pmap.c revision 1.26 1 /* $NetBSD: pmap.c,v 1.26 1997/07/02 03:23:57 jeremy Exp $ */
2
3 /*-
4 * Copyright (c) 1996, 1997 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jeremy Cooper.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * XXX These comments aren't quite accurate. Need to change.
41 * The sun3x uses the MC68851 Memory Management Unit, which is built
42 * into the CPU. The 68851 maps virtual to physical addresses using
43 * a multi-level table lookup, which is stored in the very memory that
44 * it maps. The number of levels of lookup is configurable from one
45 * to four. In this implementation, we use three, named 'A' through 'C'.
46 *
47 * The MMU translates virtual addresses into physical addresses by
48 * traversing these tables in a proccess called a 'table walk'. The most
49 * significant 7 bits of the Virtual Address ('VA') being translated are
50 * used as an index into the level A table, whose base in physical memory
51 * is stored in a special MMU register, the 'CPU Root Pointer' or CRP. The
52 * address found at that index in the A table is used as the base
53 * address for the next table, the B table. The next six bits of the VA are
54 * used as an index into the B table, which in turn gives the base address
55 * of the third and final C table.
56 *
57 * The next six bits of the VA are used as an index into the C table to
58 * locate a Page Table Entry (PTE). The PTE is a physical address in memory
59 * to which the remaining 13 bits of the VA are added, producing the
60 * mapped physical address.
61 *
62 * To map the entire memory space in this manner would require 2114296 bytes
63 * of page tables per process - quite expensive. Instead we will
64 * allocate a fixed but considerably smaller space for the page tables at
65 * the time the VM system is initialized. When the pmap code is asked by
66 * the kernel to map a VA to a PA, it allocates tables as needed from this
67 * pool. When there are no more tables in the pool, tables are stolen
68 * from the oldest mapped entries in the tree. This is only possible
69 * because all memory mappings are stored in the kernel memory map
70 * structures, independent of the pmap structures. A VA which references
71 * one of these invalidated maps will cause a page fault. The kernel
72 * will determine that the page fault was caused by a task using a valid
73 * VA, but for some reason (which does not concern it), that address was
74 * not mapped. It will ask the pmap code to re-map the entry and then
75 * it will resume executing the faulting task.
76 *
77 * In this manner the most efficient use of the page table space is
78 * achieved. Tasks which do not execute often will have their tables
79 * stolen and reused by tasks which execute more frequently. The best
80 * size for the page table pool will probably be determined by
81 * experimentation.
82 *
83 * You read all of the comments so far. Good for you.
84 * Now go play!
85 */
86
87 /*** A Note About the 68851 Address Translation Cache
88 * The MC68851 has a 64 entry cache, called the Address Translation Cache
89 * or 'ATC'. This cache stores the most recently used page descriptors
90 * accessed by the MMU when it does translations. Using a marker called a
91 * 'task alias' the MMU can store the descriptors from 8 different table
92 * spaces concurrently. The task alias is associated with the base
93 * address of the level A table of that address space. When an address
94 * space is currently active (the CRP currently points to its A table)
95 * the only cached descriptors that will be obeyed are ones which have a
96 * matching task alias of the current space associated with them.
97 *
98 * Since the cache is always consulted before any table lookups are done,
99 * it is important that it accurately reflect the state of the MMU tables.
100 * Whenever a change has been made to a table that has been loaded into
101 * the MMU, the code must be sure to flush any cached entries that are
102 * affected by the change. These instances are documented in the code at
103 * various points.
104 */
105 /*** A Note About the Note About the 68851 Address Translation Cache
106 * 4 months into this code I discovered that the sun3x does not have
107 * a MC68851 chip. Instead, it has a version of this MMU that is part of the
108 * the 68030 CPU.
109 * All though it behaves very similarly to the 68851, it only has 1 task
110 * alias and a 22 entry cache. So sadly (or happily), the first paragraph
111 * of the previous note does not apply to the sun3x pmap.
112 */
113
114 #include <sys/param.h>
115 #include <sys/systm.h>
116 #include <sys/proc.h>
117 #include <sys/malloc.h>
118 #include <sys/user.h>
119 #include <sys/queue.h>
120 #include <sys/kcore.h>
121
122 #include <vm/vm.h>
123 #include <vm/vm_kern.h>
124 #include <vm/vm_page.h>
125
126 #include <machine/cpu.h>
127 #include <machine/kcore.h>
128 #include <machine/pmap.h>
129 #include <machine/pte.h>
130 #include <machine/machdep.h>
131 #include <machine/mon.h>
132
133 #include "pmap_pvt.h"
134
135 /* XXX - What headers declare these? */
136 extern struct pcb *curpcb;
137 extern int physmem;
138
139 extern void copypage __P((const void*, void*));
140 extern void zeropage __P((void*));
141
142 /* Defined in locore.s */
143 extern char kernel_text[];
144
145 /* Defined by the linker */
146 extern char etext[], edata[], end[];
147 extern char *esym; /* DDB */
148
149 /*************************** DEBUGGING DEFINITIONS ***********************
150 * Macros, preprocessor defines and variables used in debugging can make *
151 * code hard to read. Anything used exclusively for debugging purposes *
152 * is defined here to avoid having such mess scattered around the file. *
153 *************************************************************************/
154 #ifdef PMAP_DEBUG
155 /*
156 * To aid the debugging process, macros should be expanded into smaller steps
157 * that accomplish the same goal, yet provide convenient places for placing
158 * breakpoints. When this code is compiled with PMAP_DEBUG mode defined, the
159 * 'INLINE' keyword is defined to an empty string. This way, any function
160 * defined to be a 'static INLINE' will become 'outlined' and compiled as
161 * a separate function, which is much easier to debug.
162 */
163 #define INLINE /* nothing */
164
165 /*
166 * It is sometimes convenient to watch the activity of a particular table
167 * in the system. The following variables are used for that purpose.
168 */
169 a_tmgr_t *pmap_watch_atbl = 0;
170 b_tmgr_t *pmap_watch_btbl = 0;
171 c_tmgr_t *pmap_watch_ctbl = 0;
172
173 int pmap_debug = 0;
174 #define DPRINT(args) if (pmap_debug) printf args
175
176 #else /********** Stuff below is defined if NOT debugging **************/
177
178 #define INLINE inline
179 #define DPRINT(args) /* nada */
180
181 #endif /* PMAP_DEBUG */
182 /*********************** END OF DEBUGGING DEFINITIONS ********************/
183
184 /*** Management Structure - Memory Layout
185 * For every MMU table in the sun3x pmap system there must be a way to
186 * manage it; we must know which process is using it, what other tables
187 * depend on it, and whether or not it contains any locked pages. This
188 * is solved by the creation of 'table management' or 'tmgr'
189 * structures. One for each MMU table in the system.
190 *
191 * MAP OF MEMORY USED BY THE PMAP SYSTEM
192 *
193 * towards lower memory
194 * kernAbase -> +-------------------------------------------------------+
195 * | Kernel MMU A level table |
196 * kernBbase -> +-------------------------------------------------------+
197 * | Kernel MMU B level tables |
198 * kernCbase -> +-------------------------------------------------------+
199 * | |
200 * | Kernel MMU C level tables |
201 * | |
202 * mmuCbase -> +-------------------------------------------------------+
203 * | User MMU C level tables |
204 * mmuAbase -> +-------------------------------------------------------+
205 * | |
206 * | User MMU A level tables |
207 * | |
208 * mmuBbase -> +-------------------------------------------------------+
209 * | User MMU B level tables |
210 * tmgrAbase -> +-------------------------------------------------------+
211 * | TMGR A level table structures |
212 * tmgrBbase -> +-------------------------------------------------------+
213 * | TMGR B level table structures |
214 * tmgrCbase -> +-------------------------------------------------------+
215 * | TMGR C level table structures |
216 * pvbase -> +-------------------------------------------------------+
217 * | Physical to Virtual mapping table (list heads) |
218 * pvebase -> +-------------------------------------------------------+
219 * | Physical to Virtual mapping table (list elements) |
220 * | |
221 * +-------------------------------------------------------+
222 * towards higher memory
223 *
224 * For every A table in the MMU A area, there will be a corresponding
225 * a_tmgr structure in the TMGR A area. The same will be true for
226 * the B and C tables. This arrangement will make it easy to find the
227 * controling tmgr structure for any table in the system by use of
228 * (relatively) simple macros.
229 */
230
231 /*
232 * Global variables for storing the base addresses for the areas
233 * labeled above.
234 */
235 static vm_offset_t kernAphys;
236 static mmu_long_dte_t *kernAbase;
237 static mmu_short_dte_t *kernBbase;
238 static mmu_short_pte_t *kernCbase;
239 static mmu_short_pte_t *mmuCbase;
240 static mmu_short_dte_t *mmuBbase;
241 static mmu_long_dte_t *mmuAbase;
242 static a_tmgr_t *Atmgrbase;
243 static b_tmgr_t *Btmgrbase;
244 static c_tmgr_t *Ctmgrbase;
245 static pv_t *pvbase;
246 static pv_elem_t *pvebase;
247 struct pmap kernel_pmap;
248
249 /*
250 * This holds the CRP currently loaded into the MMU.
251 */
252 struct mmu_rootptr kernel_crp;
253
254 /*
255 * Just all around global variables.
256 */
257 static TAILQ_HEAD(a_pool_head_struct, a_tmgr_struct) a_pool;
258 static TAILQ_HEAD(b_pool_head_struct, b_tmgr_struct) b_pool;
259 static TAILQ_HEAD(c_pool_head_struct, c_tmgr_struct) c_pool;
260
261
262 /*
263 * Flags used to mark the safety/availability of certain operations or
264 * resources.
265 */
266 static boolean_t pv_initialized = FALSE, /* PV system has been initialized. */
267 bootstrap_alloc_enabled = FALSE; /*Safe to use pmap_bootstrap_alloc().*/
268 int tmp_vpages_inuse; /* Temporary virtual pages are in use */
269
270 /*
271 * XXX: For now, retain the traditional variables that were
272 * used in the old pmap/vm interface (without NONCONTIG).
273 */
274 /* Kernel virtual address space available: */
275 vm_offset_t virtual_avail, virtual_end;
276 /* Physical address space available: */
277 vm_offset_t avail_start, avail_end;
278
279 /* This keep track of the end of the contiguously mapped range. */
280 vm_offset_t virtual_contig_end;
281
282 /* Physical address used by pmap_next_page() */
283 vm_offset_t avail_next;
284
285 /* These are used by pmap_copy_page(), etc. */
286 vm_offset_t tmp_vpages[2];
287
288 /*
289 * The 3/80 is the only member of the sun3x family that has non-contiguous
290 * physical memory. Memory is divided into 4 banks which are physically
291 * locatable on the system board. Although the size of these banks varies
292 * with the size of memory they contain, their base addresses are
293 * permenently fixed. The following structure, which describes these
294 * banks, is initialized by pmap_bootstrap() after it reads from a similar
295 * structure provided by the ROM Monitor.
296 *
297 * For the other machines in the sun3x architecture which do have contiguous
298 * RAM, this list will have only one entry, which will describe the entire
299 * range of available memory.
300 */
301 struct pmap_physmem_struct avail_mem[SUN3X_NPHYS_RAM_SEGS];
302 u_int total_phys_mem;
303
304 /*************************************************************************/
305
306 /*
307 * XXX - Should "tune" these based on statistics.
308 *
309 * My first guess about the relative numbers of these needed is
310 * based on the fact that a "typical" process will have several
311 * pages mapped at low virtual addresses (text, data, bss), then
312 * some mapped shared libraries, and then some stack pages mapped
313 * near the high end of the VA space. Each process can use only
314 * one A table, and most will use only two B tables (maybe three)
315 * and probably about four C tables. Therefore, the first guess
316 * at the relative numbers of these needed is 1:2:4 -gwr
317 *
318 * The number of C tables needed is closely related to the amount
319 * of physical memory available plus a certain amount attributable
320 * to the use of double mappings. With a few simulation statistics
321 * we can find a reasonably good estimation of this unknown value.
322 * Armed with that and the above ratios, we have a good idea of what
323 * is needed at each level. -j
324 *
325 * Note: It is not physical memory memory size, but the total mapped
326 * virtual space required by the combined working sets of all the
327 * currently _runnable_ processes. (Sleeping ones don't count.)
328 * The amount of physical memory should be irrelevant. -gwr
329 */
330 #ifdef FIXED_NTABLES
331 #define NUM_A_TABLES 16
332 #define NUM_B_TABLES 32
333 #define NUM_C_TABLES 64
334 #else
335 unsigned int NUM_A_TABLES, NUM_B_TABLES, NUM_C_TABLES;
336 #endif /* FIXED_NTABLES */
337
338 /*
339 * This determines our total virtual mapping capacity.
340 * Yes, it is a FIXED value so we can pre-allocate.
341 */
342 #define NUM_USER_PTES (NUM_C_TABLES * MMU_C_TBL_SIZE)
343
344 /*
345 * The size of the Kernel Virtual Address Space (KVAS)
346 * for purposes of MMU table allocation is -KERNBASE
347 * (length from KERNBASE to 0xFFFFffff)
348 */
349 #define KVAS_SIZE (-KERNBASE)
350
351 /* Numbers of kernel MMU tables to support KVAS_SIZE. */
352 #define KERN_B_TABLES (KVAS_SIZE >> MMU_TIA_SHIFT)
353 #define KERN_C_TABLES (KVAS_SIZE >> MMU_TIB_SHIFT)
354 #define NUM_KERN_PTES (KVAS_SIZE >> MMU_TIC_SHIFT)
355
356 /*************************** MISCELANEOUS MACROS *************************/
357 #define PMAP_LOCK() ; /* Nothing, for now */
358 #define PMAP_UNLOCK() ; /* same. */
359 #define NULL 0
360
361 static INLINE void * mmu_ptov __P((vm_offset_t pa));
362 static INLINE vm_offset_t mmu_vtop __P((void * va));
363
364 #if 0
365 static INLINE a_tmgr_t * mmuA2tmgr __P((mmu_long_dte_t *));
366 #endif /* 0 */
367 static INLINE b_tmgr_t * mmuB2tmgr __P((mmu_short_dte_t *));
368 static INLINE c_tmgr_t * mmuC2tmgr __P((mmu_short_pte_t *));
369
370 static INLINE pv_t *pa2pv __P((vm_offset_t pa));
371 static INLINE int pteidx __P((mmu_short_pte_t *));
372 static INLINE pmap_t current_pmap __P((void));
373
374 /*
375 * We can always convert between virtual and physical addresses
376 * for anything in the range [KERNBASE ... avail_start] because
377 * that range is GUARANTEED to be mapped linearly.
378 * We rely heavily upon this feature!
379 */
380 static INLINE void *
381 mmu_ptov(pa)
382 vm_offset_t pa;
383 {
384 register vm_offset_t va;
385
386 va = (pa + KERNBASE);
387 #ifdef PMAP_DEBUG
388 if ((va < KERNBASE) || (va >= virtual_contig_end))
389 panic("mmu_ptov");
390 #endif
391 return ((void*)va);
392 }
393 static INLINE vm_offset_t
394 mmu_vtop(vva)
395 void *vva;
396 {
397 register vm_offset_t va;
398
399 va = (vm_offset_t)vva;
400 #ifdef PMAP_DEBUG
401 if ((va < KERNBASE) || (va >= virtual_contig_end))
402 panic("mmu_ptov");
403 #endif
404 return (va - KERNBASE);
405 }
406
407 /*
408 * These macros map MMU tables to their corresponding manager structures.
409 * They are needed quite often because many of the pointers in the pmap
410 * system reference MMU tables and not the structures that control them.
411 * There needs to be a way to find one when given the other and these
412 * macros do so by taking advantage of the memory layout described above.
413 * Here's a quick step through the first macro, mmuA2tmgr():
414 *
415 * 1) find the offset of the given MMU A table from the base of its table
416 * pool (table - mmuAbase).
417 * 2) convert this offset into a table index by dividing it by the
418 * size of one MMU 'A' table. (sizeof(mmu_long_dte_t) * MMU_A_TBL_SIZE)
419 * 3) use this index to select the corresponding 'A' table manager
420 * structure from the 'A' table manager pool (Atmgrbase[index]).
421 */
422 /* This function is not currently used. */
423 #if 0
424 static INLINE a_tmgr_t *
425 mmuA2tmgr(mmuAtbl)
426 mmu_long_dte_t *mmuAtbl;
427 {
428 register int idx;
429
430 /* Which table is this in? */
431 idx = (mmuAtbl - mmuAbase) / MMU_A_TBL_SIZE;
432 #ifdef PMAP_DEBUG
433 if ((idx < 0) || (idx >= NUM_A_TABLES))
434 panic("mmuA2tmgr");
435 #endif
436 return (&Atmgrbase[idx]);
437 }
438 #endif /* 0 */
439
440 static INLINE b_tmgr_t *
441 mmuB2tmgr(mmuBtbl)
442 mmu_short_dte_t *mmuBtbl;
443 {
444 register int idx;
445
446 /* Which table is this in? */
447 idx = (mmuBtbl - mmuBbase) / MMU_B_TBL_SIZE;
448 #ifdef PMAP_DEBUG
449 if ((idx < 0) || (idx >= NUM_B_TABLES))
450 panic("mmuB2tmgr");
451 #endif
452 return (&Btmgrbase[idx]);
453 }
454
455 /* mmuC2tmgr INTERNAL
456 **
457 * Given a pte known to belong to a C table, return the address of
458 * that table's management structure.
459 */
460 static INLINE c_tmgr_t *
461 mmuC2tmgr(mmuCtbl)
462 mmu_short_pte_t *mmuCtbl;
463 {
464 register int idx;
465
466 /* Which table is this in? */
467 idx = (mmuCtbl - mmuCbase) / MMU_C_TBL_SIZE;
468 #ifdef PMAP_DEBUG
469 if ((idx < 0) || (idx >= NUM_C_TABLES))
470 panic("mmuC2tmgr");
471 #endif
472 return (&Ctmgrbase[idx]);
473 }
474
475 /* This is now a function call below.
476 * #define pa2pv(pa) \
477 * (&pvbase[(unsigned long)\
478 * m68k_btop(pa)\
479 * ])
480 */
481
482 /* pa2pv INTERNAL
483 **
484 * Return the pv_list_head element which manages the given physical
485 * address.
486 */
487 static INLINE pv_t *
488 pa2pv(pa)
489 vm_offset_t pa;
490 {
491 register struct pmap_physmem_struct *bank;
492 register int idx;
493
494 bank = &avail_mem[0];
495 while (pa >= bank->pmem_end)
496 bank = bank->pmem_next;
497
498 pa -= bank->pmem_start;
499 idx = bank->pmem_pvbase + m68k_btop(pa);
500 #ifdef PMAP_DEBUG
501 if ((idx < 0) || (idx >= physmem))
502 panic("pa2pv");
503 #endif
504 return &pvbase[idx];
505 }
506
507 /* pteidx INTERNAL
508 **
509 * Return the index of the given PTE within the entire fixed table of
510 * PTEs.
511 */
512 static INLINE int
513 pteidx(pte)
514 mmu_short_pte_t *pte;
515 {
516 return (pte - kernCbase);
517 }
518
519 /*
520 * This just offers a place to put some debugging checks,
521 * and reduces the number of places "curproc" appears...
522 */
523 static INLINE pmap_t
524 current_pmap()
525 {
526 struct proc *p;
527 struct vmspace *vm;
528 vm_map_t map;
529 pmap_t pmap;
530
531 p = curproc; /* XXX */
532 if (p == NULL)
533 pmap = &kernel_pmap;
534 else {
535 vm = p->p_vmspace;
536 map = &vm->vm_map;
537 pmap = vm_map_pmap(map);
538 }
539
540 return (pmap);
541 }
542
543
544 /*************************** FUNCTION DEFINITIONS ************************
545 * These appear here merely for the compiler to enforce type checking on *
546 * all function calls. *
547 *************************************************************************/
548
549 /** External functions
550 ** - functions used within this module but written elsewhere.
551 ** both of these functions are in locore.s
552 ** XXX - These functions were later replaced with their more cryptic
553 ** hp300 counterparts. They may be removed now.
554 **/
555 #if 0 /* deprecated mmu */
556 void mmu_seturp __P((vm_offset_t));
557 void mmu_flush __P((int, vm_offset_t));
558 void mmu_flusha __P((void));
559 #endif /* 0 */
560
561 /** Internal functions
562 ** - all functions used only within this module are defined in
563 ** pmap_pvt.h
564 **/
565
566 /** Interface functions
567 ** - functions required by the Mach VM Pmap interface, with MACHINE_CONTIG
568 ** defined.
569 **/
570 #ifdef INCLUDED_IN_PMAP_H
571 void pmap_bootstrap __P((void));
572 void *pmap_bootstrap_alloc __P((int));
573 void pmap_enter __P((pmap_t, vm_offset_t, vm_offset_t, vm_prot_t, boolean_t));
574 pmap_t pmap_create __P((vm_size_t));
575 void pmap_destroy __P((pmap_t));
576 void pmap_reference __P((pmap_t));
577 boolean_t pmap_is_referenced __P((vm_offset_t));
578 boolean_t pmap_is_modified __P((vm_offset_t));
579 void pmap_clear_modify __P((vm_offset_t));
580 vm_offset_t pmap_extract __P((pmap_t, vm_offset_t));
581 void pmap_activate __P((pmap_t));
582 int pmap_page_index __P((vm_offset_t));
583 u_int pmap_free_pages __P((void));
584 #endif /* INCLUDED_IN_PMAP_H */
585
586 /********************************** CODE ********************************
587 * Functions that are called from other parts of the kernel are labeled *
588 * as 'INTERFACE' functions. Functions that are only called from *
589 * within the pmap module are labeled as 'INTERNAL' functions. *
590 * Functions that are internal, but are not (currently) used at all are *
591 * labeled 'INTERNAL_X'. *
592 ************************************************************************/
593
594 /* pmap_bootstrap INTERNAL
595 **
596 * Initializes the pmap system. Called at boot time from _vm_init()
597 * in _startup.c.
598 *
599 * Reminder: having a pmap_bootstrap_alloc() and also having the VM
600 * system implement pmap_steal_memory() is redundant.
601 * Don't release this code without removing one or the other!
602 */
603 void
604 pmap_bootstrap(nextva)
605 vm_offset_t nextva;
606 {
607 struct physmemory *membank;
608 struct pmap_physmem_struct *pmap_membank;
609 vm_offset_t va, pa, eva;
610 int b, c, i, j; /* running table counts */
611 int size;
612
613 /*
614 * This function is called by __bootstrap after it has
615 * determined the type of machine and made the appropriate
616 * patches to the ROM vectors (XXX- I don't quite know what I meant
617 * by that.) It allocates and sets up enough of the pmap system
618 * to manage the kernel's address space.
619 */
620
621 /*
622 * Determine the range of kernel virtual and physical
623 * space available. Note that we ABSOLUTELY DEPEND on
624 * the fact that the first bank of memory (4MB) is
625 * mapped linearly to KERNBASE (which we guaranteed in
626 * the first instructions of locore.s).
627 * That is plenty for our bootstrap work.
628 */
629 virtual_avail = m68k_round_page(nextva);
630 virtual_contig_end = KERNBASE + 0x400000; /* +4MB */
631 virtual_end = VM_MAX_KERNEL_ADDRESS;
632 /* Don't need avail_start til later. */
633
634 /* We may now call pmap_bootstrap_alloc(). */
635 bootstrap_alloc_enabled = TRUE;
636
637 /*
638 * This is a somewhat unwrapped loop to deal with
639 * copying the PROM's 'phsymem' banks into the pmap's
640 * banks. The following is always assumed:
641 * 1. There is always at least one bank of memory.
642 * 2. There is always a last bank of memory, and its
643 * pmem_next member must be set to NULL.
644 * XXX - Use: do { ... } while (membank->next) instead?
645 * XXX - Why copy this stuff at all? -gwr
646 * - It is needed in pa2pv().
647 */
648 membank = romVectorPtr->v_physmemory;
649 pmap_membank = avail_mem;
650 total_phys_mem = 0;
651
652 while (membank->next) {
653 pmap_membank->pmem_start = membank->address;
654 pmap_membank->pmem_end = membank->address + membank->size;
655 total_phys_mem += membank->size;
656 /* This silly syntax arises because pmap_membank
657 * is really a pre-allocated array, but it is put into
658 * use as a linked list.
659 */
660 pmap_membank->pmem_next = pmap_membank + 1;
661 pmap_membank = pmap_membank->pmem_next;
662 membank = membank->next;
663 }
664
665 /*
666 * XXX The last bank of memory should be reduced to exclude the
667 * physical pages needed by the PROM monitor from being used
668 * in the VM system. XXX - See below - Fix!
669 */
670 pmap_membank->pmem_start = membank->address;
671 pmap_membank->pmem_end = membank->address + membank->size;
672 pmap_membank->pmem_next = NULL;
673
674 #if 0 /* XXX - Need to integrate this! */
675 /*
676 * The last few pages of physical memory are "owned" by
677 * the PROM. The total amount of memory we are allowed
678 * to use is given by the romvec pointer. -gwr
679 *
680 * We should dedicate different variables for 'useable'
681 * and 'physically available'. Most users are used to the
682 * kernel reporting the amount of memory 'physically available'
683 * as opposed to 'useable by the kernel' at boot time. -j
684 */
685 total_phys_mem = *romVectorPtr->memoryAvail;
686 #endif /* XXX */
687
688 total_phys_mem += membank->size; /* XXX see above */
689 physmem = btoc(total_phys_mem);
690
691 /*
692 * Avail_end is set to the first byte of physical memory
693 * after the end of the last bank. We use this only to
694 * determine if a physical address is "managed" memory.
695 *
696 * XXX - The setting of avail_end is a temporary ROM saving hack.
697 */
698 avail_end = pmap_membank->pmem_end -
699 (total_phys_mem - *romVectorPtr->memoryAvail);
700 avail_end = m68k_trunc_page(avail_end);
701
702 /*
703 * First allocate enough kernel MMU tables to map all
704 * of kernel virtual space from KERNBASE to 0xFFFFFFFF.
705 * Note: All must be aligned on 256 byte boundaries.
706 * Start with the level-A table (one of those).
707 */
708 size = sizeof(mmu_long_dte_t) * MMU_A_TBL_SIZE;
709 kernAbase = pmap_bootstrap_alloc(size);
710 bzero(kernAbase, size);
711
712 /* Now the level-B kernel tables... */
713 size = sizeof(mmu_short_dte_t) * MMU_B_TBL_SIZE * KERN_B_TABLES;
714 kernBbase = pmap_bootstrap_alloc(size);
715 bzero(kernBbase, size);
716
717 /* Now the level-C kernel tables... */
718 size = sizeof(mmu_short_pte_t) * MMU_C_TBL_SIZE * KERN_C_TABLES;
719 kernCbase = pmap_bootstrap_alloc(size);
720 bzero(kernCbase, size);
721 /*
722 * Note: In order for the PV system to work correctly, the kernel
723 * and user-level C tables must be allocated contiguously.
724 * Nothing should be allocated between here and the allocation of
725 * mmuCbase below. XXX: Should do this as one allocation, and
726 * then compute a pointer for mmuCbase instead of this...
727 *
728 * Allocate user MMU tables.
729 * These must be contiguous with the preceeding.
730 */
731
732 #ifndef FIXED_NTABLES
733 /*
734 * The number of user-level C tables that should be allocated is
735 * related to the size of physical memory. In general, there should
736 * be enough tables to map four times the amount of available RAM.
737 * The extra amount is needed because some table space is wasted by
738 * fragmentation.
739 */
740 NUM_C_TABLES = (total_phys_mem * 4) / (MMU_C_TBL_SIZE * MMU_PAGE_SIZE);
741 NUM_B_TABLES = NUM_C_TABLES / 2;
742 NUM_A_TABLES = NUM_B_TABLES / 2;
743 #endif /* !FIXED_NTABLES */
744
745 size = sizeof(mmu_short_pte_t) * MMU_C_TBL_SIZE * NUM_C_TABLES;
746 mmuCbase = pmap_bootstrap_alloc(size);
747
748 size = sizeof(mmu_short_dte_t) * MMU_B_TBL_SIZE * NUM_B_TABLES;
749 mmuBbase = pmap_bootstrap_alloc(size);
750
751 size = sizeof(mmu_long_dte_t) * MMU_A_TBL_SIZE * NUM_A_TABLES;
752 mmuAbase = pmap_bootstrap_alloc(size);
753
754 /*
755 * Fill in the never-changing part of the kernel tables.
756 * For simplicity, the kernel's mappings will be editable as a
757 * flat array of page table entries at kernCbase. The
758 * higher level 'A' and 'B' tables must be initialized to point
759 * to this lower one.
760 */
761 b = c = 0;
762
763 /*
764 * Invalidate all mappings below KERNBASE in the A table.
765 * This area has already been zeroed out, but it is good
766 * practice to explicitly show that we are interpreting
767 * it as a list of A table descriptors.
768 */
769 for (i = 0; i < MMU_TIA(KERNBASE); i++) {
770 kernAbase[i].addr.raw = 0;
771 }
772
773 /*
774 * Set up the kernel A and B tables so that they will reference the
775 * correct spots in the contiguous table of PTEs allocated for the
776 * kernel's virtual memory space.
777 */
778 for (i = MMU_TIA(KERNBASE); i < MMU_A_TBL_SIZE; i++) {
779 kernAbase[i].attr.raw =
780 MMU_LONG_DTE_LU | MMU_LONG_DTE_SUPV | MMU_DT_SHORT;
781 kernAbase[i].addr.raw = mmu_vtop(&kernBbase[b]);
782
783 for (j=0; j < MMU_B_TBL_SIZE; j++) {
784 kernBbase[b + j].attr.raw = mmu_vtop(&kernCbase[c])
785 | MMU_DT_SHORT;
786 c += MMU_C_TBL_SIZE;
787 }
788 b += MMU_B_TBL_SIZE;
789 }
790
791 /* XXX - Doing kernel_pmap a little further down. */
792
793 pmap_alloc_usermmu(); /* Allocate user MMU tables. */
794 pmap_alloc_usertmgr(); /* Allocate user MMU table managers.*/
795 pmap_alloc_pv(); /* Allocate physical->virtual map. */
796
797 /*
798 * We are now done with pmap_bootstrap_alloc(). Round up
799 * `virtual_avail' to the nearest page, and set the flag
800 * to prevent use of pmap_bootstrap_alloc() hereafter.
801 */
802 pmap_bootstrap_aalign(NBPG);
803 bootstrap_alloc_enabled = FALSE;
804
805 /*
806 * Now that we are done with pmap_bootstrap_alloc(), we
807 * must save the virtual and physical addresses of the
808 * end of the linearly mapped range, which are stored in
809 * virtual_contig_end and avail_start, respectively.
810 * These variables will never change after this point.
811 */
812 virtual_contig_end = virtual_avail;
813 avail_start = virtual_avail - KERNBASE;
814
815 /*
816 * `avail_next' is a running pointer used by pmap_next_page() to
817 * keep track of the next available physical page to be handed
818 * to the VM system during its initialization, in which it
819 * asks for physical pages, one at a time.
820 */
821 avail_next = avail_start;
822
823 /*
824 * Now allocate some virtual addresses, but not the physical pages
825 * behind them. Note that virtual_avail is already page-aligned.
826 *
827 * tmp_vpages[] is an array of two virtual pages used for temporary
828 * kernel mappings in the pmap module to facilitate various physical
829 * address-oritented operations.
830 */
831 tmp_vpages[0] = virtual_avail;
832 virtual_avail += NBPG;
833 tmp_vpages[1] = virtual_avail;
834 virtual_avail += NBPG;
835
836 /** Initialize the PV system **/
837 pmap_init_pv();
838
839 /*
840 * Fill in the kernel_pmap structure and kernel_crp.
841 */
842 kernAphys = mmu_vtop(kernAbase);
843 kernel_pmap.pm_a_tmgr = NULL;
844 kernel_pmap.pm_a_phys = kernAphys;
845 kernel_pmap.pm_refcount = 1; /* always in use */
846
847 kernel_crp.rp_attr = MMU_LONG_DTE_LU | MMU_DT_LONG;
848 kernel_crp.rp_addr = kernAphys;
849
850 /*
851 * Now pmap_enter_kernel() may be used safely and will be
852 * the main interface used hereafter to modify the kernel's
853 * virtual address space. Note that since we are still running
854 * under the PROM's address table, none of these table modifications
855 * actually take effect until pmap_takeover_mmu() is called.
856 *
857 * Note: Our tables do NOT have the PROM linear mappings!
858 * Only the mappings created here exist in our tables, so
859 * remember to map anything we expect to use.
860 */
861 va = (vm_offset_t) KERNBASE;
862 pa = 0;
863
864 /*
865 * The first page of the kernel virtual address space is the msgbuf
866 * page. The page attributes (data, non-cached) are set here, while
867 * the address is assigned to this global pointer in cpu_startup().
868 * XXX - Make it non-cached?
869 */
870 pmap_enter_kernel(va, pa|PMAP_NC, VM_PROT_ALL);
871 va += NBPG; pa += NBPG;
872
873 /* Next page is used as the temporary stack. */
874 pmap_enter_kernel(va, pa, VM_PROT_ALL);
875 va += NBPG; pa += NBPG;
876
877 /*
878 * Map all of the kernel's text segment as read-only and cacheable.
879 * (Cacheable is implied by default). Unfortunately, the last bytes
880 * of kernel text and the first bytes of kernel data will often be
881 * sharing the same page. Therefore, the last page of kernel text
882 * has to be mapped as read/write, to accomodate the data.
883 */
884 eva = m68k_trunc_page((vm_offset_t)etext);
885 for (; va < eva; va += NBPG, pa += NBPG)
886 pmap_enter_kernel(va, pa, VM_PROT_READ|VM_PROT_EXECUTE);
887
888 /*
889 * Map all of the kernel's data as read/write and cacheable.
890 * This includes: data, BSS, symbols, and everything in the
891 * contiguous memory used by pmap_bootstrap_alloc()
892 */
893 for (; pa < avail_start; va += NBPG, pa += NBPG)
894 pmap_enter_kernel(va, pa, VM_PROT_READ|VM_PROT_WRITE);
895
896 /*
897 * At this point we are almost ready to take over the MMU. But first
898 * we must save the PROM's address space in our map, as we call its
899 * routines and make references to its data later in the kernel.
900 */
901 pmap_bootstrap_copyprom();
902 pmap_takeover_mmu();
903 pmap_bootstrap_setprom();
904
905 /* Notify the VM system of our page size. */
906 PAGE_SIZE = NBPG;
907 vm_set_page_size();
908 }
909
910
911 /* pmap_alloc_usermmu INTERNAL
912 **
913 * Called from pmap_bootstrap() to allocate MMU tables that will
914 * eventually be used for user mappings.
915 */
916 void
917 pmap_alloc_usermmu()
918 {
919 /* XXX: Moved into caller. */
920 }
921
922 /* pmap_alloc_pv INTERNAL
923 **
924 * Called from pmap_bootstrap() to allocate the physical
925 * to virtual mapping list. Each physical page of memory
926 * in the system has a corresponding element in this list.
927 */
928 void
929 pmap_alloc_pv()
930 {
931 int i;
932 unsigned int total_mem;
933
934 /*
935 * Allocate a pv_head structure for every page of physical
936 * memory that will be managed by the system. Since memory on
937 * the 3/80 is non-contiguous, we cannot arrive at a total page
938 * count by subtraction of the lowest available address from the
939 * highest, but rather we have to step through each memory
940 * bank and add the number of pages in each to the total.
941 *
942 * At this time we also initialize the offset of each bank's
943 * starting pv_head within the pv_head list so that the physical
944 * memory state routines (pmap_is_referenced(),
945 * pmap_is_modified(), et al.) can quickly find coresponding
946 * pv_heads in spite of the non-contiguity.
947 */
948 total_mem = 0;
949 for (i = 0; i < SUN3X_NPHYS_RAM_SEGS; i++) {
950 avail_mem[i].pmem_pvbase = m68k_btop(total_mem);
951 total_mem += avail_mem[i].pmem_end -
952 avail_mem[i].pmem_start;
953 if (avail_mem[i].pmem_next == NULL)
954 break;
955 }
956 #ifdef PMAP_DEBUG
957 if (total_mem != total_phys_mem)
958 panic("pmap_alloc_pv did not arrive at correct page count");
959 #endif
960
961 pvbase = (pv_t *) pmap_bootstrap_alloc(sizeof(pv_t) *
962 m68k_btop(total_phys_mem));
963 }
964
965 /* pmap_alloc_usertmgr INTERNAL
966 **
967 * Called from pmap_bootstrap() to allocate the structures which
968 * facilitate management of user MMU tables. Each user MMU table
969 * in the system has one such structure associated with it.
970 */
971 void
972 pmap_alloc_usertmgr()
973 {
974 /* Allocate user MMU table managers */
975 /* It would be a lot simpler to just make these BSS, but */
976 /* we may want to change their size at boot time... -j */
977 Atmgrbase = (a_tmgr_t *) pmap_bootstrap_alloc(sizeof(a_tmgr_t)
978 * NUM_A_TABLES);
979 Btmgrbase = (b_tmgr_t *) pmap_bootstrap_alloc(sizeof(b_tmgr_t)
980 * NUM_B_TABLES);
981 Ctmgrbase = (c_tmgr_t *) pmap_bootstrap_alloc(sizeof(c_tmgr_t)
982 * NUM_C_TABLES);
983
984 /*
985 * Allocate PV list elements for the physical to virtual
986 * mapping system.
987 */
988 pvebase = (pv_elem_t *) pmap_bootstrap_alloc(
989 sizeof(pv_elem_t) * (NUM_USER_PTES + NUM_KERN_PTES));
990 }
991
992 /* pmap_bootstrap_copyprom() INTERNAL
993 **
994 * Copy the PROM mappings into our own tables. Note, we
995 * can use physical addresses until __bootstrap returns.
996 */
997 void
998 pmap_bootstrap_copyprom()
999 {
1000 MachMonRomVector *romp;
1001 int *mon_ctbl;
1002 mmu_short_pte_t *kpte;
1003 int i, len;
1004
1005 romp = romVectorPtr;
1006
1007 /*
1008 * Copy the mappings in MON_KDB_START...MONEND
1009 * Note: mon_ctbl[0] maps MON_KDB_START
1010 */
1011 mon_ctbl = *romp->monptaddr;
1012 i = m68k_btop(MON_KDB_START - KERNBASE);
1013 kpte = &kernCbase[i];
1014 len = m68k_btop(MONEND - MON_KDB_START);
1015
1016 for (i = 0; i < len; i++) {
1017 kpte[i].attr.raw = mon_ctbl[i];
1018 }
1019
1020 /*
1021 * Copy the mappings at MON_DVMA_BASE (to the end).
1022 * Note, in here, mon_ctbl[0] maps MON_DVMA_BASE.
1023 * XXX - This does not appear to be necessary, but
1024 * I'm not sure yet if it is or not. -gwr
1025 */
1026 mon_ctbl = *romp->shadowpteaddr;
1027 i = m68k_btop(MON_DVMA_BASE - KERNBASE);
1028 kpte = &kernCbase[i];
1029 len = m68k_btop(MON_DVMA_SIZE);
1030
1031 for (i = 0; i < len; i++) {
1032 kpte[i].attr.raw = mon_ctbl[i];
1033 }
1034 }
1035
1036 /* pmap_takeover_mmu INTERNAL
1037 **
1038 * Called from pmap_bootstrap() after it has copied enough of the
1039 * PROM mappings into the kernel map so that we can use our own
1040 * MMU table.
1041 */
1042 void
1043 pmap_takeover_mmu()
1044 {
1045
1046 loadcrp(&kernel_crp);
1047 }
1048
1049 /* pmap_bootstrap_setprom() INTERNAL
1050 **
1051 * Set the PROM mappings so it can see kernel space.
1052 * Note that physical addresses are used here, which
1053 * we can get away with because this runs with the
1054 * low 1GB set for transparent translation.
1055 */
1056 void
1057 pmap_bootstrap_setprom()
1058 {
1059 mmu_long_dte_t *mon_dte;
1060 extern struct mmu_rootptr mon_crp;
1061 int i;
1062
1063 mon_dte = (mmu_long_dte_t *) mon_crp.rp_addr;
1064 for (i = MMU_TIA(KERNBASE); i < MMU_TIA(KERN_END); i++) {
1065 mon_dte[i].attr.raw = kernAbase[i].attr.raw;
1066 mon_dte[i].addr.raw = kernAbase[i].addr.raw;
1067 }
1068 }
1069
1070
1071 /* pmap_init INTERFACE
1072 **
1073 * Called at the end of vm_init() to set up the pmap system to go
1074 * into full time operation. All initialization of kernel_pmap
1075 * should be already done by now, so this should just do things
1076 * needed for user-level pmaps to work.
1077 */
1078 void
1079 pmap_init()
1080 {
1081 /** Initialize the manager pools **/
1082 TAILQ_INIT(&a_pool);
1083 TAILQ_INIT(&b_pool);
1084 TAILQ_INIT(&c_pool);
1085
1086 /**************************************************************
1087 * Initialize all tmgr structures and MMU tables they manage. *
1088 **************************************************************/
1089 /** Initialize A tables **/
1090 pmap_init_a_tables();
1091 /** Initialize B tables **/
1092 pmap_init_b_tables();
1093 /** Initialize C tables **/
1094 pmap_init_c_tables();
1095 }
1096
1097 /* pmap_init_a_tables() INTERNAL
1098 **
1099 * Initializes all A managers, their MMU A tables, and inserts
1100 * them into the A manager pool for use by the system.
1101 */
1102 void
1103 pmap_init_a_tables()
1104 {
1105 int i;
1106 a_tmgr_t *a_tbl;
1107
1108 for (i=0; i < NUM_A_TABLES; i++) {
1109 /* Select the next available A manager from the pool */
1110 a_tbl = &Atmgrbase[i];
1111
1112 /*
1113 * Clear its parent entry. Set its wired and valid
1114 * entry count to zero.
1115 */
1116 a_tbl->at_parent = NULL;
1117 a_tbl->at_wcnt = a_tbl->at_ecnt = 0;
1118
1119 /* Assign it the next available MMU A table from the pool */
1120 a_tbl->at_dtbl = &mmuAbase[i * MMU_A_TBL_SIZE];
1121
1122 /*
1123 * Initialize the MMU A table with the table in the `proc0',
1124 * or kernel, mapping. This ensures that every process has
1125 * the kernel mapped in the top part of its address space.
1126 */
1127 bcopy(kernAbase, a_tbl->at_dtbl, MMU_A_TBL_SIZE *
1128 sizeof(mmu_long_dte_t));
1129
1130 /*
1131 * Finally, insert the manager into the A pool,
1132 * making it ready to be used by the system.
1133 */
1134 TAILQ_INSERT_TAIL(&a_pool, a_tbl, at_link);
1135 }
1136 }
1137
1138 /* pmap_init_b_tables() INTERNAL
1139 **
1140 * Initializes all B table managers, their MMU B tables, and
1141 * inserts them into the B manager pool for use by the system.
1142 */
1143 void
1144 pmap_init_b_tables()
1145 {
1146 int i,j;
1147 b_tmgr_t *b_tbl;
1148
1149 for (i=0; i < NUM_B_TABLES; i++) {
1150 /* Select the next available B manager from the pool */
1151 b_tbl = &Btmgrbase[i];
1152
1153 b_tbl->bt_parent = NULL; /* clear its parent, */
1154 b_tbl->bt_pidx = 0; /* parent index, */
1155 b_tbl->bt_wcnt = 0; /* wired entry count, */
1156 b_tbl->bt_ecnt = 0; /* valid entry count. */
1157
1158 /* Assign it the next available MMU B table from the pool */
1159 b_tbl->bt_dtbl = &mmuBbase[i * MMU_B_TBL_SIZE];
1160
1161 /* Invalidate every descriptor in the table */
1162 for (j=0; j < MMU_B_TBL_SIZE; j++)
1163 b_tbl->bt_dtbl[j].attr.raw = MMU_DT_INVALID;
1164
1165 /* Insert the manager into the B pool */
1166 TAILQ_INSERT_TAIL(&b_pool, b_tbl, bt_link);
1167 }
1168 }
1169
1170 /* pmap_init_c_tables() INTERNAL
1171 **
1172 * Initializes all C table managers, their MMU C tables, and
1173 * inserts them into the C manager pool for use by the system.
1174 */
1175 void
1176 pmap_init_c_tables()
1177 {
1178 int i,j;
1179 c_tmgr_t *c_tbl;
1180
1181 for (i=0; i < NUM_C_TABLES; i++) {
1182 /* Select the next available C manager from the pool */
1183 c_tbl = &Ctmgrbase[i];
1184
1185 c_tbl->ct_parent = NULL; /* clear its parent, */
1186 c_tbl->ct_pidx = 0; /* parent index, */
1187 c_tbl->ct_wcnt = 0; /* wired entry count, */
1188 c_tbl->ct_ecnt = 0; /* valid entry count, */
1189 c_tbl->ct_pmap = NULL; /* parent pmap, */
1190 c_tbl->ct_va = 0; /* base of managed range */
1191
1192 /* Assign it the next available MMU C table from the pool */
1193 c_tbl->ct_dtbl = &mmuCbase[i * MMU_C_TBL_SIZE];
1194
1195 for (j=0; j < MMU_C_TBL_SIZE; j++)
1196 c_tbl->ct_dtbl[j].attr.raw = MMU_DT_INVALID;
1197
1198 TAILQ_INSERT_TAIL(&c_pool, c_tbl, ct_link);
1199 }
1200 }
1201
1202 /* pmap_init_pv() INTERNAL
1203 **
1204 * Initializes the Physical to Virtual mapping system.
1205 */
1206 void
1207 pmap_init_pv()
1208 {
1209 int i;
1210
1211 /* Initialize every PV head. */
1212 for (i = 0; i < m68k_btop(total_phys_mem); i++) {
1213 pvbase[i].pv_idx = PVE_EOL; /* Indicate no mappings */
1214 pvbase[i].pv_flags = 0; /* Zero out page flags */
1215 }
1216
1217 pv_initialized = TRUE;
1218 }
1219
1220 /* get_a_table INTERNAL
1221 **
1222 * Retrieve and return a level A table for use in a user map.
1223 */
1224 a_tmgr_t *
1225 get_a_table()
1226 {
1227 a_tmgr_t *tbl;
1228 pmap_t pmap;
1229
1230 /* Get the top A table in the pool */
1231 tbl = a_pool.tqh_first;
1232 if (tbl == NULL) {
1233 /*
1234 * XXX - Instead of panicing here and in other get_x_table
1235 * functions, we do have the option of sleeping on the head of
1236 * the table pool. Any function which updates the table pool
1237 * would then issue a wakeup() on the head, thus waking up any
1238 * processes waiting for a table.
1239 *
1240 * Actually, the place to sleep would be when some process
1241 * asks for a "wired" mapping that would run us short of
1242 * mapping resources. This design DEPENDS on always having
1243 * some mapping resources in the pool for stealing, so we
1244 * must make sure we NEVER let the pool become empty. -gwr
1245 */
1246 panic("get_a_table: out of A tables.");
1247 }
1248
1249 TAILQ_REMOVE(&a_pool, tbl, at_link);
1250 /*
1251 * If the table has a non-null parent pointer then it is in use.
1252 * Forcibly abduct it from its parent and clear its entries.
1253 * No re-entrancy worries here. This table would not be in the
1254 * table pool unless it was available for use.
1255 *
1256 * Note that the second argument to free_a_table() is FALSE. This
1257 * indicates that the table should not be relinked into the A table
1258 * pool. That is a job for the function that called us.
1259 */
1260 if (tbl->at_parent) {
1261 pmap = tbl->at_parent;
1262 free_a_table(tbl, FALSE);
1263 pmap->pm_a_tmgr = NULL;
1264 pmap->pm_a_phys = kernAphys;
1265 }
1266 #ifdef NON_REENTRANT
1267 /*
1268 * If the table isn't to be wired down, re-insert it at the
1269 * end of the pool.
1270 */
1271 if (!wired)
1272 /*
1273 * Quandary - XXX
1274 * Would it be better to let the calling function insert this
1275 * table into the queue? By inserting it here, we are allowing
1276 * it to be stolen immediately. The calling function is
1277 * probably not expecting to use a table that it is not
1278 * assured full control of.
1279 * Answer - In the intrest of re-entrancy, it is best to let
1280 * the calling function determine when a table is available
1281 * for use. Therefore this code block is not used.
1282 */
1283 TAILQ_INSERT_TAIL(&a_pool, tbl, at_link);
1284 #endif /* NON_REENTRANT */
1285 return tbl;
1286 }
1287
1288 /* get_b_table INTERNAL
1289 **
1290 * Return a level B table for use.
1291 */
1292 b_tmgr_t *
1293 get_b_table()
1294 {
1295 b_tmgr_t *tbl;
1296
1297 /* See 'get_a_table' for comments. */
1298 tbl = b_pool.tqh_first;
1299 if (tbl == NULL)
1300 panic("get_b_table: out of B tables.");
1301 TAILQ_REMOVE(&b_pool, tbl, bt_link);
1302 if (tbl->bt_parent) {
1303 tbl->bt_parent->at_dtbl[tbl->bt_pidx].attr.raw = MMU_DT_INVALID;
1304 tbl->bt_parent->at_ecnt--;
1305 free_b_table(tbl, FALSE);
1306 }
1307 #ifdef NON_REENTRANT
1308 if (!wired)
1309 /* XXX see quandary in get_b_table */
1310 /* XXX start lock */
1311 TAILQ_INSERT_TAIL(&b_pool, tbl, bt_link);
1312 /* XXX end lock */
1313 #endif /* NON_REENTRANT */
1314 return tbl;
1315 }
1316
1317 /* get_c_table INTERNAL
1318 **
1319 * Return a level C table for use.
1320 */
1321 c_tmgr_t *
1322 get_c_table()
1323 {
1324 c_tmgr_t *tbl;
1325
1326 /* See 'get_a_table' for comments */
1327 tbl = c_pool.tqh_first;
1328 if (tbl == NULL)
1329 panic("get_c_table: out of C tables.");
1330 TAILQ_REMOVE(&c_pool, tbl, ct_link);
1331 if (tbl->ct_parent) {
1332 tbl->ct_parent->bt_dtbl[tbl->ct_pidx].attr.raw = MMU_DT_INVALID;
1333 tbl->ct_parent->bt_ecnt--;
1334 free_c_table(tbl, FALSE);
1335 }
1336 #ifdef NON_REENTRANT
1337 if (!wired)
1338 /* XXX See quandary in get_a_table */
1339 /* XXX start lock */
1340 TAILQ_INSERT_TAIL(&c_pool, tbl, c_link);
1341 /* XXX end lock */
1342 #endif /* NON_REENTRANT */
1343
1344 return tbl;
1345 }
1346
1347 /*
1348 * The following 'free_table' and 'steal_table' functions are called to
1349 * detach tables from their current obligations (parents and children) and
1350 * prepare them for reuse in another mapping.
1351 *
1352 * Free_table is used when the calling function will handle the fate
1353 * of the parent table, such as returning it to the free pool when it has
1354 * no valid entries. Functions that do not want to handle this should
1355 * call steal_table, in which the parent table's descriptors and entry
1356 * count are automatically modified when this table is removed.
1357 */
1358
1359 /* free_a_table INTERNAL
1360 **
1361 * Unmaps the given A table and all child tables from their current
1362 * mappings. Returns the number of pages that were invalidated.
1363 * If 'relink' is true, the function will return the table to the head
1364 * of the available table pool.
1365 *
1366 * Cache note: The MC68851 will automatically flush all
1367 * descriptors derived from a given A table from its
1368 * Automatic Translation Cache (ATC) if we issue a
1369 * 'PFLUSHR' instruction with the base address of the
1370 * table. This function should do, and does so.
1371 * Note note: We are using an MC68030 - there is no
1372 * PFLUSHR.
1373 */
1374 int
1375 free_a_table(a_tbl, relink)
1376 a_tmgr_t *a_tbl;
1377 boolean_t relink;
1378 {
1379 int i, removed_cnt;
1380 mmu_long_dte_t *dte;
1381 mmu_short_dte_t *dtbl;
1382 b_tmgr_t *tmgr;
1383
1384 /*
1385 * Flush the ATC cache of all cached descriptors derived
1386 * from this table.
1387 * Sun3x does not use 68851's cached table feature
1388 * flush_atc_crp(mmu_vtop(a_tbl->dte));
1389 */
1390
1391 /*
1392 * Remove any pending cache flushes that were designated
1393 * for the pmap this A table belongs to.
1394 * a_tbl->parent->atc_flushq[0] = 0;
1395 * Not implemented in sun3x.
1396 */
1397
1398 /*
1399 * All A tables in the system should retain a map for the
1400 * kernel. If the table contains any valid descriptors
1401 * (other than those for the kernel area), invalidate them all,
1402 * stopping short of the kernel's entries.
1403 */
1404 removed_cnt = 0;
1405 if (a_tbl->at_ecnt) {
1406 dte = a_tbl->at_dtbl;
1407 for (i=0; i < MMU_TIA(KERNBASE); i++) {
1408 /*
1409 * If a table entry points to a valid B table, free
1410 * it and its children.
1411 */
1412 if (MMU_VALID_DT(dte[i])) {
1413 /*
1414 * The following block does several things,
1415 * from innermost expression to the
1416 * outermost:
1417 * 1) It extracts the base (cc 1996)
1418 * address of the B table pointed
1419 * to in the A table entry dte[i].
1420 * 2) It converts this base address into
1421 * the virtual address it can be
1422 * accessed with. (all MMU tables point
1423 * to physical addresses.)
1424 * 3) It finds the corresponding manager
1425 * structure which manages this MMU table.
1426 * 4) It frees the manager structure.
1427 * (This frees the MMU table and all
1428 * child tables. See 'free_b_table' for
1429 * details.)
1430 */
1431 dtbl = mmu_ptov(dte[i].addr.raw);
1432 tmgr = mmuB2tmgr(dtbl);
1433 removed_cnt += free_b_table(tmgr, TRUE);
1434 dte[i].attr.raw = MMU_DT_INVALID;
1435 }
1436 }
1437 a_tbl->at_ecnt = 0;
1438 }
1439 if (relink) {
1440 a_tbl->at_parent = NULL;
1441 TAILQ_REMOVE(&a_pool, a_tbl, at_link);
1442 TAILQ_INSERT_HEAD(&a_pool, a_tbl, at_link);
1443 }
1444 return removed_cnt;
1445 }
1446
1447 /* free_b_table INTERNAL
1448 **
1449 * Unmaps the given B table and all its children from their current
1450 * mappings. Returns the number of pages that were invalidated.
1451 * (For comments, see 'free_a_table()').
1452 */
1453 int
1454 free_b_table(b_tbl, relink)
1455 b_tmgr_t *b_tbl;
1456 boolean_t relink;
1457 {
1458 int i, removed_cnt;
1459 mmu_short_dte_t *dte;
1460 mmu_short_pte_t *dtbl;
1461 c_tmgr_t *tmgr;
1462
1463 removed_cnt = 0;
1464 if (b_tbl->bt_ecnt) {
1465 dte = b_tbl->bt_dtbl;
1466 for (i=0; i < MMU_B_TBL_SIZE; i++) {
1467 if (MMU_VALID_DT(dte[i])) {
1468 dtbl = mmu_ptov(MMU_DTE_PA(dte[i]));
1469 tmgr = mmuC2tmgr(dtbl);
1470 removed_cnt += free_c_table(tmgr, TRUE);
1471 dte[i].attr.raw = MMU_DT_INVALID;
1472 }
1473 }
1474 b_tbl->bt_ecnt = 0;
1475 }
1476
1477 if (relink) {
1478 b_tbl->bt_parent = NULL;
1479 TAILQ_REMOVE(&b_pool, b_tbl, bt_link);
1480 TAILQ_INSERT_HEAD(&b_pool, b_tbl, bt_link);
1481 }
1482 return removed_cnt;
1483 }
1484
1485 /* free_c_table INTERNAL
1486 **
1487 * Unmaps the given C table from use and returns it to the pool for
1488 * re-use. Returns the number of pages that were invalidated.
1489 *
1490 * This function preserves any physical page modification information
1491 * contained in the page descriptors within the C table by calling
1492 * 'pmap_remove_pte().'
1493 */
1494 int
1495 free_c_table(c_tbl, relink)
1496 c_tmgr_t *c_tbl;
1497 boolean_t relink;
1498 {
1499 int i, removed_cnt;
1500
1501 removed_cnt = 0;
1502 if (c_tbl->ct_ecnt) {
1503 for (i=0; i < MMU_C_TBL_SIZE; i++) {
1504 if (MMU_VALID_DT(c_tbl->ct_dtbl[i])) {
1505 pmap_remove_pte(&c_tbl->ct_dtbl[i]);
1506 removed_cnt++;
1507 }
1508 }
1509 c_tbl->ct_ecnt = 0;
1510 }
1511
1512 if (relink) {
1513 c_tbl->ct_parent = NULL;
1514 TAILQ_REMOVE(&c_pool, c_tbl, ct_link);
1515 TAILQ_INSERT_HEAD(&c_pool, c_tbl, ct_link);
1516 }
1517 return removed_cnt;
1518 }
1519
1520 #if 0
1521 /* free_c_table_novalid INTERNAL
1522 **
1523 * Frees the given C table manager without checking to see whether
1524 * or not it contains any valid page descriptors as it is assumed
1525 * that it does not.
1526 */
1527 void
1528 free_c_table_novalid(c_tbl)
1529 c_tmgr_t *c_tbl;
1530 {
1531 TAILQ_REMOVE(&c_pool, c_tbl, ct_link);
1532 TAILQ_INSERT_HEAD(&c_pool, c_tbl, ct_link);
1533 c_tbl->ct_parent->bt_dtbl[c_tbl->ct_pidx].attr.raw = MMU_DT_INVALID;
1534 c_tbl->ct_parent->bt_ecnt--;
1535 /*
1536 * XXX - Should call equiv. of 'free_b_table_novalid' here if
1537 * we just removed the last entry of the parent B table.
1538 * But I want to insure that this will not endanger pmap_enter()
1539 * with sudden removal of tables it is working with.
1540 *
1541 * We should probably add another field to each table, indicating
1542 * whether or not it is 'locked', ie. in the process of being
1543 * modified.
1544 */
1545 c_tbl->ct_parent = NULL;
1546 }
1547 #endif
1548
1549 /* pmap_remove_pte INTERNAL
1550 **
1551 * Unmap the given pte and preserve any page modification
1552 * information by transfering it to the pv head of the
1553 * physical page it maps to. This function does not update
1554 * any reference counts because it is assumed that the calling
1555 * function will do so.
1556 */
1557 void
1558 pmap_remove_pte(pte)
1559 mmu_short_pte_t *pte;
1560 {
1561 u_short pv_idx, targ_idx;
1562 int s;
1563 vm_offset_t pa;
1564 pv_t *pv;
1565
1566 pa = MMU_PTE_PA(*pte);
1567 if (is_managed(pa)) {
1568 pv = pa2pv(pa);
1569 targ_idx = pteidx(pte); /* Index of PTE being removed */
1570
1571 /*
1572 * If the PTE being removed is the first (or only) PTE in
1573 * the list of PTEs currently mapped to this page, remove the
1574 * PTE by changing the index found on the PV head. Otherwise
1575 * a linear search through the list will have to be executed
1576 * in order to find the PVE which points to the PTE being
1577 * removed, so that it may be modified to point to its new
1578 * neighbor.
1579 */
1580 s = splimp();
1581 pv_idx = pv->pv_idx; /* Index of first PTE in PV list */
1582 if (pv_idx == targ_idx) {
1583 pv->pv_idx = pvebase[targ_idx].pve_next;
1584 } else {
1585 /*
1586 * Find the PV element which points to the target
1587 * element.
1588 */
1589 while (pvebase[pv_idx].pve_next != targ_idx) {
1590 pv_idx = pvebase[pv_idx].pve_next;
1591 #ifdef DIAGNOSTIC
1592 if (pv_idx == PVE_EOL)
1593 panic("pmap_remove_pte: pv list end!");
1594 #endif
1595 }
1596
1597 /*
1598 * At this point, pv_idx is the index of the PV
1599 * element just before the target element in the list.
1600 * Unlink the target.
1601 */
1602 pvebase[pv_idx].pve_next = pvebase[targ_idx].pve_next;
1603 }
1604 /*
1605 * Save the mod/ref bits of the pte by simply
1606 * ORing the entire pte onto the pv_flags member
1607 * of the pv structure.
1608 * There is no need to use a separate bit pattern
1609 * for usage information on the pv head than that
1610 * which is used on the MMU ptes.
1611 */
1612 pv->pv_flags |= (u_short) pte->attr.raw;
1613 splx(s);
1614 }
1615
1616 pte->attr.raw = MMU_DT_INVALID;
1617 }
1618
1619 /* pmap_stroll INTERNAL
1620 **
1621 * Retrieve the addresses of all table managers involved in the mapping of
1622 * the given virtual address. If the table walk completed sucessfully,
1623 * return TRUE. If it was only partially sucessful, return FALSE.
1624 * The table walk performed by this function is important to many other
1625 * functions in this module.
1626 *
1627 * Note: This function ought to be easier to read.
1628 */
1629 boolean_t
1630 pmap_stroll(pmap, va, a_tbl, b_tbl, c_tbl, pte, a_idx, b_idx, pte_idx)
1631 pmap_t pmap;
1632 vm_offset_t va;
1633 a_tmgr_t **a_tbl;
1634 b_tmgr_t **b_tbl;
1635 c_tmgr_t **c_tbl;
1636 mmu_short_pte_t **pte;
1637 int *a_idx, *b_idx, *pte_idx;
1638 {
1639 mmu_long_dte_t *a_dte; /* A: long descriptor table */
1640 mmu_short_dte_t *b_dte; /* B: short descriptor table */
1641
1642 if (pmap == pmap_kernel())
1643 return FALSE;
1644
1645 /* Does the given pmap have its own A table? */
1646 *a_tbl = pmap->pm_a_tmgr;
1647 if (*a_tbl == NULL)
1648 return FALSE; /* No. Return unknown. */
1649 /* Does the A table have a valid B table
1650 * under the corresponding table entry?
1651 */
1652 *a_idx = MMU_TIA(va);
1653 a_dte = &((*a_tbl)->at_dtbl[*a_idx]);
1654 if (!MMU_VALID_DT(*a_dte))
1655 return FALSE; /* No. Return unknown. */
1656 /* Yes. Extract B table from the A table. */
1657 *b_tbl = mmuB2tmgr(mmu_ptov(a_dte->addr.raw));
1658 /* Does the B table have a valid C table
1659 * under the corresponding table entry?
1660 */
1661 *b_idx = MMU_TIB(va);
1662 b_dte = &((*b_tbl)->bt_dtbl[*b_idx]);
1663 if (!MMU_VALID_DT(*b_dte))
1664 return FALSE; /* No. Return unknown. */
1665 /* Yes. Extract C table from the B table. */
1666 *c_tbl = mmuC2tmgr(mmu_ptov(MMU_DTE_PA(*b_dte)));
1667 *pte_idx = MMU_TIC(va);
1668 *pte = &((*c_tbl)->ct_dtbl[*pte_idx]);
1669
1670 return TRUE;
1671 }
1672
1673 /* pmap_enter INTERFACE
1674 **
1675 * Called by the kernel to map a virtual address
1676 * to a physical address in the given process map.
1677 *
1678 * Note: this function should apply an exclusive lock
1679 * on the pmap system for its duration. (it certainly
1680 * would save my hair!!)
1681 * This function ought to be easier to read.
1682 */
1683 void
1684 pmap_enter(pmap, va, pa, prot, wired)
1685 pmap_t pmap;
1686 vm_offset_t va;
1687 vm_offset_t pa;
1688 vm_prot_t prot;
1689 boolean_t wired;
1690 {
1691 boolean_t insert, managed; /* Marks the need for PV insertion.*/
1692 u_short nidx; /* PV list index */
1693 int s; /* Used for splimp()/splx() */
1694 int flags; /* Mapping flags. eg. Cache inhibit */
1695 u_int a_idx, b_idx, pte_idx; /* table indices */
1696 a_tmgr_t *a_tbl; /* A: long descriptor table manager */
1697 b_tmgr_t *b_tbl; /* B: short descriptor table manager */
1698 c_tmgr_t *c_tbl; /* C: short page table manager */
1699 mmu_long_dte_t *a_dte; /* A: long descriptor table */
1700 mmu_short_dte_t *b_dte; /* B: short descriptor table */
1701 mmu_short_pte_t *c_pte; /* C: short page descriptor table */
1702 pv_t *pv; /* pv list head */
1703 enum {NONE, NEWA, NEWB, NEWC} llevel; /* used at end */
1704
1705 if (pmap == NULL)
1706 return;
1707 if (pmap == pmap_kernel()) {
1708 pmap_enter_kernel(va, pa, prot);
1709 return;
1710 }
1711
1712 flags = (pa & ~MMU_PAGE_MASK);
1713 pa &= MMU_PAGE_MASK;
1714
1715 /*
1716 * Determine if the physical address being mapped is on-board RAM.
1717 * Any other area of the address space is likely to belong to a
1718 * device and hence it would be disasterous to cache its contents.
1719 */
1720 if ((managed = is_managed(pa)) == FALSE)
1721 flags |= PMAP_NC;
1722
1723 /*
1724 * For user mappings we walk along the MMU tables of the given
1725 * pmap, reaching a PTE which describes the virtual page being
1726 * mapped or changed. If any level of the walk ends in an invalid
1727 * entry, a table must be allocated and the entry must be updated
1728 * to point to it.
1729 * There is a bit of confusion as to whether this code must be
1730 * re-entrant. For now we will assume it is. To support
1731 * re-entrancy we must unlink tables from the table pool before
1732 * we assume we may use them. Tables are re-linked into the pool
1733 * when we are finished with them at the end of the function.
1734 * But I don't feel like doing that until we have proof that this
1735 * needs to be re-entrant.
1736 * 'llevel' records which tables need to be relinked.
1737 */
1738 llevel = NONE;
1739
1740 /*
1741 * Step 1 - Retrieve the A table from the pmap. If it has no
1742 * A table, allocate a new one from the available pool.
1743 */
1744
1745 a_tbl = pmap->pm_a_tmgr;
1746 if (a_tbl == NULL) {
1747 /*
1748 * This pmap does not currently have an A table. Allocate
1749 * a new one.
1750 */
1751 a_tbl = get_a_table();
1752 a_tbl->at_parent = pmap;
1753
1754 /*
1755 * Assign this new A table to the pmap, and calculate its
1756 * physical address so that loadcrp() can be used to make
1757 * the table active.
1758 */
1759 pmap->pm_a_tmgr = a_tbl;
1760 pmap->pm_a_phys = mmu_vtop(a_tbl->at_dtbl);
1761
1762 /*
1763 * If the process receiving a new A table is the current
1764 * process, we are responsible for setting the MMU so that
1765 * it becomes the current address space. This only adds
1766 * new mappings, so no need to flush anything.
1767 */
1768 if (pmap == current_pmap()) {
1769 kernel_crp.rp_addr = pmap->pm_a_phys;
1770 loadcrp(&kernel_crp);
1771 }
1772
1773 if (!wired)
1774 llevel = NEWA;
1775 } else {
1776 /*
1777 * Use the A table already allocated for this pmap.
1778 * Unlink it from the A table pool if necessary.
1779 */
1780 if (wired && !a_tbl->at_wcnt)
1781 TAILQ_REMOVE(&a_pool, a_tbl, at_link);
1782 }
1783
1784 /*
1785 * Step 2 - Walk into the B table. If there is no valid B table,
1786 * allocate one.
1787 */
1788
1789 a_idx = MMU_TIA(va); /* Calculate the TIA of the VA. */
1790 a_dte = &a_tbl->at_dtbl[a_idx]; /* Retrieve descriptor from table */
1791 if (MMU_VALID_DT(*a_dte)) { /* Is the descriptor valid? */
1792 /* The descriptor is valid. Use the B table it points to. */
1793 /*************************************
1794 * a_idx *
1795 * v *
1796 * a_tbl -> +-+-+-+-+-+-+-+-+-+-+-+- *
1797 * | | | | | | | | | | | | *
1798 * +-+-+-+-+-+-+-+-+-+-+-+- *
1799 * | *
1800 * \- b_tbl -> +-+- *
1801 * | | *
1802 * +-+- *
1803 *************************************/
1804 b_dte = mmu_ptov(a_dte->addr.raw);
1805 b_tbl = mmuB2tmgr(b_dte);
1806
1807 /*
1808 * If the requested mapping must be wired, but this table
1809 * being used to map it is not, the table must be removed
1810 * from the available pool and its wired entry count
1811 * incremented.
1812 */
1813 if (wired && !b_tbl->bt_wcnt) {
1814 TAILQ_REMOVE(&b_pool, b_tbl, bt_link);
1815 a_tbl->at_wcnt++;
1816 }
1817 } else {
1818 /* The descriptor is invalid. Allocate a new B table. */
1819 b_tbl = get_b_table();
1820
1821 /* Point the parent A table descriptor to this new B table. */
1822 a_dte->addr.raw = mmu_vtop(b_tbl->bt_dtbl);
1823 a_dte->attr.raw = MMU_LONG_DTE_LU | MMU_DT_SHORT;
1824 a_tbl->at_ecnt++; /* Update parent's valid entry count */
1825
1826 /* Create the necessary back references to the parent table */
1827 b_tbl->bt_parent = a_tbl;
1828 b_tbl->bt_pidx = a_idx;
1829
1830 /*
1831 * If this table is to be wired, make sure the parent A table
1832 * wired count is updated to reflect that it has another wired
1833 * entry.
1834 */
1835 if (wired)
1836 a_tbl->at_wcnt++;
1837 else if (llevel == NONE)
1838 llevel = NEWB;
1839 }
1840
1841 /*
1842 * Step 3 - Walk into the C table, if there is no valid C table,
1843 * allocate one.
1844 */
1845
1846 b_idx = MMU_TIB(va); /* Calculate the TIB of the VA */
1847 b_dte = &b_tbl->bt_dtbl[b_idx]; /* Retrieve descriptor from table */
1848 if (MMU_VALID_DT(*b_dte)) { /* Is the descriptor valid? */
1849 /* The descriptor is valid. Use the C table it points to. */
1850 /**************************************
1851 * c_idx *
1852 * | v *
1853 * \- b_tbl -> +-+-+-+-+-+-+-+-+-+-+- *
1854 * | | | | | | | | | | | *
1855 * +-+-+-+-+-+-+-+-+-+-+- *
1856 * | *
1857 * \- c_tbl -> +-+-- *
1858 * | | | *
1859 * +-+-- *
1860 **************************************/
1861 c_pte = mmu_ptov(MMU_PTE_PA(*b_dte));
1862 c_tbl = mmuC2tmgr(c_pte);
1863
1864 /* If mapping is wired and table is not */
1865 if (wired && !c_tbl->ct_wcnt) {
1866 TAILQ_REMOVE(&c_pool, c_tbl, ct_link);
1867 b_tbl->bt_wcnt++;
1868 }
1869 } else {
1870 /* The descriptor is invalid. Allocate a new C table. */
1871 c_tbl = get_c_table();
1872
1873 /* Point the parent B table descriptor to this new C table. */
1874 b_dte->attr.raw = mmu_vtop(c_tbl->ct_dtbl);
1875 b_dte->attr.raw |= MMU_DT_SHORT;
1876 b_tbl->bt_ecnt++; /* Update parent's valid entry count */
1877
1878 /* Create the necessary back references to the parent table */
1879 c_tbl->ct_parent = b_tbl;
1880 c_tbl->ct_pidx = b_idx;
1881 /*
1882 * Store the pmap and base virtual managed address for faster
1883 * retrieval in the PV functions.
1884 */
1885 c_tbl->ct_pmap = pmap;
1886 c_tbl->ct_va = (va & (MMU_TIA_MASK|MMU_TIB_MASK));
1887
1888 /*
1889 * If this table is to be wired, make sure the parent B table
1890 * wired count is updated to reflect that it has another wired
1891 * entry.
1892 */
1893 if (wired)
1894 b_tbl->bt_wcnt++;
1895 else if (llevel == NONE)
1896 llevel = NEWC;
1897 }
1898
1899 /*
1900 * Step 4 - Deposit a page descriptor (PTE) into the appropriate
1901 * slot of the C table, describing the PA to which the VA is mapped.
1902 */
1903
1904 pte_idx = MMU_TIC(va);
1905 c_pte = &c_tbl->ct_dtbl[pte_idx];
1906 if (MMU_VALID_DT(*c_pte)) { /* Is the entry currently valid? */
1907 /*
1908 * The PTE is currently valid. This particular call
1909 * is just a synonym for one (or more) of the following
1910 * operations:
1911 * change protection of a page
1912 * change wiring status of a page
1913 * remove the mapping of a page
1914 *
1915 * XXX - Semi critical: This code should unwire the PTE
1916 * and, possibly, associated parent tables if this is a
1917 * change wiring operation. Currently it does not.
1918 *
1919 * This may be ok if pmap_change_wiring() is the only
1920 * interface used to UNWIRE a page.
1921 */
1922
1923 /* First check if this is a wiring operation. */
1924 if (wired && (c_pte->attr.raw & MMU_SHORT_PTE_WIRED)) {
1925 /*
1926 * The PTE is already wired. To prevent it from being
1927 * counted as a new wiring operation, reset the 'wired'
1928 * variable.
1929 */
1930 wired = FALSE;
1931 }
1932
1933 /* Is the new address the same as the old? */
1934 if (MMU_PTE_PA(*c_pte) == pa) {
1935 /*
1936 * Yes, mark that it does not need to be reinserted
1937 * into the PV list.
1938 */
1939 insert = FALSE;
1940
1941 /*
1942 * Clear all but the modified, referenced and wired
1943 * bits on the PTE.
1944 */
1945 c_pte->attr.raw &= (MMU_SHORT_PTE_M
1946 | MMU_SHORT_PTE_USED | MMU_SHORT_PTE_WIRED);
1947 } else {
1948 /* No, remove the old entry */
1949 pmap_remove_pte(c_pte);
1950 insert = TRUE;
1951 }
1952
1953 /*
1954 * TLB flush is only necessary if modifying current map.
1955 * However, in pmap_enter(), the pmap almost always IS
1956 * the current pmap, so don't even bother to check.
1957 */
1958 TBIS(va);
1959 } else {
1960 /*
1961 * The PTE is invalid. Increment the valid entry count in
1962 * the C table manager to reflect the addition of a new entry.
1963 */
1964 c_tbl->ct_ecnt++;
1965
1966 /* XXX - temporarily make sure the PTE is cleared. */
1967 c_pte->attr.raw = 0;
1968
1969 /* It will also need to be inserted into the PV list. */
1970 insert = TRUE;
1971 }
1972
1973 /*
1974 * If page is changing from unwired to wired status, set an unused bit
1975 * within the PTE to indicate that it is wired. Also increment the
1976 * wired entry count in the C table manager.
1977 */
1978 if (wired) {
1979 c_pte->attr.raw |= MMU_SHORT_PTE_WIRED;
1980 c_tbl->ct_wcnt++;
1981 }
1982
1983 /*
1984 * Map the page, being careful to preserve modify/reference/wired
1985 * bits. At this point it is assumed that the PTE either has no bits
1986 * set, or if there are set bits, they are only modified, reference or
1987 * wired bits. If not, the following statement will cause erratic
1988 * behavior.
1989 */
1990 #ifdef PMAP_DEBUG
1991 if (c_pte->attr.raw & ~(MMU_SHORT_PTE_M |
1992 MMU_SHORT_PTE_USED | MMU_SHORT_PTE_WIRED)) {
1993 printf("pmap_enter: junk left in PTE at %p\n", c_pte);
1994 Debugger();
1995 }
1996 #endif
1997 c_pte->attr.raw |= ((u_long) pa | MMU_DT_PAGE);
1998
1999 /*
2000 * If the mapping should be read-only, set the write protect
2001 * bit in the PTE.
2002 */
2003 if (!(prot & VM_PROT_WRITE))
2004 c_pte->attr.raw |= MMU_SHORT_PTE_WP;
2005
2006 /*
2007 * If the mapping should be cache inhibited (indicated by the flag
2008 * bits found on the lower order of the physical address.)
2009 * mark the PTE as a cache inhibited page.
2010 */
2011 if (flags & PMAP_NC)
2012 c_pte->attr.raw |= MMU_SHORT_PTE_CI;
2013
2014 /*
2015 * If the physical address being mapped is managed by the PV
2016 * system then link the pte into the list of pages mapped to that
2017 * address.
2018 */
2019 if (insert && managed) {
2020 pv = pa2pv(pa);
2021 nidx = pteidx(c_pte);
2022
2023 s = splimp();
2024 pvebase[nidx].pve_next = pv->pv_idx;
2025 pv->pv_idx = nidx;
2026 splx(s);
2027 }
2028
2029 /* Move any allocated tables back into the active pool. */
2030
2031 switch (llevel) {
2032 case NEWA:
2033 TAILQ_INSERT_TAIL(&a_pool, a_tbl, at_link);
2034 /* FALLTHROUGH */
2035 case NEWB:
2036 TAILQ_INSERT_TAIL(&b_pool, b_tbl, bt_link);
2037 /* FALLTHROUGH */
2038 case NEWC:
2039 TAILQ_INSERT_TAIL(&c_pool, c_tbl, ct_link);
2040 /* FALLTHROUGH */
2041 default:
2042 break;
2043 }
2044 }
2045
2046 /* pmap_enter_kernel INTERNAL
2047 **
2048 * Map the given virtual address to the given physical address within the
2049 * kernel address space. This function exists because the kernel map does
2050 * not do dynamic table allocation. It consists of a contiguous array of ptes
2051 * and can be edited directly without the need to walk through any tables.
2052 *
2053 * XXX: "Danger, Will Robinson!"
2054 * Note that the kernel should never take a fault on any page
2055 * between [ KERNBASE .. virtual_avail ] and this is checked in
2056 * trap.c for kernel-mode MMU faults. This means that mappings
2057 * created in that range must be implicily wired. -gwr
2058 */
2059 void
2060 pmap_enter_kernel(va, pa, prot)
2061 vm_offset_t va;
2062 vm_offset_t pa;
2063 vm_prot_t prot;
2064 {
2065 boolean_t was_valid, insert;
2066 u_short pte_idx, pv_idx;
2067 int s, flags;
2068 mmu_short_pte_t *pte;
2069 pv_t *pv;
2070 vm_offset_t old_pa;
2071
2072 flags = (pa & ~MMU_PAGE_MASK);
2073 pa &= MMU_PAGE_MASK;
2074
2075 /*
2076 * Calculate the index of the PTE being modified.
2077 */
2078 pte_idx = (u_long) m68k_btop(va - KERNBASE);
2079
2080 /* This array is traditionally named "Sysmap" */
2081 pte = &kernCbase[pte_idx];
2082
2083 s = splimp();
2084 if (MMU_VALID_DT(*pte)) {
2085 was_valid = TRUE;
2086 /*
2087 * If the PTE is already mapped to an address and it differs
2088 * from the address requested, unlink it from the PV list.
2089 */
2090 old_pa = MMU_PTE_PA(*pte);
2091 if (pa != old_pa) {
2092 if (is_managed(old_pa)) {
2093 /* XXX - Make this into a function call? */
2094 pv = pa2pv(old_pa);
2095 pv_idx = pv->pv_idx;
2096 if (pv_idx == pte_idx) {
2097 pv->pv_idx = pvebase[pte_idx].pve_next;
2098 } else {
2099 while (pvebase[pv_idx].pve_next != pte_idx)
2100 pv_idx = pvebase[pv_idx].pve_next;
2101 pvebase[pv_idx].pve_next =
2102 pvebase[pte_idx].pve_next;
2103 }
2104 /* Save modified/reference bits */
2105 pv->pv_flags |= (u_short) pte->attr.raw;
2106 }
2107 if (is_managed(pa))
2108 insert = TRUE;
2109 else
2110 insert = FALSE;
2111 /*
2112 * Clear out any old bits in the PTE.
2113 */
2114 pte->attr.raw = MMU_DT_INVALID;
2115 } else {
2116 /*
2117 * Old PA and new PA are the same. No need to relink
2118 * the mapping within the PV list.
2119 */
2120 insert = FALSE;
2121
2122 /*
2123 * Save any mod/ref bits on the PTE.
2124 */
2125 pte->attr.raw &= (MMU_SHORT_PTE_USED|MMU_SHORT_PTE_M);
2126 }
2127 } else {
2128 pte->attr.raw = MMU_DT_INVALID;
2129 was_valid = FALSE;
2130 if (is_managed(pa))
2131 insert = TRUE;
2132 else
2133 insert = FALSE;
2134 }
2135
2136 /*
2137 * Map the page. Being careful to preserve modified/referenced bits
2138 * on the PTE.
2139 */
2140 pte->attr.raw |= (pa | MMU_DT_PAGE);
2141
2142 if (!(prot & VM_PROT_WRITE)) /* If access should be read-only */
2143 pte->attr.raw |= MMU_SHORT_PTE_WP;
2144 if (flags & PMAP_NC)
2145 pte->attr.raw |= MMU_SHORT_PTE_CI;
2146 if (was_valid)
2147 TBIS(va);
2148
2149 /*
2150 * Insert the PTE into the PV system, if need be.
2151 */
2152 if (insert) {
2153 pv = pa2pv(pa);
2154 pvebase[pte_idx].pve_next = pv->pv_idx;
2155 pv->pv_idx = pte_idx;
2156 }
2157 splx(s);
2158
2159 }
2160
2161 /* pmap_protect INTERFACE
2162 **
2163 * Apply the given protection to the given virtual address range within
2164 * the given map.
2165 *
2166 * It is ok for the protection applied to be stronger than what is
2167 * specified. We use this to our advantage when the given map has no
2168 * mapping for the virtual address. By skipping a page when this
2169 * is discovered, we are effectively applying a protection of VM_PROT_NONE,
2170 * and therefore do not need to map the page just to apply a protection
2171 * code. Only pmap_enter() needs to create new mappings if they do not exist.
2172 *
2173 * XXX - This function could be speeded up by using pmap_stroll() for inital
2174 * setup, and then manual scrolling in the for() loop.
2175 */
2176 void
2177 pmap_protect(pmap, startva, endva, prot)
2178 pmap_t pmap;
2179 vm_offset_t startva, endva;
2180 vm_prot_t prot;
2181 {
2182 boolean_t iscurpmap;
2183 int a_idx, b_idx, c_idx;
2184 a_tmgr_t *a_tbl;
2185 b_tmgr_t *b_tbl;
2186 c_tmgr_t *c_tbl;
2187 mmu_short_pte_t *pte;
2188
2189 if (pmap == NULL)
2190 return;
2191 if (pmap == pmap_kernel()) {
2192 pmap_protect_kernel(startva, endva, prot);
2193 return;
2194 }
2195
2196 /*
2197 * In this particular pmap implementation, there are only three
2198 * types of memory protection: 'all' (read/write/execute),
2199 * 'read-only' (read/execute) and 'none' (no mapping.)
2200 * It is not possible for us to treat 'executable' as a separate
2201 * protection type. Therefore, protection requests that seek to
2202 * remove execute permission while retaining read or write, and those
2203 * that make little sense (write-only for example) are ignored.
2204 */
2205 switch (prot) {
2206 case VM_PROT_NONE:
2207 /*
2208 * A request to apply the protection code of
2209 * 'VM_PROT_NONE' is a synonym for pmap_remove().
2210 */
2211 pmap_remove(pmap, startva, endva);
2212 return;
2213 case VM_PROT_EXECUTE:
2214 case VM_PROT_READ:
2215 case VM_PROT_READ|VM_PROT_EXECUTE:
2216 /* continue */
2217 break;
2218 case VM_PROT_WRITE:
2219 case VM_PROT_WRITE|VM_PROT_READ:
2220 case VM_PROT_WRITE|VM_PROT_EXECUTE:
2221 case VM_PROT_ALL:
2222 /* None of these should happen in a sane system. */
2223 return;
2224 }
2225
2226 /*
2227 * If the pmap has no A table, it has no mappings and therefore
2228 * there is nothing to protect.
2229 */
2230 if ((a_tbl = pmap->pm_a_tmgr) == NULL)
2231 return;
2232
2233 a_idx = MMU_TIA(startva);
2234 b_idx = MMU_TIB(startva);
2235 c_idx = MMU_TIC(startva);
2236 b_tbl = (b_tmgr_t *) c_tbl = NULL;
2237
2238 iscurpmap = (pmap == current_pmap());
2239 while (startva < endva) {
2240 if (b_tbl || MMU_VALID_DT(a_tbl->at_dtbl[a_idx])) {
2241 if (b_tbl == NULL) {
2242 b_tbl = (b_tmgr_t *) a_tbl->at_dtbl[a_idx].addr.raw;
2243 b_tbl = mmu_ptov((vm_offset_t) b_tbl);
2244 b_tbl = mmuB2tmgr((mmu_short_dte_t *) b_tbl);
2245 }
2246 if (c_tbl || MMU_VALID_DT(b_tbl->bt_dtbl[b_idx])) {
2247 if (c_tbl == NULL) {
2248 c_tbl = (c_tmgr_t *) MMU_DTE_PA(b_tbl->bt_dtbl[b_idx]);
2249 c_tbl = mmu_ptov((vm_offset_t) c_tbl);
2250 c_tbl = mmuC2tmgr((mmu_short_pte_t *) c_tbl);
2251 }
2252 if (MMU_VALID_DT(c_tbl->ct_dtbl[c_idx])) {
2253 pte = &c_tbl->ct_dtbl[c_idx];
2254 /* make the mapping read-only */
2255 pte->attr.raw |= MMU_SHORT_PTE_WP;
2256 /*
2257 * If we just modified the current address space,
2258 * flush any translations for the modified page from
2259 * the translation cache and any data from it in the
2260 * data cache.
2261 */
2262 if (iscurpmap)
2263 TBIS(startva);
2264 }
2265 startva += NBPG;
2266
2267 if (++c_idx >= MMU_C_TBL_SIZE) { /* exceeded C table? */
2268 c_tbl = NULL;
2269 c_idx = 0;
2270 if (++b_idx >= MMU_B_TBL_SIZE) { /* exceeded B table? */
2271 b_tbl = NULL;
2272 b_idx = 0;
2273 }
2274 }
2275 } else { /* C table wasn't valid */
2276 c_tbl = NULL;
2277 c_idx = 0;
2278 startva += MMU_TIB_RANGE;
2279 if (++b_idx >= MMU_B_TBL_SIZE) { /* exceeded B table? */
2280 b_tbl = NULL;
2281 b_idx = 0;
2282 }
2283 } /* C table */
2284 } else { /* B table wasn't valid */
2285 b_tbl = NULL;
2286 b_idx = 0;
2287 startva += MMU_TIA_RANGE;
2288 a_idx++;
2289 } /* B table */
2290 }
2291 }
2292
2293 /* pmap_protect_kernel INTERNAL
2294 **
2295 * Apply the given protection code to a kernel address range.
2296 */
2297 void
2298 pmap_protect_kernel(startva, endva, prot)
2299 vm_offset_t startva, endva;
2300 vm_prot_t prot;
2301 {
2302 vm_offset_t va;
2303 mmu_short_pte_t *pte;
2304
2305 pte = &kernCbase[(unsigned long) m68k_btop(startva - KERNBASE)];
2306 for (va = startva; va < endva; va += NBPG, pte++) {
2307 if (MMU_VALID_DT(*pte)) {
2308 switch (prot) {
2309 case VM_PROT_ALL:
2310 break;
2311 case VM_PROT_EXECUTE:
2312 case VM_PROT_READ:
2313 case VM_PROT_READ|VM_PROT_EXECUTE:
2314 pte->attr.raw |= MMU_SHORT_PTE_WP;
2315 break;
2316 case VM_PROT_NONE:
2317 /* this is an alias for 'pmap_remove_kernel' */
2318 pmap_remove_pte(pte);
2319 break;
2320 default:
2321 break;
2322 }
2323 /*
2324 * since this is the kernel, immediately flush any cached
2325 * descriptors for this address.
2326 */
2327 TBIS(va);
2328 }
2329 }
2330 }
2331
2332 /* pmap_change_wiring INTERFACE
2333 **
2334 * Changes the wiring of the specified page.
2335 *
2336 * This function is called from vm_fault.c to unwire
2337 * a mapping. It really should be called 'pmap_unwire'
2338 * because it is never asked to do anything but remove
2339 * wirings.
2340 */
2341 void
2342 pmap_change_wiring(pmap, va, wire)
2343 pmap_t pmap;
2344 vm_offset_t va;
2345 boolean_t wire;
2346 {
2347 int a_idx, b_idx, c_idx;
2348 a_tmgr_t *a_tbl;
2349 b_tmgr_t *b_tbl;
2350 c_tmgr_t *c_tbl;
2351 mmu_short_pte_t *pte;
2352
2353 /* Kernel mappings always remain wired. */
2354 if (pmap == pmap_kernel())
2355 return;
2356
2357 #ifdef PMAP_DEBUG
2358 if (wire == TRUE)
2359 panic("pmap_change_wiring: wire requested.");
2360 #endif
2361
2362 /*
2363 * Walk through the tables. If the walk terminates without
2364 * a valid PTE then the address wasn't wired in the first place.
2365 * Return immediately.
2366 */
2367 if (pmap_stroll(pmap, va, &a_tbl, &b_tbl, &c_tbl, &pte, &a_idx,
2368 &b_idx, &c_idx) == FALSE)
2369 return;
2370
2371
2372 /* Is the PTE wired? If not, return. */
2373 if (!(pte->attr.raw & MMU_SHORT_PTE_WIRED))
2374 return;
2375
2376 /* Remove the wiring bit. */
2377 pte->attr.raw &= ~(MMU_SHORT_PTE_WIRED);
2378
2379 /*
2380 * Decrement the wired entry count in the C table.
2381 * If it reaches zero the following things happen:
2382 * 1. The table no longer has any wired entries and is considered
2383 * unwired.
2384 * 2. It is placed on the available queue.
2385 * 3. The parent table's wired entry count is decremented.
2386 * 4. If it reaches zero, this process repeats at step 1 and
2387 * stops at after reaching the A table.
2388 */
2389 if (--c_tbl->ct_wcnt == 0) {
2390 TAILQ_INSERT_TAIL(&c_pool, c_tbl, ct_link);
2391 if (--b_tbl->bt_wcnt == 0) {
2392 TAILQ_INSERT_TAIL(&b_pool, b_tbl, bt_link);
2393 if (--a_tbl->at_wcnt == 0) {
2394 TAILQ_INSERT_TAIL(&a_pool, a_tbl, at_link);
2395 }
2396 }
2397 }
2398 }
2399
2400 /* pmap_pageable INTERFACE
2401 **
2402 * Make the specified range of addresses within the given pmap,
2403 * 'pageable' or 'not-pageable'. A pageable page must not cause
2404 * any faults when referenced. A non-pageable page may.
2405 *
2406 * This routine is only advisory. The VM system will call pmap_enter()
2407 * to wire or unwire pages that are going to be made pageable before calling
2408 * this function. By the time this routine is called, everything that needs
2409 * to be done has already been done.
2410 */
2411 void
2412 pmap_pageable(pmap, start, end, pageable)
2413 pmap_t pmap;
2414 vm_offset_t start, end;
2415 boolean_t pageable;
2416 {
2417 /* not implemented. */
2418 }
2419
2420 /* pmap_copy INTERFACE
2421 **
2422 * Copy the mappings of a range of addresses in one pmap, into
2423 * the destination address of another.
2424 *
2425 * This routine is advisory. Should we one day decide that MMU tables
2426 * may be shared by more than one pmap, this function should be used to
2427 * link them together. Until that day however, we do nothing.
2428 */
2429 void
2430 pmap_copy(pmap_a, pmap_b, dst, len, src)
2431 pmap_t pmap_a, pmap_b;
2432 vm_offset_t dst;
2433 vm_size_t len;
2434 vm_offset_t src;
2435 {
2436 /* not implemented. */
2437 }
2438
2439 /* pmap_copy_page INTERFACE
2440 **
2441 * Copy the contents of one physical page into another.
2442 *
2443 * This function makes use of two virtual pages allocated in pmap_bootstrap()
2444 * to map the two specified physical pages into the kernel address space.
2445 *
2446 * Note: We could use the transparent translation registers to make the
2447 * mappings. If we do so, be sure to disable interrupts before using them.
2448 */
2449 void
2450 pmap_copy_page(srcpa, dstpa)
2451 vm_offset_t srcpa, dstpa;
2452 {
2453 vm_offset_t srcva, dstva;
2454 int s;
2455
2456 srcva = tmp_vpages[0];
2457 dstva = tmp_vpages[1];
2458
2459 s = splimp();
2460 if (tmp_vpages_inuse++)
2461 panic("pmap_copy_page: temporary vpages are in use.");
2462
2463 /* Map pages as non-cacheable to avoid cache polution? */
2464 pmap_enter_kernel(srcva, srcpa, VM_PROT_READ);
2465 pmap_enter_kernel(dstva, dstpa, VM_PROT_READ|VM_PROT_WRITE);
2466
2467 /* Hand-optimized version of bcopy(src, dst, NBPG) */
2468 copypage((char *) srcva, (char *) dstva);
2469
2470 pmap_remove_kernel(srcva, srcva + NBPG);
2471 pmap_remove_kernel(dstva, dstva + NBPG);
2472
2473 --tmp_vpages_inuse;
2474 splx(s);
2475 }
2476
2477 /* pmap_zero_page INTERFACE
2478 **
2479 * Zero the contents of the specified physical page.
2480 *
2481 * Uses one of the virtual pages allocated in pmap_boostrap()
2482 * to map the specified page into the kernel address space.
2483 */
2484 void
2485 pmap_zero_page(dstpa)
2486 vm_offset_t dstpa;
2487 {
2488 vm_offset_t dstva;
2489 int s;
2490
2491 dstva = tmp_vpages[1];
2492 s = splimp();
2493 if (tmp_vpages_inuse++)
2494 panic("pmap_zero_page: temporary vpages are in use.");
2495
2496 /* The comments in pmap_copy_page() above apply here also. */
2497 pmap_enter_kernel(dstva, dstpa, VM_PROT_READ|VM_PROT_WRITE);
2498
2499 /* Hand-optimized version of bzero(ptr, NBPG) */
2500 zeropage((char *) dstva);
2501
2502 pmap_remove_kernel(dstva, dstva + NBPG);
2503
2504 --tmp_vpages_inuse;
2505 splx(s);
2506 }
2507
2508 /* pmap_collect INTERFACE
2509 **
2510 * Called from the VM system when we are about to swap out
2511 * the process using this pmap. This should give up any
2512 * resources held here, including all its MMU tables.
2513 */
2514 void
2515 pmap_collect(pmap)
2516 pmap_t pmap;
2517 {
2518 /* XXX - todo... */
2519 }
2520
2521 /* pmap_create INTERFACE
2522 **
2523 * Create and return a pmap structure.
2524 */
2525 pmap_t
2526 pmap_create(size)
2527 vm_size_t size;
2528 {
2529 pmap_t pmap;
2530
2531 if (size)
2532 return NULL;
2533
2534 pmap = (pmap_t) malloc(sizeof(struct pmap), M_VMPMAP, M_WAITOK);
2535 pmap_pinit(pmap);
2536
2537 return pmap;
2538 }
2539
2540 /* pmap_pinit INTERNAL
2541 **
2542 * Initialize a pmap structure.
2543 */
2544 void
2545 pmap_pinit(pmap)
2546 pmap_t pmap;
2547 {
2548 bzero(pmap, sizeof(struct pmap));
2549 pmap->pm_a_tmgr = NULL;
2550 pmap->pm_a_phys = kernAphys;
2551 }
2552
2553 /* pmap_release INTERFACE
2554 **
2555 * Release any resources held by the given pmap.
2556 *
2557 * This is the reverse analog to pmap_pinit. It does not
2558 * necessarily mean for the pmap structure to be deallocated,
2559 * as in pmap_destroy.
2560 */
2561 void
2562 pmap_release(pmap)
2563 pmap_t pmap;
2564 {
2565 /*
2566 * As long as the pmap contains no mappings,
2567 * which always should be the case whenever
2568 * this function is called, there really should
2569 * be nothing to do.
2570 */
2571 #ifdef PMAP_DEBUG
2572 if (pmap == NULL)
2573 return;
2574 if (pmap == pmap_kernel())
2575 panic("pmap_release: kernel pmap");
2576 #endif
2577 /*
2578 * XXX - If this pmap has an A table, give it back.
2579 * The pmap SHOULD be empty by now, and pmap_remove
2580 * should have already given back the A table...
2581 * However, I see: pmap->pm_a_tmgr->at_ecnt == 1
2582 * at this point, which means some mapping was not
2583 * removed when it should have been. -gwr
2584 */
2585 if (pmap->pm_a_tmgr != NULL) {
2586 /* First make sure we are not using it! */
2587 if (kernel_crp.rp_addr == pmap->pm_a_phys) {
2588 kernel_crp.rp_addr = kernAphys;
2589 loadcrp(&kernel_crp);
2590 }
2591 #ifdef PMAP_DEBUG /* XXX - todo! */
2592 /* XXX - Now complain... */
2593 printf("pmap_release: still have table\n");
2594 Debugger();
2595 #endif
2596 free_a_table(pmap->pm_a_tmgr, TRUE);
2597 pmap->pm_a_tmgr = NULL;
2598 pmap->pm_a_phys = kernAphys;
2599 }
2600 }
2601
2602 /* pmap_reference INTERFACE
2603 **
2604 * Increment the reference count of a pmap.
2605 */
2606 void
2607 pmap_reference(pmap)
2608 pmap_t pmap;
2609 {
2610 if (pmap == NULL)
2611 return;
2612
2613 /* pmap_lock(pmap); */
2614 pmap->pm_refcount++;
2615 /* pmap_unlock(pmap); */
2616 }
2617
2618 /* pmap_dereference INTERNAL
2619 **
2620 * Decrease the reference count on the given pmap
2621 * by one and return the current count.
2622 */
2623 int
2624 pmap_dereference(pmap)
2625 pmap_t pmap;
2626 {
2627 int rtn;
2628
2629 if (pmap == NULL)
2630 return 0;
2631
2632 /* pmap_lock(pmap); */
2633 rtn = --pmap->pm_refcount;
2634 /* pmap_unlock(pmap); */
2635
2636 return rtn;
2637 }
2638
2639 /* pmap_destroy INTERFACE
2640 **
2641 * Decrement a pmap's reference count and delete
2642 * the pmap if it becomes zero. Will be called
2643 * only after all mappings have been removed.
2644 */
2645 void
2646 pmap_destroy(pmap)
2647 pmap_t pmap;
2648 {
2649 if (pmap == NULL)
2650 return;
2651 if (pmap == &kernel_pmap)
2652 panic("pmap_destroy: kernel_pmap!");
2653 if (pmap_dereference(pmap) == 0) {
2654 pmap_release(pmap);
2655 free(pmap, M_VMPMAP);
2656 }
2657 }
2658
2659 /* pmap_is_referenced INTERFACE
2660 **
2661 * Determine if the given physical page has been
2662 * referenced (read from [or written to.])
2663 */
2664 boolean_t
2665 pmap_is_referenced(pa)
2666 vm_offset_t pa;
2667 {
2668 pv_t *pv;
2669 int idx, s;
2670
2671 if (!pv_initialized)
2672 return FALSE;
2673 /* XXX - this may be unecessary. */
2674 if (!is_managed(pa))
2675 return FALSE;
2676
2677 pv = pa2pv(pa);
2678 /*
2679 * Check the flags on the pv head. If they are set,
2680 * return immediately. Otherwise a search must be done.
2681 */
2682 if (pv->pv_flags & PV_FLAGS_USED)
2683 return TRUE;
2684 else {
2685 s = splimp();
2686 /*
2687 * Search through all pv elements pointing
2688 * to this page and query their reference bits
2689 */
2690 for (idx = pv->pv_idx; idx != PVE_EOL; idx =
2691 pvebase[idx].pve_next)
2692 if (MMU_PTE_USED(kernCbase[idx])) {
2693 splx(s);
2694 return TRUE;
2695 }
2696 splx(s);
2697 }
2698
2699 return FALSE;
2700 }
2701
2702 /* pmap_is_modified INTERFACE
2703 **
2704 * Determine if the given physical page has been
2705 * modified (written to.)
2706 */
2707 boolean_t
2708 pmap_is_modified(pa)
2709 vm_offset_t pa;
2710 {
2711 pv_t *pv;
2712 int idx, s;
2713
2714 if (!pv_initialized)
2715 return FALSE;
2716 /* XXX - this may be unecessary. */
2717 if (!is_managed(pa))
2718 return FALSE;
2719
2720 /* see comments in pmap_is_referenced() */
2721 pv = pa2pv(pa);
2722 if (pv->pv_flags & PV_FLAGS_MDFY) {
2723 return TRUE;
2724 } else {
2725 s = splimp();
2726 for (idx = pv->pv_idx; idx != PVE_EOL; idx =
2727 pvebase[idx].pve_next)
2728 if (MMU_PTE_MODIFIED(kernCbase[idx])) {
2729 splx(s);
2730 return TRUE;
2731 }
2732 splx(s);
2733 }
2734
2735 return FALSE;
2736 }
2737
2738 /* pmap_page_protect INTERFACE
2739 **
2740 * Applies the given protection to all mappings to the given
2741 * physical page.
2742 */
2743 void
2744 pmap_page_protect(pa, prot)
2745 vm_offset_t pa;
2746 vm_prot_t prot;
2747 {
2748 pv_t *pv;
2749 int idx, s;
2750 vm_offset_t va;
2751 struct mmu_short_pte_struct *pte;
2752 c_tmgr_t *c_tbl;
2753 pmap_t pmap, curpmap;
2754
2755 if (!is_managed(pa))
2756 return;
2757
2758 curpmap = current_pmap();
2759 pv = pa2pv(pa);
2760 s = splimp();
2761 for (idx = pv->pv_idx; idx != PVE_EOL; idx = pvebase[idx].pve_next) {
2762 pte = &kernCbase[idx];
2763 switch (prot) {
2764 case VM_PROT_ALL:
2765 /* do nothing */
2766 break;
2767 case VM_PROT_EXECUTE:
2768 case VM_PROT_READ:
2769 case VM_PROT_READ|VM_PROT_EXECUTE:
2770 pte->attr.raw |= MMU_SHORT_PTE_WP;
2771
2772 /*
2773 * Determine the virtual address mapped by
2774 * the PTE and flush ATC entries if necessary.
2775 */
2776 va = pmap_get_pteinfo(idx, &pmap, &c_tbl);
2777 if (pmap == curpmap || pmap == pmap_kernel())
2778 TBIS(va);
2779 break;
2780 case VM_PROT_NONE:
2781 /* Save the mod/ref bits. */
2782 pv->pv_flags |= pte->attr.raw;
2783 /* Invalidate the PTE. */
2784 pte->attr.raw = MMU_DT_INVALID;
2785
2786 /*
2787 * Update table counts. And flush ATC entries
2788 * if necessary.
2789 */
2790 va = pmap_get_pteinfo(idx, &pmap, &c_tbl);
2791
2792 /*
2793 * If the PTE belongs to the kernel map,
2794 * be sure to flush the page it maps.
2795 */
2796 if (pmap == pmap_kernel()) {
2797 TBIS(va);
2798 } else {
2799 /*
2800 * The PTE belongs to a user map.
2801 * update the entry count in the C
2802 * table to which it belongs and flush
2803 * the ATC if the mapping belongs to
2804 * the current pmap.
2805 */
2806 c_tbl->ct_ecnt--;
2807 if (pmap == curpmap)
2808 TBIS(va);
2809 }
2810 break;
2811 default:
2812 break;
2813 }
2814 }
2815
2816 /*
2817 * If the protection code indicates that all mappings to the page
2818 * be removed, truncate the PV list to zero entries.
2819 */
2820 if (prot == VM_PROT_NONE)
2821 pv->pv_idx = PVE_EOL;
2822 splx(s);
2823 }
2824
2825 /* pmap_get_pteinfo INTERNAL
2826 **
2827 * Called internally to find the pmap and virtual address within that
2828 * map to which the pte at the given index maps. Also includes the PTE's C
2829 * table manager.
2830 *
2831 * Returns the pmap in the argument provided, and the virtual address
2832 * by return value.
2833 */
2834 vm_offset_t
2835 pmap_get_pteinfo(idx, pmap, tbl)
2836 u_int idx;
2837 pmap_t *pmap;
2838 c_tmgr_t **tbl;
2839 {
2840 vm_offset_t va = 0;
2841
2842 /*
2843 * Determine if the PTE is a kernel PTE or a user PTE.
2844 */
2845 if (idx >= NUM_KERN_PTES) {
2846 /*
2847 * The PTE belongs to a user mapping.
2848 */
2849 /* XXX: Would like an inline for this to validate idx... */
2850 *tbl = &Ctmgrbase[(idx - NUM_KERN_PTES) / MMU_C_TBL_SIZE];
2851
2852 *pmap = (*tbl)->ct_pmap;
2853 /*
2854 * To find the va to which the PTE maps, we first take
2855 * the table's base virtual address mapping which is stored
2856 * in ct_va. We then increment this address by a page for
2857 * every slot skipped until we reach the PTE.
2858 */
2859 va = (*tbl)->ct_va;
2860 va += m68k_ptob(idx % MMU_C_TBL_SIZE);
2861 } else {
2862 /*
2863 * The PTE belongs to the kernel map.
2864 */
2865 *pmap = pmap_kernel();
2866
2867 va = m68k_ptob(idx);
2868 va += KERNBASE;
2869 }
2870
2871 return va;
2872 }
2873
2874 /* pmap_clear_modify INTERFACE
2875 **
2876 * Clear the modification bit on the page at the specified
2877 * physical address.
2878 *
2879 */
2880 void
2881 pmap_clear_modify(pa)
2882 vm_offset_t pa;
2883 {
2884 if (!is_managed(pa))
2885 return;
2886 pmap_clear_pv(pa, PV_FLAGS_MDFY);
2887 }
2888
2889 /* pmap_clear_reference INTERFACE
2890 **
2891 * Clear the referenced bit on the page at the specified
2892 * physical address.
2893 */
2894 void
2895 pmap_clear_reference(pa)
2896 vm_offset_t pa;
2897 {
2898 if (!is_managed(pa))
2899 return;
2900 pmap_clear_pv(pa, PV_FLAGS_USED);
2901 }
2902
2903 /* pmap_clear_pv INTERNAL
2904 **
2905 * Clears the specified flag from the specified physical address.
2906 * (Used by pmap_clear_modify() and pmap_clear_reference().)
2907 *
2908 * Flag is one of:
2909 * PV_FLAGS_MDFY - Page modified bit.
2910 * PV_FLAGS_USED - Page used (referenced) bit.
2911 *
2912 * This routine must not only clear the flag on the pv list
2913 * head. It must also clear the bit on every pte in the pv
2914 * list associated with the address.
2915 */
2916 void
2917 pmap_clear_pv(pa, flag)
2918 vm_offset_t pa;
2919 int flag;
2920 {
2921 pv_t *pv;
2922 int idx, s;
2923 vm_offset_t va;
2924 pmap_t pmap;
2925 mmu_short_pte_t *pte;
2926 c_tmgr_t *c_tbl;
2927
2928 pv = pa2pv(pa);
2929
2930 s = splimp();
2931 pv->pv_flags &= ~(flag);
2932 for (idx = pv->pv_idx; idx != PVE_EOL; idx = pvebase[idx].pve_next) {
2933 pte = &kernCbase[idx];
2934 pte->attr.raw &= ~(flag);
2935 /*
2936 * The MC68030 MMU will not set the modified or
2937 * referenced bits on any MMU tables for which it has
2938 * a cached descriptor with its modify bit set. To insure
2939 * that it will modify these bits on the PTE during the next
2940 * time it is written to or read from, we must flush it from
2941 * the ATC.
2942 *
2943 * Ordinarily it is only necessary to flush the descriptor
2944 * if it is used in the current address space. But since I
2945 * am not sure that there will always be a notion of
2946 * 'the current address space' when this function is called,
2947 * I will skip the test and always flush the address. It
2948 * does no harm.
2949 */
2950 va = pmap_get_pteinfo(idx, &pmap, &c_tbl);
2951 TBIS(va);
2952 }
2953 splx(s);
2954 }
2955
2956 /* pmap_extract INTERFACE
2957 **
2958 * Return the physical address mapped by the virtual address
2959 * in the specified pmap or 0 if it is not known.
2960 *
2961 * Note: this function should also apply an exclusive lock
2962 * on the pmap system during its duration.
2963 */
2964 vm_offset_t
2965 pmap_extract(pmap, va)
2966 pmap_t pmap;
2967 vm_offset_t va;
2968 {
2969 int a_idx, b_idx, pte_idx;
2970 a_tmgr_t *a_tbl;
2971 b_tmgr_t *b_tbl;
2972 c_tmgr_t *c_tbl;
2973 mmu_short_pte_t *c_pte;
2974
2975 if (pmap == pmap_kernel())
2976 return pmap_extract_kernel(va);
2977 if (pmap == NULL)
2978 return 0;
2979
2980 if (pmap_stroll(pmap, va, &a_tbl, &b_tbl, &c_tbl,
2981 &c_pte, &a_idx, &b_idx, &pte_idx) == FALSE)
2982 return 0;
2983
2984 if (!MMU_VALID_DT(*c_pte))
2985 return 0;
2986
2987 return (MMU_PTE_PA(*c_pte));
2988 }
2989
2990 /* pmap_extract_kernel INTERNAL
2991 **
2992 * Extract a translation from the kernel address space.
2993 */
2994 vm_offset_t
2995 pmap_extract_kernel(va)
2996 vm_offset_t va;
2997 {
2998 mmu_short_pte_t *pte;
2999
3000 pte = &kernCbase[(u_int) m68k_btop(va - KERNBASE)];
3001 return MMU_PTE_PA(*pte);
3002 }
3003
3004 /* pmap_remove_kernel INTERNAL
3005 **
3006 * Remove the mapping of a range of virtual addresses from the kernel map.
3007 * The arguments are already page-aligned.
3008 */
3009 void
3010 pmap_remove_kernel(sva, eva)
3011 vm_offset_t sva;
3012 vm_offset_t eva;
3013 {
3014 int idx, eidx;
3015
3016 #ifdef PMAP_DEBUG
3017 if ((sva & PGOFSET) || (eva & PGOFSET))
3018 panic("pmap_remove_kernel: alignment");
3019 #endif
3020
3021 idx = m68k_btop(sva - KERNBASE);
3022 eidx = m68k_btop(eva - KERNBASE);
3023
3024 while (idx < eidx) {
3025 pmap_remove_pte(&kernCbase[idx++]);
3026 TBIS(sva);
3027 sva += NBPG;
3028 }
3029 }
3030
3031 /* pmap_remove INTERFACE
3032 **
3033 * Remove the mapping of a range of virtual addresses from the given pmap.
3034 *
3035 * If the range contains any wired entries, this function will probably create
3036 * disaster.
3037 */
3038 void
3039 pmap_remove(pmap, start, end)
3040 pmap_t pmap;
3041 vm_offset_t start;
3042 vm_offset_t end;
3043 {
3044
3045 if (pmap == pmap_kernel()) {
3046 pmap_remove_kernel(start, end);
3047 return;
3048 }
3049
3050 /*
3051 * XXX - Temporary(?) statement to prevent panic caused
3052 * by vm_alloc_with_pager() handing us a software map (ie NULL)
3053 * to remove because it couldn't get backing store.
3054 * (I guess.)
3055 */
3056 if (pmap == NULL)
3057 return;
3058
3059 /*
3060 * If the pmap doesn't have an A table of its own, it has no mappings
3061 * that can be removed.
3062 */
3063 if (pmap->pm_a_tmgr == NULL)
3064 return;
3065
3066 /*
3067 * Remove the specified range from the pmap. If the function
3068 * returns true, the operation removed all the valid mappings
3069 * in the pmap and freed its A table. If this happened to the
3070 * currently loaded pmap, the MMU root pointer must be reloaded
3071 * with the default 'kernel' map.
3072 */
3073 if (pmap_remove_a(pmap->pm_a_tmgr, start, end)) {
3074 if (kernel_crp.rp_addr == pmap->pm_a_phys) {
3075 kernel_crp.rp_addr = kernAphys;
3076 loadcrp(&kernel_crp);
3077 /* will do TLB flush below */
3078 }
3079 pmap->pm_a_tmgr = NULL;
3080 pmap->pm_a_phys = kernAphys;
3081 }
3082
3083 /*
3084 * If we just modified the current address space,
3085 * make sure to flush the MMU cache.
3086 *
3087 * XXX - this could be an unecessarily large flush.
3088 * XXX - Could decide, based on the size of the VA range
3089 * to be removed, whether to flush "by pages" or "all".
3090 */
3091 if (pmap == current_pmap())
3092 TBIAU();
3093 }
3094
3095 /* pmap_remove_a INTERNAL
3096 **
3097 * This is function number one in a set of three that removes a range
3098 * of memory in the most efficient manner by removing the highest possible
3099 * tables from the memory space. This particular function attempts to remove
3100 * as many B tables as it can, delegating the remaining fragmented ranges to
3101 * pmap_remove_b().
3102 *
3103 * If the removal operation results in an empty A table, the function returns
3104 * TRUE.
3105 *
3106 * It's ugly but will do for now.
3107 */
3108 boolean_t
3109 pmap_remove_a(a_tbl, start, end)
3110 a_tmgr_t *a_tbl;
3111 vm_offset_t start;
3112 vm_offset_t end;
3113 {
3114 boolean_t empty;
3115 int idx;
3116 vm_offset_t nstart, nend;
3117 b_tmgr_t *b_tbl;
3118 mmu_long_dte_t *a_dte;
3119 mmu_short_dte_t *b_dte;
3120
3121 /*
3122 * The following code works with what I call a 'granularity
3123 * reduction algorithim'. A range of addresses will always have
3124 * the following properties, which are classified according to
3125 * how the range relates to the size of the current granularity
3126 * - an A table entry:
3127 *
3128 * 1 2 3 4
3129 * -+---+---+---+---+---+---+---+-
3130 * -+---+---+---+---+---+---+---+-
3131 *
3132 * A range will always start on a granularity boundary, illustrated
3133 * by '+' signs in the table above, or it will start at some point
3134 * inbetween a granularity boundary, as illustrated by point 1.
3135 * The first step in removing a range of addresses is to remove the
3136 * range between 1 and 2, the nearest granularity boundary. This
3137 * job is handled by the section of code governed by the
3138 * 'if (start < nstart)' statement.
3139 *
3140 * A range will always encompass zero or more intergral granules,
3141 * illustrated by points 2 and 3. Integral granules are easy to
3142 * remove. The removal of these granules is the second step, and
3143 * is handled by the code block 'if (nstart < nend)'.
3144 *
3145 * Lastly, a range will always end on a granularity boundary,
3146 * ill. by point 3, or it will fall just beyond one, ill. by point
3147 * 4. The last step involves removing this range and is handled by
3148 * the code block 'if (nend < end)'.
3149 */
3150 nstart = MMU_ROUND_UP_A(start);
3151 nend = MMU_ROUND_A(end);
3152
3153 if (start < nstart) {
3154 /*
3155 * This block is executed if the range starts between
3156 * a granularity boundary.
3157 *
3158 * First find the DTE which is responsible for mapping
3159 * the start of the range.
3160 */
3161 idx = MMU_TIA(start);
3162 a_dte = &a_tbl->at_dtbl[idx];
3163
3164 /*
3165 * If the DTE is valid then delegate the removal of the sub
3166 * range to pmap_remove_b(), which can remove addresses at
3167 * a finer granularity.
3168 */
3169 if (MMU_VALID_DT(*a_dte)) {
3170 b_dte = mmu_ptov(a_dte->addr.raw);
3171 b_tbl = mmuB2tmgr(b_dte);
3172
3173 /*
3174 * The sub range to be removed starts at the start
3175 * of the full range we were asked to remove, and ends
3176 * at the greater of:
3177 * 1. The end of the full range, -or-
3178 * 2. The end of the full range, rounded down to the
3179 * nearest granularity boundary.
3180 */
3181 if (end < nstart)
3182 empty = pmap_remove_b(b_tbl, start, end);
3183 else
3184 empty = pmap_remove_b(b_tbl, start, nstart);
3185
3186 /*
3187 * If the removal resulted in an empty B table,
3188 * invalidate the DTE that points to it and decrement
3189 * the valid entry count of the A table.
3190 */
3191 if (empty) {
3192 a_dte->attr.raw = MMU_DT_INVALID;
3193 a_tbl->at_ecnt--;
3194 }
3195 }
3196 /*
3197 * If the DTE is invalid, the address range is already non-
3198 * existant and can simply be skipped.
3199 */
3200 }
3201 if (nstart < nend) {
3202 /*
3203 * This block is executed if the range spans a whole number
3204 * multiple of granules (A table entries.)
3205 *
3206 * First find the DTE which is responsible for mapping
3207 * the start of the first granule involved.
3208 */
3209 idx = MMU_TIA(nstart);
3210 a_dte = &a_tbl->at_dtbl[idx];
3211
3212 /*
3213 * Remove entire sub-granules (B tables) one at a time,
3214 * until reaching the end of the range.
3215 */
3216 for (; nstart < nend; a_dte++, nstart += MMU_TIA_RANGE)
3217 if (MMU_VALID_DT(*a_dte)) {
3218 /*
3219 * Find the B table manager for the
3220 * entry and free it.
3221 */
3222 b_dte = mmu_ptov(a_dte->addr.raw);
3223 b_tbl = mmuB2tmgr(b_dte);
3224 free_b_table(b_tbl, TRUE);
3225
3226 /*
3227 * Invalidate the DTE that points to the
3228 * B table and decrement the valid entry
3229 * count of the A table.
3230 */
3231 a_dte->attr.raw = MMU_DT_INVALID;
3232 a_tbl->at_ecnt--;
3233 }
3234 }
3235 if (nend < end) {
3236 /*
3237 * This block is executed if the range ends beyond a
3238 * granularity boundary.
3239 *
3240 * First find the DTE which is responsible for mapping
3241 * the start of the nearest (rounded down) granularity
3242 * boundary.
3243 */
3244 idx = MMU_TIA(nend);
3245 a_dte = &a_tbl->at_dtbl[idx];
3246
3247 /*
3248 * If the DTE is valid then delegate the removal of the sub
3249 * range to pmap_remove_b(), which can remove addresses at
3250 * a finer granularity.
3251 */
3252 if (MMU_VALID_DT(*a_dte)) {
3253 /*
3254 * Find the B table manager for the entry
3255 * and hand it to pmap_remove_b() along with
3256 * the sub range.
3257 */
3258 b_dte = mmu_ptov(a_dte->addr.raw);
3259 b_tbl = mmuB2tmgr(b_dte);
3260
3261 empty = pmap_remove_b(b_tbl, nend, end);
3262
3263 /*
3264 * If the removal resulted in an empty B table,
3265 * invalidate the DTE that points to it and decrement
3266 * the valid entry count of the A table.
3267 */
3268 if (empty) {
3269 a_dte->attr.raw = MMU_DT_INVALID;
3270 a_tbl->at_ecnt--;
3271 }
3272 }
3273 }
3274
3275 /*
3276 * If there are no more entries in the A table, release it
3277 * back to the available pool and return TRUE.
3278 */
3279 if (a_tbl->at_ecnt == 0) {
3280 a_tbl->at_parent = NULL;
3281 TAILQ_REMOVE(&a_pool, a_tbl, at_link);
3282 TAILQ_INSERT_HEAD(&a_pool, a_tbl, at_link);
3283 empty = TRUE;
3284 } else {
3285 empty = FALSE;
3286 }
3287
3288 return empty;
3289 }
3290
3291 /* pmap_remove_b INTERNAL
3292 **
3293 * Remove a range of addresses from an address space, trying to remove entire
3294 * C tables if possible.
3295 *
3296 * If the operation results in an empty B table, the function returns TRUE.
3297 */
3298 boolean_t
3299 pmap_remove_b(b_tbl, start, end)
3300 b_tmgr_t *b_tbl;
3301 vm_offset_t start;
3302 vm_offset_t end;
3303 {
3304 boolean_t empty;
3305 int idx;
3306 vm_offset_t nstart, nend, rstart;
3307 c_tmgr_t *c_tbl;
3308 mmu_short_dte_t *b_dte;
3309 mmu_short_pte_t *c_dte;
3310
3311
3312 nstart = MMU_ROUND_UP_B(start);
3313 nend = MMU_ROUND_B(end);
3314
3315 if (start < nstart) {
3316 idx = MMU_TIB(start);
3317 b_dte = &b_tbl->bt_dtbl[idx];
3318 if (MMU_VALID_DT(*b_dte)) {
3319 c_dte = mmu_ptov(MMU_DTE_PA(*b_dte));
3320 c_tbl = mmuC2tmgr(c_dte);
3321 if (end < nstart)
3322 empty = pmap_remove_c(c_tbl, start, end);
3323 else
3324 empty = pmap_remove_c(c_tbl, start, nstart);
3325 if (empty) {
3326 b_dte->attr.raw = MMU_DT_INVALID;
3327 b_tbl->bt_ecnt--;
3328 }
3329 }
3330 }
3331 if (nstart < nend) {
3332 idx = MMU_TIB(nstart);
3333 b_dte = &b_tbl->bt_dtbl[idx];
3334 rstart = nstart;
3335 while (rstart < nend) {
3336 if (MMU_VALID_DT(*b_dte)) {
3337 c_dte = mmu_ptov(MMU_DTE_PA(*b_dte));
3338 c_tbl = mmuC2tmgr(c_dte);
3339 free_c_table(c_tbl, TRUE);
3340 b_dte->attr.raw = MMU_DT_INVALID;
3341 b_tbl->bt_ecnt--;
3342 }
3343 b_dte++;
3344 rstart += MMU_TIB_RANGE;
3345 }
3346 }
3347 if (nend < end) {
3348 idx = MMU_TIB(nend);
3349 b_dte = &b_tbl->bt_dtbl[idx];
3350 if (MMU_VALID_DT(*b_dte)) {
3351 c_dte = mmu_ptov(MMU_DTE_PA(*b_dte));
3352 c_tbl = mmuC2tmgr(c_dte);
3353 empty = pmap_remove_c(c_tbl, nend, end);
3354 if (empty) {
3355 b_dte->attr.raw = MMU_DT_INVALID;
3356 b_tbl->bt_ecnt--;
3357 }
3358 }
3359 }
3360
3361 if (b_tbl->bt_ecnt == 0) {
3362 b_tbl->bt_parent = NULL;
3363 TAILQ_REMOVE(&b_pool, b_tbl, bt_link);
3364 TAILQ_INSERT_HEAD(&b_pool, b_tbl, bt_link);
3365 empty = TRUE;
3366 } else {
3367 empty = FALSE;
3368 }
3369
3370 return empty;
3371 }
3372
3373 /* pmap_remove_c INTERNAL
3374 **
3375 * Remove a range of addresses from the given C table.
3376 */
3377 boolean_t
3378 pmap_remove_c(c_tbl, start, end)
3379 c_tmgr_t *c_tbl;
3380 vm_offset_t start;
3381 vm_offset_t end;
3382 {
3383 boolean_t empty;
3384 int idx;
3385 mmu_short_pte_t *c_pte;
3386
3387 idx = MMU_TIC(start);
3388 c_pte = &c_tbl->ct_dtbl[idx];
3389 for (;start < end; start += MMU_PAGE_SIZE, c_pte++) {
3390 if (MMU_VALID_DT(*c_pte)) {
3391 pmap_remove_pte(c_pte);
3392 c_tbl->ct_ecnt--;
3393 }
3394 }
3395
3396 if (c_tbl->ct_ecnt == 0) {
3397 c_tbl->ct_parent = NULL;
3398 TAILQ_REMOVE(&c_pool, c_tbl, ct_link);
3399 TAILQ_INSERT_HEAD(&c_pool, c_tbl, ct_link);
3400 empty = TRUE;
3401 } else {
3402 empty = FALSE;
3403 }
3404
3405 return empty;
3406 }
3407
3408 /* is_managed INTERNAL
3409 **
3410 * Determine if the given physical address is managed by the PV system.
3411 * Note that this logic assumes that no one will ask for the status of
3412 * addresses which lie in-between the memory banks on the 3/80. If they
3413 * do so, it will falsely report that it is managed.
3414 *
3415 * Note: A "managed" address is one that was reported to the VM system as
3416 * a "usable page" during system startup. As such, the VM system expects the
3417 * pmap module to keep an accurate track of the useage of those pages.
3418 * Any page not given to the VM system at startup does not exist (as far as
3419 * the VM system is concerned) and is therefore "unmanaged." Examples are
3420 * those pages which belong to the ROM monitor and the memory allocated before
3421 * the VM system was started.
3422 */
3423 boolean_t
3424 is_managed(pa)
3425 vm_offset_t pa;
3426 {
3427 if (pa >= avail_start && pa < avail_end)
3428 return TRUE;
3429 else
3430 return FALSE;
3431 }
3432
3433 /* pmap_bootstrap_alloc INTERNAL
3434 **
3435 * Used internally for memory allocation at startup when malloc is not
3436 * available. This code will fail once it crosses the first memory
3437 * bank boundary on the 3/80. Hopefully by then however, the VM system
3438 * will be in charge of allocation.
3439 */
3440 void *
3441 pmap_bootstrap_alloc(size)
3442 int size;
3443 {
3444 void *rtn;
3445
3446 #ifdef PMAP_DEBUG
3447 if (bootstrap_alloc_enabled == FALSE) {
3448 mon_printf("pmap_bootstrap_alloc: disabled\n");
3449 sunmon_abort();
3450 }
3451 #endif
3452
3453 rtn = (void *) virtual_avail;
3454 virtual_avail += size;
3455
3456 #ifdef PMAP_DEBUG
3457 if (virtual_avail > virtual_contig_end) {
3458 mon_printf("pmap_bootstrap_alloc: out of mem\n");
3459 sunmon_abort();
3460 }
3461 #endif
3462
3463 return rtn;
3464 }
3465
3466 /* pmap_bootstap_aalign INTERNAL
3467 **
3468 * Used to insure that the next call to pmap_bootstrap_alloc() will
3469 * return a chunk of memory aligned to the specified size.
3470 *
3471 * Note: This function will only support alignment sizes that are powers
3472 * of two.
3473 */
3474 void
3475 pmap_bootstrap_aalign(size)
3476 int size;
3477 {
3478 int off;
3479
3480 off = virtual_avail & (size - 1);
3481 if (off) {
3482 (void) pmap_bootstrap_alloc(size - off);
3483 }
3484 }
3485
3486 /* pmap_pa_exists
3487 **
3488 * Used by the /dev/mem driver to see if a given PA is memory
3489 * that can be mapped. (The PA is not in a hole.)
3490 */
3491 int
3492 pmap_pa_exists(pa)
3493 vm_offset_t pa;
3494 {
3495 register int i;
3496
3497 for (i = 0; i < SUN3X_NPHYS_RAM_SEGS; i++) {
3498 if ((pa >= avail_mem[i].pmem_start) &&
3499 (pa < avail_mem[i].pmem_end))
3500 return (1);
3501 if (avail_mem[i].pmem_next == NULL)
3502 break;
3503 }
3504 return (0);
3505 }
3506
3507 /* pmap_activate INTERFACE
3508 **
3509 * This is called by locore.s:cpu_switch when we are switching to a
3510 * new process. This should load the MMU context for the new proc.
3511 *
3512 * Note: Only used when locore.s is compiled with PMAP_DEBUG.
3513 */
3514 void
3515 pmap_activate(pmap)
3516 pmap_t pmap;
3517 {
3518 u_long rootpa;
3519
3520 /* Only do reload/flush if we have to. */
3521 rootpa = pmap->pm_a_phys;
3522 if (kernel_crp.rp_addr != rootpa) {
3523 DPRINT(("pmap_activate(%p)\n", pmap));
3524 kernel_crp.rp_addr = rootpa;
3525 loadcrp(&kernel_crp);
3526 TBIAU();
3527 }
3528 }
3529
3530
3531 /* pmap_update
3532 **
3533 * Apply any delayed changes scheduled for all pmaps immediately.
3534 *
3535 * No delayed operations are currently done in this pmap.
3536 */
3537 void
3538 pmap_update()
3539 {
3540 /* not implemented. */
3541 }
3542
3543 /*
3544 * Fill in the cpu_kcore header for dumpsys()
3545 * (See machdep.c)
3546 */
3547 void
3548 pmap_set_kcore_hdr(chdr_p)
3549 cpu_kcore_hdr_t *chdr_p;
3550 {
3551 struct sun3x_kcore_hdr *sh = &chdr_p->un._sun3x;
3552 u_long spa, len;
3553 int i;
3554 extern char machine[];
3555
3556 /*
3557 * Fill in dispatch information.
3558 */
3559 strcpy(chdr_p->name, machine);
3560 chdr_p->page_size = NBPG;
3561 chdr_p->kernbase = KERNBASE;
3562
3563 sh->contig_end = virtual_contig_end;
3564 sh->kernCbase = (u_long) kernCbase;
3565 for (i = 0; i < SUN3X_NPHYS_RAM_SEGS; i++) {
3566 spa = avail_mem[i].pmem_start;
3567 spa = m68k_trunc_page(spa);
3568 len = avail_mem[i].pmem_end - spa;
3569 len = m68k_round_page(len);
3570 sh->ram_segs[i].start = spa;
3571 sh->ram_segs[i].size = len;
3572 }
3573 }
3574
3575
3576 /* pmap_virtual_space INTERFACE
3577 **
3578 * Return the current available range of virtual addresses in the
3579 * arguuments provided. Only really called once.
3580 */
3581 void
3582 pmap_virtual_space(vstart, vend)
3583 vm_offset_t *vstart, *vend;
3584 {
3585 *vstart = virtual_avail;
3586 *vend = virtual_end;
3587 }
3588
3589 /* pmap_free_pages INTERFACE
3590 **
3591 * Return the number of physical pages still available.
3592 *
3593 * This is probably going to be a mess, but it's only called
3594 * once and it's the only function left that I have to implement!
3595 */
3596 u_int
3597 pmap_free_pages()
3598 {
3599 int i;
3600 u_int left;
3601 vm_offset_t avail;
3602
3603 avail = avail_next;
3604 left = 0;
3605 i = 0;
3606 while (avail >= avail_mem[i].pmem_end) {
3607 if (avail_mem[i].pmem_next == NULL)
3608 return 0;
3609 i++;
3610 }
3611 while (i < SUN3X_NPHYS_RAM_SEGS) {
3612 if (avail < avail_mem[i].pmem_start) {
3613 /* Avail is inside a hole, march it
3614 * up to the next bank.
3615 */
3616 avail = avail_mem[i].pmem_start;
3617 }
3618 left += m68k_btop(avail_mem[i].pmem_end - avail);
3619 if (avail_mem[i].pmem_next == NULL)
3620 break;
3621 i++;
3622 }
3623
3624 return left;
3625 }
3626
3627 /* pmap_page_index INTERFACE
3628 **
3629 * Return the index of the given physical page in a list of useable
3630 * physical pages in the system. Holes in physical memory may be counted
3631 * if so desired. As long as pmap_free_pages() and pmap_page_index()
3632 * agree as to whether holes in memory do or do not count as valid pages,
3633 * it really doesn't matter. However, if you like to save a little
3634 * memory, don't count holes as valid pages. This is even more true when
3635 * the holes are large.
3636 *
3637 * We will not count holes as valid pages. We can generate page indices
3638 * that conform to this by using the memory bank structures initialized
3639 * in pmap_alloc_pv().
3640 */
3641 int
3642 pmap_page_index(pa)
3643 vm_offset_t pa;
3644 {
3645 struct pmap_physmem_struct *bank = avail_mem;
3646
3647 /* Search for the memory bank with this page. */
3648 /* XXX - What if it is not physical memory? */
3649 while (pa > bank->pmem_end)
3650 bank = bank->pmem_next;
3651 pa -= bank->pmem_start;
3652
3653 return (bank->pmem_pvbase + m68k_btop(pa));
3654 }
3655
3656 /* pmap_next_page INTERFACE
3657 **
3658 * Place the physical address of the next available page in the
3659 * argument given. Returns FALSE if there are no more pages left.
3660 *
3661 * This function must jump over any holes in physical memory.
3662 * Once this function is used, any use of pmap_bootstrap_alloc()
3663 * is a sin. Sinners will be punished with erratic behavior.
3664 */
3665 boolean_t
3666 pmap_next_page(pa)
3667 vm_offset_t *pa;
3668 {
3669 static struct pmap_physmem_struct *curbank = avail_mem;
3670
3671 /* XXX - temporary ROM saving hack. */
3672 if (avail_next >= avail_end)
3673 return FALSE;
3674
3675 if (avail_next >= curbank->pmem_end)
3676 if (curbank->pmem_next == NULL)
3677 return FALSE;
3678 else {
3679 curbank = curbank->pmem_next;
3680 avail_next = curbank->pmem_start;
3681 }
3682
3683 *pa = avail_next;
3684 avail_next += NBPG;
3685 return TRUE;
3686 }
3687
3688 /* pmap_count INTERFACE
3689 **
3690 * Return the number of resident (valid) pages in the given pmap.
3691 *
3692 * Note: If this function is handed the kernel map, it will report
3693 * that it has no mappings. Hopefully the VM system won't ask for kernel
3694 * map statistics.
3695 */
3696 segsz_t
3697 pmap_count(pmap, type)
3698 pmap_t pmap;
3699 int type;
3700 {
3701 u_int count;
3702 int a_idx, b_idx;
3703 a_tmgr_t *a_tbl;
3704 b_tmgr_t *b_tbl;
3705 c_tmgr_t *c_tbl;
3706
3707 /*
3708 * If the pmap does not have its own A table manager, it has no
3709 * valid entires.
3710 */
3711 if (pmap->pm_a_tmgr == NULL)
3712 return 0;
3713
3714 a_tbl = pmap->pm_a_tmgr;
3715
3716 count = 0;
3717 for (a_idx = 0; a_idx < MMU_TIA(KERNBASE); a_idx++) {
3718 if (MMU_VALID_DT(a_tbl->at_dtbl[a_idx])) {
3719 b_tbl = mmuB2tmgr(mmu_ptov(a_tbl->at_dtbl[a_idx].addr.raw));
3720 for (b_idx = 0; b_idx < MMU_B_TBL_SIZE; b_idx++) {
3721 if (MMU_VALID_DT(b_tbl->bt_dtbl[b_idx])) {
3722 c_tbl = mmuC2tmgr(
3723 mmu_ptov(MMU_DTE_PA(b_tbl->bt_dtbl[b_idx])));
3724 if (type == 0)
3725 /*
3726 * A resident entry count has been requested.
3727 */
3728 count += c_tbl->ct_ecnt;
3729 else
3730 /*
3731 * A wired entry count has been requested.
3732 */
3733 count += c_tbl->ct_wcnt;
3734 }
3735 }
3736 }
3737 }
3738
3739 return count;
3740 }
3741
3742 /************************ SUN3 COMPATIBILITY ROUTINES ********************
3743 * The following routines are only used by DDB for tricky kernel text *
3744 * text operations in db_memrw.c. They are provided for sun3 *
3745 * compatibility. *
3746 *************************************************************************/
3747 /* get_pte INTERNAL
3748 **
3749 * Return the page descriptor the describes the kernel mapping
3750 * of the given virtual address.
3751 */
3752 extern u_long ptest_addr __P((u_long)); /* XXX: locore.s */
3753 u_long
3754 get_pte(va)
3755 vm_offset_t va;
3756 {
3757 u_long pte_pa;
3758 mmu_short_pte_t *pte;
3759
3760 /* Get the physical address of the PTE */
3761 pte_pa = ptest_addr(va & ~PGOFSET);
3762
3763 /* Convert to a virtual address... */
3764 pte = (mmu_short_pte_t *) (KERNBASE + pte_pa);
3765
3766 /* Make sure it is in our level-C tables... */
3767 if ((pte < kernCbase) ||
3768 (pte >= &mmuCbase[NUM_USER_PTES]))
3769 return 0;
3770
3771 /* ... and just return its contents. */
3772 return (pte->attr.raw);
3773 }
3774
3775
3776 /* set_pte INTERNAL
3777 **
3778 * Set the page descriptor that describes the kernel mapping
3779 * of the given virtual address.
3780 */
3781 void
3782 set_pte(va, pte)
3783 vm_offset_t va;
3784 vm_offset_t pte;
3785 {
3786 u_long idx;
3787
3788 if (va < KERNBASE)
3789 return;
3790
3791 idx = (unsigned long) m68k_btop(va - KERNBASE);
3792 kernCbase[idx].attr.raw = pte;
3793 }
3794
3795 #ifdef PMAP_DEBUG
3796 /************************** DEBUGGING ROUTINES **************************
3797 * The following routines are meant to be an aid to debugging the pmap *
3798 * system. They are callable from the DDB command line and should be *
3799 * prepared to be handed unstable or incomplete states of the system. *
3800 ************************************************************************/
3801
3802 /* pv_list
3803 **
3804 * List all pages found on the pv list for the given physical page.
3805 * To avoid endless loops, the listing will stop at the end of the list
3806 * or after 'n' entries - whichever comes first.
3807 */
3808 void
3809 pv_list(pa, n)
3810 vm_offset_t pa;
3811 int n;
3812 {
3813 int idx;
3814 vm_offset_t va;
3815 pv_t *pv;
3816 c_tmgr_t *c_tbl;
3817 pmap_t pmap;
3818
3819 pv = pa2pv(pa);
3820 idx = pv->pv_idx;
3821
3822 for (;idx != PVE_EOL && n > 0; idx=pvebase[idx].pve_next, n--) {
3823 va = pmap_get_pteinfo(idx, &pmap, &c_tbl);
3824 printf("idx %d, pmap 0x%x, va 0x%x, c_tbl %x\n",
3825 idx, (u_int) pmap, (u_int) va, (u_int) c_tbl);
3826 }
3827 }
3828 #endif /* PMAP_DEBUG */
3829
3830 #ifdef NOT_YET
3831 /* and maybe not ever */
3832 /************************** LOW-LEVEL ROUTINES **************************
3833 * These routines will eventualy be re-written into assembly and placed *
3834 * in locore.s. They are here now as stubs so that the pmap module can *
3835 * be linked as a standalone user program for testing. *
3836 ************************************************************************/
3837 /* flush_atc_crp INTERNAL
3838 **
3839 * Flush all page descriptors derived from the given CPU Root Pointer
3840 * (CRP), or 'A' table as it is known here, from the 68851's automatic
3841 * cache.
3842 */
3843 void
3844 flush_atc_crp(a_tbl)
3845 {
3846 mmu_long_rp_t rp;
3847
3848 /* Create a temporary root table pointer that points to the
3849 * given A table.
3850 */
3851 rp.attr.raw = ~MMU_LONG_RP_LU;
3852 rp.addr.raw = (unsigned int) a_tbl;
3853
3854 mmu_pflushr(&rp);
3855 /* mmu_pflushr:
3856 * movel sp(4)@,a0
3857 * pflushr a0@
3858 * rts
3859 */
3860 }
3861 #endif /* NOT_YET */
3862