain wired. */
   2396 	if (pmap == pmap_kernel())
   2397 		return;
   2398 
   2399 #ifdef	PMAP_DEBUG
   2400 	if (wire == TRUE)
   2401 		panic("pmap_change_wiring: wire requested.");
   2402 #endif
   2403 
   2404 	/*
   2405 	 * Walk through the tables.  If the walk terminates without
   2406 	 * a valid PTE then the address wasn't wired in the first place.
   2407 	 * Return immediately.
   2408 	 */
   2409 	if (pmap_stroll(pmap, va, &a_tbl, &b_tbl, &c_tbl, &pte, &a_idx,
   2410 		&b_idx, &c_idx) == FALSE)
   2411 		return;
   2412 
   2413 
   2414 	/* Is the PTE wired?  If not, return. */
   2415 	if (!(pte->attr.raw & MMU_SHORT_PTE_WIRED))
   2416 		return;
   2417 
   2418 	/* Remove the wiring bit. */
   2419 	pte->attr.raw &= ~(MMU_SHORT_PTE_WIRED);
   2420 
   2421 	/*
   2422 	 * Decrement the wired entry count in the C table.
   2423 	 * If it reaches zero the following things happen:
   2424 	 * 1. The table no longer has any wired entries and is considered
   2425 	 *    unwired.
   2426 	 * 2. It is placed on the available queue.
   2427 	 * 3. The parent table's wired entry count is decremented.
   2428 	 * 4. If it reaches zero, this process repeats at step 1 and
   2429 	 *    stops at after reaching the A table.
   2430 	 */
   2431 	if (--c_tbl->ct_wcnt == 0) {
   2432 		TAILQ_INSERT_TAIL(&c_pool, c_tbl, ct_link);
   2433 		if (--b_tbl->bt_wcnt == 0) {
   2434 			TAILQ_INSERT_TAIL(&b_pool, b_tbl, bt_link);
   2435 			if (--a_tbl->at_wcnt == 0) {
   2436 				TAILQ_INSERT_TAIL(&a_pool, a_tbl, at_link);
   2437 			}
   2438 		}
   2439 	}
   2440 }
   2441 
   2442 /* pmap_pageable			INTERFACE
   2443  **
   2444  * Make the specified range of addresses within the given pmap,
   2445  * 'pageable' or 'not-pageable'.  A pageable page must not cause
   2446  * any faults when referenced.  A non-pageable page may.
   2447  *
   2448  * This routine is only advisory.  The VM system will call pmap_enter()
   2449  * to wire or unwire pages that are going to be made pageable before calling
   2450  * this function.  By the time this routine is called, everything that needs
   2451  * to be done has already been done.
   2452  */
   2453 void
   2454 pmap_pageable(pmap, start, end, pageable)
   2455 	pmap_t pmap;
   2456 	vm_offset_t start, end;
   2457 	boolean_t pageable;
   2458 {
   2459 	/* not implemented. */
   2460 }
   2461 
   2462 /* pmap_copy				INTERFACE
   2463  **
   2464  * Copy the mappings of a range of addresses in one pmap, into
   2465  * the destination address of another.
   2466  *
   2467  * This routine is advisory.  Should we one day decide that MMU tables
   2468  * may be shared by more than one pmap, this function should be used to
   2469  * link them together.  Until that day however, we do nothing.
   2470  */
   2471 void
   2472 pmap_copy(pmap_a, pmap_b, dst, len, src)
   2473 	pmap_t pmap_a, pmap_b;
   2474 	vm_offset_t dst;
   2475 	vm_size_t   len;
   2476 	vm_offset_t src;
   2477 {
   2478 	/* not implemented. */
   2479 }
   2480 
   2481 /* pmap_copy_page			INTERFACE
   2482  **
   2483  * Copy the contents of one physical page into another.
   2484  *
   2485  * This function makes use of two virtual pages allocated in pmap_bootstrap()
   2486  * to map the two specified physical pages into the kernel address space.  It
   2487  * then uses bcopy() to copy one into the other.
   2488  *
   2489  * Note: We could use the transparent translation registers to make the
   2490  * mappings.  If we do so, be sure to disable interrupts before using them.
   2491  */
   2492 void
   2493 pmap_copy_page(src, dst)
   2494 	vm_offset_t src, dst;
   2495 {
   2496 	PMAP_LOCK();
   2497 	if (tmp_vpages_inuse)
   2498 		panic("pmap_copy_page: temporary vpages are in use.");
   2499 	tmp_vpages_inuse++;
   2500 
   2501 	/* XXX - Use non-cached mappings to avoid cache polution? */
   2502 	pmap_enter_kernel(tmp_vpages[0], src, VM_PROT_READ);
   2503 	pmap_enter_kernel(tmp_vpages[1], dst, VM_PROT_READ|VM_PROT_WRITE);
   2504 	copypage((char *) tmp_vpages[0], (char *) tmp_vpages[1]);
   2505 
   2506 	tmp_vpages_inuse--;
   2507 	PMAP_UNLOCK();
   2508 }
   2509 
   2510 /* pmap_zero_page			INTERFACE
   2511  **
   2512  * Zero the contents of the specified physical page.
   2513  *
   2514  * Uses one of the virtual pages allocated in pmap_boostrap()
   2515  * to map the specified page into the kernel address space.  Then uses
   2516  * bzero() to zero out the page.
   2517  */
   2518 void
   2519 pmap_zero_page(pa)
   2520 	vm_offset_t pa;
   2521 {
   2522 	PMAP_LOCK();
   2523 	if (tmp_vpages_inuse)
   2524 		panic("pmap_zero_page: temporary vpages are in use.");
   2525 	tmp_vpages_inuse++;
   2526 
   2527 	pmap_enter_kernel(tmp_vpages[0], pa, VM_PROT_READ|VM_PROT_WRITE);
   2528 	zeropage((char *) tmp_vpages[0]);
   2529 
   2530 	tmp_vpages_inuse--;
   2531 	PMAP_UNLOCK();
   2532 }
   2533 
   2534 /* pmap_collect			INTERFACE
   2535  **
   2536  * Called from the VM system when we are about to swap out
   2537  * the process using this pmap.  This should give up any
   2538  * resources held here, including all its MMU tables.
   2539  */
   2540 void
   2541 pmap_collect(pmap)
   2542 	pmap_t pmap;
   2543 {
   2544 	/* XXX - todo... */
   2545 }
   2546 
   2547 /* pmap_create			INTERFACE
   2548  **
   2549  * Create and return a pmap structure.
   2550  */
   2551 pmap_t
   2552 pmap_create(size)
   2553 	vm_size_t size;
   2554 {
   2555 	pmap_t	pmap;
   2556 
   2557 	if (size)
   2558 		return NULL;
   2559 
   2560 	pmap = (pmap_t) malloc(sizeof(struct pmap), M_VMPMAP, M_WAITOK);
   2561 	pmap_pinit(pmap);
   2562 
   2563 	return pmap;
   2564 }
   2565 
   2566 /* pmap_pinit			INTERNAL
   2567  **
   2568  * Initialize a pmap structure.
   2569  */
   2570 void
   2571 pmap_pinit(pmap)
   2572 	pmap_t pmap;
   2573 {
   2574 	bzero(pmap, sizeof(struct pmap));
   2575 	pmap->pm_a_tmgr = NULL;
   2576 	pmap->pm_a_phys = kernAphys;
   2577 }
   2578 
   2579 /* pmap_release				INTERFACE
   2580  **
   2581  * Release any resources held by the given pmap.
   2582  *
   2583  * This is the reverse analog to pmap_pinit.  It does not
   2584  * necessarily mean for the pmap structure to be deallocated,
   2585  * as in pmap_destroy.
   2586  */
   2587 void
   2588 pmap_release(pmap)
   2589 	pmap_t pmap;
   2590 {
   2591 	/*
   2592 	 * As long as the pmap contains no mappings,
   2593 	 * which always should be the case whenever
   2594 	 * this function is called, there really should
   2595 	 * be nothing to do.
   2596 	 *
   2597 	 * XXX - This function is being called while there are
   2598 	 * still valid mappings, so I guess the above must not
   2599 	 * be true.
   2600 	 * XXX - Unless the mappings persist due to a bug here...
   2601 	 *     + That's what was happening.  The map had no mappings,
   2602 	 *       but it still had an A table.  pmap_remove() was not
   2603 	 *       releasing tables when they were empty.
   2604 	 */
   2605 #ifdef	PMAP_DEBUG
   2606 	if (pmap == NULL)
   2607 		return;
   2608 	if (pmap == pmap_kernel())
   2609 		panic("pmap_release: kernel pmap");
   2610 #endif
   2611 	/*
   2612 	 * XXX - If this pmap has an A table, give it back.
   2613 	 * The pmap SHOULD be empty by now, and pmap_remove
   2614 	 * should have already given back the A table...
   2615 	 * However, I see:  pmap->pm_a_tmgr->at_ecnt == 1
   2616 	 * at this point, which means some mapping was not
   2617 	 * removed when it should have been. -gwr
   2618 	 */
   2619 	if (pmap->pm_a_tmgr != NULL) {
   2620 		/* First make sure we are not using it! */
   2621 		if (kernel_crp.rp_addr == pmap->pm_a_phys) {
   2622 			kernel_crp.rp_addr = kernAphys;
   2623 			loadcrp(&kernel_crp);
   2624 		}
   2625 #ifdef	PMAP_DEBUG /* XXX - todo! */
   2626 		/* XXX - Now complain... */
   2627 		printf("pmap_release: still have table\n");
   2628 		Debugger();
   2629 #endif
   2630 		free_a_table(pmap->pm_a_tmgr, TRUE);
   2631 		pmap->pm_a_tmgr = NULL;
   2632 		pmap->pm_a_phys = kernAphys;
   2633 	}
   2634 }
   2635 
   2636 /* pmap_reference			INTERFACE
   2637  **
   2638  * Increment the reference count of a pmap.
   2639  */
   2640 void
   2641 pmap_reference(pmap)
   2642 	pmap_t pmap;
   2643 {
   2644 	if (pmap == NULL)
   2645 		return;
   2646 
   2647 	/* pmap_lock(pmap); */
   2648 	pmap->pm_refcount++;
   2649 	/* pmap_unlock(pmap); */
   2650 }
   2651 
   2652 /* pmap_dereference			INTERNAL
   2653  **
   2654  * Decrease the reference count on the given pmap
   2655  * by one and return the current count.
   2656  */
   2657 int
   2658 pmap_dereference(pmap)
   2659 	pmap_t pmap;
   2660 {
   2661 	int rtn;
   2662 
   2663 	if (pmap == NULL)
   2664 		return 0;
   2665 
   2666 	/* pmap_lock(pmap); */
   2667 	rtn = --pmap->pm_refcount;
   2668 	/* pmap_unlock(pmap); */
   2669 
   2670 	return rtn;
   2671 }
   2672 
   2673 /* pmap_destroy			INTERFACE
   2674  **
   2675  * Decrement a pmap's reference count and delete
   2676  * the pmap if it becomes zero.  Will be called
   2677  * only after all mappings have been removed.
   2678  */
   2679 void
   2680 pmap_destroy(pmap)
   2681 	pmap_t pmap;
   2682 {
   2683 	if (pmap == NULL)
   2684 		return;
   2685 	if (pmap == &kernel_pmap)
   2686 		panic("pmap_destroy: kernel_pmap!");
   2687 	if (pmap_dereference(pmap) == 0) {
   2688 		pmap_release(pmap);
   2689 		free(pmap, M_VMPMAP);
   2690 	}
   2691 }
   2692 
   2693 /* pmap_is_referenced			INTERFACE
   2694  **
   2695  * Determine if the given physical page has been
   2696  * referenced (read from [or written to.])
   2697  */
   2698 boolean_t
   2699 pmap_is_referenced(pa)
   2700 	vm_offset_t pa;
   2701 {
   2702 	pv_t      *pv;
   2703 	int       idx, s;
   2704 
   2705 	if (!pv_initialized)
   2706 		return FALSE;
   2707 	/* XXX - this may be unecessary. */
   2708 	if (!is_managed(pa))
   2709 		return FALSE;
   2710 
   2711 	pv = pa2pv(pa);
   2712 	/*
   2713 	 * Check the flags on the pv head.  If they are set,
   2714 	 * return immediately.  Otherwise a search must be done.
   2715 	 */
   2716 	if (pv->pv_flags & PV_FLAGS_USED)
   2717 		return TRUE;
   2718 	else {
   2719 		s = splimp();
   2720 		/*
   2721 		 * Search through all pv elements pointing
   2722 		 * to this page and query their reference bits
   2723 		 */
   2724 		for (idx = pv->pv_idx; idx != PVE_EOL; idx =
   2725 			pvebase[idx].pve_next)
   2726 			if (MMU_PTE_USED(kernCbase[idx])) {
   2727 				splx(s);
   2728 				return TRUE;
   2729 			}
   2730 		splx(s);
   2731 	}
   2732 
   2733 	return FALSE;
   2734 }
   2735 
   2736 /* pmap_is_modified			INTERFACE
   2737  **
   2738  * Determine if the given physical page has been
   2739  * modified (written to.)
   2740  */
   2741 boolean_t
   2742 pmap_is_modified(pa)
   2743 	vm_offset_t pa;
   2744 {
   2745 	pv_t      *pv;
   2746 	int       idx, s;
   2747 
   2748 	if (!pv_initialized)
   2749 		return FALSE;
   2750 	/* XXX - this may be unecessary. */
   2751 	if (!is_managed(pa))
   2752 		return FALSE;
   2753 
   2754 	/* see comments in pmap_is_referenced() */
   2755 	pv = pa2pv(pa);
   2756 	if (pv->pv_flags & PV_FLAGS_MDFY) {
   2757 		return TRUE;
   2758 	} else {
   2759 		s = splimp();
   2760 		for (idx = pv->pv_idx; idx != PVE_EOL; idx =
   2761 			pvebase[idx].pve_next)
   2762 			if (MMU_PTE_MODIFIED(kernCbase[idx])) {
   2763 				splx(s);
   2764 				return TRUE;
   2765 			}
   2766 		splx(s);
   2767 	}
   2768 
   2769 	return FALSE;
   2770 }
   2771 
   2772 /* pmap_page_protect			INTERFACE
   2773  **
   2774  * Applies the given protection to all mappings to the given
   2775  * physical page.
   2776  */
   2777 void
   2778 pmap_page_protect(pa, prot)
   2779 	vm_offset_t pa;
   2780 	vm_prot_t prot;
   2781 {
   2782 	pv_t      *pv;
   2783 	int       idx, s;
   2784 	vm_offset_t va;
   2785 	struct mmu_short_pte_struct *pte;
   2786 	c_tmgr_t  *c_tbl;
   2787 	pmap_t    pmap, curpmap;
   2788 
   2789 	if (!is_managed(pa))
   2790 		return;
   2791 
   2792 	curpmap = current_pmap();
   2793 	pv = pa2pv(pa);
   2794 	s = splimp();
   2795 	for (idx = pv->pv_idx; idx != PVE_EOL; idx = pvebase[idx].pve_next) {
   2796 		pte = &kernCbase[idx];
   2797 		switch (prot) {
   2798 			case VM_PROT_ALL:
   2799 				/* do nothing */
   2800 				break;
   2801 			case VM_PROT_EXECUTE:
   2802 			case VM_PROT_READ:
   2803 			case VM_PROT_READ|VM_PROT_EXECUTE:
   2804 				pte->attr.raw |= MMU_SHORT_PTE_WP;
   2805 
   2806 				/*
   2807 				 * Determine the virtual address mapped by
   2808 				 * the PTE and flush ATC entries if necessary.
   2809 				 */
   2810 				va = pmap_get_pteinfo(idx, &pmap, &c_tbl);
   2811 				if (pmap == curpmap || pmap == pmap_kernel())
   2812 					TBIS(va);
   2813 				break;
   2814 			case VM_PROT_NONE:
   2815 				/* Save the mod/ref bits. */
   2816 				pv->pv_flags |= pte->attr.raw;
   2817 				/* Invalidate the PTE. */
   2818 				pte->attr.raw = MMU_DT_INVALID;
   2819 
   2820 				/*
   2821 				 * Update table counts.  And flush ATC entries
   2822 				 * if necessary.
   2823 				 */
   2824 				va = pmap_get_pteinfo(idx, &pmap, &c_tbl);
   2825 
   2826 				/*
   2827 				 * If the PTE belongs to the kernel map,
   2828 				 * be sure to flush the page it maps.
   2829 				 */
   2830 				if (pmap == pmap_kernel()) {
   2831 					TBIS(va);
   2832 				} else {
   2833 					/*
   2834 					 * The PTE belongs to a user map.
   2835 					 * update the entry count in the C
   2836 					 * table to which it belongs and flush
   2837 					 * the ATC if the mapping belongs to
   2838 					 * the current pmap.
   2839 					 */
   2840 					c_tbl->ct_ecnt--;
   2841 					if (pmap == curpmap)
   2842 						TBIS(va);
   2843 				}
   2844 				break;
   2845 			default:
   2846 				break;
   2847 		}
   2848 	}
   2849 
   2850 	/*
   2851 	 * If the protection code indicates that all mappings to the page
   2852 	 * be removed, truncate the PV list to zero entries.
   2853 	 */
   2854 	if (prot == VM_PROT_NONE)
   2855 		pv->pv_idx = PVE_EOL;
   2856 	splx(s);
   2857 }
   2858 
   2859 /* pmap_get_pteinfo		INTERNAL
   2860  **
   2861  * Called internally to find the pmap and virtual address within that
   2862  * map to which the pte at the given index maps.  Also includes the PTE's C
   2863  * table manager.
   2864  *
   2865  * Returns the pmap in the argument provided, and the virtual address
   2866  * by return value.
   2867  */
   2868 vm_offset_t
   2869 pmap_get_pteinfo(idx, pmap, tbl)
   2870 	u_int idx;
   2871 	pmap_t *pmap;
   2872 	c_tmgr_t **tbl;
   2873 {
   2874 	a_tmgr_t    *a_tbl;
   2875 	b_tmgr_t    *b_tbl;
   2876 	c_tmgr_t    *c_tbl;
   2877 	vm_offset_t     va = 0;
   2878 
   2879 	/*
   2880 	 * Determine if the PTE is a kernel PTE or a user PTE.
   2881 	 */
   2882 	if (idx >= NUM_KERN_PTES) {
   2883 		/*
   2884 		 * The PTE belongs to a user mapping.
   2885 		 * Find the virtual address by decoding table indices.
   2886 		 * Each successive decode will reveal the address from
   2887 		 * least to most significant bit fashion.
   2888 		 *
   2889 		 * 31                              0
   2890 		 * +-------------------------------+
   2891 		 * |AAAAAAABBBBBBCCCCCC............|
   2892 		 * +-------------------------------+
   2893 		 */
   2894 		/* XXX: c_tbl = mmuC2tmgr(pte); */
   2895 		/* XXX: Would like an inline for this to validate idx... */
   2896 		c_tbl = &Ctmgrbase[(idx - NUM_KERN_PTES) / MMU_C_TBL_SIZE];
   2897 		b_tbl = c_tbl->ct_parent;
   2898 		a_tbl = b_tbl->bt_parent;
   2899 		*pmap = a_tbl->at_parent;
   2900 		*tbl = c_tbl;
   2901 
   2902 		/* Start with the 'C' bits, then add B and A... */
   2903 		va |= ((idx % MMU_C_TBL_SIZE) << MMU_TIC_SHIFT);
   2904 		va |= (c_tbl->ct_pidx << MMU_TIB_SHIFT);
   2905 		va |= (b_tbl->bt_pidx << MMU_TIA_SHIFT);
   2906 	} else {
   2907 		/*
   2908 		 * The PTE belongs to the kernel map.
   2909 		 */
   2910 		*pmap = pmap_kernel();
   2911 
   2912 		va = _ptob(idx);
   2913 		va += KERNBASE;
   2914 	}
   2915 
   2916 	return va;
   2917 }
   2918 
   2919 #if	0	/* XXX - I am eliminating this function. */
   2920 /* pmap_find_tic			INTERNAL
   2921  **
   2922  * Given the address of a pte, find the TIC (level 'C' table index) for
   2923  * the pte within its C table.
   2924  */
   2925 char
   2926 pmap_find_tic(pte)
   2927 	mmu_short_pte_t *pte;
   2928 {
   2929 	return ((pte - mmuCbase) % MMU_C_TBL_SIZE);
   2930 }
   2931 #endif	/* 0 */
   2932 
   2933 
   2934 /* pmap_clear_modify			INTERFACE
   2935  **
   2936  * Clear the modification bit on the page at the specified
   2937  * physical address.
   2938  *
   2939  */
   2940 void
   2941 pmap_clear_modify(pa)
   2942 	vm_offset_t pa;
   2943 {
   2944 	pmap_clear_pv(pa, PV_FLAGS_MDFY);
   2945 }
   2946 
   2947 /* pmap_clear_reference			INTERFACE
   2948  **
   2949  * Clear the referenced bit on the page at the specified
   2950  * physical address.
   2951  */
   2952 void
   2953 pmap_clear_reference(pa)
   2954 	vm_offset_t pa;
   2955 {
   2956 	pmap_clear_pv(pa, PV_FLAGS_USED);
   2957 }
   2958 
   2959 /* pmap_clear_pv			INTERNAL
   2960  **
   2961  * Clears the specified flag from the specified physical address.
   2962  * (Used by pmap_clear_modify() and pmap_clear_reference().)
   2963  *
   2964  * Flag is one of:
   2965  *   PV_FLAGS_MDFY - Page modified bit.
   2966  *   PV_FLAGS_USED - Page used (referenced) bit.
   2967  *
   2968  * This routine must not only clear the flag on the pv list
   2969  * head.  It must also clear the bit on every pte in the pv
   2970  * list associated with the address.
   2971  */
   2972 void
   2973 pmap_clear_pv(pa, flag)
   2974 	vm_offset_t pa;
   2975 	int flag;
   2976 {
   2977 	pv_t      *pv;
   2978 	int       idx, s;
   2979 	vm_offset_t     va;
   2980 	pmap_t          pmap;
   2981 	mmu_short_pte_t *pte;
   2982 	c_tmgr_t        *c_tbl;
   2983 
   2984 	pv = pa2pv(pa);
   2985 
   2986 	s = splimp();
   2987 	pv->pv_flags &= ~(flag);
   2988 	for (idx = pv->pv_idx; idx != PVE_EOL; idx = pvebase[idx].pve_next) {
   2989 		pte = &kernCbase[idx];
   2990 		pte->attr.raw &= ~(flag);
   2991 		/*
   2992 		 * The MC68030 MMU will not set the modified or
   2993 		 * referenced bits on any MMU tables for which it has
   2994 		 * a cached descriptor with its modify bit set.  To insure
   2995 		 * that it will modify these bits on the PTE during the next
   2996 		 * time it is written to or read from, we must flush it from
   2997 		 * the ATC.
   2998 		 *
   2999 		 * Ordinarily it is only necessary to flush the descriptor
   3000 		 * if it is used in the current address space.  But since I
   3001 		 * am not sure that there will always be a notion of
   3002 		 * 'the current address space' when this function is called,
   3003 		 * I will skip the test and always flush the address.  It
   3004 		 * does no harm.
   3005 		 */
   3006 		va = pmap_get_pteinfo(idx, &pmap, &c_tbl);
   3007 		TBIS(va);
   3008 	}
   3009 	splx(s);
   3010 }
   3011 
   3012 /* pmap_extract			INTERFACE
   3013  **
   3014  * Return the physical address mapped by the virtual address
   3015  * in the specified pmap or 0 if it is not known.
   3016  *
   3017  * Note: this function should also apply an exclusive lock
   3018  * on the pmap system during its duration.
   3019  */
   3020 vm_offset_t
   3021 pmap_extract(pmap, va)
   3022 	pmap_t      pmap;
   3023 	vm_offset_t va;
   3024 {
   3025 	int a_idx, b_idx, pte_idx;
   3026 	a_tmgr_t	*a_tbl;
   3027 	b_tmgr_t	*b_tbl;
   3028 	c_tmgr_t	*c_tbl;
   3029 	mmu_short_pte_t	*c_pte;
   3030 
   3031 	if (pmap == pmap_kernel())
   3032 		return pmap_extract_kernel(va);
   3033 	if (pmap == NULL)
   3034 		return 0;
   3035 
   3036 	if (pmap_stroll(pmap, va, &a_tbl, &b_tbl, &c_tbl,
   3037 		&c_pte, &a_idx, &b_idx, &pte_idx) == FALSE)
   3038 		return 0;
   3039 
   3040 	if (!MMU_VALID_DT(*c_pte))
   3041 		return 0;
   3042 
   3043 	return (MMU_PTE_PA(*c_pte));
   3044 }
   3045 
   3046 /* pmap_extract_kernel		INTERNAL
   3047  **
   3048  * Extract a translation from the kernel address space.
   3049  */
   3050 vm_offset_t
   3051 pmap_extract_kernel(va)
   3052 	vm_offset_t va;
   3053 {
   3054 	mmu_short_pte_t *pte;
   3055 
   3056 	pte = &kernCbase[(u_int) _btop(va - KERNBASE)];
   3057 	return MMU_PTE_PA(*pte);
   3058 }
   3059 
   3060 /* pmap_remove_kernel		INTERNAL
   3061  **
   3062  * Remove the mapping of a range of virtual addresses from the kernel map.
   3063  * The arguments are already page-aligned.
   3064  */
   3065 void
   3066 pmap_remove_kernel(sva, eva)
   3067 	vm_offset_t sva;
   3068 	vm_offset_t eva;
   3069 {
   3070 	int idx, eidx;
   3071 
   3072 #ifdef	PMAP_DEBUG
   3073 	if ((sva & PGOFSET) || (eva & PGOFSET))
   3074 		panic("pmap_remove_kernel: alignment");
   3075 #endif
   3076 
   3077 	idx  = _btop(sva - KERNBASE);
   3078 	eidx = _btop(eva - KERNBASE);
   3079 
   3080 	while (idx < eidx)
   3081 		pmap_remove_pte(&kernCbase[idx++]);
   3082 	/* Always flush the ATC when maniplating the kernel address space. */
   3083 	TBIAS();
   3084 }
   3085 
   3086 /* pmap_remove			INTERFACE
   3087  **
   3088  * Remove the mapping of a range of virtual addresses from the given pmap.
   3089  *
   3090  * If the range contains any wired entries, this function will probably create
   3091  * disaster.
   3092  */
   3093 void
   3094 pmap_remove(pmap, start, end)
   3095 	pmap_t pmap;
   3096 	vm_offset_t start;
   3097 	vm_offset_t end;
   3098 {
   3099 
   3100 	if (pmap == pmap_kernel()) {
   3101 		pmap_remove_kernel(start, end);
   3102 		return;
   3103 	}
   3104 
   3105 	/*
   3106 	 * XXX - Temporary(?) statement to prevent panic caused
   3107 	 * by vm_alloc_with_pager() handing us a software map (ie NULL)
   3108 	 * to remove because it couldn't get backing store.
   3109 	 * (I guess.)
   3110 	 */
   3111 	if (pmap == NULL)
   3112 		return;
   3113 
   3114 	/*
   3115 	 * If the pmap doesn't have an A table of its own, it has no mappings
   3116 	 * that can be removed.
   3117 	 */
   3118 	if (pmap->pm_a_tmgr == NULL)
   3119 		return;
   3120 
   3121 	/*
   3122 	 * Remove the specified range from the pmap.  If the function
   3123 	 * returns true, the operation removed all the valid mappings
   3124 	 * in the pmap and freed its A table.  If this happened to the
   3125 	 * currently loaded pmap, the MMU root pointer must be reloaded
   3126 	 * with the default 'kernel' map.
   3127 	 */
   3128 	if (pmap_remove_a(pmap->pm_a_tmgr, start, end)) {
   3129 		if (kernel_crp.rp_addr == pmap->pm_a_phys) {
   3130 			kernel_crp.rp_addr = kernAphys;
   3131 			loadcrp(&kernel_crp);
   3132 			/* will do TLB flush below */
   3133 		}
   3134 		pmap->pm_a_tmgr = NULL;
   3135 		pmap->pm_a_phys = kernAphys;
   3136 	}
   3137 
   3138 	/*
   3139 	 * If we just modified the current address space,
   3140 	 * make sure to flush the MMU cache.
   3141 	 *
   3142 	 * XXX - this could be an unecessarily large flush.
   3143 	 * XXX - Could decide, based on the size of the VA range
   3144 	 * to be removed, whether to flush "by pages" or "all".
   3145 	 */
   3146 	if (pmap == current_pmap())
   3147 		TBIAU();
   3148 }
   3149 
   3150 /* pmap_remove_a			INTERNAL
   3151  **
   3152  * This is function number one in a set of three that removes a range
   3153  * of memory in the most efficient manner by removing the highest possible
   3154  * tables from the memory space.  This particular function attempts to remove
   3155  * as many B tables as it can, delegating the remaining fragmented ranges to
   3156  * pmap_remove_b().
   3157  *
   3158  * If the removal operation results in an empty A table, the function returns
   3159  * TRUE.
   3160  *
   3161  * It's ugly but will do for now.
   3162  */
   3163 boolean_t
   3164 pmap_remove_a(a_tbl, start, end)
   3165 	a_tmgr_t *a_tbl;
   3166 	vm_offset_t start;
   3167 	vm_offset_t end;
   3168 {
   3169 	boolean_t empty;
   3170 	int idx;
   3171 	vm_offset_t nstart, nend;
   3172 	b_tmgr_t *b_tbl;
   3173 	mmu_long_dte_t  *a_dte;
   3174 	mmu_short_dte_t *b_dte;
   3175 
   3176 	/*
   3177 	 * The following code works with what I call a 'granularity
   3178 	 * reduction algorithim'.  A range of addresses will always have
   3179 	 * the following properties, which are classified according to
   3180 	 * how the range relates to the size of the current granularity
   3181 	 * - an A table entry:
   3182 	 *
   3183 	 *            1 2       3 4
   3184 	 * -+---+---+---+---+---+---+---+-
   3185 	 * -+---+---+---+---+---+---+---+-
   3186 	 *
   3187 	 * A range will always start on a granularity boundary, illustrated
   3188 	 * by '+' signs in the table above, or it will start at some point
   3189 	 * inbetween a granularity boundary, as illustrated by point 1.
   3190 	 * The first step in removing a range of addresses is to remove the
   3191 	 * range between 1 and 2, the nearest granularity boundary.  This
   3192 	 * job is handled by the section of code governed by the
   3193 	 * 'if (start < nstart)' statement.
   3194 	 *
   3195 	 * A range will always encompass zero or more intergral granules,
   3196 	 * illustrated by points 2 and 3.  Integral granules are easy to
   3197 	 * remove.  The removal of these granules is the second step, and
   3198 	 * is handled by the code block 'if (nstart < nend)'.
   3199 	 *
   3200 	 * Lastly, a range will always end on a granularity boundary,
   3201 	 * ill. by point 3, or it will fall just beyond one, ill. by point
   3202 	 * 4.  The last step involves removing this range and is handled by
   3203 	 * the code block 'if (nend < end)'.
   3204 	 */
   3205 	nstart = MMU_ROUND_UP_A(start);
   3206 	nend = MMU_ROUND_A(end);
   3207 
   3208 	if (start < nstart) {
   3209 		/*
   3210 		 * This block is executed if the range starts between
   3211 		 * a granularity boundary.
   3212 		 *
   3213 		 * First find the DTE which is responsible for mapping
   3214 		 * the start of the range.
   3215 		 */
   3216 		idx = MMU_TIA(start);
   3217 		a_dte = &a_tbl->at_dtbl[idx];
   3218 
   3219 		/*
   3220 		 * If the DTE is valid then delegate the removal of the sub
   3221 		 * range to pmap_remove_b(), which can remove addresses at
   3222 		 * a finer granularity.
   3223 		 */
   3224 		if (MMU_VALID_DT(*a_dte)) {
   3225 			b_dte = mmu_ptov(a_dte->addr.raw);
   3226 			b_tbl = mmuB2tmgr(b_dte);
   3227 
   3228 			/*
   3229 			 * The sub range to be removed starts at the start
   3230 			 * of the full range we were asked to remove, and ends
   3231 			 * at the greater of:
   3232 			 * 1. The end of the full range, -or-
   3233 			 * 2. The end of the full range, rounded down to the
   3234 			 *    nearest granularity boundary.
   3235 			 */
   3236 			if (end < nstart)
   3237 				empty = pmap_remove_b(b_tbl, start, end);
   3238 			else
   3239 				empty = pmap_remove_b(b_tbl, start, nstart);
   3240 
   3241 			/*
   3242 			 * If the removal resulted in an empty B table,
   3243 			 * invalidate the DTE that points to it and decrement
   3244 			 * the valid entry count of the A table.
   3245 			 */
   3246 			if (empty) {
   3247 				a_dte->attr.raw = MMU_DT_INVALID;
   3248 				a_tbl->at_ecnt--;
   3249 			}
   3250 		}
   3251 		/*
   3252 		 * If the DTE is invalid, the address range is already non-
   3253 		 * existant and can simply be skipped.
   3254 		 */
   3255 	}
   3256 	if (nstart < nend) {
   3257 		/*
   3258 		 * This block is executed if the range spans a whole number
   3259 		 * multiple of granules (A table entries.)
   3260 		 *
   3261 		 * First find the DTE which is responsible for mapping
   3262 		 * the start of the first granule involved.
   3263 		 */
   3264 		idx = MMU_TIA(nstart);
   3265 		a_dte = &a_tbl->at_dtbl[idx];
   3266 
   3267 		/*
   3268 		 * Remove entire sub-granules (B tables) one at a time,
   3269 		 * until reaching the end of the range.
   3270 		 */
   3271 		for (; nstart < nend; a_dte++, nstart += MMU_TIA_RANGE)
   3272 			if (MMU_VALID_DT(*a_dte)) {
   3273 				/*
   3274 				 * Find the B table manager for the
   3275 				 * entry and free it.
   3276 				 */
   3277 				b_dte = mmu_ptov(a_dte->addr.raw);
   3278 				b_tbl = mmuB2tmgr(b_dte);
   3279 				free_b_table(b_tbl, TRUE);
   3280 
   3281 				/*
   3282 				 * Invalidate the DTE that points to the
   3283 				 * B table and decrement the valid entry
   3284 				 * count of the A table.
   3285 				 */
   3286 				a_dte->attr.raw = MMU_DT_INVALID;
   3287 				a_tbl->at_ecnt--;
   3288 			}
   3289 	}
   3290 	if (nend < end) {
   3291 		/*
   3292 		 * This block is executed if the range ends beyond a
   3293 		 * granularity boundary.
   3294 		 *
   3295 		 * First find the DTE which is responsible for mapping
   3296 		 * the start of the nearest (rounded down) granularity
   3297 		 * boundary.
   3298 		 */
   3299 		idx = MMU_TIA(nend);
   3300 		a_dte = &a_tbl->at_dtbl[idx];
   3301 
   3302 		/*
   3303 		 * If the DTE is valid then delegate the removal of the sub
   3304 		 * range to pmap_remove_b(), which can remove addresses at
   3305 		 * a finer granularity.
   3306 		 */
   3307 		if (MMU_VALID_DT(*a_dte)) {
   3308 			/*
   3309 			 * Find the B table manager for the entry
   3310 			 * and hand it to pmap_remove_b() along with
   3311 			 * the sub range.
   3312 			 */
   3313 			b_dte = mmu_ptov(a_dte->addr.raw);
   3314 			b_tbl = mmuB2tmgr(b_dte);
   3315 
   3316 			empty = pmap_remove_b(b_tbl, nend, end);
   3317 
   3318 			/*
   3319 			 * If the removal resulted in an empty B table,
   3320 			 * invalidate the DTE that points to it and decrement
   3321 			 * the valid entry count of the A table.
   3322 			 */
   3323 			if (empty) {
   3324 				a_dte->attr.raw = MMU_DT_INVALID;
   3325 				a_tbl->at_ecnt--;
   3326 			}
   3327 		}
   3328 	}
   3329 
   3330 	/*
   3331 	 * If there are no more entries in the A table, release it
   3332 	 * back to the available pool and return TRUE.
   3333 	 */
   3334 	if (a_tbl->at_ecnt == 0) {
   3335 		a_tbl->at_parent = NULL;
   3336 		TAILQ_REMOVE(&a_pool, a_tbl, at_link);
   3337 		TAILQ_INSERT_HEAD(&a_pool, a_tbl, at_link);
   3338 		empty = TRUE;
   3339 	} else {
   3340 		empty = FALSE;
   3341 	}
   3342 
   3343 	return empty;
   3344 }
   3345 
   3346 /* pmap_remove_b			INTERNAL
   3347  **
   3348  * Remove a range of addresses from an address space, trying to remove entire
   3349  * C tables if possible.
   3350  *
   3351  * If the operation results in an empty B table, the function returns TRUE.
   3352  */
   3353 boolean_t
   3354 pmap_remove_b(b_tbl, start, end)
   3355 	b_tmgr_t *b_tbl;
   3356 	vm_offset_t start;
   3357 	vm_offset_t end;
   3358 {
   3359 	boolean_t empty;
   3360 	int idx;
   3361 	vm_offset_t nstart, nend, rstart;
   3362 	c_tmgr_t *c_tbl;
   3363 	mmu_short_dte_t  *b_dte;
   3364 	mmu_short_pte_t  *c_dte;
   3365 
   3366 
   3367 	nstart = MMU_ROUND_UP_B(start);
   3368 	nend = MMU_ROUND_B(end);
   3369 
   3370 	if (start < nstart) {
   3371 		idx = MMU_TIB(start);
   3372 		b_dte = &b_tbl->bt_dtbl[idx];
   3373 		if (MMU_VALID_DT(*b_dte)) {
   3374 			c_dte = mmu_ptov(MMU_DTE_PA(*b_dte));
   3375 			c_tbl = mmuC2tmgr(c_dte);
   3376 			if (end < nstart)
   3377 				empty = pmap_remove_c(c_tbl, start, end);
   3378 			else
   3379 				empty = pmap_remove_c(c_tbl, start, nstart);
   3380 			if (empty) {
   3381 				b_dte->attr.raw = MMU_DT_INVALID;
   3382 				b_tbl->bt_ecnt--;
   3383 			}
   3384 		}
   3385 	}
   3386 	if (nstart < nend) {
   3387 		idx = MMU_TIB(nstart);
   3388 		b_dte = &b_tbl->bt_dtbl[idx];
   3389 		rstart = nstart;
   3390 		while (rstart < nend) {
   3391 			if (MMU_VALID_DT(*b_dte)) {
   3392 				c_dte = mmu_ptov(MMU_DTE_PA(*b_dte));
   3393 				c_tbl = mmuC2tmgr(c_dte);
   3394 				free_c_table(c_tbl, TRUE);
   3395 				b_dte->attr.raw = MMU_DT_INVALID;
   3396 				b_tbl->bt_ecnt--;
   3397 			}
   3398 			b_dte++;
   3399 			rstart += MMU_TIB_RANGE;
   3400 		}
   3401 	}
   3402 	if (nend < end) {
   3403 		idx = MMU_TIB(nend);
   3404 		b_dte = &b_tbl->bt_dtbl[idx];
   3405 		if (MMU_VALID_DT(*b_dte)) {
   3406 			c_dte = mmu_ptov(MMU_DTE_PA(*b_dte));
   3407 			c_tbl = mmuC2tmgr(c_dte);
   3408 			empty = pmap_remove_c(c_tbl, nend, end);
   3409 			if (empty) {
   3410 				b_dte->attr.raw = MMU_DT_INVALID;
   3411 				b_tbl->bt_ecnt--;
   3412 			}
   3413 		}
   3414 	}
   3415 
   3416 	if (b_tbl->bt_ecnt == 0) {
   3417 		b_tbl->bt_parent = NULL;
   3418 		TAILQ_REMOVE(&b_pool, b_tbl, bt_link);
   3419 		TAILQ_INSERT_HEAD(&b_pool, b_tbl, bt_link);
   3420 		empty = TRUE;
   3421 	} else {
   3422 		empty = FALSE;
   3423 	}
   3424 
   3425 	return empty;
   3426 }
   3427 
   3428 /* pmap_remove_c			INTERNAL
   3429  **
   3430  * Remove a range of addresses from the given C table.
   3431  */
   3432 boolean_t
   3433 pmap_remove_c(c_tbl, start, end)
   3434 	c_tmgr_t *c_tbl;
   3435 	vm_offset_t start;
   3436 	vm_offset_t end;
   3437 {
   3438 	boolean_t empty;
   3439 	int idx;
   3440 	mmu_short_pte_t *c_pte;
   3441 
   3442 	idx = MMU_TIC(start);
   3443 	c_pte = &c_tbl->ct_dtbl[idx];
   3444 	for (;start < end; start += MMU_PAGE_SIZE, c_pte++) {
   3445 		if (MMU_VALID_DT(*c_pte)) {
   3446 			pmap_remove_pte(c_pte);
   3447 			c_tbl->ct_ecnt--;
   3448 		}
   3449 	}
   3450 
   3451 	if (c_tbl->ct_ecnt == 0) {
   3452 		c_tbl->ct_parent = NULL;
   3453 		TAILQ_REMOVE(&c_pool, c_tbl, ct_link);
   3454 		TAILQ_INSERT_HEAD(&c_pool, c_tbl, ct_link);
   3455 		empty = TRUE;
   3456 	} else {
   3457 		empty = FALSE;
   3458 	}
   3459 
   3460 	return empty;
   3461 }
   3462 
   3463 /* is_managed				INTERNAL
   3464  **
   3465  * Determine if the given physical address is managed by the PV system.
   3466  * Note that this logic assumes that no one will ask for the status of
   3467  * addresses which lie in-between the memory banks on the 3/80.  If they
   3468  * do so, it will falsely report that it is managed.
   3469  *
   3470  * Note: A "managed" address is one that was reported to the VM system as
   3471  * a "usable page" during system startup.  As such, the VM system expects the
   3472  * pmap module to keep an accurate track of the useage of those pages.
   3473  * Any page not given to the VM system at startup does not exist (as far as
   3474  * the VM system is concerned) and is therefore "unmanaged."  Examples are
   3475  * those pages which belong to the ROM monitor and the memory allocated before
   3476  * the VM system was started.
   3477  */
   3478 boolean_t
   3479 is_managed(pa)
   3480 	vm_offset_t pa;
   3481 {
   3482 	if (pa >= avail_start && pa < avail_end)
   3483 		return TRUE;
   3484 	else
   3485 		return FALSE;
   3486 }
   3487 
   3488 /* pmap_bootstrap_alloc			INTERNAL
   3489  **
   3490  * Used internally for memory allocation at startup when malloc is not
   3491  * available.  This code will fail once it crosses the first memory
   3492  * bank boundary on the 3/80.  Hopefully by then however, the VM system
   3493  * will be in charge of allocation.
   3494  */
   3495 void *
   3496 pmap_bootstrap_alloc(size)
   3497 	int size;
   3498 {
   3499 	void *rtn;
   3500 
   3501 #ifdef	PMAP_DEBUG
   3502 	if (bootstrap_alloc_enabled == FALSE) {
   3503 		mon_printf("pmap_bootstrap_alloc: disabled\n");
   3504 		sunmon_abort();
   3505 	}
   3506 #endif
   3507 
   3508 	rtn = (void *) virtual_avail;
   3509 	virtual_avail += size;
   3510 
   3511 #ifdef	PMAP_DEBUG
   3512 	if (virtual_avail > virtual_contig_end) {
   3513 		mon_printf("pmap_bootstrap_alloc: out of mem\n");
   3514 		sunmon_abort();
   3515 	}
   3516 #endif
   3517 
   3518 	return rtn;
   3519 }
   3520 
   3521 /* pmap_bootstap_aalign			INTERNAL
   3522  **
   3523  * Used to insure that the next call to pmap_bootstrap_alloc() will
   3524  * return a chunk of memory aligned to the specified size.
   3525  *
   3526  * Note: This function will only support alignment sizes that are powers
   3527  * of two.
   3528  */
   3529 void
   3530 pmap_bootstrap_aalign(size)
   3531 	int size;
   3532 {
   3533 	int off;
   3534 
   3535 	off = virtual_avail & (size - 1);
   3536 	if (off) {
   3537 		(void) pmap_bootstrap_alloc(size - off);
   3538 	}
   3539 }
   3540 
   3541 /* pmap_pa_exists
   3542  **
   3543  * Used by the /dev/mem driver to see if a given PA is memory
   3544  * that can be mapped.  (The PA is not in a hole.)
   3545  */
   3546 int
   3547 pmap_pa_exists(pa)
   3548 	vm_offset_t pa;
   3549 {
   3550 	/* XXX - NOTYET */
   3551 	return (0);
   3552 }
   3553 
   3554 /* pmap_activate			INTERFACE
   3555  **
   3556  * This is called by locore.s:cpu_switch when we are switching to a
   3557  * new process.  This should load the MMU context for the new proc.
   3558  * XXX - Later, this should be done directly in locore.s
   3559  */
   3560 void
   3561 pmap_activate(pmap)
   3562 pmap_t	pmap;
   3563 {
   3564 	u_long rootpa;
   3565 
   3566 	/* Only do reload/flush if we have to. */
   3567 	rootpa = pmap->pm_a_phys;
   3568 	if (kernel_crp.rp_addr != rootpa) {
   3569 		DPRINT(("pmap_activate(%p)\n", pmap));
   3570 		kernel_crp.rp_addr = rootpa;
   3571 		loadcrp(&kernel_crp);
   3572 		TBIAU();
   3573 	}
   3574 }
   3575 
   3576 
   3577 /* pmap_update
   3578  **
   3579  * Apply any delayed changes scheduled for all pmaps immediately.
   3580  *
   3581  * No delayed operations are currently done in this pmap.
   3582  */
   3583 void
   3584 pmap_update()
   3585 {
   3586 	/* not implemented. */
   3587 }
   3588 
   3589 /*
   3590  * Fill in the cpu_kcore header for dumpsys()
   3591  * (See machdep.c)
   3592  */
   3593 void
   3594 pmap_set_kcore_hdr(chdr_p)
   3595 	cpu_kcore_hdr_t *chdr_p;
   3596 {
   3597 	u_long spa, len;
   3598 	int i;
   3599 
   3600 	chdr_p->ckh_contig_end = virtual_contig_end;
   3601 	chdr_p->ckh_kernCbase = (u_long) kernCbase;
   3602 	for (i = 0; i < NPHYS_RAM_SEGS; i++) {
   3603 		spa = avail_mem[i].pmem_start;
   3604 		spa = _trunc_page(spa);
   3605 		len = avail_mem[i].pmem_end - spa;
   3606 		len = _round_page(len);
   3607 		chdr_p->ram_segs[i].start = spa;
   3608 		chdr_p->ram_segs[i].size  = len;
   3609 	}
   3610 }
   3611 
   3612 
   3613 /* pmap_virtual_space			INTERFACE
   3614  **
   3615  * Return the current available range of virtual addresses in the
   3616  * arguuments provided.  Only really called once.
   3617  */
   3618 void
   3619 pmap_virtual_space(vstart, vend)
   3620 	vm_offset_t *vstart, *vend;
   3621 {
   3622 	*vstart = virtual_avail;
   3623 	*vend = virtual_end;
   3624 }
   3625 
   3626 /* pmap_free_pages			INTERFACE
   3627  **
   3628  * Return the number of physical pages still available.
   3629  *
   3630  * This is probably going to be a mess, but it's only called
   3631  * once and it's the only function left that I have to implement!
   3632  */
   3633 u_int
   3634 pmap_free_pages()
   3635 {
   3636 	int i;
   3637 	u_int left;
   3638 	vm_offset_t avail;
   3639 
   3640 	avail = avail_next;
   3641 	left = 0;
   3642 	i = 0;
   3643 	while (avail >= avail_mem[i].pmem_end) {
   3644 		if (avail_mem[i].pmem_next == NULL)
   3645 			return 0;
   3646 		i++;
   3647 	}
   3648 	while (i < NPHYS_RAM_SEGS) {
   3649 		if (avail < avail_mem[i].pmem_start) {
   3650 			/* Avail is inside a hole, march it
   3651 			 * up to the next bank.
   3652 			 */
   3653 			avail = avail_mem[i].pmem_start;
   3654 		}
   3655 		left += _btop(avail_mem[i].pmem_end - avail);
   3656 		if (avail_mem[i].pmem_next == NULL)
   3657 			break;
   3658 		i++;
   3659 	}
   3660 
   3661 	return left;
   3662 }
   3663 
   3664 /* pmap_page_index			INTERFACE
   3665  **
   3666  * Return the index of the given physical page in a list of useable
   3667  * physical pages in the system.  Holes in physical memory may be counted
   3668  * if so desired.  As long as pmap_free_pages() and pmap_page_index()
   3669  * agree as to whether holes in memory do or do not count as valid pages,
   3670  * it really doesn't matter.  However, if you like to save a little
   3671  * memory, don't count holes as valid pages.  This is even more true when
   3672  * the holes are large.
   3673  *
   3674  * We will not count holes as valid pages.  We can generate page indices
   3675  * that conform to this by using the memory bank structures initialized
   3676  * in pmap_alloc_pv().
   3677  */
   3678 int
   3679 pmap_page_index(pa)
   3680 	vm_offset_t pa;
   3681 {
   3682 	struct pmap_physmem_struct *bank = avail_mem;
   3683 
   3684 	/* Search for the memory bank with this page. */
   3685 	/* XXX - What if it is not physical memory? */
   3686 	while (pa > bank->pmem_end)
   3687 		bank = bank->pmem_next;
   3688 	pa -= bank->pmem_start;
   3689 
   3690 	return (bank->pmem_pvbase + _btop(pa));
   3691 }
   3692 
   3693 /* pmap_next_page			INTERFACE
   3694  **
   3695  * Place the physical address of the next available page in the
   3696  * argument given.  Returns FALSE if there are no more pages left.
   3697  *
   3698  * This function must jump over any holes in physical memory.
   3699  * Once this function is used, any use of pmap_bootstrap_alloc()
   3700  * is a sin.  Sinners will be punished with erratic behavior.
   3701  */
   3702 boolean_t
   3703 pmap_next_page(pa)
   3704 	vm_offset_t *pa;
   3705 {
   3706 	static struct pmap_physmem_struct *curbank = avail_mem;
   3707 
   3708 	/* XXX - temporary ROM saving hack. */
   3709 	if (avail_next >= avail_end)
   3710 		return FALSE;
   3711 
   3712 	if (avail_next >= curbank->pmem_end)
   3713 		if (curbank->pmem_next == NULL)
   3714 			return FALSE;
   3715 		else {
   3716 			curbank = curbank->pmem_next;
   3717 			avail_next = curbank->pmem_start;
   3718 		}
   3719 
   3720 	*pa = avail_next;
   3721 	avail_next += NBPG;
   3722 	return TRUE;
   3723 }
   3724 
   3725 /* pmap_count			INTERFACE
   3726  **
   3727  * Return the number of resident (valid) pages in the given pmap.
   3728  *
   3729  * Note:  If this function is handed the kernel map, it will report
   3730  * that it has no mappings.  Hopefully the VM system won't ask for kernel
   3731  * map statistics.
   3732  */
   3733 segsz_t
   3734 pmap_count(pmap, type)
   3735 	pmap_t pmap;
   3736 	int    type;
   3737 {
   3738 	u_int     count;
   3739 	int       a_idx, b_idx;
   3740 	a_tmgr_t *a_tbl;
   3741 	b_tmgr_t *b_tbl;
   3742 	c_tmgr_t *c_tbl;
   3743 
   3744 	/*
   3745 	 * If the pmap does not have its own A table manager, it has no
   3746 	 * valid entires.
   3747 	 */
   3748 	if (pmap->pm_a_tmgr == NULL)
   3749 		return 0;
   3750 
   3751 	a_tbl = pmap->pm_a_tmgr;
   3752 
   3753 	count = 0;
   3754 	for (a_idx = 0; a_idx < MMU_TIA(KERNBASE); a_idx++) {
   3755 	    if (MMU_VALID_DT(a_tbl->at_dtbl[a_idx])) {
   3756 	        b_tbl = mmuB2tmgr(mmu_ptov(a_tbl->at_dtbl[a_idx].addr.raw));
   3757 	        for (b_idx = 0; b_idx < MMU_B_TBL_SIZE; b_idx++) {
   3758 	            if (MMU_VALID_DT(b_tbl->bt_dtbl[b_idx])) {
   3759 	                c_tbl = mmuC2tmgr(
   3760 	                    mmu_ptov(MMU_DTE_PA(b_tbl->bt_dtbl[b_idx])));
   3761 	                if (type == 0)
   3762 	                    /*
   3763 	                     * A resident entry count has been requested.
   3764 	                     */
   3765 	                    count += c_tbl->ct_ecnt;
   3766 	                else
   3767 	                    /*
   3768 	                     * A wired entry count has been requested.
   3769 	                     */
   3770 	                    count += c_tbl->ct_wcnt;
   3771 	            }
   3772 	        }
   3773 	    }
   3774 	}
   3775 
   3776 	return count;
   3777 }
   3778 
   3779 /************************ SUN3 COMPATIBILITY ROUTINES ********************
   3780  * The following routines are only used by DDB for tricky kernel text    *
   3781  * text operations in db_memrw.c.  They are provided for sun3            *
   3782  * compatibility.                                                        *
   3783  *************************************************************************/
   3784 /* get_pte			INTERNAL
   3785  **
   3786  * Return the page descriptor the describes the kernel mapping
   3787  * of the given virtual address.
   3788  */
   3789 extern u_long ptest_addr __P((u_long));	/* XXX: locore.s */
   3790 u_long
   3791 get_pte(va)
   3792 	vm_offset_t va;
   3793 {
   3794 	u_long pte_pa;
   3795 	mmu_short_pte_t *pte;
   3796 
   3797 	/* Get the physical address of the PTE */
   3798 	pte_pa = ptest_addr(va & ~PGOFSET);
   3799 
   3800 	/* Convert to a virtual address... */
   3801 	pte = (mmu_short_pte_t *) (KERNBASE + pte_pa);
   3802 
   3803 	/* Make sure it is in our level-C tables... */
   3804 	if ((pte < kernCbase) ||
   3805 		(pte >= &mmuCbase[NUM_USER_PTES]))
   3806 		return 0;
   3807 
   3808 	/* ... and just return its contents. */
   3809 	return (pte->attr.raw);
   3810 }
   3811 
   3812 
   3813 /* set_pte			INTERNAL
   3814  **
   3815  * Set the page descriptor that describes the kernel mapping
   3816  * of the given virtual address.
   3817  */
   3818 void
   3819 set_pte(va, pte)
   3820 	vm_offset_t va;
   3821 	vm_offset_t pte;
   3822 {
   3823 	u_long idx;
   3824 
   3825 	if (va < KERNBASE)
   3826 		return;
   3827 
   3828 	idx = (unsigned long) _btop(va - KERNBASE);
   3829 	kernCbase[idx].attr.raw = pte;
   3830 }
   3831 
   3832 #ifdef	PMAP_DEBUG
   3833 /************************** DEBUGGING ROUTINES **************************
   3834  * The following routines are meant to be an aid to debugging the pmap  *
   3835  * system.  They are callable from the DDB command line and should be   *
   3836  * prepared to be handed unstable or incomplete states of the system.   *
   3837  ************************************************************************/
   3838 
   3839 /* pv_list
   3840  **
   3841  * List all pages found on the pv list for the given physical page.
   3842  * To avoid endless loops, the listing will stop at the end of the list
   3843  * or after 'n' entries - whichever comes first.
   3844  */
   3845 void
   3846 pv_list(pa, n)
   3847 	vm_offset_t pa;
   3848 	int n;
   3849 {
   3850 	int  idx;
   3851 	vm_offset_t va;
   3852 	pv_t *pv;
   3853 	c_tmgr_t *c_tbl;
   3854 	pmap_t pmap;
   3855 
   3856 	pv = pa2pv(pa);
   3857 	idx = pv->pv_idx;
   3858 
   3859 	for (;idx != PVE_EOL && n > 0; idx=pvebase[idx].pve_next, n--) {
   3860 		va = pmap_get_pteinfo(idx, &pmap, &c_tbl);
   3861 		printf("idx %d, pmap 0x%x, va 0x%x, c_tbl %x\n",
   3862 			idx, (u_int) pmap, (u_int) va, (u_int) c_tbl);
   3863 	}
   3864 }
   3865 #endif	/* PMAP_DEBUG */
   3866 
   3867 #ifdef NOT_YET
   3868 /* and maybe not ever */
   3869 /************************** LOW-LEVEL ROUTINES **************************
   3870  * These routines will eventualy be re-written into assembly and placed *
   3871  * in locore.s.  They are here now as stubs so that the pmap module can *
   3872  * be linked as a standalone user program for testing.                  *
   3873  ************************************************************************/
   3874 /* flush_atc_crp			INTERNAL
   3875  **
   3876  * Flush all page descriptors derived from the given CPU Root Pointer
   3877  * (CRP), or 'A' table as it is known here, from the 68851's automatic
   3878  * cache.
   3879  */
   3880 void
   3881 flush_atc_crp(a_tbl)
   3882 {
   3883 	mmu_long_rp_t rp;
   3884 
   3885 	/* Create a temporary root table pointer that points to the
   3886 	 * given A table.
   3887 	 */
   3888 	rp.attr.raw = ~MMU_LONG_RP_LU;
   3889 	rp.addr.raw = (unsigned int) a_tbl;
   3890 
   3891 	mmu_pflushr(&rp);
   3892 	/* mmu_pflushr:
   3893 	 * 	movel   sp(4)@,a0
   3894 	 * 	pflushr a0@
   3895 	 *	rts
   3896 	 */
   3897 }
   3898 #endif /* NOT_YET */
   3899