Home | History | Annotate | Line # | Download | only in sun3x
pmap.c revision 1.3
      1 /*	$NetBSD: pmap.c,v 1.3 1997/01/16 22:12:50 gwr Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1996 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jeremy Cooper.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  * 3. All advertising materials mentioning features or use of this software
     19  *    must display the following acknowledgement:
     20  *        This product includes software developed by the NetBSD
     21  *        Foundation, Inc. and its contributors.
     22  * 4. Neither the name of The NetBSD Foundation nor the names of its
     23  *    contributors may be used to endorse or promote products derived
     24  *    from this software without specific prior written permission.
     25  *
     26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36  * POSSIBILITY OF SUCH DAMAGE.
     37  */
     38 
     39 /*
     40  * XXX These comments aren't quite accurate.  Need to change.
     41  * The sun3x uses the MC68851 Memory Management Unit, which is built
     42  * into the CPU.  The 68851 maps virtual to physical addresses using
     43  * a multi-level table lookup, which is stored in the very memory that
     44  * it maps.  The number of levels of lookup is configurable from one
     45  * to four.  In this implementation, we use three, named 'A' through 'C'.
     46  *
     47  * The MMU translates virtual addresses into physical addresses by
     48  * traversing these tables in a proccess called a 'table walk'.  The most
     49  * significant 7 bits of the Virtual Address ('VA') being translated are
     50  * used as an index into the level A table, whose base in physical memory
     51  * is stored in a special MMU register, the 'CPU Root Pointer' or CRP.  The
     52  * address found at that index in the A table is used as the base
     53  * address for the next table, the B table.  The next six bits of the VA are
     54  * used as an index into the B table, which in turn gives the base address
     55  * of the third and final C table.
     56  *
     57  * The next six bits of the VA are used as an index into the C table to
     58  * locate a Page Table Entry (PTE).  The PTE is a physical address in memory
     59  * to which the remaining 13 bits of the VA are added, producing the
     60  * mapped physical address.
     61  *
     62  * To map the entire memory space in this manner would require 2114296 bytes
     63  * of page tables per process - quite expensive.  Instead we will
     64  * allocate a fixed but considerably smaller space for the page tables at
     65  * the time the VM system is initialized.  When the pmap code is asked by
     66  * the kernel to map a VA to a PA, it allocates tables as needed from this
     67  * pool.  When there are no more tables in the pool, tables are stolen
     68  * from the oldest mapped entries in the tree.  This is only possible
     69  * because all memory mappings are stored in the kernel memory map
     70  * structures, independent of the pmap structures.  A VA which references
     71  * one of these invalidated maps will cause a page fault.  The kernel
     72  * will determine that the page fault was caused by a task using a valid
     73  * VA, but for some reason (which does not concern it), that address was
     74  * not mapped.  It will ask the pmap code to re-map the entry and then
     75  * it will resume executing the faulting task.
     76  *
     77  * In this manner the most efficient use of the page table space is
     78  * achieved.  Tasks which do not execute often will have their tables
     79  * stolen and reused by tasks which execute more frequently.  The best
     80  * size for the page table pool will probably be determined by
     81  * experimentation.
     82  *
     83  * You read all of the comments so far.  Good for you.
     84  * Now go play!
     85  */
     86 
     87 /*** A Note About the 68851 Address Translation Cache
     88  * The MC68851 has a 64 entry cache, called the Address Translation Cache
     89  * or 'ATC'.  This cache stores the most recently used page descriptors
     90  * accessed by the MMU when it does translations.  Using a marker called a
     91  * 'task alias' the MMU can store the descriptors from 8 different table
     92  * spaces concurrently.  The task alias is associated with the base
     93  * address of the level A table of that address space.  When an address
     94  * space is currently active (the CRP currently points to its A table)
     95  * the only cached descriptors that will be obeyed are ones which have a
     96  * matching task alias of the current space associated with them.
     97  *
     98  * Since the cache is always consulted before any table lookups are done,
     99  * it is important that it accurately reflect the state of the MMU tables.
    100  * Whenever a change has been made to a table that has been loaded into
    101  * the MMU, the code must be sure to flush any cached entries that are
    102  * affected by the change.  These instances are documented in the code at
    103  * various points.
    104  */
    105 /*** A Note About the Note About the 68851 Address Translation Cache
    106  * 4 months into this code I discovered that the sun3x does not have
    107  * a MC68851 chip. Instead, it has a version of this MMU that is part of the
    108  * the 68030 CPU.
    109  * All though it behaves very similarly to the 68851, it only has 1 task
    110  * alias and a 22 entry cache.  So sadly (or happily), the previous note
    111  * does not apply to the sun3x pmap.
    112  */
    113 
    114 #include <sys/param.h>
    115 #include <sys/systm.h>
    116 #include <sys/proc.h>
    117 #include <sys/malloc.h>
    118 #include <sys/user.h>
    119 #include <sys/queue.h>
    120 
    121 #include <vm/vm.h>
    122 #include <vm/vm_kern.h>
    123 #include <vm/vm_page.h>
    124 
    125 #include <machine/cpu.h>
    126 #include <machine/pmap.h>
    127 #include <machine/pte.h>
    128 #include <machine/mon.h>
    129 
    130 #include "machdep.h"
    131 #include "pmap_pvt.h"
    132 
    133 /* XXX - What headers declare these? */
    134 extern struct pcb *curpcb;
    135 extern int physmem;
    136 
    137 /* Defined in locore.s */
    138 extern char kernel_text[];
    139 
    140 /* Defined by the linker */
    141 extern char etext[], edata[], end[];
    142 extern char *esym;	/* DDB */
    143 
    144 /*
    145  * I think it might be cleaner to have one of these in each of
    146  * the a_tmgr_t structures... -gwr
    147  */
    148 struct mmu_rootptr proc0crp;
    149 
    150 /* This is set by locore.s with the monitor's root ptr. */
    151 extern struct mmu_rootptr mon_crp;
    152 
    153 /*** Management Structure - Memory Layout
    154  * For every MMU table in the sun3x pmap system there must be a way to
    155  * manage it; we must know which process is using it, what other tables
    156  * depend on it, and whether or not it contains any locked pages.  This
    157  * is solved by the creation of 'table management'  or 'tmgr'
    158  * structures.  One for each MMU table in the system.
    159  *
    160  *                        MAP OF MEMORY USED BY THE PMAP SYSTEM
    161  *
    162  *      towards lower memory
    163  * kernAbase -> +-------------------------------------------------------+
    164  *              | Kernel     MMU A level table                          |
    165  * kernBbase -> +-------------------------------------------------------+
    166  *              | Kernel     MMU B level tables                         |
    167  * kernCbase -> +-------------------------------------------------------+
    168  *              |                                                       |
    169  *              | Kernel     MMU C level tables                         |
    170  *              |                                                       |
    171  * mmuAbase  -> +-------------------------------------------------------+
    172  *              |                                                       |
    173  *              | User       MMU A level tables                         |
    174  *              |                                                       |
    175  * mmuBbase  -> +-------------------------------------------------------+
    176  *              | User       MMU B level tables                         |
    177  * mmuCbase  -> +-------------------------------------------------------+
    178  *              | User       MMU C level tables                         |
    179  * tmgrAbase -> +-------------------------------------------------------+
    180  *              |  TMGR A level table structures                        |
    181  * tmgrBbase -> +-------------------------------------------------------+
    182  *              |  TMGR B level table structures                        |
    183  * tmgrCbase -> +-------------------------------------------------------+
    184  *              |  TMGR C level table structures                        |
    185  * pvbase    -> +-------------------------------------------------------+
    186  *              |  Physical to Virtual mapping table (list heads)       |
    187  * pvebase   -> +-------------------------------------------------------+
    188  *              |  Physical to Virtual mapping table (list elements)    |
    189  *              |                                                       |
    190  *              +-------------------------------------------------------+
    191  *      towards higher memory
    192  *
    193  * For every A table in the MMU A area, there will be a corresponding
    194  * a_tmgr structure in the TMGR A area.  The same will be true for
    195  * the B and C tables.  This arrangement will make it easy to find the
    196  * controling tmgr structure for any table in the system by use of
    197  * (relatively) simple macros.
    198  */
    199 /* Global variables for storing the base addresses for the areas
    200  * labeled above.
    201  */
    202 static mmu_long_dte_t	*kernAbase;
    203 static mmu_short_dte_t	*kernBbase;
    204 static mmu_short_pte_t	*kernCbase;
    205 static mmu_long_dte_t	*mmuAbase;
    206 static mmu_short_dte_t	*mmuBbase;
    207 static mmu_short_pte_t	*mmuCbase;
    208 static a_tmgr_t		*Atmgrbase;
    209 static b_tmgr_t		*Btmgrbase;
    210 static c_tmgr_t		*Ctmgrbase;
    211 static pv_t		*pvbase;
    212 static pv_elem_t	*pvebase;
    213 
    214 /* Just all around global variables.
    215  */
    216 static TAILQ_HEAD(a_pool_head_struct, a_tmgr_struct) a_pool;
    217 static TAILQ_HEAD(b_pool_head_struct, b_tmgr_struct) b_pool;
    218 static TAILQ_HEAD(c_pool_head_struct, c_tmgr_struct) c_pool;
    219        struct pmap	kernel_pmap;
    220 static a_tmgr_t		*proc0Atmgr;
    221        a_tmgr_t		*curatbl;
    222 static boolean_t	pv_initialized = 0;
    223 static vm_offset_t	last_mapped = 0;
    224        int		tmp_vpages_inuse = 0;
    225 
    226 /*
    227  * XXX:  For now, retain the traditional variables that were
    228  * used in the old pmap/vm interface (without NONCONTIG).
    229  */
    230 /* Kernel virtual address space available: */
    231 vm_offset_t	virtual_avail, virtual_end;
    232 /* Physical address space available: */
    233 vm_offset_t	avail_start, avail_end;
    234 
    235 vm_offset_t tmp_vpages[2];
    236 
    237 
    238 /* The 3/80 is the only member of the sun3x family that has non-contiguous
    239  * physical memory.  Memory is divided into 4 banks which are physically
    240  * locatable on the system board.  Although the size of these banks varies
    241  * with the size of memory they contain, their base addresses are
    242  * permenently fixed.  The following structure, which describes these
    243  * banks, is initialized by pmap_bootstrap() after it reads from a similar
    244  * structure provided by the ROM Monitor.
    245  *
    246  * For the other machines in the sun3x architecture which do have contiguous
    247  * RAM, this list will have only one entry, which will describe the entire
    248  * range of available memory.
    249  */
    250 struct pmap_physmem_struct avail_mem[SUN3X_80_MEM_BANKS];
    251 u_int total_phys_mem;
    252 
    253 /* These macros map MMU tables to their corresponding manager structures.
    254  * They are needed quite often because many of the pointers in the pmap
    255  * system reference MMU tables and not the structures that control them.
    256  * There needs to be a way to find one when given the other and these
    257  * macros do so by taking advantage of the memory layout described above.
    258  * Here's a quick step through the first macro, mmuA2tmgr():
    259  *
    260  * 1) find the offset of the given MMU A table from the base of its table
    261  *    pool (table - mmuAbase).
    262  * 2) convert this offset into a table index by dividing it by the
    263  *    size of one MMU 'A' table. (sizeof(mmu_long_dte_t) * MMU_A_TBL_SIZE)
    264  * 3) use this index to select the corresponding 'A' table manager
    265  *    structure from the 'A' table manager pool (Atmgrbase[index]).
    266  */
    267 #define mmuA2tmgr(table) \
    268 	(&Atmgrbase[\
    269 		((mmu_long_dte_t *)(table) - mmuAbase)\
    270 		/ MMU_A_TBL_SIZE\
    271 	])
    272 #define mmuB2tmgr(table) \
    273 	(&Btmgrbase[\
    274 		((mmu_short_dte_t *)(table) - mmuBbase)\
    275 		/ MMU_B_TBL_SIZE\
    276         ])
    277 #define mmuC2tmgr(table) \
    278 	(&Ctmgrbase[\
    279 		((mmu_short_pte_t *)(table) - mmuCbase)\
    280 		/ MMU_C_TBL_SIZE\
    281 	])
    282 #define pte2pve(pte) \
    283 	(&pvebase[\
    284 		((mmu_short_pte_t *)(pte) - mmuCbase)\
    285 	])
    286 /* I don't think this is actually used.
    287  * #define pte2pv(pte) \
    288  *	(pa2pv(\
    289  *		(pte)->attr.raw & MMU_SHORT_PTE_BASEADDR\
    290  *	))
    291  */
    292 /* This is now a function call
    293  * #define pa2pv(pa) \
    294  *	(&pvbase[(unsigned long)\
    295  *		sun3x_btop(pa)\
    296  *	])
    297  */
    298 #define pve2pte(pve) \
    299 	(&mmuCbase[(unsigned long)\
    300 		(((pv_elem_t *)(pve)) - pvebase)\
    301 		/ sizeof(mmu_short_pte_t)\
    302 	])
    303 
    304 /*************************** TEMPORARY STATMENTS *************************
    305  * These statements will disappear once this code is integrated into the *
    306  * system.  They are here only to make the code `stand alone'.           *
    307  *************************************************************************/
    308 #define mmu_ptov(pa) ((unsigned long) KERNBASE + (unsigned long) (pa))
    309 #define mmu_vtop(va) ((unsigned long) (va) - (unsigned long) KERNBASE)
    310 #define NULL 0
    311 
    312 #define NUM_A_TABLES	20
    313 #define NUM_B_TABLES	60
    314 #define NUM_C_TABLES	60
    315 
    316 /*************************** MISCELANEOUS MACROS *************************/
    317 #define PMAP_LOCK()	;	/* Nothing, for now */
    318 #define PMAP_UNLOCK()	;	/* same. */
    319 /*************************** FUNCTION DEFINITIONS ************************
    320  * These appear here merely for the compiler to enforce type checking on *
    321  * all function calls.                                                   *
    322  *************************************************************************
    323  */
    324 
    325 /** External functions
    326  ** - functions used within this module but written elsewhere.
    327  **   both of these functions are in locore.s
    328  */
    329 void   mmu_seturp __P((vm_offset_t));
    330 void   mmu_flush __P((int, vm_offset_t));
    331 void   mmu_flusha __P((void));
    332 
    333 /** Internal functions
    334  ** - all functions used only within this module are defined in
    335  **   pmap_pvt.h
    336  **/
    337 
    338 /** Interface functions
    339  ** - functions required by the Mach VM Pmap interface, with MACHINE_CONTIG
    340  **   defined.
    341  **/
    342 #ifdef INCLUDED_IN_PMAP_H
    343 void   pmap_bootstrap __P((void));
    344 void  *pmap_bootstrap_alloc __P((int));
    345 void   pmap_enter __P((pmap_t, vm_offset_t, vm_offset_t, vm_prot_t, boolean_t));
    346 pmap_t pmap_create __P((vm_size_t));
    347 void   pmap_destroy __P((pmap_t));
    348 void   pmap_reference __P((pmap_t));
    349 boolean_t   pmap_is_referenced __P((vm_offset_t));
    350 boolean_t   pmap_is_modified __P((vm_offset_t));
    351 void   pmap_clear_modify __P((vm_offset_t));
    352 vm_offset_t pmap_extract __P((pmap_t, vm_offset_t));
    353 void   pmap_activate __P((pmap_t, struct pcb *));
    354 int    pmap_page_index __P((vm_offset_t));
    355 u_int  pmap_free_pages __P((void));
    356 #endif /* INCLUDED_IN_PMAP_H */
    357 
    358 /********************************** CODE ********************************
    359  * Functions that are called from other parts of the kernel are labeled *
    360  * as 'INTERFACE' functions.  Functions that are only called from       *
    361  * within the pmap module are labeled as 'INTERNAL' functions.          *
    362  * Functions that are internal, but are not (currently) used at all are *
    363  * labeled 'INTERNAL_X'.                                                *
    364  ************************************************************************/
    365 
    366 /* pmap_bootstrap			INTERNAL
    367  **
    368  * Initializes the pmap system.  Called at boot time from sun3x_vm_init()
    369  * in _startup.c.
    370  *
    371  * Reminder: having a pmap_bootstrap_alloc() and also having the VM
    372  *           system implement pmap_steal_memory() is redundant.
    373  *           Don't release this code without removing one or the other!
    374  */
    375 void
    376 pmap_bootstrap(nextva)
    377 	vm_offset_t nextva;
    378 {
    379 	struct physmemory *membank;
    380 	struct pmap_physmem_struct *pmap_membank;
    381 	vm_offset_t va, pa, eva;
    382 	int b, c, i, j;	/* running table counts */
    383 	int size;
    384 
    385 	/*
    386 	 * This function is called by __bootstrap after it has
    387 	 * determined the type of machine and made the appropriate
    388 	 * patches to the ROM vectors (XXX- I don't quite know what I meant
    389 	 * by that.)  It allocates and sets up enough of the pmap system
    390 	 * to manage the kernel's address space.
    391 	 */
    392 
    393 	/* XXX - Attention: moved stuff. */
    394 
    395 	/*
    396 	 * Determine the range of kernel virtual space available.
    397 	 */
    398 	virtual_avail = sun3x_round_page(nextva);
    399 	virtual_end = VM_MAX_KERNEL_ADDRESS;
    400 
    401 	/*
    402 	 * Determine the range of physical memory available and
    403 	 * relay this information to the pmap via the avail_mem[]
    404 	 * array of physical memory segment structures.
    405 	 *
    406 	 * Avail_end is set to the first byte of physical memory
    407 	 * outside the last bank.
    408 	 */
    409 	avail_start = virtual_avail - KERNBASE;
    410 
    411 	/*
    412 	 * This is a somewhat unwrapped loop to deal with
    413 	 * copying the PROM's 'phsymem' banks into the pmap's
    414 	 * banks.  The following is always assumed:
    415 	 * 1. There is always at least one bank of memory.
    416 	 * 2. There is always a last bank of memory, and its
    417 	 *    pmem_next member must be set to NULL.
    418 	 * XXX - Use: do { ... } while (membank->next) instead?
    419 	 * XXX - Why copy this stuff at all? -gwr
    420 	 */
    421 	membank = romVectorPtr->v_physmemory;
    422 	pmap_membank = avail_mem;
    423 	total_phys_mem = 0;
    424 
    425 	while (membank->next) {
    426 		pmap_membank->pmem_start = membank->address;
    427 		pmap_membank->pmem_end = membank->address + membank->size;
    428 		total_phys_mem += membank->size;
    429 		/* This silly syntax arises because pmap_membank
    430 		 * is really a pre-allocated array, but it is put into
    431 		 * use as a linked list.
    432 		 */
    433 		pmap_membank->pmem_next = pmap_membank + 1;
    434 		pmap_membank = pmap_membank->pmem_next;
    435 		membank = membank->next;
    436 	}
    437 
    438 	/*
    439 	 * XXX The last bank of memory should be reduced to exclude the
    440 	 * physical pages needed by the PROM monitor from being used
    441 	 * in the VM system.  XXX - See below - Fix!
    442 	 */
    443 	pmap_membank->pmem_start = membank->address;
    444 	pmap_membank->pmem_end = membank->address + membank->size;
    445 	pmap_membank->pmem_next = NULL;
    446 
    447 #if 0	/* XXX - Need to integrate this! */
    448 	/*
    449 	 * The last few pages of physical memory are "owned" by
    450 	 * the PROM.  The total amount of memory we are allowed
    451 	 * to use is given by the romvec pointer. -gwr
    452 	 *
    453 	 * We should dedicate different variables for 'useable'
    454 	 * and 'physically available'.  Most users are used to the
    455 	 * kernel reporting the amount of memory 'physically available'
    456 	 * as opposed to 'useable by the kernel' at boot time. -j
    457 	 */
    458 	total_phys_mem = *romVectorPtr->memoryAvail;
    459 #endif	/* XXX */
    460 
    461 	total_phys_mem += membank->size;	/* XXX see above */
    462 	physmem = btoc(total_phys_mem);
    463 	avail_end = pmap_membank->pmem_end;
    464 	avail_end = sun3x_trunc_page(avail_end);
    465 
    466 	/* XXX - End moved stuff. */
    467 
    468 	/*
    469 	 * The first step is to allocate MMU tables.
    470 	 * Note: All must be aligned on 256 byte boundaries.
    471 	 *
    472 	 * Start with the top level, or 'A' table.
    473 	 */
    474 	kernAbase = (mmu_long_dte_t *) virtual_avail;
    475 	size = sizeof(mmu_long_dte_t) * MMU_A_TBL_SIZE;
    476 	bzero(kernAbase, size);
    477 	avail_start += size;
    478 	virtual_avail += size;
    479 
    480 	/* Allocate enough B tables to map from KERNBASE to
    481 	 * the end of VM.
    482 	 */
    483 	kernBbase = (mmu_short_dte_t *) virtual_avail;
    484 	size = sizeof(mmu_short_dte_t) *
    485 		(MMU_A_TBL_SIZE - MMU_TIA(KERNBASE)) * MMU_B_TBL_SIZE;
    486 	bzero(kernBbase, size);
    487 	avail_start += size;
    488 	virtual_avail += size;
    489 
    490 	/* Allocate enough C tables. */
    491 	kernCbase = (mmu_short_pte_t *) virtual_avail;
    492 	size = sizeof (mmu_short_pte_t) *
    493 		(MMU_A_TBL_SIZE - MMU_TIA(KERNBASE))
    494 		* MMU_B_TBL_SIZE * MMU_C_TBL_SIZE;
    495 	bzero(kernCbase, size);
    496 	avail_start += size;
    497 	virtual_avail += size;
    498 
    499 	/* For simplicity, the kernel's mappings will be editable as a
    500 	 * flat array of page table entries at kernCbase.  The
    501 	 * higher level 'A' and 'B' tables must be initialized to point
    502 	 * to this lower one.
    503 	 */
    504 	b = c = 0;
    505 
    506 	/* Invalidate all mappings below KERNBASE in the A table.
    507 	 * This area has already been zeroed out, but it is good
    508 	 * practice to explicitly show that we are interpreting
    509 	 * it as a list of A table descriptors.
    510 	 */
    511 	for (i = 0; i < MMU_TIA(KERNBASE); i++) {
    512 		kernAbase[i].addr.raw = 0;
    513 	}
    514 
    515 	/* Set up the kernel A and B tables so that they will reference the
    516 	 * correct spots in the contiguous table of PTEs allocated for the
    517 	 * kernel's virtual memory space.
    518 	 */
    519 	for (i = MMU_TIA(KERNBASE); i < MMU_A_TBL_SIZE; i++) {
    520 		kernAbase[i].attr.raw =
    521 			MMU_LONG_DTE_LU | MMU_LONG_DTE_SUPV | MMU_DT_SHORT;
    522 		kernAbase[i].addr.raw = (unsigned long) mmu_vtop(&kernBbase[b]);
    523 
    524 		for (j=0; j < MMU_B_TBL_SIZE; j++) {
    525 			kernBbase[b + j].attr.raw =
    526 				(unsigned long) mmu_vtop(&kernCbase[c])
    527 				| MMU_DT_SHORT;
    528 			c += MMU_C_TBL_SIZE;
    529 		}
    530 		b += MMU_B_TBL_SIZE;
    531 	}
    532 
    533 	/*
    534 	 * Now pmap_enter_kernel() may be used safely and will be
    535 	 * the main interface used by _startup.c and other various
    536 	 * modules to modify kernel mappings.
    537 	 *
    538 	 * Note: Our tables will NOT have the default linear mappings!
    539 	 */
    540 	va = (vm_offset_t) KERNBASE;
    541 	pa = mmu_vtop(KERNBASE);
    542 
    543 	/*
    544 	 * The first page is the msgbuf page (data, non-cached).
    545 	 * Just fixup the mapping here; setup is in cpu_startup().
    546 	 * XXX - Make it non-cached?
    547 	 */
    548 	pmap_enter_kernel(va, pa|PMAP_NC, VM_PROT_ALL);
    549 	va += NBPG; pa += NBPG;
    550 
    551 	/* The tmporary stack page. */
    552 	pmap_enter_kernel(va, pa, VM_PROT_ALL);
    553 	va += NBPG; pa += NBPG;
    554 
    555 	/*
    556 	 * Map all of the kernel's text segment as read-only and cacheable.
    557 	 * (Cacheable is implied by default).  Unfortunately, the last bytes
    558 	 * of kernel text and the first bytes of kernel data will often be
    559 	 * sharing the same page.  Therefore, the last page of kernel text
    560 	 * has to be mapped as read/write, to accomodate the data.
    561 	 */
    562 	eva = sun3x_trunc_page((vm_offset_t)etext);
    563 	for (; va < eva; pa += NBPG, va += NBPG)
    564 		pmap_enter_kernel(va, pa, VM_PROT_READ|VM_PROT_EXECUTE);
    565 
    566 	/* Map all of the kernel's data (including BSS) segment as read/write
    567 	 * and cacheable.
    568 	 */
    569 	for (; va < (vm_offset_t) esym; pa += NBPG, va += NBPG)
    570 		pmap_enter_kernel(va, pa, VM_PROT_READ|VM_PROT_WRITE);
    571 
    572 	/* Map all of the data we have allocated since the start of this
    573 	 * function.
    574 	 */
    575 	for (; va < virtual_avail; va += NBPG, pa += NBPG)
    576 		pmap_enter_kernel(va, pa, VM_PROT_READ|VM_PROT_WRITE);
    577 
    578 	/* Set 'last_mapped' to the address of the last physical page
    579 	 * that was mapped in the kernel.  This variable is used by
    580 	 * pmap_bootstrap_alloc() to determine when it needs to map
    581 	 * a new page.
    582 	 *
    583 	 * XXX - This can be a lot simpler.  We already know that the
    584 	 * first 4MB of memory (at least) is mapped PA=VA-KERNBASE,
    585 	 * so we should never need to creat any new mappings. -gwr
    586 	 *
    587 	 * True, but it only remains so as long as we are using the
    588 	 * ROM's CRP.  Unless, of course, we copy these mappings into
    589 	 * our table. -j
    590 	 */
    591 	last_mapped = sun3x_trunc_page(pa - (NBPG - 1));
    592 
    593 	/* It is now safe to use pmap_bootstrap_alloc(). */
    594 
    595 	pmap_alloc_usermmu();	/* Allocate user MMU tables.        */
    596 	pmap_alloc_usertmgr();	/* Allocate user MMU table managers.*/
    597 	pmap_alloc_pv();	/* Allocate physical->virtual map.  */
    598 	pmap_alloc_etc();	/* Allocate miscelaneous things.    */
    599 
    600 	/* Notify the VM system of our page size. */
    601 	PAGE_SIZE = NBPG;
    602 	vm_set_page_size();
    603 
    604 	/* XXX - Attention: moved stuff. */
    605 
    606 	/*
    607 	 * XXX - Make sure avail_start is within the low 4M range
    608 	 * that the Sun PROM guarantees will be mapped in?
    609 	 * Make sure it is below avail_end as well?
    610 	 */
    611 
    612 	/*
    613 	 * Now steal some virtual addresses, but
    614 	 * not the physical pages behind them.
    615 	 */
    616 
    617 	/*
    618 	 * vpages array:  just some virtual addresses for
    619 	 * temporary mappings in the pmap module (two pages)
    620 	 */
    621 	pmap_bootstrap_aalign(NBPG);
    622 	tmp_vpages[0] = virtual_avail;
    623 	virtual_avail += NBPG;
    624 	tmp_vpages[1] = virtual_avail;
    625 	virtual_avail += NBPG;
    626 
    627 	/* XXX - End moved stuff. */
    628 
    629 	/* It should be noted that none of these mappings take
    630 	 * effect until the MMU's root pointer is
    631 	 * is changed from the PROM map, to our own.
    632 	 */
    633 	pmap_bootstrap_copyprom();
    634 	pmap_takeover_mmu();
    635 }
    636 
    637 
    638 /* pmap_alloc_usermmu			INTERNAL
    639  **
    640  * Called from pmap_bootstrap() to allocate MMU tables that will
    641  * eventually be used for user mappings.
    642  */
    643 void
    644 pmap_alloc_usermmu()
    645 {
    646 	/* Allocate user MMU tables.
    647 	 * These must be aligned on 256 byte boundaries.
    648 	 */
    649 	pmap_bootstrap_aalign(256);
    650 	mmuAbase = (mmu_long_dte_t *)
    651 		pmap_bootstrap_alloc(sizeof(mmu_long_dte_t)
    652 		* MMU_A_TBL_SIZE
    653 		* NUM_A_TABLES);
    654 	mmuBbase = (mmu_short_dte_t *)
    655 		pmap_bootstrap_alloc(sizeof(mmu_short_dte_t)
    656 		* MMU_B_TBL_SIZE
    657 		* NUM_B_TABLES);
    658 	mmuCbase = (mmu_short_pte_t *)
    659 		pmap_bootstrap_alloc(sizeof(mmu_short_pte_t)
    660 		* MMU_C_TBL_SIZE
    661 		* NUM_C_TABLES);
    662 }
    663 
    664 /* pmap_alloc_pv			INTERNAL
    665  **
    666  * Called from pmap_bootstrap() to allocate the physical
    667  * to virtual mapping list.  Each physical page of memory
    668  * in the system has a corresponding element in this list.
    669  */
    670 void
    671 pmap_alloc_pv()
    672 {
    673 	int	i;
    674 	unsigned int	total_mem;
    675 
    676 	/* Allocate a pv_head structure for every page of physical
    677 	 * memory that will be managed by the system.  Since memory on
    678 	 * the 3/80 is non-contiguous, we cannot arrive at a total page
    679 	 * count by subtraction of the lowest available address from the
    680 	 * highest, but rather we have to step through each memory
    681 	 * bank and add the number of pages in each to the total.
    682 	 *
    683 	 * At this time we also initialize the offset of each bank's
    684 	 * starting pv_head within the pv_head list so that the physical
    685 	 * memory state routines (pmap_is_referenced(),
    686 	 * pmap_is_modified(), et al.) can quickly find coresponding
    687 	 * pv_heads in spite of the non-contiguity.
    688 	 */
    689 
    690 	total_mem = 0;
    691 	for (i = 0; i < SUN3X_80_MEM_BANKS; i++) {
    692 		avail_mem[i].pmem_pvbase = sun3x_btop(total_mem);
    693 		total_mem += avail_mem[i].pmem_end -
    694 			avail_mem[i].pmem_start;
    695 		if (avail_mem[i].pmem_next == NULL)
    696 			break;
    697 	}
    698 #ifdef	PMAP_DEBUG
    699 	if (total_mem != total_phys_mem)
    700 		panic("pmap_alloc_pv did not arrive at correct page count");
    701 #endif
    702 
    703 	pvbase = (pv_t *) pmap_bootstrap_alloc(sizeof(pv_t) *
    704 		sun3x_btop(total_phys_mem));
    705 }
    706 
    707 /* pmap_alloc_usertmgr			INTERNAL
    708  **
    709  * Called from pmap_bootstrap() to allocate the structures which
    710  * facilitate management of user MMU tables.  Each user MMU table
    711  * in the system has one such structure associated with it.
    712  */
    713 void
    714 pmap_alloc_usertmgr()
    715 {
    716 	/* Allocate user MMU table managers */
    717 	/* XXX - It would be a lot simpler to just make these BSS. -gwr */
    718 	Atmgrbase = (a_tmgr_t *) pmap_bootstrap_alloc(sizeof(a_tmgr_t)
    719 		* NUM_A_TABLES);
    720 	Btmgrbase = (b_tmgr_t *) pmap_bootstrap_alloc(sizeof(b_tmgr_t)
    721 		* NUM_B_TABLES);
    722 	Ctmgrbase = (c_tmgr_t *) pmap_bootstrap_alloc(sizeof(c_tmgr_t)
    723 		* NUM_C_TABLES);
    724 
    725 	/* Allocate PV list elements for the physical to virtual
    726 	 * mapping system.
    727 	 */
    728 	pvebase = (pv_elem_t *) pmap_bootstrap_alloc(
    729 		sizeof(struct pv_elem_struct)
    730 		* MMU_C_TBL_SIZE
    731 		* NUM_C_TABLES );
    732 }
    733 
    734 /* pmap_alloc_etc			INTERNAL
    735  **
    736  * Called from pmap_bootstrap() to allocate any remaining pieces
    737  * that didn't fit neatly into any of the other pmap_alloc
    738  * functions.
    739  */
    740 void
    741 pmap_alloc_etc()
    742 {
    743 	/* Allocate an A table manager for the kernel_pmap */
    744 	proc0Atmgr = (a_tmgr_t *) pmap_bootstrap_alloc(sizeof(a_tmgr_t));
    745 }
    746 
    747 /* pmap_bootstrap_copyprom()			INTERNAL
    748  **
    749  * Copy the PROM mappings into our own tables.  Note, we
    750  * can use physical addresses until __bootstrap returns.
    751  */
    752 void
    753 pmap_bootstrap_copyprom()
    754 {
    755 	MachMonRomVector *romp;
    756 	int *mon_ctbl;
    757 	mmu_short_pte_t *kpte;
    758 	int i, len;
    759 
    760 	romp = romVectorPtr;
    761 
    762 	/*
    763 	 * Copy the mappings in MON_KDB_START...MONEND
    764 	 * Note: mon_ctbl[0] maps MON_KDB_START
    765 	 */
    766 	mon_ctbl = *romp->monptaddr;
    767 	i = sun3x_btop(MON_KDB_START - KERNBASE);
    768 	kpte = &kernCbase[i];
    769 	len = sun3x_btop(MONEND - MON_KDB_START);
    770 
    771 	for (i = 0; i < len; i++) {
    772 		kpte[i].attr.raw = mon_ctbl[i];
    773 	}
    774 
    775 	/*
    776 	 * Copy the mappings at MON_DVMA_BASE (to the end).
    777 	 * Note, in here, mon_ctbl[0] maps MON_DVMA_BASE.
    778 	 * XXX - This does not appear to be necessary, but
    779 	 * I'm not sure yet if it is or not. -gwr
    780 	 */
    781 	mon_ctbl = *romp->shadowpteaddr;
    782 	i = sun3x_btop(MON_DVMA_BASE - KERNBASE);
    783 	kpte = &kernCbase[i];
    784 	len = sun3x_btop(MON_DVMA_SIZE);
    785 
    786 	for (i = 0; i < len; i++) {
    787 		kpte[i].attr.raw = mon_ctbl[i];
    788 	}
    789 }
    790 
    791 /* pmap_takeover_mmu			INTERNAL
    792  **
    793  * Called from pmap_bootstrap() after it has copied enough of the
    794  * PROM mappings into the kernel map so that we can use our own
    795  * MMU table.
    796  */
    797 void
    798 pmap_takeover_mmu()
    799 {
    800 	vm_offset_t tbladdr;
    801 
    802 	tbladdr = mmu_vtop((vm_offset_t) kernAbase);
    803 	mon_printf("pmap_takeover_mmu: tbladdr=0x%x\n", tbladdr);
    804 
    805 	/* Initialize the CPU Root Pointer (CRP) for proc0. */
    806 	/* XXX: I'd prefer per-process CRP storage. -gwr */
    807 	proc0crp.limit = 0x80000003;	/* limit and type */
    808 	proc0crp.paddr = tbladdr;	/* phys. addr. */
    809 	curpcb->pcb_mmuctx = (int) &proc0crp;
    810 
    811 	mon_printf("pmap_takeover_mmu: loadcrp...\n");
    812 	loadcrp(curpcb->pcb_mmuctx);
    813 	mon_printf("pmap_takeover_mmu: survived!\n");
    814 }
    815 
    816 /* pmap_init			INTERFACE
    817  **
    818  * Called at the end of vm_init() to set up the pmap system to go
    819  * into full time operation.
    820  */
    821 void
    822 pmap_init()
    823 {
    824 	/** Initialize the manager pools **/
    825 	TAILQ_INIT(&a_pool);
    826 	TAILQ_INIT(&b_pool);
    827 	TAILQ_INIT(&c_pool);
    828 
    829 	/** Initialize the PV system **/
    830 	pmap_init_pv();
    831 
    832 	/** Zero out the kernel's pmap **/
    833 	bzero(&kernel_pmap, sizeof(struct pmap));
    834 
    835 	/* Initialize the A table manager that is used in pmaps which
    836 	 * do not have an A table of their own.  This table uses the
    837 	 * kernel, or 'proc0' level A MMU table, which contains no valid
    838 	 * user space mappings.  Any user process that attempts to execute
    839 	 * using this A table will fault.  At which point the VM system will
    840 	 * call pmap_enter, which will then allocate it an A table of its own
    841 	 * from the pool.
    842 	 */
    843 	proc0Atmgr->at_dtbl = kernAbase;
    844 	proc0Atmgr->at_parent = &kernel_pmap;
    845 	kernel_pmap.pm_a_tbl = proc0Atmgr;
    846 
    847 	/**************************************************************
    848 	 * Initialize all tmgr structures and MMU tables they manage. *
    849 	 **************************************************************/
    850 	/** Initialize A tables **/
    851 	pmap_init_a_tables();
    852 	/** Initialize B tables **/
    853 	pmap_init_b_tables();
    854 	/** Initialize C tables **/
    855 	pmap_init_c_tables();
    856 }
    857 
    858 /* pmap_init_a_tables()			INTERNAL
    859  **
    860  * Initializes all A managers, their MMU A tables, and inserts
    861  * them into the A manager pool for use by the system.
    862  */
    863 void
    864 pmap_init_a_tables()
    865 {
    866 	int i;
    867 	a_tmgr_t *a_tbl;
    868 
    869 	for (i=0; i < NUM_A_TABLES; i++) {
    870 		/* Select the next available A manager from the pool */
    871 		a_tbl = &Atmgrbase[i];
    872 
    873 		/* Clear its parent entry.  Set its wired and valid
    874 		 * entry count to zero.
    875 		 */
    876 		a_tbl->at_parent = NULL;
    877 		a_tbl->at_wcnt = a_tbl->at_ecnt = 0;
    878 
    879 		/* Assign it the next available MMU A table from the pool */
    880 		a_tbl->at_dtbl = &mmuAbase[i * MMU_A_TBL_SIZE];
    881 
    882 		/* Initialize the MMU A table with the table in the `proc0',
    883 		 * or kernel, mapping.  This ensures that every process has
    884 		 * the kernel mapped in the top part of its address space.
    885 		 */
    886 		bcopy(kernAbase, a_tbl->at_dtbl, MMU_A_TBL_SIZE *
    887 			sizeof(mmu_long_dte_t));
    888 
    889 		/* Finally, insert the manager into the A pool,
    890 		 * making it ready to be used by the system.
    891 		 */
    892 		TAILQ_INSERT_TAIL(&a_pool, a_tbl, at_link);
    893     }
    894 }
    895 
    896 /* pmap_init_b_tables()			INTERNAL
    897  **
    898  * Initializes all B table managers, their MMU B tables, and
    899  * inserts them into the B manager pool for use by the system.
    900  */
    901 void
    902 pmap_init_b_tables()
    903 {
    904 	int i,j;
    905 	b_tmgr_t *b_tbl;
    906 
    907 	for (i=0; i < NUM_B_TABLES; i++) {
    908 		/* Select the next available B manager from the pool */
    909 		b_tbl = &Btmgrbase[i];
    910 
    911 		b_tbl->bt_parent = NULL;	/* clear its parent,  */
    912 		b_tbl->bt_pidx = 0;		/* parent index,      */
    913 		b_tbl->bt_wcnt = 0;		/* wired entry count, */
    914 		b_tbl->bt_ecnt = 0;		/* valid entry count. */
    915 
    916 		/* Assign it the next available MMU B table from the pool */
    917 		b_tbl->bt_dtbl = &mmuBbase[i * MMU_B_TBL_SIZE];
    918 
    919 		/* Invalidate every descriptor in the table */
    920 		for (j=0; j < MMU_B_TBL_SIZE; j++)
    921 			b_tbl->bt_dtbl[j].attr.raw = MMU_DT_INVALID;
    922 
    923 		/* Insert the manager into the B pool */
    924 		TAILQ_INSERT_TAIL(&b_pool, b_tbl, bt_link);
    925 	}
    926 }
    927 
    928 /* pmap_init_c_tables()			INTERNAL
    929  **
    930  * Initializes all C table managers, their MMU C tables, and
    931  * inserts them into the C manager pool for use by the system.
    932  */
    933 void
    934 pmap_init_c_tables()
    935 {
    936 	int i,j;
    937 	c_tmgr_t *c_tbl;
    938 
    939 	for (i=0; i < NUM_C_TABLES; i++) {
    940 		/* Select the next available C manager from the pool */
    941 		c_tbl = &Ctmgrbase[i];
    942 
    943 		c_tbl->ct_parent = NULL;	/* clear its parent,  */
    944 		c_tbl->ct_pidx = 0;		/* parent index,      */
    945 		c_tbl->ct_wcnt = 0;		/* wired entry count, */
    946 		c_tbl->ct_ecnt = 0;		/* valid entry count. */
    947 
    948 		/* Assign it the next available MMU C table from the pool */
    949 		c_tbl->ct_dtbl = &mmuCbase[i * MMU_C_TBL_SIZE];
    950 
    951 		for (j=0; j < MMU_C_TBL_SIZE; j++)
    952 			c_tbl->ct_dtbl[j].attr.raw = MMU_DT_INVALID;
    953 
    954 		TAILQ_INSERT_TAIL(&c_pool, c_tbl, ct_link);
    955 	}
    956 }
    957 
    958 /* pmap_init_pv()			INTERNAL
    959  **
    960  * Initializes the Physical to Virtual mapping system.
    961  */
    962 void
    963 pmap_init_pv()
    964 {
    965 	bzero(pvbase, sizeof(pv_t) * sun3x_btop(total_phys_mem));
    966 	pv_initialized = TRUE;
    967 }
    968 
    969 /* get_a_table			INTERNAL
    970  **
    971  * Retrieve and return a level A table for use in a user map.
    972  */
    973 a_tmgr_t *
    974 get_a_table()
    975 {
    976 	a_tmgr_t *tbl;
    977 
    978 	/* Get the top A table in the pool */
    979 	tbl = a_pool.tqh_first;
    980 	if (tbl == NULL)
    981 		panic("get_a_table: out of A tables.");
    982 	TAILQ_REMOVE(&a_pool, tbl, at_link);
    983 	/* If the table has a non-null parent pointer then it is in use.
    984 	 * Forcibly abduct it from its parent and clear its entries.
    985 	 * No re-entrancy worries here.  This table would not be in the
    986 	 * table pool unless it was available for use.
    987 	 */
    988 	if (tbl->at_parent) {
    989 		tbl->at_parent->pm_stats.resident_count -= free_a_table(tbl);
    990 		tbl->at_parent->pm_a_tbl = proc0Atmgr;
    991 	}
    992 #ifdef  NON_REENTRANT
    993 	/* If the table isn't to be wired down, re-insert it at the
    994 	 * end of the pool.
    995 	 */
    996 	if (!wired)
    997 		/* Quandary - XXX
    998 		 * Would it be better to let the calling function insert this
    999 		 * table into the queue?  By inserting it here, we are allowing
   1000 		 * it to be stolen immediately.  The calling function is
   1001 		 * probably not expecting to use a table that it is not
   1002 		 * assured full control of.
   1003 		 * Answer - In the intrest of re-entrancy, it is best to let
   1004 		 * the calling function determine when a table is available
   1005 		 * for use.  Therefore this code block is not used.
   1006 		 */
   1007 		TAILQ_INSERT_TAIL(&a_pool, tbl, at_link);
   1008 #endif	/* NON_REENTRANT */
   1009 	return tbl;
   1010 }
   1011 
   1012 /* get_b_table			INTERNAL
   1013  **
   1014  * Return a level B table for use.
   1015  */
   1016 b_tmgr_t *
   1017 get_b_table()
   1018 {
   1019 	b_tmgr_t *tbl;
   1020 
   1021 	/* See 'get_a_table' for comments. */
   1022 	tbl = b_pool.tqh_first;
   1023 	if (tbl == NULL)
   1024 		panic("get_b_table: out of B tables.");
   1025 	TAILQ_REMOVE(&b_pool, tbl, bt_link);
   1026 	if (tbl->bt_parent) {
   1027 		tbl->bt_parent->at_dtbl[tbl->bt_pidx].attr.raw = MMU_DT_INVALID;
   1028 		tbl->bt_parent->at_ecnt--;
   1029 		tbl->bt_parent->at_parent->pm_stats.resident_count -=
   1030 		    free_b_table(tbl);
   1031 	}
   1032 #ifdef	NON_REENTRANT
   1033 	if (!wired)
   1034 		/* XXX see quandary in get_b_table */
   1035 		/* XXX start lock */
   1036 		TAILQ_INSERT_TAIL(&b_pool, tbl, bt_link);
   1037 		/* XXX end lock */
   1038 #endif	/* NON_REENTRANT */
   1039 	return tbl;
   1040 }
   1041 
   1042 /* get_c_table			INTERNAL
   1043  **
   1044  * Return a level C table for use.
   1045  */
   1046 c_tmgr_t *
   1047 get_c_table()
   1048 {
   1049 	c_tmgr_t *tbl;
   1050 
   1051 	/* See 'get_a_table' for comments */
   1052 	tbl = c_pool.tqh_first;
   1053 	if (tbl == NULL)
   1054 		panic("get_c_table: out of C tables.");
   1055 	TAILQ_REMOVE(&c_pool, tbl, ct_link);
   1056 	if (tbl->ct_parent) {
   1057 		tbl->ct_parent->bt_dtbl[tbl->ct_pidx].attr.raw = MMU_DT_INVALID;
   1058 		tbl->ct_parent->bt_ecnt--;
   1059 		tbl->ct_parent->bt_parent->at_parent->pm_stats.resident_count
   1060 		    -= free_c_table(tbl);
   1061 	}
   1062 #ifdef	NON_REENTRANT
   1063 	if (!wired)
   1064 		/* XXX See quandary in get_a_table */
   1065 		/* XXX start lock */
   1066 		TAILQ_INSERT_TAIL(&c_pool, tbl, c_link);
   1067 		/* XXX end lock */
   1068 #endif	/* NON_REENTRANT */
   1069 
   1070 	return tbl;
   1071 }
   1072 
   1073 /* The following 'free_table' and 'steal_table' functions are called to
   1074  * detach tables from their current obligations (parents and children) and
   1075  * prepare them for reuse in another mapping.
   1076  *
   1077  * Free_table is used when the calling function will handle the fate
   1078  * of the parent table, such as returning it to the free pool when it has
   1079  * no valid entries.  Functions that do not want to handle this should
   1080  * call steal_table, in which the parent table's descriptors and entry
   1081  * count are automatically modified when this table is removed.
   1082  */
   1083 
   1084 /* free_a_table			INTERNAL
   1085  **
   1086  * Unmaps the given A table and all child tables from their current
   1087  * mappings.  Returns the number of pages that were invalidated.
   1088  *
   1089  * Cache note: The MC68851 will automatically flush all
   1090  * descriptors derived from a given A table from its
   1091  * Automatic Translation Cache (ATC) if we issue a
   1092  * 'PFLUSHR' instruction with the base address of the
   1093  * table.  This function should do, and does so.
   1094  * Note note: We are using an MC68030 - there is no
   1095  * PFLUSHR.
   1096  */
   1097 int
   1098 free_a_table(a_tbl)
   1099 	a_tmgr_t *a_tbl;
   1100 {
   1101 	int i, removed_cnt;
   1102 	mmu_long_dte_t	*dte;
   1103 	mmu_short_dte_t *dtbl;
   1104 	b_tmgr_t	*tmgr;
   1105 
   1106 	/* Flush the ATC cache of all cached descriptors derived
   1107 	 * from this table.
   1108 	 * XXX - Sun3x does not use 68851's cached table feature
   1109 	 * flush_atc_crp(mmu_vtop(a_tbl->dte));
   1110 	 */
   1111 
   1112 	/* Remove any pending cache flushes that were designated
   1113 	 * for the pmap this A table belongs to.
   1114 	 * a_tbl->parent->atc_flushq[0] = 0;
   1115 	 * XXX - Not implemented in sun3x.
   1116 	 */
   1117 
   1118 	/* All A tables in the system should retain a map for the
   1119 	 * kernel. If the table contains any valid descriptors
   1120 	 * (other than those for the kernel area), invalidate them all,
   1121 	 * stopping short of the kernel's entries.
   1122 	 */
   1123 	removed_cnt = 0;
   1124 	if (a_tbl->at_ecnt) {
   1125 		dte = a_tbl->at_dtbl;
   1126 		for (i=0; i < MMU_TIA(KERNBASE); i++)
   1127 			/* If a table entry points to a valid B table, free
   1128 			 * it and its children.
   1129 			 */
   1130 			if (MMU_VALID_DT(dte[i])) {
   1131 				/* The following block does several things,
   1132 				 * from innermost expression to the
   1133 				 * outermost:
   1134 				 * 1) It extracts the base (cc 1996)
   1135 				 *    address of the B table pointed
   1136 				 *    to in the A table entry dte[i].
   1137 				 * 2) It converts this base address into
   1138 				 *    the virtual address it can be
   1139 				 *    accessed with. (all MMU tables point
   1140 				 *    to physical addresses.)
   1141 				 * 3) It finds the corresponding manager
   1142 				 *    structure which manages this MMU table.
   1143 				 * 4) It frees the manager structure.
   1144 				 *    (This frees the MMU table and all
   1145 				 *    child tables. See 'free_b_table' for
   1146 				 *    details.)
   1147 				 */
   1148 				dtbl = (mmu_short_dte_t *) MMU_DTE_PA(dte[i]);
   1149 				dtbl = (mmu_short_dte_t *) mmu_ptov(dtbl);
   1150 				tmgr = mmuB2tmgr(dtbl);
   1151 				removed_cnt += free_b_table(tmgr);
   1152 			}
   1153 	}
   1154 	a_tbl->at_ecnt = 0;
   1155 	return removed_cnt;
   1156 }
   1157 
   1158 /* free_b_table			INTERNAL
   1159  **
   1160  * Unmaps the given B table and all its children from their current
   1161  * mappings.  Returns the number of pages that were invalidated.
   1162  * (For comments, see 'free_a_table()').
   1163  */
   1164 int
   1165 free_b_table(b_tbl)
   1166 	b_tmgr_t *b_tbl;
   1167 {
   1168 	int i, removed_cnt;
   1169 	mmu_short_dte_t *dte;
   1170 	mmu_short_pte_t	*dtbl;
   1171 	c_tmgr_t	*tmgr;
   1172 
   1173 	removed_cnt = 0;
   1174 	if (b_tbl->bt_ecnt) {
   1175 		dte = b_tbl->bt_dtbl;
   1176 		for (i=0; i < MMU_B_TBL_SIZE; i++)
   1177 			if (MMU_VALID_DT(dte[i])) {
   1178 				dtbl = (mmu_short_pte_t *) MMU_DTE_PA(dte[i]);
   1179 				dtbl = (mmu_short_pte_t *) mmu_ptov(dtbl);
   1180 				tmgr = mmuC2tmgr(dtbl);
   1181 				removed_cnt += free_c_table(tmgr);
   1182 			}
   1183 	}
   1184 
   1185 	b_tbl->bt_ecnt = 0;
   1186 	return removed_cnt;
   1187 }
   1188 
   1189 /* free_c_table			INTERNAL
   1190  **
   1191  * Unmaps the given C table from use and returns it to the pool for
   1192  * re-use.  Returns the number of pages that were invalidated.
   1193  *
   1194  * This function preserves any physical page modification information
   1195  * contained in the page descriptors within the C table by calling
   1196  * 'pmap_remove_pte().'
   1197  */
   1198 int
   1199 free_c_table(c_tbl)
   1200 	c_tmgr_t *c_tbl;
   1201 {
   1202 	int i, removed_cnt;
   1203 
   1204 	removed_cnt = 0;
   1205 	if (c_tbl->ct_ecnt)
   1206 		for (i=0; i < MMU_C_TBL_SIZE; i++)
   1207 			if (MMU_VALID_DT(c_tbl->ct_dtbl[i])) {
   1208 				pmap_remove_pte(&c_tbl->ct_dtbl[i]);
   1209 				removed_cnt++;
   1210 			}
   1211 	c_tbl->ct_ecnt = 0;
   1212 	return removed_cnt;
   1213 }
   1214 
   1215 /* free_c_table_novalid			INTERNAL
   1216  **
   1217  * Frees the given C table manager without checking to see whether
   1218  * or not it contains any valid page descriptors as it is assumed
   1219  * that it does not.
   1220  */
   1221 void
   1222 free_c_table_novalid(c_tbl)
   1223 	c_tmgr_t *c_tbl;
   1224 {
   1225 	TAILQ_REMOVE(&c_pool, c_tbl, ct_link);
   1226 	TAILQ_INSERT_HEAD(&c_pool, c_tbl, ct_link);
   1227 	c_tbl->ct_parent->bt_dtbl[c_tbl->ct_pidx].attr.raw = MMU_DT_INVALID;
   1228 }
   1229 
   1230 /* pmap_remove_pte			INTERNAL
   1231  **
   1232  * Unmap the given pte and preserve any page modification
   1233  * information by transfering it to the pv head of the
   1234  * physical page it maps to.  This function does not update
   1235  * any reference counts because it is assumed that the calling
   1236  * function will do so.  If the calling function does not have the
   1237  * ability to do so, the function pmap_dereference_pte() exists
   1238  * for this purpose.
   1239  */
   1240 void
   1241 pmap_remove_pte(pte)
   1242 	mmu_short_pte_t *pte;
   1243 {
   1244 	vm_offset_t pa;
   1245 	pv_t       *pv;
   1246 	pv_elem_t  *pve;
   1247 
   1248 	pa = MMU_PTE_PA(*pte);
   1249 	if (is_managed(pa)) {
   1250 		pv = pa2pv(pa);
   1251 		/* Save the mod/ref bits of the pte by simply
   1252 		 * ORing the entire pte onto the pv_flags member
   1253 		 * of the pv structure.
   1254 		 * There is no need to use a separate bit pattern
   1255 		 * for usage information on the pv head than that
   1256 		 * which is used on the MMU ptes.
   1257 		 */
   1258 		pv->pv_flags |= pte->attr.raw;
   1259 
   1260 		pve = pte2pve(pte);
   1261 		if (pve == pv->pv_head.lh_first)
   1262 			pv->pv_head.lh_first = pve->pve_link.le_next;
   1263 		LIST_REMOVE(pve, pve_link);
   1264 	}
   1265 
   1266 	pte->attr.raw = MMU_DT_INVALID;
   1267 }
   1268 
   1269 /* pmap_dereference_pte			INTERNAL
   1270  **
   1271  * Update the necessary reference counts in any tables and pmaps to
   1272  * reflect the removal of the given pte.  Only called when no knowledge of
   1273  * the pte's associated pmap is unknown.  This only occurs in the PV call
   1274  * 'pmap_page_protect()' with a protection of VM_PROT_NONE, which means
   1275  * that all references to a given physical page must be removed.
   1276  */
   1277 void
   1278 pmap_dereference_pte(pte)
   1279 	mmu_short_pte_t *pte;
   1280 {
   1281 	c_tmgr_t *c_tbl;
   1282 
   1283 	c_tbl = pmap_find_c_tmgr(pte);
   1284 	c_tbl->ct_parent->bt_parent->at_parent->pm_stats.resident_count--;
   1285 	if (--c_tbl->ct_ecnt == 0)
   1286 		free_c_table_novalid(c_tbl);
   1287 }
   1288 
   1289 /* pmap_stroll			INTERNAL
   1290  **
   1291  * Retrieve the addresses of all table managers involved in the mapping of
   1292  * the given virtual address.  If the table walk completed sucessfully,
   1293  * return TRUE.  If it was only partial sucessful, return FALSE.
   1294  * The table walk performed by this function is important to many other
   1295  * functions in this module.
   1296  */
   1297 boolean_t
   1298 pmap_stroll(pmap, va, a_tbl, b_tbl, c_tbl, pte, a_idx, b_idx, pte_idx)
   1299 	pmap_t pmap;
   1300 	vm_offset_t va;
   1301 	a_tmgr_t **a_tbl;
   1302 	b_tmgr_t **b_tbl;
   1303 	c_tmgr_t **c_tbl;
   1304 	mmu_short_pte_t **pte;
   1305 	int *a_idx, *b_idx, *pte_idx;
   1306 {
   1307 	mmu_long_dte_t *a_dte;   /* A: long descriptor table          */
   1308 	mmu_short_dte_t *b_dte;  /* B: short descriptor table         */
   1309 
   1310 	if (pmap == pmap_kernel())
   1311 		return FALSE;
   1312 
   1313 	/* Does the given pmap have an A table? */
   1314 	*a_tbl = pmap->pm_a_tbl;
   1315 	if (*a_tbl == NULL)
   1316 		return FALSE; /* No.  Return unknown. */
   1317 	/* Does the A table have a valid B table
   1318 	 * under the corresponding table entry?
   1319 	 */
   1320 	*a_idx = MMU_TIA(va);
   1321 	a_dte = &((*a_tbl)->at_dtbl[*a_idx]);
   1322 	if (!MMU_VALID_DT(*a_dte))
   1323 		return FALSE; /* No. Return unknown. */
   1324 	/* Yes. Extract B table from the A table. */
   1325 	*b_tbl = pmap_find_b_tmgr(
   1326 		  (mmu_short_dte_t *) mmu_ptov(
   1327 		    MMU_DTE_PA(*a_dte)
   1328 		  )
   1329 		);
   1330 	/* Does the B table have a valid C table
   1331 	 * under the corresponding table entry?
   1332 	 */
   1333 	*b_idx = MMU_TIB(va);
   1334 	b_dte = &((*b_tbl)->bt_dtbl[*b_idx]);
   1335 	if (!MMU_VALID_DT(*b_dte))
   1336 		return FALSE; /* No. Return unknown. */
   1337 	/* Yes. Extract C table from the B table. */
   1338 	*c_tbl = pmap_find_c_tmgr(
   1339 		  (mmu_short_pte_t *) mmu_ptov(
   1340 		    MMU_DTE_PA(*b_dte)
   1341 		  )
   1342 		);
   1343 	*pte_idx = MMU_TIC(va);
   1344 	*pte = &((*c_tbl)->ct_dtbl[*pte_idx]);
   1345 
   1346 	return	TRUE;
   1347 }
   1348 
   1349 /* pmap_enter			INTERFACE
   1350  **
   1351  * Called by the kernel to map a virtual address
   1352  * to a physical address in the given process map.
   1353  *
   1354  * Note: this function should apply an exclusive lock
   1355  * on the pmap system for its duration.  (it certainly
   1356  * would save my hair!!)
   1357  */
   1358 void
   1359 pmap_enter(pmap, va, pa, prot, wired)
   1360 	pmap_t	pmap;
   1361 	vm_offset_t va;
   1362 	vm_offset_t pa;
   1363 	vm_prot_t prot;
   1364 	boolean_t wired;
   1365 {
   1366 	u_int a_idx, b_idx, pte_idx; /* table indexes (fix grammar) */
   1367 	a_tmgr_t *a_tbl;         /* A: long descriptor table manager  */
   1368 	b_tmgr_t *b_tbl;         /* B: short descriptor table manager */
   1369 	c_tmgr_t *c_tbl;         /* C: short page table manager       */
   1370 	mmu_long_dte_t *a_dte;   /* A: long descriptor table          */
   1371 	mmu_short_dte_t *b_dte;  /* B: short descriptor table         */
   1372 	mmu_short_pte_t *c_pte;  /* C: short page descriptor table    */
   1373 	pv_t      *pv;           /* pv list head                      */
   1374 	pv_elem_t *pve;          /* pv element                        */
   1375 	enum {NONE, NEWA, NEWB, NEWC} llevel; /* used at end   */
   1376 
   1377 	if (pmap == NULL)
   1378 		return;
   1379 	if (pmap == pmap_kernel()) {
   1380 		pmap_enter_kernel(va, pa, prot);
   1381 		return;
   1382 	}
   1383 
   1384 	/* For user mappings we walk along the MMU tables of the given
   1385 	 * pmap, reaching a PTE which describes the virtual page being
   1386 	 * mapped or changed.  If any level of the walk ends in an invalid
   1387 	 * entry, a table must be allocated and the entry must be updated
   1388 	 * to point to it.
   1389 	 * There is a bit of confusion as to whether this code must be
   1390 	 * re-entrant.  For now we will assume it is.  To support
   1391 	 * re-entrancy we must unlink tables from the table pool before
   1392 	 * we assume we may use them.  Tables are re-linked into the pool
   1393 	 * when we are finished with them at the end of the function.
   1394 	 * But I don't feel like doing that until we have proof that this
   1395 	 * needs to be re-entrant.
   1396 	 * 'llevel' records which tables need to be relinked.
   1397 	 */
   1398 	llevel = NONE;
   1399 
   1400 	/* Step 1 - Retrieve the A table from the pmap.  If it is the default
   1401 	 * A table (commonly known as the 'proc0' A table), allocate a new one.
   1402 	 */
   1403 
   1404 	a_tbl = pmap->pm_a_tbl;
   1405 	if (a_tbl == proc0Atmgr) {
   1406 		pmap->pm_a_tbl = a_tbl = get_a_table();
   1407 		if (!wired)
   1408 			llevel = NEWA;
   1409 	} else {
   1410 		/* Use the A table already allocated for this pmap.
   1411 		 * Unlink it from the A table pool if necessary.
   1412 		 */
   1413 		if (wired && !a_tbl->at_wcnt)
   1414 			TAILQ_REMOVE(&a_pool, a_tbl, at_link);
   1415 	}
   1416 
   1417 	/* Step 2 - Walk into the B table.  If there is no valid B table,
   1418 	 * allocate one.
   1419 	 */
   1420 
   1421 	a_idx = MMU_TIA(va);            /* Calculate the TIA of the VA. */
   1422 	a_dte = &a_tbl->at_dtbl[a_idx]; /* Retrieve descriptor from table */
   1423 	if (MMU_VALID_DT(*a_dte)) {     /* Is the descriptor valid? */
   1424 		/* Yes, it points to a valid B table.  Use it. */
   1425 		/*************************************
   1426 		 *               a_idx               *
   1427 		 *                 v                 *
   1428 		 * a_tbl -> +-+-+-+-+-+-+-+-+-+-+-+- *
   1429 		 *          | | | | | | | | | | | |  *
   1430 		 *          +-+-+-+-+-+-+-+-+-+-+-+- *
   1431 		 *                 |                 *
   1432 		 *                 \- b_tbl -> +-+-  *
   1433 		 *                             | |   *
   1434 		 *                             +-+-  *
   1435 		 *************************************/
   1436 		b_dte = (mmu_short_dte_t *) mmu_ptov(a_dte->addr.raw);
   1437 		b_tbl = mmuB2tmgr(b_dte);
   1438 		if (wired && !b_tbl->bt_wcnt) {
   1439 			/* If mapping is wired and table is not */
   1440 			TAILQ_REMOVE(&b_pool, b_tbl, bt_link);
   1441 			a_tbl->at_wcnt++; /* Update parent table's wired
   1442 			                   * entry count. */
   1443 		}
   1444 	} else {
   1445 		b_tbl = get_b_table(); /* No, need to allocate a new B table */
   1446 		/* Point the parent A table descriptor to this new B table. */
   1447 		a_dte->addr.raw = (unsigned long) mmu_vtop(b_tbl->bt_dtbl);
   1448 		a_dte->attr.attr_struct.dt = MMU_DT_SHORT;
   1449 		/* Create the necessary back references to the parent table */
   1450 		b_tbl->bt_parent = a_tbl;
   1451 		b_tbl->bt_pidx = a_idx;
   1452 		/* If this table is to be wired, make sure the parent A table
   1453 		 * wired count is updated to reflect that it has another wired
   1454 		 * entry.
   1455 		 */
   1456 		a_tbl->at_ecnt++; /* Update parent's valid entry count */
   1457 		if (wired)
   1458 			a_tbl->at_wcnt++;
   1459 		else if (llevel == NONE)
   1460 			llevel = NEWB;
   1461 	}
   1462 
   1463 	/* Step 3 - Walk into the C table, if there is no valid C table,
   1464 	 * allocate one.
   1465 	 */
   1466 
   1467 	b_idx = MMU_TIB(va);            /* Calculate the TIB of the VA */
   1468 	b_dte = &b_tbl->bt_dtbl[b_idx]; /* Retrieve descriptor from table */
   1469 	if (MMU_VALID_DT(*b_dte)) {     /* Is the descriptor valid? */
   1470 		/* Yes, it points to a valid C table.  Use it. */
   1471 		/**************************************
   1472 		 *               c_idx                *
   1473 		 * |                v                 *
   1474 		 * \- b_tbl -> +-+-+-+-+-+-+-+-+-+-+- *
   1475 		 *             | | | | | | | | | | |  *
   1476 		 *             +-+-+-+-+-+-+-+-+-+-+- *
   1477 		 *                  |                 *
   1478 		 *                  \- c_tbl -> +-+-- *
   1479 		 *                              | | | *
   1480 		 *                              +-+-- *
   1481 		 **************************************/
   1482 		c_pte = (mmu_short_pte_t *) MMU_PTE_PA(*b_dte);
   1483 		c_pte = (mmu_short_pte_t *) mmu_ptov(c_pte);
   1484 		c_tbl = mmuC2tmgr(c_pte);
   1485 		if (wired && !c_tbl->ct_wcnt) {
   1486 			/* If mapping is wired and table is not */
   1487 			TAILQ_REMOVE(&c_pool, c_tbl, ct_link);
   1488 			b_tbl->bt_wcnt++;
   1489 		}
   1490 	} else {
   1491 		c_tbl = get_c_table(); /* No, need to allocate a new C table */
   1492 		/* Point the parent B table descriptor to this new C table. */
   1493 		b_dte->attr.raw = (unsigned long) mmu_vtop(c_tbl->ct_dtbl);
   1494 		b_dte->attr.attr_struct.dt = MMU_DT_SHORT;
   1495 		/* Create the necessary back references to the parent table */
   1496 		c_tbl->ct_parent = b_tbl;
   1497 		c_tbl->ct_pidx = b_idx;
   1498 		/* If this table is to be wired, make sure the parent B table
   1499 		 * wired count is updated to reflect that it has another wired
   1500 		 * entry.
   1501 		 */
   1502 		b_tbl->bt_ecnt++; /* Update parent's valid entry count */
   1503 		if (wired)
   1504 			b_tbl->bt_wcnt++;
   1505 		else if (llevel == NONE)
   1506 			llevel = NEWC;
   1507 	}
   1508 
   1509 	/* Step 4 - Deposit a page descriptor (PTE) into the appropriate
   1510 	 * slot of the C table, describing the PA to which the VA is mapped.
   1511 	 */
   1512 
   1513 	pte_idx = MMU_TIC(va);
   1514 	c_pte = &c_tbl->ct_dtbl[pte_idx];
   1515 	if (MMU_VALID_DT(*c_pte)) { /* Is the entry currently valid? */
   1516 		/* If the PTE is currently valid, then this function call
   1517 		 * is just a synonym for one (or more) of the following
   1518 		 * operations:
   1519 		 *     change protections on a page
   1520 		 *     change wiring status of a page
   1521 		 *     remove the mapping of a page
   1522 		 */
   1523 		/* Is the new address the same as the old? */
   1524 		if (MMU_PTE_PA(*c_pte) == pa) {
   1525 			/* Yes, do nothing. */
   1526 		} else {
   1527 			/* No, remove the old entry */
   1528 			pmap_remove_pte(c_pte);
   1529 		}
   1530 	} else {
   1531 		/* No, update the valid entry count in the C table */
   1532 		c_tbl->ct_ecnt++;
   1533 		/* and in pmap */
   1534 		pmap->pm_stats.resident_count++;
   1535         }
   1536 	/* Map the page. */
   1537 	c_pte->attr.raw = ((unsigned long) pa | MMU_DT_PAGE);
   1538 
   1539 	if (wired) /* Does the entry need to be wired? */ {
   1540 		c_pte->attr.raw |= MMU_SHORT_PTE_WIRED;
   1541 	}
   1542 
   1543         /* If the physical address being mapped is managed by the PV
   1544          * system then link the pte into the list of pages mapped to that
   1545          * address.
   1546          */
   1547         if (is_managed(pa)) {
   1548             pv = pa2pv(pa);
   1549             pve = pte2pve(c_pte);
   1550             LIST_INSERT_HEAD(&pv->pv_head, pve, pve_link);
   1551         }
   1552 
   1553 	/* Move any allocated tables back into the active pool. */
   1554 
   1555 	switch (llevel) {
   1556 		case NEWA:
   1557 			TAILQ_INSERT_TAIL(&a_pool, a_tbl, at_link);
   1558 			/* FALLTHROUGH */
   1559 		case NEWB:
   1560 			TAILQ_INSERT_TAIL(&b_pool, b_tbl, bt_link);
   1561 			/* FALLTHROUGH */
   1562 		case NEWC:
   1563 			TAILQ_INSERT_TAIL(&c_pool, c_tbl, ct_link);
   1564 			/* FALLTHROUGH */
   1565 		default:
   1566 			break;
   1567 	}
   1568 }
   1569 
   1570 /* pmap_enter_kernel			INTERNAL
   1571  **
   1572  * Map the given virtual address to the given physical address within the
   1573  * kernel address space.  This function exists because the kernel map does
   1574  * not do dynamic table allocation.  It consists of a contiguous array of ptes
   1575  * and can be edited directly without the need to walk through any tables.
   1576  *
   1577  * XXX: "Danger, Will Robinson!"
   1578  * Note that the kernel should never take a fault on any page
   1579  * between [ KERNBASE .. virtual_avail ] and this is checked in
   1580  * trap.c for kernel-mode MMU faults.  This means that mappings
   1581  * created in that range must be implicily wired. -gwr
   1582  */
   1583 void
   1584 pmap_enter_kernel(va, pa, prot)
   1585 	vm_offset_t va;
   1586 	vm_offset_t pa;
   1587 	vm_prot_t   prot;
   1588 {
   1589 	boolean_t was_valid = FALSE;
   1590 	mmu_short_pte_t *pte;
   1591 
   1592 	/* XXX - This array is traditionally named "Sysmap" */
   1593 	pte = &kernCbase[(unsigned long) sun3x_btop(va - KERNBASE)];
   1594 	if (MMU_VALID_DT(*pte))
   1595 		was_valid = TRUE;
   1596 
   1597 	pte->attr.raw = (pa | MMU_DT_PAGE);
   1598 
   1599 	if (!(prot & VM_PROT_WRITE)) /* If access should be read-only */
   1600 		pte->attr.raw |= MMU_SHORT_PTE_WP;
   1601 	if (pa & PMAP_NC)
   1602 		pte->attr.raw |= MMU_SHORT_PTE_CI;
   1603 	if (was_valid) {
   1604 		/* mmu_flusha(FC_SUPERD, va); */
   1605 		/* mmu_flusha(); */
   1606 		TBIA();
   1607 	}
   1608 
   1609 }
   1610 
   1611 /* pmap_protect			INTERFACE
   1612  **
   1613  * Apply the given protection to the given virtual address within
   1614  * the given map.
   1615  *
   1616  * It is ok for the protection applied to be stronger than what is
   1617  * specified.  We use this to our advantage when the given map has no
   1618  * mapping for the virtual address.  By returning immediately when this
   1619  * is discovered, we are effectively applying a protection of VM_PROT_NONE,
   1620  * and therefore do not need to map the page just to apply a protection
   1621  * code.  Only pmap_enter() needs to create new mappings if they do not exist.
   1622  */
   1623 void
   1624 pmap_protect(pmap, va, pa, prot)
   1625 	pmap_t pmap;
   1626 	vm_offset_t va, pa;
   1627 	vm_prot_t prot;
   1628 {
   1629 	int a_idx, b_idx, c_idx;
   1630 	a_tmgr_t *a_tbl;
   1631 	b_tmgr_t *b_tbl;
   1632 	c_tmgr_t *c_tbl;
   1633 	mmu_short_pte_t *pte;
   1634 
   1635 	if (pmap == NULL)
   1636 		return;
   1637 	if (pmap == pmap_kernel()) {
   1638 		pmap_protect_kernel(va, pa, prot);
   1639 		return;
   1640 	}
   1641 
   1642 	/* Retrieve the mapping from the given pmap.  If it does
   1643 	 * not exist then we need not do anything more.
   1644 	 */
   1645 	if (pmap_stroll(pmap, va, &a_tbl, &b_tbl, &c_tbl, &pte,
   1646 		&a_idx, &b_idx, &c_idx) == FALSE) {
   1647 		return;
   1648 	}
   1649 
   1650 	switch (prot) {
   1651 		case VM_PROT_ALL:
   1652 			/* this should never happen in a sane system */
   1653 			break;
   1654 		case VM_PROT_READ:
   1655 		case VM_PROT_READ|VM_PROT_EXECUTE:
   1656 			/* make the mapping read-only */
   1657 			pte->attr.raw |= MMU_SHORT_PTE_WP;
   1658 			break;
   1659 		case VM_PROT_NONE:
   1660 			/* this is an alias for 'pmap_remove' */
   1661 			pmap_dereference_pte(pte);
   1662 			break;
   1663 		default:
   1664 			break;
   1665 	}
   1666 }
   1667 
   1668 /* pmap_protect_kernel			INTERNAL
   1669  **
   1670  * Apply the given protection code to a kernel address mapping.
   1671  */
   1672 void
   1673 pmap_protect_kernel(va, pa, prot)
   1674 	vm_offset_t va, pa;
   1675 	vm_prot_t prot;
   1676 {
   1677 	mmu_short_pte_t *pte;
   1678 
   1679 	pte = &kernCbase[(unsigned long) sun3x_btop(va - KERNBASE)];
   1680 	if (MMU_VALID_DT(*pte)) {
   1681 		switch (prot) {
   1682 			case VM_PROT_ALL:
   1683 				break;
   1684 			case VM_PROT_READ:
   1685 			case VM_PROT_READ|VM_PROT_EXECUTE:
   1686 				pte->attr.raw |= MMU_SHORT_PTE_WP;
   1687 				break;
   1688 			case VM_PROT_NONE:
   1689 				/* this is an alias for 'pmap_remove_kernel' */
   1690 				pte->attr.raw = MMU_DT_INVALID;
   1691 				break;
   1692 			default:
   1693 				break;
   1694 		}
   1695 	}
   1696 	/* since this is the kernel, immediately flush any cached
   1697 	 * descriptors for this address.
   1698 	 */
   1699 	/* mmu_flush(FC_SUPERD, va); */
   1700 	TBIS(va);
   1701 }
   1702 
   1703 /* pmap_change_wiring			INTERFACE
   1704  **
   1705  * Changes the wiring of the specified page.
   1706  *
   1707  * This function is called from vm_fault.c to unwire
   1708  * a mapping.  It really should be called 'pmap_unwire'
   1709  * because it is never asked to do anything but remove
   1710  * wirings.
   1711  */
   1712 void
   1713 pmap_change_wiring(pmap, va, wire)
   1714 	pmap_t pmap;
   1715 	vm_offset_t va;
   1716 	boolean_t wire;
   1717 {
   1718 	int a_idx, b_idx, c_idx;
   1719 	a_tmgr_t *a_tbl;
   1720 	b_tmgr_t *b_tbl;
   1721 	c_tmgr_t *c_tbl;
   1722 	mmu_short_pte_t *pte;
   1723 
   1724 	/* Kernel mappings always remain wired. */
   1725 	if (pmap == pmap_kernel())
   1726 		return;
   1727 
   1728 #ifdef	PMAP_DEBUG
   1729 	if (wire == TRUE)
   1730 		panic("pmap_change_wiring: wire requested.");
   1731 #endif
   1732 
   1733 	/* Walk through the tables.  If the walk terminates without
   1734 	 * a valid PTE then the address wasn't wired in the first place.
   1735 	 * Return immediately.
   1736 	 */
   1737 	if (pmap_stroll(pmap, va, &a_tbl, &b_tbl, &c_tbl, &pte, &a_idx,
   1738 		&b_idx, &c_idx) == FALSE)
   1739 		return;
   1740 
   1741 
   1742 	/* Is the PTE wired?  If not, return. */
   1743 	if (!(pte->attr.raw & MMU_SHORT_PTE_WIRED))
   1744 		return;
   1745 
   1746 	/* Remove the wiring bit. */
   1747 	pte->attr.raw &= ~(MMU_SHORT_PTE_WIRED);
   1748 
   1749 	/* Decrement the wired entry count in the C table.
   1750 	 * If it reaches zero the following things happen:
   1751 	 * 1. The table no longer has any wired entries and is considered
   1752 	 *    unwired.
   1753 	 * 2. It is placed on the available queue.
   1754 	 * 3. The parent table's wired entry count is decremented.
   1755 	 * 4. If it reaches zero, this process repeats at step 1 and
   1756 	 *    stops at after reaching the A table.
   1757 	 */
   1758 	if (c_tbl->ct_wcnt-- == 0) {
   1759 		TAILQ_INSERT_TAIL(&c_pool, c_tbl, ct_link);
   1760 		if (b_tbl->bt_wcnt-- == 0) {
   1761 			TAILQ_INSERT_TAIL(&b_pool, b_tbl, bt_link);
   1762 			if (a_tbl->at_wcnt-- == 0) {
   1763 				TAILQ_INSERT_TAIL(&a_pool, a_tbl, at_link);
   1764 			}
   1765 		}
   1766 	}
   1767 
   1768 	pmap->pm_stats.wired_count--;
   1769 }
   1770 
   1771 /* pmap_pageable			INTERFACE
   1772  **
   1773  * Make the specified range of addresses within the given pmap,
   1774  * 'pageable' or 'not-pageable'.  A pageable page must not cause
   1775  * any faults when referenced.  A non-pageable page may.
   1776  *
   1777  * This routine is only advisory.  The VM system will call pmap_enter()
   1778  * to wire or unwire pages that are going to be made pageable before calling
   1779  * this function.  By the time this routine is called, everything that needs
   1780  * to be done has already been done.
   1781  */
   1782 void
   1783 pmap_pageable(pmap, start, end, pageable)
   1784 	pmap_t pmap;
   1785 	vm_offset_t start, end;
   1786 	boolean_t pageable;
   1787 {
   1788 	/* not implemented. */
   1789 }
   1790 
   1791 /* pmap_copy				INTERFACE
   1792  **
   1793  * Copy the mappings of a range of addresses in one pmap, into
   1794  * the destination address of another.
   1795  *
   1796  * This routine is advisory.  Should we one day decide that MMU tables
   1797  * may be shared by more than one pmap, this function should be used to
   1798  * link them together.  Until that day however, we do nothing.
   1799  */
   1800 void
   1801 pmap_copy(pmap_a, pmap_b, dst, len, src)
   1802 	pmap_t pmap_a, pmap_b;
   1803 	vm_offset_t dst;
   1804 	vm_size_t   len;
   1805 	vm_offset_t src;
   1806 {
   1807 	/* not implemented. */
   1808 }
   1809 
   1810 /* pmap_copy_page			INTERFACE
   1811  **
   1812  * Copy the contents of one physical page into another.
   1813  *
   1814  * This function makes use of two virtual pages allocated in sun3x_vm_init()
   1815  * (found in _startup.c) to map the two specified physical pages into the
   1816  * kernel address space.  It then uses bcopy() to copy one into the other.
   1817  */
   1818 void
   1819 pmap_copy_page(src, dst)
   1820 	vm_offset_t src, dst;
   1821 {
   1822 	PMAP_LOCK();
   1823 	if (tmp_vpages_inuse)
   1824 		panic("pmap_copy_page: temporary vpages are in use.");
   1825 	tmp_vpages_inuse++;
   1826 
   1827 	pmap_enter_kernel(tmp_vpages[0], src, VM_PROT_READ);
   1828 	pmap_enter_kernel(tmp_vpages[1], dst, VM_PROT_READ|VM_PROT_WRITE);
   1829 	bcopy((char *) tmp_vpages[1], (char *) tmp_vpages[0], NBPG);
   1830 	/* xxx - there's no real need to unmap the mappings is there? */
   1831 
   1832 	tmp_vpages_inuse--;
   1833 	PMAP_UNLOCK();
   1834 }
   1835 
   1836 /* pmap_zero_page			INTERFACE
   1837  **
   1838  * Zero the contents of the specified physical page.
   1839  *
   1840  * Uses one of the virtual pages allocated in sun3x_vm_init() (_startup.c)
   1841  * to map the specified page into the kernel address space.  Then uses
   1842  * bzero() to zero out the page.
   1843  */
   1844 void
   1845 pmap_zero_page(pa)
   1846 	vm_offset_t pa;
   1847 {
   1848 	PMAP_LOCK();
   1849 	if (tmp_vpages_inuse)
   1850 		panic("pmap_zero_page: temporary vpages are in use.");
   1851 	tmp_vpages_inuse++;
   1852 
   1853 	pmap_enter_kernel(tmp_vpages[0], pa, VM_PROT_READ|VM_PROT_WRITE);
   1854 	bzero((char *) tmp_vpages[0], NBPG);
   1855 	/* xxx - there's no real need to unmap the mapping is there? */
   1856 
   1857 	tmp_vpages_inuse--;
   1858 	PMAP_UNLOCK();
   1859 }
   1860 
   1861 /* pmap_collect			INTERFACE
   1862  **
   1863  * Called from the VM system to collect unused pages in the given
   1864  * pmap.
   1865  *
   1866  * No one implements it, so I'm not even sure how it is supposed to
   1867  * 'collect' anything anyways.  There's nothing to do but do what everyone
   1868  * else does..
   1869  */
   1870 void
   1871 pmap_collect(pmap)
   1872 	pmap_t pmap;
   1873 {
   1874 	/* not implemented. */
   1875 }
   1876 
   1877 /* pmap_create			INTERFACE
   1878  **
   1879  * Create and return a pmap structure.
   1880  */
   1881 pmap_t
   1882 pmap_create(size)
   1883 	vm_size_t size;
   1884 {
   1885 	pmap_t	pmap;
   1886 
   1887 	if (size)
   1888 		return NULL;
   1889 
   1890 	pmap = (pmap_t) malloc(sizeof(struct pmap), M_VMPMAP, M_WAITOK);
   1891 	pmap_pinit(pmap);
   1892 
   1893 	return pmap;
   1894 }
   1895 
   1896 /* pmap_pinit			INTERNAL
   1897  **
   1898  * Initialize a pmap structure.
   1899  */
   1900 void
   1901 pmap_pinit(pmap)
   1902 	pmap_t pmap;
   1903 {
   1904 	bzero(pmap, sizeof(struct pmap));
   1905 	pmap->pm_a_tbl = proc0Atmgr;
   1906 }
   1907 
   1908 /* pmap_release				INTERFACE
   1909  **
   1910  * Release any resources held by the given pmap.
   1911  *
   1912  * This is the reverse analog to pmap_pinit.  It does not
   1913  * necessarily mean for the pmap structure to be deallocated,
   1914  * as in pmap_destroy.
   1915  */
   1916 void
   1917 pmap_release(pmap)
   1918 	pmap_t pmap;
   1919 {
   1920 	/* As long as the pmap contains no mappings,
   1921 	 * which always should be the case whenever
   1922 	 * this function is called, there really should
   1923 	 * be nothing to do.
   1924 	 */
   1925 #ifdef	PMAP_DEBUG
   1926 	if (pmap == NULL)
   1927 		return;
   1928 	if (pmap == pmap_kernel())
   1929 		panic("pmap_release: kernel pmap release requested.");
   1930 	if (pmap->pm_a_tbl != proc0Atmgr)
   1931 		panic("pmap_release: pmap not empty.");
   1932 #endif
   1933 }
   1934 
   1935 /* pmap_reference			INTERFACE
   1936  **
   1937  * Increment the reference count of a pmap.
   1938  */
   1939 void
   1940 pmap_reference(pmap)
   1941 	pmap_t pmap;
   1942 {
   1943 	if (pmap == NULL)
   1944 		return;
   1945 
   1946 	/* pmap_lock(pmap); */
   1947 	pmap->pm_refcount++;
   1948 	/* pmap_unlock(pmap); */
   1949 }
   1950 
   1951 /* pmap_dereference			INTERNAL
   1952  **
   1953  * Decrease the reference count on the given pmap
   1954  * by one and return the current count.
   1955  */
   1956 int
   1957 pmap_dereference(pmap)
   1958 	pmap_t pmap;
   1959 {
   1960 	int rtn;
   1961 
   1962 	if (pmap == NULL)
   1963 		return 0;
   1964 
   1965 	/* pmap_lock(pmap); */
   1966 	rtn = --pmap->pm_refcount;
   1967 	/* pmap_unlock(pmap); */
   1968 
   1969 	return rtn;
   1970 }
   1971 
   1972 /* pmap_destroy			INTERFACE
   1973  **
   1974  * Decrement a pmap's reference count and delete
   1975  * the pmap if it becomes zero.  Will be called
   1976  * only after all mappings have been removed.
   1977  */
   1978 void
   1979 pmap_destroy(pmap)
   1980 	pmap_t pmap;
   1981 {
   1982 	if (pmap == NULL)
   1983 		return;
   1984 	if (pmap == &kernel_pmap)
   1985 		panic("pmap_destroy: kernel_pmap!");
   1986 	if (pmap_dereference(pmap) == 0) {
   1987 		pmap_release(pmap);
   1988 		free(pmap, M_VMPMAP);
   1989 	}
   1990 }
   1991 
   1992 /* pmap_is_referenced			INTERFACE
   1993  **
   1994  * Determine if the given physical page has been
   1995  * referenced (read from [or written to.])
   1996  */
   1997 boolean_t
   1998 pmap_is_referenced(pa)
   1999 	vm_offset_t pa;
   2000 {
   2001 	pv_t      *pv;
   2002 	pv_elem_t *pve;
   2003 	struct mmu_short_pte_struct *pte;
   2004 
   2005 	if (!pv_initialized)
   2006 		return FALSE;
   2007 	if (!is_managed(pa))
   2008 		return FALSE;
   2009 
   2010 	pv = pa2pv(pa);
   2011 	/* Check the flags on the pv head.  If they are set,
   2012 	 * return immediately.  Otherwise a search must be done.
   2013          */
   2014 	if (pv->pv_flags & PV_FLAGS_USED)
   2015 		return TRUE;
   2016 	else
   2017 		/* Search through all pv elements pointing
   2018 		 * to this page and query their reference bits
   2019 		 */
   2020 		for (pve = pv->pv_head.lh_first;
   2021                      pve != NULL;
   2022                      pve = pve->pve_link.le_next) {
   2023 			pte = pve2pte(pve);
   2024 			if (MMU_PTE_USED(*pte))
   2025 				return TRUE;
   2026 		}
   2027 
   2028 	return FALSE;
   2029 }
   2030 
   2031 /* pmap_is_modified			INTERFACE
   2032  **
   2033  * Determine if the given physical page has been
   2034  * modified (written to.)
   2035  */
   2036 boolean_t
   2037 pmap_is_modified(pa)
   2038 	vm_offset_t pa;
   2039 {
   2040 	pv_t      *pv;
   2041 	pv_elem_t *pve;
   2042 
   2043 	if (!pv_initialized)
   2044 		return FALSE;
   2045 	if (!is_managed(pa))
   2046 		return FALSE;
   2047 
   2048 	/* see comments in pmap_is_referenced() */
   2049 	pv = pa2pv(pa);
   2050 	if (pv->pv_flags & PV_FLAGS_MDFY)
   2051 		return TRUE;
   2052 	else
   2053 		for (pve = pv->pv_head.lh_first; pve != NULL;
   2054                      pve = pve->pve_link.le_next) {
   2055 			struct mmu_short_pte_struct *pte;
   2056 			pte = pve2pte(pve);
   2057 			if (MMU_PTE_MODIFIED(*pte))
   2058 				return TRUE;
   2059 		}
   2060 	return FALSE;
   2061 }
   2062 
   2063 /* pmap_page_protect			INTERFACE
   2064  **
   2065  * Applies the given protection to all mappings to the given
   2066  * physical page.
   2067  */
   2068 void
   2069 pmap_page_protect(pa, prot)
   2070 	vm_offset_t pa;
   2071 	vm_prot_t prot;
   2072 {
   2073 	pv_t      *pv;
   2074 	pv_elem_t *pve;
   2075 	struct mmu_short_pte_struct *pte;
   2076 
   2077 	if (!is_managed(pa))
   2078 		return;
   2079 
   2080 	pv = pa2pv(pa);
   2081 	for (pve = pv->pv_head.lh_first; pve != NULL;
   2082 		pve = pve->pve_link.le_next) {
   2083 		pte = pve2pte(pve);
   2084 		switch (prot) {
   2085 			case VM_PROT_ALL:
   2086 				/* do nothing */
   2087 				break;
   2088 			case VM_PROT_READ:
   2089 			case VM_PROT_READ|VM_PROT_EXECUTE:
   2090 				pte->attr.raw |= MMU_SHORT_PTE_WP;
   2091 				break;
   2092 			case VM_PROT_NONE:
   2093 				pmap_dereference_pte(pte);
   2094 				break;
   2095 			default:
   2096 				break;
   2097 		}
   2098 	}
   2099 }
   2100 
   2101 /* pmap_who_owns_pte			INTERNAL
   2102  **
   2103  * Called internally to find which pmap the given pte is
   2104  * a member of.
   2105  */
   2106 pmap_t
   2107 pmap_who_owns_pte(pte)
   2108 	mmu_short_pte_t *pte;
   2109 {
   2110 	c_tmgr_t *c_tbl;
   2111 
   2112 	c_tbl = pmap_find_c_tmgr(pte);
   2113 
   2114 	return c_tbl->ct_parent->bt_parent->at_parent;
   2115 }
   2116 
   2117 /* pmap_find_va			INTERNAL_X
   2118  **
   2119  * Called internally to find the virtual address that the
   2120  * given pte maps.
   2121  *
   2122  * Note: I don't know if this function will ever be used, but I've
   2123  * implemented it just in case.
   2124  */
   2125 vm_offset_t
   2126 pmap_find_va(pte)
   2127 	mmu_short_pte_t *pte;
   2128 {
   2129 	a_tmgr_t    *a_tbl;
   2130 	b_tmgr_t    *b_tbl;
   2131 	c_tmgr_t    *c_tbl;
   2132 	vm_offset_t     va = 0;
   2133 
   2134 	/* Find the virtual address by decoding table indexes.
   2135 	 * Each successive decode will reveal the address from
   2136 	 * least to most significant bit fashion.
   2137 	 *
   2138 	 * 31                              0
   2139          * +-------------------------------+
   2140 	 * |AAAAAAABBBBBBCCCCCCxxxxxxxxxxxx|
   2141 	 * +-------------------------------+
   2142 	 *
   2143 	 * Start with the 'C' bits.
   2144 	 */
   2145 	va |= (pmap_find_tic(pte) << MMU_TIC_SHIFT);
   2146 	c_tbl = pmap_find_c_tmgr(pte);
   2147 	b_tbl = c_tbl->ct_parent;
   2148 
   2149 	/* Add the 'B' bits. */
   2150 	va |= (c_tbl->ct_pidx << MMU_TIB_SHIFT);
   2151 	a_tbl = b_tbl->bt_parent;
   2152 
   2153 	/* Add the 'A' bits. */
   2154 	va |= (b_tbl->bt_pidx << MMU_TIA_SHIFT);
   2155 
   2156 	return va;
   2157 }
   2158 
   2159 /**** These functions should be removed.  Structures have changed, making ****
   2160  **** them uneccessary.                                                   ****/
   2161 
   2162 /* pmap_find_tic			INTERNAL
   2163  **
   2164  * Given the address of a pte, find the TIC (level 'C' table index) for
   2165  * the pte within its C table.
   2166  */
   2167 char
   2168 pmap_find_tic(pte)
   2169 	mmu_short_pte_t *pte;
   2170 {
   2171 	return ((mmuCbase - pte) % MMU_C_TBL_SIZE);
   2172 }
   2173 
   2174 /* pmap_find_tib			INTERNAL
   2175  **
   2176  * Given the address of dte known to belong to a B table, find the TIB
   2177  * (level 'B' table index) for the dte within its table.
   2178  */
   2179 char
   2180 pmap_find_tib(dte)
   2181 	mmu_short_dte_t *dte;
   2182 {
   2183 	return ((mmuBbase - dte) % MMU_B_TBL_SIZE);
   2184 }
   2185 
   2186 /* pmap_find_tia			INTERNAL
   2187  **
   2188  * Given the address of a dte known to belong to an A table, find the
   2189  * TIA (level 'C' table index) for the dte withing its table.
   2190  */
   2191 char
   2192 pmap_find_tia(dte)
   2193 	mmu_long_dte_t *dte;
   2194 {
   2195 	return ((mmuAbase - dte) % MMU_A_TBL_SIZE);
   2196 }
   2197 
   2198 /**** This one should stay ****/
   2199 
   2200 /* pmap_find_c_tmgr			INTERNAL
   2201  **
   2202  * Given a pte known to belong to a C table, return the address of that
   2203  * table's management structure.
   2204  */
   2205 c_tmgr_t *
   2206 pmap_find_c_tmgr(pte)
   2207 	mmu_short_pte_t *pte;
   2208 {
   2209 	return &Ctmgrbase[
   2210 		((mmuCbase - pte) / sizeof(*pte) / MMU_C_TBL_SIZE)
   2211 		];
   2212 }
   2213 
   2214 /* pmap_find_b_tmgr			INTERNAL
   2215  **
   2216  * Given a dte known to belong to a B table, return the address of that
   2217  * table's management structure.
   2218  */
   2219 b_tmgr_t *
   2220 pmap_find_b_tmgr(dte)
   2221 	mmu_short_dte_t *dte;
   2222 {
   2223 	return &Btmgrbase[
   2224 		((mmuBbase - dte) / sizeof(*dte) / MMU_B_TBL_SIZE)
   2225 		];
   2226 }
   2227 
   2228 /* pmap_find_a_tmgr			INTERNAL
   2229  **
   2230  * Given a dte known to belong to an A table, return the address of that
   2231  * table's management structure.
   2232  */
   2233 a_tmgr_t *
   2234 pmap_find_a_tmgr(dte)
   2235 	mmu_long_dte_t *dte;
   2236 {
   2237 	return &Atmgrbase[
   2238 		((mmuAbase - dte) / sizeof(*dte) / MMU_A_TBL_SIZE)
   2239 		];
   2240 }
   2241 
   2242 /**** End of functions that should be removed.                          ****
   2243  ****                                                                   ****/
   2244 
   2245 /* pmap_clear_modify			INTERFACE
   2246  **
   2247  * Clear the modification bit on the page at the specified
   2248  * physical address.
   2249  *
   2250  */
   2251 void
   2252 pmap_clear_modify(pa)
   2253 	vm_offset_t pa;
   2254 {
   2255 	pmap_clear_pv(pa, PV_FLAGS_MDFY);
   2256 }
   2257 
   2258 /* pmap_clear_reference			INTERFACE
   2259  **
   2260  * Clear the referenced bit on the page at the specified
   2261  * physical address.
   2262  */
   2263 void
   2264 pmap_clear_reference(pa)
   2265 	vm_offset_t pa;
   2266 {
   2267 	pmap_clear_pv(pa, PV_FLAGS_USED);
   2268 }
   2269 
   2270 /* pmap_clear_pv			INTERNAL
   2271  **
   2272  * Clears the specified flag from the specified physical address.
   2273  * (Used by pmap_clear_modify() and pmap_clear_reference().)
   2274  *
   2275  * Flag is one of:
   2276  *   PV_FLAGS_MDFY - Page modified bit.
   2277  *   PV_FLAGS_USED - Page used (referenced) bit.
   2278  *
   2279  * This routine must not only clear the flag on the pv list
   2280  * head.  It must also clear the bit on every pte in the pv
   2281  * list associated with the address.
   2282  */
   2283 void
   2284 pmap_clear_pv(pa, flag)
   2285 	vm_offset_t pa;
   2286 	int flag;
   2287 {
   2288 	pv_t      *pv;
   2289 	pv_elem_t *pve;
   2290 	mmu_short_pte_t *pte;
   2291 
   2292 	pv = pa2pv(pa);
   2293 	pv->pv_flags &= ~(flag);
   2294 	for (pve = pv->pv_head.lh_first; pve != NULL;
   2295              pve = pve->pve_link.le_next) {
   2296 		pte = pve2pte(pve);
   2297 		pte->attr.raw &= ~(flag);
   2298 	}
   2299 }
   2300 
   2301 /* pmap_extract			INTERFACE
   2302  **
   2303  * Return the physical address mapped by the virtual address
   2304  * in the specified pmap or 0 if it is not known.
   2305  *
   2306  * Note: this function should also apply an exclusive lock
   2307  * on the pmap system during its duration.
   2308  */
   2309 vm_offset_t
   2310 pmap_extract(pmap, va)
   2311 	pmap_t      pmap;
   2312 	vm_offset_t va;
   2313 {
   2314 	int a_idx, b_idx, pte_idx;
   2315 	a_tmgr_t	*a_tbl;
   2316 	b_tmgr_t	*b_tbl;
   2317 	c_tmgr_t	*c_tbl;
   2318 	mmu_short_pte_t	*c_pte;
   2319 
   2320 	if (pmap == pmap_kernel())
   2321 		return pmap_extract_kernel(va);
   2322 	if (pmap == NULL)
   2323 		return 0;
   2324 
   2325 	if (pmap_stroll(pmap, va, &a_tbl, &b_tbl, &c_tbl,
   2326 		&c_pte, &a_idx, &b_idx, &pte_idx) == FALSE);
   2327 		return 0;
   2328 
   2329 	if (MMU_VALID_DT(*c_pte))
   2330 		return MMU_PTE_PA(*c_pte);
   2331 	else
   2332 		return 0;
   2333 }
   2334 
   2335 /* pmap_extract_kernel		INTERNAL
   2336  **
   2337  * Extract a traslation from the kernel address space.
   2338  */
   2339 vm_offset_t
   2340 pmap_extract_kernel(va)
   2341 	vm_offset_t va;
   2342 {
   2343 	mmu_short_pte_t *pte;
   2344 
   2345 	pte = &kernCbase[(unsigned long) sun3x_btop(va - KERNBASE)];
   2346 	return MMU_PTE_PA(*pte);
   2347 }
   2348 
   2349 /* pmap_remove_kernel		INTERNAL
   2350  **
   2351  * Remove the mapping of a range of virtual addresses from the kernel map.
   2352  */
   2353 void
   2354 pmap_remove_kernel(start, end)
   2355 	vm_offset_t start;
   2356 	vm_offset_t end;
   2357 {
   2358 	start -= KERNBASE;
   2359 	end   -= KERNBASE;
   2360 	start = sun3x_round_page(start); /* round down */
   2361 	start = sun3x_btop(start);
   2362 	end   += MMU_PAGE_SIZE - 1;    /* next round operation will be up */
   2363 	end   = sun3x_round_page(end); /* round */
   2364 	end   = sun3x_btop(end);
   2365 
   2366 	while (start < end)
   2367 		kernCbase[start++].attr.raw = MMU_DT_INVALID;
   2368 }
   2369 
   2370 /* pmap_remove			INTERFACE
   2371  **
   2372  * Remove the mapping of a range of virtual addresses from the given pmap.
   2373  */
   2374 void
   2375 pmap_remove(pmap, start, end)
   2376 	pmap_t pmap;
   2377 	vm_offset_t start;
   2378 	vm_offset_t end;
   2379 {
   2380 	if (pmap == pmap_kernel()) {
   2381 		pmap_remove_kernel(start, end);
   2382 		return;
   2383 	}
   2384 	pmap_remove_a(pmap->pm_a_tbl, start, end);
   2385 
   2386 	/* If we just modified the current address space,
   2387 	 * make sure to flush the MMU cache.
   2388 	 */
   2389 	if (curatbl == pmap->pm_a_tbl) {
   2390 		/* mmu_flusha(); */
   2391 		TBIA();
   2392 	}
   2393 }
   2394 
   2395 /* pmap_remove_a			INTERNAL
   2396  **
   2397  * This is function number one in a set of three that removes a range
   2398  * of memory in the most efficient manner by removing the highest possible
   2399  * tables from the memory space.  This particular function attempts to remove
   2400  * as many B tables as it can, delegating the remaining fragmented ranges to
   2401  * pmap_remove_b().
   2402  *
   2403  * It's ugly but will do for now.
   2404  */
   2405 void
   2406 pmap_remove_a(a_tbl, start, end)
   2407 	a_tmgr_t *a_tbl;
   2408 	vm_offset_t start;
   2409 	vm_offset_t end;
   2410 {
   2411 	int idx;
   2412 	vm_offset_t nstart, nend, rstart;
   2413 	b_tmgr_t *b_tbl;
   2414 	mmu_long_dte_t  *a_dte;
   2415 	mmu_short_dte_t *b_dte;
   2416 
   2417 
   2418 	if (a_tbl == proc0Atmgr) /* If the pmap has no A table, return */
   2419 		return;
   2420 
   2421 	nstart = MMU_ROUND_UP_A(start);
   2422 	nend = MMU_ROUND_A(end);
   2423 
   2424 	if (start < nstart) {
   2425 		idx = MMU_TIA(start);
   2426 		a_dte = &a_tbl->at_dtbl[idx];
   2427 		if (MMU_VALID_DT(*a_dte)) {
   2428 			b_dte = (mmu_short_dte_t *) MMU_DTE_PA(*a_dte);
   2429 			b_dte = (mmu_short_dte_t *) mmu_ptov(b_dte);
   2430 			b_tbl = mmuB2tmgr(b_dte);
   2431 			if (end < nstart) {
   2432 				pmap_remove_b(b_tbl, start, end);
   2433 				return;
   2434 			} else {
   2435 				pmap_remove_b(b_tbl, start, nstart);
   2436 			}
   2437 		} else if (end < nstart) {
   2438 			return;
   2439 		}
   2440 	}
   2441 	if (nstart < nend) {
   2442 		idx = MMU_TIA(nstart);
   2443 		a_dte = &a_tbl->at_dtbl[idx];
   2444 		rstart = nstart;
   2445 		while (rstart < nend) {
   2446 			if (MMU_VALID_DT(*a_dte)) {
   2447 				b_dte = (mmu_short_dte_t *) MMU_DTE_PA(*a_dte);
   2448 				b_dte = (mmu_short_dte_t *) mmu_ptov(b_dte);
   2449 				b_tbl = mmuB2tmgr(b_dte);
   2450 				a_dte->attr.raw = MMU_DT_INVALID;
   2451 				a_tbl->at_ecnt--;
   2452 				free_b_table(b_tbl);
   2453 				TAILQ_REMOVE(&b_pool, b_tbl, bt_link);
   2454 				TAILQ_INSERT_HEAD(&b_pool, b_tbl, bt_link);
   2455 			}
   2456 			a_dte++;
   2457 			rstart += MMU_TIA_RANGE;
   2458 		}
   2459 	}
   2460 	if (nend < end) {
   2461 		idx = MMU_TIA(nend);
   2462 		a_dte = &a_tbl->at_dtbl[idx];
   2463 		if (MMU_VALID_DT(*a_dte)) {
   2464 			b_dte = (mmu_short_dte_t *) MMU_DTE_PA(*a_dte);
   2465 			b_dte = (mmu_short_dte_t *) mmu_ptov(b_dte);
   2466 			b_tbl = mmuB2tmgr(b_dte);
   2467 			pmap_remove_b(b_tbl, nend, end);
   2468 		}
   2469 	}
   2470 }
   2471 
   2472 /* pmap_remove_b			INTERNAL
   2473  **
   2474  * Remove a range of addresses from an address space, trying to remove entire
   2475  * C tables if possible.
   2476  */
   2477 void
   2478 pmap_remove_b(b_tbl, start, end)
   2479 	b_tmgr_t *b_tbl;
   2480 	vm_offset_t start;
   2481 	vm_offset_t end;
   2482 {
   2483 	int idx;
   2484 	vm_offset_t nstart, nend, rstart;
   2485 	c_tmgr_t *c_tbl;
   2486 	mmu_short_dte_t  *b_dte;
   2487 	mmu_short_pte_t  *c_dte;
   2488 
   2489 
   2490 	nstart = MMU_ROUND_UP_B(start);
   2491 	nend = MMU_ROUND_B(end);
   2492 
   2493 	if (start < nstart) {
   2494 		idx = MMU_TIB(start);
   2495 		b_dte = &b_tbl->bt_dtbl[idx];
   2496 		if (MMU_VALID_DT(*b_dte)) {
   2497 			c_dte = (mmu_short_pte_t *) MMU_DTE_PA(*b_dte);
   2498 			c_dte = (mmu_short_pte_t *) mmu_ptov(c_dte);
   2499 			c_tbl = mmuC2tmgr(c_dte);
   2500 			if (end < nstart) {
   2501 				pmap_remove_c(c_tbl, start, end);
   2502 				return;
   2503 			} else {
   2504 				pmap_remove_c(c_tbl, start, nstart);
   2505 			}
   2506 		} else if (end < nstart) {
   2507 			return;
   2508 		}
   2509 	}
   2510 	if (nstart < nend) {
   2511 		idx = MMU_TIB(nstart);
   2512 		b_dte = &b_tbl->bt_dtbl[idx];
   2513 		rstart = nstart;
   2514 		while (rstart < nend) {
   2515 			if (MMU_VALID_DT(*b_dte)) {
   2516 				c_dte = (mmu_short_pte_t *) MMU_DTE_PA(*b_dte);
   2517 				c_dte = (mmu_short_pte_t *) mmu_ptov(c_dte);
   2518 				c_tbl = mmuC2tmgr(c_dte);
   2519 				b_dte->attr.raw = MMU_DT_INVALID;
   2520 				b_tbl->bt_ecnt--;
   2521 				free_c_table(c_tbl);
   2522 				TAILQ_REMOVE(&c_pool, c_tbl, ct_link);
   2523 				TAILQ_INSERT_HEAD(&c_pool, c_tbl, ct_link);
   2524 			}
   2525 			b_dte++;
   2526 			rstart += MMU_TIB_RANGE;
   2527 		}
   2528 	}
   2529 	if (nend < end) {
   2530 		idx = MMU_TIB(nend);
   2531 		b_dte = &b_tbl->bt_dtbl[idx];
   2532 		if (MMU_VALID_DT(*b_dte)) {
   2533 			c_dte = (mmu_short_pte_t *) MMU_DTE_PA(*b_dte);
   2534 			c_dte = (mmu_short_pte_t *) mmu_ptov(c_dte);
   2535 			c_tbl = mmuC2tmgr(c_dte);
   2536 			pmap_remove_c(c_tbl, nend, end);
   2537 		}
   2538 	}
   2539 }
   2540 
   2541 /* pmap_remove_c			INTERNAL
   2542  **
   2543  * Remove a range of addresses from the given C table.
   2544  */
   2545 void
   2546 pmap_remove_c(c_tbl, start, end)
   2547 	c_tmgr_t *c_tbl;
   2548 	vm_offset_t start;
   2549 	vm_offset_t end;
   2550 {
   2551 	int idx;
   2552 	mmu_short_pte_t *c_pte;
   2553 
   2554 	idx = MMU_TIC(start);
   2555 	c_pte = &c_tbl->ct_dtbl[idx];
   2556 	while (start < end) {
   2557 		if (MMU_VALID_DT(*c_pte))
   2558 			pmap_remove_pte(c_pte);
   2559 		c_tbl->ct_ecnt--;
   2560 		start += MMU_PAGE_SIZE;
   2561 		c_pte++;
   2562 	}
   2563 }
   2564 
   2565 /* is_managed				INTERNAL
   2566  **
   2567  * Determine if the given physical address is managed by the PV system.
   2568  * Note that this logic assumes that no one will ask for the status of
   2569  * addresses which lie in-between the memory banks on the 3/80.  If they
   2570  * do so, it will falsely report that it is managed.
   2571  */
   2572 boolean_t
   2573 is_managed(pa)
   2574 	vm_offset_t pa;
   2575 {
   2576 	if (pa >= avail_start && pa < avail_end)
   2577 		return TRUE;
   2578 	else
   2579 		return FALSE;
   2580 }
   2581 
   2582 /* pa2pv			INTERNAL
   2583  **
   2584  * Return the pv_list_head element which manages the given physical
   2585  * address.
   2586  */
   2587 pv_t *
   2588 pa2pv(pa)
   2589 	vm_offset_t pa;
   2590 {
   2591 	struct pmap_physmem_struct *bank = &avail_mem[0];
   2592 
   2593 	while (pa >= bank->pmem_end)
   2594 		bank = bank->pmem_next;
   2595 
   2596 	pa -= bank->pmem_start;
   2597 	return &pvbase[bank->pmem_pvbase + sun3x_btop(pa)];
   2598 }
   2599 
   2600 /* pmap_bootstrap_alloc			INTERNAL
   2601  **
   2602  * Used internally for memory allocation at startup when malloc is not
   2603  * available.  This code will fail once it crosses the first memory
   2604  * bank boundary on the 3/80.  Hopefully by then however, the VM system
   2605  * will be in charge of allocation.
   2606  */
   2607 void *
   2608 pmap_bootstrap_alloc(size)
   2609 	int size;
   2610 {
   2611 	void *rtn;
   2612 
   2613 	rtn = (void *) virtual_avail;
   2614 
   2615 	/* While the size is greater than a page, map single pages,
   2616 	 * decreasing size until it is less than a page.
   2617 	 */
   2618 	while (size > NBPG) {
   2619 		(void) pmap_bootstrap_alloc(NBPG);
   2620 
   2621 		/* If the above code is ok, let's keep it.
   2622 		 * It looks cooler than:
   2623 		 * virtual_avail += NBPG;
   2624 		 * avail_start += NBPG;
   2625 		 * last_mapped = sun3x_trunc_page(avail_start);
   2626 		 * pmap_enter_kernel(last_mapped, last_mapped + KERNBASE,
   2627 		 *    VM_PROT_READ|VM_PROT_WRITE);
   2628 		 */
   2629 
   2630 		 size -= NBPG;
   2631 	}
   2632 	avail_start += size;
   2633 	virtual_avail += size;
   2634 
   2635 	/* did the allocation cross a page boundary? */
   2636 	if (last_mapped != sun3x_trunc_page(avail_start)) {
   2637 		last_mapped = sun3x_trunc_page(avail_start);
   2638 		pmap_enter_kernel(last_mapped + KERNBASE, last_mapped,
   2639 		    VM_PROT_READ|VM_PROT_WRITE);
   2640 	}
   2641 
   2642 	return rtn;
   2643 }
   2644 
   2645 /* pmap_bootstap_aalign			INTERNAL
   2646  **
   2647  * Used to insure that the next call to pmap_bootstrap_alloc() will return
   2648  * a chunk of memory aligned to the specified size.
   2649  */
   2650 void
   2651 pmap_bootstrap_aalign(size)
   2652 	int size;
   2653 {
   2654 	if (((unsigned int) avail_start % size) != 0) {
   2655 		(void) pmap_bootstrap_alloc(size -
   2656 		    ((unsigned int) (avail_start % size)));
   2657 	}
   2658 }
   2659 
   2660 #if 0
   2661 /* pmap_activate			INTERFACE
   2662  **
   2663  * Make the virtual to physical mappings contained in the given
   2664  * pmap the current map used by the system.
   2665  */
   2666 void
   2667 pmap_activate(pmap, pcbp)
   2668 pmap_t	pmap;
   2669 struct  pcb *pcbp;
   2670 {
   2671 	vm_offset_t	pa;
   2672 	/* Save the A table being loaded in 'curatbl'.
   2673 	 * pmap_remove() uses this variable to determine if a given A
   2674 	 * table is currently being used as the system map.  If so, it
   2675 	 * will issue an MMU cache flush whenever mappings are removed.
   2676 	 */
   2677 	curatbl = pmap->pm_a_tbl;
   2678 	/* call the locore routine to set the user root pointer table */
   2679 	pa = mmu_vtop(pmap->pm_a_tbl->at_dtbl);
   2680 	mmu_seturp(pa);
   2681 }
   2682 #endif
   2683 
   2684 /* pmap_pa_exists
   2685  **
   2686  * Used by the /dev/mem driver to see if a given PA is memory
   2687  * that can be mapped.  (The PA is not in a hole.)
   2688  */
   2689 int
   2690 pmap_pa_exists(pa)
   2691 	vm_offset_t pa;
   2692 {
   2693 	/* XXX - NOTYET */
   2694 	return (0);
   2695 }
   2696 
   2697 
   2698 /* pmap_update
   2699  **
   2700  * Apply any delayed changes scheduled for all pmaps immediately.
   2701  *
   2702  * No delayed operations are currently done in this pmap.
   2703  */
   2704 void
   2705 pmap_update()
   2706 {
   2707 	/* not implemented. */
   2708 }
   2709 
   2710 /* pmap_virtual_space			INTERFACE
   2711  **
   2712  * Return the current available range of virtual addresses in the
   2713  * arguuments provided.  Only really called once.
   2714  */
   2715 void
   2716 pmap_virtual_space(vstart, vend)
   2717 	vm_offset_t *vstart, *vend;
   2718 {
   2719 	*vstart = virtual_avail;
   2720 	*vend = virtual_end;
   2721 }
   2722 
   2723 /* pmap_free_pages			INTERFACE
   2724  **
   2725  * Return the number of physical pages still available.
   2726  *
   2727  * This is probably going to be a mess, but it's only called
   2728  * once and it's the only function left that I have to implement!
   2729  */
   2730 u_int
   2731 pmap_free_pages()
   2732 {
   2733 	int i;
   2734 	u_int left;
   2735 	vm_offset_t avail;
   2736 
   2737 	avail = sun3x_round_up_page(avail_start);
   2738 
   2739 	left = 0;
   2740 	i = 0;
   2741 	while (avail >= avail_mem[i].pmem_end) {
   2742 		if (avail_mem[i].pmem_next == NULL)
   2743 			return 0;
   2744 		i++;
   2745 	}
   2746 	while (i < SUN3X_80_MEM_BANKS) {
   2747 		if (avail < avail_mem[i].pmem_start) {
   2748 			/* Avail is inside a hole, march it
   2749 			 * up to the next bank.
   2750 			 */
   2751 			avail = avail_mem[i].pmem_start;
   2752 		}
   2753 		left += sun3x_btop(avail_mem[i].pmem_end - avail);
   2754 		if (avail_mem[i].pmem_next == NULL)
   2755 			break;
   2756 		i++;
   2757 	}
   2758 
   2759 	return left;
   2760 }
   2761 
   2762 /* pmap_page_index			INTERFACE
   2763  **
   2764  * Return the index of the given physical page in a list of useable
   2765  * physical pages in the system.  Holes in physical memory may be counted
   2766  * if so desired.  As long as pmap_free_pages() and pmap_page_index()
   2767  * agree as to whether holes in memory do or do not count as valid pages,
   2768  * it really doesn't matter.  However, if you like to save a little
   2769  * memory, don't count holes as valid pages.  This is even more true when
   2770  * the holes are large.
   2771  *
   2772  * We will not count holes as valid pages.  We can generate page indexes
   2773  * that conform to this by using the memory bank structures initialized
   2774  * in pmap_alloc_pv().
   2775  */
   2776 int
   2777 pmap_page_index(pa)
   2778 	vm_offset_t pa;
   2779 {
   2780 	struct pmap_physmem_struct *bank = avail_mem;
   2781 
   2782 	while (pa > bank->pmem_end)
   2783 		bank = bank->pmem_next;
   2784 	pa -= bank->pmem_start;
   2785 
   2786 	return (bank->pmem_pvbase + sun3x_btop(pa));
   2787 }
   2788 
   2789 /* pmap_next_page			INTERFACE
   2790  **
   2791  * Place the physical address of the next available page in the
   2792  * argument given.  Returns FALSE if there are no more pages left.
   2793  *
   2794  * This function must jump over any holes in physical memory.
   2795  * Once this function is used, any use of pmap_bootstrap_alloc()
   2796  * is a sin.  Sinners will be punished with erratic behavior.
   2797  */
   2798 boolean_t
   2799 pmap_next_page(pa)
   2800 	vm_offset_t *pa;
   2801 {
   2802 	static boolean_t initialized = FALSE;
   2803 	static struct pmap_physmem_struct *curbank = avail_mem;
   2804 
   2805 	if (!initialized) {
   2806 		pmap_bootstrap_aalign(NBPG);
   2807 		initialized = TRUE;
   2808 	}
   2809 
   2810 	if (avail_start >= curbank->pmem_end)
   2811 		if (curbank->pmem_next == NULL)
   2812 			return FALSE;
   2813 		else {
   2814 			curbank = curbank->pmem_next;
   2815 			avail_start = curbank->pmem_start;
   2816 		}
   2817 
   2818 	*pa = avail_start;
   2819 	avail_start += NBPG;
   2820 	return TRUE;
   2821 }
   2822 
   2823 /************************ SUN3 COMPATIBILITY ROUTINES ********************
   2824  * The following routines are only used by DDB for tricky kernel text    *
   2825  * text operations in db_memrw.c.  They are provided for sun3            *
   2826  * compatibility.                                                        *
   2827  *************************************************************************/
   2828 /* get_pte			INTERNAL
   2829  **
   2830  * Return the page descriptor the describes the kernel mapping
   2831  * of the given virtual address.
   2832  *
   2833  * XXX - It might be nice if this worked outside of the MMU
   2834  * structures we manage.  (Could do it with ptest). -gwr
   2835  */
   2836 vm_offset_t
   2837 get_pte(va)
   2838 	vm_offset_t va;
   2839 {
   2840 	u_long idx;
   2841 
   2842 	idx = (unsigned long) sun3x_btop(mmu_vtop(va));
   2843 	return (kernCbase[idx].attr.raw);
   2844 }
   2845 
   2846 /* set_pte			INTERNAL
   2847  **
   2848  * Set the page descriptor that describes the kernel mapping
   2849  * of the given virtual address.
   2850  */
   2851 void
   2852 set_pte(va, pte)
   2853 	vm_offset_t va;
   2854 	vm_offset_t pte;
   2855 {
   2856 	u_long idx;
   2857 
   2858 	idx = (unsigned long) sun3x_btop(mmu_vtop(va));
   2859 	kernCbase[idx].attr.raw = pte;
   2860 }
   2861 
   2862 #ifdef NOT_YET
   2863 /* and maybe not ever */
   2864 /************************** LOW-LEVEL ROUTINES **************************
   2865  * These routines will eventualy be re-written into assembly and placed *
   2866  * in locore.s.  They are here now as stubs so that the pmap module can *
   2867  * be linked as a standalone user program for testing.                  *
   2868  ************************************************************************/
   2869 /* flush_atc_crp			INTERNAL
   2870  **
   2871  * Flush all page descriptors derived from the given CPU Root Pointer
   2872  * (CRP), or 'A' table as it is known here, from the 68851's automatic
   2873  * cache.
   2874  */
   2875 void
   2876 flush_atc_crp(a_tbl)
   2877 {
   2878 	mmu_long_rp_t rp;
   2879 
   2880 	/* Create a temporary root table pointer that points to the
   2881 	 * given A table.
   2882 	 */
   2883 	rp.attr.raw = ~MMU_LONG_RP_LU;
   2884 	rp.addr.raw = (unsigned int) a_tbl;
   2885 
   2886 	mmu_pflushr(&rp);
   2887 	/* mmu_pflushr:
   2888 	 * 	movel   sp(4)@,a0
   2889 	 * 	pflushr a0@
   2890 	 *	rts
   2891 	 */
   2892 }
   2893 #endif /* NOT_YET */
   2894