Home | History | Annotate | Line # | Download | only in sun3x
pmap.c revision 1.26
      1 /*	$NetBSD: pmap.c,v 1.26 1997/07/02 03:23:57 jeremy Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1996, 1997 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jeremy Cooper.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  * 3. All advertising materials mentioning features or use of this software
     19  *    must display the following acknowledgement:
     20  *        This product includes software developed by the NetBSD
     21  *        Foundation, Inc. and its contributors.
     22  * 4. Neither the name of The NetBSD Foundation nor the names of its
     23  *    contributors may be used to endorse or promote products derived
     24  *    from this software without specific prior written permission.
     25  *
     26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36  * POSSIBILITY OF SUCH DAMAGE.
     37  */
     38 
     39 /*
     40  * XXX These comments aren't quite accurate.  Need to change.
     41  * The sun3x uses the MC68851 Memory Management Unit, which is built
     42  * into the CPU.  The 68851 maps virtual to physical addresses using
     43  * a multi-level table lookup, which is stored in the very memory that
     44  * it maps.  The number of levels of lookup is configurable from one
     45  * to four.  In this implementation, we use three, named 'A' through 'C'.
     46  *
     47  * The MMU translates virtual addresses into physical addresses by
     48  * traversing these tables in a proccess called a 'table walk'.  The most
     49  * significant 7 bits of the Virtual Address ('VA') being translated are
     50  * used as an index into the level A table, whose base in physical memory
     51  * is stored in a special MMU register, the 'CPU Root Pointer' or CRP.  The
     52  * address found at that index in the A table is used as the base
     53  * address for the next table, the B table.  The next six bits of the VA are
     54  * used as an index into the B table, which in turn gives the base address
     55  * of the third and final C table.
     56  *
     57  * The next six bits of the VA are used as an index into the C table to
     58  * locate a Page Table Entry (PTE).  The PTE is a physical address in memory
     59  * to which the remaining 13 bits of the VA are added, producing the
     60  * mapped physical address.
     61  *
     62  * To map the entire memory space in this manner would require 2114296 bytes
     63  * of page tables per process - quite expensive.  Instead we will
     64  * allocate a fixed but considerably smaller space for the page tables at
     65  * the time the VM system is initialized.  When the pmap code is asked by
     66  * the kernel to map a VA to a PA, it allocates tables as needed from this
     67  * pool.  When there are no more tables in the pool, tables are stolen
     68  * from the oldest mapped entries in the tree.  This is only possible
     69  * because all memory mappings are stored in the kernel memory map
     70  * structures, independent of the pmap structures.  A VA which references
     71  * one of these invalidated maps will cause a page fault.  The kernel
     72  * will determine that the page fault was caused by a task using a valid
     73  * VA, but for some reason (which does not concern it), that address was
     74  * not mapped.  It will ask the pmap code to re-map the entry and then
     75  * it will resume executing the faulting task.
     76  *
     77  * In this manner the most efficient use of the page table space is
     78  * achieved.  Tasks which do not execute often will have their tables
     79  * stolen and reused by tasks which execute more frequently.  The best
     80  * size for the page table pool will probably be determined by
     81  * experimentation.
     82  *
     83  * You read all of the comments so far.  Good for you.
     84  * Now go play!
     85  */
     86 
     87 /*** A Note About the 68851 Address Translation Cache
     88  * The MC68851 has a 64 entry cache, called the Address Translation Cache
     89  * or 'ATC'.  This cache stores the most recently used page descriptors
     90  * accessed by the MMU when it does translations.  Using a marker called a
     91  * 'task alias' the MMU can store the descriptors from 8 different table
     92  * spaces concurrently.  The task alias is associated with the base
     93  * address of the level A table of that address space.  When an address
     94  * space is currently active (the CRP currently points to its A table)
     95  * the only cached descriptors that will be obeyed are ones which have a
     96  * matching task alias of the current space associated with them.
     97  *
     98  * Since the cache is always consulted before any table lookups are done,
     99  * it is important that it accurately reflect the state of the MMU tables.
    100  * Whenever a change has been made to a table that has been loaded into
    101  * the MMU, the code must be sure to flush any cached entries that are
    102  * affected by the change.  These instances are documented in the code at
    103  * various points.
    104  */
    105 /*** A Note About the Note About the 68851 Address Translation Cache
    106  * 4 months into this code I discovered that the sun3x does not have
    107  * a MC68851 chip. Instead, it has a version of this MMU that is part of the
    108  * the 68030 CPU.
    109  * All though it behaves very similarly to the 68851, it only has 1 task
    110  * alias and a 22 entry cache.  So sadly (or happily), the first paragraph
    111  * of the previous note does not apply to the sun3x pmap.
    112  */
    113 
    114 #include <sys/param.h>
    115 #include <sys/systm.h>
    116 #include <sys/proc.h>
    117 #include <sys/malloc.h>
    118 #include <sys/user.h>
    119 #include <sys/queue.h>
    120 #include <sys/kcore.h>
    121 
    122 #include <vm/vm.h>
    123 #include <vm/vm_kern.h>
    124 #include <vm/vm_page.h>
    125 
    126 #include <machine/cpu.h>
    127 #include <machine/kcore.h>
    128 #include <machine/pmap.h>
    129 #include <machine/pte.h>
    130 #include <machine/machdep.h>
    131 #include <machine/mon.h>
    132 
    133 #include "pmap_pvt.h"
    134 
    135 /* XXX - What headers declare these? */
    136 extern struct pcb *curpcb;
    137 extern int physmem;
    138 
    139 extern void copypage __P((const void*, void*));
    140 extern void zeropage __P((void*));
    141 
    142 /* Defined in locore.s */
    143 extern char kernel_text[];
    144 
    145 /* Defined by the linker */
    146 extern char etext[], edata[], end[];
    147 extern char *esym;	/* DDB */
    148 
    149 /*************************** DEBUGGING DEFINITIONS ***********************
    150  * Macros, preprocessor defines and variables used in debugging can make *
    151  * code hard to read.  Anything used exclusively for debugging purposes  *
    152  * is defined here to avoid having such mess scattered around the file.  *
    153  *************************************************************************/
    154 #ifdef	PMAP_DEBUG
    155 /*
    156  * To aid the debugging process, macros should be expanded into smaller steps
    157  * that accomplish the same goal, yet provide convenient places for placing
    158  * breakpoints.  When this code is compiled with PMAP_DEBUG mode defined, the
    159  * 'INLINE' keyword is defined to an empty string.  This way, any function
    160  * defined to be a 'static INLINE' will become 'outlined' and compiled as
    161  * a separate function, which is much easier to debug.
    162  */
    163 #define	INLINE	/* nothing */
    164 
    165 /*
    166  * It is sometimes convenient to watch the activity of a particular table
    167  * in the system.  The following variables are used for that purpose.
    168  */
    169 a_tmgr_t *pmap_watch_atbl = 0;
    170 b_tmgr_t *pmap_watch_btbl = 0;
    171 c_tmgr_t *pmap_watch_ctbl = 0;
    172 
    173 int pmap_debug = 0;
    174 #define DPRINT(args) if (pmap_debug) printf args
    175 
    176 #else	/********** Stuff below is defined if NOT debugging **************/
    177 
    178 #define	INLINE	inline
    179 #define DPRINT(args)  /* nada */
    180 
    181 #endif	/* PMAP_DEBUG */
    182 /*********************** END OF DEBUGGING DEFINITIONS ********************/
    183 
    184 /*** Management Structure - Memory Layout
    185  * For every MMU table in the sun3x pmap system there must be a way to
    186  * manage it; we must know which process is using it, what other tables
    187  * depend on it, and whether or not it contains any locked pages.  This
    188  * is solved by the creation of 'table management'  or 'tmgr'
    189  * structures.  One for each MMU table in the system.
    190  *
    191  *                        MAP OF MEMORY USED BY THE PMAP SYSTEM
    192  *
    193  *      towards lower memory
    194  * kernAbase -> +-------------------------------------------------------+
    195  *              | Kernel     MMU A level table                          |
    196  * kernBbase -> +-------------------------------------------------------+
    197  *              | Kernel     MMU B level tables                         |
    198  * kernCbase -> +-------------------------------------------------------+
    199  *              |                                                       |
    200  *              | Kernel     MMU C level tables                         |
    201  *              |                                                       |
    202  * mmuCbase  -> +-------------------------------------------------------+
    203  *              | User       MMU C level tables                         |
    204  * mmuAbase  -> +-------------------------------------------------------+
    205  *              |                                                       |
    206  *              | User       MMU A level tables                         |
    207  *              |                                                       |
    208  * mmuBbase  -> +-------------------------------------------------------+
    209  *              | User       MMU B level tables                         |
    210  * tmgrAbase -> +-------------------------------------------------------+
    211  *              |  TMGR A level table structures                        |
    212  * tmgrBbase -> +-------------------------------------------------------+
    213  *              |  TMGR B level table structures                        |
    214  * tmgrCbase -> +-------------------------------------------------------+
    215  *              |  TMGR C level table structures                        |
    216  * pvbase    -> +-------------------------------------------------------+
    217  *              |  Physical to Virtual mapping table (list heads)       |
    218  * pvebase   -> +-------------------------------------------------------+
    219  *              |  Physical to Virtual mapping table (list elements)    |
    220  *              |                                                       |
    221  *              +-------------------------------------------------------+
    222  *      towards higher memory
    223  *
    224  * For every A table in the MMU A area, there will be a corresponding
    225  * a_tmgr structure in the TMGR A area.  The same will be true for
    226  * the B and C tables.  This arrangement will make it easy to find the
    227  * controling tmgr structure for any table in the system by use of
    228  * (relatively) simple macros.
    229  */
    230 
    231 /*
    232  * Global variables for storing the base addresses for the areas
    233  * labeled above.
    234  */
    235 static vm_offset_t  	kernAphys;
    236 static mmu_long_dte_t	*kernAbase;
    237 static mmu_short_dte_t	*kernBbase;
    238 static mmu_short_pte_t	*kernCbase;
    239 static mmu_short_pte_t	*mmuCbase;
    240 static mmu_short_dte_t	*mmuBbase;
    241 static mmu_long_dte_t	*mmuAbase;
    242 static a_tmgr_t		*Atmgrbase;
    243 static b_tmgr_t		*Btmgrbase;
    244 static c_tmgr_t		*Ctmgrbase;
    245 static pv_t 		*pvbase;
    246 static pv_elem_t	*pvebase;
    247 struct pmap 		kernel_pmap;
    248 
    249 /*
    250  * This holds the CRP currently loaded into the MMU.
    251  */
    252 struct mmu_rootptr kernel_crp;
    253 
    254 /*
    255  * Just all around global variables.
    256  */
    257 static TAILQ_HEAD(a_pool_head_struct, a_tmgr_struct) a_pool;
    258 static TAILQ_HEAD(b_pool_head_struct, b_tmgr_struct) b_pool;
    259 static TAILQ_HEAD(c_pool_head_struct, c_tmgr_struct) c_pool;
    260 
    261 
    262 /*
    263  * Flags used to mark the safety/availability of certain operations or
    264  * resources.
    265  */
    266 static boolean_t pv_initialized = FALSE, /* PV system has been initialized. */
    267        bootstrap_alloc_enabled = FALSE; /*Safe to use pmap_bootstrap_alloc().*/
    268 int tmp_vpages_inuse;	/* Temporary virtual pages are in use */
    269 
    270 /*
    271  * XXX:  For now, retain the traditional variables that were
    272  * used in the old pmap/vm interface (without NONCONTIG).
    273  */
    274 /* Kernel virtual address space available: */
    275 vm_offset_t	virtual_avail, virtual_end;
    276 /* Physical address space available: */
    277 vm_offset_t	avail_start, avail_end;
    278 
    279 /* This keep track of the end of the contiguously mapped range. */
    280 vm_offset_t virtual_contig_end;
    281 
    282 /* Physical address used by pmap_next_page() */
    283 vm_offset_t avail_next;
    284 
    285 /* These are used by pmap_copy_page(), etc. */
    286 vm_offset_t tmp_vpages[2];
    287 
    288 /*
    289  * The 3/80 is the only member of the sun3x family that has non-contiguous
    290  * physical memory.  Memory is divided into 4 banks which are physically
    291  * locatable on the system board.  Although the size of these banks varies
    292  * with the size of memory they contain, their base addresses are
    293  * permenently fixed.  The following structure, which describes these
    294  * banks, is initialized by pmap_bootstrap() after it reads from a similar
    295  * structure provided by the ROM Monitor.
    296  *
    297  * For the other machines in the sun3x architecture which do have contiguous
    298  * RAM, this list will have only one entry, which will describe the entire
    299  * range of available memory.
    300  */
    301 struct pmap_physmem_struct avail_mem[SUN3X_NPHYS_RAM_SEGS];
    302 u_int total_phys_mem;
    303 
    304 /*************************************************************************/
    305 
    306 /*
    307  * XXX - Should "tune" these based on statistics.
    308  *
    309  * My first guess about the relative numbers of these needed is
    310  * based on the fact that a "typical" process will have several
    311  * pages mapped at low virtual addresses (text, data, bss), then
    312  * some mapped shared libraries, and then some stack pages mapped
    313  * near the high end of the VA space.  Each process can use only
    314  * one A table, and most will use only two B tables (maybe three)
    315  * and probably about four C tables.  Therefore, the first guess
    316  * at the relative numbers of these needed is 1:2:4 -gwr
    317  *
    318  * The number of C tables needed is closely related to the amount
    319  * of physical memory available plus a certain amount attributable
    320  * to the use of double mappings.  With a few simulation statistics
    321  * we can find a reasonably good estimation of this unknown value.
    322  * Armed with that and the above ratios, we have a good idea of what
    323  * is needed at each level. -j
    324  *
    325  * Note: It is not physical memory memory size, but the total mapped
    326  * virtual space required by the combined working sets of all the
    327  * currently _runnable_ processes.  (Sleeping ones don't count.)
    328  * The amount of physical memory should be irrelevant. -gwr
    329  */
    330 #ifdef	FIXED_NTABLES
    331 #define NUM_A_TABLES	16
    332 #define NUM_B_TABLES	32
    333 #define NUM_C_TABLES	64
    334 #else
    335 unsigned int	NUM_A_TABLES, NUM_B_TABLES, NUM_C_TABLES;
    336 #endif	/* FIXED_NTABLES */
    337 
    338 /*
    339  * This determines our total virtual mapping capacity.
    340  * Yes, it is a FIXED value so we can pre-allocate.
    341  */
    342 #define NUM_USER_PTES	(NUM_C_TABLES * MMU_C_TBL_SIZE)
    343 
    344 /*
    345  * The size of the Kernel Virtual Address Space (KVAS)
    346  * for purposes of MMU table allocation is -KERNBASE
    347  * (length from KERNBASE to 0xFFFFffff)
    348  */
    349 #define	KVAS_SIZE		(-KERNBASE)
    350 
    351 /* Numbers of kernel MMU tables to support KVAS_SIZE. */
    352 #define KERN_B_TABLES	(KVAS_SIZE >> MMU_TIA_SHIFT)
    353 #define KERN_C_TABLES	(KVAS_SIZE >> MMU_TIB_SHIFT)
    354 #define	NUM_KERN_PTES	(KVAS_SIZE >> MMU_TIC_SHIFT)
    355 
    356 /*************************** MISCELANEOUS MACROS *************************/
    357 #define PMAP_LOCK()	;	/* Nothing, for now */
    358 #define PMAP_UNLOCK()	;	/* same. */
    359 #define	NULL 0
    360 
    361 static INLINE void *      mmu_ptov __P((vm_offset_t pa));
    362 static INLINE vm_offset_t mmu_vtop __P((void * va));
    363 
    364 #if	0
    365 static INLINE a_tmgr_t * mmuA2tmgr __P((mmu_long_dte_t *));
    366 #endif /* 0 */
    367 static INLINE b_tmgr_t * mmuB2tmgr __P((mmu_short_dte_t *));
    368 static INLINE c_tmgr_t * mmuC2tmgr __P((mmu_short_pte_t *));
    369 
    370 static INLINE pv_t *pa2pv __P((vm_offset_t pa));
    371 static INLINE int   pteidx __P((mmu_short_pte_t *));
    372 static INLINE pmap_t current_pmap __P((void));
    373 
    374 /*
    375  * We can always convert between virtual and physical addresses
    376  * for anything in the range [KERNBASE ... avail_start] because
    377  * that range is GUARANTEED to be mapped linearly.
    378  * We rely heavily upon this feature!
    379  */
    380 static INLINE void *
    381 mmu_ptov(pa)
    382 	vm_offset_t pa;
    383 {
    384 	register vm_offset_t va;
    385 
    386 	va = (pa + KERNBASE);
    387 #ifdef	PMAP_DEBUG
    388 	if ((va < KERNBASE) || (va >= virtual_contig_end))
    389 		panic("mmu_ptov");
    390 #endif
    391 	return ((void*)va);
    392 }
    393 static INLINE vm_offset_t
    394 mmu_vtop(vva)
    395 	void *vva;
    396 {
    397 	register vm_offset_t va;
    398 
    399 	va = (vm_offset_t)vva;
    400 #ifdef	PMAP_DEBUG
    401 	if ((va < KERNBASE) || (va >= virtual_contig_end))
    402 		panic("mmu_ptov");
    403 #endif
    404 	return (va - KERNBASE);
    405 }
    406 
    407 /*
    408  * These macros map MMU tables to their corresponding manager structures.
    409  * They are needed quite often because many of the pointers in the pmap
    410  * system reference MMU tables and not the structures that control them.
    411  * There needs to be a way to find one when given the other and these
    412  * macros do so by taking advantage of the memory layout described above.
    413  * Here's a quick step through the first macro, mmuA2tmgr():
    414  *
    415  * 1) find the offset of the given MMU A table from the base of its table
    416  *    pool (table - mmuAbase).
    417  * 2) convert this offset into a table index by dividing it by the
    418  *    size of one MMU 'A' table. (sizeof(mmu_long_dte_t) * MMU_A_TBL_SIZE)
    419  * 3) use this index to select the corresponding 'A' table manager
    420  *    structure from the 'A' table manager pool (Atmgrbase[index]).
    421  */
    422 /*  This function is not currently used. */
    423 #if	0
    424 static INLINE a_tmgr_t *
    425 mmuA2tmgr(mmuAtbl)
    426 	mmu_long_dte_t *mmuAtbl;
    427 {
    428 	register int idx;
    429 
    430 	/* Which table is this in? */
    431 	idx = (mmuAtbl - mmuAbase) / MMU_A_TBL_SIZE;
    432 #ifdef	PMAP_DEBUG
    433 	if ((idx < 0) || (idx >= NUM_A_TABLES))
    434 		panic("mmuA2tmgr");
    435 #endif
    436 	return (&Atmgrbase[idx]);
    437 }
    438 #endif	/* 0 */
    439 
    440 static INLINE b_tmgr_t *
    441 mmuB2tmgr(mmuBtbl)
    442 	mmu_short_dte_t *mmuBtbl;
    443 {
    444 	register int idx;
    445 
    446 	/* Which table is this in? */
    447 	idx = (mmuBtbl - mmuBbase) / MMU_B_TBL_SIZE;
    448 #ifdef	PMAP_DEBUG
    449 	if ((idx < 0) || (idx >= NUM_B_TABLES))
    450 		panic("mmuB2tmgr");
    451 #endif
    452 	return (&Btmgrbase[idx]);
    453 }
    454 
    455 /* mmuC2tmgr			INTERNAL
    456  **
    457  * Given a pte known to belong to a C table, return the address of
    458  * that table's management structure.
    459  */
    460 static INLINE c_tmgr_t *
    461 mmuC2tmgr(mmuCtbl)
    462 	mmu_short_pte_t *mmuCtbl;
    463 {
    464 	register int idx;
    465 
    466 	/* Which table is this in? */
    467 	idx = (mmuCtbl - mmuCbase) / MMU_C_TBL_SIZE;
    468 #ifdef	PMAP_DEBUG
    469 	if ((idx < 0) || (idx >= NUM_C_TABLES))
    470 		panic("mmuC2tmgr");
    471 #endif
    472 	return (&Ctmgrbase[idx]);
    473 }
    474 
    475 /* This is now a function call below.
    476  * #define pa2pv(pa) \
    477  *	(&pvbase[(unsigned long)\
    478  *		m68k_btop(pa)\
    479  *	])
    480  */
    481 
    482 /* pa2pv			INTERNAL
    483  **
    484  * Return the pv_list_head element which manages the given physical
    485  * address.
    486  */
    487 static INLINE pv_t *
    488 pa2pv(pa)
    489 	vm_offset_t pa;
    490 {
    491 	register struct pmap_physmem_struct *bank;
    492 	register int idx;
    493 
    494 	bank = &avail_mem[0];
    495 	while (pa >= bank->pmem_end)
    496 		bank = bank->pmem_next;
    497 
    498 	pa -= bank->pmem_start;
    499 	idx = bank->pmem_pvbase + m68k_btop(pa);
    500 #ifdef	PMAP_DEBUG
    501 	if ((idx < 0) || (idx >= physmem))
    502 		panic("pa2pv");
    503 #endif
    504 	return &pvbase[idx];
    505 }
    506 
    507 /* pteidx			INTERNAL
    508  **
    509  * Return the index of the given PTE within the entire fixed table of
    510  * PTEs.
    511  */
    512 static INLINE int
    513 pteidx(pte)
    514 	mmu_short_pte_t *pte;
    515 {
    516 	return (pte - kernCbase);
    517 }
    518 
    519 /*
    520  * This just offers a place to put some debugging checks,
    521  * and reduces the number of places "curproc" appears...
    522  */
    523 static INLINE pmap_t
    524 current_pmap()
    525 {
    526 	struct proc *p;
    527 	struct vmspace *vm;
    528 	vm_map_t	map;
    529 	pmap_t	pmap;
    530 
    531 	p = curproc;	/* XXX */
    532 	if (p == NULL)
    533 		pmap = &kernel_pmap;
    534 	else {
    535 		vm = p->p_vmspace;
    536 		map = &vm->vm_map;
    537 		pmap = vm_map_pmap(map);
    538 	}
    539 
    540 	return (pmap);
    541 }
    542 
    543 
    544 /*************************** FUNCTION DEFINITIONS ************************
    545  * These appear here merely for the compiler to enforce type checking on *
    546  * all function calls.                                                   *
    547  *************************************************************************/
    548 
    549 /** External functions
    550  ** - functions used within this module but written elsewhere.
    551  **   both of these functions are in locore.s
    552  ** XXX - These functions were later replaced with their more cryptic
    553  **       hp300 counterparts.  They may be removed now.
    554  **/
    555 #if	0	/* deprecated mmu */
    556 void   mmu_seturp __P((vm_offset_t));
    557 void   mmu_flush __P((int, vm_offset_t));
    558 void   mmu_flusha __P((void));
    559 #endif	/* 0 */
    560 
    561 /** Internal functions
    562  ** - all functions used only within this module are defined in
    563  **   pmap_pvt.h
    564  **/
    565 
    566 /** Interface functions
    567  ** - functions required by the Mach VM Pmap interface, with MACHINE_CONTIG
    568  **   defined.
    569  **/
    570 #ifdef INCLUDED_IN_PMAP_H
    571 void   pmap_bootstrap __P((void));
    572 void  *pmap_bootstrap_alloc __P((int));
    573 void   pmap_enter __P((pmap_t, vm_offset_t, vm_offset_t, vm_prot_t, boolean_t));
    574 pmap_t pmap_create __P((vm_size_t));
    575 void   pmap_destroy __P((pmap_t));
    576 void   pmap_reference __P((pmap_t));
    577 boolean_t   pmap_is_referenced __P((vm_offset_t));
    578 boolean_t   pmap_is_modified __P((vm_offset_t));
    579 void   pmap_clear_modify __P((vm_offset_t));
    580 vm_offset_t pmap_extract __P((pmap_t, vm_offset_t));
    581 void   pmap_activate __P((pmap_t));
    582 int    pmap_page_index __P((vm_offset_t));
    583 u_int  pmap_free_pages __P((void));
    584 #endif /* INCLUDED_IN_PMAP_H */
    585 
    586 /********************************** CODE ********************************
    587  * Functions that are called from other parts of the kernel are labeled *
    588  * as 'INTERFACE' functions.  Functions that are only called from       *
    589  * within the pmap module are labeled as 'INTERNAL' functions.          *
    590  * Functions that are internal, but are not (currently) used at all are *
    591  * labeled 'INTERNAL_X'.                                                *
    592  ************************************************************************/
    593 
    594 /* pmap_bootstrap			INTERNAL
    595  **
    596  * Initializes the pmap system.  Called at boot time from _vm_init()
    597  * in _startup.c.
    598  *
    599  * Reminder: having a pmap_bootstrap_alloc() and also having the VM
    600  *           system implement pmap_steal_memory() is redundant.
    601  *           Don't release this code without removing one or the other!
    602  */
    603 void
    604 pmap_bootstrap(nextva)
    605 	vm_offset_t nextva;
    606 {
    607 	struct physmemory *membank;
    608 	struct pmap_physmem_struct *pmap_membank;
    609 	vm_offset_t va, pa, eva;
    610 	int b, c, i, j;	/* running table counts */
    611 	int size;
    612 
    613 	/*
    614 	 * This function is called by __bootstrap after it has
    615 	 * determined the type of machine and made the appropriate
    616 	 * patches to the ROM vectors (XXX- I don't quite know what I meant
    617 	 * by that.)  It allocates and sets up enough of the pmap system
    618 	 * to manage the kernel's address space.
    619 	 */
    620 
    621 	/*
    622 	 * Determine the range of kernel virtual and physical
    623 	 * space available. Note that we ABSOLUTELY DEPEND on
    624 	 * the fact that the first bank of memory (4MB) is
    625 	 * mapped linearly to KERNBASE (which we guaranteed in
    626 	 * the first instructions of locore.s).
    627 	 * That is plenty for our bootstrap work.
    628 	 */
    629 	virtual_avail = m68k_round_page(nextva);
    630 	virtual_contig_end = KERNBASE + 0x400000; /* +4MB */
    631 	virtual_end = VM_MAX_KERNEL_ADDRESS;
    632 	/* Don't need avail_start til later. */
    633 
    634 	/* We may now call pmap_bootstrap_alloc(). */
    635 	bootstrap_alloc_enabled = TRUE;
    636 
    637 	/*
    638 	 * This is a somewhat unwrapped loop to deal with
    639 	 * copying the PROM's 'phsymem' banks into the pmap's
    640 	 * banks.  The following is always assumed:
    641 	 * 1. There is always at least one bank of memory.
    642 	 * 2. There is always a last bank of memory, and its
    643 	 *    pmem_next member must be set to NULL.
    644 	 * XXX - Use: do { ... } while (membank->next) instead?
    645 	 * XXX - Why copy this stuff at all? -gwr
    646 	 *     - It is needed in pa2pv().
    647 	 */
    648 	membank = romVectorPtr->v_physmemory;
    649 	pmap_membank = avail_mem;
    650 	total_phys_mem = 0;
    651 
    652 	while (membank->next) {
    653 		pmap_membank->pmem_start = membank->address;
    654 		pmap_membank->pmem_end = membank->address + membank->size;
    655 		total_phys_mem += membank->size;
    656 		/* This silly syntax arises because pmap_membank
    657 		 * is really a pre-allocated array, but it is put into
    658 		 * use as a linked list.
    659 		 */
    660 		pmap_membank->pmem_next = pmap_membank + 1;
    661 		pmap_membank = pmap_membank->pmem_next;
    662 		membank = membank->next;
    663 	}
    664 
    665 	/*
    666 	 * XXX The last bank of memory should be reduced to exclude the
    667 	 * physical pages needed by the PROM monitor from being used
    668 	 * in the VM system.  XXX - See below - Fix!
    669 	 */
    670 	pmap_membank->pmem_start = membank->address;
    671 	pmap_membank->pmem_end = membank->address + membank->size;
    672 	pmap_membank->pmem_next = NULL;
    673 
    674 #if 0	/* XXX - Need to integrate this! */
    675 	/*
    676 	 * The last few pages of physical memory are "owned" by
    677 	 * the PROM.  The total amount of memory we are allowed
    678 	 * to use is given by the romvec pointer. -gwr
    679 	 *
    680 	 * We should dedicate different variables for 'useable'
    681 	 * and 'physically available'.  Most users are used to the
    682 	 * kernel reporting the amount of memory 'physically available'
    683 	 * as opposed to 'useable by the kernel' at boot time. -j
    684 	 */
    685 	total_phys_mem = *romVectorPtr->memoryAvail;
    686 #endif	/* XXX */
    687 
    688 	total_phys_mem += membank->size;	/* XXX see above */
    689 	physmem = btoc(total_phys_mem);
    690 
    691 	/*
    692 	 * Avail_end is set to the first byte of physical memory
    693 	 * after the end of the last bank.  We use this only to
    694 	 * determine if a physical address is "managed" memory.
    695 	 *
    696 	 * XXX - The setting of avail_end is a temporary ROM saving hack.
    697 	 */
    698 	avail_end = pmap_membank->pmem_end -
    699 		(total_phys_mem - *romVectorPtr->memoryAvail);
    700 	avail_end = m68k_trunc_page(avail_end);
    701 
    702 	/*
    703 	 * First allocate enough kernel MMU tables to map all
    704 	 * of kernel virtual space from KERNBASE to 0xFFFFFFFF.
    705 	 * Note: All must be aligned on 256 byte boundaries.
    706 	 * Start with the level-A table (one of those).
    707 	 */
    708 	size = sizeof(mmu_long_dte_t)  * MMU_A_TBL_SIZE;
    709 	kernAbase = pmap_bootstrap_alloc(size);
    710 	bzero(kernAbase, size);
    711 
    712 	/* Now the level-B kernel tables... */
    713 	size = sizeof(mmu_short_dte_t) * MMU_B_TBL_SIZE * KERN_B_TABLES;
    714 	kernBbase = pmap_bootstrap_alloc(size);
    715 	bzero(kernBbase, size);
    716 
    717 	/* Now the level-C kernel tables... */
    718 	size = sizeof(mmu_short_pte_t) * MMU_C_TBL_SIZE * KERN_C_TABLES;
    719 	kernCbase = pmap_bootstrap_alloc(size);
    720 	bzero(kernCbase, size);
    721 	/*
    722 	 * Note: In order for the PV system to work correctly, the kernel
    723 	 * and user-level C tables must be allocated contiguously.
    724 	 * Nothing should be allocated between here and the allocation of
    725 	 * mmuCbase below.  XXX: Should do this as one allocation, and
    726 	 * then compute a pointer for mmuCbase instead of this...
    727 	 *
    728 	 * Allocate user MMU tables.
    729 	 * These must be contiguous with the preceeding.
    730 	 */
    731 
    732 #ifndef	FIXED_NTABLES
    733 	/*
    734 	 * The number of user-level C tables that should be allocated is
    735 	 * related to the size of physical memory.  In general, there should
    736 	 * be enough tables to map four times the amount of available RAM.
    737 	 * The extra amount is needed because some table space is wasted by
    738 	 * fragmentation.
    739 	 */
    740 	NUM_C_TABLES = (total_phys_mem * 4) / (MMU_C_TBL_SIZE * MMU_PAGE_SIZE);
    741 	NUM_B_TABLES = NUM_C_TABLES / 2;
    742 	NUM_A_TABLES = NUM_B_TABLES / 2;
    743 #endif	/* !FIXED_NTABLES */
    744 
    745 	size = sizeof(mmu_short_pte_t) * MMU_C_TBL_SIZE	* NUM_C_TABLES;
    746 	mmuCbase = pmap_bootstrap_alloc(size);
    747 
    748 	size = sizeof(mmu_short_dte_t) * MMU_B_TBL_SIZE	* NUM_B_TABLES;
    749 	mmuBbase = pmap_bootstrap_alloc(size);
    750 
    751 	size = sizeof(mmu_long_dte_t)  * MMU_A_TBL_SIZE * NUM_A_TABLES;
    752 	mmuAbase = pmap_bootstrap_alloc(size);
    753 
    754 	/*
    755 	 * Fill in the never-changing part of the kernel tables.
    756 	 * For simplicity, the kernel's mappings will be editable as a
    757 	 * flat array of page table entries at kernCbase.  The
    758 	 * higher level 'A' and 'B' tables must be initialized to point
    759 	 * to this lower one.
    760 	 */
    761 	b = c = 0;
    762 
    763 	/*
    764 	 * Invalidate all mappings below KERNBASE in the A table.
    765 	 * This area has already been zeroed out, but it is good
    766 	 * practice to explicitly show that we are interpreting
    767 	 * it as a list of A table descriptors.
    768 	 */
    769 	for (i = 0; i < MMU_TIA(KERNBASE); i++) {
    770 		kernAbase[i].addr.raw = 0;
    771 	}
    772 
    773 	/*
    774 	 * Set up the kernel A and B tables so that they will reference the
    775 	 * correct spots in the contiguous table of PTEs allocated for the
    776 	 * kernel's virtual memory space.
    777 	 */
    778 	for (i = MMU_TIA(KERNBASE); i < MMU_A_TBL_SIZE; i++) {
    779 		kernAbase[i].attr.raw =
    780 			MMU_LONG_DTE_LU | MMU_LONG_DTE_SUPV | MMU_DT_SHORT;
    781 		kernAbase[i].addr.raw = mmu_vtop(&kernBbase[b]);
    782 
    783 		for (j=0; j < MMU_B_TBL_SIZE; j++) {
    784 			kernBbase[b + j].attr.raw = mmu_vtop(&kernCbase[c])
    785 				| MMU_DT_SHORT;
    786 			c += MMU_C_TBL_SIZE;
    787 		}
    788 		b += MMU_B_TBL_SIZE;
    789 	}
    790 
    791 	/* XXX - Doing kernel_pmap a little further down. */
    792 
    793 	pmap_alloc_usermmu();	/* Allocate user MMU tables.        */
    794 	pmap_alloc_usertmgr();	/* Allocate user MMU table managers.*/
    795 	pmap_alloc_pv();	/* Allocate physical->virtual map.  */
    796 
    797 	/*
    798 	 * We are now done with pmap_bootstrap_alloc().  Round up
    799 	 * `virtual_avail' to the nearest page, and set the flag
    800 	 * to prevent use of pmap_bootstrap_alloc() hereafter.
    801 	 */
    802 	pmap_bootstrap_aalign(NBPG);
    803 	bootstrap_alloc_enabled = FALSE;
    804 
    805 	/*
    806 	 * Now that we are done with pmap_bootstrap_alloc(), we
    807 	 * must save the virtual and physical addresses of the
    808 	 * end of the linearly mapped range, which are stored in
    809 	 * virtual_contig_end and avail_start, respectively.
    810 	 * These variables will never change after this point.
    811 	 */
    812 	virtual_contig_end = virtual_avail;
    813 	avail_start = virtual_avail - KERNBASE;
    814 
    815 	/*
    816 	 * `avail_next' is a running pointer used by pmap_next_page() to
    817 	 * keep track of the next available physical page to be handed
    818 	 * to the VM system during its initialization, in which it
    819 	 * asks for physical pages, one at a time.
    820 	 */
    821 	avail_next = avail_start;
    822 
    823 	/*
    824 	 * Now allocate some virtual addresses, but not the physical pages
    825 	 * behind them.  Note that virtual_avail is already page-aligned.
    826 	 *
    827 	 * tmp_vpages[] is an array of two virtual pages used for temporary
    828 	 * kernel mappings in the pmap module to facilitate various physical
    829 	 * address-oritented operations.
    830 	 */
    831 	tmp_vpages[0] = virtual_avail;
    832 	virtual_avail += NBPG;
    833 	tmp_vpages[1] = virtual_avail;
    834 	virtual_avail += NBPG;
    835 
    836 	/** Initialize the PV system **/
    837 	pmap_init_pv();
    838 
    839 	/*
    840 	 * Fill in the kernel_pmap structure and kernel_crp.
    841 	 */
    842 	kernAphys = mmu_vtop(kernAbase);
    843 	kernel_pmap.pm_a_tmgr = NULL;
    844 	kernel_pmap.pm_a_phys = kernAphys;
    845 	kernel_pmap.pm_refcount = 1; /* always in use */
    846 
    847 	kernel_crp.rp_attr = MMU_LONG_DTE_LU | MMU_DT_LONG;
    848 	kernel_crp.rp_addr = kernAphys;
    849 
    850 	/*
    851 	 * Now pmap_enter_kernel() may be used safely and will be
    852 	 * the main interface used hereafter to modify the kernel's
    853 	 * virtual address space.  Note that since we are still running
    854 	 * under the PROM's address table, none of these table modifications
    855 	 * actually take effect until pmap_takeover_mmu() is called.
    856 	 *
    857 	 * Note: Our tables do NOT have the PROM linear mappings!
    858 	 * Only the mappings created here exist in our tables, so
    859 	 * remember to map anything we expect to use.
    860 	 */
    861 	va = (vm_offset_t) KERNBASE;
    862 	pa = 0;
    863 
    864 	/*
    865 	 * The first page of the kernel virtual address space is the msgbuf
    866 	 * page.  The page attributes (data, non-cached) are set here, while
    867 	 * the address is assigned to this global pointer in cpu_startup().
    868 	 * XXX - Make it non-cached?
    869 	 */
    870 	pmap_enter_kernel(va, pa|PMAP_NC, VM_PROT_ALL);
    871 	va += NBPG; pa += NBPG;
    872 
    873 	/* Next page is used as the temporary stack. */
    874 	pmap_enter_kernel(va, pa, VM_PROT_ALL);
    875 	va += NBPG; pa += NBPG;
    876 
    877 	/*
    878 	 * Map all of the kernel's text segment as read-only and cacheable.
    879 	 * (Cacheable is implied by default).  Unfortunately, the last bytes
    880 	 * of kernel text and the first bytes of kernel data will often be
    881 	 * sharing the same page.  Therefore, the last page of kernel text
    882 	 * has to be mapped as read/write, to accomodate the data.
    883 	 */
    884 	eva = m68k_trunc_page((vm_offset_t)etext);
    885 	for (; va < eva; va += NBPG, pa += NBPG)
    886 		pmap_enter_kernel(va, pa, VM_PROT_READ|VM_PROT_EXECUTE);
    887 
    888 	/*
    889 	 * Map all of the kernel's data as read/write and cacheable.
    890 	 * This includes: data, BSS, symbols, and everything in the
    891 	 * contiguous memory used by pmap_bootstrap_alloc()
    892 	 */
    893 	for (; pa < avail_start; va += NBPG, pa += NBPG)
    894 		pmap_enter_kernel(va, pa, VM_PROT_READ|VM_PROT_WRITE);
    895 
    896 	/*
    897 	 * At this point we are almost ready to take over the MMU.  But first
    898 	 * we must save the PROM's address space in our map, as we call its
    899 	 * routines and make references to its data later in the kernel.
    900 	 */
    901 	pmap_bootstrap_copyprom();
    902 	pmap_takeover_mmu();
    903 	pmap_bootstrap_setprom();
    904 
    905 	/* Notify the VM system of our page size. */
    906 	PAGE_SIZE = NBPG;
    907 	vm_set_page_size();
    908 }
    909 
    910 
    911 /* pmap_alloc_usermmu			INTERNAL
    912  **
    913  * Called from pmap_bootstrap() to allocate MMU tables that will
    914  * eventually be used for user mappings.
    915  */
    916 void
    917 pmap_alloc_usermmu()
    918 {
    919 	/* XXX: Moved into caller. */
    920 }
    921 
    922 /* pmap_alloc_pv			INTERNAL
    923  **
    924  * Called from pmap_bootstrap() to allocate the physical
    925  * to virtual mapping list.  Each physical page of memory
    926  * in the system has a corresponding element in this list.
    927  */
    928 void
    929 pmap_alloc_pv()
    930 {
    931 	int	i;
    932 	unsigned int	total_mem;
    933 
    934 	/*
    935 	 * Allocate a pv_head structure for every page of physical
    936 	 * memory that will be managed by the system.  Since memory on
    937 	 * the 3/80 is non-contiguous, we cannot arrive at a total page
    938 	 * count by subtraction of the lowest available address from the
    939 	 * highest, but rather we have to step through each memory
    940 	 * bank and add the number of pages in each to the total.
    941 	 *
    942 	 * At this time we also initialize the offset of each bank's
    943 	 * starting pv_head within the pv_head list so that the physical
    944 	 * memory state routines (pmap_is_referenced(),
    945 	 * pmap_is_modified(), et al.) can quickly find coresponding
    946 	 * pv_heads in spite of the non-contiguity.
    947 	 */
    948 	total_mem = 0;
    949 	for (i = 0; i < SUN3X_NPHYS_RAM_SEGS; i++) {
    950 		avail_mem[i].pmem_pvbase = m68k_btop(total_mem);
    951 		total_mem += avail_mem[i].pmem_end -
    952 			avail_mem[i].pmem_start;
    953 		if (avail_mem[i].pmem_next == NULL)
    954 			break;
    955 	}
    956 #ifdef	PMAP_DEBUG
    957 	if (total_mem != total_phys_mem)
    958 		panic("pmap_alloc_pv did not arrive at correct page count");
    959 #endif
    960 
    961 	pvbase = (pv_t *) pmap_bootstrap_alloc(sizeof(pv_t) *
    962 		m68k_btop(total_phys_mem));
    963 }
    964 
    965 /* pmap_alloc_usertmgr			INTERNAL
    966  **
    967  * Called from pmap_bootstrap() to allocate the structures which
    968  * facilitate management of user MMU tables.  Each user MMU table
    969  * in the system has one such structure associated with it.
    970  */
    971 void
    972 pmap_alloc_usertmgr()
    973 {
    974 	/* Allocate user MMU table managers */
    975 	/* It would be a lot simpler to just make these BSS, but */
    976 	/* we may want to change their size at boot time... -j */
    977 	Atmgrbase = (a_tmgr_t *) pmap_bootstrap_alloc(sizeof(a_tmgr_t)
    978 		* NUM_A_TABLES);
    979 	Btmgrbase = (b_tmgr_t *) pmap_bootstrap_alloc(sizeof(b_tmgr_t)
    980 		* NUM_B_TABLES);
    981 	Ctmgrbase = (c_tmgr_t *) pmap_bootstrap_alloc(sizeof(c_tmgr_t)
    982 		* NUM_C_TABLES);
    983 
    984 	/*
    985 	 * Allocate PV list elements for the physical to virtual
    986 	 * mapping system.
    987 	 */
    988 	pvebase = (pv_elem_t *) pmap_bootstrap_alloc(
    989 		sizeof(pv_elem_t) * (NUM_USER_PTES + NUM_KERN_PTES));
    990 }
    991 
    992 /* pmap_bootstrap_copyprom()			INTERNAL
    993  **
    994  * Copy the PROM mappings into our own tables.  Note, we
    995  * can use physical addresses until __bootstrap returns.
    996  */
    997 void
    998 pmap_bootstrap_copyprom()
    999 {
   1000 	MachMonRomVector *romp;
   1001 	int *mon_ctbl;
   1002 	mmu_short_pte_t *kpte;
   1003 	int i, len;
   1004 
   1005 	romp = romVectorPtr;
   1006 
   1007 	/*
   1008 	 * Copy the mappings in MON_KDB_START...MONEND
   1009 	 * Note: mon_ctbl[0] maps MON_KDB_START
   1010 	 */
   1011 	mon_ctbl = *romp->monptaddr;
   1012 	i = m68k_btop(MON_KDB_START - KERNBASE);
   1013 	kpte = &kernCbase[i];
   1014 	len = m68k_btop(MONEND - MON_KDB_START);
   1015 
   1016 	for (i = 0; i < len; i++) {
   1017 		kpte[i].attr.raw = mon_ctbl[i];
   1018 	}
   1019 
   1020 	/*
   1021 	 * Copy the mappings at MON_DVMA_BASE (to the end).
   1022 	 * Note, in here, mon_ctbl[0] maps MON_DVMA_BASE.
   1023 	 * XXX - This does not appear to be necessary, but
   1024 	 * I'm not sure yet if it is or not. -gwr
   1025 	 */
   1026 	mon_ctbl = *romp->shadowpteaddr;
   1027 	i = m68k_btop(MON_DVMA_BASE - KERNBASE);
   1028 	kpte = &kernCbase[i];
   1029 	len = m68k_btop(MON_DVMA_SIZE);
   1030 
   1031 	for (i = 0; i < len; i++) {
   1032 		kpte[i].attr.raw = mon_ctbl[i];
   1033 	}
   1034 }
   1035 
   1036 /* pmap_takeover_mmu			INTERNAL
   1037  **
   1038  * Called from pmap_bootstrap() after it has copied enough of the
   1039  * PROM mappings into the kernel map so that we can use our own
   1040  * MMU table.
   1041  */
   1042 void
   1043 pmap_takeover_mmu()
   1044 {
   1045 
   1046 	loadcrp(&kernel_crp);
   1047 }
   1048 
   1049 /* pmap_bootstrap_setprom()			INTERNAL
   1050  **
   1051  * Set the PROM mappings so it can see kernel space.
   1052  * Note that physical addresses are used here, which
   1053  * we can get away with because this runs with the
   1054  * low 1GB set for transparent translation.
   1055  */
   1056 void
   1057 pmap_bootstrap_setprom()
   1058 {
   1059 	mmu_long_dte_t *mon_dte;
   1060 	extern struct mmu_rootptr mon_crp;
   1061 	int i;
   1062 
   1063 	mon_dte = (mmu_long_dte_t *) mon_crp.rp_addr;
   1064 	for (i = MMU_TIA(KERNBASE); i < MMU_TIA(KERN_END); i++) {
   1065 		mon_dte[i].attr.raw = kernAbase[i].attr.raw;
   1066 		mon_dte[i].addr.raw = kernAbase[i].addr.raw;
   1067 	}
   1068 }
   1069 
   1070 
   1071 /* pmap_init			INTERFACE
   1072  **
   1073  * Called at the end of vm_init() to set up the pmap system to go
   1074  * into full time operation.  All initialization of kernel_pmap
   1075  * should be already done by now, so this should just do things
   1076  * needed for user-level pmaps to work.
   1077  */
   1078 void
   1079 pmap_init()
   1080 {
   1081 	/** Initialize the manager pools **/
   1082 	TAILQ_INIT(&a_pool);
   1083 	TAILQ_INIT(&b_pool);
   1084 	TAILQ_INIT(&c_pool);
   1085 
   1086 	/**************************************************************
   1087 	 * Initialize all tmgr structures and MMU tables they manage. *
   1088 	 **************************************************************/
   1089 	/** Initialize A tables **/
   1090 	pmap_init_a_tables();
   1091 	/** Initialize B tables **/
   1092 	pmap_init_b_tables();
   1093 	/** Initialize C tables **/
   1094 	pmap_init_c_tables();
   1095 }
   1096 
   1097 /* pmap_init_a_tables()			INTERNAL
   1098  **
   1099  * Initializes all A managers, their MMU A tables, and inserts
   1100  * them into the A manager pool for use by the system.
   1101  */
   1102 void
   1103 pmap_init_a_tables()
   1104 {
   1105 	int i;
   1106 	a_tmgr_t *a_tbl;
   1107 
   1108 	for (i=0; i < NUM_A_TABLES; i++) {
   1109 		/* Select the next available A manager from the pool */
   1110 		a_tbl = &Atmgrbase[i];
   1111 
   1112 		/*
   1113 		 * Clear its parent entry.  Set its wired and valid
   1114 		 * entry count to zero.
   1115 		 */
   1116 		a_tbl->at_parent = NULL;
   1117 		a_tbl->at_wcnt = a_tbl->at_ecnt = 0;
   1118 
   1119 		/* Assign it the next available MMU A table from the pool */
   1120 		a_tbl->at_dtbl = &mmuAbase[i * MMU_A_TBL_SIZE];
   1121 
   1122 		/*
   1123 		 * Initialize the MMU A table with the table in the `proc0',
   1124 		 * or kernel, mapping.  This ensures that every process has
   1125 		 * the kernel mapped in the top part of its address space.
   1126 		 */
   1127 		bcopy(kernAbase, a_tbl->at_dtbl, MMU_A_TBL_SIZE *
   1128 			sizeof(mmu_long_dte_t));
   1129 
   1130 		/*
   1131 		 * Finally, insert the manager into the A pool,
   1132 		 * making it ready to be used by the system.
   1133 		 */
   1134 		TAILQ_INSERT_TAIL(&a_pool, a_tbl, at_link);
   1135     }
   1136 }
   1137 
   1138 /* pmap_init_b_tables()			INTERNAL
   1139  **
   1140  * Initializes all B table managers, their MMU B tables, and
   1141  * inserts them into the B manager pool for use by the system.
   1142  */
   1143 void
   1144 pmap_init_b_tables()
   1145 {
   1146 	int i,j;
   1147 	b_tmgr_t *b_tbl;
   1148 
   1149 	for (i=0; i < NUM_B_TABLES; i++) {
   1150 		/* Select the next available B manager from the pool */
   1151 		b_tbl = &Btmgrbase[i];
   1152 
   1153 		b_tbl->bt_parent = NULL;	/* clear its parent,  */
   1154 		b_tbl->bt_pidx = 0;		/* parent index,      */
   1155 		b_tbl->bt_wcnt = 0;		/* wired entry count, */
   1156 		b_tbl->bt_ecnt = 0;		/* valid entry count. */
   1157 
   1158 		/* Assign it the next available MMU B table from the pool */
   1159 		b_tbl->bt_dtbl = &mmuBbase[i * MMU_B_TBL_SIZE];
   1160 
   1161 		/* Invalidate every descriptor in the table */
   1162 		for (j=0; j < MMU_B_TBL_SIZE; j++)
   1163 			b_tbl->bt_dtbl[j].attr.raw = MMU_DT_INVALID;
   1164 
   1165 		/* Insert the manager into the B pool */
   1166 		TAILQ_INSERT_TAIL(&b_pool, b_tbl, bt_link);
   1167 	}
   1168 }
   1169 
   1170 /* pmap_init_c_tables()			INTERNAL
   1171  **
   1172  * Initializes all C table managers, their MMU C tables, and
   1173  * inserts them into the C manager pool for use by the system.
   1174  */
   1175 void
   1176 pmap_init_c_tables()
   1177 {
   1178 	int i,j;
   1179 	c_tmgr_t *c_tbl;
   1180 
   1181 	for (i=0; i < NUM_C_TABLES; i++) {
   1182 		/* Select the next available C manager from the pool */
   1183 		c_tbl = &Ctmgrbase[i];
   1184 
   1185 		c_tbl->ct_parent = NULL;	/* clear its parent,  */
   1186 		c_tbl->ct_pidx = 0;		/* parent index,      */
   1187 		c_tbl->ct_wcnt = 0;		/* wired entry count, */
   1188 		c_tbl->ct_ecnt = 0;		/* valid entry count, */
   1189 		c_tbl->ct_pmap = NULL;		/* parent pmap,       */
   1190 		c_tbl->ct_va = 0;		/* base of managed range */
   1191 
   1192 		/* Assign it the next available MMU C table from the pool */
   1193 		c_tbl->ct_dtbl = &mmuCbase[i * MMU_C_TBL_SIZE];
   1194 
   1195 		for (j=0; j < MMU_C_TBL_SIZE; j++)
   1196 			c_tbl->ct_dtbl[j].attr.raw = MMU_DT_INVALID;
   1197 
   1198 		TAILQ_INSERT_TAIL(&c_pool, c_tbl, ct_link);
   1199 	}
   1200 }
   1201 
   1202 /* pmap_init_pv()			INTERNAL
   1203  **
   1204  * Initializes the Physical to Virtual mapping system.
   1205  */
   1206 void
   1207 pmap_init_pv()
   1208 {
   1209 	int	i;
   1210 
   1211 	/* Initialize every PV head. */
   1212 	for (i = 0; i < m68k_btop(total_phys_mem); i++) {
   1213 		pvbase[i].pv_idx = PVE_EOL;	/* Indicate no mappings */
   1214 		pvbase[i].pv_flags = 0;		/* Zero out page flags  */
   1215 	}
   1216 
   1217 	pv_initialized = TRUE;
   1218 }
   1219 
   1220 /* get_a_table			INTERNAL
   1221  **
   1222  * Retrieve and return a level A table for use in a user map.
   1223  */
   1224 a_tmgr_t *
   1225 get_a_table()
   1226 {
   1227 	a_tmgr_t *tbl;
   1228 	pmap_t pmap;
   1229 
   1230 	/* Get the top A table in the pool */
   1231 	tbl = a_pool.tqh_first;
   1232 	if (tbl == NULL) {
   1233 		/*
   1234 		 * XXX - Instead of panicing here and in other get_x_table
   1235 		 * functions, we do have the option of sleeping on the head of
   1236 		 * the table pool.  Any function which updates the table pool
   1237 		 * would then issue a wakeup() on the head, thus waking up any
   1238 		 * processes waiting for a table.
   1239 		 *
   1240 		 * Actually, the place to sleep would be when some process
   1241 		 * asks for a "wired" mapping that would run us short of
   1242 		 * mapping resources.  This design DEPENDS on always having
   1243 		 * some mapping resources in the pool for stealing, so we
   1244 		 * must make sure we NEVER let the pool become empty. -gwr
   1245 		 */
   1246 		panic("get_a_table: out of A tables.");
   1247 	}
   1248 
   1249 	TAILQ_REMOVE(&a_pool, tbl, at_link);
   1250 	/*
   1251 	 * If the table has a non-null parent pointer then it is in use.
   1252 	 * Forcibly abduct it from its parent and clear its entries.
   1253 	 * No re-entrancy worries here.  This table would not be in the
   1254 	 * table pool unless it was available for use.
   1255 	 *
   1256 	 * Note that the second argument to free_a_table() is FALSE.  This
   1257 	 * indicates that the table should not be relinked into the A table
   1258 	 * pool.  That is a job for the function that called us.
   1259 	 */
   1260 	if (tbl->at_parent) {
   1261 		pmap = tbl->at_parent;
   1262 		free_a_table(tbl, FALSE);
   1263 		pmap->pm_a_tmgr = NULL;
   1264 		pmap->pm_a_phys = kernAphys;
   1265 	}
   1266 #ifdef  NON_REENTRANT
   1267 	/*
   1268 	 * If the table isn't to be wired down, re-insert it at the
   1269 	 * end of the pool.
   1270 	 */
   1271 	if (!wired)
   1272 		/*
   1273 		 * Quandary - XXX
   1274 		 * Would it be better to let the calling function insert this
   1275 		 * table into the queue?  By inserting it here, we are allowing
   1276 		 * it to be stolen immediately.  The calling function is
   1277 		 * probably not expecting to use a table that it is not
   1278 		 * assured full control of.
   1279 		 * Answer - In the intrest of re-entrancy, it is best to let
   1280 		 * the calling function determine when a table is available
   1281 		 * for use.  Therefore this code block is not used.
   1282 		 */
   1283 		TAILQ_INSERT_TAIL(&a_pool, tbl, at_link);
   1284 #endif	/* NON_REENTRANT */
   1285 	return tbl;
   1286 }
   1287 
   1288 /* get_b_table			INTERNAL
   1289  **
   1290  * Return a level B table for use.
   1291  */
   1292 b_tmgr_t *
   1293 get_b_table()
   1294 {
   1295 	b_tmgr_t *tbl;
   1296 
   1297 	/* See 'get_a_table' for comments. */
   1298 	tbl = b_pool.tqh_first;
   1299 	if (tbl == NULL)
   1300 		panic("get_b_table: out of B tables.");
   1301 	TAILQ_REMOVE(&b_pool, tbl, bt_link);
   1302 	if (tbl->bt_parent) {
   1303 		tbl->bt_parent->at_dtbl[tbl->bt_pidx].attr.raw = MMU_DT_INVALID;
   1304 		tbl->bt_parent->at_ecnt--;
   1305 		free_b_table(tbl, FALSE);
   1306 	}
   1307 #ifdef	NON_REENTRANT
   1308 	if (!wired)
   1309 		/* XXX see quandary in get_b_table */
   1310 		/* XXX start lock */
   1311 		TAILQ_INSERT_TAIL(&b_pool, tbl, bt_link);
   1312 		/* XXX end lock */
   1313 #endif	/* NON_REENTRANT */
   1314 	return tbl;
   1315 }
   1316 
   1317 /* get_c_table			INTERNAL
   1318  **
   1319  * Return a level C table for use.
   1320  */
   1321 c_tmgr_t *
   1322 get_c_table()
   1323 {
   1324 	c_tmgr_t *tbl;
   1325 
   1326 	/* See 'get_a_table' for comments */
   1327 	tbl = c_pool.tqh_first;
   1328 	if (tbl == NULL)
   1329 		panic("get_c_table: out of C tables.");
   1330 	TAILQ_REMOVE(&c_pool, tbl, ct_link);
   1331 	if (tbl->ct_parent) {
   1332 		tbl->ct_parent->bt_dtbl[tbl->ct_pidx].attr.raw = MMU_DT_INVALID;
   1333 		tbl->ct_parent->bt_ecnt--;
   1334 		free_c_table(tbl, FALSE);
   1335 	}
   1336 #ifdef	NON_REENTRANT
   1337 	if (!wired)
   1338 		/* XXX See quandary in get_a_table */
   1339 		/* XXX start lock */
   1340 		TAILQ_INSERT_TAIL(&c_pool, tbl, c_link);
   1341 		/* XXX end lock */
   1342 #endif	/* NON_REENTRANT */
   1343 
   1344 	return tbl;
   1345 }
   1346 
   1347 /*
   1348  * The following 'free_table' and 'steal_table' functions are called to
   1349  * detach tables from their current obligations (parents and children) and
   1350  * prepare them for reuse in another mapping.
   1351  *
   1352  * Free_table is used when the calling function will handle the fate
   1353  * of the parent table, such as returning it to the free pool when it has
   1354  * no valid entries.  Functions that do not want to handle this should
   1355  * call steal_table, in which the parent table's descriptors and entry
   1356  * count are automatically modified when this table is removed.
   1357  */
   1358 
   1359 /* free_a_table			INTERNAL
   1360  **
   1361  * Unmaps the given A table and all child tables from their current
   1362  * mappings.  Returns the number of pages that were invalidated.
   1363  * If 'relink' is true, the function will return the table to the head
   1364  * of the available table pool.
   1365  *
   1366  * Cache note: The MC68851 will automatically flush all
   1367  * descriptors derived from a given A table from its
   1368  * Automatic Translation Cache (ATC) if we issue a
   1369  * 'PFLUSHR' instruction with the base address of the
   1370  * table.  This function should do, and does so.
   1371  * Note note: We are using an MC68030 - there is no
   1372  * PFLUSHR.
   1373  */
   1374 int
   1375 free_a_table(a_tbl, relink)
   1376 	a_tmgr_t *a_tbl;
   1377 	boolean_t relink;
   1378 {
   1379 	int i, removed_cnt;
   1380 	mmu_long_dte_t	*dte;
   1381 	mmu_short_dte_t *dtbl;
   1382 	b_tmgr_t	*tmgr;
   1383 
   1384 	/*
   1385 	 * Flush the ATC cache of all cached descriptors derived
   1386 	 * from this table.
   1387 	 * Sun3x does not use 68851's cached table feature
   1388 	 * flush_atc_crp(mmu_vtop(a_tbl->dte));
   1389 	 */
   1390 
   1391 	/*
   1392 	 * Remove any pending cache flushes that were designated
   1393 	 * for the pmap this A table belongs to.
   1394 	 * a_tbl->parent->atc_flushq[0] = 0;
   1395 	 * Not implemented in sun3x.
   1396 	 */
   1397 
   1398 	/*
   1399 	 * All A tables in the system should retain a map for the
   1400 	 * kernel. If the table contains any valid descriptors
   1401 	 * (other than those for the kernel area), invalidate them all,
   1402 	 * stopping short of the kernel's entries.
   1403 	 */
   1404 	removed_cnt = 0;
   1405 	if (a_tbl->at_ecnt) {
   1406 		dte = a_tbl->at_dtbl;
   1407 		for (i=0; i < MMU_TIA(KERNBASE); i++) {
   1408 			/*
   1409 			 * If a table entry points to a valid B table, free
   1410 			 * it and its children.
   1411 			 */
   1412 			if (MMU_VALID_DT(dte[i])) {
   1413 				/*
   1414 				 * The following block does several things,
   1415 				 * from innermost expression to the
   1416 				 * outermost:
   1417 				 * 1) It extracts the base (cc 1996)
   1418 				 *    address of the B table pointed
   1419 				 *    to in the A table entry dte[i].
   1420 				 * 2) It converts this base address into
   1421 				 *    the virtual address it can be
   1422 				 *    accessed with. (all MMU tables point
   1423 				 *    to physical addresses.)
   1424 				 * 3) It finds the corresponding manager
   1425 				 *    structure which manages this MMU table.
   1426 				 * 4) It frees the manager structure.
   1427 				 *    (This frees the MMU table and all
   1428 				 *    child tables. See 'free_b_table' for
   1429 				 *    details.)
   1430 				 */
   1431 				dtbl = mmu_ptov(dte[i].addr.raw);
   1432 				tmgr = mmuB2tmgr(dtbl);
   1433 				removed_cnt += free_b_table(tmgr, TRUE);
   1434 				dte[i].attr.raw = MMU_DT_INVALID;
   1435 			}
   1436 		}
   1437 		a_tbl->at_ecnt = 0;
   1438 	}
   1439 	if (relink) {
   1440 		a_tbl->at_parent = NULL;
   1441 		TAILQ_REMOVE(&a_pool, a_tbl, at_link);
   1442 		TAILQ_INSERT_HEAD(&a_pool, a_tbl, at_link);
   1443 	}
   1444 	return removed_cnt;
   1445 }
   1446 
   1447 /* free_b_table			INTERNAL
   1448  **
   1449  * Unmaps the given B table and all its children from their current
   1450  * mappings.  Returns the number of pages that were invalidated.
   1451  * (For comments, see 'free_a_table()').
   1452  */
   1453 int
   1454 free_b_table(b_tbl, relink)
   1455 	b_tmgr_t *b_tbl;
   1456 	boolean_t relink;
   1457 {
   1458 	int i, removed_cnt;
   1459 	mmu_short_dte_t *dte;
   1460 	mmu_short_pte_t	*dtbl;
   1461 	c_tmgr_t	*tmgr;
   1462 
   1463 	removed_cnt = 0;
   1464 	if (b_tbl->bt_ecnt) {
   1465 		dte = b_tbl->bt_dtbl;
   1466 		for (i=0; i < MMU_B_TBL_SIZE; i++) {
   1467 			if (MMU_VALID_DT(dte[i])) {
   1468 				dtbl = mmu_ptov(MMU_DTE_PA(dte[i]));
   1469 				tmgr = mmuC2tmgr(dtbl);
   1470 				removed_cnt += free_c_table(tmgr, TRUE);
   1471 				dte[i].attr.raw = MMU_DT_INVALID;
   1472 			}
   1473 		}
   1474 		b_tbl->bt_ecnt = 0;
   1475 	}
   1476 
   1477 	if (relink) {
   1478 		b_tbl->bt_parent = NULL;
   1479 		TAILQ_REMOVE(&b_pool, b_tbl, bt_link);
   1480 		TAILQ_INSERT_HEAD(&b_pool, b_tbl, bt_link);
   1481 	}
   1482 	return removed_cnt;
   1483 }
   1484 
   1485 /* free_c_table			INTERNAL
   1486  **
   1487  * Unmaps the given C table from use and returns it to the pool for
   1488  * re-use.  Returns the number of pages that were invalidated.
   1489  *
   1490  * This function preserves any physical page modification information
   1491  * contained in the page descriptors within the C table by calling
   1492  * 'pmap_remove_pte().'
   1493  */
   1494 int
   1495 free_c_table(c_tbl, relink)
   1496 	c_tmgr_t *c_tbl;
   1497 	boolean_t relink;
   1498 {
   1499 	int i, removed_cnt;
   1500 
   1501 	removed_cnt = 0;
   1502 	if (c_tbl->ct_ecnt) {
   1503 		for (i=0; i < MMU_C_TBL_SIZE; i++) {
   1504 			if (MMU_VALID_DT(c_tbl->ct_dtbl[i])) {
   1505 				pmap_remove_pte(&c_tbl->ct_dtbl[i]);
   1506 				removed_cnt++;
   1507 			}
   1508 		}
   1509 		c_tbl->ct_ecnt = 0;
   1510 	}
   1511 
   1512 	if (relink) {
   1513 		c_tbl->ct_parent = NULL;
   1514 		TAILQ_REMOVE(&c_pool, c_tbl, ct_link);
   1515 		TAILQ_INSERT_HEAD(&c_pool, c_tbl, ct_link);
   1516 	}
   1517 	return removed_cnt;
   1518 }
   1519 
   1520 #if 0
   1521 /* free_c_table_novalid			INTERNAL
   1522  **
   1523  * Frees the given C table manager without checking to see whether
   1524  * or not it contains any valid page descriptors as it is assumed
   1525  * that it does not.
   1526  */
   1527 void
   1528 free_c_table_novalid(c_tbl)
   1529 	c_tmgr_t *c_tbl;
   1530 {
   1531 	TAILQ_REMOVE(&c_pool, c_tbl, ct_link);
   1532 	TAILQ_INSERT_HEAD(&c_pool, c_tbl, ct_link);
   1533 	c_tbl->ct_parent->bt_dtbl[c_tbl->ct_pidx].attr.raw = MMU_DT_INVALID;
   1534 	c_tbl->ct_parent->bt_ecnt--;
   1535 	/*
   1536 	 * XXX - Should call equiv. of 'free_b_table_novalid' here if
   1537 	 * we just removed the last entry of the parent B table.
   1538 	 * But I want to insure that this will not endanger pmap_enter()
   1539 	 * with sudden removal of tables it is working with.
   1540 	 *
   1541 	 * We should probably add another field to each table, indicating
   1542 	 * whether or not it is 'locked', ie. in the process of being
   1543 	 * modified.
   1544 	 */
   1545 	c_tbl->ct_parent = NULL;
   1546 }
   1547 #endif
   1548 
   1549 /* pmap_remove_pte			INTERNAL
   1550  **
   1551  * Unmap the given pte and preserve any page modification
   1552  * information by transfering it to the pv head of the
   1553  * physical page it maps to.  This function does not update
   1554  * any reference counts because it is assumed that the calling
   1555  * function will do so.
   1556  */
   1557 void
   1558 pmap_remove_pte(pte)
   1559 	mmu_short_pte_t *pte;
   1560 {
   1561 	u_short     pv_idx, targ_idx;
   1562 	int         s;
   1563 	vm_offset_t pa;
   1564 	pv_t       *pv;
   1565 
   1566 	pa = MMU_PTE_PA(*pte);
   1567 	if (is_managed(pa)) {
   1568 		pv = pa2pv(pa);
   1569 		targ_idx = pteidx(pte);	/* Index of PTE being removed    */
   1570 
   1571 		/*
   1572 		 * If the PTE being removed is the first (or only) PTE in
   1573 		 * the list of PTEs currently mapped to this page, remove the
   1574 		 * PTE by changing the index found on the PV head.  Otherwise
   1575 		 * a linear search through the list will have to be executed
   1576 		 * in order to find the PVE which points to the PTE being
   1577 		 * removed, so that it may be modified to point to its new
   1578 		 * neighbor.
   1579 		 */
   1580 		s = splimp();
   1581 		pv_idx = pv->pv_idx;	/* Index of first PTE in PV list */
   1582 		if (pv_idx == targ_idx) {
   1583 			pv->pv_idx = pvebase[targ_idx].pve_next;
   1584 		} else {
   1585 			/*
   1586 			 * Find the PV element which points to the target
   1587 			 * element.
   1588 			 */
   1589 			while (pvebase[pv_idx].pve_next != targ_idx) {
   1590 				pv_idx = pvebase[pv_idx].pve_next;
   1591 #ifdef	DIAGNOSTIC
   1592 				if (pv_idx == PVE_EOL)
   1593 					panic("pmap_remove_pte: pv list end!");
   1594 #endif
   1595 			}
   1596 
   1597 			/*
   1598 			 * At this point, pv_idx is the index of the PV
   1599 			 * element just before the target element in the list.
   1600 			 * Unlink the target.
   1601 			 */
   1602 			pvebase[pv_idx].pve_next = pvebase[targ_idx].pve_next;
   1603 		}
   1604 		/*
   1605 		 * Save the mod/ref bits of the pte by simply
   1606 		 * ORing the entire pte onto the pv_flags member
   1607 		 * of the pv structure.
   1608 		 * There is no need to use a separate bit pattern
   1609 		 * for usage information on the pv head than that
   1610 		 * which is used on the MMU ptes.
   1611 		 */
   1612 		pv->pv_flags |= (u_short) pte->attr.raw;
   1613 		splx(s);
   1614 	}
   1615 
   1616 	pte->attr.raw = MMU_DT_INVALID;
   1617 }
   1618 
   1619 /* pmap_stroll			INTERNAL
   1620  **
   1621  * Retrieve the addresses of all table managers involved in the mapping of
   1622  * the given virtual address.  If the table walk completed sucessfully,
   1623  * return TRUE.  If it was only partially sucessful, return FALSE.
   1624  * The table walk performed by this function is important to many other
   1625  * functions in this module.
   1626  *
   1627  * Note: This function ought to be easier to read.
   1628  */
   1629 boolean_t
   1630 pmap_stroll(pmap, va, a_tbl, b_tbl, c_tbl, pte, a_idx, b_idx, pte_idx)
   1631 	pmap_t pmap;
   1632 	vm_offset_t va;
   1633 	a_tmgr_t **a_tbl;
   1634 	b_tmgr_t **b_tbl;
   1635 	c_tmgr_t **c_tbl;
   1636 	mmu_short_pte_t **pte;
   1637 	int *a_idx, *b_idx, *pte_idx;
   1638 {
   1639 	mmu_long_dte_t *a_dte;   /* A: long descriptor table          */
   1640 	mmu_short_dte_t *b_dte;  /* B: short descriptor table         */
   1641 
   1642 	if (pmap == pmap_kernel())
   1643 		return FALSE;
   1644 
   1645 	/* Does the given pmap have its own A table? */
   1646 	*a_tbl = pmap->pm_a_tmgr;
   1647 	if (*a_tbl == NULL)
   1648 		return FALSE; /* No.  Return unknown. */
   1649 	/* Does the A table have a valid B table
   1650 	 * under the corresponding table entry?
   1651 	 */
   1652 	*a_idx = MMU_TIA(va);
   1653 	a_dte = &((*a_tbl)->at_dtbl[*a_idx]);
   1654 	if (!MMU_VALID_DT(*a_dte))
   1655 		return FALSE; /* No. Return unknown. */
   1656 	/* Yes. Extract B table from the A table. */
   1657 	*b_tbl = mmuB2tmgr(mmu_ptov(a_dte->addr.raw));
   1658 	/* Does the B table have a valid C table
   1659 	 * under the corresponding table entry?
   1660 	 */
   1661 	*b_idx = MMU_TIB(va);
   1662 	b_dte = &((*b_tbl)->bt_dtbl[*b_idx]);
   1663 	if (!MMU_VALID_DT(*b_dte))
   1664 		return FALSE; /* No. Return unknown. */
   1665 	/* Yes. Extract C table from the B table. */
   1666 	*c_tbl = mmuC2tmgr(mmu_ptov(MMU_DTE_PA(*b_dte)));
   1667 	*pte_idx = MMU_TIC(va);
   1668 	*pte = &((*c_tbl)->ct_dtbl[*pte_idx]);
   1669 
   1670 	return	TRUE;
   1671 }
   1672 
   1673 /* pmap_enter			INTERFACE
   1674  **
   1675  * Called by the kernel to map a virtual address
   1676  * to a physical address in the given process map.
   1677  *
   1678  * Note: this function should apply an exclusive lock
   1679  * on the pmap system for its duration.  (it certainly
   1680  * would save my hair!!)
   1681  * This function ought to be easier to read.
   1682  */
   1683 void
   1684 pmap_enter(pmap, va, pa, prot, wired)
   1685 	pmap_t	pmap;
   1686 	vm_offset_t va;
   1687 	vm_offset_t pa;
   1688 	vm_prot_t prot;
   1689 	boolean_t wired;
   1690 {
   1691 	boolean_t insert, managed; /* Marks the need for PV insertion.*/
   1692 	u_short nidx;            /* PV list index                     */
   1693 	int s;                   /* Used for splimp()/splx()          */
   1694 	int flags;               /* Mapping flags. eg. Cache inhibit  */
   1695 	u_int a_idx, b_idx, pte_idx; /* table indices                 */
   1696 	a_tmgr_t *a_tbl;         /* A: long descriptor table manager  */
   1697 	b_tmgr_t *b_tbl;         /* B: short descriptor table manager */
   1698 	c_tmgr_t *c_tbl;         /* C: short page table manager       */
   1699 	mmu_long_dte_t *a_dte;   /* A: long descriptor table          */
   1700 	mmu_short_dte_t *b_dte;  /* B: short descriptor table         */
   1701 	mmu_short_pte_t *c_pte;  /* C: short page descriptor table    */
   1702 	pv_t      *pv;           /* pv list head                      */
   1703 	enum {NONE, NEWA, NEWB, NEWC} llevel; /* used at end   */
   1704 
   1705 	if (pmap == NULL)
   1706 		return;
   1707 	if (pmap == pmap_kernel()) {
   1708 		pmap_enter_kernel(va, pa, prot);
   1709 		return;
   1710 	}
   1711 
   1712 	flags  = (pa & ~MMU_PAGE_MASK);
   1713 	pa    &= MMU_PAGE_MASK;
   1714 
   1715 	/*
   1716 	 * Determine if the physical address being mapped is on-board RAM.
   1717 	 * Any other area of the address space is likely to belong to a
   1718 	 * device and hence it would be disasterous to cache its contents.
   1719 	 */
   1720 	if ((managed = is_managed(pa)) == FALSE)
   1721 		flags |= PMAP_NC;
   1722 
   1723 	/*
   1724 	 * For user mappings we walk along the MMU tables of the given
   1725 	 * pmap, reaching a PTE which describes the virtual page being
   1726 	 * mapped or changed.  If any level of the walk ends in an invalid
   1727 	 * entry, a table must be allocated and the entry must be updated
   1728 	 * to point to it.
   1729 	 * There is a bit of confusion as to whether this code must be
   1730 	 * re-entrant.  For now we will assume it is.  To support
   1731 	 * re-entrancy we must unlink tables from the table pool before
   1732 	 * we assume we may use them.  Tables are re-linked into the pool
   1733 	 * when we are finished with them at the end of the function.
   1734 	 * But I don't feel like doing that until we have proof that this
   1735 	 * needs to be re-entrant.
   1736 	 * 'llevel' records which tables need to be relinked.
   1737 	 */
   1738 	llevel = NONE;
   1739 
   1740 	/*
   1741 	 * Step 1 - Retrieve the A table from the pmap.  If it has no
   1742 	 * A table, allocate a new one from the available pool.
   1743 	 */
   1744 
   1745 	a_tbl = pmap->pm_a_tmgr;
   1746 	if (a_tbl == NULL) {
   1747 		/*
   1748 		 * This pmap does not currently have an A table.  Allocate
   1749 		 * a new one.
   1750 		 */
   1751 		a_tbl = get_a_table();
   1752 		a_tbl->at_parent = pmap;
   1753 
   1754 		/*
   1755 		 * Assign this new A table to the pmap, and calculate its
   1756 		 * physical address so that loadcrp() can be used to make
   1757 		 * the table active.
   1758 		 */
   1759 		pmap->pm_a_tmgr = a_tbl;
   1760 		pmap->pm_a_phys = mmu_vtop(a_tbl->at_dtbl);
   1761 
   1762 		/*
   1763 		 * If the process receiving a new A table is the current
   1764 		 * process, we are responsible for setting the MMU so that
   1765 		 * it becomes the current address space.  This only adds
   1766 		 * new mappings, so no need to flush anything.
   1767 		 */
   1768 		if (pmap == current_pmap()) {
   1769 			kernel_crp.rp_addr = pmap->pm_a_phys;
   1770 			loadcrp(&kernel_crp);
   1771 		}
   1772 
   1773 		if (!wired)
   1774 			llevel = NEWA;
   1775 	} else {
   1776 		/*
   1777 		 * Use the A table already allocated for this pmap.
   1778 		 * Unlink it from the A table pool if necessary.
   1779 		 */
   1780 		if (wired && !a_tbl->at_wcnt)
   1781 			TAILQ_REMOVE(&a_pool, a_tbl, at_link);
   1782 	}
   1783 
   1784 	/*
   1785 	 * Step 2 - Walk into the B table.  If there is no valid B table,
   1786 	 * allocate one.
   1787 	 */
   1788 
   1789 	a_idx = MMU_TIA(va);            /* Calculate the TIA of the VA. */
   1790 	a_dte = &a_tbl->at_dtbl[a_idx]; /* Retrieve descriptor from table */
   1791 	if (MMU_VALID_DT(*a_dte)) {     /* Is the descriptor valid? */
   1792 		/* The descriptor is valid.  Use the B table it points to. */
   1793 		/*************************************
   1794 		 *               a_idx               *
   1795 		 *                 v                 *
   1796 		 * a_tbl -> +-+-+-+-+-+-+-+-+-+-+-+- *
   1797 		 *          | | | | | | | | | | | |  *
   1798 		 *          +-+-+-+-+-+-+-+-+-+-+-+- *
   1799 		 *                 |                 *
   1800 		 *                 \- b_tbl -> +-+-  *
   1801 		 *                             | |   *
   1802 		 *                             +-+-  *
   1803 		 *************************************/
   1804 		b_dte = mmu_ptov(a_dte->addr.raw);
   1805 		b_tbl = mmuB2tmgr(b_dte);
   1806 
   1807 		/*
   1808 		 * If the requested mapping must be wired, but this table
   1809 		 * being used to map it is not, the table must be removed
   1810 		 * from the available pool and its wired entry count
   1811 		 * incremented.
   1812 		 */
   1813 		if (wired && !b_tbl->bt_wcnt) {
   1814 			TAILQ_REMOVE(&b_pool, b_tbl, bt_link);
   1815 			a_tbl->at_wcnt++;
   1816 		}
   1817 	} else {
   1818 		/* The descriptor is invalid.  Allocate a new B table. */
   1819 		b_tbl = get_b_table();
   1820 
   1821 		/* Point the parent A table descriptor to this new B table. */
   1822 		a_dte->addr.raw = mmu_vtop(b_tbl->bt_dtbl);
   1823 		a_dte->attr.raw = MMU_LONG_DTE_LU | MMU_DT_SHORT;
   1824 		a_tbl->at_ecnt++; /* Update parent's valid entry count */
   1825 
   1826 		/* Create the necessary back references to the parent table */
   1827 		b_tbl->bt_parent = a_tbl;
   1828 		b_tbl->bt_pidx = a_idx;
   1829 
   1830 		/*
   1831 		 * If this table is to be wired, make sure the parent A table
   1832 		 * wired count is updated to reflect that it has another wired
   1833 		 * entry.
   1834 		 */
   1835 		if (wired)
   1836 			a_tbl->at_wcnt++;
   1837 		else if (llevel == NONE)
   1838 			llevel = NEWB;
   1839 	}
   1840 
   1841 	/*
   1842 	 * Step 3 - Walk into the C table, if there is no valid C table,
   1843 	 * allocate one.
   1844 	 */
   1845 
   1846 	b_idx = MMU_TIB(va);            /* Calculate the TIB of the VA */
   1847 	b_dte = &b_tbl->bt_dtbl[b_idx]; /* Retrieve descriptor from table */
   1848 	if (MMU_VALID_DT(*b_dte)) {     /* Is the descriptor valid? */
   1849 		/* The descriptor is valid.  Use the C table it points to. */
   1850 		/**************************************
   1851 		 *               c_idx                *
   1852 		 * |                v                 *
   1853 		 * \- b_tbl -> +-+-+-+-+-+-+-+-+-+-+- *
   1854 		 *             | | | | | | | | | | |  *
   1855 		 *             +-+-+-+-+-+-+-+-+-+-+- *
   1856 		 *                  |                 *
   1857 		 *                  \- c_tbl -> +-+-- *
   1858 		 *                              | | | *
   1859 		 *                              +-+-- *
   1860 		 **************************************/
   1861 		c_pte = mmu_ptov(MMU_PTE_PA(*b_dte));
   1862 		c_tbl = mmuC2tmgr(c_pte);
   1863 
   1864 		/* If mapping is wired and table is not */
   1865 		if (wired && !c_tbl->ct_wcnt) {
   1866 			TAILQ_REMOVE(&c_pool, c_tbl, ct_link);
   1867 			b_tbl->bt_wcnt++;
   1868 		}
   1869 	} else {
   1870 		/* The descriptor is invalid.  Allocate a new C table. */
   1871 		c_tbl = get_c_table();
   1872 
   1873 		/* Point the parent B table descriptor to this new C table. */
   1874 		b_dte->attr.raw = mmu_vtop(c_tbl->ct_dtbl);
   1875 		b_dte->attr.raw |= MMU_DT_SHORT;
   1876 		b_tbl->bt_ecnt++; /* Update parent's valid entry count */
   1877 
   1878 		/* Create the necessary back references to the parent table */
   1879 		c_tbl->ct_parent = b_tbl;
   1880 		c_tbl->ct_pidx = b_idx;
   1881 		/*
   1882 		 * Store the pmap and base virtual managed address for faster
   1883 		 * retrieval in the PV functions.
   1884 		 */
   1885 		c_tbl->ct_pmap = pmap;
   1886 		c_tbl->ct_va = (va & (MMU_TIA_MASK|MMU_TIB_MASK));
   1887 
   1888 		/*
   1889 		 * If this table is to be wired, make sure the parent B table
   1890 		 * wired count is updated to reflect that it has another wired
   1891 		 * entry.
   1892 		 */
   1893 		if (wired)
   1894 			b_tbl->bt_wcnt++;
   1895 		else if (llevel == NONE)
   1896 			llevel = NEWC;
   1897 	}
   1898 
   1899 	/*
   1900 	 * Step 4 - Deposit a page descriptor (PTE) into the appropriate
   1901 	 * slot of the C table, describing the PA to which the VA is mapped.
   1902 	 */
   1903 
   1904 	pte_idx = MMU_TIC(va);
   1905 	c_pte = &c_tbl->ct_dtbl[pte_idx];
   1906 	if (MMU_VALID_DT(*c_pte)) { /* Is the entry currently valid? */
   1907 		/*
   1908 		 * The PTE is currently valid.  This particular call
   1909 		 * is just a synonym for one (or more) of the following
   1910 		 * operations:
   1911 		 *     change protection of a page
   1912 		 *     change wiring status of a page
   1913 		 *     remove the mapping of a page
   1914 		 *
   1915 		 * XXX - Semi critical: This code should unwire the PTE
   1916 		 * and, possibly, associated parent tables if this is a
   1917 		 * change wiring operation.  Currently it does not.
   1918 		 *
   1919 		 * This may be ok if pmap_change_wiring() is the only
   1920 		 * interface used to UNWIRE a page.
   1921 		 */
   1922 
   1923 		/* First check if this is a wiring operation. */
   1924 		if (wired && (c_pte->attr.raw & MMU_SHORT_PTE_WIRED)) {
   1925 			/*
   1926 			 * The PTE is already wired.  To prevent it from being
   1927 			 * counted as a new wiring operation, reset the 'wired'
   1928 			 * variable.
   1929 			 */
   1930 			wired = FALSE;
   1931 		}
   1932 
   1933 		/* Is the new address the same as the old? */
   1934 		if (MMU_PTE_PA(*c_pte) == pa) {
   1935 			/*
   1936 			 * Yes, mark that it does not need to be reinserted
   1937 			 * into the PV list.
   1938 			 */
   1939 			insert = FALSE;
   1940 
   1941 			/*
   1942 			 * Clear all but the modified, referenced and wired
   1943 			 * bits on the PTE.
   1944 			 */
   1945 			c_pte->attr.raw &= (MMU_SHORT_PTE_M
   1946 				| MMU_SHORT_PTE_USED | MMU_SHORT_PTE_WIRED);
   1947 		} else {
   1948 			/* No, remove the old entry */
   1949 			pmap_remove_pte(c_pte);
   1950 			insert = TRUE;
   1951 		}
   1952 
   1953 		/*
   1954 		 * TLB flush is only necessary if modifying current map.
   1955 		 * However, in pmap_enter(), the pmap almost always IS
   1956 		 * the current pmap, so don't even bother to check.
   1957 		 */
   1958 		TBIS(va);
   1959 	} else {
   1960 		/*
   1961 		 * The PTE is invalid.  Increment the valid entry count in
   1962 		 * the C table manager to reflect the addition of a new entry.
   1963 		 */
   1964 		c_tbl->ct_ecnt++;
   1965 
   1966 		/* XXX - temporarily make sure the PTE is cleared. */
   1967 		c_pte->attr.raw = 0;
   1968 
   1969 		/* It will also need to be inserted into the PV list. */
   1970 		insert = TRUE;
   1971 	}
   1972 
   1973 	/*
   1974 	 * If page is changing from unwired to wired status, set an unused bit
   1975 	 * within the PTE to indicate that it is wired.  Also increment the
   1976 	 * wired entry count in the C table manager.
   1977 	 */
   1978 	if (wired) {
   1979 		c_pte->attr.raw |= MMU_SHORT_PTE_WIRED;
   1980 		c_tbl->ct_wcnt++;
   1981 	}
   1982 
   1983 	/*
   1984 	 * Map the page, being careful to preserve modify/reference/wired
   1985 	 * bits.  At this point it is assumed that the PTE either has no bits
   1986 	 * set, or if there are set bits, they are only modified, reference or
   1987 	 * wired bits.  If not, the following statement will cause erratic
   1988 	 * behavior.
   1989 	 */
   1990 #ifdef	PMAP_DEBUG
   1991 	if (c_pte->attr.raw & ~(MMU_SHORT_PTE_M |
   1992 		MMU_SHORT_PTE_USED | MMU_SHORT_PTE_WIRED)) {
   1993 		printf("pmap_enter: junk left in PTE at %p\n", c_pte);
   1994 		Debugger();
   1995 	}
   1996 #endif
   1997 	c_pte->attr.raw |= ((u_long) pa | MMU_DT_PAGE);
   1998 
   1999 	/*
   2000 	 * If the mapping should be read-only, set the write protect
   2001 	 * bit in the PTE.
   2002 	 */
   2003 	if (!(prot & VM_PROT_WRITE))
   2004 		c_pte->attr.raw |= MMU_SHORT_PTE_WP;
   2005 
   2006 	/*
   2007 	 * If the mapping should be cache inhibited (indicated by the flag
   2008 	 * bits found on the lower order of the physical address.)
   2009 	 * mark the PTE as a cache inhibited page.
   2010 	 */
   2011 	if (flags & PMAP_NC)
   2012 		c_pte->attr.raw |= MMU_SHORT_PTE_CI;
   2013 
   2014 	/*
   2015 	 * If the physical address being mapped is managed by the PV
   2016 	 * system then link the pte into the list of pages mapped to that
   2017 	 * address.
   2018 	 */
   2019 	if (insert && managed) {
   2020 		pv = pa2pv(pa);
   2021 		nidx = pteidx(c_pte);
   2022 
   2023 		s = splimp();
   2024 		pvebase[nidx].pve_next = pv->pv_idx;
   2025 		pv->pv_idx = nidx;
   2026 		splx(s);
   2027 	}
   2028 
   2029 	/* Move any allocated tables back into the active pool. */
   2030 
   2031 	switch (llevel) {
   2032 		case NEWA:
   2033 			TAILQ_INSERT_TAIL(&a_pool, a_tbl, at_link);
   2034 			/* FALLTHROUGH */
   2035 		case NEWB:
   2036 			TAILQ_INSERT_TAIL(&b_pool, b_tbl, bt_link);
   2037 			/* FALLTHROUGH */
   2038 		case NEWC:
   2039 			TAILQ_INSERT_TAIL(&c_pool, c_tbl, ct_link);
   2040 			/* FALLTHROUGH */
   2041 		default:
   2042 			break;
   2043 	}
   2044 }
   2045 
   2046 /* pmap_enter_kernel			INTERNAL
   2047  **
   2048  * Map the given virtual address to the given physical address within the
   2049  * kernel address space.  This function exists because the kernel map does
   2050  * not do dynamic table allocation.  It consists of a contiguous array of ptes
   2051  * and can be edited directly without the need to walk through any tables.
   2052  *
   2053  * XXX: "Danger, Will Robinson!"
   2054  * Note that the kernel should never take a fault on any page
   2055  * between [ KERNBASE .. virtual_avail ] and this is checked in
   2056  * trap.c for kernel-mode MMU faults.  This means that mappings
   2057  * created in that range must be implicily wired. -gwr
   2058  */
   2059 void
   2060 pmap_enter_kernel(va, pa, prot)
   2061 	vm_offset_t va;
   2062 	vm_offset_t pa;
   2063 	vm_prot_t   prot;
   2064 {
   2065 	boolean_t       was_valid, insert;
   2066 	u_short         pte_idx, pv_idx;
   2067 	int             s, flags;
   2068 	mmu_short_pte_t *pte;
   2069 	pv_t            *pv;
   2070 	vm_offset_t     old_pa;
   2071 
   2072 	flags  = (pa & ~MMU_PAGE_MASK);
   2073 	pa    &= MMU_PAGE_MASK;
   2074 
   2075 	/*
   2076 	 * Calculate the index of the PTE being modified.
   2077 	 */
   2078 	pte_idx = (u_long) m68k_btop(va - KERNBASE);
   2079 
   2080 	/* This array is traditionally named "Sysmap" */
   2081 	pte = &kernCbase[pte_idx];
   2082 
   2083 	s = splimp();
   2084 	if (MMU_VALID_DT(*pte)) {
   2085 		was_valid = TRUE;
   2086 		/*
   2087 		 * If the PTE is already mapped to an address and it differs
   2088 		 * from the address requested, unlink it from the PV list.
   2089 		 */
   2090 		old_pa = MMU_PTE_PA(*pte);
   2091 		if (pa != old_pa) {
   2092 		    if (is_managed(old_pa)) {
   2093 		        /* XXX - Make this into a function call? */
   2094 		        pv = pa2pv(old_pa);
   2095 		        pv_idx = pv->pv_idx;
   2096 		        if (pv_idx == pte_idx) {
   2097 		            pv->pv_idx = pvebase[pte_idx].pve_next;
   2098 		        } else {
   2099 		            while (pvebase[pv_idx].pve_next != pte_idx)
   2100 		                pv_idx = pvebase[pv_idx].pve_next;
   2101 		            pvebase[pv_idx].pve_next =
   2102 		                pvebase[pte_idx].pve_next;
   2103 		        }
   2104 		        /* Save modified/reference bits */
   2105 		        pv->pv_flags |= (u_short) pte->attr.raw;
   2106 		    }
   2107 		    if (is_managed(pa))
   2108 		        insert = TRUE;
   2109 		    else
   2110 		        insert = FALSE;
   2111 		    /*
   2112 		     * Clear out any old bits in the PTE.
   2113 		     */
   2114 		    pte->attr.raw = MMU_DT_INVALID;
   2115 		} else {
   2116 		    /*
   2117 		     * Old PA and new PA are the same.  No need to relink
   2118 		     * the mapping within the PV list.
   2119 		     */
   2120 		     insert = FALSE;
   2121 
   2122 		    /*
   2123 		     * Save any mod/ref bits on the PTE.
   2124 		     */
   2125 		    pte->attr.raw &= (MMU_SHORT_PTE_USED|MMU_SHORT_PTE_M);
   2126 		}
   2127 	} else {
   2128 		pte->attr.raw = MMU_DT_INVALID;
   2129 		was_valid = FALSE;
   2130 		if (is_managed(pa))
   2131 			insert = TRUE;
   2132 		else
   2133 			insert = FALSE;
   2134 	}
   2135 
   2136 	/*
   2137 	 * Map the page.  Being careful to preserve modified/referenced bits
   2138 	 * on the PTE.
   2139 	 */
   2140 	pte->attr.raw |= (pa | MMU_DT_PAGE);
   2141 
   2142 	if (!(prot & VM_PROT_WRITE)) /* If access should be read-only */
   2143 		pte->attr.raw |= MMU_SHORT_PTE_WP;
   2144 	if (flags & PMAP_NC)
   2145 		pte->attr.raw |= MMU_SHORT_PTE_CI;
   2146 	if (was_valid)
   2147 		TBIS(va);
   2148 
   2149 	/*
   2150 	 * Insert the PTE into the PV system, if need be.
   2151 	 */
   2152 	if (insert) {
   2153 		pv = pa2pv(pa);
   2154 		pvebase[pte_idx].pve_next = pv->pv_idx;
   2155 		pv->pv_idx = pte_idx;
   2156 	}
   2157 	splx(s);
   2158 
   2159 }
   2160 
   2161 /* pmap_protect			INTERFACE
   2162  **
   2163  * Apply the given protection to the given virtual address range within
   2164  * the given map.
   2165  *
   2166  * It is ok for the protection applied to be stronger than what is
   2167  * specified.  We use this to our advantage when the given map has no
   2168  * mapping for the virtual address.  By skipping a page when this
   2169  * is discovered, we are effectively applying a protection of VM_PROT_NONE,
   2170  * and therefore do not need to map the page just to apply a protection
   2171  * code.  Only pmap_enter() needs to create new mappings if they do not exist.
   2172  *
   2173  * XXX - This function could be speeded up by using pmap_stroll() for inital
   2174  *       setup, and then manual scrolling in the for() loop.
   2175  */
   2176 void
   2177 pmap_protect(pmap, startva, endva, prot)
   2178 	pmap_t pmap;
   2179 	vm_offset_t startva, endva;
   2180 	vm_prot_t prot;
   2181 {
   2182 	boolean_t iscurpmap;
   2183 	int a_idx, b_idx, c_idx;
   2184 	a_tmgr_t *a_tbl;
   2185 	b_tmgr_t *b_tbl;
   2186 	c_tmgr_t *c_tbl;
   2187 	mmu_short_pte_t *pte;
   2188 
   2189 	if (pmap == NULL)
   2190 		return;
   2191 	if (pmap == pmap_kernel()) {
   2192 		pmap_protect_kernel(startva, endva, prot);
   2193 		return;
   2194 	}
   2195 
   2196 	/*
   2197 	 * In this particular pmap implementation, there are only three
   2198 	 * types of memory protection: 'all' (read/write/execute),
   2199 	 * 'read-only' (read/execute) and 'none' (no mapping.)
   2200 	 * It is not possible for us to treat 'executable' as a separate
   2201 	 * protection type.  Therefore, protection requests that seek to
   2202 	 * remove execute permission while retaining read or write, and those
   2203 	 * that make little sense (write-only for example) are ignored.
   2204 	 */
   2205 	switch (prot) {
   2206 		case VM_PROT_NONE:
   2207 			/*
   2208 			 * A request to apply the protection code of
   2209 			 * 'VM_PROT_NONE' is a synonym for pmap_remove().
   2210 			 */
   2211 			pmap_remove(pmap, startva, endva);
   2212 			return;
   2213 		case	VM_PROT_EXECUTE:
   2214 		case	VM_PROT_READ:
   2215 		case	VM_PROT_READ|VM_PROT_EXECUTE:
   2216 			/* continue */
   2217 			break;
   2218 		case	VM_PROT_WRITE:
   2219 		case	VM_PROT_WRITE|VM_PROT_READ:
   2220 		case	VM_PROT_WRITE|VM_PROT_EXECUTE:
   2221 		case	VM_PROT_ALL:
   2222 			/* None of these should happen in a sane system. */
   2223 			return;
   2224 	}
   2225 
   2226 	/*
   2227 	 * If the pmap has no A table, it has no mappings and therefore
   2228 	 * there is nothing to protect.
   2229 	 */
   2230 	if ((a_tbl = pmap->pm_a_tmgr) == NULL)
   2231 		return;
   2232 
   2233 	a_idx = MMU_TIA(startva);
   2234 	b_idx = MMU_TIB(startva);
   2235 	c_idx = MMU_TIC(startva);
   2236 	b_tbl = (b_tmgr_t *) c_tbl = NULL;
   2237 
   2238 	iscurpmap = (pmap == current_pmap());
   2239 	while (startva < endva) {
   2240 		if (b_tbl || MMU_VALID_DT(a_tbl->at_dtbl[a_idx])) {
   2241 		  if (b_tbl == NULL) {
   2242 		    b_tbl = (b_tmgr_t *) a_tbl->at_dtbl[a_idx].addr.raw;
   2243 		    b_tbl = mmu_ptov((vm_offset_t) b_tbl);
   2244 		    b_tbl = mmuB2tmgr((mmu_short_dte_t *) b_tbl);
   2245 		  }
   2246 		  if (c_tbl || MMU_VALID_DT(b_tbl->bt_dtbl[b_idx])) {
   2247 		    if (c_tbl == NULL) {
   2248 		      c_tbl = (c_tmgr_t *) MMU_DTE_PA(b_tbl->bt_dtbl[b_idx]);
   2249 		      c_tbl = mmu_ptov((vm_offset_t) c_tbl);
   2250 		      c_tbl = mmuC2tmgr((mmu_short_pte_t *) c_tbl);
   2251 		    }
   2252 		    if (MMU_VALID_DT(c_tbl->ct_dtbl[c_idx])) {
   2253 		      pte = &c_tbl->ct_dtbl[c_idx];
   2254 		      /* make the mapping read-only */
   2255 		      pte->attr.raw |= MMU_SHORT_PTE_WP;
   2256 		      /*
   2257 		       * If we just modified the current address space,
   2258 		       * flush any translations for the modified page from
   2259 		       * the translation cache and any data from it in the
   2260 		       * data cache.
   2261 		       */
   2262 		      if (iscurpmap)
   2263 		          TBIS(startva);
   2264 		    }
   2265 		    startva += NBPG;
   2266 
   2267 		    if (++c_idx >= MMU_C_TBL_SIZE) { /* exceeded C table? */
   2268 		      c_tbl = NULL;
   2269 		      c_idx = 0;
   2270 		      if (++b_idx >= MMU_B_TBL_SIZE) { /* exceeded B table? */
   2271 		        b_tbl = NULL;
   2272 		        b_idx = 0;
   2273 		      }
   2274 		    }
   2275 		  } else { /* C table wasn't valid */
   2276 		    c_tbl = NULL;
   2277 		    c_idx = 0;
   2278 		    startva += MMU_TIB_RANGE;
   2279 		    if (++b_idx >= MMU_B_TBL_SIZE) { /* exceeded B table? */
   2280 		      b_tbl = NULL;
   2281 		      b_idx = 0;
   2282 		    }
   2283 		  } /* C table */
   2284 		} else { /* B table wasn't valid */
   2285 		  b_tbl = NULL;
   2286 		  b_idx = 0;
   2287 		  startva += MMU_TIA_RANGE;
   2288 		  a_idx++;
   2289 		} /* B table */
   2290 	}
   2291 }
   2292 
   2293 /* pmap_protect_kernel			INTERNAL
   2294  **
   2295  * Apply the given protection code to a kernel address range.
   2296  */
   2297 void
   2298 pmap_protect_kernel(startva, endva, prot)
   2299 	vm_offset_t startva, endva;
   2300 	vm_prot_t prot;
   2301 {
   2302 	vm_offset_t va;
   2303 	mmu_short_pte_t *pte;
   2304 
   2305 	pte = &kernCbase[(unsigned long) m68k_btop(startva - KERNBASE)];
   2306 	for (va = startva; va < endva; va += NBPG, pte++) {
   2307 		if (MMU_VALID_DT(*pte)) {
   2308 		    switch (prot) {
   2309 		        case VM_PROT_ALL:
   2310 		            break;
   2311 		        case VM_PROT_EXECUTE:
   2312 		        case VM_PROT_READ:
   2313 		        case VM_PROT_READ|VM_PROT_EXECUTE:
   2314 		            pte->attr.raw |= MMU_SHORT_PTE_WP;
   2315 		            break;
   2316 		        case VM_PROT_NONE:
   2317 		            /* this is an alias for 'pmap_remove_kernel' */
   2318 		            pmap_remove_pte(pte);
   2319 		            break;
   2320 		        default:
   2321 		            break;
   2322 		    }
   2323 		    /*
   2324 		     * since this is the kernel, immediately flush any cached
   2325 		     * descriptors for this address.
   2326 		     */
   2327 		    TBIS(va);
   2328 		}
   2329 	}
   2330 }
   2331 
   2332 /* pmap_change_wiring			INTERFACE
   2333  **
   2334  * Changes the wiring of the specified page.
   2335  *
   2336  * This function is called from vm_fault.c to unwire
   2337  * a mapping.  It really should be called 'pmap_unwire'
   2338  * because it is never asked to do anything but remove
   2339  * wirings.
   2340  */
   2341 void
   2342 pmap_change_wiring(pmap, va, wire)
   2343 	pmap_t pmap;
   2344 	vm_offset_t va;
   2345 	boolean_t wire;
   2346 {
   2347 	int a_idx, b_idx, c_idx;
   2348 	a_tmgr_t *a_tbl;
   2349 	b_tmgr_t *b_tbl;
   2350 	c_tmgr_t *c_tbl;
   2351 	mmu_short_pte_t *pte;
   2352 
   2353 	/* Kernel mappings always remain wired. */
   2354 	if (pmap == pmap_kernel())
   2355 		return;
   2356 
   2357 #ifdef	PMAP_DEBUG
   2358 	if (wire == TRUE)
   2359 		panic("pmap_change_wiring: wire requested.");
   2360 #endif
   2361 
   2362 	/*
   2363 	 * Walk through the tables.  If the walk terminates without
   2364 	 * a valid PTE then the address wasn't wired in the first place.
   2365 	 * Return immediately.
   2366 	 */
   2367 	if (pmap_stroll(pmap, va, &a_tbl, &b_tbl, &c_tbl, &pte, &a_idx,
   2368 		&b_idx, &c_idx) == FALSE)
   2369 		return;
   2370 
   2371 
   2372 	/* Is the PTE wired?  If not, return. */
   2373 	if (!(pte->attr.raw & MMU_SHORT_PTE_WIRED))
   2374 		return;
   2375 
   2376 	/* Remove the wiring bit. */
   2377 	pte->attr.raw &= ~(MMU_SHORT_PTE_WIRED);
   2378 
   2379 	/*
   2380 	 * Decrement the wired entry count in the C table.
   2381 	 * If it reaches zero the following things happen:
   2382 	 * 1. The table no longer has any wired entries and is considered
   2383 	 *    unwired.
   2384 	 * 2. It is placed on the available queue.
   2385 	 * 3. The parent table's wired entry count is decremented.
   2386 	 * 4. If it reaches zero, this process repeats at step 1 and
   2387 	 *    stops at after reaching the A table.
   2388 	 */
   2389 	if (--c_tbl->ct_wcnt == 0) {
   2390 		TAILQ_INSERT_TAIL(&c_pool, c_tbl, ct_link);
   2391 		if (--b_tbl->bt_wcnt == 0) {
   2392 			TAILQ_INSERT_TAIL(&b_pool, b_tbl, bt_link);
   2393 			if (--a_tbl->at_wcnt == 0) {
   2394 				TAILQ_INSERT_TAIL(&a_pool, a_tbl, at_link);
   2395 			}
   2396 		}
   2397 	}
   2398 }
   2399 
   2400 /* pmap_pageable			INTERFACE
   2401  **
   2402  * Make the specified range of addresses within the given pmap,
   2403  * 'pageable' or 'not-pageable'.  A pageable page must not cause
   2404  * any faults when referenced.  A non-pageable page may.
   2405  *
   2406  * This routine is only advisory.  The VM system will call pmap_enter()
   2407  * to wire or unwire pages that are going to be made pageable before calling
   2408  * this function.  By the time this routine is called, everything that needs
   2409  * to be done has already been done.
   2410  */
   2411 void
   2412 pmap_pageable(pmap, start, end, pageable)
   2413 	pmap_t pmap;
   2414 	vm_offset_t start, end;
   2415 	boolean_t pageable;
   2416 {
   2417 	/* not implemented. */
   2418 }
   2419 
   2420 /* pmap_copy				INTERFACE
   2421  **
   2422  * Copy the mappings of a range of addresses in one pmap, into
   2423  * the destination address of another.
   2424  *
   2425  * This routine is advisory.  Should we one day decide that MMU tables
   2426  * may be shared by more than one pmap, this function should be used to
   2427  * link them together.  Until that day however, we do nothing.
   2428  */
   2429 void
   2430 pmap_copy(pmap_a, pmap_b, dst, len, src)
   2431 	pmap_t pmap_a, pmap_b;
   2432 	vm_offset_t dst;
   2433 	vm_size_t   len;
   2434 	vm_offset_t src;
   2435 {
   2436 	/* not implemented. */
   2437 }
   2438 
   2439 /* pmap_copy_page			INTERFACE
   2440  **
   2441  * Copy the contents of one physical page into another.
   2442  *
   2443  * This function makes use of two virtual pages allocated in pmap_bootstrap()
   2444  * to map the two specified physical pages into the kernel address space.
   2445  *
   2446  * Note: We could use the transparent translation registers to make the
   2447  * mappings.  If we do so, be sure to disable interrupts before using them.
   2448  */
   2449 void
   2450 pmap_copy_page(srcpa, dstpa)
   2451 	vm_offset_t srcpa, dstpa;
   2452 {
   2453 	vm_offset_t srcva, dstva;
   2454 	int s;
   2455 
   2456 	srcva = tmp_vpages[0];
   2457 	dstva = tmp_vpages[1];
   2458 
   2459 	s = splimp();
   2460 	if (tmp_vpages_inuse++)
   2461 		panic("pmap_copy_page: temporary vpages are in use.");
   2462 
   2463 	/* Map pages as non-cacheable to avoid cache polution? */
   2464 	pmap_enter_kernel(srcva, srcpa, VM_PROT_READ);
   2465 	pmap_enter_kernel(dstva, dstpa, VM_PROT_READ|VM_PROT_WRITE);
   2466 
   2467 	/* Hand-optimized version of bcopy(src, dst, NBPG) */
   2468 	copypage((char *) srcva, (char *) dstva);
   2469 
   2470 	pmap_remove_kernel(srcva, srcva + NBPG);
   2471 	pmap_remove_kernel(dstva, dstva + NBPG);
   2472 
   2473 	--tmp_vpages_inuse;
   2474 	splx(s);
   2475 }
   2476 
   2477 /* pmap_zero_page			INTERFACE
   2478  **
   2479  * Zero the contents of the specified physical page.
   2480  *
   2481  * Uses one of the virtual pages allocated in pmap_boostrap()
   2482  * to map the specified page into the kernel address space.
   2483  */
   2484 void
   2485 pmap_zero_page(dstpa)
   2486 	vm_offset_t dstpa;
   2487 {
   2488 	vm_offset_t dstva;
   2489 	int s;
   2490 
   2491 	dstva = tmp_vpages[1];
   2492 	s = splimp();
   2493 	if (tmp_vpages_inuse++)
   2494 		panic("pmap_zero_page: temporary vpages are in use.");
   2495 
   2496 	/* The comments in pmap_copy_page() above apply here also. */
   2497 	pmap_enter_kernel(dstva, dstpa, VM_PROT_READ|VM_PROT_WRITE);
   2498 
   2499 	/* Hand-optimized version of bzero(ptr, NBPG) */
   2500 	zeropage((char *) dstva);
   2501 
   2502 	pmap_remove_kernel(dstva, dstva + NBPG);
   2503 
   2504 	--tmp_vpages_inuse;
   2505 	splx(s);
   2506 }
   2507 
   2508 /* pmap_collect			INTERFACE
   2509  **
   2510  * Called from the VM system when we are about to swap out
   2511  * the process using this pmap.  This should give up any
   2512  * resources held here, including all its MMU tables.
   2513  */
   2514 void
   2515 pmap_collect(pmap)
   2516 	pmap_t pmap;
   2517 {
   2518 	/* XXX - todo... */
   2519 }
   2520 
   2521 /* pmap_create			INTERFACE
   2522  **
   2523  * Create and return a pmap structure.
   2524  */
   2525 pmap_t
   2526 pmap_create(size)
   2527 	vm_size_t size;
   2528 {
   2529 	pmap_t	pmap;
   2530 
   2531 	if (size)
   2532 		return NULL;
   2533 
   2534 	pmap = (pmap_t) malloc(sizeof(struct pmap), M_VMPMAP, M_WAITOK);
   2535 	pmap_pinit(pmap);
   2536 
   2537 	return pmap;
   2538 }
   2539 
   2540 /* pmap_pinit			INTERNAL
   2541  **
   2542  * Initialize a pmap structure.
   2543  */
   2544 void
   2545 pmap_pinit(pmap)
   2546 	pmap_t pmap;
   2547 {
   2548 	bzero(pmap, sizeof(struct pmap));
   2549 	pmap->pm_a_tmgr = NULL;
   2550 	pmap->pm_a_phys = kernAphys;
   2551 }
   2552 
   2553 /* pmap_release				INTERFACE
   2554  **
   2555  * Release any resources held by the given pmap.
   2556  *
   2557  * This is the reverse analog to pmap_pinit.  It does not
   2558  * necessarily mean for the pmap structure to be deallocated,
   2559  * as in pmap_destroy.
   2560  */
   2561 void
   2562 pmap_release(pmap)
   2563 	pmap_t pmap;
   2564 {
   2565 	/*
   2566 	 * As long as the pmap contains no mappings,
   2567 	 * which always should be the case whenever
   2568 	 * this function is called, there really should
   2569 	 * be nothing to do.
   2570 	 */
   2571 #ifdef	PMAP_DEBUG
   2572 	if (pmap == NULL)
   2573 		return;
   2574 	if (pmap == pmap_kernel())
   2575 		panic("pmap_release: kernel pmap");
   2576 #endif
   2577 	/*
   2578 	 * XXX - If this pmap has an A table, give it back.
   2579 	 * The pmap SHOULD be empty by now, and pmap_remove
   2580 	 * should have already given back the A table...
   2581 	 * However, I see:  pmap->pm_a_tmgr->at_ecnt == 1
   2582 	 * at this point, which means some mapping was not
   2583 	 * removed when it should have been. -gwr
   2584 	 */
   2585 	if (pmap->pm_a_tmgr != NULL) {
   2586 		/* First make sure we are not using it! */
   2587 		if (kernel_crp.rp_addr == pmap->pm_a_phys) {
   2588 			kernel_crp.rp_addr = kernAphys;
   2589 			loadcrp(&kernel_crp);
   2590 		}
   2591 #ifdef	PMAP_DEBUG /* XXX - todo! */
   2592 		/* XXX - Now complain... */
   2593 		printf("pmap_release: still have table\n");
   2594 		Debugger();
   2595 #endif
   2596 		free_a_table(pmap->pm_a_tmgr, TRUE);
   2597 		pmap->pm_a_tmgr = NULL;
   2598 		pmap->pm_a_phys = kernAphys;
   2599 	}
   2600 }
   2601 
   2602 /* pmap_reference			INTERFACE
   2603  **
   2604  * Increment the reference count of a pmap.
   2605  */
   2606 void
   2607 pmap_reference(pmap)
   2608 	pmap_t pmap;
   2609 {
   2610 	if (pmap == NULL)
   2611 		return;
   2612 
   2613 	/* pmap_lock(pmap); */
   2614 	pmap->pm_refcount++;
   2615 	/* pmap_unlock(pmap); */
   2616 }
   2617 
   2618 /* pmap_dereference			INTERNAL
   2619  **
   2620  * Decrease the reference count on the given pmap
   2621  * by one and return the current count.
   2622  */
   2623 int
   2624 pmap_dereference(pmap)
   2625 	pmap_t pmap;
   2626 {
   2627 	int rtn;
   2628 
   2629 	if (pmap == NULL)
   2630 		return 0;
   2631 
   2632 	/* pmap_lock(pmap); */
   2633 	rtn = --pmap->pm_refcount;
   2634 	/* pmap_unlock(pmap); */
   2635 
   2636 	return rtn;
   2637 }
   2638 
   2639 /* pmap_destroy			INTERFACE
   2640  **
   2641  * Decrement a pmap's reference count and delete
   2642  * the pmap if it becomes zero.  Will be called
   2643  * only after all mappings have been removed.
   2644  */
   2645 void
   2646 pmap_destroy(pmap)
   2647 	pmap_t pmap;
   2648 {
   2649 	if (pmap == NULL)
   2650 		return;
   2651 	if (pmap == &kernel_pmap)
   2652 		panic("pmap_destroy: kernel_pmap!");
   2653 	if (pmap_dereference(pmap) == 0) {
   2654 		pmap_release(pmap);
   2655 		free(pmap, M_VMPMAP);
   2656 	}
   2657 }
   2658 
   2659 /* pmap_is_referenced			INTERFACE
   2660  **
   2661  * Determine if the given physical page has been
   2662  * referenced (read from [or written to.])
   2663  */
   2664 boolean_t
   2665 pmap_is_referenced(pa)
   2666 	vm_offset_t pa;
   2667 {
   2668 	pv_t      *pv;
   2669 	int       idx, s;
   2670 
   2671 	if (!pv_initialized)
   2672 		return FALSE;
   2673 	/* XXX - this may be unecessary. */
   2674 	if (!is_managed(pa))
   2675 		return FALSE;
   2676 
   2677 	pv = pa2pv(pa);
   2678 	/*
   2679 	 * Check the flags on the pv head.  If they are set,
   2680 	 * return immediately.  Otherwise a search must be done.
   2681 	 */
   2682 	if (pv->pv_flags & PV_FLAGS_USED)
   2683 		return TRUE;
   2684 	else {
   2685 		s = splimp();
   2686 		/*
   2687 		 * Search through all pv elements pointing
   2688 		 * to this page and query their reference bits
   2689 		 */
   2690 		for (idx = pv->pv_idx; idx != PVE_EOL; idx =
   2691 			pvebase[idx].pve_next)
   2692 			if (MMU_PTE_USED(kernCbase[idx])) {
   2693 				splx(s);
   2694 				return TRUE;
   2695 			}
   2696 		splx(s);
   2697 	}
   2698 
   2699 	return FALSE;
   2700 }
   2701 
   2702 /* pmap_is_modified			INTERFACE
   2703  **
   2704  * Determine if the given physical page has been
   2705  * modified (written to.)
   2706  */
   2707 boolean_t
   2708 pmap_is_modified(pa)
   2709 	vm_offset_t pa;
   2710 {
   2711 	pv_t      *pv;
   2712 	int       idx, s;
   2713 
   2714 	if (!pv_initialized)
   2715 		return FALSE;
   2716 	/* XXX - this may be unecessary. */
   2717 	if (!is_managed(pa))
   2718 		return FALSE;
   2719 
   2720 	/* see comments in pmap_is_referenced() */
   2721 	pv = pa2pv(pa);
   2722 	if (pv->pv_flags & PV_FLAGS_MDFY) {
   2723 		return TRUE;
   2724 	} else {
   2725 		s = splimp();
   2726 		for (idx = pv->pv_idx; idx != PVE_EOL; idx =
   2727 			pvebase[idx].pve_next)
   2728 			if (MMU_PTE_MODIFIED(kernCbase[idx])) {
   2729 				splx(s);
   2730 				return TRUE;
   2731 			}
   2732 		splx(s);
   2733 	}
   2734 
   2735 	return FALSE;
   2736 }
   2737 
   2738 /* pmap_page_protect			INTERFACE
   2739  **
   2740  * Applies the given protection to all mappings to the given
   2741  * physical page.
   2742  */
   2743 void
   2744 pmap_page_protect(pa, prot)
   2745 	vm_offset_t pa;
   2746 	vm_prot_t prot;
   2747 {
   2748 	pv_t      *pv;
   2749 	int       idx, s;
   2750 	vm_offset_t va;
   2751 	struct mmu_short_pte_struct *pte;
   2752 	c_tmgr_t  *c_tbl;
   2753 	pmap_t    pmap, curpmap;
   2754 
   2755 	if (!is_managed(pa))
   2756 		return;
   2757 
   2758 	curpmap = current_pmap();
   2759 	pv = pa2pv(pa);
   2760 	s = splimp();
   2761 	for (idx = pv->pv_idx; idx != PVE_EOL; idx = pvebase[idx].pve_next) {
   2762 		pte = &kernCbase[idx];
   2763 		switch (prot) {
   2764 			case VM_PROT_ALL:
   2765 				/* do nothing */
   2766 				break;
   2767 			case VM_PROT_EXECUTE:
   2768 			case VM_PROT_READ:
   2769 			case VM_PROT_READ|VM_PROT_EXECUTE:
   2770 				pte->attr.raw |= MMU_SHORT_PTE_WP;
   2771 
   2772 				/*
   2773 				 * Determine the virtual address mapped by
   2774 				 * the PTE and flush ATC entries if necessary.
   2775 				 */
   2776 				va = pmap_get_pteinfo(idx, &pmap, &c_tbl);
   2777 				if (pmap == curpmap || pmap == pmap_kernel())
   2778 					TBIS(va);
   2779 				break;
   2780 			case VM_PROT_NONE:
   2781 				/* Save the mod/ref bits. */
   2782 				pv->pv_flags |= pte->attr.raw;
   2783 				/* Invalidate the PTE. */
   2784 				pte->attr.raw = MMU_DT_INVALID;
   2785 
   2786 				/*
   2787 				 * Update table counts.  And flush ATC entries
   2788 				 * if necessary.
   2789 				 */
   2790 				va = pmap_get_pteinfo(idx, &pmap, &c_tbl);
   2791 
   2792 				/*
   2793 				 * If the PTE belongs to the kernel map,
   2794 				 * be sure to flush the page it maps.
   2795 				 */
   2796 				if (pmap == pmap_kernel()) {
   2797 					TBIS(va);
   2798 				} else {
   2799 					/*
   2800 					 * The PTE belongs to a user map.
   2801 					 * update the entry count in the C
   2802 					 * table to which it belongs and flush
   2803 					 * the ATC if the mapping belongs to
   2804 					 * the current pmap.
   2805 					 */
   2806 					c_tbl->ct_ecnt--;
   2807 					if (pmap == curpmap)
   2808 						TBIS(va);
   2809 				}
   2810 				break;
   2811 			default:
   2812 				break;
   2813 		}
   2814 	}
   2815 
   2816 	/*
   2817 	 * If the protection code indicates that all mappings to the page
   2818 	 * be removed, truncate the PV list to zero entries.
   2819 	 */
   2820 	if (prot == VM_PROT_NONE)
   2821 		pv->pv_idx = PVE_EOL;
   2822 	splx(s);
   2823 }
   2824 
   2825 /* pmap_get_pteinfo		INTERNAL
   2826  **
   2827  * Called internally to find the pmap and virtual address within that
   2828  * map to which the pte at the given index maps.  Also includes the PTE's C
   2829  * table manager.
   2830  *
   2831  * Returns the pmap in the argument provided, and the virtual address
   2832  * by return value.
   2833  */
   2834 vm_offset_t
   2835 pmap_get_pteinfo(idx, pmap, tbl)
   2836 	u_int idx;
   2837 	pmap_t *pmap;
   2838 	c_tmgr_t **tbl;
   2839 {
   2840 	vm_offset_t     va = 0;
   2841 
   2842 	/*
   2843 	 * Determine if the PTE is a kernel PTE or a user PTE.
   2844 	 */
   2845 	if (idx >= NUM_KERN_PTES) {
   2846 		/*
   2847 		 * The PTE belongs to a user mapping.
   2848 		 */
   2849 		/* XXX: Would like an inline for this to validate idx... */
   2850 		*tbl = &Ctmgrbase[(idx - NUM_KERN_PTES) / MMU_C_TBL_SIZE];
   2851 
   2852 		*pmap = (*tbl)->ct_pmap;
   2853 		/*
   2854 		 * To find the va to which the PTE maps, we first take
   2855 		 * the table's base virtual address mapping which is stored
   2856 		 * in ct_va.  We then increment this address by a page for
   2857 		 * every slot skipped until we reach the PTE.
   2858 		 */
   2859 		va =    (*tbl)->ct_va;
   2860 		va += m68k_ptob(idx % MMU_C_TBL_SIZE);
   2861 	} else {
   2862 		/*
   2863 		 * The PTE belongs to the kernel map.
   2864 		 */
   2865 		*pmap = pmap_kernel();
   2866 
   2867 		va = m68k_ptob(idx);
   2868 		va += KERNBASE;
   2869 	}
   2870 
   2871 	return va;
   2872 }
   2873 
   2874 /* pmap_clear_modify			INTERFACE
   2875  **
   2876  * Clear the modification bit on the page at the specified
   2877  * physical address.
   2878  *
   2879  */
   2880 void
   2881 pmap_clear_modify(pa)
   2882 	vm_offset_t pa;
   2883 {
   2884 	if (!is_managed(pa))
   2885 		return;
   2886 	pmap_clear_pv(pa, PV_FLAGS_MDFY);
   2887 }
   2888 
   2889 /* pmap_clear_reference			INTERFACE
   2890  **
   2891  * Clear the referenced bit on the page at the specified
   2892  * physical address.
   2893  */
   2894 void
   2895 pmap_clear_reference(pa)
   2896 	vm_offset_t pa;
   2897 {
   2898 	if (!is_managed(pa))
   2899 		return;
   2900 	pmap_clear_pv(pa, PV_FLAGS_USED);
   2901 }
   2902 
   2903 /* pmap_clear_pv			INTERNAL
   2904  **
   2905  * Clears the specified flag from the specified physical address.
   2906  * (Used by pmap_clear_modify() and pmap_clear_reference().)
   2907  *
   2908  * Flag is one of:
   2909  *   PV_FLAGS_MDFY - Page modified bit.
   2910  *   PV_FLAGS_USED - Page used (referenced) bit.
   2911  *
   2912  * This routine must not only clear the flag on the pv list
   2913  * head.  It must also clear the bit on every pte in the pv
   2914  * list associated with the address.
   2915  */
   2916 void
   2917 pmap_clear_pv(pa, flag)
   2918 	vm_offset_t pa;
   2919 	int flag;
   2920 {
   2921 	pv_t      *pv;
   2922 	int       idx, s;
   2923 	vm_offset_t     va;
   2924 	pmap_t          pmap;
   2925 	mmu_short_pte_t *pte;
   2926 	c_tmgr_t        *c_tbl;
   2927 
   2928 	pv = pa2pv(pa);
   2929 
   2930 	s = splimp();
   2931 	pv->pv_flags &= ~(flag);
   2932 	for (idx = pv->pv_idx; idx != PVE_EOL; idx = pvebase[idx].pve_next) {
   2933 		pte = &kernCbase[idx];
   2934 		pte->attr.raw &= ~(flag);
   2935 		/*
   2936 		 * The MC68030 MMU will not set the modified or
   2937 		 * referenced bits on any MMU tables for which it has
   2938 		 * a cached descriptor with its modify bit set.  To insure
   2939 		 * that it will modify these bits on the PTE during the next
   2940 		 * time it is written to or read from, we must flush it from
   2941 		 * the ATC.
   2942 		 *
   2943 		 * Ordinarily it is only necessary to flush the descriptor
   2944 		 * if it is used in the current address space.  But since I
   2945 		 * am not sure that there will always be a notion of
   2946 		 * 'the current address space' when this function is called,
   2947 		 * I will skip the test and always flush the address.  It
   2948 		 * does no harm.
   2949 		 */
   2950 		va = pmap_get_pteinfo(idx, &pmap, &c_tbl);
   2951 		TBIS(va);
   2952 	}
   2953 	splx(s);
   2954 }
   2955 
   2956 /* pmap_extract			INTERFACE
   2957  **
   2958  * Return the physical address mapped by the virtual address
   2959  * in the specified pmap or 0 if it is not known.
   2960  *
   2961  * Note: this function should also apply an exclusive lock
   2962  * on the pmap system during its duration.
   2963  */
   2964 vm_offset_t
   2965 pmap_extract(pmap, va)
   2966 	pmap_t      pmap;
   2967 	vm_offset_t va;
   2968 {
   2969 	int a_idx, b_idx, pte_idx;
   2970 	a_tmgr_t	*a_tbl;
   2971 	b_tmgr_t	*b_tbl;
   2972 	c_tmgr_t	*c_tbl;
   2973 	mmu_short_pte_t	*c_pte;
   2974 
   2975 	if (pmap == pmap_kernel())
   2976 		return pmap_extract_kernel(va);
   2977 	if (pmap == NULL)
   2978 		return 0;
   2979 
   2980 	if (pmap_stroll(pmap, va, &a_tbl, &b_tbl, &c_tbl,
   2981 		&c_pte, &a_idx, &b_idx, &pte_idx) == FALSE)
   2982 		return 0;
   2983 
   2984 	if (!MMU_VALID_DT(*c_pte))
   2985 		return 0;
   2986 
   2987 	return (MMU_PTE_PA(*c_pte));
   2988 }
   2989 
   2990 /* pmap_extract_kernel		INTERNAL
   2991  **
   2992  * Extract a translation from the kernel address space.
   2993  */
   2994 vm_offset_t
   2995 pmap_extract_kernel(va)
   2996 	vm_offset_t va;
   2997 {
   2998 	mmu_short_pte_t *pte;
   2999 
   3000 	pte = &kernCbase[(u_int) m68k_btop(va - KERNBASE)];
   3001 	return MMU_PTE_PA(*pte);
   3002 }
   3003 
   3004 /* pmap_remove_kernel		INTERNAL
   3005  **
   3006  * Remove the mapping of a range of virtual addresses from the kernel map.
   3007  * The arguments are already page-aligned.
   3008  */
   3009 void
   3010 pmap_remove_kernel(sva, eva)
   3011 	vm_offset_t sva;
   3012 	vm_offset_t eva;
   3013 {
   3014 	int idx, eidx;
   3015 
   3016 #ifdef	PMAP_DEBUG
   3017 	if ((sva & PGOFSET) || (eva & PGOFSET))
   3018 		panic("pmap_remove_kernel: alignment");
   3019 #endif
   3020 
   3021 	idx  = m68k_btop(sva - KERNBASE);
   3022 	eidx = m68k_btop(eva - KERNBASE);
   3023 
   3024 	while (idx < eidx) {
   3025 		pmap_remove_pte(&kernCbase[idx++]);
   3026 		TBIS(sva);
   3027 		sva += NBPG;
   3028 	}
   3029 }
   3030 
   3031 /* pmap_remove			INTERFACE
   3032  **
   3033  * Remove the mapping of a range of virtual addresses from the given pmap.
   3034  *
   3035  * If the range contains any wired entries, this function will probably create
   3036  * disaster.
   3037  */
   3038 void
   3039 pmap_remove(pmap, start, end)
   3040 	pmap_t pmap;
   3041 	vm_offset_t start;
   3042 	vm_offset_t end;
   3043 {
   3044 
   3045 	if (pmap == pmap_kernel()) {
   3046 		pmap_remove_kernel(start, end);
   3047 		return;
   3048 	}
   3049 
   3050 	/*
   3051 	 * XXX - Temporary(?) statement to prevent panic caused
   3052 	 * by vm_alloc_with_pager() handing us a software map (ie NULL)
   3053 	 * to remove because it couldn't get backing store.
   3054 	 * (I guess.)
   3055 	 */
   3056 	if (pmap == NULL)
   3057 		return;
   3058 
   3059 	/*
   3060 	 * If the pmap doesn't have an A table of its own, it has no mappings
   3061 	 * that can be removed.
   3062 	 */
   3063 	if (pmap->pm_a_tmgr == NULL)
   3064 		return;
   3065 
   3066 	/*
   3067 	 * Remove the specified range from the pmap.  If the function
   3068 	 * returns true, the operation removed all the valid mappings
   3069 	 * in the pmap and freed its A table.  If this happened to the
   3070 	 * currently loaded pmap, the MMU root pointer must be reloaded
   3071 	 * with the default 'kernel' map.
   3072 	 */
   3073 	if (pmap_remove_a(pmap->pm_a_tmgr, start, end)) {
   3074 		if (kernel_crp.rp_addr == pmap->pm_a_phys) {
   3075 			kernel_crp.rp_addr = kernAphys;
   3076 			loadcrp(&kernel_crp);
   3077 			/* will do TLB flush below */
   3078 		}
   3079 		pmap->pm_a_tmgr = NULL;
   3080 		pmap->pm_a_phys = kernAphys;
   3081 	}
   3082 
   3083 	/*
   3084 	 * If we just modified the current address space,
   3085 	 * make sure to flush the MMU cache.
   3086 	 *
   3087 	 * XXX - this could be an unecessarily large flush.
   3088 	 * XXX - Could decide, based on the size of the VA range
   3089 	 * to be removed, whether to flush "by pages" or "all".
   3090 	 */
   3091 	if (pmap == current_pmap())
   3092 		TBIAU();
   3093 }
   3094 
   3095 /* pmap_remove_a			INTERNAL
   3096  **
   3097  * This is function number one in a set of three that removes a range
   3098  * of memory in the most efficient manner by removing the highest possible
   3099  * tables from the memory space.  This particular function attempts to remove
   3100  * as many B tables as it can, delegating the remaining fragmented ranges to
   3101  * pmap_remove_b().
   3102  *
   3103  * If the removal operation results in an empty A table, the function returns
   3104  * TRUE.
   3105  *
   3106  * It's ugly but will do for now.
   3107  */
   3108 boolean_t
   3109 pmap_remove_a(a_tbl, start, end)
   3110 	a_tmgr_t *a_tbl;
   3111 	vm_offset_t start;
   3112 	vm_offset_t end;
   3113 {
   3114 	boolean_t empty;
   3115 	int idx;
   3116 	vm_offset_t nstart, nend;
   3117 	b_tmgr_t *b_tbl;
   3118 	mmu_long_dte_t  *a_dte;
   3119 	mmu_short_dte_t *b_dte;
   3120 
   3121 	/*
   3122 	 * The following code works with what I call a 'granularity
   3123 	 * reduction algorithim'.  A range of addresses will always have
   3124 	 * the following properties, which are classified according to
   3125 	 * how the range relates to the size of the current granularity
   3126 	 * - an A table entry:
   3127 	 *
   3128 	 *            1 2       3 4
   3129 	 * -+---+---+---+---+---+---+---+-
   3130 	 * -+---+---+---+---+---+---+---+-
   3131 	 *
   3132 	 * A range will always start on a granularity boundary, illustrated
   3133 	 * by '+' signs in the table above, or it will start at some point
   3134 	 * inbetween a granularity boundary, as illustrated by point 1.
   3135 	 * The first step in removing a range of addresses is to remove the
   3136 	 * range between 1 and 2, the nearest granularity boundary.  This
   3137 	 * job is handled by the section of code governed by the
   3138 	 * 'if (start < nstart)' statement.
   3139 	 *
   3140 	 * A range will always encompass zero or more intergral granules,
   3141 	 * illustrated by points 2 and 3.  Integral granules are easy to
   3142 	 * remove.  The removal of these granules is the second step, and
   3143 	 * is handled by the code block 'if (nstart < nend)'.
   3144 	 *
   3145 	 * Lastly, a range will always end on a granularity boundary,
   3146 	 * ill. by point 3, or it will fall just beyond one, ill. by point
   3147 	 * 4.  The last step involves removing this range and is handled by
   3148 	 * the code block 'if (nend < end)'.
   3149 	 */
   3150 	nstart = MMU_ROUND_UP_A(start);
   3151 	nend = MMU_ROUND_A(end);
   3152 
   3153 	if (start < nstart) {
   3154 		/*
   3155 		 * This block is executed if the range starts between
   3156 		 * a granularity boundary.
   3157 		 *
   3158 		 * First find the DTE which is responsible for mapping
   3159 		 * the start of the range.
   3160 		 */
   3161 		idx = MMU_TIA(start);
   3162 		a_dte = &a_tbl->at_dtbl[idx];
   3163 
   3164 		/*
   3165 		 * If the DTE is valid then delegate the removal of the sub
   3166 		 * range to pmap_remove_b(), which can remove addresses at
   3167 		 * a finer granularity.
   3168 		 */
   3169 		if (MMU_VALID_DT(*a_dte)) {
   3170 			b_dte = mmu_ptov(a_dte->addr.raw);
   3171 			b_tbl = mmuB2tmgr(b_dte);
   3172 
   3173 			/*
   3174 			 * The sub range to be removed starts at the start
   3175 			 * of the full range we were asked to remove, and ends
   3176 			 * at the greater of:
   3177 			 * 1. The end of the full range, -or-
   3178 			 * 2. The end of the full range, rounded down to the
   3179 			 *    nearest granularity boundary.
   3180 			 */
   3181 			if (end < nstart)
   3182 				empty = pmap_remove_b(b_tbl, start, end);
   3183 			else
   3184 				empty = pmap_remove_b(b_tbl, start, nstart);
   3185 
   3186 			/*
   3187 			 * If the removal resulted in an empty B table,
   3188 			 * invalidate the DTE that points to it and decrement
   3189 			 * the valid entry count of the A table.
   3190 			 */
   3191 			if (empty) {
   3192 				a_dte->attr.raw = MMU_DT_INVALID;
   3193 				a_tbl->at_ecnt--;
   3194 			}
   3195 		}
   3196 		/*
   3197 		 * If the DTE is invalid, the address range is already non-
   3198 		 * existant and can simply be skipped.
   3199 		 */
   3200 	}
   3201 	if (nstart < nend) {
   3202 		/*
   3203 		 * This block is executed if the range spans a whole number
   3204 		 * multiple of granules (A table entries.)
   3205 		 *
   3206 		 * First find the DTE which is responsible for mapping
   3207 		 * the start of the first granule involved.
   3208 		 */
   3209 		idx = MMU_TIA(nstart);
   3210 		a_dte = &a_tbl->at_dtbl[idx];
   3211 
   3212 		/*
   3213 		 * Remove entire sub-granules (B tables) one at a time,
   3214 		 * until reaching the end of the range.
   3215 		 */
   3216 		for (; nstart < nend; a_dte++, nstart += MMU_TIA_RANGE)
   3217 			if (MMU_VALID_DT(*a_dte)) {
   3218 				/*
   3219 				 * Find the B table manager for the
   3220 				 * entry and free it.
   3221 				 */
   3222 				b_dte = mmu_ptov(a_dte->addr.raw);
   3223 				b_tbl = mmuB2tmgr(b_dte);
   3224 				free_b_table(b_tbl, TRUE);
   3225 
   3226 				/*
   3227 				 * Invalidate the DTE that points to the
   3228 				 * B table and decrement the valid entry
   3229 				 * count of the A table.
   3230 				 */
   3231 				a_dte->attr.raw = MMU_DT_INVALID;
   3232 				a_tbl->at_ecnt--;
   3233 			}
   3234 	}
   3235 	if (nend < end) {
   3236 		/*
   3237 		 * This block is executed if the range ends beyond a
   3238 		 * granularity boundary.
   3239 		 *
   3240 		 * First find the DTE which is responsible for mapping
   3241 		 * the start of the nearest (rounded down) granularity
   3242 		 * boundary.
   3243 		 */
   3244 		idx = MMU_TIA(nend);
   3245 		a_dte = &a_tbl->at_dtbl[idx];
   3246 
   3247 		/*
   3248 		 * If the DTE is valid then delegate the removal of the sub
   3249 		 * range to pmap_remove_b(), which can remove addresses at
   3250 		 * a finer granularity.
   3251 		 */
   3252 		if (MMU_VALID_DT(*a_dte)) {
   3253 			/*
   3254 			 * Find the B table manager for the entry
   3255 			 * and hand it to pmap_remove_b() along with
   3256 			 * the sub range.
   3257 			 */
   3258 			b_dte = mmu_ptov(a_dte->addr.raw);
   3259 			b_tbl = mmuB2tmgr(b_dte);
   3260 
   3261 			empty = pmap_remove_b(b_tbl, nend, end);
   3262 
   3263 			/*
   3264 			 * If the removal resulted in an empty B table,
   3265 			 * invalidate the DTE that points to it and decrement
   3266 			 * the valid entry count of the A table.
   3267 			 */
   3268 			if (empty) {
   3269 				a_dte->attr.raw = MMU_DT_INVALID;
   3270 				a_tbl->at_ecnt--;
   3271 			}
   3272 		}
   3273 	}
   3274 
   3275 	/*
   3276 	 * If there are no more entries in the A table, release it
   3277 	 * back to the available pool and return TRUE.
   3278 	 */
   3279 	if (a_tbl->at_ecnt == 0) {
   3280 		a_tbl->at_parent = NULL;
   3281 		TAILQ_REMOVE(&a_pool, a_tbl, at_link);
   3282 		TAILQ_INSERT_HEAD(&a_pool, a_tbl, at_link);
   3283 		empty = TRUE;
   3284 	} else {
   3285 		empty = FALSE;
   3286 	}
   3287 
   3288 	return empty;
   3289 }
   3290 
   3291 /* pmap_remove_b			INTERNAL
   3292  **
   3293  * Remove a range of addresses from an address space, trying to remove entire
   3294  * C tables if possible.
   3295  *
   3296  * If the operation results in an empty B table, the function returns TRUE.
   3297  */
   3298 boolean_t
   3299 pmap_remove_b(b_tbl, start, end)
   3300 	b_tmgr_t *b_tbl;
   3301 	vm_offset_t start;
   3302 	vm_offset_t end;
   3303 {
   3304 	boolean_t empty;
   3305 	int idx;
   3306 	vm_offset_t nstart, nend, rstart;
   3307 	c_tmgr_t *c_tbl;
   3308 	mmu_short_dte_t  *b_dte;
   3309 	mmu_short_pte_t  *c_dte;
   3310 
   3311 
   3312 	nstart = MMU_ROUND_UP_B(start);
   3313 	nend = MMU_ROUND_B(end);
   3314 
   3315 	if (start < nstart) {
   3316 		idx = MMU_TIB(start);
   3317 		b_dte = &b_tbl->bt_dtbl[idx];
   3318 		if (MMU_VALID_DT(*b_dte)) {
   3319 			c_dte = mmu_ptov(MMU_DTE_PA(*b_dte));
   3320 			c_tbl = mmuC2tmgr(c_dte);
   3321 			if (end < nstart)
   3322 				empty = pmap_remove_c(c_tbl, start, end);
   3323 			else
   3324 				empty = pmap_remove_c(c_tbl, start, nstart);
   3325 			if (empty) {
   3326 				b_dte->attr.raw = MMU_DT_INVALID;
   3327 				b_tbl->bt_ecnt--;
   3328 			}
   3329 		}
   3330 	}
   3331 	if (nstart < nend) {
   3332 		idx = MMU_TIB(nstart);
   3333 		b_dte = &b_tbl->bt_dtbl[idx];
   3334 		rstart = nstart;
   3335 		while (rstart < nend) {
   3336 			if (MMU_VALID_DT(*b_dte)) {
   3337 				c_dte = mmu_ptov(MMU_DTE_PA(*b_dte));
   3338 				c_tbl = mmuC2tmgr(c_dte);
   3339 				free_c_table(c_tbl, TRUE);
   3340 				b_dte->attr.raw = MMU_DT_INVALID;
   3341 				b_tbl->bt_ecnt--;
   3342 			}
   3343 			b_dte++;
   3344 			rstart += MMU_TIB_RANGE;
   3345 		}
   3346 	}
   3347 	if (nend < end) {
   3348 		idx = MMU_TIB(nend);
   3349 		b_dte = &b_tbl->bt_dtbl[idx];
   3350 		if (MMU_VALID_DT(*b_dte)) {
   3351 			c_dte = mmu_ptov(MMU_DTE_PA(*b_dte));
   3352 			c_tbl = mmuC2tmgr(c_dte);
   3353 			empty = pmap_remove_c(c_tbl, nend, end);
   3354 			if (empty) {
   3355 				b_dte->attr.raw = MMU_DT_INVALID;
   3356 				b_tbl->bt_ecnt--;
   3357 			}
   3358 		}
   3359 	}
   3360 
   3361 	if (b_tbl->bt_ecnt == 0) {
   3362 		b_tbl->bt_parent = NULL;
   3363 		TAILQ_REMOVE(&b_pool, b_tbl, bt_link);
   3364 		TAILQ_INSERT_HEAD(&b_pool, b_tbl, bt_link);
   3365 		empty = TRUE;
   3366 	} else {
   3367 		empty = FALSE;
   3368 	}
   3369 
   3370 	return empty;
   3371 }
   3372 
   3373 /* pmap_remove_c			INTERNAL
   3374  **
   3375  * Remove a range of addresses from the given C table.
   3376  */
   3377 boolean_t
   3378 pmap_remove_c(c_tbl, start, end)
   3379 	c_tmgr_t *c_tbl;
   3380 	vm_offset_t start;
   3381 	vm_offset_t end;
   3382 {
   3383 	boolean_t empty;
   3384 	int idx;
   3385 	mmu_short_pte_t *c_pte;
   3386 
   3387 	idx = MMU_TIC(start);
   3388 	c_pte = &c_tbl->ct_dtbl[idx];
   3389 	for (;start < end; start += MMU_PAGE_SIZE, c_pte++) {
   3390 		if (MMU_VALID_DT(*c_pte)) {
   3391 			pmap_remove_pte(c_pte);
   3392 			c_tbl->ct_ecnt--;
   3393 		}
   3394 	}
   3395 
   3396 	if (c_tbl->ct_ecnt == 0) {
   3397 		c_tbl->ct_parent = NULL;
   3398 		TAILQ_REMOVE(&c_pool, c_tbl, ct_link);
   3399 		TAILQ_INSERT_HEAD(&c_pool, c_tbl, ct_link);
   3400 		empty = TRUE;
   3401 	} else {
   3402 		empty = FALSE;
   3403 	}
   3404 
   3405 	return empty;
   3406 }
   3407 
   3408 /* is_managed				INTERNAL
   3409  **
   3410  * Determine if the given physical address is managed by the PV system.
   3411  * Note that this logic assumes that no one will ask for the status of
   3412  * addresses which lie in-between the memory banks on the 3/80.  If they
   3413  * do so, it will falsely report that it is managed.
   3414  *
   3415  * Note: A "managed" address is one that was reported to the VM system as
   3416  * a "usable page" during system startup.  As such, the VM system expects the
   3417  * pmap module to keep an accurate track of the useage of those pages.
   3418  * Any page not given to the VM system at startup does not exist (as far as
   3419  * the VM system is concerned) and is therefore "unmanaged."  Examples are
   3420  * those pages which belong to the ROM monitor and the memory allocated before
   3421  * the VM system was started.
   3422  */
   3423 boolean_t
   3424 is_managed(pa)
   3425 	vm_offset_t pa;
   3426 {
   3427 	if (pa >= avail_start && pa < avail_end)
   3428 		return TRUE;
   3429 	else
   3430 		return FALSE;
   3431 }
   3432 
   3433 /* pmap_bootstrap_alloc			INTERNAL
   3434  **
   3435  * Used internally for memory allocation at startup when malloc is not
   3436  * available.  This code will fail once it crosses the first memory
   3437  * bank boundary on the 3/80.  Hopefully by then however, the VM system
   3438  * will be in charge of allocation.
   3439  */
   3440 void *
   3441 pmap_bootstrap_alloc(size)
   3442 	int size;
   3443 {
   3444 	void *rtn;
   3445 
   3446 #ifdef	PMAP_DEBUG
   3447 	if (bootstrap_alloc_enabled == FALSE) {
   3448 		mon_printf("pmap_bootstrap_alloc: disabled\n");
   3449 		sunmon_abort();
   3450 	}
   3451 #endif
   3452 
   3453 	rtn = (void *) virtual_avail;
   3454 	virtual_avail += size;
   3455 
   3456 #ifdef	PMAP_DEBUG
   3457 	if (virtual_avail > virtual_contig_end) {
   3458 		mon_printf("pmap_bootstrap_alloc: out of mem\n");
   3459 		sunmon_abort();
   3460 	}
   3461 #endif
   3462 
   3463 	return rtn;
   3464 }
   3465 
   3466 /* pmap_bootstap_aalign			INTERNAL
   3467  **
   3468  * Used to insure that the next call to pmap_bootstrap_alloc() will
   3469  * return a chunk of memory aligned to the specified size.
   3470  *
   3471  * Note: This function will only support alignment sizes that are powers
   3472  * of two.
   3473  */
   3474 void
   3475 pmap_bootstrap_aalign(size)
   3476 	int size;
   3477 {
   3478 	int off;
   3479 
   3480 	off = virtual_avail & (size - 1);
   3481 	if (off) {
   3482 		(void) pmap_bootstrap_alloc(size - off);
   3483 	}
   3484 }
   3485 
   3486 /* pmap_pa_exists
   3487  **
   3488  * Used by the /dev/mem driver to see if a given PA is memory
   3489  * that can be mapped.  (The PA is not in a hole.)
   3490  */
   3491 int
   3492 pmap_pa_exists(pa)
   3493 	vm_offset_t pa;
   3494 {
   3495 	register int i;
   3496 
   3497 	for (i = 0; i < SUN3X_NPHYS_RAM_SEGS; i++) {
   3498 		if ((pa >= avail_mem[i].pmem_start) &&
   3499 			(pa <  avail_mem[i].pmem_end))
   3500 			return (1);
   3501 		if (avail_mem[i].pmem_next == NULL)
   3502 			break;
   3503 	}
   3504 	return (0);
   3505 }
   3506 
   3507 /* pmap_activate			INTERFACE
   3508  **
   3509  * This is called by locore.s:cpu_switch when we are switching to a
   3510  * new process.  This should load the MMU context for the new proc.
   3511  *
   3512  * Note: Only used when locore.s is compiled with PMAP_DEBUG.
   3513  */
   3514 void
   3515 pmap_activate(pmap)
   3516 pmap_t	pmap;
   3517 {
   3518 	u_long rootpa;
   3519 
   3520 	/* Only do reload/flush if we have to. */
   3521 	rootpa = pmap->pm_a_phys;
   3522 	if (kernel_crp.rp_addr != rootpa) {
   3523 		DPRINT(("pmap_activate(%p)\n", pmap));
   3524 		kernel_crp.rp_addr = rootpa;
   3525 		loadcrp(&kernel_crp);
   3526 		TBIAU();
   3527 	}
   3528 }
   3529 
   3530 
   3531 /* pmap_update
   3532  **
   3533  * Apply any delayed changes scheduled for all pmaps immediately.
   3534  *
   3535  * No delayed operations are currently done in this pmap.
   3536  */
   3537 void
   3538 pmap_update()
   3539 {
   3540 	/* not implemented. */
   3541 }
   3542 
   3543 /*
   3544  * Fill in the cpu_kcore header for dumpsys()
   3545  * (See machdep.c)
   3546  */
   3547 void
   3548 pmap_set_kcore_hdr(chdr_p)
   3549 	cpu_kcore_hdr_t *chdr_p;
   3550 {
   3551 	struct sun3x_kcore_hdr *sh = &chdr_p->un._sun3x;
   3552 	u_long spa, len;
   3553 	int i;
   3554 	extern char machine[];
   3555 
   3556 	/*
   3557 	 * Fill in dispatch information.
   3558 	 */
   3559 	strcpy(chdr_p->name, machine);
   3560 	chdr_p->page_size = NBPG;
   3561 	chdr_p->kernbase = KERNBASE;
   3562 
   3563 	sh->contig_end = virtual_contig_end;
   3564 	sh->kernCbase = (u_long) kernCbase;
   3565 	for (i = 0; i < SUN3X_NPHYS_RAM_SEGS; i++) {
   3566 		spa = avail_mem[i].pmem_start;
   3567 		spa = m68k_trunc_page(spa);
   3568 		len = avail_mem[i].pmem_end - spa;
   3569 		len = m68k_round_page(len);
   3570 		sh->ram_segs[i].start = spa;
   3571 		sh->ram_segs[i].size  = len;
   3572 	}
   3573 }
   3574 
   3575 
   3576 /* pmap_virtual_space			INTERFACE
   3577  **
   3578  * Return the current available range of virtual addresses in the
   3579  * arguuments provided.  Only really called once.
   3580  */
   3581 void
   3582 pmap_virtual_space(vstart, vend)
   3583 	vm_offset_t *vstart, *vend;
   3584 {
   3585 	*vstart = virtual_avail;
   3586 	*vend = virtual_end;
   3587 }
   3588 
   3589 /* pmap_free_pages			INTERFACE
   3590  **
   3591  * Return the number of physical pages still available.
   3592  *
   3593  * This is probably going to be a mess, but it's only called
   3594  * once and it's the only function left that I have to implement!
   3595  */
   3596 u_int
   3597 pmap_free_pages()
   3598 {
   3599 	int i;
   3600 	u_int left;
   3601 	vm_offset_t avail;
   3602 
   3603 	avail = avail_next;
   3604 	left = 0;
   3605 	i = 0;
   3606 	while (avail >= avail_mem[i].pmem_end) {
   3607 		if (avail_mem[i].pmem_next == NULL)
   3608 			return 0;
   3609 		i++;
   3610 	}
   3611 	while (i < SUN3X_NPHYS_RAM_SEGS) {
   3612 		if (avail < avail_mem[i].pmem_start) {
   3613 			/* Avail is inside a hole, march it
   3614 			 * up to the next bank.
   3615 			 */
   3616 			avail = avail_mem[i].pmem_start;
   3617 		}
   3618 		left += m68k_btop(avail_mem[i].pmem_end - avail);
   3619 		if (avail_mem[i].pmem_next == NULL)
   3620 			break;
   3621 		i++;
   3622 	}
   3623 
   3624 	return left;
   3625 }
   3626 
   3627 /* pmap_page_index			INTERFACE
   3628  **
   3629  * Return the index of the given physical page in a list of useable
   3630  * physical pages in the system.  Holes in physical memory may be counted
   3631  * if so desired.  As long as pmap_free_pages() and pmap_page_index()
   3632  * agree as to whether holes in memory do or do not count as valid pages,
   3633  * it really doesn't matter.  However, if you like to save a little
   3634  * memory, don't count holes as valid pages.  This is even more true when
   3635  * the holes are large.
   3636  *
   3637  * We will not count holes as valid pages.  We can generate page indices
   3638  * that conform to this by using the memory bank structures initialized
   3639  * in pmap_alloc_pv().
   3640  */
   3641 int
   3642 pmap_page_index(pa)
   3643 	vm_offset_t pa;
   3644 {
   3645 	struct pmap_physmem_struct *bank = avail_mem;
   3646 
   3647 	/* Search for the memory bank with this page. */
   3648 	/* XXX - What if it is not physical memory? */
   3649 	while (pa > bank->pmem_end)
   3650 		bank = bank->pmem_next;
   3651 	pa -= bank->pmem_start;
   3652 
   3653 	return (bank->pmem_pvbase + m68k_btop(pa));
   3654 }
   3655 
   3656 /* pmap_next_page			INTERFACE
   3657  **
   3658  * Place the physical address of the next available page in the
   3659  * argument given.  Returns FALSE if there are no more pages left.
   3660  *
   3661  * This function must jump over any holes in physical memory.
   3662  * Once this function is used, any use of pmap_bootstrap_alloc()
   3663  * is a sin.  Sinners will be punished with erratic behavior.
   3664  */
   3665 boolean_t
   3666 pmap_next_page(pa)
   3667 	vm_offset_t *pa;
   3668 {
   3669 	static struct pmap_physmem_struct *curbank = avail_mem;
   3670 
   3671 	/* XXX - temporary ROM saving hack. */
   3672 	if (avail_next >= avail_end)
   3673 		return FALSE;
   3674 
   3675 	if (avail_next >= curbank->pmem_end)
   3676 		if (curbank->pmem_next == NULL)
   3677 			return FALSE;
   3678 		else {
   3679 			curbank = curbank->pmem_next;
   3680 			avail_next = curbank->pmem_start;
   3681 		}
   3682 
   3683 	*pa = avail_next;
   3684 	avail_next += NBPG;
   3685 	return TRUE;
   3686 }
   3687 
   3688 /* pmap_count			INTERFACE
   3689  **
   3690  * Return the number of resident (valid) pages in the given pmap.
   3691  *
   3692  * Note:  If this function is handed the kernel map, it will report
   3693  * that it has no mappings.  Hopefully the VM system won't ask for kernel
   3694  * map statistics.
   3695  */
   3696 segsz_t
   3697 pmap_count(pmap, type)
   3698 	pmap_t pmap;
   3699 	int    type;
   3700 {
   3701 	u_int     count;
   3702 	int       a_idx, b_idx;
   3703 	a_tmgr_t *a_tbl;
   3704 	b_tmgr_t *b_tbl;
   3705 	c_tmgr_t *c_tbl;
   3706 
   3707 	/*
   3708 	 * If the pmap does not have its own A table manager, it has no
   3709 	 * valid entires.
   3710 	 */
   3711 	if (pmap->pm_a_tmgr == NULL)
   3712 		return 0;
   3713 
   3714 	a_tbl = pmap->pm_a_tmgr;
   3715 
   3716 	count = 0;
   3717 	for (a_idx = 0; a_idx < MMU_TIA(KERNBASE); a_idx++) {
   3718 	    if (MMU_VALID_DT(a_tbl->at_dtbl[a_idx])) {
   3719 	        b_tbl = mmuB2tmgr(mmu_ptov(a_tbl->at_dtbl[a_idx].addr.raw));
   3720 	        for (b_idx = 0; b_idx < MMU_B_TBL_SIZE; b_idx++) {
   3721 	            if (MMU_VALID_DT(b_tbl->bt_dtbl[b_idx])) {
   3722 	                c_tbl = mmuC2tmgr(
   3723 	                    mmu_ptov(MMU_DTE_PA(b_tbl->bt_dtbl[b_idx])));
   3724 	                if (type == 0)
   3725 	                    /*
   3726 	                     * A resident entry count has been requested.
   3727 	                     */
   3728 	                    count += c_tbl->ct_ecnt;
   3729 	                else
   3730 	                    /*
   3731 	                     * A wired entry count has been requested.
   3732 	                     */
   3733 	                    count += c_tbl->ct_wcnt;
   3734 	            }
   3735 	        }
   3736 	    }
   3737 	}
   3738 
   3739 	return count;
   3740 }
   3741 
   3742 /************************ SUN3 COMPATIBILITY ROUTINES ********************
   3743  * The following routines are only used by DDB for tricky kernel text    *
   3744  * text operations in db_memrw.c.  They are provided for sun3            *
   3745  * compatibility.                                                        *
   3746  *************************************************************************/
   3747 /* get_pte			INTERNAL
   3748  **
   3749  * Return the page descriptor the describes the kernel mapping
   3750  * of the given virtual address.
   3751  */
   3752 extern u_long ptest_addr __P((u_long));	/* XXX: locore.s */
   3753 u_long
   3754 get_pte(va)
   3755 	vm_offset_t va;
   3756 {
   3757 	u_long pte_pa;
   3758 	mmu_short_pte_t *pte;
   3759 
   3760 	/* Get the physical address of the PTE */
   3761 	pte_pa = ptest_addr(va & ~PGOFSET);
   3762 
   3763 	/* Convert to a virtual address... */
   3764 	pte = (mmu_short_pte_t *) (KERNBASE + pte_pa);
   3765 
   3766 	/* Make sure it is in our level-C tables... */
   3767 	if ((pte < kernCbase) ||
   3768 		(pte >= &mmuCbase[NUM_USER_PTES]))
   3769 		return 0;
   3770 
   3771 	/* ... and just return its contents. */
   3772 	return (pte->attr.raw);
   3773 }
   3774 
   3775 
   3776 /* set_pte			INTERNAL
   3777  **
   3778  * Set the page descriptor that describes the kernel mapping
   3779  * of the given virtual address.
   3780  */
   3781 void
   3782 set_pte(va, pte)
   3783 	vm_offset_t va;
   3784 	vm_offset_t pte;
   3785 {
   3786 	u_long idx;
   3787 
   3788 	if (va < KERNBASE)
   3789 		return;
   3790 
   3791 	idx = (unsigned long) m68k_btop(va - KERNBASE);
   3792 	kernCbase[idx].attr.raw = pte;
   3793 }
   3794 
   3795 #ifdef	PMAP_DEBUG
   3796 /************************** DEBUGGING ROUTINES **************************
   3797  * The following routines are meant to be an aid to debugging the pmap  *
   3798  * system.  They are callable from the DDB command line and should be   *
   3799  * prepared to be handed unstable or incomplete states of the system.   *
   3800  ************************************************************************/
   3801 
   3802 /* pv_list
   3803  **
   3804  * List all pages found on the pv list for the given physical page.
   3805  * To avoid endless loops, the listing will stop at the end of the list
   3806  * or after 'n' entries - whichever comes first.
   3807  */
   3808 void
   3809 pv_list(pa, n)
   3810 	vm_offset_t pa;
   3811 	int n;
   3812 {
   3813 	int  idx;
   3814 	vm_offset_t va;
   3815 	pv_t *pv;
   3816 	c_tmgr_t *c_tbl;
   3817 	pmap_t pmap;
   3818 
   3819 	pv = pa2pv(pa);
   3820 	idx = pv->pv_idx;
   3821 
   3822 	for (;idx != PVE_EOL && n > 0; idx=pvebase[idx].pve_next, n--) {
   3823 		va = pmap_get_pteinfo(idx, &pmap, &c_tbl);
   3824 		printf("idx %d, pmap 0x%x, va 0x%x, c_tbl %x\n",
   3825 			idx, (u_int) pmap, (u_int) va, (u_int) c_tbl);
   3826 	}
   3827 }
   3828 #endif	/* PMAP_DEBUG */
   3829 
   3830 #ifdef NOT_YET
   3831 /* and maybe not ever */
   3832 /************************** LOW-LEVEL ROUTINES **************************
   3833  * These routines will eventualy be re-written into assembly and placed *
   3834  * in locore.s.  They are here now as stubs so that the pmap module can *
   3835  * be linked as a standalone user program for testing.                  *
   3836  ************************************************************************/
   3837 /* flush_atc_crp			INTERNAL
   3838  **
   3839  * Flush all page descriptors derived from the given CPU Root Pointer
   3840  * (CRP), or 'A' table as it is known here, from the 68851's automatic
   3841  * cache.
   3842  */
   3843 void
   3844 flush_atc_crp(a_tbl)
   3845 {
   3846 	mmu_long_rp_t rp;
   3847 
   3848 	/* Create a temporary root table pointer that points to the
   3849 	 * given A table.
   3850 	 */
   3851 	rp.attr.raw = ~MMU_LONG_RP_LU;
   3852 	rp.addr.raw = (unsigned int) a_tbl;
   3853 
   3854 	mmu_pflushr(&rp);
   3855 	/* mmu_pflushr:
   3856 	 * 	movel   sp(4)@,a0
   3857 	 * 	pflushr a0@
   3858 	 *	rts
   3859 	 */
   3860 }
   3861 #endif /* NOT_YET */
   3862