Home | History | Annotate | Line # | Download | only in sun3x
pmap.c revision 1.20
      1 /*	$NetBSD: pmap.c,v 1.20 1997/04/09 21:00:40 thorpej Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1996, 1997 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jeremy Cooper.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  * 3. All advertising materials mentioning features or use of this software
     19  *    must display the following acknowledgement:
     20  *        This product includes software developed by the NetBSD
     21  *        Foundation, Inc. and its contributors.
     22  * 4. Neither the name of The NetBSD Foundation nor the names of its
     23  *    contributors may be used to endorse or promote products derived
     24  *    from this software without specific prior written permission.
     25  *
     26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36  * POSSIBILITY OF SUCH DAMAGE.
     37  */
     38 
     39 /*
     40  * XXX These comments aren't quite accurate.  Need to change.
     41  * The sun3x uses the MC68851 Memory Management Unit, which is built
     42  * into the CPU.  The 68851 maps virtual to physical addresses using
     43  * a multi-level table lookup, which is stored in the very memory that
     44  * it maps.  The number of levels of lookup is configurable from one
     45  * to four.  In this implementation, we use three, named 'A' through 'C'.
     46  *
     47  * The MMU translates virtual addresses into physical addresses by
     48  * traversing these tables in a proccess called a 'table walk'.  The most
     49  * significant 7 bits of the Virtual Address ('VA') being translated are
     50  * used as an index into the level A table, whose base in physical memory
     51  * is stored in a special MMU register, the 'CPU Root Pointer' or CRP.  The
     52  * address found at that index in the A table is used as the base
     53  * address for the next table, the B table.  The next six bits of the VA are
     54  * used as an index into the B table, which in turn gives the base address
     55  * of the third and final C table.
     56  *
     57  * The next six bits of the VA are used as an index into the C table to
     58  * locate a Page Table Entry (PTE).  The PTE is a physical address in memory
     59  * to which the remaining 13 bits of the VA are added, producing the
     60  * mapped physical address.
     61  *
     62  * To map the entire memory space in this manner would require 2114296 bytes
     63  * of page tables per process - quite expensive.  Instead we will
     64  * allocate a fixed but considerably smaller space for the page tables at
     65  * the time the VM system is initialized.  When the pmap code is asked by
     66  * the kernel to map a VA to a PA, it allocates tables as needed from this
     67  * pool.  When there are no more tables in the pool, tables are stolen
     68  * from the oldest mapped entries in the tree.  This is only possible
     69  * because all memory mappings are stored in the kernel memory map
     70  * structures, independent of the pmap structures.  A VA which references
     71  * one of these invalidated maps will cause a page fault.  The kernel
     72  * will determine that the page fault was caused by a task using a valid
     73  * VA, but for some reason (which does not concern it), that address was
     74  * not mapped.  It will ask the pmap code to re-map the entry and then
     75  * it will resume executing the faulting task.
     76  *
     77  * In this manner the most efficient use of the page table space is
     78  * achieved.  Tasks which do not execute often will have their tables
     79  * stolen and reused by tasks which execute more frequently.  The best
     80  * size for the page table pool will probably be determined by
     81  * experimentation.
     82  *
     83  * You read all of the comments so far.  Good for you.
     84  * Now go play!
     85  */
     86 
     87 /*** A Note About the 68851 Address Translation Cache
     88  * The MC68851 has a 64 entry cache, called the Address Translation Cache
     89  * or 'ATC'.  This cache stores the most recently used page descriptors
     90  * accessed by the MMU when it does translations.  Using a marker called a
     91  * 'task alias' the MMU can store the descriptors from 8 different table
     92  * spaces concurrently.  The task alias is associated with the base
     93  * address of the level A table of that address space.  When an address
     94  * space is currently active (the CRP currently points to its A table)
     95  * the only cached descriptors that will be obeyed are ones which have a
     96  * matching task alias of the current space associated with them.
     97  *
     98  * Since the cache is always consulted before any table lookups are done,
     99  * it is important that it accurately reflect the state of the MMU tables.
    100  * Whenever a change has been made to a table that has been loaded into
    101  * the MMU, the code must be sure to flush any cached entries that are
    102  * affected by the change.  These instances are documented in the code at
    103  * various points.
    104  */
    105 /*** A Note About the Note About the 68851 Address Translation Cache
    106  * 4 months into this code I discovered that the sun3x does not have
    107  * a MC68851 chip. Instead, it has a version of this MMU that is part of the
    108  * the 68030 CPU.
    109  * All though it behaves very similarly to the 68851, it only has 1 task
    110  * alias and a 22 entry cache.  So sadly (or happily), the first paragraph
    111  * of the previous note does not apply to the sun3x pmap.
    112  */
    113 
    114 #include <sys/param.h>
    115 #include <sys/systm.h>
    116 #include <sys/proc.h>
    117 #include <sys/malloc.h>
    118 #include <sys/user.h>
    119 #include <sys/queue.h>
    120 #include <sys/kcore.h>
    121 
    122 #include <vm/vm.h>
    123 #include <vm/vm_kern.h>
    124 #include <vm/vm_page.h>
    125 
    126 #include <machine/cpu.h>
    127 #include <machine/kcore.h>
    128 #include <machine/pmap.h>
    129 #include <machine/pte.h>
    130 #include <machine/machdep.h>
    131 #include <machine/mon.h>
    132 
    133 #include "pmap_pvt.h"
    134 
    135 /* XXX - What headers declare these? */
    136 extern struct pcb *curpcb;
    137 extern int physmem;
    138 
    139 extern void copypage __P((const void*, void*));
    140 extern void zeropage __P((void*));
    141 
    142 /* Defined in locore.s */
    143 extern char kernel_text[];
    144 
    145 /* Defined by the linker */
    146 extern char etext[], edata[], end[];
    147 extern char *esym;	/* DDB */
    148 
    149 /*************************** DEBUGGING DEFINITIONS ***********************
    150  * Macros, preprocessor defines and variables used in debugging can make *
    151  * code hard to read.  Anything used exclusively for debugging purposes  *
    152  * is defined here to avoid having such mess scattered around the file.  *
    153  *************************************************************************/
    154 #ifdef	PMAP_DEBUG
    155 /*
    156  * To aid the debugging process, macros should be expanded into smaller steps
    157  * that accomplish the same goal, yet provide convenient places for placing
    158  * breakpoints.  When this code is compiled with PMAP_DEBUG mode defined, the
    159  * 'INLINE' keyword is defined to an empty string.  This way, any function
    160  * defined to be a 'static INLINE' will become 'outlined' and compiled as
    161  * a separate function, which is much easier to debug.
    162  */
    163 #define	INLINE	/* nothing */
    164 
    165 /*
    166  * It is sometimes convenient to watch the activity of a particular table
    167  * in the system.  The following variables are used for that purpose.
    168  */
    169 a_tmgr_t *pmap_watch_atbl = 0;
    170 b_tmgr_t *pmap_watch_btbl = 0;
    171 c_tmgr_t *pmap_watch_ctbl = 0;
    172 
    173 int pmap_debug = 0;
    174 #define DPRINT(args) if (pmap_debug) printf args
    175 
    176 #else	/********** Stuff below is defined if NOT debugging **************/
    177 
    178 #define	INLINE	inline
    179 #define DPRINT(args)  /* nada */
    180 
    181 #endif	/* PMAP_DEBUG */
    182 /*********************** END OF DEBUGGING DEFINITIONS ********************/
    183 
    184 /*** Management Structure - Memory Layout
    185  * For every MMU table in the sun3x pmap system there must be a way to
    186  * manage it; we must know which process is using it, what other tables
    187  * depend on it, and whether or not it contains any locked pages.  This
    188  * is solved by the creation of 'table management'  or 'tmgr'
    189  * structures.  One for each MMU table in the system.
    190  *
    191  *                        MAP OF MEMORY USED BY THE PMAP SYSTEM
    192  *
    193  *      towards lower memory
    194  * kernAbase -> +-------------------------------------------------------+
    195  *              | Kernel     MMU A level table                          |
    196  * kernBbase -> +-------------------------------------------------------+
    197  *              | Kernel     MMU B level tables                         |
    198  * kernCbase -> +-------------------------------------------------------+
    199  *              |                                                       |
    200  *              | Kernel     MMU C level tables                         |
    201  *              |                                                       |
    202  * mmuCbase  -> +-------------------------------------------------------+
    203  *              | User       MMU C level tables                         |
    204  * mmuAbase  -> +-------------------------------------------------------+
    205  *              |                                                       |
    206  *              | User       MMU A level tables                         |
    207  *              |                                                       |
    208  * mmuBbase  -> +-------------------------------------------------------+
    209  *              | User       MMU B level tables                         |
    210  * tmgrAbase -> +-------------------------------------------------------+
    211  *              |  TMGR A level table structures                        |
    212  * tmgrBbase -> +-------------------------------------------------------+
    213  *              |  TMGR B level table structures                        |
    214  * tmgrCbase -> +-------------------------------------------------------+
    215  *              |  TMGR C level table structures                        |
    216  * pvbase    -> +-------------------------------------------------------+
    217  *              |  Physical to Virtual mapping table (list heads)       |
    218  * pvebase   -> +-------------------------------------------------------+
    219  *              |  Physical to Virtual mapping table (list elements)    |
    220  *              |                                                       |
    221  *              +-------------------------------------------------------+
    222  *      towards higher memory
    223  *
    224  * For every A table in the MMU A area, there will be a corresponding
    225  * a_tmgr structure in the TMGR A area.  The same will be true for
    226  * the B and C tables.  This arrangement will make it easy to find the
    227  * controling tmgr structure for any table in the system by use of
    228  * (relatively) simple macros.
    229  */
    230 
    231 /*
    232  * Global variables for storing the base addresses for the areas
    233  * labeled above.
    234  */
    235 static vm_offset_t  	kernAphys;
    236 static mmu_long_dte_t	*kernAbase;
    237 static mmu_short_dte_t	*kernBbase;
    238 static mmu_short_pte_t	*kernCbase;
    239 static mmu_short_pte_t	*mmuCbase;
    240 static mmu_short_dte_t	*mmuBbase;
    241 static mmu_long_dte_t	*mmuAbase;
    242 static a_tmgr_t		*Atmgrbase;
    243 static b_tmgr_t		*Btmgrbase;
    244 static c_tmgr_t		*Ctmgrbase;
    245 static pv_t 		*pvbase;
    246 static pv_elem_t	*pvebase;
    247 struct pmap 		kernel_pmap;
    248 
    249 /*
    250  * This holds the CRP currently loaded into the MMU.
    251  */
    252 struct mmu_rootptr kernel_crp;
    253 
    254 /*
    255  * Just all around global variables.
    256  */
    257 static TAILQ_HEAD(a_pool_head_struct, a_tmgr_struct) a_pool;
    258 static TAILQ_HEAD(b_pool_head_struct, b_tmgr_struct) b_pool;
    259 static TAILQ_HEAD(c_pool_head_struct, c_tmgr_struct) c_pool;
    260 
    261 
    262 /*
    263  * Flags used to mark the safety/availability of certain operations or
    264  * resources.
    265  */
    266 static boolean_t
    267     pv_initialized = FALSE,          /* PV system has been initialized. */
    268     tmp_vpages_inuse = FALSE,        /*
    269                                       * Temp. virtual pages are in use.
    270                                       * (see pmap_copy_page, et. al.)
    271                                       */
    272     bootstrap_alloc_enabled = FALSE; /* Safe to use pmap_bootstrap_alloc(). */
    273 
    274 /*
    275  * XXX:  For now, retain the traditional variables that were
    276  * used in the old pmap/vm interface (without NONCONTIG).
    277  */
    278 /* Kernel virtual address space available: */
    279 vm_offset_t	virtual_avail, virtual_end;
    280 /* Physical address space available: */
    281 vm_offset_t	avail_start, avail_end;
    282 
    283 /* This keep track of the end of the contiguously mapped range. */
    284 vm_offset_t virtual_contig_end;
    285 
    286 /* Physical address used by pmap_next_page() */
    287 vm_offset_t avail_next;
    288 
    289 /* These are used by pmap_copy_page(), etc. */
    290 vm_offset_t tmp_vpages[2];
    291 
    292 /*
    293  * The 3/80 is the only member of the sun3x family that has non-contiguous
    294  * physical memory.  Memory is divided into 4 banks which are physically
    295  * locatable on the system board.  Although the size of these banks varies
    296  * with the size of memory they contain, their base addresses are
    297  * permenently fixed.  The following structure, which describes these
    298  * banks, is initialized by pmap_bootstrap() after it reads from a similar
    299  * structure provided by the ROM Monitor.
    300  *
    301  * For the other machines in the sun3x architecture which do have contiguous
    302  * RAM, this list will have only one entry, which will describe the entire
    303  * range of available memory.
    304  */
    305 struct pmap_physmem_struct avail_mem[SUN3X_NPHYS_RAM_SEGS];
    306 u_int total_phys_mem;
    307 
    308 /*************************************************************************/
    309 
    310 /*
    311  * XXX - Should "tune" these based on statistics.
    312  *
    313  * My first guess about the relative numbers of these needed is
    314  * based on the fact that a "typical" process will have several
    315  * pages mapped at low virtual addresses (text, data, bss), then
    316  * some mapped shared libraries, and then some stack pages mapped
    317  * near the high end of the VA space.  Each process can use only
    318  * one A table, and most will use only two B tables (maybe three)
    319  * and probably about four C tables.  Therefore, the first guess
    320  * at the relative numbers of these needed is 1:2:4 -gwr
    321  *
    322  * The number of C tables needed is closely related to the amount
    323  * of physical memory available plus a certain amount attributable
    324  * to the use of double mappings.  With a few simulation statistics
    325  * we can find a reasonably good estimation of this unknown value.
    326  * Armed with that and the above ratios, we have a good idea of what
    327  * is needed at each level. -j
    328  *
    329  * Note: It is not physical memory memory size, but the total mapped
    330  * virtual space required by the combined working sets of all the
    331  * currently _runnable_ processes.  (Sleeping ones don't count.)
    332  * The amount of physical memory should be irrelevant. -gwr
    333  */
    334 #define NUM_A_TABLES	16
    335 #define NUM_B_TABLES	32
    336 #define NUM_C_TABLES	64
    337 
    338 /*
    339  * This determines our total virtual mapping capacity.
    340  * Yes, it is a FIXED value so we can pre-allocate.
    341  */
    342 #define NUM_USER_PTES	(NUM_C_TABLES * MMU_C_TBL_SIZE)
    343 
    344 /*
    345  * The size of the Kernel Virtual Address Space (KVAS)
    346  * for purposes of MMU table allocation is -KERNBASE
    347  * (length from KERNBASE to 0xFFFFffff)
    348  */
    349 #define	KVAS_SIZE		(-KERNBASE)
    350 
    351 /* Numbers of kernel MMU tables to support KVAS_SIZE. */
    352 #define KERN_B_TABLES	(KVAS_SIZE >> MMU_TIA_SHIFT)
    353 #define KERN_C_TABLES	(KVAS_SIZE >> MMU_TIB_SHIFT)
    354 #define	NUM_KERN_PTES	(KVAS_SIZE >> MMU_TIC_SHIFT)
    355 
    356 /*************************** MISCELANEOUS MACROS *************************/
    357 #define PMAP_LOCK()	;	/* Nothing, for now */
    358 #define PMAP_UNLOCK()	;	/* same. */
    359 #define	NULL 0
    360 
    361 static INLINE void *      mmu_ptov __P((vm_offset_t pa));
    362 static INLINE vm_offset_t mmu_vtop __P((void * va));
    363 
    364 #if	0
    365 static INLINE a_tmgr_t * mmuA2tmgr __P((mmu_long_dte_t *));
    366 #endif
    367 static INLINE b_tmgr_t * mmuB2tmgr __P((mmu_short_dte_t *));
    368 static INLINE c_tmgr_t * mmuC2tmgr __P((mmu_short_pte_t *));
    369 
    370 static INLINE pv_t *pa2pv __P((vm_offset_t pa));
    371 static INLINE int   pteidx __P((mmu_short_pte_t *));
    372 static INLINE pmap_t current_pmap __P((void));
    373 
    374 /*
    375  * We can always convert between virtual and physical addresses
    376  * for anything in the range [KERNBASE ... avail_start] because
    377  * that range is GUARANTEED to be mapped linearly.
    378  * We rely heavily upon this feature!
    379  */
    380 static INLINE void *
    381 mmu_ptov(pa)
    382 	vm_offset_t pa;
    383 {
    384 	register vm_offset_t va;
    385 
    386 	va = (pa + KERNBASE);
    387 #ifdef	PMAP_DEBUG
    388 	if ((va < KERNBASE) || (va >= virtual_contig_end))
    389 		panic("mmu_ptov");
    390 #endif
    391 	return ((void*)va);
    392 }
    393 static INLINE vm_offset_t
    394 mmu_vtop(vva)
    395 	void *vva;
    396 {
    397 	register vm_offset_t va;
    398 
    399 	va = (vm_offset_t)vva;
    400 #ifdef	PMAP_DEBUG
    401 	if ((va < KERNBASE) || (va >= virtual_contig_end))
    402 		panic("mmu_ptov");
    403 #endif
    404 	return (va - KERNBASE);
    405 }
    406 
    407 /*
    408  * These macros map MMU tables to their corresponding manager structures.
    409  * They are needed quite often because many of the pointers in the pmap
    410  * system reference MMU tables and not the structures that control them.
    411  * There needs to be a way to find one when given the other and these
    412  * macros do so by taking advantage of the memory layout described above.
    413  * Here's a quick step through the first macro, mmuA2tmgr():
    414  *
    415  * 1) find the offset of the given MMU A table from the base of its table
    416  *    pool (table - mmuAbase).
    417  * 2) convert this offset into a table index by dividing it by the
    418  *    size of one MMU 'A' table. (sizeof(mmu_long_dte_t) * MMU_A_TBL_SIZE)
    419  * 3) use this index to select the corresponding 'A' table manager
    420  *    structure from the 'A' table manager pool (Atmgrbase[index]).
    421  */
    422 /*  This function is not currently used. */
    423 #if	0
    424 static INLINE a_tmgr_t *
    425 mmuA2tmgr(mmuAtbl)
    426 	mmu_long_dte_t *mmuAtbl;
    427 {
    428 	register int idx;
    429 
    430 	/* Which table is this in? */
    431 	idx = (mmuAtbl - mmuAbase) / MMU_A_TBL_SIZE;
    432 #ifdef	PMAP_DEBUG
    433 	if ((idx < 0) || (idx >= NUM_A_TABLES))
    434 		panic("mmuA2tmgr");
    435 #endif
    436 	return (&Atmgrbase[idx]);
    437 }
    438 #endif	/* 0 */
    439 
    440 static INLINE b_tmgr_t *
    441 mmuB2tmgr(mmuBtbl)
    442 	mmu_short_dte_t *mmuBtbl;
    443 {
    444 	register int idx;
    445 
    446 	/* Which table is this in? */
    447 	idx = (mmuBtbl - mmuBbase) / MMU_B_TBL_SIZE;
    448 #ifdef	PMAP_DEBUG
    449 	if ((idx < 0) || (idx >= NUM_B_TABLES))
    450 		panic("mmuB2tmgr");
    451 #endif
    452 	return (&Btmgrbase[idx]);
    453 }
    454 
    455 /* mmuC2tmgr			INTERNAL
    456  **
    457  * Given a pte known to belong to a C table, return the address of
    458  * that table's management structure.
    459  */
    460 static INLINE c_tmgr_t *
    461 mmuC2tmgr(mmuCtbl)
    462 	mmu_short_pte_t *mmuCtbl;
    463 {
    464 	register int idx;
    465 
    466 	/* Which table is this in? */
    467 	idx = (mmuCtbl - mmuCbase) / MMU_C_TBL_SIZE;
    468 #ifdef	PMAP_DEBUG
    469 	if ((idx < 0) || (idx >= NUM_C_TABLES))
    470 		panic("mmuC2tmgr");
    471 #endif
    472 	return (&Ctmgrbase[idx]);
    473 }
    474 
    475 /* This is now a function call below.
    476  * #define pa2pv(pa) \
    477  *	(&pvbase[(unsigned long)\
    478  *		_btop(pa)\
    479  *	])
    480  */
    481 
    482 /* pa2pv			INTERNAL
    483  **
    484  * Return the pv_list_head element which manages the given physical
    485  * address.
    486  */
    487 static INLINE pv_t *
    488 pa2pv(pa)
    489 	vm_offset_t pa;
    490 {
    491 	register struct pmap_physmem_struct *bank;
    492 	register int idx;
    493 
    494 	bank = &avail_mem[0];
    495 	while (pa >= bank->pmem_end)
    496 		bank = bank->pmem_next;
    497 
    498 	pa -= bank->pmem_start;
    499 	idx = bank->pmem_pvbase + _btop(pa);
    500 #ifdef	PMAP_DEBUG
    501 	if ((idx < 0) || (idx >= physmem))
    502 		panic("pa2pv");
    503 #endif
    504 	return &pvbase[idx];
    505 }
    506 
    507 /* pteidx			INTERNAL
    508  **
    509  * Return the index of the given PTE within the entire fixed table of
    510  * PTEs.
    511  */
    512 static INLINE int
    513 pteidx(pte)
    514 	mmu_short_pte_t *pte;
    515 {
    516 	return (pte - kernCbase);
    517 }
    518 
    519 /*
    520  * This just offers a place to put some debugging checks,
    521  * and reduces the number of places "curproc" appears...
    522  */
    523 static INLINE pmap_t
    524 current_pmap()
    525 {
    526 	struct proc *p;
    527 	struct vmspace *vm;
    528 	vm_map_t	map;
    529 	pmap_t	pmap;
    530 
    531 	p = curproc;	/* XXX */
    532 	if (p == NULL)
    533 		pmap = &kernel_pmap;
    534 	else {
    535 		vm = p->p_vmspace;
    536 		map = &vm->vm_map;
    537 		pmap = vm_map_pmap(map);
    538 	}
    539 
    540 	return (pmap);
    541 }
    542 
    543 
    544 /*************************** FUNCTION DEFINITIONS ************************
    545  * These appear here merely for the compiler to enforce type checking on *
    546  * all function calls.                                                   *
    547  *************************************************************************/
    548 
    549 /** External functions
    550  ** - functions used within this module but written elsewhere.
    551  **   both of these functions are in locore.s
    552  ** XXX - These functions were later replaced with their more cryptic
    553  **       hp300 counterparts.  They may be removed now.
    554  **/
    555 #if	0	/* deprecated mmu */
    556 void   mmu_seturp __P((vm_offset_t));
    557 void   mmu_flush __P((int, vm_offset_t));
    558 void   mmu_flusha __P((void));
    559 #endif	/* 0 */
    560 
    561 /** Internal functions
    562  ** - all functions used only within this module are defined in
    563  **   pmap_pvt.h
    564  **/
    565 
    566 /** Interface functions
    567  ** - functions required by the Mach VM Pmap interface, with MACHINE_CONTIG
    568  **   defined.
    569  **/
    570 #ifdef INCLUDED_IN_PMAP_H
    571 void   pmap_bootstrap __P((void));
    572 void  *pmap_bootstrap_alloc __P((int));
    573 void   pmap_enter __P((pmap_t, vm_offset_t, vm_offset_t, vm_prot_t, boolean_t));
    574 pmap_t pmap_create __P((vm_size_t));
    575 void   pmap_destroy __P((pmap_t));
    576 void   pmap_reference __P((pmap_t));
    577 boolean_t   pmap_is_referenced __P((vm_offset_t));
    578 boolean_t   pmap_is_modified __P((vm_offset_t));
    579 void   pmap_clear_modify __P((vm_offset_t));
    580 vm_offset_t pmap_extract __P((pmap_t, vm_offset_t));
    581 void   pmap_activate __P((pmap_t));
    582 int    pmap_page_index __P((vm_offset_t));
    583 u_int  pmap_free_pages __P((void));
    584 #endif /* INCLUDED_IN_PMAP_H */
    585 
    586 /********************************** CODE ********************************
    587  * Functions that are called from other parts of the kernel are labeled *
    588  * as 'INTERFACE' functions.  Functions that are only called from       *
    589  * within the pmap module are labeled as 'INTERNAL' functions.          *
    590  * Functions that are internal, but are not (currently) used at all are *
    591  * labeled 'INTERNAL_X'.                                                *
    592  ************************************************************************/
    593 
    594 /* pmap_bootstrap			INTERNAL
    595  **
    596  * Initializes the pmap system.  Called at boot time from _vm_init()
    597  * in _startup.c.
    598  *
    599  * Reminder: having a pmap_bootstrap_alloc() and also having the VM
    600  *           system implement pmap_steal_memory() is redundant.
    601  *           Don't release this code without removing one or the other!
    602  */
    603 void
    604 pmap_bootstrap(nextva)
    605 	vm_offset_t nextva;
    606 {
    607 	struct physmemory *membank;
    608 	struct pmap_physmem_struct *pmap_membank;
    609 	vm_offset_t va, pa, eva;
    610 	int b, c, i, j;	/* running table counts */
    611 	int size;
    612 
    613 	/*
    614 	 * This function is called by __bootstrap after it has
    615 	 * determined the type of machine and made the appropriate
    616 	 * patches to the ROM vectors (XXX- I don't quite know what I meant
    617 	 * by that.)  It allocates and sets up enough of the pmap system
    618 	 * to manage the kernel's address space.
    619 	 */
    620 
    621 	/*
    622 	 * Determine the range of kernel virtual and physical
    623 	 * space available. Note that we ABSOLUTELY DEPEND on
    624 	 * the fact that the first bank of memory (4MB) is
    625 	 * mapped linearly to KERNBASE (which we guaranteed in
    626 	 * the first instructions of locore.s).
    627 	 * That is plenty for our bootstrap work.
    628 	 */
    629 	virtual_avail = _round_page(nextva);
    630 	virtual_contig_end = KERNBASE + 0x400000; /* +4MB */
    631 	virtual_end = VM_MAX_KERNEL_ADDRESS;
    632 	/* Don't need avail_start til later. */
    633 
    634 	/* We may now call pmap_bootstrap_alloc(). */
    635 	bootstrap_alloc_enabled = TRUE;
    636 
    637 	/*
    638 	 * This is a somewhat unwrapped loop to deal with
    639 	 * copying the PROM's 'phsymem' banks into the pmap's
    640 	 * banks.  The following is always assumed:
    641 	 * 1. There is always at least one bank of memory.
    642 	 * 2. There is always a last bank of memory, and its
    643 	 *    pmem_next member must be set to NULL.
    644 	 * XXX - Use: do { ... } while (membank->next) instead?
    645 	 * XXX - Why copy this stuff at all? -gwr
    646 	 *     - It is needed in pa2pv().
    647 	 */
    648 	membank = romVectorPtr->v_physmemory;
    649 	pmap_membank = avail_mem;
    650 	total_phys_mem = 0;
    651 
    652 	while (membank->next) {
    653 		pmap_membank->pmem_start = membank->address;
    654 		pmap_membank->pmem_end = membank->address + membank->size;
    655 		total_phys_mem += membank->size;
    656 		/* This silly syntax arises because pmap_membank
    657 		 * is really a pre-allocated array, but it is put into
    658 		 * use as a linked list.
    659 		 */
    660 		pmap_membank->pmem_next = pmap_membank + 1;
    661 		pmap_membank = pmap_membank->pmem_next;
    662 		membank = membank->next;
    663 	}
    664 
    665 	/*
    666 	 * XXX The last bank of memory should be reduced to exclude the
    667 	 * physical pages needed by the PROM monitor from being used
    668 	 * in the VM system.  XXX - See below - Fix!
    669 	 */
    670 	pmap_membank->pmem_start = membank->address;
    671 	pmap_membank->pmem_end = membank->address + membank->size;
    672 	pmap_membank->pmem_next = NULL;
    673 
    674 #if 0	/* XXX - Need to integrate this! */
    675 	/*
    676 	 * The last few pages of physical memory are "owned" by
    677 	 * the PROM.  The total amount of memory we are allowed
    678 	 * to use is given by the romvec pointer. -gwr
    679 	 *
    680 	 * We should dedicate different variables for 'useable'
    681 	 * and 'physically available'.  Most users are used to the
    682 	 * kernel reporting the amount of memory 'physically available'
    683 	 * as opposed to 'useable by the kernel' at boot time. -j
    684 	 */
    685 	total_phys_mem = *romVectorPtr->memoryAvail;
    686 #endif	/* XXX */
    687 
    688 	total_phys_mem += membank->size;	/* XXX see above */
    689 	physmem = btoc(total_phys_mem);
    690 
    691 	/*
    692 	 * Avail_end is set to the first byte of physical memory
    693 	 * after the end of the last bank.  We use this only to
    694 	 * determine if a physical address is "managed" memory.
    695 	 *
    696 	 * XXX - The setting of avail_end is a temporary ROM saving hack.
    697 	 */
    698 	avail_end = pmap_membank->pmem_end -
    699 		(total_phys_mem - *romVectorPtr->memoryAvail);
    700 	avail_end = _trunc_page(avail_end);
    701 
    702 	/*
    703 	 * First allocate enough kernel MMU tables to map all
    704 	 * of kernel virtual space from KERNBASE to 0xFFFFFFFF.
    705 	 * Note: All must be aligned on 256 byte boundaries.
    706 	 * Start with the level-A table (one of those).
    707 	 */
    708 	size = sizeof(mmu_long_dte_t)  * MMU_A_TBL_SIZE;
    709 	kernAbase = pmap_bootstrap_alloc(size);
    710 	bzero(kernAbase, size);
    711 
    712 	/* Now the level-B kernel tables... */
    713 	size = sizeof(mmu_short_dte_t) * MMU_B_TBL_SIZE * KERN_B_TABLES;
    714 	kernBbase = pmap_bootstrap_alloc(size);
    715 	bzero(kernBbase, size);
    716 
    717 	/* Now the level-C kernel tables... */
    718 	size = sizeof(mmu_short_pte_t) * MMU_C_TBL_SIZE * KERN_C_TABLES;
    719 	kernCbase = pmap_bootstrap_alloc(size);
    720 	bzero(kernCbase, size);
    721 	/*
    722 	 * Note: In order for the PV system to work correctly, the kernel
    723 	 * and user-level C tables must be allocated contiguously.
    724 	 * Nothing should be allocated between here and the allocation of
    725 	 * mmuCbase below.  XXX: Should do this as one allocation, and
    726 	 * then compute a pointer for mmuCbase instead of this...
    727 	 *
    728 	 * Allocate user MMU tables.
    729 	 * These must be contiguous with the preceeding.
    730 	 */
    731 	size = sizeof(mmu_short_pte_t) * MMU_C_TBL_SIZE	* NUM_C_TABLES;
    732 	mmuCbase = pmap_bootstrap_alloc(size);
    733 
    734 	size = sizeof(mmu_short_dte_t) * MMU_B_TBL_SIZE	* NUM_B_TABLES;
    735 	mmuBbase = pmap_bootstrap_alloc(size);
    736 
    737 	size = sizeof(mmu_long_dte_t)  * MMU_A_TBL_SIZE * NUM_A_TABLES;
    738 	mmuAbase = pmap_bootstrap_alloc(size);
    739 
    740 	/*
    741 	 * Fill in the never-changing part of the kernel tables.
    742 	 * For simplicity, the kernel's mappings will be editable as a
    743 	 * flat array of page table entries at kernCbase.  The
    744 	 * higher level 'A' and 'B' tables must be initialized to point
    745 	 * to this lower one.
    746 	 */
    747 	b = c = 0;
    748 
    749 	/*
    750 	 * Invalidate all mappings below KERNBASE in the A table.
    751 	 * This area has already been zeroed out, but it is good
    752 	 * practice to explicitly show that we are interpreting
    753 	 * it as a list of A table descriptors.
    754 	 */
    755 	for (i = 0; i < MMU_TIA(KERNBASE); i++) {
    756 		kernAbase[i].addr.raw = 0;
    757 	}
    758 
    759 	/*
    760 	 * Set up the kernel A and B tables so that they will reference the
    761 	 * correct spots in the contiguous table of PTEs allocated for the
    762 	 * kernel's virtual memory space.
    763 	 */
    764 	for (i = MMU_TIA(KERNBASE); i < MMU_A_TBL_SIZE; i++) {
    765 		kernAbase[i].attr.raw =
    766 			MMU_LONG_DTE_LU | MMU_LONG_DTE_SUPV | MMU_DT_SHORT;
    767 		kernAbase[i].addr.raw = mmu_vtop(&kernBbase[b]);
    768 
    769 		for (j=0; j < MMU_B_TBL_SIZE; j++) {
    770 			kernBbase[b + j].attr.raw = mmu_vtop(&kernCbase[c])
    771 				| MMU_DT_SHORT;
    772 			c += MMU_C_TBL_SIZE;
    773 		}
    774 		b += MMU_B_TBL_SIZE;
    775 	}
    776 
    777 	/* XXX - Doing kernel_pmap a little further down. */
    778 
    779 	pmap_alloc_usermmu();	/* Allocate user MMU tables.        */
    780 	pmap_alloc_usertmgr();	/* Allocate user MMU table managers.*/
    781 	pmap_alloc_pv();	/* Allocate physical->virtual map.  */
    782 
    783 	/*
    784 	 * We are now done with pmap_bootstrap_alloc().  Round up
    785 	 * `virtual_avail' to the nearest page, and set the flag
    786 	 * to prevent use of pmap_bootstrap_alloc() hereafter.
    787 	 */
    788 	pmap_bootstrap_aalign(NBPG);
    789 	bootstrap_alloc_enabled = FALSE;
    790 
    791 	/*
    792 	 * Now that we are done with pmap_bootstrap_alloc(), we
    793 	 * must save the virtual and physical addresses of the
    794 	 * end of the linearly mapped range, which are stored in
    795 	 * virtual_contig_end and avail_start, respectively.
    796 	 * These variables will never change after this point.
    797 	 */
    798 	virtual_contig_end = virtual_avail;
    799 	avail_start = virtual_avail - KERNBASE;
    800 
    801 	/*
    802 	 * `avail_next' is a running pointer used by pmap_next_page() to
    803 	 * keep track of the next available physical page to be handed
    804 	 * to the VM system during its initialization, in which it
    805 	 * asks for physical pages, one at a time.
    806 	 */
    807 	avail_next = avail_start;
    808 
    809 	/*
    810 	 * Now allocate some virtual addresses, but not the physical pages
    811 	 * behind them.  Note that virtual_avail is already page-aligned.
    812 	 *
    813 	 * tmp_vpages[] is an array of two virtual pages used for temporary
    814 	 * kernel mappings in the pmap module to facilitate various physical
    815 	 * address-oritented operations.
    816 	 */
    817 	tmp_vpages[0] = virtual_avail;
    818 	virtual_avail += NBPG;
    819 	tmp_vpages[1] = virtual_avail;
    820 	virtual_avail += NBPG;
    821 
    822 	/** Initialize the PV system **/
    823 	pmap_init_pv();
    824 
    825 	/*
    826 	 * Fill in the kernel_pmap structure and kernel_crp.
    827 	 */
    828 	kernAphys = mmu_vtop(kernAbase);
    829 	kernel_pmap.pm_a_tmgr = NULL;
    830 	kernel_pmap.pm_a_phys = kernAphys;
    831 	kernel_pmap.pm_refcount = 1; /* always in use */
    832 
    833 	kernel_crp.rp_attr = MMU_LONG_DTE_LU | MMU_DT_LONG;
    834 	kernel_crp.rp_addr = kernAphys;
    835 
    836 	/*
    837 	 * Now pmap_enter_kernel() may be used safely and will be
    838 	 * the main interface used hereafter to modify the kernel's
    839 	 * virtual address space.  Note that since we are still running
    840 	 * under the PROM's address table, none of these table modifications
    841 	 * actually take effect until pmap_takeover_mmu() is called.
    842 	 *
    843 	 * Note: Our tables do NOT have the PROM linear mappings!
    844 	 * Only the mappings created here exist in our tables, so
    845 	 * remember to map anything we expect to use.
    846 	 */
    847 	va = (vm_offset_t) KERNBASE;
    848 	pa = 0;
    849 
    850 	/*
    851 	 * The first page of the kernel virtual address space is the msgbuf
    852 	 * page.  The page attributes (data, non-cached) are set here, while
    853 	 * the address is assigned to this global pointer in cpu_startup().
    854 	 * XXX - Make it non-cached?
    855 	 */
    856 	pmap_enter_kernel(va, pa|PMAP_NC, VM_PROT_ALL);
    857 	va += NBPG; pa += NBPG;
    858 
    859 	/* Next page is used as the temporary stack. */
    860 	pmap_enter_kernel(va, pa, VM_PROT_ALL);
    861 	va += NBPG; pa += NBPG;
    862 
    863 	/*
    864 	 * Map all of the kernel's text segment as read-only and cacheable.
    865 	 * (Cacheable is implied by default).  Unfortunately, the last bytes
    866 	 * of kernel text and the first bytes of kernel data will often be
    867 	 * sharing the same page.  Therefore, the last page of kernel text
    868 	 * has to be mapped as read/write, to accomodate the data.
    869 	 */
    870 	eva = _trunc_page((vm_offset_t)etext);
    871 	for (; va < eva; va += NBPG, pa += NBPG)
    872 		pmap_enter_kernel(va, pa, VM_PROT_READ|VM_PROT_EXECUTE);
    873 
    874 	/*
    875 	 * Map all of the kernel's data as read/write and cacheable.
    876 	 * This includes: data, BSS, symbols, and everything in the
    877 	 * contiguous memory used by pmap_bootstrap_alloc()
    878 	 */
    879 	for (; pa < avail_start; va += NBPG, pa += NBPG)
    880 		pmap_enter_kernel(va, pa, VM_PROT_READ|VM_PROT_WRITE);
    881 
    882 	/*
    883 	 * At this point we are almost ready to take over the MMU.  But first
    884 	 * we must save the PROM's address space in our map, as we call its
    885 	 * routines and make references to its data later in the kernel.
    886 	 */
    887 	pmap_bootstrap_copyprom();
    888 	pmap_takeover_mmu();
    889 	pmap_bootstrap_setprom();
    890 
    891 	/* Notify the VM system of our page size. */
    892 	PAGE_SIZE = NBPG;
    893 	vm_set_page_size();
    894 }
    895 
    896 
    897 /* pmap_alloc_usermmu			INTERNAL
    898  **
    899  * Called from pmap_bootstrap() to allocate MMU tables that will
    900  * eventually be used for user mappings.
    901  */
    902 void
    903 pmap_alloc_usermmu()
    904 {
    905 	/* XXX: Moved into caller. */
    906 }
    907 
    908 /* pmap_alloc_pv			INTERNAL
    909  **
    910  * Called from pmap_bootstrap() to allocate the physical
    911  * to virtual mapping list.  Each physical page of memory
    912  * in the system has a corresponding element in this list.
    913  */
    914 void
    915 pmap_alloc_pv()
    916 {
    917 	int	i;
    918 	unsigned int	total_mem;
    919 
    920 	/*
    921 	 * Allocate a pv_head structure for every page of physical
    922 	 * memory that will be managed by the system.  Since memory on
    923 	 * the 3/80 is non-contiguous, we cannot arrive at a total page
    924 	 * count by subtraction of the lowest available address from the
    925 	 * highest, but rather we have to step through each memory
    926 	 * bank and add the number of pages in each to the total.
    927 	 *
    928 	 * At this time we also initialize the offset of each bank's
    929 	 * starting pv_head within the pv_head list so that the physical
    930 	 * memory state routines (pmap_is_referenced(),
    931 	 * pmap_is_modified(), et al.) can quickly find coresponding
    932 	 * pv_heads in spite of the non-contiguity.
    933 	 */
    934 	total_mem = 0;
    935 	for (i = 0; i < SUN3X_NPHYS_RAM_SEGS; i++) {
    936 		avail_mem[i].pmem_pvbase = _btop(total_mem);
    937 		total_mem += avail_mem[i].pmem_end -
    938 			avail_mem[i].pmem_start;
    939 		if (avail_mem[i].pmem_next == NULL)
    940 			break;
    941 	}
    942 #ifdef	PMAP_DEBUG
    943 	if (total_mem != total_phys_mem)
    944 		panic("pmap_alloc_pv did not arrive at correct page count");
    945 #endif
    946 
    947 	pvbase = (pv_t *) pmap_bootstrap_alloc(sizeof(pv_t) *
    948 		_btop(total_phys_mem));
    949 }
    950 
    951 /* pmap_alloc_usertmgr			INTERNAL
    952  **
    953  * Called from pmap_bootstrap() to allocate the structures which
    954  * facilitate management of user MMU tables.  Each user MMU table
    955  * in the system has one such structure associated with it.
    956  */
    957 void
    958 pmap_alloc_usertmgr()
    959 {
    960 	/* Allocate user MMU table managers */
    961 	/* It would be a lot simpler to just make these BSS, but */
    962 	/* we may want to change their size at boot time... -j */
    963 	Atmgrbase = (a_tmgr_t *) pmap_bootstrap_alloc(sizeof(a_tmgr_t)
    964 		* NUM_A_TABLES);
    965 	Btmgrbase = (b_tmgr_t *) pmap_bootstrap_alloc(sizeof(b_tmgr_t)
    966 		* NUM_B_TABLES);
    967 	Ctmgrbase = (c_tmgr_t *) pmap_bootstrap_alloc(sizeof(c_tmgr_t)
    968 		* NUM_C_TABLES);
    969 
    970 	/*
    971 	 * Allocate PV list elements for the physical to virtual
    972 	 * mapping system.
    973 	 */
    974 	pvebase = (pv_elem_t *) pmap_bootstrap_alloc(
    975 		sizeof(pv_elem_t) * (NUM_USER_PTES + NUM_KERN_PTES));
    976 }
    977 
    978 /* pmap_bootstrap_copyprom()			INTERNAL
    979  **
    980  * Copy the PROM mappings into our own tables.  Note, we
    981  * can use physical addresses until __bootstrap returns.
    982  */
    983 void
    984 pmap_bootstrap_copyprom()
    985 {
    986 	MachMonRomVector *romp;
    987 	int *mon_ctbl;
    988 	mmu_short_pte_t *kpte;
    989 	int i, len;
    990 
    991 	romp = romVectorPtr;
    992 
    993 	/*
    994 	 * Copy the mappings in MON_KDB_START...MONEND
    995 	 * Note: mon_ctbl[0] maps MON_KDB_START
    996 	 */
    997 	mon_ctbl = *romp->monptaddr;
    998 	i = _btop(MON_KDB_START - KERNBASE);
    999 	kpte = &kernCbase[i];
   1000 	len = _btop(MONEND - MON_KDB_START);
   1001 
   1002 	for (i = 0; i < len; i++) {
   1003 		kpte[i].attr.raw = mon_ctbl[i];
   1004 	}
   1005 
   1006 	/*
   1007 	 * Copy the mappings at MON_DVMA_BASE (to the end).
   1008 	 * Note, in here, mon_ctbl[0] maps MON_DVMA_BASE.
   1009 	 * XXX - This does not appear to be necessary, but
   1010 	 * I'm not sure yet if it is or not. -gwr
   1011 	 */
   1012 	mon_ctbl = *romp->shadowpteaddr;
   1013 	i = _btop(MON_DVMA_BASE - KERNBASE);
   1014 	kpte = &kernCbase[i];
   1015 	len = _btop(MON_DVMA_SIZE);
   1016 
   1017 	for (i = 0; i < len; i++) {
   1018 		kpte[i].attr.raw = mon_ctbl[i];
   1019 	}
   1020 }
   1021 
   1022 /* pmap_takeover_mmu			INTERNAL
   1023  **
   1024  * Called from pmap_bootstrap() after it has copied enough of the
   1025  * PROM mappings into the kernel map so that we can use our own
   1026  * MMU table.
   1027  */
   1028 void
   1029 pmap_takeover_mmu()
   1030 {
   1031 
   1032 	loadcrp(&kernel_crp);
   1033 }
   1034 
   1035 /* pmap_bootstrap_setprom()			INTERNAL
   1036  **
   1037  * Set the PROM mappings so it can see kernel space.
   1038  * Note that physical addresses are used here, which
   1039  * we can get away with because this runs with the
   1040  * low 1GB set for transparent translation.
   1041  */
   1042 void
   1043 pmap_bootstrap_setprom()
   1044 {
   1045 	mmu_long_dte_t *mon_dte;
   1046 	extern struct mmu_rootptr mon_crp;
   1047 	int i;
   1048 
   1049 	mon_dte = (mmu_long_dte_t *) mon_crp.rp_addr;
   1050 	for (i = MMU_TIA(KERNBASE); i < MMU_TIA(KERN_END); i++) {
   1051 		mon_dte[i].attr.raw = kernAbase[i].attr.raw;
   1052 		mon_dte[i].addr.raw = kernAbase[i].addr.raw;
   1053 	}
   1054 }
   1055 
   1056 
   1057 /* pmap_init			INTERFACE
   1058  **
   1059  * Called at the end of vm_init() to set up the pmap system to go
   1060  * into full time operation.  All initialization of kernel_pmap
   1061  * should be already done by now, so this should just do things
   1062  * needed for user-level pmaps to work.
   1063  */
   1064 void
   1065 pmap_init()
   1066 {
   1067 	/** Initialize the manager pools **/
   1068 	TAILQ_INIT(&a_pool);
   1069 	TAILQ_INIT(&b_pool);
   1070 	TAILQ_INIT(&c_pool);
   1071 
   1072 	/**************************************************************
   1073 	 * Initialize all tmgr structures and MMU tables they manage. *
   1074 	 **************************************************************/
   1075 	/** Initialize A tables **/
   1076 	pmap_init_a_tables();
   1077 	/** Initialize B tables **/
   1078 	pmap_init_b_tables();
   1079 	/** Initialize C tables **/
   1080 	pmap_init_c_tables();
   1081 }
   1082 
   1083 /* pmap_init_a_tables()			INTERNAL
   1084  **
   1085  * Initializes all A managers, their MMU A tables, and inserts
   1086  * them into the A manager pool for use by the system.
   1087  */
   1088 void
   1089 pmap_init_a_tables()
   1090 {
   1091 	int i;
   1092 	a_tmgr_t *a_tbl;
   1093 
   1094 	for (i=0; i < NUM_A_TABLES; i++) {
   1095 		/* Select the next available A manager from the pool */
   1096 		a_tbl = &Atmgrbase[i];
   1097 
   1098 		/*
   1099 		 * Clear its parent entry.  Set its wired and valid
   1100 		 * entry count to zero.
   1101 		 */
   1102 		a_tbl->at_parent = NULL;
   1103 		a_tbl->at_wcnt = a_tbl->at_ecnt = 0;
   1104 
   1105 		/* Assign it the next available MMU A table from the pool */
   1106 		a_tbl->at_dtbl = &mmuAbase[i * MMU_A_TBL_SIZE];
   1107 
   1108 		/*
   1109 		 * Initialize the MMU A table with the table in the `proc0',
   1110 		 * or kernel, mapping.  This ensures that every process has
   1111 		 * the kernel mapped in the top part of its address space.
   1112 		 */
   1113 		bcopy(kernAbase, a_tbl->at_dtbl, MMU_A_TBL_SIZE *
   1114 			sizeof(mmu_long_dte_t));
   1115 
   1116 		/*
   1117 		 * Finally, insert the manager into the A pool,
   1118 		 * making it ready to be used by the system.
   1119 		 */
   1120 		TAILQ_INSERT_TAIL(&a_pool, a_tbl, at_link);
   1121     }
   1122 }
   1123 
   1124 /* pmap_init_b_tables()			INTERNAL
   1125  **
   1126  * Initializes all B table managers, their MMU B tables, and
   1127  * inserts them into the B manager pool for use by the system.
   1128  */
   1129 void
   1130 pmap_init_b_tables()
   1131 {
   1132 	int i,j;
   1133 	b_tmgr_t *b_tbl;
   1134 
   1135 	for (i=0; i < NUM_B_TABLES; i++) {
   1136 		/* Select the next available B manager from the pool */
   1137 		b_tbl = &Btmgrbase[i];
   1138 
   1139 		b_tbl->bt_parent = NULL;	/* clear its parent,  */
   1140 		b_tbl->bt_pidx = 0;		/* parent index,      */
   1141 		b_tbl->bt_wcnt = 0;		/* wired entry count, */
   1142 		b_tbl->bt_ecnt = 0;		/* valid entry count. */
   1143 
   1144 		/* Assign it the next available MMU B table from the pool */
   1145 		b_tbl->bt_dtbl = &mmuBbase[i * MMU_B_TBL_SIZE];
   1146 
   1147 		/* Invalidate every descriptor in the table */
   1148 		for (j=0; j < MMU_B_TBL_SIZE; j++)
   1149 			b_tbl->bt_dtbl[j].attr.raw = MMU_DT_INVALID;
   1150 
   1151 		/* Insert the manager into the B pool */
   1152 		TAILQ_INSERT_TAIL(&b_pool, b_tbl, bt_link);
   1153 	}
   1154 }
   1155 
   1156 /* pmap_init_c_tables()			INTERNAL
   1157  **
   1158  * Initializes all C table managers, their MMU C tables, and
   1159  * inserts them into the C manager pool for use by the system.
   1160  */
   1161 void
   1162 pmap_init_c_tables()
   1163 {
   1164 	int i,j;
   1165 	c_tmgr_t *c_tbl;
   1166 
   1167 	for (i=0; i < NUM_C_TABLES; i++) {
   1168 		/* Select the next available C manager from the pool */
   1169 		c_tbl = &Ctmgrbase[i];
   1170 
   1171 		c_tbl->ct_parent = NULL;	/* clear its parent,  */
   1172 		c_tbl->ct_pidx = 0;		/* parent index,      */
   1173 		c_tbl->ct_wcnt = 0;		/* wired entry count, */
   1174 		c_tbl->ct_ecnt = 0;		/* valid entry count. */
   1175 
   1176 		/* Assign it the next available MMU C table from the pool */
   1177 		c_tbl->ct_dtbl = &mmuCbase[i * MMU_C_TBL_SIZE];
   1178 
   1179 		for (j=0; j < MMU_C_TBL_SIZE; j++)
   1180 			c_tbl->ct_dtbl[j].attr.raw = MMU_DT_INVALID;
   1181 
   1182 		TAILQ_INSERT_TAIL(&c_pool, c_tbl, ct_link);
   1183 	}
   1184 }
   1185 
   1186 /* pmap_init_pv()			INTERNAL
   1187  **
   1188  * Initializes the Physical to Virtual mapping system.
   1189  */
   1190 void
   1191 pmap_init_pv()
   1192 {
   1193 	int	i;
   1194 
   1195 	/* Initialize every PV head. */
   1196 	for (i = 0; i < _btop(total_phys_mem); i++) {
   1197 		pvbase[i].pv_idx = PVE_EOL;	/* Indicate no mappings */
   1198 		pvbase[i].pv_flags = 0;		/* Zero out page flags  */
   1199 	}
   1200 
   1201 	pv_initialized = TRUE;
   1202 }
   1203 
   1204 /* get_a_table			INTERNAL
   1205  **
   1206  * Retrieve and return a level A table for use in a user map.
   1207  */
   1208 a_tmgr_t *
   1209 get_a_table()
   1210 {
   1211 	a_tmgr_t *tbl;
   1212 	pmap_t pmap;
   1213 
   1214 	/* Get the top A table in the pool */
   1215 	tbl = a_pool.tqh_first;
   1216 	if (tbl == NULL) {
   1217 		/*
   1218 		 * XXX - Instead of panicing here and in other get_x_table
   1219 		 * functions, we do have the option of sleeping on the head of
   1220 		 * the table pool.  Any function which updates the table pool
   1221 		 * would then issue a wakeup() on the head, thus waking up any
   1222 		 * processes waiting for a table.
   1223 		 *
   1224 		 * Actually, the place to sleep would be when some process
   1225 		 * asks for a "wired" mapping that would run us short of
   1226 		 * mapping resources.  This design DEPENDS on always having
   1227 		 * some mapping resources in the pool for stealing, so we
   1228 		 * must make sure we NEVER let the pool become empty. -gwr
   1229 		 */
   1230 		panic("get_a_table: out of A tables.");
   1231 	}
   1232 
   1233 	TAILQ_REMOVE(&a_pool, tbl, at_link);
   1234 	/*
   1235 	 * If the table has a non-null parent pointer then it is in use.
   1236 	 * Forcibly abduct it from its parent and clear its entries.
   1237 	 * No re-entrancy worries here.  This table would not be in the
   1238 	 * table pool unless it was available for use.
   1239 	 *
   1240 	 * Note that the second argument to free_a_table() is FALSE.  This
   1241 	 * indicates that the table should not be relinked into the A table
   1242 	 * pool.  That is a job for the function that called us.
   1243 	 */
   1244 	if (tbl->at_parent) {
   1245 		pmap = tbl->at_parent;
   1246 		free_a_table(tbl, FALSE);
   1247 		pmap->pm_a_tmgr = NULL;
   1248 		pmap->pm_a_phys = kernAphys;
   1249 	}
   1250 #ifdef  NON_REENTRANT
   1251 	/*
   1252 	 * If the table isn't to be wired down, re-insert it at the
   1253 	 * end of the pool.
   1254 	 */
   1255 	if (!wired)
   1256 		/*
   1257 		 * Quandary - XXX
   1258 		 * Would it be better to let the calling function insert this
   1259 		 * table into the queue?  By inserting it here, we are allowing
   1260 		 * it to be stolen immediately.  The calling function is
   1261 		 * probably not expecting to use a table that it is not
   1262 		 * assured full control of.
   1263 		 * Answer - In the intrest of re-entrancy, it is best to let
   1264 		 * the calling function determine when a table is available
   1265 		 * for use.  Therefore this code block is not used.
   1266 		 */
   1267 		TAILQ_INSERT_TAIL(&a_pool, tbl, at_link);
   1268 #endif	/* NON_REENTRANT */
   1269 	return tbl;
   1270 }
   1271 
   1272 /* get_b_table			INTERNAL
   1273  **
   1274  * Return a level B table for use.
   1275  */
   1276 b_tmgr_t *
   1277 get_b_table()
   1278 {
   1279 	b_tmgr_t *tbl;
   1280 
   1281 	/* See 'get_a_table' for comments. */
   1282 	tbl = b_pool.tqh_first;
   1283 	if (tbl == NULL)
   1284 		panic("get_b_table: out of B tables.");
   1285 	TAILQ_REMOVE(&b_pool, tbl, bt_link);
   1286 	if (tbl->bt_parent) {
   1287 		tbl->bt_parent->at_dtbl[tbl->bt_pidx].attr.raw = MMU_DT_INVALID;
   1288 		tbl->bt_parent->at_ecnt--;
   1289 		free_b_table(tbl, FALSE);
   1290 	}
   1291 #ifdef	NON_REENTRANT
   1292 	if (!wired)
   1293 		/* XXX see quandary in get_b_table */
   1294 		/* XXX start lock */
   1295 		TAILQ_INSERT_TAIL(&b_pool, tbl, bt_link);
   1296 		/* XXX end lock */
   1297 #endif	/* NON_REENTRANT */
   1298 	return tbl;
   1299 }
   1300 
   1301 /* get_c_table			INTERNAL
   1302  **
   1303  * Return a level C table for use.
   1304  */
   1305 c_tmgr_t *
   1306 get_c_table()
   1307 {
   1308 	c_tmgr_t *tbl;
   1309 
   1310 	/* See 'get_a_table' for comments */
   1311 	tbl = c_pool.tqh_first;
   1312 	if (tbl == NULL)
   1313 		panic("get_c_table: out of C tables.");
   1314 	TAILQ_REMOVE(&c_pool, tbl, ct_link);
   1315 	if (tbl->ct_parent) {
   1316 		tbl->ct_parent->bt_dtbl[tbl->ct_pidx].attr.raw = MMU_DT_INVALID;
   1317 		tbl->ct_parent->bt_ecnt--;
   1318 		free_c_table(tbl, FALSE);
   1319 	}
   1320 #ifdef	NON_REENTRANT
   1321 	if (!wired)
   1322 		/* XXX See quandary in get_a_table */
   1323 		/* XXX start lock */
   1324 		TAILQ_INSERT_TAIL(&c_pool, tbl, c_link);
   1325 		/* XXX end lock */
   1326 #endif	/* NON_REENTRANT */
   1327 
   1328 	return tbl;
   1329 }
   1330 
   1331 /*
   1332  * The following 'free_table' and 'steal_table' functions are called to
   1333  * detach tables from their current obligations (parents and children) and
   1334  * prepare them for reuse in another mapping.
   1335  *
   1336  * Free_table is used when the calling function will handle the fate
   1337  * of the parent table, such as returning it to the free pool when it has
   1338  * no valid entries.  Functions that do not want to handle this should
   1339  * call steal_table, in which the parent table's descriptors and entry
   1340  * count are automatically modified when this table is removed.
   1341  */
   1342 
   1343 /* free_a_table			INTERNAL
   1344  **
   1345  * Unmaps the given A table and all child tables from their current
   1346  * mappings.  Returns the number of pages that were invalidated.
   1347  * If 'relink' is true, the function will return the table to the head
   1348  * of the available table pool.
   1349  *
   1350  * Cache note: The MC68851 will automatically flush all
   1351  * descriptors derived from a given A table from its
   1352  * Automatic Translation Cache (ATC) if we issue a
   1353  * 'PFLUSHR' instruction with the base address of the
   1354  * table.  This function should do, and does so.
   1355  * Note note: We are using an MC68030 - there is no
   1356  * PFLUSHR.
   1357  */
   1358 int
   1359 free_a_table(a_tbl, relink)
   1360 	a_tmgr_t *a_tbl;
   1361 	boolean_t relink;
   1362 {
   1363 	int i, removed_cnt;
   1364 	mmu_long_dte_t	*dte;
   1365 	mmu_short_dte_t *dtbl;
   1366 	b_tmgr_t	*tmgr;
   1367 
   1368 	/*
   1369 	 * Flush the ATC cache of all cached descriptors derived
   1370 	 * from this table.
   1371 	 * XXX - Sun3x does not use 68851's cached table feature
   1372 	 * flush_atc_crp(mmu_vtop(a_tbl->dte));
   1373 	 */
   1374 
   1375 	/*
   1376 	 * Remove any pending cache flushes that were designated
   1377 	 * for the pmap this A table belongs to.
   1378 	 * a_tbl->parent->atc_flushq[0] = 0;
   1379 	 * XXX - Not implemented in sun3x.
   1380 	 */
   1381 
   1382 	/*
   1383 	 * All A tables in the system should retain a map for the
   1384 	 * kernel. If the table contains any valid descriptors
   1385 	 * (other than those for the kernel area), invalidate them all,
   1386 	 * stopping short of the kernel's entries.
   1387 	 */
   1388 	removed_cnt = 0;
   1389 	if (a_tbl->at_ecnt) {
   1390 		dte = a_tbl->at_dtbl;
   1391 		for (i=0; i < MMU_TIA(KERNBASE); i++) {
   1392 			/*
   1393 			 * If a table entry points to a valid B table, free
   1394 			 * it and its children.
   1395 			 */
   1396 			if (MMU_VALID_DT(dte[i])) {
   1397 				/*
   1398 				 * The following block does several things,
   1399 				 * from innermost expression to the
   1400 				 * outermost:
   1401 				 * 1) It extracts the base (cc 1996)
   1402 				 *    address of the B table pointed
   1403 				 *    to in the A table entry dte[i].
   1404 				 * 2) It converts this base address into
   1405 				 *    the virtual address it can be
   1406 				 *    accessed with. (all MMU tables point
   1407 				 *    to physical addresses.)
   1408 				 * 3) It finds the corresponding manager
   1409 				 *    structure which manages this MMU table.
   1410 				 * 4) It frees the manager structure.
   1411 				 *    (This frees the MMU table and all
   1412 				 *    child tables. See 'free_b_table' for
   1413 				 *    details.)
   1414 				 */
   1415 				dtbl = mmu_ptov(dte[i].addr.raw);
   1416 				tmgr = mmuB2tmgr(dtbl);
   1417 				removed_cnt += free_b_table(tmgr, TRUE);
   1418 				dte[i].attr.raw = MMU_DT_INVALID;
   1419 			}
   1420 		}
   1421 		a_tbl->at_ecnt = 0;
   1422 	}
   1423 	if (relink) {
   1424 		a_tbl->at_parent = NULL;
   1425 		TAILQ_REMOVE(&a_pool, a_tbl, at_link);
   1426 		TAILQ_INSERT_HEAD(&a_pool, a_tbl, at_link);
   1427 	}
   1428 	return removed_cnt;
   1429 }
   1430 
   1431 /* free_b_table			INTERNAL
   1432  **
   1433  * Unmaps the given B table and all its children from their current
   1434  * mappings.  Returns the number of pages that were invalidated.
   1435  * (For comments, see 'free_a_table()').
   1436  */
   1437 int
   1438 free_b_table(b_tbl, relink)
   1439 	b_tmgr_t *b_tbl;
   1440 	boolean_t relink;
   1441 {
   1442 	int i, removed_cnt;
   1443 	mmu_short_dte_t *dte;
   1444 	mmu_short_pte_t	*dtbl;
   1445 	c_tmgr_t	*tmgr;
   1446 
   1447 	removed_cnt = 0;
   1448 	if (b_tbl->bt_ecnt) {
   1449 		dte = b_tbl->bt_dtbl;
   1450 		for (i=0; i < MMU_B_TBL_SIZE; i++) {
   1451 			if (MMU_VALID_DT(dte[i])) {
   1452 				dtbl = mmu_ptov(MMU_DTE_PA(dte[i]));
   1453 				tmgr = mmuC2tmgr(dtbl);
   1454 				removed_cnt += free_c_table(tmgr, TRUE);
   1455 				dte[i].attr.raw = MMU_DT_INVALID;
   1456 			}
   1457 		}
   1458 		b_tbl->bt_ecnt = 0;
   1459 	}
   1460 
   1461 	if (relink) {
   1462 		b_tbl->bt_parent = NULL;
   1463 		TAILQ_REMOVE(&b_pool, b_tbl, bt_link);
   1464 		TAILQ_INSERT_HEAD(&b_pool, b_tbl, bt_link);
   1465 	}
   1466 	return removed_cnt;
   1467 }
   1468 
   1469 /* free_c_table			INTERNAL
   1470  **
   1471  * Unmaps the given C table from use and returns it to the pool for
   1472  * re-use.  Returns the number of pages that were invalidated.
   1473  *
   1474  * This function preserves any physical page modification information
   1475  * contained in the page descriptors within the C table by calling
   1476  * 'pmap_remove_pte().'
   1477  */
   1478 int
   1479 free_c_table(c_tbl, relink)
   1480 	c_tmgr_t *c_tbl;
   1481 	boolean_t relink;
   1482 {
   1483 	int i, removed_cnt;
   1484 
   1485 	removed_cnt = 0;
   1486 	if (c_tbl->ct_ecnt) {
   1487 		for (i=0; i < MMU_C_TBL_SIZE; i++) {
   1488 			if (MMU_VALID_DT(c_tbl->ct_dtbl[i])) {
   1489 				pmap_remove_pte(&c_tbl->ct_dtbl[i]);
   1490 				removed_cnt++;
   1491 			}
   1492 		}
   1493 		c_tbl->ct_ecnt = 0;
   1494 	}
   1495 
   1496 	if (relink) {
   1497 		c_tbl->ct_parent = NULL;
   1498 		TAILQ_REMOVE(&c_pool, c_tbl, ct_link);
   1499 		TAILQ_INSERT_HEAD(&c_pool, c_tbl, ct_link);
   1500 	}
   1501 	return removed_cnt;
   1502 }
   1503 
   1504 #if 0
   1505 /* free_c_table_novalid			INTERNAL
   1506  **
   1507  * Frees the given C table manager without checking to see whether
   1508  * or not it contains any valid page descriptors as it is assumed
   1509  * that it does not.
   1510  */
   1511 void
   1512 free_c_table_novalid(c_tbl)
   1513 	c_tmgr_t *c_tbl;
   1514 {
   1515 	TAILQ_REMOVE(&c_pool, c_tbl, ct_link);
   1516 	TAILQ_INSERT_HEAD(&c_pool, c_tbl, ct_link);
   1517 	c_tbl->ct_parent->bt_dtbl[c_tbl->ct_pidx].attr.raw = MMU_DT_INVALID;
   1518 	c_tbl->ct_parent->bt_ecnt--;
   1519 	/*
   1520 	 * XXX - Should call equiv. of 'free_b_table_novalid' here if
   1521 	 * we just removed the last entry of the parent B table.
   1522 	 * But I want to insure that this will not endanger pmap_enter()
   1523 	 * with sudden removal of tables it is working with.
   1524 	 *
   1525 	 * We should probably add another field to each table, indicating
   1526 	 * whether or not it is 'locked', ie. in the process of being
   1527 	 * modified.
   1528 	 */
   1529 	c_tbl->ct_parent = NULL;
   1530 }
   1531 #endif
   1532 
   1533 /* pmap_remove_pte			INTERNAL
   1534  **
   1535  * Unmap the given pte and preserve any page modification
   1536  * information by transfering it to the pv head of the
   1537  * physical page it maps to.  This function does not update
   1538  * any reference counts because it is assumed that the calling
   1539  * function will do so.
   1540  */
   1541 void
   1542 pmap_remove_pte(pte)
   1543 	mmu_short_pte_t *pte;
   1544 {
   1545 	u_short     pv_idx, targ_idx;
   1546 	int         s;
   1547 	vm_offset_t pa;
   1548 	pv_t       *pv;
   1549 
   1550 	pa = MMU_PTE_PA(*pte);
   1551 	if (is_managed(pa)) {
   1552 		pv = pa2pv(pa);
   1553 		targ_idx = pteidx(pte);	/* Index of PTE being removed    */
   1554 
   1555 		/*
   1556 		 * If the PTE being removed is the first (or only) PTE in
   1557 		 * the list of PTEs currently mapped to this page, remove the
   1558 		 * PTE by changing the index found on the PV head.  Otherwise
   1559 		 * a linear search through the list will have to be executed
   1560 		 * in order to find the PVE which points to the PTE being
   1561 		 * removed, so that it may be modified to point to its new
   1562 		 * neighbor.
   1563 		 */
   1564 		s = splimp();
   1565 		pv_idx = pv->pv_idx;	/* Index of first PTE in PV list */
   1566 		if (pv_idx == targ_idx) {
   1567 			pv->pv_idx = pvebase[targ_idx].pve_next;
   1568 		} else {
   1569 			/*
   1570 			 * Find the PV element which points to the target
   1571 			 * element.
   1572 			 */
   1573 			while (pvebase[pv_idx].pve_next != targ_idx) {
   1574 				pv_idx = pvebase[pv_idx].pve_next;
   1575 #ifdef	DIAGNOSTIC
   1576 				if (pv_idx == PVE_EOL)
   1577 					panic("pmap_remove_pte: pv list end!");
   1578 #endif
   1579 			}
   1580 
   1581 			/*
   1582 			 * At this point, pv_idx is the index of the PV
   1583 			 * element just before the target element in the list.
   1584 			 * Unlink the target.
   1585 			 */
   1586 			pvebase[pv_idx].pve_next = pvebase[targ_idx].pve_next;
   1587 		}
   1588 		/*
   1589 		 * Save the mod/ref bits of the pte by simply
   1590 		 * ORing the entire pte onto the pv_flags member
   1591 		 * of the pv structure.
   1592 		 * There is no need to use a separate bit pattern
   1593 		 * for usage information on the pv head than that
   1594 		 * which is used on the MMU ptes.
   1595 		 */
   1596 		pv->pv_flags |= (u_short) pte->attr.raw;
   1597 		splx(s);
   1598 	}
   1599 
   1600 	pte->attr.raw = MMU_DT_INVALID;
   1601 }
   1602 
   1603 #if	0	/* XXX - I am eliminating this function. -j */
   1604 /* pmap_dereference_pte			INTERNAL
   1605  **
   1606  * Update the necessary reference counts in any tables and pmaps to
   1607  * reflect the removal of the given pte.  Only called when no knowledge of
   1608  * the pte's associated pmap is unknown.  This only occurs in the PV call
   1609  * 'pmap_page_protect()' with a protection of VM_PROT_NONE, which means
   1610  * that all references to a given physical page must be removed.
   1611  */
   1612 void
   1613 pmap_dereference_pte(pte)
   1614 	mmu_short_pte_t *pte;
   1615 {
   1616 	vm_offset_t va;
   1617 	c_tmgr_t *c_tbl;
   1618 	pmap_t pmap;
   1619 
   1620 	va = pmap_get_pteinfo(pte, &pmap, &c_tbl);
   1621 	/*
   1622 	 * Flush the translation cache of the page mapped by the PTE, should
   1623 	 * it prove to be in the current pmap.  Kernel mappings appear in
   1624 	 * all address spaces, so they always should be flushed
   1625 	 */
   1626 	if (pmap == pmap_kernel() || pmap == current_pmap())
   1627 		TBIS(va);
   1628 
   1629 	/*
   1630 	 * If the mapping belongs to a user map, update the necessary
   1631 	 * reference counts in the table manager.  XXX - It would be
   1632 	 * much easier to keep the resident count in the c_tmgr_t -gwr
   1633 	 */
   1634 	if (pmap != pmap_kernel()) {
   1635 		/*
   1636 		 * Most of the situations in which pmap_dereference_pte() is
   1637 		 * called are usually temporary removals of a mapping.  Often
   1638 		 * the mapping is reinserted shortly afterwards. If the parent
   1639 		 * C table's valid entry count reaches zero as a result of
   1640 		 * removing this mapping, we could return it to the free pool,
   1641 		 * but we leave it alone because it is likely to be used as
   1642 		 * stated above.
   1643 		 */
   1644 		c_tbl->ct_ecnt--;
   1645 		pmap->pm_stats.resident_count--;
   1646 	}
   1647 }
   1648 #endif	0	/* function elimination */
   1649 
   1650 /* pmap_stroll			INTERNAL
   1651  **
   1652  * Retrieve the addresses of all table managers involved in the mapping of
   1653  * the given virtual address.  If the table walk completed sucessfully,
   1654  * return TRUE.  If it was only partially sucessful, return FALSE.
   1655  * The table walk performed by this function is important to many other
   1656  * functions in this module.
   1657  *
   1658  * Note: This function ought to be easier to read.
   1659  */
   1660 boolean_t
   1661 pmap_stroll(pmap, va, a_tbl, b_tbl, c_tbl, pte, a_idx, b_idx, pte_idx)
   1662 	pmap_t pmap;
   1663 	vm_offset_t va;
   1664 	a_tmgr_t **a_tbl;
   1665 	b_tmgr_t **b_tbl;
   1666 	c_tmgr_t **c_tbl;
   1667 	mmu_short_pte_t **pte;
   1668 	int *a_idx, *b_idx, *pte_idx;
   1669 {
   1670 	mmu_long_dte_t *a_dte;   /* A: long descriptor table          */
   1671 	mmu_short_dte_t *b_dte;  /* B: short descriptor table         */
   1672 
   1673 	if (pmap == pmap_kernel())
   1674 		return FALSE;
   1675 
   1676 	/* Does the given pmap have its own A table? */
   1677 	*a_tbl = pmap->pm_a_tmgr;
   1678 	if (*a_tbl == NULL)
   1679 		return FALSE; /* No.  Return unknown. */
   1680 	/* Does the A table have a valid B table
   1681 	 * under the corresponding table entry?
   1682 	 */
   1683 	*a_idx = MMU_TIA(va);
   1684 	a_dte = &((*a_tbl)->at_dtbl[*a_idx]);
   1685 	if (!MMU_VALID_DT(*a_dte))
   1686 		return FALSE; /* No. Return unknown. */
   1687 	/* Yes. Extract B table from the A table. */
   1688 	*b_tbl = mmuB2tmgr(mmu_ptov(a_dte->addr.raw));
   1689 	/* Does the B table have a valid C table
   1690 	 * under the corresponding table entry?
   1691 	 */
   1692 	*b_idx = MMU_TIB(va);
   1693 	b_dte = &((*b_tbl)->bt_dtbl[*b_idx]);
   1694 	if (!MMU_VALID_DT(*b_dte))
   1695 		return FALSE; /* No. Return unknown. */
   1696 	/* Yes. Extract C table from the B table. */
   1697 	*c_tbl = mmuC2tmgr(mmu_ptov(MMU_DTE_PA(*b_dte)));
   1698 	*pte_idx = MMU_TIC(va);
   1699 	*pte = &((*c_tbl)->ct_dtbl[*pte_idx]);
   1700 
   1701 	return	TRUE;
   1702 }
   1703 
   1704 /* pmap_enter			INTERFACE
   1705  **
   1706  * Called by the kernel to map a virtual address
   1707  * to a physical address in the given process map.
   1708  *
   1709  * Note: this function should apply an exclusive lock
   1710  * on the pmap system for its duration.  (it certainly
   1711  * would save my hair!!)
   1712  * This function ought to be easier to read.
   1713  */
   1714 void
   1715 pmap_enter(pmap, va, pa, prot, wired)
   1716 	pmap_t	pmap;
   1717 	vm_offset_t va;
   1718 	vm_offset_t pa;
   1719 	vm_prot_t prot;
   1720 	boolean_t wired;
   1721 {
   1722 	boolean_t insert, managed; /* Marks the need for PV insertion.*/
   1723 	u_short nidx;            /* PV list index                     */
   1724 	int s;                   /* Used for splimp()/splx()          */
   1725 	int flags;               /* Mapping flags. eg. Cache inhibit  */
   1726 	u_int a_idx, b_idx, pte_idx; /* table indices                 */
   1727 	a_tmgr_t *a_tbl;         /* A: long descriptor table manager  */
   1728 	b_tmgr_t *b_tbl;         /* B: short descriptor table manager */
   1729 	c_tmgr_t *c_tbl;         /* C: short page table manager       */
   1730 	mmu_long_dte_t *a_dte;   /* A: long descriptor table          */
   1731 	mmu_short_dte_t *b_dte;  /* B: short descriptor table         */
   1732 	mmu_short_pte_t *c_pte;  /* C: short page descriptor table    */
   1733 	pv_t      *pv;           /* pv list head                      */
   1734 	enum {NONE, NEWA, NEWB, NEWC} llevel; /* used at end   */
   1735 
   1736 	if (pmap == NULL)
   1737 		return;
   1738 	if (pmap == pmap_kernel()) {
   1739 		pmap_enter_kernel(va, pa, prot);
   1740 		return;
   1741 	}
   1742 
   1743 	flags  = (pa & ~MMU_PAGE_MASK);
   1744 	pa    &= MMU_PAGE_MASK;
   1745 
   1746 	/*
   1747 	 * Determine if the physical address being mapped is managed.
   1748 	 * If it isn't, the mapping should be cache inhibited.  (This is
   1749 	 * applied later in the function.)   XXX - Why non-cached? -gwr
   1750 	 */
   1751 	if ((managed = is_managed(pa)) == FALSE)
   1752 		flags |= PMAP_NC;
   1753 
   1754 	/*
   1755 	 * For user mappings we walk along the MMU tables of the given
   1756 	 * pmap, reaching a PTE which describes the virtual page being
   1757 	 * mapped or changed.  If any level of the walk ends in an invalid
   1758 	 * entry, a table must be allocated and the entry must be updated
   1759 	 * to point to it.
   1760 	 * There is a bit of confusion as to whether this code must be
   1761 	 * re-entrant.  For now we will assume it is.  To support
   1762 	 * re-entrancy we must unlink tables from the table pool before
   1763 	 * we assume we may use them.  Tables are re-linked into the pool
   1764 	 * when we are finished with them at the end of the function.
   1765 	 * But I don't feel like doing that until we have proof that this
   1766 	 * needs to be re-entrant.
   1767 	 * 'llevel' records which tables need to be relinked.
   1768 	 */
   1769 	llevel = NONE;
   1770 
   1771 	/*
   1772 	 * Step 1 - Retrieve the A table from the pmap.  If it has no
   1773 	 * A table, allocate a new one from the available pool.
   1774 	 */
   1775 
   1776 	a_tbl = pmap->pm_a_tmgr;
   1777 	if (a_tbl == NULL) {
   1778 		/*
   1779 		 * This pmap does not currently have an A table.  Allocate
   1780 		 * a new one.
   1781 		 */
   1782 		a_tbl = get_a_table();
   1783 		a_tbl->at_parent = pmap;
   1784 
   1785 		/*
   1786 		 * Assign this new A table to the pmap, and calculate its
   1787 		 * physical address so that loadcrp() can be used to make
   1788 		 * the table active.
   1789 		 */
   1790 		pmap->pm_a_tmgr = a_tbl;
   1791 		pmap->pm_a_phys = mmu_vtop(a_tbl->at_dtbl);
   1792 
   1793 		/*
   1794 		 * If the process receiving a new A table is the current
   1795 		 * process, we are responsible for setting the MMU so that
   1796 		 * it becomes the current address space.  This only adds
   1797 		 * new mappings, so no need to flush anything.
   1798 		 */
   1799 		if (pmap == current_pmap()) {
   1800 			kernel_crp.rp_addr = pmap->pm_a_phys;
   1801 			loadcrp(&kernel_crp);
   1802 		}
   1803 
   1804 		if (!wired)
   1805 			llevel = NEWA;
   1806 	} else {
   1807 		/*
   1808 		 * Use the A table already allocated for this pmap.
   1809 		 * Unlink it from the A table pool if necessary.
   1810 		 */
   1811 		if (wired && !a_tbl->at_wcnt)
   1812 			TAILQ_REMOVE(&a_pool, a_tbl, at_link);
   1813 	}
   1814 
   1815 	/*
   1816 	 * Step 2 - Walk into the B table.  If there is no valid B table,
   1817 	 * allocate one.
   1818 	 */
   1819 
   1820 	a_idx = MMU_TIA(va);            /* Calculate the TIA of the VA. */
   1821 	a_dte = &a_tbl->at_dtbl[a_idx]; /* Retrieve descriptor from table */
   1822 	if (MMU_VALID_DT(*a_dte)) {     /* Is the descriptor valid? */
   1823 		/* The descriptor is valid.  Use the B table it points to. */
   1824 		/*************************************
   1825 		 *               a_idx               *
   1826 		 *                 v                 *
   1827 		 * a_tbl -> +-+-+-+-+-+-+-+-+-+-+-+- *
   1828 		 *          | | | | | | | | | | | |  *
   1829 		 *          +-+-+-+-+-+-+-+-+-+-+-+- *
   1830 		 *                 |                 *
   1831 		 *                 \- b_tbl -> +-+-  *
   1832 		 *                             | |   *
   1833 		 *                             +-+-  *
   1834 		 *************************************/
   1835 		b_dte = mmu_ptov(a_dte->addr.raw);
   1836 		b_tbl = mmuB2tmgr(b_dte);
   1837 
   1838 		/*
   1839 		 * If the requested mapping must be wired, but this table
   1840 		 * being used to map it is not, the table must be removed
   1841 		 * from the available pool and its wired entry count
   1842 		 * incremented.
   1843 		 */
   1844 		if (wired && !b_tbl->bt_wcnt) {
   1845 			TAILQ_REMOVE(&b_pool, b_tbl, bt_link);
   1846 			a_tbl->at_wcnt++;
   1847 		}
   1848 	} else {
   1849 		/* The descriptor is invalid.  Allocate a new B table. */
   1850 		b_tbl = get_b_table();
   1851 
   1852 		/* Point the parent A table descriptor to this new B table. */
   1853 		a_dte->addr.raw = mmu_vtop(b_tbl->bt_dtbl);
   1854 		a_dte->attr.raw = MMU_LONG_DTE_LU | MMU_DT_SHORT;
   1855 		a_tbl->at_ecnt++; /* Update parent's valid entry count */
   1856 
   1857 		/* Create the necessary back references to the parent table */
   1858 		b_tbl->bt_parent = a_tbl;
   1859 		b_tbl->bt_pidx = a_idx;
   1860 
   1861 		/*
   1862 		 * If this table is to be wired, make sure the parent A table
   1863 		 * wired count is updated to reflect that it has another wired
   1864 		 * entry.
   1865 		 */
   1866 		if (wired)
   1867 			a_tbl->at_wcnt++;
   1868 		else if (llevel == NONE)
   1869 			llevel = NEWB;
   1870 	}
   1871 
   1872 	/*
   1873 	 * Step 3 - Walk into the C table, if there is no valid C table,
   1874 	 * allocate one.
   1875 	 */
   1876 
   1877 	b_idx = MMU_TIB(va);            /* Calculate the TIB of the VA */
   1878 	b_dte = &b_tbl->bt_dtbl[b_idx]; /* Retrieve descriptor from table */
   1879 	if (MMU_VALID_DT(*b_dte)) {     /* Is the descriptor valid? */
   1880 		/* The descriptor is valid.  Use the C table it points to. */
   1881 		/**************************************
   1882 		 *               c_idx                *
   1883 		 * |                v                 *
   1884 		 * \- b_tbl -> +-+-+-+-+-+-+-+-+-+-+- *
   1885 		 *             | | | | | | | | | | |  *
   1886 		 *             +-+-+-+-+-+-+-+-+-+-+- *
   1887 		 *                  |                 *
   1888 		 *                  \- c_tbl -> +-+-- *
   1889 		 *                              | | | *
   1890 		 *                              +-+-- *
   1891 		 **************************************/
   1892 		c_pte = mmu_ptov(MMU_PTE_PA(*b_dte));
   1893 		c_tbl = mmuC2tmgr(c_pte);
   1894 
   1895 		/* If mapping is wired and table is not */
   1896 		if (wired && !c_tbl->ct_wcnt) {
   1897 			TAILQ_REMOVE(&c_pool, c_tbl, ct_link);
   1898 			b_tbl->bt_wcnt++;
   1899 		}
   1900 	} else {
   1901 		/* The descriptor is invalid.  Allocate a new C table. */
   1902 		c_tbl = get_c_table();
   1903 
   1904 		/* Point the parent B table descriptor to this new C table. */
   1905 		b_dte->attr.raw = mmu_vtop(c_tbl->ct_dtbl);
   1906 		b_dte->attr.raw |= MMU_DT_SHORT;
   1907 		b_tbl->bt_ecnt++; /* Update parent's valid entry count */
   1908 
   1909 		/* Create the necessary back references to the parent table */
   1910 		c_tbl->ct_parent = b_tbl;
   1911 		c_tbl->ct_pidx = b_idx;
   1912 
   1913 		/*
   1914 		 * If this table is to be wired, make sure the parent B table
   1915 		 * wired count is updated to reflect that it has another wired
   1916 		 * entry.
   1917 		 */
   1918 		if (wired)
   1919 			b_tbl->bt_wcnt++;
   1920 		else if (llevel == NONE)
   1921 			llevel = NEWC;
   1922 	}
   1923 
   1924 	/*
   1925 	 * Step 4 - Deposit a page descriptor (PTE) into the appropriate
   1926 	 * slot of the C table, describing the PA to which the VA is mapped.
   1927 	 */
   1928 
   1929 	pte_idx = MMU_TIC(va);
   1930 	c_pte = &c_tbl->ct_dtbl[pte_idx];
   1931 	if (MMU_VALID_DT(*c_pte)) { /* Is the entry currently valid? */
   1932 		/*
   1933 		 * The PTE is currently valid.  This particular call
   1934 		 * is just a synonym for one (or more) of the following
   1935 		 * operations:
   1936 		 *     change protection of a page
   1937 		 *     change wiring status of a page
   1938 		 *     remove the mapping of a page
   1939 		 *
   1940 		 * XXX - Semi critical: This code should unwire the PTE
   1941 		 * and, possibly, associated parent tables if this is a
   1942 		 * change wiring operation.  Currently it does not.
   1943 		 *
   1944 		 * This may be ok if pmap_change_wiring() is the only
   1945 		 * interface used to UNWIRE a page.
   1946 		 */
   1947 
   1948 		/* First check if this is a wiring operation. */
   1949 		if (wired && (c_pte->attr.raw & MMU_SHORT_PTE_WIRED)) {
   1950 			/*
   1951 			 * The PTE is already wired.  To prevent it from being
   1952 			 * counted as a new wiring operation, reset the 'wired'
   1953 			 * variable.
   1954 			 */
   1955 			wired = FALSE;
   1956 		}
   1957 
   1958 		/* Is the new address the same as the old? */
   1959 		if (MMU_PTE_PA(*c_pte) == pa) {
   1960 			/*
   1961 			 * Yes, mark that it does not need to be reinserted
   1962 			 * into the PV list.
   1963 			 */
   1964 			insert = FALSE;
   1965 
   1966 			/*
   1967 			 * Clear all but the modified, referenced and wired
   1968 			 * bits on the PTE.
   1969 			 */
   1970 			c_pte->attr.raw &= (MMU_SHORT_PTE_M
   1971 				| MMU_SHORT_PTE_USED | MMU_SHORT_PTE_WIRED);
   1972 		} else {
   1973 			/* No, remove the old entry */
   1974 			pmap_remove_pte(c_pte);
   1975 			insert = TRUE;
   1976 		}
   1977 
   1978 		/*
   1979 		 * TLB flush is only necessary if modifying current map.
   1980 		 * However, in pmap_enter(), the pmap almost always IS
   1981 		 * the current pmap, so don't even bother to check.
   1982 		 */
   1983 		TBIS(va);
   1984 	} else {
   1985 		/*
   1986 		 * The PTE is invalid.  Increment the valid entry count in
   1987 		 * the C table manager to reflect the addition of a new entry.
   1988 		 */
   1989 		c_tbl->ct_ecnt++;
   1990 
   1991 		/* XXX - temporarily make sure the PTE is cleared. */
   1992 		c_pte->attr.raw = 0;
   1993 
   1994 		/* It will also need to be inserted into the PV list. */
   1995 		insert = TRUE;
   1996 	}
   1997 
   1998 	/*
   1999 	 * If page is changing from unwired to wired status, set an unused bit
   2000 	 * within the PTE to indicate that it is wired.  Also increment the
   2001 	 * wired entry count in the C table manager.
   2002 	 */
   2003 	if (wired) {
   2004 		c_pte->attr.raw |= MMU_SHORT_PTE_WIRED;
   2005 		c_tbl->ct_wcnt++;
   2006 	}
   2007 
   2008 	/*
   2009 	 * Map the page, being careful to preserve modify/reference/wired
   2010 	 * bits.  At this point it is assumed that the PTE either has no bits
   2011 	 * set, or if there are set bits, they are only modified, reference or
   2012 	 * wired bits.  If not, the following statement will cause erratic
   2013 	 * behavior.
   2014 	 */
   2015 #ifdef	PMAP_DEBUG
   2016 	if (c_pte->attr.raw & ~(MMU_SHORT_PTE_M |
   2017 		MMU_SHORT_PTE_USED | MMU_SHORT_PTE_WIRED)) {
   2018 		printf("pmap_enter: junk left in PTE at %p\n", c_pte);
   2019 		Debugger();
   2020 	}
   2021 #endif
   2022 	c_pte->attr.raw |= ((u_long) pa | MMU_DT_PAGE);
   2023 
   2024 	/*
   2025 	 * If the mapping should be read-only, set the write protect
   2026 	 * bit in the PTE.
   2027 	 */
   2028 	if (!(prot & VM_PROT_WRITE))
   2029 		c_pte->attr.raw |= MMU_SHORT_PTE_WP;
   2030 
   2031 	/*
   2032 	 * If the mapping should be cache inhibited (indicated by the flag
   2033 	 * bits found on the lower order of the physical address.)
   2034 	 * mark the PTE as a cache inhibited page.
   2035 	 */
   2036 	if (flags & PMAP_NC)
   2037 		c_pte->attr.raw |= MMU_SHORT_PTE_CI;
   2038 
   2039 	/*
   2040 	 * If the physical address being mapped is managed by the PV
   2041 	 * system then link the pte into the list of pages mapped to that
   2042 	 * address.
   2043 	 */
   2044 	if (insert && managed) {
   2045 		pv = pa2pv(pa);
   2046 		nidx = pteidx(c_pte);
   2047 
   2048 		s = splimp();
   2049 		pvebase[nidx].pve_next = pv->pv_idx;
   2050 		pv->pv_idx = nidx;
   2051 		splx(s);
   2052 	}
   2053 
   2054 	/* Move any allocated tables back into the active pool. */
   2055 
   2056 	switch (llevel) {
   2057 		case NEWA:
   2058 			TAILQ_INSERT_TAIL(&a_pool, a_tbl, at_link);
   2059 			/* FALLTHROUGH */
   2060 		case NEWB:
   2061 			TAILQ_INSERT_TAIL(&b_pool, b_tbl, bt_link);
   2062 			/* FALLTHROUGH */
   2063 		case NEWC:
   2064 			TAILQ_INSERT_TAIL(&c_pool, c_tbl, ct_link);
   2065 			/* FALLTHROUGH */
   2066 		default:
   2067 			break;
   2068 	}
   2069 }
   2070 
   2071 /* pmap_enter_kernel			INTERNAL
   2072  **
   2073  * Map the given virtual address to the given physical address within the
   2074  * kernel address space.  This function exists because the kernel map does
   2075  * not do dynamic table allocation.  It consists of a contiguous array of ptes
   2076  * and can be edited directly without the need to walk through any tables.
   2077  *
   2078  * XXX: "Danger, Will Robinson!"
   2079  * Note that the kernel should never take a fault on any page
   2080  * between [ KERNBASE .. virtual_avail ] and this is checked in
   2081  * trap.c for kernel-mode MMU faults.  This means that mappings
   2082  * created in that range must be implicily wired. -gwr
   2083  */
   2084 void
   2085 pmap_enter_kernel(va, pa, prot)
   2086 	vm_offset_t va;
   2087 	vm_offset_t pa;
   2088 	vm_prot_t   prot;
   2089 {
   2090 	boolean_t       was_valid, insert;
   2091 	u_short         pte_idx, pv_idx;
   2092 	int             s, flags;
   2093 	mmu_short_pte_t *pte;
   2094 	pv_t            *pv;
   2095 	vm_offset_t     old_pa;
   2096 
   2097 	flags  = (pa & ~MMU_PAGE_MASK);
   2098 	pa    &= MMU_PAGE_MASK;
   2099 
   2100 	/*
   2101 	 * Calculate the index of the PTE being modified.
   2102 	 */
   2103 	pte_idx = (u_long) _btop(va - KERNBASE);
   2104 
   2105 	/* XXX - This array is traditionally named "Sysmap" */
   2106 	pte = &kernCbase[pte_idx];
   2107 
   2108 	s = splimp();
   2109 	if (MMU_VALID_DT(*pte)) {
   2110 		was_valid = TRUE;
   2111 		/*
   2112 		 * If the PTE is already mapped to an address and it differs
   2113 		 * from the address requested, unlink it from the PV list.
   2114 		 *
   2115 		 * This only applies to mappings within virtual_avail
   2116 		 * and VM_MAX_KERNEL_ADDRESS.  All others are not requests
   2117 		 * from the VM system and should not be part of the PV system.
   2118 		 */
   2119 		if ((va >= virtual_avail) && (va < VM_MAX_KERNEL_ADDRESS)) {
   2120 		    old_pa = MMU_PTE_PA(*pte);
   2121 		    if (pa != old_pa) {
   2122 		        if (is_managed(old_pa)) {
   2123 		            /* XXX - Make this into a function call? */
   2124 		            pv = pa2pv(old_pa);
   2125 		            pv_idx = pv->pv_idx;
   2126 		            if (pv_idx == pte_idx) {
   2127 		                pv->pv_idx = pvebase[pte_idx].pve_next;
   2128 		            } else {
   2129 		                while (pvebase[pv_idx].pve_next != pte_idx)
   2130 		                    pv_idx = pvebase[pv_idx].pve_next;
   2131 		                pvebase[pv_idx].pve_next =
   2132 		                    pvebase[pte_idx].pve_next;
   2133 		            }
   2134 		            /* Save modified/reference bits */
   2135 		            pv->pv_flags |= (u_short) pte->attr.raw;
   2136 		        }
   2137 		        if (is_managed(pa))
   2138 		            insert = TRUE;
   2139 		        else
   2140 		            insert = FALSE;
   2141 		        /*
   2142 		         * Clear out any old bits in the PTE.
   2143 		         */
   2144 		        pte->attr.raw = MMU_DT_INVALID;
   2145 		    } else {
   2146 		        /*
   2147 		         * Old PA and new PA are the same.  No need to relink
   2148 		         * the mapping within the PV list.
   2149 		         */
   2150 		        insert = FALSE;
   2151 
   2152 		        /*
   2153 		         * Save any mod/ref bits on the PTE.
   2154 		         */
   2155 		        pte->attr.raw &= (MMU_SHORT_PTE_USED|MMU_SHORT_PTE_M);
   2156 		    }
   2157 		} else {
   2158 		    /*
   2159 		     * If the VA lies below virtual_avail or beyond
   2160 		     * VM_MAX_KERNEL_ADDRESS, it is not a request by the VM
   2161 		     * system and hence does not need to be linked into the PV
   2162 		     * system.
   2163 		     */
   2164 		    insert = FALSE;
   2165 		    pte->attr.raw = MMU_DT_INVALID;
   2166 		}
   2167 	} else {
   2168 		pte->attr.raw = MMU_DT_INVALID;
   2169 		was_valid = FALSE;
   2170 		if ((va >= virtual_avail) && (va < VM_MAX_KERNEL_ADDRESS)) {
   2171 			if (is_managed(pa))
   2172 				insert = TRUE;
   2173 			else
   2174 				insert = FALSE;
   2175 		} else
   2176 			insert = FALSE;
   2177 	}
   2178 
   2179 	/*
   2180 	 * Map the page.  Being careful to preserve modified/referenced bits
   2181 	 * on the PTE.
   2182 	 */
   2183 	pte->attr.raw |= (pa | MMU_DT_PAGE);
   2184 
   2185 	if (!(prot & VM_PROT_WRITE)) /* If access should be read-only */
   2186 		pte->attr.raw |= MMU_SHORT_PTE_WP;
   2187 	if (flags & PMAP_NC)
   2188 		pte->attr.raw |= MMU_SHORT_PTE_CI;
   2189 	if (was_valid)
   2190 		TBIS(va);
   2191 
   2192 	/*
   2193 	 * Insert the PTE into the PV system, if need be.
   2194 	 */
   2195 	if (insert) {
   2196 		pv = pa2pv(pa);
   2197 		pvebase[pte_idx].pve_next = pv->pv_idx;
   2198 		pv->pv_idx = pte_idx;
   2199 	}
   2200 	splx(s);
   2201 
   2202 }
   2203 
   2204 /* pmap_protect			INTERFACE
   2205  **
   2206  * Apply the given protection to the given virtual address range within
   2207  * the given map.
   2208  *
   2209  * It is ok for the protection applied to be stronger than what is
   2210  * specified.  We use this to our advantage when the given map has no
   2211  * mapping for the virtual address.  By skipping a page when this
   2212  * is discovered, we are effectively applying a protection of VM_PROT_NONE,
   2213  * and therefore do not need to map the page just to apply a protection
   2214  * code.  Only pmap_enter() needs to create new mappings if they do not exist.
   2215  *
   2216  * XXX - This function could be speeded up by using pmap_stroll() for inital
   2217  *       setup, and then manual scrolling in the for() loop.
   2218  */
   2219 void
   2220 pmap_protect(pmap, startva, endva, prot)
   2221 	pmap_t pmap;
   2222 	vm_offset_t startva, endva;
   2223 	vm_prot_t prot;
   2224 {
   2225 	boolean_t iscurpmap;
   2226 	int a_idx, b_idx, c_idx;
   2227 	a_tmgr_t *a_tbl;
   2228 	b_tmgr_t *b_tbl;
   2229 	c_tmgr_t *c_tbl;
   2230 	mmu_short_pte_t *pte;
   2231 
   2232 	if (pmap == NULL)
   2233 		return;
   2234 	if (pmap == pmap_kernel()) {
   2235 		pmap_protect_kernel(startva, endva, prot);
   2236 		return;
   2237 	}
   2238 
   2239 	/*
   2240 	 * In this particular pmap implementation, there are only three
   2241 	 * types of memory protection: 'all' (read/write/execute),
   2242 	 * 'read-only' (read/execute) and 'none' (no mapping.)
   2243 	 * It is not possible for us to treat 'executable' as a separate
   2244 	 * protection type.  Therefore, protection requests that seek to
   2245 	 * remove execute permission while retaining read or write, and those
   2246 	 * that make little sense (write-only for example) are ignored.
   2247 	 */
   2248 	switch (prot) {
   2249 		case VM_PROT_NONE:
   2250 			/*
   2251 			 * A request to apply the protection code of
   2252 			 * 'VM_PROT_NONE' is a synonym for pmap_remove().
   2253 			 */
   2254 			pmap_remove(pmap, startva, endva);
   2255 			return;
   2256 		case	VM_PROT_EXECUTE:
   2257 		case	VM_PROT_READ:
   2258 		case	VM_PROT_READ|VM_PROT_EXECUTE:
   2259 			/* continue */
   2260 			break;
   2261 		case	VM_PROT_WRITE:
   2262 		case	VM_PROT_WRITE|VM_PROT_READ:
   2263 		case	VM_PROT_WRITE|VM_PROT_EXECUTE:
   2264 		case	VM_PROT_ALL:
   2265 			/* None of these should happen in a sane system. */
   2266 			return;
   2267 	}
   2268 
   2269 	/*
   2270 	 * If the pmap has no A table, it has no mappings and therefore
   2271 	 * there is nothing to protect.
   2272 	 */
   2273 	if ((a_tbl = pmap->pm_a_tmgr) == NULL)
   2274 		return;
   2275 
   2276 	a_idx = MMU_TIA(startva);
   2277 	b_idx = MMU_TIB(startva);
   2278 	c_idx = MMU_TIC(startva);
   2279 	b_tbl = (b_tmgr_t *) c_tbl = NULL;
   2280 
   2281 	iscurpmap = (pmap == current_pmap());
   2282 	while (startva < endva) {
   2283 		if (b_tbl || MMU_VALID_DT(a_tbl->at_dtbl[a_idx])) {
   2284 		  if (b_tbl == NULL) {
   2285 		    b_tbl = (b_tmgr_t *) a_tbl->at_dtbl[a_idx].addr.raw;
   2286 		    b_tbl = mmu_ptov((vm_offset_t) b_tbl);
   2287 		    b_tbl = mmuB2tmgr((mmu_short_dte_t *) b_tbl);
   2288 		  }
   2289 		  if (c_tbl || MMU_VALID_DT(b_tbl->bt_dtbl[b_idx])) {
   2290 		    if (c_tbl == NULL) {
   2291 		      c_tbl = (c_tmgr_t *) MMU_DTE_PA(b_tbl->bt_dtbl[b_idx]);
   2292 		      c_tbl = mmu_ptov((vm_offset_t) c_tbl);
   2293 		      c_tbl = mmuC2tmgr((mmu_short_pte_t *) c_tbl);
   2294 		    }
   2295 		    if (MMU_VALID_DT(c_tbl->ct_dtbl[c_idx])) {
   2296 		      pte = &c_tbl->ct_dtbl[c_idx];
   2297 		      /* make the mapping read-only */
   2298 		      pte->attr.raw |= MMU_SHORT_PTE_WP;
   2299 		      /*
   2300 		       * If we just modified the current address space,
   2301 		       * flush any translations for the modified page from
   2302 		       * the translation cache and any data from it in the
   2303 		       * data cache.
   2304 		       */
   2305 		      if (iscurpmap)
   2306 		          TBIS(startva);
   2307 		    }
   2308 		    startva += NBPG;
   2309 
   2310 		    if (++c_idx >= MMU_C_TBL_SIZE) { /* exceeded C table? */
   2311 		      c_tbl = NULL;
   2312 		      c_idx = 0;
   2313 		      if (++b_idx >= MMU_B_TBL_SIZE) { /* exceeded B table? */
   2314 		        b_tbl = NULL;
   2315 		        b_idx = 0;
   2316 		      }
   2317 		    }
   2318 		  } else { /* C table wasn't valid */
   2319 		    c_tbl = NULL;
   2320 		    c_idx = 0;
   2321 		    startva += MMU_TIB_RANGE;
   2322 		    if (++b_idx >= MMU_B_TBL_SIZE) { /* exceeded B table? */
   2323 		      b_tbl = NULL;
   2324 		      b_idx = 0;
   2325 		    }
   2326 		  } /* C table */
   2327 		} else { /* B table wasn't valid */
   2328 		  b_tbl = NULL;
   2329 		  b_idx = 0;
   2330 		  startva += MMU_TIA_RANGE;
   2331 		  a_idx++;
   2332 		} /* B table */
   2333 	}
   2334 }
   2335 
   2336 /* pmap_protect_kernel			INTERNAL
   2337  **
   2338  * Apply the given protection code to a kernel address range.
   2339  */
   2340 void
   2341 pmap_protect_kernel(startva, endva, prot)
   2342 	vm_offset_t startva, endva;
   2343 	vm_prot_t prot;
   2344 {
   2345 	vm_offset_t va;
   2346 	mmu_short_pte_t *pte;
   2347 
   2348 	pte = &kernCbase[(unsigned long) _btop(startva - KERNBASE)];
   2349 	for (va = startva; va < endva; va += NBPG, pte++) {
   2350 		if (MMU_VALID_DT(*pte)) {
   2351 		    switch (prot) {
   2352 		        case VM_PROT_ALL:
   2353 		            break;
   2354 		        case VM_PROT_EXECUTE:
   2355 		        case VM_PROT_READ:
   2356 		        case VM_PROT_READ|VM_PROT_EXECUTE:
   2357 		            pte->attr.raw |= MMU_SHORT_PTE_WP;
   2358 		            break;
   2359 		        case VM_PROT_NONE:
   2360 		            /* this is an alias for 'pmap_remove_kernel' */
   2361 		            pmap_remove_pte(pte);
   2362 		            break;
   2363 		        default:
   2364 		            break;
   2365 		    }
   2366 		    /*
   2367 		     * since this is the kernel, immediately flush any cached
   2368 		     * descriptors for this address.
   2369 		     */
   2370 		    TBIS(va);
   2371 		}
   2372 	}
   2373 }
   2374 
   2375 /* pmap_change_wiring			INTERFACE
   2376  **
   2377  * Changes the wiring of the specified page.
   2378  *
   2379  * This function is called from vm_fault.c to unwire
   2380  * a mapping.  It really should be called 'pmap_unwire'
   2381  * because it is never asked to do anything but remove
   2382  * wirings.
   2383  */
   2384 void
   2385 pmap_change_wiring(pmap, va, wire)
   2386 	pmap_t pmap;
   2387 	vm_offset_t va;
   2388 	boolean_t wire;
   2389 {
   2390 	int a_idx, b_idx, c_idx;
   2391 	a_tmgr_t *a_tbl;
   2392 	b_tmgr_t *b_tbl;
   2393 	c_tmgr_t *c_tbl;
   2394 	mmu_short_pte_t *pte;
   2395 
   2396 	/* Kernel mappings always remain wired. */
   2397 	if (pmap == pmap_kernel())
   2398 		return;
   2399 
   2400 #ifdef	PMAP_DEBUG
   2401 	if (wire == TRUE)
   2402 		panic("pmap_change_wiring: wire requested.");
   2403 #endif
   2404 
   2405 	/*
   2406 	 * Walk through the tables.  If the walk terminates without
   2407 	 * a valid PTE then the address wasn't wired in the first place.
   2408 	 * Return immediately.
   2409 	 */
   2410 	if (pmap_stroll(pmap, va, &a_tbl, &b_tbl, &c_tbl, &pte, &a_idx,
   2411 		&b_idx, &c_idx) == FALSE)
   2412 		return;
   2413 
   2414 
   2415 	/* Is the PTE wired?  If not, return. */
   2416 	if (!(pte->attr.raw & MMU_SHORT_PTE_WIRED))
   2417 		return;
   2418 
   2419 	/* Remove the wiring bit. */
   2420 	pte->attr.raw &= ~(MMU_SHORT_PTE_WIRED);
   2421 
   2422 	/*
   2423 	 * Decrement the wired entry count in the C table.
   2424 	 * If it reaches zero the following things happen:
   2425 	 * 1. The table no longer has any wired entries and is considered
   2426 	 *    unwired.
   2427 	 * 2. It is placed on the available queue.
   2428 	 * 3. The parent table's wired entry count is decremented.
   2429 	 * 4. If it reaches zero, this process repeats at step 1 and
   2430 	 *    stops at after reaching the A table.
   2431 	 */
   2432 	if (--c_tbl->ct_wcnt == 0) {
   2433 		TAILQ_INSERT_TAIL(&c_pool, c_tbl, ct_link);
   2434 		if (--b_tbl->bt_wcnt == 0) {
   2435 			TAILQ_INSERT_TAIL(&b_pool, b_tbl, bt_link);
   2436 			if (--a_tbl->at_wcnt == 0) {
   2437 				TAILQ_INSERT_TAIL(&a_pool, a_tbl, at_link);
   2438 			}
   2439 		}
   2440 	}
   2441 }
   2442 
   2443 /* pmap_pageable			INTERFACE
   2444  **
   2445  * Make the specified range of addresses within the given pmap,
   2446  * 'pageable' or 'not-pageable'.  A pageable page must not cause
   2447  * any faults when referenced.  A non-pageable page may.
   2448  *
   2449  * This routine is only advisory.  The VM system will call pmap_enter()
   2450  * to wire or unwire pages that are going to be made pageable before calling
   2451  * this function.  By the time this routine is called, everything that needs
   2452  * to be done has already been done.
   2453  */
   2454 void
   2455 pmap_pageable(pmap, start, end, pageable)
   2456 	pmap_t pmap;
   2457 	vm_offset_t start, end;
   2458 	boolean_t pageable;
   2459 {
   2460 	/* not implemented. */
   2461 }
   2462 
   2463 /* pmap_copy				INTERFACE
   2464  **
   2465  * Copy the mappings of a range of addresses in one pmap, into
   2466  * the destination address of another.
   2467  *
   2468  * This routine is advisory.  Should we one day decide that MMU tables
   2469  * may be shared by more than one pmap, this function should be used to
   2470  * link them together.  Until that day however, we do nothing.
   2471  */
   2472 void
   2473 pmap_copy(pmap_a, pmap_b, dst, len, src)
   2474 	pmap_t pmap_a, pmap_b;
   2475 	vm_offset_t dst;
   2476 	vm_size_t   len;
   2477 	vm_offset_t src;
   2478 {
   2479 	/* not implemented. */
   2480 }
   2481 
   2482 /* pmap_copy_page			INTERFACE
   2483  **
   2484  * Copy the contents of one physical page into another.
   2485  *
   2486  * This function makes use of two virtual pages allocated in pmap_bootstrap()
   2487  * to map the two specified physical pages into the kernel address space.  It
   2488  * then uses bcopy() to copy one into the other.
   2489  *
   2490  * Note: We could use the transparent translation registers to make the
   2491  * mappings.  If we do so, be sure to disable interrupts before using them.
   2492  */
   2493 void
   2494 pmap_copy_page(src, dst)
   2495 	vm_offset_t src, dst;
   2496 {
   2497 	PMAP_LOCK();
   2498 	if (tmp_vpages_inuse)
   2499 		panic("pmap_copy_page: temporary vpages are in use.");
   2500 	tmp_vpages_inuse++;
   2501 
   2502 	/* XXX - Use non-cached mappings to avoid cache polution? */
   2503 	pmap_enter_kernel(tmp_vpages[0], src, VM_PROT_READ);
   2504 	pmap_enter_kernel(tmp_vpages[1], dst, VM_PROT_READ|VM_PROT_WRITE);
   2505 	copypage((char *) tmp_vpages[0], (char *) tmp_vpages[1]);
   2506 
   2507 	tmp_vpages_inuse--;
   2508 	PMAP_UNLOCK();
   2509 }
   2510 
   2511 /* pmap_zero_page			INTERFACE
   2512  **
   2513  * Zero the contents of the specified physical page.
   2514  *
   2515  * Uses one of the virtual pages allocated in pmap_boostrap()
   2516  * to map the specified page into the kernel address space.  Then uses
   2517  * bzero() to zero out the page.
   2518  */
   2519 void
   2520 pmap_zero_page(pa)
   2521 	vm_offset_t pa;
   2522 {
   2523 	PMAP_LOCK();
   2524 	if (tmp_vpages_inuse)
   2525 		panic("pmap_zero_page: temporary vpages are in use.");
   2526 	tmp_vpages_inuse++;
   2527 
   2528 	pmap_enter_kernel(tmp_vpages[0], pa, VM_PROT_READ|VM_PROT_WRITE);
   2529 	zeropage((char *) tmp_vpages[0]);
   2530 
   2531 	tmp_vpages_inuse--;
   2532 	PMAP_UNLOCK();
   2533 }
   2534 
   2535 /* pmap_collect			INTERFACE
   2536  **
   2537  * Called from the VM system when we are about to swap out
   2538  * the process using this pmap.  This should give up any
   2539  * resources held here, including all its MMU tables.
   2540  */
   2541 void
   2542 pmap_collect(pmap)
   2543 	pmap_t pmap;
   2544 {
   2545 	/* XXX - todo... */
   2546 }
   2547 
   2548 /* pmap_create			INTERFACE
   2549  **
   2550  * Create and return a pmap structure.
   2551  */
   2552 pmap_t
   2553 pmap_create(size)
   2554 	vm_size_t size;
   2555 {
   2556 	pmap_t	pmap;
   2557 
   2558 	if (size)
   2559 		return NULL;
   2560 
   2561 	pmap = (pmap_t) malloc(sizeof(struct pmap), M_VMPMAP, M_WAITOK);
   2562 	pmap_pinit(pmap);
   2563 
   2564 	return pmap;
   2565 }
   2566 
   2567 /* pmap_pinit			INTERNAL
   2568  **
   2569  * Initialize a pmap structure.
   2570  */
   2571 void
   2572 pmap_pinit(pmap)
   2573 	pmap_t pmap;
   2574 {
   2575 	bzero(pmap, sizeof(struct pmap));
   2576 	pmap->pm_a_tmgr = NULL;
   2577 	pmap->pm_a_phys = kernAphys;
   2578 }
   2579 
   2580 /* pmap_release				INTERFACE
   2581  **
   2582  * Release any resources held by the given pmap.
   2583  *
   2584  * This is the reverse analog to pmap_pinit.  It does not
   2585  * necessarily mean for the pmap structure to be deallocated,
   2586  * as in pmap_destroy.
   2587  */
   2588 void
   2589 pmap_release(pmap)
   2590 	pmap_t pmap;
   2591 {
   2592 	/*
   2593 	 * As long as the pmap contains no mappings,
   2594 	 * which always should be the case whenever
   2595 	 * this function is called, there really should
   2596 	 * be nothing to do.
   2597 	 *
   2598 	 * XXX - This function is being called while there are
   2599 	 * still valid mappings, so I guess the above must not
   2600 	 * be true.
   2601 	 * XXX - Unless the mappings persist due to a bug here...
   2602 	 *     + That's what was happening.  The map had no mappings,
   2603 	 *       but it still had an A table.  pmap_remove() was not
   2604 	 *       releasing tables when they were empty.
   2605 	 */
   2606 #ifdef	PMAP_DEBUG
   2607 	if (pmap == NULL)
   2608 		return;
   2609 	if (pmap == pmap_kernel())
   2610 		panic("pmap_release: kernel pmap");
   2611 #endif
   2612 	/*
   2613 	 * XXX - If this pmap has an A table, give it back.
   2614 	 * The pmap SHOULD be empty by now, and pmap_remove
   2615 	 * should have already given back the A table...
   2616 	 * However, I see:  pmap->pm_a_tmgr->at_ecnt == 1
   2617 	 * at this point, which means some mapping was not
   2618 	 * removed when it should have been. -gwr
   2619 	 */
   2620 	if (pmap->pm_a_tmgr != NULL) {
   2621 		/* First make sure we are not using it! */
   2622 		if (kernel_crp.rp_addr == pmap->pm_a_phys) {
   2623 			kernel_crp.rp_addr = kernAphys;
   2624 			loadcrp(&kernel_crp);
   2625 		}
   2626 #ifdef	PMAP_DEBUG /* XXX - todo! */
   2627 		/* XXX - Now complain... */
   2628 		printf("pmap_release: still have table\n");
   2629 		Debugger();
   2630 #endif
   2631 		free_a_table(pmap->pm_a_tmgr, TRUE);
   2632 		pmap->pm_a_tmgr = NULL;
   2633 		pmap->pm_a_phys = kernAphys;
   2634 	}
   2635 }
   2636 
   2637 /* pmap_reference			INTERFACE
   2638  **
   2639  * Increment the reference count of a pmap.
   2640  */
   2641 void
   2642 pmap_reference(pmap)
   2643 	pmap_t pmap;
   2644 {
   2645 	if (pmap == NULL)
   2646 		return;
   2647 
   2648 	/* pmap_lock(pmap); */
   2649 	pmap->pm_refcount++;
   2650 	/* pmap_unlock(pmap); */
   2651 }
   2652 
   2653 /* pmap_dereference			INTERNAL
   2654  **
   2655  * Decrease the reference count on the given pmap
   2656  * by one and return the current count.
   2657  */
   2658 int
   2659 pmap_dereference(pmap)
   2660 	pmap_t pmap;
   2661 {
   2662 	int rtn;
   2663 
   2664 	if (pmap == NULL)
   2665 		return 0;
   2666 
   2667 	/* pmap_lock(pmap); */
   2668 	rtn = --pmap->pm_refcount;
   2669 	/* pmap_unlock(pmap); */
   2670 
   2671 	return rtn;
   2672 }
   2673 
   2674 /* pmap_destroy			INTERFACE
   2675  **
   2676  * Decrement a pmap's reference count and delete
   2677  * the pmap if it becomes zero.  Will be called
   2678  * only after all mappings have been removed.
   2679  */
   2680 void
   2681 pmap_destroy(pmap)
   2682 	pmap_t pmap;
   2683 {
   2684 	if (pmap == NULL)
   2685 		return;
   2686 	if (pmap == &kernel_pmap)
   2687 		panic("pmap_destroy: kernel_pmap!");
   2688 	if (pmap_dereference(pmap) == 0) {
   2689 		pmap_release(pmap);
   2690 		free(pmap, M_VMPMAP);
   2691 	}
   2692 }
   2693 
   2694 /* pmap_is_referenced			INTERFACE
   2695  **
   2696  * Determine if the given physical page has been
   2697  * referenced (read from [or written to.])
   2698  */
   2699 boolean_t
   2700 pmap_is_referenced(pa)
   2701 	vm_offset_t pa;
   2702 {
   2703 	pv_t      *pv;
   2704 	int       idx, s;
   2705 
   2706 	if (!pv_initialized)
   2707 		return FALSE;
   2708 	/* XXX - this may be unecessary. */
   2709 	if (!is_managed(pa))
   2710 		return FALSE;
   2711 
   2712 	pv = pa2pv(pa);
   2713 	/*
   2714 	 * Check the flags on the pv head.  If they are set,
   2715 	 * return immediately.  Otherwise a search must be done.
   2716 	 */
   2717 	if (pv->pv_flags & PV_FLAGS_USED)
   2718 		return TRUE;
   2719 	else {
   2720 		s = splimp();
   2721 		/*
   2722 		 * Search through all pv elements pointing
   2723 		 * to this page and query their reference bits
   2724 		 */
   2725 		for (idx = pv->pv_idx; idx != PVE_EOL; idx =
   2726 			pvebase[idx].pve_next)
   2727 			if (MMU_PTE_USED(kernCbase[idx])) {
   2728 				splx(s);
   2729 				return TRUE;
   2730 			}
   2731 		splx(s);
   2732 	}
   2733 
   2734 	return FALSE;
   2735 }
   2736 
   2737 /* pmap_is_modified			INTERFACE
   2738  **
   2739  * Determine if the given physical page has been
   2740  * modified (written to.)
   2741  */
   2742 boolean_t
   2743 pmap_is_modified(pa)
   2744 	vm_offset_t pa;
   2745 {
   2746 	pv_t      *pv;
   2747 	int       idx, s;
   2748 
   2749 	if (!pv_initialized)
   2750 		return FALSE;
   2751 	/* XXX - this may be unecessary. */
   2752 	if (!is_managed(pa))
   2753 		return FALSE;
   2754 
   2755 	/* see comments in pmap_is_referenced() */
   2756 	pv = pa2pv(pa);
   2757 	if (pv->pv_flags & PV_FLAGS_MDFY) {
   2758 		return TRUE;
   2759 	} else {
   2760 		s = splimp();
   2761 		for (idx = pv->pv_idx; idx != PVE_EOL; idx =
   2762 			pvebase[idx].pve_next)
   2763 			if (MMU_PTE_MODIFIED(kernCbase[idx])) {
   2764 				splx(s);
   2765 				return TRUE;
   2766 			}
   2767 		splx(s);
   2768 	}
   2769 
   2770 	return FALSE;
   2771 }
   2772 
   2773 /* pmap_page_protect			INTERFACE
   2774  **
   2775  * Applies the given protection to all mappings to the given
   2776  * physical page.
   2777  */
   2778 void
   2779 pmap_page_protect(pa, prot)
   2780 	vm_offset_t pa;
   2781 	vm_prot_t prot;
   2782 {
   2783 	pv_t      *pv;
   2784 	int       idx, s;
   2785 	vm_offset_t va;
   2786 	struct mmu_short_pte_struct *pte;
   2787 	c_tmgr_t  *c_tbl;
   2788 	pmap_t    pmap, curpmap;
   2789 
   2790 	if (!is_managed(pa))
   2791 		return;
   2792 
   2793 	curpmap = current_pmap();
   2794 	pv = pa2pv(pa);
   2795 	s = splimp();
   2796 	for (idx = pv->pv_idx; idx != PVE_EOL; idx = pvebase[idx].pve_next) {
   2797 		pte = &kernCbase[idx];
   2798 		switch (prot) {
   2799 			case VM_PROT_ALL:
   2800 				/* do nothing */
   2801 				break;
   2802 			case VM_PROT_EXECUTE:
   2803 			case VM_PROT_READ:
   2804 			case VM_PROT_READ|VM_PROT_EXECUTE:
   2805 				pte->attr.raw |= MMU_SHORT_PTE_WP;
   2806 
   2807 				/*
   2808 				 * Determine the virtual address mapped by
   2809 				 * the PTE and flush ATC entries if necessary.
   2810 				 */
   2811 				va = pmap_get_pteinfo(idx, &pmap, &c_tbl);
   2812 				if (pmap == curpmap || pmap == pmap_kernel())
   2813 					TBIS(va);
   2814 				break;
   2815 			case VM_PROT_NONE:
   2816 				/* Save the mod/ref bits. */
   2817 				pv->pv_flags |= pte->attr.raw;
   2818 				/* Invalidate the PTE. */
   2819 				pte->attr.raw = MMU_DT_INVALID;
   2820 
   2821 				/*
   2822 				 * Update table counts.  And flush ATC entries
   2823 				 * if necessary.
   2824 				 */
   2825 				va = pmap_get_pteinfo(idx, &pmap, &c_tbl);
   2826 
   2827 				/*
   2828 				 * If the PTE belongs to the kernel map,
   2829 				 * be sure to flush the page it maps.
   2830 				 */
   2831 				if (pmap == pmap_kernel()) {
   2832 					TBIS(va);
   2833 				} else {
   2834 					/*
   2835 					 * The PTE belongs to a user map.
   2836 					 * update the entry count in the C
   2837 					 * table to which it belongs and flush
   2838 					 * the ATC if the mapping belongs to
   2839 					 * the current pmap.
   2840 					 */
   2841 					c_tbl->ct_ecnt--;
   2842 					if (pmap == curpmap)
   2843 						TBIS(va);
   2844 				}
   2845 				break;
   2846 			default:
   2847 				break;
   2848 		}
   2849 	}
   2850 
   2851 	/*
   2852 	 * If the protection code indicates that all mappings to the page
   2853 	 * be removed, truncate the PV list to zero entries.
   2854 	 */
   2855 	if (prot == VM_PROT_NONE)
   2856 		pv->pv_idx = PVE_EOL;
   2857 	splx(s);
   2858 }
   2859 
   2860 /* pmap_get_pteinfo		INTERNAL
   2861  **
   2862  * Called internally to find the pmap and virtual address within that
   2863  * map to which the pte at the given index maps.  Also includes the PTE's C
   2864  * table manager.
   2865  *
   2866  * Returns the pmap in the argument provided, and the virtual address
   2867  * by return value.
   2868  */
   2869 vm_offset_t
   2870 pmap_get_pteinfo(idx, pmap, tbl)
   2871 	u_int idx;
   2872 	pmap_t *pmap;
   2873 	c_tmgr_t **tbl;
   2874 {
   2875 	a_tmgr_t    *a_tbl;
   2876 	b_tmgr_t    *b_tbl;
   2877 	c_tmgr_t    *c_tbl;
   2878 	vm_offset_t     va = 0;
   2879 
   2880 	/*
   2881 	 * Determine if the PTE is a kernel PTE or a user PTE.
   2882 	 */
   2883 	if (idx >= NUM_KERN_PTES) {
   2884 		/*
   2885 		 * The PTE belongs to a user mapping.
   2886 		 * Find the virtual address by decoding table indices.
   2887 		 * Each successive decode will reveal the address from
   2888 		 * least to most significant bit fashion.
   2889 		 *
   2890 		 * 31                              0
   2891 		 * +-------------------------------+
   2892 		 * |AAAAAAABBBBBBCCCCCC............|
   2893 		 * +-------------------------------+
   2894 		 */
   2895 		/* XXX: c_tbl = mmuC2tmgr(pte); */
   2896 		/* XXX: Would like an inline for this to validate idx... */
   2897 		c_tbl = &Ctmgrbase[(idx - NUM_KERN_PTES) / MMU_C_TBL_SIZE];
   2898 		b_tbl = c_tbl->ct_parent;
   2899 		a_tbl = b_tbl->bt_parent;
   2900 		*pmap = a_tbl->at_parent;
   2901 		*tbl = c_tbl;
   2902 
   2903 		/* Start with the 'C' bits, then add B and A... */
   2904 		va |= ((idx % MMU_C_TBL_SIZE) << MMU_TIC_SHIFT);
   2905 		va |= (c_tbl->ct_pidx << MMU_TIB_SHIFT);
   2906 		va |= (b_tbl->bt_pidx << MMU_TIA_SHIFT);
   2907 	} else {
   2908 		/*
   2909 		 * The PTE belongs to the kernel map.
   2910 		 */
   2911 		*pmap = pmap_kernel();
   2912 
   2913 		va = _ptob(idx);
   2914 		va += KERNBASE;
   2915 	}
   2916 
   2917 	return va;
   2918 }
   2919 
   2920 #if	0	/* XXX - I am eliminating this function. */
   2921 /* pmap_find_tic			INTERNAL
   2922  **
   2923  * Given the address of a pte, find the TIC (level 'C' table index) for
   2924  * the pte within its C table.
   2925  */
   2926 char
   2927 pmap_find_tic(pte)
   2928 	mmu_short_pte_t *pte;
   2929 {
   2930 	return ((pte - mmuCbase) % MMU_C_TBL_SIZE);
   2931 }
   2932 #endif	/* 0 */
   2933 
   2934 
   2935 /* pmap_clear_modify			INTERFACE
   2936  **
   2937  * Clear the modification bit on the page at the specified
   2938  * physical address.
   2939  *
   2940  */
   2941 void
   2942 pmap_clear_modify(pa)
   2943 	vm_offset_t pa;
   2944 {
   2945 	if (!is_managed(pa))
   2946 		return;
   2947 	pmap_clear_pv(pa, PV_FLAGS_MDFY);
   2948 }
   2949 
   2950 /* pmap_clear_reference			INTERFACE
   2951  **
   2952  * Clear the referenced bit on the page at the specified
   2953  * physical address.
   2954  */
   2955 void
   2956 pmap_clear_reference(pa)
   2957 	vm_offset_t pa;
   2958 {
   2959 	if (!is_managed(pa))
   2960 		return;
   2961 	pmap_clear_pv(pa, PV_FLAGS_USED);
   2962 }
   2963 
   2964 /* pmap_clear_pv			INTERNAL
   2965  **
   2966  * Clears the specified flag from the specified physical address.
   2967  * (Used by pmap_clear_modify() and pmap_clear_reference().)
   2968  *
   2969  * Flag is one of:
   2970  *   PV_FLAGS_MDFY - Page modified bit.
   2971  *   PV_FLAGS_USED - Page used (referenced) bit.
   2972  *
   2973  * This routine must not only clear the flag on the pv list
   2974  * head.  It must also clear the bit on every pte in the pv
   2975  * list associated with the address.
   2976  */
   2977 void
   2978 pmap_clear_pv(pa, flag)
   2979 	vm_offset_t pa;
   2980 	int flag;
   2981 {
   2982 	pv_t      *pv;
   2983 	int       idx, s;
   2984 	vm_offset_t     va;
   2985 	pmap_t          pmap;
   2986 	mmu_short_pte_t *pte;
   2987 	c_tmgr_t        *c_tbl;
   2988 
   2989 	pv = pa2pv(pa);
   2990 
   2991 	s = splimp();
   2992 	pv->pv_flags &= ~(flag);
   2993 	for (idx = pv->pv_idx; idx != PVE_EOL; idx = pvebase[idx].pve_next) {
   2994 		pte = &kernCbase[idx];
   2995 		pte->attr.raw &= ~(flag);
   2996 		/*
   2997 		 * The MC68030 MMU will not set the modified or
   2998 		 * referenced bits on any MMU tables for which it has
   2999 		 * a cached descriptor with its modify bit set.  To insure
   3000 		 * that it will modify these bits on the PTE during the next
   3001 		 * time it is written to or read from, we must flush it from
   3002 		 * the ATC.
   3003 		 *
   3004 		 * Ordinarily it is only necessary to flush the descriptor
   3005 		 * if it is used in the current address space.  But since I
   3006 		 * am not sure that there will always be a notion of
   3007 		 * 'the current address space' when this function is called,
   3008 		 * I will skip the test and always flush the address.  It
   3009 		 * does no harm.
   3010 		 */
   3011 		va = pmap_get_pteinfo(idx, &pmap, &c_tbl);
   3012 		TBIS(va);
   3013 	}
   3014 	splx(s);
   3015 }
   3016 
   3017 /* pmap_extract			INTERFACE
   3018  **
   3019  * Return the physical address mapped by the virtual address
   3020  * in the specified pmap or 0 if it is not known.
   3021  *
   3022  * Note: this function should also apply an exclusive lock
   3023  * on the pmap system during its duration.
   3024  */
   3025 vm_offset_t
   3026 pmap_extract(pmap, va)
   3027 	pmap_t      pmap;
   3028 	vm_offset_t va;
   3029 {
   3030 	int a_idx, b_idx, pte_idx;
   3031 	a_tmgr_t	*a_tbl;
   3032 	b_tmgr_t	*b_tbl;
   3033 	c_tmgr_t	*c_tbl;
   3034 	mmu_short_pte_t	*c_pte;
   3035 
   3036 	if (pmap == pmap_kernel())
   3037 		return pmap_extract_kernel(va);
   3038 	if (pmap == NULL)
   3039 		return 0;
   3040 
   3041 	if (pmap_stroll(pmap, va, &a_tbl, &b_tbl, &c_tbl,
   3042 		&c_pte, &a_idx, &b_idx, &pte_idx) == FALSE)
   3043 		return 0;
   3044 
   3045 	if (!MMU_VALID_DT(*c_pte))
   3046 		return 0;
   3047 
   3048 	return (MMU_PTE_PA(*c_pte));
   3049 }
   3050 
   3051 /* pmap_extract_kernel		INTERNAL
   3052  **
   3053  * Extract a translation from the kernel address space.
   3054  */
   3055 vm_offset_t
   3056 pmap_extract_kernel(va)
   3057 	vm_offset_t va;
   3058 {
   3059 	mmu_short_pte_t *pte;
   3060 
   3061 	pte = &kernCbase[(u_int) _btop(va - KERNBASE)];
   3062 	return MMU_PTE_PA(*pte);
   3063 }
   3064 
   3065 /* pmap_remove_kernel		INTERNAL
   3066  **
   3067  * Remove the mapping of a range of virtual addresses from the kernel map.
   3068  * The arguments are already page-aligned.
   3069  */
   3070 void
   3071 pmap_remove_kernel(sva, eva)
   3072 	vm_offset_t sva;
   3073 	vm_offset_t eva;
   3074 {
   3075 	int idx, eidx;
   3076 
   3077 #ifdef	PMAP_DEBUG
   3078 	if ((sva & PGOFSET) || (eva & PGOFSET))
   3079 		panic("pmap_remove_kernel: alignment");
   3080 #endif
   3081 
   3082 	idx  = _btop(sva - KERNBASE);
   3083 	eidx = _btop(eva - KERNBASE);
   3084 
   3085 	while (idx < eidx)
   3086 		pmap_remove_pte(&kernCbase[idx++]);
   3087 	/* Always flush the ATC when maniplating the kernel address space. */
   3088 	TBIAS();
   3089 }
   3090 
   3091 /* pmap_remove			INTERFACE
   3092  **
   3093  * Remove the mapping of a range of virtual addresses from the given pmap.
   3094  *
   3095  * If the range contains any wired entries, this function will probably create
   3096  * disaster.
   3097  */
   3098 void
   3099 pmap_remove(pmap, start, end)
   3100 	pmap_t pmap;
   3101 	vm_offset_t start;
   3102 	vm_offset_t end;
   3103 {
   3104 
   3105 	if (pmap == pmap_kernel()) {
   3106 		pmap_remove_kernel(start, end);
   3107 		return;
   3108 	}
   3109 
   3110 	/*
   3111 	 * XXX - Temporary(?) statement to prevent panic caused
   3112 	 * by vm_alloc_with_pager() handing us a software map (ie NULL)
   3113 	 * to remove because it couldn't get backing store.
   3114 	 * (I guess.)
   3115 	 */
   3116 	if (pmap == NULL)
   3117 		return;
   3118 
   3119 	/*
   3120 	 * If the pmap doesn't have an A table of its own, it has no mappings
   3121 	 * that can be removed.
   3122 	 */
   3123 	if (pmap->pm_a_tmgr == NULL)
   3124 		return;
   3125 
   3126 	/*
   3127 	 * Remove the specified range from the pmap.  If the function
   3128 	 * returns true, the operation removed all the valid mappings
   3129 	 * in the pmap and freed its A table.  If this happened to the
   3130 	 * currently loaded pmap, the MMU root pointer must be reloaded
   3131 	 * with the default 'kernel' map.
   3132 	 */
   3133 	if (pmap_remove_a(pmap->pm_a_tmgr, start, end)) {
   3134 		if (kernel_crp.rp_addr == pmap->pm_a_phys) {
   3135 			kernel_crp.rp_addr = kernAphys;
   3136 			loadcrp(&kernel_crp);
   3137 			/* will do TLB flush below */
   3138 		}
   3139 		pmap->pm_a_tmgr = NULL;
   3140 		pmap->pm_a_phys = kernAphys;
   3141 	}
   3142 
   3143 	/*
   3144 	 * If we just modified the current address space,
   3145 	 * make sure to flush the MMU cache.
   3146 	 *
   3147 	 * XXX - this could be an unecessarily large flush.
   3148 	 * XXX - Could decide, based on the size of the VA range
   3149 	 * to be removed, whether to flush "by pages" or "all".
   3150 	 */
   3151 	if (pmap == current_pmap())
   3152 		TBIAU();
   3153 }
   3154 
   3155 /* pmap_remove_a			INTERNAL
   3156  **
   3157  * This is function number one in a set of three that removes a range
   3158  * of memory in the most efficient manner by removing the highest possible
   3159  * tables from the memory space.  This particular function attempts to remove
   3160  * as many B tables as it can, delegating the remaining fragmented ranges to
   3161  * pmap_remove_b().
   3162  *
   3163  * If the removal operation results in an empty A table, the function returns
   3164  * TRUE.
   3165  *
   3166  * It's ugly but will do for now.
   3167  */
   3168 boolean_t
   3169 pmap_remove_a(a_tbl, start, end)
   3170 	a_tmgr_t *a_tbl;
   3171 	vm_offset_t start;
   3172 	vm_offset_t end;
   3173 {
   3174 	boolean_t empty;
   3175 	int idx;
   3176 	vm_offset_t nstart, nend;
   3177 	b_tmgr_t *b_tbl;
   3178 	mmu_long_dte_t  *a_dte;
   3179 	mmu_short_dte_t *b_dte;
   3180 
   3181 	/*
   3182 	 * The following code works with what I call a 'granularity
   3183 	 * reduction algorithim'.  A range of addresses will always have
   3184 	 * the following properties, which are classified according to
   3185 	 * how the range relates to the size of the current granularity
   3186 	 * - an A table entry:
   3187 	 *
   3188 	 *            1 2       3 4
   3189 	 * -+---+---+---+---+---+---+---+-
   3190 	 * -+---+---+---+---+---+---+---+-
   3191 	 *
   3192 	 * A range will always start on a granularity boundary, illustrated
   3193 	 * by '+' signs in the table above, or it will start at some point
   3194 	 * inbetween a granularity boundary, as illustrated by point 1.
   3195 	 * The first step in removing a range of addresses is to remove the
   3196 	 * range between 1 and 2, the nearest granularity boundary.  This
   3197 	 * job is handled by the section of code governed by the
   3198 	 * 'if (start < nstart)' statement.
   3199 	 *
   3200 	 * A range will always encompass zero or more intergral granules,
   3201 	 * illustrated by points 2 and 3.  Integral granules are easy to
   3202 	 * remove.  The removal of these granules is the second step, and
   3203 	 * is handled by the code block 'if (nstart < nend)'.
   3204 	 *
   3205 	 * Lastly, a range will always end on a granularity boundary,
   3206 	 * ill. by point 3, or it will fall just beyond one, ill. by point
   3207 	 * 4.  The last step involves removing this range and is handled by
   3208 	 * the code block 'if (nend < end)'.
   3209 	 */
   3210 	nstart = MMU_ROUND_UP_A(start);
   3211 	nend = MMU_ROUND_A(end);
   3212 
   3213 	if (start < nstart) {
   3214 		/*
   3215 		 * This block is executed if the range starts between
   3216 		 * a granularity boundary.
   3217 		 *
   3218 		 * First find the DTE which is responsible for mapping
   3219 		 * the start of the range.
   3220 		 */
   3221 		idx = MMU_TIA(start);
   3222 		a_dte = &a_tbl->at_dtbl[idx];
   3223 
   3224 		/*
   3225 		 * If the DTE is valid then delegate the removal of the sub
   3226 		 * range to pmap_remove_b(), which can remove addresses at
   3227 		 * a finer granularity.
   3228 		 */
   3229 		if (MMU_VALID_DT(*a_dte)) {
   3230 			b_dte = mmu_ptov(a_dte->addr.raw);
   3231 			b_tbl = mmuB2tmgr(b_dte);
   3232 
   3233 			/*
   3234 			 * The sub range to be removed starts at the start
   3235 			 * of the full range we were asked to remove, and ends
   3236 			 * at the greater of:
   3237 			 * 1. The end of the full range, -or-
   3238 			 * 2. The end of the full range, rounded down to the
   3239 			 *    nearest granularity boundary.
   3240 			 */
   3241 			if (end < nstart)
   3242 				empty = pmap_remove_b(b_tbl, start, end);
   3243 			else
   3244 				empty = pmap_remove_b(b_tbl, start, nstart);
   3245 
   3246 			/*
   3247 			 * If the removal resulted in an empty B table,
   3248 			 * invalidate the DTE that points to it and decrement
   3249 			 * the valid entry count of the A table.
   3250 			 */
   3251 			if (empty) {
   3252 				a_dte->attr.raw = MMU_DT_INVALID;
   3253 				a_tbl->at_ecnt--;
   3254 			}
   3255 		}
   3256 		/*
   3257 		 * If the DTE is invalid, the address range is already non-
   3258 		 * existant and can simply be skipped.
   3259 		 */
   3260 	}
   3261 	if (nstart < nend) {
   3262 		/*
   3263 		 * This block is executed if the range spans a whole number
   3264 		 * multiple of granules (A table entries.)
   3265 		 *
   3266 		 * First find the DTE which is responsible for mapping
   3267 		 * the start of the first granule involved.
   3268 		 */
   3269 		idx = MMU_TIA(nstart);
   3270 		a_dte = &a_tbl->at_dtbl[idx];
   3271 
   3272 		/*
   3273 		 * Remove entire sub-granules (B tables) one at a time,
   3274 		 * until reaching the end of the range.
   3275 		 */
   3276 		for (; nstart < nend; a_dte++, nstart += MMU_TIA_RANGE)
   3277 			if (MMU_VALID_DT(*a_dte)) {
   3278 				/*
   3279 				 * Find the B table manager for the
   3280 				 * entry and free it.
   3281 				 */
   3282 				b_dte = mmu_ptov(a_dte->addr.raw);
   3283 				b_tbl = mmuB2tmgr(b_dte);
   3284 				free_b_table(b_tbl, TRUE);
   3285 
   3286 				/*
   3287 				 * Invalidate the DTE that points to the
   3288 				 * B table and decrement the valid entry
   3289 				 * count of the A table.
   3290 				 */
   3291 				a_dte->attr.raw = MMU_DT_INVALID;
   3292 				a_tbl->at_ecnt--;
   3293 			}
   3294 	}
   3295 	if (nend < end) {
   3296 		/*
   3297 		 * This block is executed if the range ends beyond a
   3298 		 * granularity boundary.
   3299 		 *
   3300 		 * First find the DTE which is responsible for mapping
   3301 		 * the start of the nearest (rounded down) granularity
   3302 		 * boundary.
   3303 		 */
   3304 		idx = MMU_TIA(nend);
   3305 		a_dte = &a_tbl->at_dtbl[idx];
   3306 
   3307 		/*
   3308 		 * If the DTE is valid then delegate the removal of the sub
   3309 		 * range to pmap_remove_b(), which can remove addresses at
   3310 		 * a finer granularity.
   3311 		 */
   3312 		if (MMU_VALID_DT(*a_dte)) {
   3313 			/*
   3314 			 * Find the B table manager for the entry
   3315 			 * and hand it to pmap_remove_b() along with
   3316 			 * the sub range.
   3317 			 */
   3318 			b_dte = mmu_ptov(a_dte->addr.raw);
   3319 			b_tbl = mmuB2tmgr(b_dte);
   3320 
   3321 			empty = pmap_remove_b(b_tbl, nend, end);
   3322 
   3323 			/*
   3324 			 * If the removal resulted in an empty B table,
   3325 			 * invalidate the DTE that points to it and decrement
   3326 			 * the valid entry count of the A table.
   3327 			 */
   3328 			if (empty) {
   3329 				a_dte->attr.raw = MMU_DT_INVALID;
   3330 				a_tbl->at_ecnt--;
   3331 			}
   3332 		}
   3333 	}
   3334 
   3335 	/*
   3336 	 * If there are no more entries in the A table, release it
   3337 	 * back to the available pool and return TRUE.
   3338 	 */
   3339 	if (a_tbl->at_ecnt == 0) {
   3340 		a_tbl->at_parent = NULL;
   3341 		TAILQ_REMOVE(&a_pool, a_tbl, at_link);
   3342 		TAILQ_INSERT_HEAD(&a_pool, a_tbl, at_link);
   3343 		empty = TRUE;
   3344 	} else {
   3345 		empty = FALSE;
   3346 	}
   3347 
   3348 	return empty;
   3349 }
   3350 
   3351 /* pmap_remove_b			INTERNAL
   3352  **
   3353  * Remove a range of addresses from an address space, trying to remove entire
   3354  * C tables if possible.
   3355  *
   3356  * If the operation results in an empty B table, the function returns TRUE.
   3357  */
   3358 boolean_t
   3359 pmap_remove_b(b_tbl, start, end)
   3360 	b_tmgr_t *b_tbl;
   3361 	vm_offset_t start;
   3362 	vm_offset_t end;
   3363 {
   3364 	boolean_t empty;
   3365 	int idx;
   3366 	vm_offset_t nstart, nend, rstart;
   3367 	c_tmgr_t *c_tbl;
   3368 	mmu_short_dte_t  *b_dte;
   3369 	mmu_short_pte_t  *c_dte;
   3370 
   3371 
   3372 	nstart = MMU_ROUND_UP_B(start);
   3373 	nend = MMU_ROUND_B(end);
   3374 
   3375 	if (start < nstart) {
   3376 		idx = MMU_TIB(start);
   3377 		b_dte = &b_tbl->bt_dtbl[idx];
   3378 		if (MMU_VALID_DT(*b_dte)) {
   3379 			c_dte = mmu_ptov(MMU_DTE_PA(*b_dte));
   3380 			c_tbl = mmuC2tmgr(c_dte);
   3381 			if (end < nstart)
   3382 				empty = pmap_remove_c(c_tbl, start, end);
   3383 			else
   3384 				empty = pmap_remove_c(c_tbl, start, nstart);
   3385 			if (empty) {
   3386 				b_dte->attr.raw = MMU_DT_INVALID;
   3387 				b_tbl->bt_ecnt--;
   3388 			}
   3389 		}
   3390 	}
   3391 	if (nstart < nend) {
   3392 		idx = MMU_TIB(nstart);
   3393 		b_dte = &b_tbl->bt_dtbl[idx];
   3394 		rstart = nstart;
   3395 		while (rstart < nend) {
   3396 			if (MMU_VALID_DT(*b_dte)) {
   3397 				c_dte = mmu_ptov(MMU_DTE_PA(*b_dte));
   3398 				c_tbl = mmuC2tmgr(c_dte);
   3399 				free_c_table(c_tbl, TRUE);
   3400 				b_dte->attr.raw = MMU_DT_INVALID;
   3401 				b_tbl->bt_ecnt--;
   3402 			}
   3403 			b_dte++;
   3404 			rstart += MMU_TIB_RANGE;
   3405 		}
   3406 	}
   3407 	if (nend < end) {
   3408 		idx = MMU_TIB(nend);
   3409 		b_dte = &b_tbl->bt_dtbl[idx];
   3410 		if (MMU_VALID_DT(*b_dte)) {
   3411 			c_dte = mmu_ptov(MMU_DTE_PA(*b_dte));
   3412 			c_tbl = mmuC2tmgr(c_dte);
   3413 			empty = pmap_remove_c(c_tbl, nend, end);
   3414 			if (empty) {
   3415 				b_dte->attr.raw = MMU_DT_INVALID;
   3416 				b_tbl->bt_ecnt--;
   3417 			}
   3418 		}
   3419 	}
   3420 
   3421 	if (b_tbl->bt_ecnt == 0) {
   3422 		b_tbl->bt_parent = NULL;
   3423 		TAILQ_REMOVE(&b_pool, b_tbl, bt_link);
   3424 		TAILQ_INSERT_HEAD(&b_pool, b_tbl, bt_link);
   3425 		empty = TRUE;
   3426 	} else {
   3427 		empty = FALSE;
   3428 	}
   3429 
   3430 	return empty;
   3431 }
   3432 
   3433 /* pmap_remove_c			INTERNAL
   3434  **
   3435  * Remove a range of addresses from the given C table.
   3436  */
   3437 boolean_t
   3438 pmap_remove_c(c_tbl, start, end)
   3439 	c_tmgr_t *c_tbl;
   3440 	vm_offset_t start;
   3441 	vm_offset_t end;
   3442 {
   3443 	boolean_t empty;
   3444 	int idx;
   3445 	mmu_short_pte_t *c_pte;
   3446 
   3447 	idx = MMU_TIC(start);
   3448 	c_pte = &c_tbl->ct_dtbl[idx];
   3449 	for (;start < end; start += MMU_PAGE_SIZE, c_pte++) {
   3450 		if (MMU_VALID_DT(*c_pte)) {
   3451 			pmap_remove_pte(c_pte);
   3452 			c_tbl->ct_ecnt--;
   3453 		}
   3454 	}
   3455 
   3456 	if (c_tbl->ct_ecnt == 0) {
   3457 		c_tbl->ct_parent = NULL;
   3458 		TAILQ_REMOVE(&c_pool, c_tbl, ct_link);
   3459 		TAILQ_INSERT_HEAD(&c_pool, c_tbl, ct_link);
   3460 		empty = TRUE;
   3461 	} else {
   3462 		empty = FALSE;
   3463 	}
   3464 
   3465 	return empty;
   3466 }
   3467 
   3468 /* is_managed				INTERNAL
   3469  **
   3470  * Determine if the given physical address is managed by the PV system.
   3471  * Note that this logic assumes that no one will ask for the status of
   3472  * addresses which lie in-between the memory banks on the 3/80.  If they
   3473  * do so, it will falsely report that it is managed.
   3474  *
   3475  * Note: A "managed" address is one that was reported to the VM system as
   3476  * a "usable page" during system startup.  As such, the VM system expects the
   3477  * pmap module to keep an accurate track of the useage of those pages.
   3478  * Any page not given to the VM system at startup does not exist (as far as
   3479  * the VM system is concerned) and is therefore "unmanaged."  Examples are
   3480  * those pages which belong to the ROM monitor and the memory allocated before
   3481  * the VM system was started.
   3482  */
   3483 boolean_t
   3484 is_managed(pa)
   3485 	vm_offset_t pa;
   3486 {
   3487 	if (pa >= avail_start && pa < avail_end)
   3488 		return TRUE;
   3489 	else
   3490 		return FALSE;
   3491 }
   3492 
   3493 /* pmap_bootstrap_alloc			INTERNAL
   3494  **
   3495  * Used internally for memory allocation at startup when malloc is not
   3496  * available.  This code will fail once it crosses the first memory
   3497  * bank boundary on the 3/80.  Hopefully by then however, the VM system
   3498  * will be in charge of allocation.
   3499  */
   3500 void *
   3501 pmap_bootstrap_alloc(size)
   3502 	int size;
   3503 {
   3504 	void *rtn;
   3505 
   3506 #ifdef	PMAP_DEBUG
   3507 	if (bootstrap_alloc_enabled == FALSE) {
   3508 		mon_printf("pmap_bootstrap_alloc: disabled\n");
   3509 		sunmon_abort();
   3510 	}
   3511 #endif
   3512 
   3513 	rtn = (void *) virtual_avail;
   3514 	virtual_avail += size;
   3515 
   3516 #ifdef	PMAP_DEBUG
   3517 	if (virtual_avail > virtual_contig_end) {
   3518 		mon_printf("pmap_bootstrap_alloc: out of mem\n");
   3519 		sunmon_abort();
   3520 	}
   3521 #endif
   3522 
   3523 	return rtn;
   3524 }
   3525 
   3526 /* pmap_bootstap_aalign			INTERNAL
   3527  **
   3528  * Used to insure that the next call to pmap_bootstrap_alloc() will
   3529  * return a chunk of memory aligned to the specified size.
   3530  *
   3531  * Note: This function will only support alignment sizes that are powers
   3532  * of two.
   3533  */
   3534 void
   3535 pmap_bootstrap_aalign(size)
   3536 	int size;
   3537 {
   3538 	int off;
   3539 
   3540 	off = virtual_avail & (size - 1);
   3541 	if (off) {
   3542 		(void) pmap_bootstrap_alloc(size - off);
   3543 	}
   3544 }
   3545 
   3546 /* pmap_pa_exists
   3547  **
   3548  * Used by the /dev/mem driver to see if a given PA is memory
   3549  * that can be mapped.  (The PA is not in a hole.)
   3550  */
   3551 int
   3552 pmap_pa_exists(pa)
   3553 	vm_offset_t pa;
   3554 {
   3555 	/* XXX - NOTYET */
   3556 	return (0);
   3557 }
   3558 
   3559 /* pmap_activate			INTERFACE
   3560  **
   3561  * This is called by locore.s:cpu_switch when we are switching to a
   3562  * new process.  This should load the MMU context for the new proc.
   3563  * XXX - Later, this should be done directly in locore.s
   3564  */
   3565 void
   3566 pmap_activate(pmap)
   3567 pmap_t	pmap;
   3568 {
   3569 	u_long rootpa;
   3570 
   3571 	/* Only do reload/flush if we have to. */
   3572 	rootpa = pmap->pm_a_phys;
   3573 	if (kernel_crp.rp_addr != rootpa) {
   3574 		DPRINT(("pmap_activate(%p)\n", pmap));
   3575 		kernel_crp.rp_addr = rootpa;
   3576 		loadcrp(&kernel_crp);
   3577 		TBIAU();
   3578 	}
   3579 }
   3580 
   3581 
   3582 /* pmap_update
   3583  **
   3584  * Apply any delayed changes scheduled for all pmaps immediately.
   3585  *
   3586  * No delayed operations are currently done in this pmap.
   3587  */
   3588 void
   3589 pmap_update()
   3590 {
   3591 	/* not implemented. */
   3592 }
   3593 
   3594 /*
   3595  * Fill in the cpu_kcore header for dumpsys()
   3596  * (See machdep.c)
   3597  */
   3598 void
   3599 pmap_set_kcore_hdr(chdr_p)
   3600 	cpu_kcore_hdr_t *chdr_p;
   3601 {
   3602 	struct sun3x_kcore_hdr *sh = &chdr_p->un._sun3x;
   3603 	u_long spa, len;
   3604 	int i;
   3605 	extern char machine[];
   3606 
   3607 	/*
   3608 	 * Fill in dispatch information.
   3609 	 */
   3610 	strcpy(chdr_p->name, machine);
   3611 	chdr_p->page_size = NBPG;
   3612 	chdr_p->kernbase = KERNBASE;
   3613 
   3614 	sh->contig_end = virtual_contig_end;
   3615 	sh->kernCbase = (u_long) kernCbase;
   3616 	for (i = 0; i < SUN3X_NPHYS_RAM_SEGS; i++) {
   3617 		spa = avail_mem[i].pmem_start;
   3618 		spa = _trunc_page(spa);
   3619 		len = avail_mem[i].pmem_end - spa;
   3620 		len = _round_page(len);
   3621 		sh->ram_segs[i].start = spa;
   3622 		sh->ram_segs[i].size  = len;
   3623 	}
   3624 }
   3625 
   3626 
   3627 /* pmap_virtual_space			INTERFACE
   3628  **
   3629  * Return the current available range of virtual addresses in the
   3630  * arguuments provided.  Only really called once.
   3631  */
   3632 void
   3633 pmap_virtual_space(vstart, vend)
   3634 	vm_offset_t *vstart, *vend;
   3635 {
   3636 	*vstart = virtual_avail;
   3637 	*vend = virtual_end;
   3638 }
   3639 
   3640 /* pmap_free_pages			INTERFACE
   3641  **
   3642  * Return the number of physical pages still available.
   3643  *
   3644  * This is probably going to be a mess, but it's only called
   3645  * once and it's the only function left that I have to implement!
   3646  */
   3647 u_int
   3648 pmap_free_pages()
   3649 {
   3650 	int i;
   3651 	u_int left;
   3652 	vm_offset_t avail;
   3653 
   3654 	avail = avail_next;
   3655 	left = 0;
   3656 	i = 0;
   3657 	while (avail >= avail_mem[i].pmem_end) {
   3658 		if (avail_mem[i].pmem_next == NULL)
   3659 			return 0;
   3660 		i++;
   3661 	}
   3662 	while (i < SUN3X_NPHYS_RAM_SEGS) {
   3663 		if (avail < avail_mem[i].pmem_start) {
   3664 			/* Avail is inside a hole, march it
   3665 			 * up to the next bank.
   3666 			 */
   3667 			avail = avail_mem[i].pmem_start;
   3668 		}
   3669 		left += _btop(avail_mem[i].pmem_end - avail);
   3670 		if (avail_mem[i].pmem_next == NULL)
   3671 			break;
   3672 		i++;
   3673 	}
   3674 
   3675 	return left;
   3676 }
   3677 
   3678 /* pmap_page_index			INTERFACE
   3679  **
   3680  * Return the index of the given physical page in a list of useable
   3681  * physical pages in the system.  Holes in physical memory may be counted
   3682  * if so desired.  As long as pmap_free_pages() and pmap_page_index()
   3683  * agree as to whether holes in memory do or do not count as valid pages,
   3684  * it really doesn't matter.  However, if you like to save a little
   3685  * memory, don't count holes as valid pages.  This is even more true when
   3686  * the holes are large.
   3687  *
   3688  * We will not count holes as valid pages.  We can generate page indices
   3689  * that conform to this by using the memory bank structures initialized
   3690  * in pmap_alloc_pv().
   3691  */
   3692 int
   3693 pmap_page_index(pa)
   3694 	vm_offset_t pa;
   3695 {
   3696 	struct pmap_physmem_struct *bank = avail_mem;
   3697 
   3698 	/* Search for the memory bank with this page. */
   3699 	/* XXX - What if it is not physical memory? */
   3700 	while (pa > bank->pmem_end)
   3701 		bank = bank->pmem_next;
   3702 	pa -= bank->pmem_start;
   3703 
   3704 	return (bank->pmem_pvbase + _btop(pa));
   3705 }
   3706 
   3707 /* pmap_next_page			INTERFACE
   3708  **
   3709  * Place the physical address of the next available page in the
   3710  * argument given.  Returns FALSE if there are no more pages left.
   3711  *
   3712  * This function must jump over any holes in physical memory.
   3713  * Once this function is used, any use of pmap_bootstrap_alloc()
   3714  * is a sin.  Sinners will be punished with erratic behavior.
   3715  */
   3716 boolean_t
   3717 pmap_next_page(pa)
   3718 	vm_offset_t *pa;
   3719 {
   3720 	static struct pmap_physmem_struct *curbank = avail_mem;
   3721 
   3722 	/* XXX - temporary ROM saving hack. */
   3723 	if (avail_next >= avail_end)
   3724 		return FALSE;
   3725 
   3726 	if (avail_next >= curbank->pmem_end)
   3727 		if (curbank->pmem_next == NULL)
   3728 			return FALSE;
   3729 		else {
   3730 			curbank = curbank->pmem_next;
   3731 			avail_next = curbank->pmem_start;
   3732 		}
   3733 
   3734 	*pa = avail_next;
   3735 	avail_next += NBPG;
   3736 	return TRUE;
   3737 }
   3738 
   3739 /* pmap_count			INTERFACE
   3740  **
   3741  * Return the number of resident (valid) pages in the given pmap.
   3742  *
   3743  * Note:  If this function is handed the kernel map, it will report
   3744  * that it has no mappings.  Hopefully the VM system won't ask for kernel
   3745  * map statistics.
   3746  */
   3747 segsz_t
   3748 pmap_count(pmap, type)
   3749 	pmap_t pmap;
   3750 	int    type;
   3751 {
   3752 	u_int     count;
   3753 	int       a_idx, b_idx;
   3754 	a_tmgr_t *a_tbl;
   3755 	b_tmgr_t *b_tbl;
   3756 	c_tmgr_t *c_tbl;
   3757 
   3758 	/*
   3759 	 * If the pmap does not have its own A table manager, it has no
   3760 	 * valid entires.
   3761 	 */
   3762 	if (pmap->pm_a_tmgr == NULL)
   3763 		return 0;
   3764 
   3765 	a_tbl = pmap->pm_a_tmgr;
   3766 
   3767 	count = 0;
   3768 	for (a_idx = 0; a_idx < MMU_TIA(KERNBASE); a_idx++) {
   3769 	    if (MMU_VALID_DT(a_tbl->at_dtbl[a_idx])) {
   3770 	        b_tbl = mmuB2tmgr(mmu_ptov(a_tbl->at_dtbl[a_idx].addr.raw));
   3771 	        for (b_idx = 0; b_idx < MMU_B_TBL_SIZE; b_idx++) {
   3772 	            if (MMU_VALID_DT(b_tbl->bt_dtbl[b_idx])) {
   3773 	                c_tbl = mmuC2tmgr(
   3774 	                    mmu_ptov(MMU_DTE_PA(b_tbl->bt_dtbl[b_idx])));
   3775 	                if (type == 0)
   3776 	                    /*
   3777 	                     * A resident entry count has been requested.
   3778 	                     */
   3779 	                    count += c_tbl->ct_ecnt;
   3780 	                else
   3781 	                    /*
   3782 	                     * A wired entry count has been requested.
   3783 	                     */
   3784 	                    count += c_tbl->ct_wcnt;
   3785 	            }
   3786 	        }
   3787 	    }
   3788 	}
   3789 
   3790 	return count;
   3791 }
   3792 
   3793 /************************ SUN3 COMPATIBILITY ROUTINES ********************
   3794  * The following routines are only used by DDB for tricky kernel text    *
   3795  * text operations in db_memrw.c.  They are provided for sun3            *
   3796  * compatibility.                                                        *
   3797  *************************************************************************/
   3798 /* get_pte			INTERNAL
   3799  **
   3800  * Return the page descriptor the describes the kernel mapping
   3801  * of the given virtual address.
   3802  */
   3803 extern u_long ptest_addr __P((u_long));	/* XXX: locore.s */
   3804 u_long
   3805 get_pte(va)
   3806 	vm_offset_t va;
   3807 {
   3808 	u_long pte_pa;
   3809 	mmu_short_pte_t *pte;
   3810 
   3811 	/* Get the physical address of the PTE */
   3812 	pte_pa = ptest_addr(va & ~PGOFSET);
   3813 
   3814 	/* Convert to a virtual address... */
   3815 	pte = (mmu_short_pte_t *) (KERNBASE + pte_pa);
   3816 
   3817 	/* Make sure it is in our level-C tables... */
   3818 	if ((pte < kernCbase) ||
   3819 		(pte >= &mmuCbase[NUM_USER_PTES]))
   3820 		return 0;
   3821 
   3822 	/* ... and just return its contents. */
   3823 	return (pte->attr.raw);
   3824 }
   3825 
   3826 
   3827 /* set_pte			INTERNAL
   3828  **
   3829  * Set the page descriptor that describes the kernel mapping
   3830  * of the given virtual address.
   3831  */
   3832 void
   3833 set_pte(va, pte)
   3834 	vm_offset_t va;
   3835 	vm_offset_t pte;
   3836 {
   3837 	u_long idx;
   3838 
   3839 	if (va < KERNBASE)
   3840 		return;
   3841 
   3842 	idx = (unsigned long) _btop(va - KERNBASE);
   3843 	kernCbase[idx].attr.raw = pte;
   3844 }
   3845 
   3846 #ifdef	PMAP_DEBUG
   3847 /************************** DEBUGGING ROUTINES **************************
   3848  * The following routines are meant to be an aid to debugging the pmap  *
   3849  * system.  They are callable from the DDB command line and should be   *
   3850  * prepared to be handed unstable or incomplete states of the system.   *
   3851  ************************************************************************/
   3852 
   3853 /* pv_list
   3854  **
   3855  * List all pages found on the pv list for the given physical page.
   3856  * To avoid endless loops, the listing will stop at the end of the list
   3857  * or after 'n' entries - whichever comes first.
   3858  */
   3859 void
   3860 pv_list(pa, n)
   3861 	vm_offset_t pa;
   3862 	int n;
   3863 {
   3864 	int  idx;
   3865 	vm_offset_t va;
   3866 	pv_t *pv;
   3867 	c_tmgr_t *c_tbl;
   3868 	pmap_t pmap;
   3869 
   3870 	pv = pa2pv(pa);
   3871 	idx = pv->pv_idx;
   3872 
   3873 	for (;idx != PVE_EOL && n > 0; idx=pvebase[idx].pve_next, n--) {
   3874 		va = pmap_get_pteinfo(idx, &pmap, &c_tbl);
   3875 		printf("idx %d, pmap 0x%x, va 0x%x, c_tbl %x\n",
   3876 			idx, (u_int) pmap, (u_int) va, (u_int) c_tbl);
   3877 	}
   3878 }
   3879 #endif	/* PMAP_DEBUG */
   3880 
   3881 #ifdef NOT_YET
   3882 /* and maybe not ever */
   3883 /************************** LOW-LEVEL ROUTINES **************************
   3884  * These routines will eventualy be re-written into assembly and placed *
   3885  * in locore.s.  They are here now as stubs so that the pmap module can *
   3886  * be linked as a standalone user program for testing.                  *
   3887  ************************************************************************/
   3888 /* flush_atc_crp			INTERNAL
   3889  **
   3890  * Flush all page descriptors derived from the given CPU Root Pointer
   3891  * (CRP), or 'A' table as it is known here, from the 68851's automatic
   3892  * cache.
   3893  */
   3894 void
   3895 flush_atc_crp(a_tbl)
   3896 {
   3897 	mmu_long_rp_t rp;
   3898 
   3899 	/* Create a temporary root table pointer that points to the
   3900 	 * given A table.
   3901 	 */
   3902 	rp.attr.raw = ~MMU_LONG_RP_LU;
   3903 	rp.addr.raw = (unsigned int) a_tbl;
   3904 
   3905 	mmu_pflushr(&rp);
   3906 	/* mmu_pflushr:
   3907 	 * 	movel   sp(4)@,a0
   3908 	 * 	pflushr a0@
   3909 	 *	rts
   3910 	 */
   3911 }
   3912 #endif /* NOT_YET */
   3913