Home | History | Annotate | Line # | Download | only in sun3x
pmap.c revision 1.39
      1 /*	$NetBSD: pmap.c,v 1.39 1998/07/08 04:43:22 thorpej Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1996, 1997 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jeremy Cooper.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  * 3. All advertising materials mentioning features or use of this software
     19  *    must display the following acknowledgement:
     20  *        This product includes software developed by the NetBSD
     21  *        Foundation, Inc. and its contributors.
     22  * 4. Neither the name of The NetBSD Foundation nor the names of its
     23  *    contributors may be used to endorse or promote products derived
     24  *    from this software without specific prior written permission.
     25  *
     26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36  * POSSIBILITY OF SUCH DAMAGE.
     37  */
     38 
     39 /*
     40  * XXX These comments aren't quite accurate.  Need to change.
     41  * The sun3x uses the MC68851 Memory Management Unit, which is built
     42  * into the CPU.  The 68851 maps virtual to physical addresses using
     43  * a multi-level table lookup, which is stored in the very memory that
     44  * it maps.  The number of levels of lookup is configurable from one
     45  * to four.  In this implementation, we use three, named 'A' through 'C'.
     46  *
     47  * The MMU translates virtual addresses into physical addresses by
     48  * traversing these tables in a proccess called a 'table walk'.  The most
     49  * significant 7 bits of the Virtual Address ('VA') being translated are
     50  * used as an index into the level A table, whose base in physical memory
     51  * is stored in a special MMU register, the 'CPU Root Pointer' or CRP.  The
     52  * address found at that index in the A table is used as the base
     53  * address for the next table, the B table.  The next six bits of the VA are
     54  * used as an index into the B table, which in turn gives the base address
     55  * of the third and final C table.
     56  *
     57  * The next six bits of the VA are used as an index into the C table to
     58  * locate a Page Table Entry (PTE).  The PTE is a physical address in memory
     59  * to which the remaining 13 bits of the VA are added, producing the
     60  * mapped physical address.
     61  *
     62  * To map the entire memory space in this manner would require 2114296 bytes
     63  * of page tables per process - quite expensive.  Instead we will
     64  * allocate a fixed but considerably smaller space for the page tables at
     65  * the time the VM system is initialized.  When the pmap code is asked by
     66  * the kernel to map a VA to a PA, it allocates tables as needed from this
     67  * pool.  When there are no more tables in the pool, tables are stolen
     68  * from the oldest mapped entries in the tree.  This is only possible
     69  * because all memory mappings are stored in the kernel memory map
     70  * structures, independent of the pmap structures.  A VA which references
     71  * one of these invalidated maps will cause a page fault.  The kernel
     72  * will determine that the page fault was caused by a task using a valid
     73  * VA, but for some reason (which does not concern it), that address was
     74  * not mapped.  It will ask the pmap code to re-map the entry and then
     75  * it will resume executing the faulting task.
     76  *
     77  * In this manner the most efficient use of the page table space is
     78  * achieved.  Tasks which do not execute often will have their tables
     79  * stolen and reused by tasks which execute more frequently.  The best
     80  * size for the page table pool will probably be determined by
     81  * experimentation.
     82  *
     83  * You read all of the comments so far.  Good for you.
     84  * Now go play!
     85  */
     86 
     87 /*** A Note About the 68851 Address Translation Cache
     88  * The MC68851 has a 64 entry cache, called the Address Translation Cache
     89  * or 'ATC'.  This cache stores the most recently used page descriptors
     90  * accessed by the MMU when it does translations.  Using a marker called a
     91  * 'task alias' the MMU can store the descriptors from 8 different table
     92  * spaces concurrently.  The task alias is associated with the base
     93  * address of the level A table of that address space.  When an address
     94  * space is currently active (the CRP currently points to its A table)
     95  * the only cached descriptors that will be obeyed are ones which have a
     96  * matching task alias of the current space associated with them.
     97  *
     98  * Since the cache is always consulted before any table lookups are done,
     99  * it is important that it accurately reflect the state of the MMU tables.
    100  * Whenever a change has been made to a table that has been loaded into
    101  * the MMU, the code must be sure to flush any cached entries that are
    102  * affected by the change.  These instances are documented in the code at
    103  * various points.
    104  */
    105 /*** A Note About the Note About the 68851 Address Translation Cache
    106  * 4 months into this code I discovered that the sun3x does not have
    107  * a MC68851 chip. Instead, it has a version of this MMU that is part of the
    108  * the 68030 CPU.
    109  * All though it behaves very similarly to the 68851, it only has 1 task
    110  * alias and a 22 entry cache.  So sadly (or happily), the first paragraph
    111  * of the previous note does not apply to the sun3x pmap.
    112  */
    113 
    114 #include "opt_uvm.h"
    115 
    116 #include <sys/param.h>
    117 #include <sys/systm.h>
    118 #include <sys/proc.h>
    119 #include <sys/malloc.h>
    120 #include <sys/user.h>
    121 #include <sys/queue.h>
    122 #include <sys/kcore.h>
    123 
    124 #include <vm/vm.h>
    125 #include <vm/vm_kern.h>
    126 #include <vm/vm_page.h>
    127 
    128 #if defined(UVM)
    129 #include <uvm/uvm.h>
    130 /* XXX - Gratuitous name changes... */
    131 #define vm_set_page_size uvm_setpagesize
    132 #endif	/* UVM */
    133 
    134 #include <machine/cpu.h>
    135 #include <machine/kcore.h>
    136 #include <machine/mon.h>
    137 #include <machine/pmap.h>
    138 #include <machine/pte.h>
    139 #include <machine/vmparam.h>
    140 
    141 #include <sun3/sun3/cache.h>
    142 #include <sun3/sun3/machdep.h>
    143 
    144 #include "pmap_pvt.h"
    145 
    146 /* XXX - What headers declare these? */
    147 extern struct pcb *curpcb;
    148 extern int physmem;
    149 
    150 extern void copypage __P((const void*, void*));
    151 extern void zeropage __P((void*));
    152 
    153 /* Defined in locore.s */
    154 extern char kernel_text[];
    155 
    156 /* Defined by the linker */
    157 extern char etext[], edata[], end[];
    158 extern char *esym;	/* DDB */
    159 
    160 /*************************** DEBUGGING DEFINITIONS ***********************
    161  * Macros, preprocessor defines and variables used in debugging can make *
    162  * code hard to read.  Anything used exclusively for debugging purposes  *
    163  * is defined here to avoid having such mess scattered around the file.  *
    164  *************************************************************************/
    165 #ifdef	PMAP_DEBUG
    166 /*
    167  * To aid the debugging process, macros should be expanded into smaller steps
    168  * that accomplish the same goal, yet provide convenient places for placing
    169  * breakpoints.  When this code is compiled with PMAP_DEBUG mode defined, the
    170  * 'INLINE' keyword is defined to an empty string.  This way, any function
    171  * defined to be a 'static INLINE' will become 'outlined' and compiled as
    172  * a separate function, which is much easier to debug.
    173  */
    174 #define	INLINE	/* nothing */
    175 
    176 /*
    177  * It is sometimes convenient to watch the activity of a particular table
    178  * in the system.  The following variables are used for that purpose.
    179  */
    180 a_tmgr_t *pmap_watch_atbl = 0;
    181 b_tmgr_t *pmap_watch_btbl = 0;
    182 c_tmgr_t *pmap_watch_ctbl = 0;
    183 
    184 int pmap_debug = 0;
    185 #define DPRINT(args) if (pmap_debug) printf args
    186 
    187 #else	/********** Stuff below is defined if NOT debugging **************/
    188 
    189 #define	INLINE	inline
    190 #define DPRINT(args)  /* nada */
    191 
    192 #endif	/* PMAP_DEBUG */
    193 /*********************** END OF DEBUGGING DEFINITIONS ********************/
    194 
    195 /*** Management Structure - Memory Layout
    196  * For every MMU table in the sun3x pmap system there must be a way to
    197  * manage it; we must know which process is using it, what other tables
    198  * depend on it, and whether or not it contains any locked pages.  This
    199  * is solved by the creation of 'table management'  or 'tmgr'
    200  * structures.  One for each MMU table in the system.
    201  *
    202  *                        MAP OF MEMORY USED BY THE PMAP SYSTEM
    203  *
    204  *      towards lower memory
    205  * kernAbase -> +-------------------------------------------------------+
    206  *              | Kernel     MMU A level table                          |
    207  * kernBbase -> +-------------------------------------------------------+
    208  *              | Kernel     MMU B level tables                         |
    209  * kernCbase -> +-------------------------------------------------------+
    210  *              |                                                       |
    211  *              | Kernel     MMU C level tables                         |
    212  *              |                                                       |
    213  * mmuCbase  -> +-------------------------------------------------------+
    214  *              | User       MMU C level tables                         |
    215  * mmuAbase  -> +-------------------------------------------------------+
    216  *              |                                                       |
    217  *              | User       MMU A level tables                         |
    218  *              |                                                       |
    219  * mmuBbase  -> +-------------------------------------------------------+
    220  *              | User       MMU B level tables                         |
    221  * tmgrAbase -> +-------------------------------------------------------+
    222  *              |  TMGR A level table structures                        |
    223  * tmgrBbase -> +-------------------------------------------------------+
    224  *              |  TMGR B level table structures                        |
    225  * tmgrCbase -> +-------------------------------------------------------+
    226  *              |  TMGR C level table structures                        |
    227  * pvbase    -> +-------------------------------------------------------+
    228  *              |  Physical to Virtual mapping table (list heads)       |
    229  * pvebase   -> +-------------------------------------------------------+
    230  *              |  Physical to Virtual mapping table (list elements)    |
    231  *              |                                                       |
    232  *              +-------------------------------------------------------+
    233  *      towards higher memory
    234  *
    235  * For every A table in the MMU A area, there will be a corresponding
    236  * a_tmgr structure in the TMGR A area.  The same will be true for
    237  * the B and C tables.  This arrangement will make it easy to find the
    238  * controling tmgr structure for any table in the system by use of
    239  * (relatively) simple macros.
    240  */
    241 
    242 /*
    243  * Global variables for storing the base addresses for the areas
    244  * labeled above.
    245  */
    246 static vm_offset_t  	kernAphys;
    247 static mmu_long_dte_t	*kernAbase;
    248 static mmu_short_dte_t	*kernBbase;
    249 static mmu_short_pte_t	*kernCbase;
    250 static mmu_short_pte_t	*mmuCbase;
    251 static mmu_short_dte_t	*mmuBbase;
    252 static mmu_long_dte_t	*mmuAbase;
    253 static a_tmgr_t		*Atmgrbase;
    254 static b_tmgr_t		*Btmgrbase;
    255 static c_tmgr_t		*Ctmgrbase;
    256 static pv_t 		*pvbase;
    257 static pv_elem_t	*pvebase;
    258 struct pmap 		kernel_pmap;
    259 
    260 /*
    261  * This holds the CRP currently loaded into the MMU.
    262  */
    263 struct mmu_rootptr kernel_crp;
    264 
    265 /*
    266  * Just all around global variables.
    267  */
    268 static TAILQ_HEAD(a_pool_head_struct, a_tmgr_struct) a_pool;
    269 static TAILQ_HEAD(b_pool_head_struct, b_tmgr_struct) b_pool;
    270 static TAILQ_HEAD(c_pool_head_struct, c_tmgr_struct) c_pool;
    271 
    272 
    273 /*
    274  * Flags used to mark the safety/availability of certain operations or
    275  * resources.
    276  */
    277 static boolean_t pv_initialized = FALSE, /* PV system has been initialized. */
    278        bootstrap_alloc_enabled = FALSE; /*Safe to use pmap_bootstrap_alloc().*/
    279 int tmp_vpages_inuse;	/* Temporary virtual pages are in use */
    280 
    281 /*
    282  * XXX:  For now, retain the traditional variables that were
    283  * used in the old pmap/vm interface (without NONCONTIG).
    284  */
    285 /* Kernel virtual address space available: */
    286 vm_offset_t	virtual_avail, virtual_end;
    287 /* Physical address space available: */
    288 vm_offset_t	avail_start, avail_end;
    289 
    290 /* This keep track of the end of the contiguously mapped range. */
    291 vm_offset_t virtual_contig_end;
    292 
    293 /* Physical address used by pmap_next_page() */
    294 vm_offset_t avail_next;
    295 
    296 /* These are used by pmap_copy_page(), etc. */
    297 vm_offset_t tmp_vpages[2];
    298 
    299 /*
    300  * The 3/80 is the only member of the sun3x family that has non-contiguous
    301  * physical memory.  Memory is divided into 4 banks which are physically
    302  * locatable on the system board.  Although the size of these banks varies
    303  * with the size of memory they contain, their base addresses are
    304  * permenently fixed.  The following structure, which describes these
    305  * banks, is initialized by pmap_bootstrap() after it reads from a similar
    306  * structure provided by the ROM Monitor.
    307  *
    308  * For the other machines in the sun3x architecture which do have contiguous
    309  * RAM, this list will have only one entry, which will describe the entire
    310  * range of available memory.
    311  */
    312 struct pmap_physmem_struct avail_mem[SUN3X_NPHYS_RAM_SEGS];
    313 u_int total_phys_mem;
    314 
    315 /*************************************************************************/
    316 
    317 /*
    318  * XXX - Should "tune" these based on statistics.
    319  *
    320  * My first guess about the relative numbers of these needed is
    321  * based on the fact that a "typical" process will have several
    322  * pages mapped at low virtual addresses (text, data, bss), then
    323  * some mapped shared libraries, and then some stack pages mapped
    324  * near the high end of the VA space.  Each process can use only
    325  * one A table, and most will use only two B tables (maybe three)
    326  * and probably about four C tables.  Therefore, the first guess
    327  * at the relative numbers of these needed is 1:2:4 -gwr
    328  *
    329  * The number of C tables needed is closely related to the amount
    330  * of physical memory available plus a certain amount attributable
    331  * to the use of double mappings.  With a few simulation statistics
    332  * we can find a reasonably good estimation of this unknown value.
    333  * Armed with that and the above ratios, we have a good idea of what
    334  * is needed at each level. -j
    335  *
    336  * Note: It is not physical memory memory size, but the total mapped
    337  * virtual space required by the combined working sets of all the
    338  * currently _runnable_ processes.  (Sleeping ones don't count.)
    339  * The amount of physical memory should be irrelevant. -gwr
    340  */
    341 #ifdef	FIXED_NTABLES
    342 #define NUM_A_TABLES	16
    343 #define NUM_B_TABLES	32
    344 #define NUM_C_TABLES	64
    345 #else
    346 unsigned int	NUM_A_TABLES, NUM_B_TABLES, NUM_C_TABLES;
    347 #endif	/* FIXED_NTABLES */
    348 
    349 /*
    350  * This determines our total virtual mapping capacity.
    351  * Yes, it is a FIXED value so we can pre-allocate.
    352  */
    353 #define NUM_USER_PTES	(NUM_C_TABLES * MMU_C_TBL_SIZE)
    354 
    355 /*
    356  * The size of the Kernel Virtual Address Space (KVAS)
    357  * for purposes of MMU table allocation is -KERNBASE
    358  * (length from KERNBASE to 0xFFFFffff)
    359  */
    360 #define	KVAS_SIZE		(-KERNBASE)
    361 
    362 /* Numbers of kernel MMU tables to support KVAS_SIZE. */
    363 #define KERN_B_TABLES	(KVAS_SIZE >> MMU_TIA_SHIFT)
    364 #define KERN_C_TABLES	(KVAS_SIZE >> MMU_TIB_SHIFT)
    365 #define	NUM_KERN_PTES	(KVAS_SIZE >> MMU_TIC_SHIFT)
    366 
    367 /*************************** MISCELANEOUS MACROS *************************/
    368 #define PMAP_LOCK()	;	/* Nothing, for now */
    369 #define PMAP_UNLOCK()	;	/* same. */
    370 #define	NULL 0
    371 
    372 static INLINE void *      mmu_ptov __P((vm_offset_t pa));
    373 static INLINE vm_offset_t mmu_vtop __P((void * va));
    374 
    375 #if	0
    376 static INLINE a_tmgr_t * mmuA2tmgr __P((mmu_long_dte_t *));
    377 #endif /* 0 */
    378 static INLINE b_tmgr_t * mmuB2tmgr __P((mmu_short_dte_t *));
    379 static INLINE c_tmgr_t * mmuC2tmgr __P((mmu_short_pte_t *));
    380 
    381 static INLINE pv_t *pa2pv __P((vm_offset_t pa));
    382 static INLINE int   pteidx __P((mmu_short_pte_t *));
    383 static INLINE pmap_t current_pmap __P((void));
    384 
    385 /*
    386  * We can always convert between virtual and physical addresses
    387  * for anything in the range [KERNBASE ... avail_start] because
    388  * that range is GUARANTEED to be mapped linearly.
    389  * We rely heavily upon this feature!
    390  */
    391 static INLINE void *
    392 mmu_ptov(pa)
    393 	vm_offset_t pa;
    394 {
    395 	register vm_offset_t va;
    396 
    397 	va = (pa + KERNBASE);
    398 #ifdef	PMAP_DEBUG
    399 	if ((va < KERNBASE) || (va >= virtual_contig_end))
    400 		panic("mmu_ptov");
    401 #endif
    402 	return ((void*)va);
    403 }
    404 static INLINE vm_offset_t
    405 mmu_vtop(vva)
    406 	void *vva;
    407 {
    408 	register vm_offset_t va;
    409 
    410 	va = (vm_offset_t)vva;
    411 #ifdef	PMAP_DEBUG
    412 	if ((va < KERNBASE) || (va >= virtual_contig_end))
    413 		panic("mmu_ptov");
    414 #endif
    415 	return (va - KERNBASE);
    416 }
    417 
    418 /*
    419  * These macros map MMU tables to their corresponding manager structures.
    420  * They are needed quite often because many of the pointers in the pmap
    421  * system reference MMU tables and not the structures that control them.
    422  * There needs to be a way to find one when given the other and these
    423  * macros do so by taking advantage of the memory layout described above.
    424  * Here's a quick step through the first macro, mmuA2tmgr():
    425  *
    426  * 1) find the offset of the given MMU A table from the base of its table
    427  *    pool (table - mmuAbase).
    428  * 2) convert this offset into a table index by dividing it by the
    429  *    size of one MMU 'A' table. (sizeof(mmu_long_dte_t) * MMU_A_TBL_SIZE)
    430  * 3) use this index to select the corresponding 'A' table manager
    431  *    structure from the 'A' table manager pool (Atmgrbase[index]).
    432  */
    433 /*  This function is not currently used. */
    434 #if	0
    435 static INLINE a_tmgr_t *
    436 mmuA2tmgr(mmuAtbl)
    437 	mmu_long_dte_t *mmuAtbl;
    438 {
    439 	register int idx;
    440 
    441 	/* Which table is this in? */
    442 	idx = (mmuAtbl - mmuAbase) / MMU_A_TBL_SIZE;
    443 #ifdef	PMAP_DEBUG
    444 	if ((idx < 0) || (idx >= NUM_A_TABLES))
    445 		panic("mmuA2tmgr");
    446 #endif
    447 	return (&Atmgrbase[idx]);
    448 }
    449 #endif	/* 0 */
    450 
    451 static INLINE b_tmgr_t *
    452 mmuB2tmgr(mmuBtbl)
    453 	mmu_short_dte_t *mmuBtbl;
    454 {
    455 	register int idx;
    456 
    457 	/* Which table is this in? */
    458 	idx = (mmuBtbl - mmuBbase) / MMU_B_TBL_SIZE;
    459 #ifdef	PMAP_DEBUG
    460 	if ((idx < 0) || (idx >= NUM_B_TABLES))
    461 		panic("mmuB2tmgr");
    462 #endif
    463 	return (&Btmgrbase[idx]);
    464 }
    465 
    466 /* mmuC2tmgr			INTERNAL
    467  **
    468  * Given a pte known to belong to a C table, return the address of
    469  * that table's management structure.
    470  */
    471 static INLINE c_tmgr_t *
    472 mmuC2tmgr(mmuCtbl)
    473 	mmu_short_pte_t *mmuCtbl;
    474 {
    475 	register int idx;
    476 
    477 	/* Which table is this in? */
    478 	idx = (mmuCtbl - mmuCbase) / MMU_C_TBL_SIZE;
    479 #ifdef	PMAP_DEBUG
    480 	if ((idx < 0) || (idx >= NUM_C_TABLES))
    481 		panic("mmuC2tmgr");
    482 #endif
    483 	return (&Ctmgrbase[idx]);
    484 }
    485 
    486 /* This is now a function call below.
    487  * #define pa2pv(pa) \
    488  *	(&pvbase[(unsigned long)\
    489  *		m68k_btop(pa)\
    490  *	])
    491  */
    492 
    493 /* pa2pv			INTERNAL
    494  **
    495  * Return the pv_list_head element which manages the given physical
    496  * address.
    497  */
    498 static INLINE pv_t *
    499 pa2pv(pa)
    500 	vm_offset_t pa;
    501 {
    502 	register struct pmap_physmem_struct *bank;
    503 	register int idx;
    504 
    505 	bank = &avail_mem[0];
    506 	while (pa >= bank->pmem_end)
    507 		bank = bank->pmem_next;
    508 
    509 	pa -= bank->pmem_start;
    510 	idx = bank->pmem_pvbase + m68k_btop(pa);
    511 #ifdef	PMAP_DEBUG
    512 	if ((idx < 0) || (idx >= physmem))
    513 		panic("pa2pv");
    514 #endif
    515 	return &pvbase[idx];
    516 }
    517 
    518 /* pteidx			INTERNAL
    519  **
    520  * Return the index of the given PTE within the entire fixed table of
    521  * PTEs.
    522  */
    523 static INLINE int
    524 pteidx(pte)
    525 	mmu_short_pte_t *pte;
    526 {
    527 	return (pte - kernCbase);
    528 }
    529 
    530 /*
    531  * This just offers a place to put some debugging checks,
    532  * and reduces the number of places "curproc" appears...
    533  */
    534 static INLINE pmap_t
    535 current_pmap()
    536 {
    537 	struct proc *p;
    538 	struct vmspace *vm;
    539 	vm_map_t	map;
    540 	pmap_t	pmap;
    541 
    542 	p = curproc;	/* XXX */
    543 	if (p == NULL)
    544 		pmap = &kernel_pmap;
    545 	else {
    546 		vm = p->p_vmspace;
    547 		map = &vm->vm_map;
    548 		pmap = vm_map_pmap(map);
    549 	}
    550 
    551 	return (pmap);
    552 }
    553 
    554 
    555 /*************************** FUNCTION DEFINITIONS ************************
    556  * These appear here merely for the compiler to enforce type checking on *
    557  * all function calls.                                                   *
    558  *************************************************************************/
    559 
    560 /** External functions
    561  ** - functions used within this module but written elsewhere.
    562  **   both of these functions are in locore.s
    563  ** XXX - These functions were later replaced with their more cryptic
    564  **       hp300 counterparts.  They may be removed now.
    565  **/
    566 #if	0	/* deprecated mmu */
    567 void   mmu_seturp __P((vm_offset_t));
    568 void   mmu_flush __P((int, vm_offset_t));
    569 void   mmu_flusha __P((void));
    570 #endif	/* 0 */
    571 
    572 /** Internal functions
    573  ** Most functions used only within this module are defined in
    574  **   pmap_pvt.h (why not here if used only here?)
    575  **/
    576 #ifdef MACHINE_NEW_NONCONTIG
    577 static void pmap_page_upload __P((void));
    578 #endif
    579 
    580 /** Interface functions
    581  ** - functions required by the Mach VM Pmap interface, with MACHINE_CONTIG
    582  **   defined.
    583  **/
    584 #ifdef INCLUDED_IN_PMAP_H
    585 void   pmap_bootstrap __P((void));
    586 void  *pmap_bootstrap_alloc __P((int));
    587 void   pmap_enter __P((pmap_t, vm_offset_t, vm_offset_t, vm_prot_t, boolean_t));
    588 pmap_t pmap_create __P((vm_size_t));
    589 void   pmap_destroy __P((pmap_t));
    590 void   pmap_reference __P((pmap_t));
    591 boolean_t   pmap_is_referenced __P((vm_offset_t));
    592 boolean_t   pmap_is_modified __P((vm_offset_t));
    593 void   pmap_clear_modify __P((vm_offset_t));
    594 vm_offset_t pmap_extract __P((pmap_t, vm_offset_t));
    595 int    pmap_page_index __P((vm_offset_t));
    596 u_int  pmap_free_pages __P((void));
    597 #endif /* INCLUDED_IN_PMAP_H */
    598 void pmap_pinit __P((pmap_t));
    599 void pmap_release __P((pmap_t));
    600 
    601 /********************************** CODE ********************************
    602  * Functions that are called from other parts of the kernel are labeled *
    603  * as 'INTERFACE' functions.  Functions that are only called from       *
    604  * within the pmap module are labeled as 'INTERNAL' functions.          *
    605  * Functions that are internal, but are not (currently) used at all are *
    606  * labeled 'INTERNAL_X'.                                                *
    607  ************************************************************************/
    608 
    609 /* pmap_bootstrap			INTERNAL
    610  **
    611  * Initializes the pmap system.  Called at boot time from
    612  * locore2.c:_vm_init()
    613  *
    614  * Reminder: having a pmap_bootstrap_alloc() and also having the VM
    615  *           system implement pmap_steal_memory() is redundant.
    616  *           Don't release this code without removing one or the other!
    617  */
    618 void
    619 pmap_bootstrap(nextva)
    620 	vm_offset_t nextva;
    621 {
    622 	struct physmemory *membank;
    623 	struct pmap_physmem_struct *pmap_membank;
    624 	vm_offset_t va, pa, eva;
    625 	int b, c, i, j;	/* running table counts */
    626 	int size;
    627 
    628 	/*
    629 	 * This function is called by __bootstrap after it has
    630 	 * determined the type of machine and made the appropriate
    631 	 * patches to the ROM vectors (XXX- I don't quite know what I meant
    632 	 * by that.)  It allocates and sets up enough of the pmap system
    633 	 * to manage the kernel's address space.
    634 	 */
    635 
    636 	/*
    637 	 * Determine the range of kernel virtual and physical
    638 	 * space available. Note that we ABSOLUTELY DEPEND on
    639 	 * the fact that the first bank of memory (4MB) is
    640 	 * mapped linearly to KERNBASE (which we guaranteed in
    641 	 * the first instructions of locore.s).
    642 	 * That is plenty for our bootstrap work.
    643 	 */
    644 	virtual_avail = m68k_round_page(nextva);
    645 	virtual_contig_end = KERNBASE + 0x400000; /* +4MB */
    646 	virtual_end = VM_MAX_KERNEL_ADDRESS;
    647 	/* Don't need avail_start til later. */
    648 
    649 	/* We may now call pmap_bootstrap_alloc(). */
    650 	bootstrap_alloc_enabled = TRUE;
    651 
    652 	/*
    653 	 * This is a somewhat unwrapped loop to deal with
    654 	 * copying the PROM's 'phsymem' banks into the pmap's
    655 	 * banks.  The following is always assumed:
    656 	 * 1. There is always at least one bank of memory.
    657 	 * 2. There is always a last bank of memory, and its
    658 	 *    pmem_next member must be set to NULL.
    659 	 * XXX - Use: do { ... } while (membank->next) instead?
    660 	 * XXX - Why copy this stuff at all? -gwr
    661 	 *     - It is needed in pa2pv().
    662 	 */
    663 	membank = romVectorPtr->v_physmemory;
    664 	pmap_membank = avail_mem;
    665 	total_phys_mem = 0;
    666 
    667 	while (membank->next) {
    668 		pmap_membank->pmem_start = membank->address;
    669 		pmap_membank->pmem_end = membank->address + membank->size;
    670 		total_phys_mem += membank->size;
    671 		/* This silly syntax arises because pmap_membank
    672 		 * is really a pre-allocated array, but it is put into
    673 		 * use as a linked list.
    674 		 */
    675 		pmap_membank->pmem_next = pmap_membank + 1;
    676 		pmap_membank = pmap_membank->pmem_next;
    677 		membank = membank->next;
    678 	}
    679 
    680 	/*
    681 	 * XXX The last bank of memory should be reduced to exclude the
    682 	 * physical pages needed by the PROM monitor from being used
    683 	 * in the VM system.  XXX - See below - Fix!
    684 	 */
    685 	pmap_membank->pmem_start = membank->address;
    686 	pmap_membank->pmem_end = membank->address + membank->size;
    687 	pmap_membank->pmem_next = NULL;
    688 
    689 #if 0	/* XXX - Need to integrate this! */
    690 	/*
    691 	 * The last few pages of physical memory are "owned" by
    692 	 * the PROM.  The total amount of memory we are allowed
    693 	 * to use is given by the romvec pointer. -gwr
    694 	 *
    695 	 * We should dedicate different variables for 'useable'
    696 	 * and 'physically available'.  Most users are used to the
    697 	 * kernel reporting the amount of memory 'physically available'
    698 	 * as opposed to 'useable by the kernel' at boot time. -j
    699 	 */
    700 	total_phys_mem = *romVectorPtr->memoryAvail;
    701 #endif	/* XXX */
    702 
    703 	total_phys_mem += membank->size;	/* XXX see above */
    704 	physmem = btoc(total_phys_mem);
    705 
    706 	/*
    707 	 * Avail_end is set to the first byte of physical memory
    708 	 * after the end of the last bank.  We use this only to
    709 	 * determine if a physical address is "managed" memory.
    710 	 *
    711 	 * XXX - The setting of avail_end is a temporary ROM saving hack.
    712 	 */
    713 	avail_end = pmap_membank->pmem_end -
    714 		(total_phys_mem - *romVectorPtr->memoryAvail);
    715 	avail_end = m68k_trunc_page(avail_end);
    716 
    717 	/*
    718 	 * First allocate enough kernel MMU tables to map all
    719 	 * of kernel virtual space from KERNBASE to 0xFFFFFFFF.
    720 	 * Note: All must be aligned on 256 byte boundaries.
    721 	 * Start with the level-A table (one of those).
    722 	 */
    723 	size = sizeof(mmu_long_dte_t)  * MMU_A_TBL_SIZE;
    724 	kernAbase = pmap_bootstrap_alloc(size);
    725 	bzero(kernAbase, size);
    726 
    727 	/* Now the level-B kernel tables... */
    728 	size = sizeof(mmu_short_dte_t) * MMU_B_TBL_SIZE * KERN_B_TABLES;
    729 	kernBbase = pmap_bootstrap_alloc(size);
    730 	bzero(kernBbase, size);
    731 
    732 	/* Now the level-C kernel tables... */
    733 	size = sizeof(mmu_short_pte_t) * MMU_C_TBL_SIZE * KERN_C_TABLES;
    734 	kernCbase = pmap_bootstrap_alloc(size);
    735 	bzero(kernCbase, size);
    736 	/*
    737 	 * Note: In order for the PV system to work correctly, the kernel
    738 	 * and user-level C tables must be allocated contiguously.
    739 	 * Nothing should be allocated between here and the allocation of
    740 	 * mmuCbase below.  XXX: Should do this as one allocation, and
    741 	 * then compute a pointer for mmuCbase instead of this...
    742 	 *
    743 	 * Allocate user MMU tables.
    744 	 * These must be contiguous with the preceeding.
    745 	 */
    746 
    747 #ifndef	FIXED_NTABLES
    748 	/*
    749 	 * The number of user-level C tables that should be allocated is
    750 	 * related to the size of physical memory.  In general, there should
    751 	 * be enough tables to map four times the amount of available RAM.
    752 	 * The extra amount is needed because some table space is wasted by
    753 	 * fragmentation.
    754 	 */
    755 	NUM_C_TABLES = (total_phys_mem * 4) / (MMU_C_TBL_SIZE * MMU_PAGE_SIZE);
    756 	NUM_B_TABLES = NUM_C_TABLES / 2;
    757 	NUM_A_TABLES = NUM_B_TABLES / 2;
    758 #endif	/* !FIXED_NTABLES */
    759 
    760 	size = sizeof(mmu_short_pte_t) * MMU_C_TBL_SIZE	* NUM_C_TABLES;
    761 	mmuCbase = pmap_bootstrap_alloc(size);
    762 
    763 	size = sizeof(mmu_short_dte_t) * MMU_B_TBL_SIZE	* NUM_B_TABLES;
    764 	mmuBbase = pmap_bootstrap_alloc(size);
    765 
    766 	size = sizeof(mmu_long_dte_t)  * MMU_A_TBL_SIZE * NUM_A_TABLES;
    767 	mmuAbase = pmap_bootstrap_alloc(size);
    768 
    769 	/*
    770 	 * Fill in the never-changing part of the kernel tables.
    771 	 * For simplicity, the kernel's mappings will be editable as a
    772 	 * flat array of page table entries at kernCbase.  The
    773 	 * higher level 'A' and 'B' tables must be initialized to point
    774 	 * to this lower one.
    775 	 */
    776 	b = c = 0;
    777 
    778 	/*
    779 	 * Invalidate all mappings below KERNBASE in the A table.
    780 	 * This area has already been zeroed out, but it is good
    781 	 * practice to explicitly show that we are interpreting
    782 	 * it as a list of A table descriptors.
    783 	 */
    784 	for (i = 0; i < MMU_TIA(KERNBASE); i++) {
    785 		kernAbase[i].addr.raw = 0;
    786 	}
    787 
    788 	/*
    789 	 * Set up the kernel A and B tables so that they will reference the
    790 	 * correct spots in the contiguous table of PTEs allocated for the
    791 	 * kernel's virtual memory space.
    792 	 */
    793 	for (i = MMU_TIA(KERNBASE); i < MMU_A_TBL_SIZE; i++) {
    794 		kernAbase[i].attr.raw =
    795 			MMU_LONG_DTE_LU | MMU_LONG_DTE_SUPV | MMU_DT_SHORT;
    796 		kernAbase[i].addr.raw = mmu_vtop(&kernBbase[b]);
    797 
    798 		for (j=0; j < MMU_B_TBL_SIZE; j++) {
    799 			kernBbase[b + j].attr.raw = mmu_vtop(&kernCbase[c])
    800 				| MMU_DT_SHORT;
    801 			c += MMU_C_TBL_SIZE;
    802 		}
    803 		b += MMU_B_TBL_SIZE;
    804 	}
    805 
    806 	/* XXX - Doing kernel_pmap a little further down. */
    807 
    808 	pmap_alloc_usermmu();	/* Allocate user MMU tables.        */
    809 	pmap_alloc_usertmgr();	/* Allocate user MMU table managers.*/
    810 	pmap_alloc_pv();	/* Allocate physical->virtual map.  */
    811 
    812 	/*
    813 	 * We are now done with pmap_bootstrap_alloc().  Round up
    814 	 * `virtual_avail' to the nearest page, and set the flag
    815 	 * to prevent use of pmap_bootstrap_alloc() hereafter.
    816 	 */
    817 	pmap_bootstrap_aalign(NBPG);
    818 	bootstrap_alloc_enabled = FALSE;
    819 
    820 	/*
    821 	 * Now that we are done with pmap_bootstrap_alloc(), we
    822 	 * must save the virtual and physical addresses of the
    823 	 * end of the linearly mapped range, which are stored in
    824 	 * virtual_contig_end and avail_start, respectively.
    825 	 * These variables will never change after this point.
    826 	 */
    827 	virtual_contig_end = virtual_avail;
    828 	avail_start = virtual_avail - KERNBASE;
    829 
    830 	/*
    831 	 * `avail_next' is a running pointer used by pmap_next_page() to
    832 	 * keep track of the next available physical page to be handed
    833 	 * to the VM system during its initialization, in which it
    834 	 * asks for physical pages, one at a time.
    835 	 */
    836 	avail_next = avail_start;
    837 
    838 	/*
    839 	 * Now allocate some virtual addresses, but not the physical pages
    840 	 * behind them.  Note that virtual_avail is already page-aligned.
    841 	 *
    842 	 * tmp_vpages[] is an array of two virtual pages used for temporary
    843 	 * kernel mappings in the pmap module to facilitate various physical
    844 	 * address-oritented operations.
    845 	 */
    846 	tmp_vpages[0] = virtual_avail;
    847 	virtual_avail += NBPG;
    848 	tmp_vpages[1] = virtual_avail;
    849 	virtual_avail += NBPG;
    850 
    851 	/** Initialize the PV system **/
    852 	pmap_init_pv();
    853 
    854 	/*
    855 	 * Fill in the kernel_pmap structure and kernel_crp.
    856 	 */
    857 	kernAphys = mmu_vtop(kernAbase);
    858 	kernel_pmap.pm_a_tmgr = NULL;
    859 	kernel_pmap.pm_a_phys = kernAphys;
    860 	kernel_pmap.pm_refcount = 1; /* always in use */
    861 
    862 	kernel_crp.rp_attr = MMU_LONG_DTE_LU | MMU_DT_LONG;
    863 	kernel_crp.rp_addr = kernAphys;
    864 
    865 	/*
    866 	 * Now pmap_enter_kernel() may be used safely and will be
    867 	 * the main interface used hereafter to modify the kernel's
    868 	 * virtual address space.  Note that since we are still running
    869 	 * under the PROM's address table, none of these table modifications
    870 	 * actually take effect until pmap_takeover_mmu() is called.
    871 	 *
    872 	 * Note: Our tables do NOT have the PROM linear mappings!
    873 	 * Only the mappings created here exist in our tables, so
    874 	 * remember to map anything we expect to use.
    875 	 */
    876 	va = (vm_offset_t) KERNBASE;
    877 	pa = 0;
    878 
    879 	/*
    880 	 * The first page of the kernel virtual address space is the msgbuf
    881 	 * page.  The page attributes (data, non-cached) are set here, while
    882 	 * the address is assigned to this global pointer in cpu_startup().
    883 	 * It is non-cached, mostly due to paranoia.
    884 	 */
    885 	pmap_enter_kernel(va, pa|PMAP_NC, VM_PROT_ALL);
    886 	va += NBPG; pa += NBPG;
    887 
    888 	/* Next page is used as the temporary stack. */
    889 	pmap_enter_kernel(va, pa, VM_PROT_ALL);
    890 	va += NBPG; pa += NBPG;
    891 
    892 	/*
    893 	 * Map all of the kernel's text segment as read-only and cacheable.
    894 	 * (Cacheable is implied by default).  Unfortunately, the last bytes
    895 	 * of kernel text and the first bytes of kernel data will often be
    896 	 * sharing the same page.  Therefore, the last page of kernel text
    897 	 * has to be mapped as read/write, to accomodate the data.
    898 	 */
    899 	eva = m68k_trunc_page((vm_offset_t)etext);
    900 	for (; va < eva; va += NBPG, pa += NBPG)
    901 		pmap_enter_kernel(va, pa, VM_PROT_READ|VM_PROT_EXECUTE);
    902 
    903 	/*
    904 	 * Map all of the kernel's data as read/write and cacheable.
    905 	 * This includes: data, BSS, symbols, and everything in the
    906 	 * contiguous memory used by pmap_bootstrap_alloc()
    907 	 */
    908 	for (; pa < avail_start; va += NBPG, pa += NBPG)
    909 		pmap_enter_kernel(va, pa, VM_PROT_READ|VM_PROT_WRITE);
    910 
    911 	/*
    912 	 * At this point we are almost ready to take over the MMU.  But first
    913 	 * we must save the PROM's address space in our map, as we call its
    914 	 * routines and make references to its data later in the kernel.
    915 	 */
    916 	pmap_bootstrap_copyprom();
    917 	pmap_takeover_mmu();
    918 	pmap_bootstrap_setprom();
    919 
    920 	/* Notify the VM system of our page size. */
    921 	PAGE_SIZE = NBPG;
    922 	vm_set_page_size();
    923 
    924 #if defined(MACHINE_NEW_NONCONTIG)
    925 	pmap_page_upload();
    926 #endif
    927 }
    928 
    929 
    930 /* pmap_alloc_usermmu			INTERNAL
    931  **
    932  * Called from pmap_bootstrap() to allocate MMU tables that will
    933  * eventually be used for user mappings.
    934  */
    935 void
    936 pmap_alloc_usermmu()
    937 {
    938 	/* XXX: Moved into caller. */
    939 }
    940 
    941 /* pmap_alloc_pv			INTERNAL
    942  **
    943  * Called from pmap_bootstrap() to allocate the physical
    944  * to virtual mapping list.  Each physical page of memory
    945  * in the system has a corresponding element in this list.
    946  */
    947 void
    948 pmap_alloc_pv()
    949 {
    950 	int	i;
    951 	unsigned int	total_mem;
    952 
    953 	/*
    954 	 * Allocate a pv_head structure for every page of physical
    955 	 * memory that will be managed by the system.  Since memory on
    956 	 * the 3/80 is non-contiguous, we cannot arrive at a total page
    957 	 * count by subtraction of the lowest available address from the
    958 	 * highest, but rather we have to step through each memory
    959 	 * bank and add the number of pages in each to the total.
    960 	 *
    961 	 * At this time we also initialize the offset of each bank's
    962 	 * starting pv_head within the pv_head list so that the physical
    963 	 * memory state routines (pmap_is_referenced(),
    964 	 * pmap_is_modified(), et al.) can quickly find coresponding
    965 	 * pv_heads in spite of the non-contiguity.
    966 	 */
    967 	total_mem = 0;
    968 	for (i = 0; i < SUN3X_NPHYS_RAM_SEGS; i++) {
    969 		avail_mem[i].pmem_pvbase = m68k_btop(total_mem);
    970 		total_mem += avail_mem[i].pmem_end -
    971 			avail_mem[i].pmem_start;
    972 		if (avail_mem[i].pmem_next == NULL)
    973 			break;
    974 	}
    975 #ifdef	PMAP_DEBUG
    976 	if (total_mem != total_phys_mem)
    977 		panic("pmap_alloc_pv did not arrive at correct page count");
    978 #endif
    979 
    980 	pvbase = (pv_t *) pmap_bootstrap_alloc(sizeof(pv_t) *
    981 		m68k_btop(total_phys_mem));
    982 }
    983 
    984 /* pmap_alloc_usertmgr			INTERNAL
    985  **
    986  * Called from pmap_bootstrap() to allocate the structures which
    987  * facilitate management of user MMU tables.  Each user MMU table
    988  * in the system has one such structure associated with it.
    989  */
    990 void
    991 pmap_alloc_usertmgr()
    992 {
    993 	/* Allocate user MMU table managers */
    994 	/* It would be a lot simpler to just make these BSS, but */
    995 	/* we may want to change their size at boot time... -j */
    996 	Atmgrbase = (a_tmgr_t *) pmap_bootstrap_alloc(sizeof(a_tmgr_t)
    997 		* NUM_A_TABLES);
    998 	Btmgrbase = (b_tmgr_t *) pmap_bootstrap_alloc(sizeof(b_tmgr_t)
    999 		* NUM_B_TABLES);
   1000 	Ctmgrbase = (c_tmgr_t *) pmap_bootstrap_alloc(sizeof(c_tmgr_t)
   1001 		* NUM_C_TABLES);
   1002 
   1003 	/*
   1004 	 * Allocate PV list elements for the physical to virtual
   1005 	 * mapping system.
   1006 	 */
   1007 	pvebase = (pv_elem_t *) pmap_bootstrap_alloc(
   1008 		sizeof(pv_elem_t) * (NUM_USER_PTES + NUM_KERN_PTES));
   1009 }
   1010 
   1011 /* pmap_bootstrap_copyprom()			INTERNAL
   1012  **
   1013  * Copy the PROM mappings into our own tables.  Note, we
   1014  * can use physical addresses until __bootstrap returns.
   1015  */
   1016 void
   1017 pmap_bootstrap_copyprom()
   1018 {
   1019 	struct sunromvec *romp;
   1020 	int *mon_ctbl;
   1021 	mmu_short_pte_t *kpte;
   1022 	int i, len;
   1023 
   1024 	romp = romVectorPtr;
   1025 
   1026 	/*
   1027 	 * Copy the mappings in SUN3X_MON_KDB_BASE...SUN3X_MONEND
   1028 	 * Note: mon_ctbl[0] maps SUN3X_MON_KDB_BASE
   1029 	 */
   1030 	mon_ctbl = *romp->monptaddr;
   1031 	i = m68k_btop(SUN3X_MON_KDB_BASE - KERNBASE);
   1032 	kpte = &kernCbase[i];
   1033 	len = m68k_btop(SUN3X_MONEND - SUN3X_MON_KDB_BASE);
   1034 
   1035 	for (i = 0; i < len; i++) {
   1036 		kpte[i].attr.raw = mon_ctbl[i];
   1037 	}
   1038 
   1039 	/*
   1040 	 * Copy the mappings at MON_DVMA_BASE (to the end).
   1041 	 * Note, in here, mon_ctbl[0] maps MON_DVMA_BASE.
   1042 	 * Actually, we only want the last page, which the
   1043 	 * PROM has set up for use by the "ie" driver.
   1044 	 * (The i82686 needs its SCP there.)
   1045 	 * If we copy all the mappings, pmap_enter_kernel
   1046 	 * may complain about finding valid PTEs that are
   1047 	 * not recorded in our PV lists...
   1048 	 */
   1049 	mon_ctbl = *romp->shadowpteaddr;
   1050 	i = m68k_btop(SUN3X_MON_DVMA_BASE - KERNBASE);
   1051 	kpte = &kernCbase[i];
   1052 	len = m68k_btop(SUN3X_MON_DVMA_SIZE);
   1053 	for (i = (len-1); i < len; i++) {
   1054 		kpte[i].attr.raw = mon_ctbl[i];
   1055 	}
   1056 }
   1057 
   1058 /* pmap_takeover_mmu			INTERNAL
   1059  **
   1060  * Called from pmap_bootstrap() after it has copied enough of the
   1061  * PROM mappings into the kernel map so that we can use our own
   1062  * MMU table.
   1063  */
   1064 void
   1065 pmap_takeover_mmu()
   1066 {
   1067 
   1068 	loadcrp(&kernel_crp);
   1069 }
   1070 
   1071 /* pmap_bootstrap_setprom()			INTERNAL
   1072  **
   1073  * Set the PROM mappings so it can see kernel space.
   1074  * Note that physical addresses are used here, which
   1075  * we can get away with because this runs with the
   1076  * low 1GB set for transparent translation.
   1077  */
   1078 void
   1079 pmap_bootstrap_setprom()
   1080 {
   1081 	mmu_long_dte_t *mon_dte;
   1082 	extern struct mmu_rootptr mon_crp;
   1083 	int i;
   1084 
   1085 	mon_dte = (mmu_long_dte_t *) mon_crp.rp_addr;
   1086 	for (i = MMU_TIA(KERNBASE); i < MMU_TIA(KERN_END); i++) {
   1087 		mon_dte[i].attr.raw = kernAbase[i].attr.raw;
   1088 		mon_dte[i].addr.raw = kernAbase[i].addr.raw;
   1089 	}
   1090 }
   1091 
   1092 
   1093 /* pmap_init			INTERFACE
   1094  **
   1095  * Called at the end of vm_init() to set up the pmap system to go
   1096  * into full time operation.  All initialization of kernel_pmap
   1097  * should be already done by now, so this should just do things
   1098  * needed for user-level pmaps to work.
   1099  */
   1100 void
   1101 pmap_init()
   1102 {
   1103 	/** Initialize the manager pools **/
   1104 	TAILQ_INIT(&a_pool);
   1105 	TAILQ_INIT(&b_pool);
   1106 	TAILQ_INIT(&c_pool);
   1107 
   1108 	/**************************************************************
   1109 	 * Initialize all tmgr structures and MMU tables they manage. *
   1110 	 **************************************************************/
   1111 	/** Initialize A tables **/
   1112 	pmap_init_a_tables();
   1113 	/** Initialize B tables **/
   1114 	pmap_init_b_tables();
   1115 	/** Initialize C tables **/
   1116 	pmap_init_c_tables();
   1117 }
   1118 
   1119 /* pmap_init_a_tables()			INTERNAL
   1120  **
   1121  * Initializes all A managers, their MMU A tables, and inserts
   1122  * them into the A manager pool for use by the system.
   1123  */
   1124 void
   1125 pmap_init_a_tables()
   1126 {
   1127 	int i;
   1128 	a_tmgr_t *a_tbl;
   1129 
   1130 	for (i=0; i < NUM_A_TABLES; i++) {
   1131 		/* Select the next available A manager from the pool */
   1132 		a_tbl = &Atmgrbase[i];
   1133 
   1134 		/*
   1135 		 * Clear its parent entry.  Set its wired and valid
   1136 		 * entry count to zero.
   1137 		 */
   1138 		a_tbl->at_parent = NULL;
   1139 		a_tbl->at_wcnt = a_tbl->at_ecnt = 0;
   1140 
   1141 		/* Assign it the next available MMU A table from the pool */
   1142 		a_tbl->at_dtbl = &mmuAbase[i * MMU_A_TBL_SIZE];
   1143 
   1144 		/*
   1145 		 * Initialize the MMU A table with the table in the `proc0',
   1146 		 * or kernel, mapping.  This ensures that every process has
   1147 		 * the kernel mapped in the top part of its address space.
   1148 		 */
   1149 		bcopy(kernAbase, a_tbl->at_dtbl, MMU_A_TBL_SIZE *
   1150 			sizeof(mmu_long_dte_t));
   1151 
   1152 		/*
   1153 		 * Finally, insert the manager into the A pool,
   1154 		 * making it ready to be used by the system.
   1155 		 */
   1156 		TAILQ_INSERT_TAIL(&a_pool, a_tbl, at_link);
   1157     }
   1158 }
   1159 
   1160 /* pmap_init_b_tables()			INTERNAL
   1161  **
   1162  * Initializes all B table managers, their MMU B tables, and
   1163  * inserts them into the B manager pool for use by the system.
   1164  */
   1165 void
   1166 pmap_init_b_tables()
   1167 {
   1168 	int i,j;
   1169 	b_tmgr_t *b_tbl;
   1170 
   1171 	for (i=0; i < NUM_B_TABLES; i++) {
   1172 		/* Select the next available B manager from the pool */
   1173 		b_tbl = &Btmgrbase[i];
   1174 
   1175 		b_tbl->bt_parent = NULL;	/* clear its parent,  */
   1176 		b_tbl->bt_pidx = 0;		/* parent index,      */
   1177 		b_tbl->bt_wcnt = 0;		/* wired entry count, */
   1178 		b_tbl->bt_ecnt = 0;		/* valid entry count. */
   1179 
   1180 		/* Assign it the next available MMU B table from the pool */
   1181 		b_tbl->bt_dtbl = &mmuBbase[i * MMU_B_TBL_SIZE];
   1182 
   1183 		/* Invalidate every descriptor in the table */
   1184 		for (j=0; j < MMU_B_TBL_SIZE; j++)
   1185 			b_tbl->bt_dtbl[j].attr.raw = MMU_DT_INVALID;
   1186 
   1187 		/* Insert the manager into the B pool */
   1188 		TAILQ_INSERT_TAIL(&b_pool, b_tbl, bt_link);
   1189 	}
   1190 }
   1191 
   1192 /* pmap_init_c_tables()			INTERNAL
   1193  **
   1194  * Initializes all C table managers, their MMU C tables, and
   1195  * inserts them into the C manager pool for use by the system.
   1196  */
   1197 void
   1198 pmap_init_c_tables()
   1199 {
   1200 	int i,j;
   1201 	c_tmgr_t *c_tbl;
   1202 
   1203 	for (i=0; i < NUM_C_TABLES; i++) {
   1204 		/* Select the next available C manager from the pool */
   1205 		c_tbl = &Ctmgrbase[i];
   1206 
   1207 		c_tbl->ct_parent = NULL;	/* clear its parent,  */
   1208 		c_tbl->ct_pidx = 0;		/* parent index,      */
   1209 		c_tbl->ct_wcnt = 0;		/* wired entry count, */
   1210 		c_tbl->ct_ecnt = 0;		/* valid entry count, */
   1211 		c_tbl->ct_pmap = NULL;		/* parent pmap,       */
   1212 		c_tbl->ct_va = 0;		/* base of managed range */
   1213 
   1214 		/* Assign it the next available MMU C table from the pool */
   1215 		c_tbl->ct_dtbl = &mmuCbase[i * MMU_C_TBL_SIZE];
   1216 
   1217 		for (j=0; j < MMU_C_TBL_SIZE; j++)
   1218 			c_tbl->ct_dtbl[j].attr.raw = MMU_DT_INVALID;
   1219 
   1220 		TAILQ_INSERT_TAIL(&c_pool, c_tbl, ct_link);
   1221 	}
   1222 }
   1223 
   1224 /* pmap_init_pv()			INTERNAL
   1225  **
   1226  * Initializes the Physical to Virtual mapping system.
   1227  */
   1228 void
   1229 pmap_init_pv()
   1230 {
   1231 	int	i;
   1232 
   1233 	/* Initialize every PV head. */
   1234 	for (i = 0; i < m68k_btop(total_phys_mem); i++) {
   1235 		pvbase[i].pv_idx = PVE_EOL;	/* Indicate no mappings */
   1236 		pvbase[i].pv_flags = 0;		/* Zero out page flags  */
   1237 	}
   1238 
   1239 	pv_initialized = TRUE;
   1240 }
   1241 
   1242 /* get_a_table			INTERNAL
   1243  **
   1244  * Retrieve and return a level A table for use in a user map.
   1245  */
   1246 a_tmgr_t *
   1247 get_a_table()
   1248 {
   1249 	a_tmgr_t *tbl;
   1250 	pmap_t pmap;
   1251 
   1252 	/* Get the top A table in the pool */
   1253 	tbl = a_pool.tqh_first;
   1254 	if (tbl == NULL) {
   1255 		/*
   1256 		 * XXX - Instead of panicing here and in other get_x_table
   1257 		 * functions, we do have the option of sleeping on the head of
   1258 		 * the table pool.  Any function which updates the table pool
   1259 		 * would then issue a wakeup() on the head, thus waking up any
   1260 		 * processes waiting for a table.
   1261 		 *
   1262 		 * Actually, the place to sleep would be when some process
   1263 		 * asks for a "wired" mapping that would run us short of
   1264 		 * mapping resources.  This design DEPENDS on always having
   1265 		 * some mapping resources in the pool for stealing, so we
   1266 		 * must make sure we NEVER let the pool become empty. -gwr
   1267 		 */
   1268 		panic("get_a_table: out of A tables.");
   1269 	}
   1270 
   1271 	TAILQ_REMOVE(&a_pool, tbl, at_link);
   1272 	/*
   1273 	 * If the table has a non-null parent pointer then it is in use.
   1274 	 * Forcibly abduct it from its parent and clear its entries.
   1275 	 * No re-entrancy worries here.  This table would not be in the
   1276 	 * table pool unless it was available for use.
   1277 	 *
   1278 	 * Note that the second argument to free_a_table() is FALSE.  This
   1279 	 * indicates that the table should not be relinked into the A table
   1280 	 * pool.  That is a job for the function that called us.
   1281 	 */
   1282 	if (tbl->at_parent) {
   1283 		pmap = tbl->at_parent;
   1284 		free_a_table(tbl, FALSE);
   1285 		pmap->pm_a_tmgr = NULL;
   1286 		pmap->pm_a_phys = kernAphys;
   1287 	}
   1288 #ifdef  NON_REENTRANT
   1289 	/*
   1290 	 * If the table isn't to be wired down, re-insert it at the
   1291 	 * end of the pool.
   1292 	 */
   1293 	if (!wired)
   1294 		/*
   1295 		 * Quandary - XXX
   1296 		 * Would it be better to let the calling function insert this
   1297 		 * table into the queue?  By inserting it here, we are allowing
   1298 		 * it to be stolen immediately.  The calling function is
   1299 		 * probably not expecting to use a table that it is not
   1300 		 * assured full control of.
   1301 		 * Answer - In the intrest of re-entrancy, it is best to let
   1302 		 * the calling function determine when a table is available
   1303 		 * for use.  Therefore this code block is not used.
   1304 		 */
   1305 		TAILQ_INSERT_TAIL(&a_pool, tbl, at_link);
   1306 #endif	/* NON_REENTRANT */
   1307 	return tbl;
   1308 }
   1309 
   1310 /* get_b_table			INTERNAL
   1311  **
   1312  * Return a level B table for use.
   1313  */
   1314 b_tmgr_t *
   1315 get_b_table()
   1316 {
   1317 	b_tmgr_t *tbl;
   1318 
   1319 	/* See 'get_a_table' for comments. */
   1320 	tbl = b_pool.tqh_first;
   1321 	if (tbl == NULL)
   1322 		panic("get_b_table: out of B tables.");
   1323 	TAILQ_REMOVE(&b_pool, tbl, bt_link);
   1324 	if (tbl->bt_parent) {
   1325 		tbl->bt_parent->at_dtbl[tbl->bt_pidx].attr.raw = MMU_DT_INVALID;
   1326 		tbl->bt_parent->at_ecnt--;
   1327 		free_b_table(tbl, FALSE);
   1328 	}
   1329 #ifdef	NON_REENTRANT
   1330 	if (!wired)
   1331 		/* XXX see quandary in get_b_table */
   1332 		/* XXX start lock */
   1333 		TAILQ_INSERT_TAIL(&b_pool, tbl, bt_link);
   1334 		/* XXX end lock */
   1335 #endif	/* NON_REENTRANT */
   1336 	return tbl;
   1337 }
   1338 
   1339 /* get_c_table			INTERNAL
   1340  **
   1341  * Return a level C table for use.
   1342  */
   1343 c_tmgr_t *
   1344 get_c_table()
   1345 {
   1346 	c_tmgr_t *tbl;
   1347 
   1348 	/* See 'get_a_table' for comments */
   1349 	tbl = c_pool.tqh_first;
   1350 	if (tbl == NULL)
   1351 		panic("get_c_table: out of C tables.");
   1352 	TAILQ_REMOVE(&c_pool, tbl, ct_link);
   1353 	if (tbl->ct_parent) {
   1354 		tbl->ct_parent->bt_dtbl[tbl->ct_pidx].attr.raw = MMU_DT_INVALID;
   1355 		tbl->ct_parent->bt_ecnt--;
   1356 		free_c_table(tbl, FALSE);
   1357 	}
   1358 #ifdef	NON_REENTRANT
   1359 	if (!wired)
   1360 		/* XXX See quandary in get_a_table */
   1361 		/* XXX start lock */
   1362 		TAILQ_INSERT_TAIL(&c_pool, tbl, c_link);
   1363 		/* XXX end lock */
   1364 #endif	/* NON_REENTRANT */
   1365 
   1366 	return tbl;
   1367 }
   1368 
   1369 /*
   1370  * The following 'free_table' and 'steal_table' functions are called to
   1371  * detach tables from their current obligations (parents and children) and
   1372  * prepare them for reuse in another mapping.
   1373  *
   1374  * Free_table is used when the calling function will handle the fate
   1375  * of the parent table, such as returning it to the free pool when it has
   1376  * no valid entries.  Functions that do not want to handle this should
   1377  * call steal_table, in which the parent table's descriptors and entry
   1378  * count are automatically modified when this table is removed.
   1379  */
   1380 
   1381 /* free_a_table			INTERNAL
   1382  **
   1383  * Unmaps the given A table and all child tables from their current
   1384  * mappings.  Returns the number of pages that were invalidated.
   1385  * If 'relink' is true, the function will return the table to the head
   1386  * of the available table pool.
   1387  *
   1388  * Cache note: The MC68851 will automatically flush all
   1389  * descriptors derived from a given A table from its
   1390  * Automatic Translation Cache (ATC) if we issue a
   1391  * 'PFLUSHR' instruction with the base address of the
   1392  * table.  This function should do, and does so.
   1393  * Note note: We are using an MC68030 - there is no
   1394  * PFLUSHR.
   1395  */
   1396 int
   1397 free_a_table(a_tbl, relink)
   1398 	a_tmgr_t *a_tbl;
   1399 	boolean_t relink;
   1400 {
   1401 	int i, removed_cnt;
   1402 	mmu_long_dte_t	*dte;
   1403 	mmu_short_dte_t *dtbl;
   1404 	b_tmgr_t	*tmgr;
   1405 
   1406 	/*
   1407 	 * Flush the ATC cache of all cached descriptors derived
   1408 	 * from this table.
   1409 	 * Sun3x does not use 68851's cached table feature
   1410 	 * flush_atc_crp(mmu_vtop(a_tbl->dte));
   1411 	 */
   1412 
   1413 	/*
   1414 	 * Remove any pending cache flushes that were designated
   1415 	 * for the pmap this A table belongs to.
   1416 	 * a_tbl->parent->atc_flushq[0] = 0;
   1417 	 * Not implemented in sun3x.
   1418 	 */
   1419 
   1420 	/*
   1421 	 * All A tables in the system should retain a map for the
   1422 	 * kernel. If the table contains any valid descriptors
   1423 	 * (other than those for the kernel area), invalidate them all,
   1424 	 * stopping short of the kernel's entries.
   1425 	 */
   1426 	removed_cnt = 0;
   1427 	if (a_tbl->at_ecnt) {
   1428 		dte = a_tbl->at_dtbl;
   1429 		for (i=0; i < MMU_TIA(KERNBASE); i++) {
   1430 			/*
   1431 			 * If a table entry points to a valid B table, free
   1432 			 * it and its children.
   1433 			 */
   1434 			if (MMU_VALID_DT(dte[i])) {
   1435 				/*
   1436 				 * The following block does several things,
   1437 				 * from innermost expression to the
   1438 				 * outermost:
   1439 				 * 1) It extracts the base (cc 1996)
   1440 				 *    address of the B table pointed
   1441 				 *    to in the A table entry dte[i].
   1442 				 * 2) It converts this base address into
   1443 				 *    the virtual address it can be
   1444 				 *    accessed with. (all MMU tables point
   1445 				 *    to physical addresses.)
   1446 				 * 3) It finds the corresponding manager
   1447 				 *    structure which manages this MMU table.
   1448 				 * 4) It frees the manager structure.
   1449 				 *    (This frees the MMU table and all
   1450 				 *    child tables. See 'free_b_table' for
   1451 				 *    details.)
   1452 				 */
   1453 				dtbl = mmu_ptov(dte[i].addr.raw);
   1454 				tmgr = mmuB2tmgr(dtbl);
   1455 				removed_cnt += free_b_table(tmgr, TRUE);
   1456 				dte[i].attr.raw = MMU_DT_INVALID;
   1457 			}
   1458 		}
   1459 		a_tbl->at_ecnt = 0;
   1460 	}
   1461 	if (relink) {
   1462 		a_tbl->at_parent = NULL;
   1463 		TAILQ_REMOVE(&a_pool, a_tbl, at_link);
   1464 		TAILQ_INSERT_HEAD(&a_pool, a_tbl, at_link);
   1465 	}
   1466 	return removed_cnt;
   1467 }
   1468 
   1469 /* free_b_table			INTERNAL
   1470  **
   1471  * Unmaps the given B table and all its children from their current
   1472  * mappings.  Returns the number of pages that were invalidated.
   1473  * (For comments, see 'free_a_table()').
   1474  */
   1475 int
   1476 free_b_table(b_tbl, relink)
   1477 	b_tmgr_t *b_tbl;
   1478 	boolean_t relink;
   1479 {
   1480 	int i, removed_cnt;
   1481 	mmu_short_dte_t *dte;
   1482 	mmu_short_pte_t	*dtbl;
   1483 	c_tmgr_t	*tmgr;
   1484 
   1485 	removed_cnt = 0;
   1486 	if (b_tbl->bt_ecnt) {
   1487 		dte = b_tbl->bt_dtbl;
   1488 		for (i=0; i < MMU_B_TBL_SIZE; i++) {
   1489 			if (MMU_VALID_DT(dte[i])) {
   1490 				dtbl = mmu_ptov(MMU_DTE_PA(dte[i]));
   1491 				tmgr = mmuC2tmgr(dtbl);
   1492 				removed_cnt += free_c_table(tmgr, TRUE);
   1493 				dte[i].attr.raw = MMU_DT_INVALID;
   1494 			}
   1495 		}
   1496 		b_tbl->bt_ecnt = 0;
   1497 	}
   1498 
   1499 	if (relink) {
   1500 		b_tbl->bt_parent = NULL;
   1501 		TAILQ_REMOVE(&b_pool, b_tbl, bt_link);
   1502 		TAILQ_INSERT_HEAD(&b_pool, b_tbl, bt_link);
   1503 	}
   1504 	return removed_cnt;
   1505 }
   1506 
   1507 /* free_c_table			INTERNAL
   1508  **
   1509  * Unmaps the given C table from use and returns it to the pool for
   1510  * re-use.  Returns the number of pages that were invalidated.
   1511  *
   1512  * This function preserves any physical page modification information
   1513  * contained in the page descriptors within the C table by calling
   1514  * 'pmap_remove_pte().'
   1515  */
   1516 int
   1517 free_c_table(c_tbl, relink)
   1518 	c_tmgr_t *c_tbl;
   1519 	boolean_t relink;
   1520 {
   1521 	int i, removed_cnt;
   1522 
   1523 	removed_cnt = 0;
   1524 	if (c_tbl->ct_ecnt) {
   1525 		for (i=0; i < MMU_C_TBL_SIZE; i++) {
   1526 			if (MMU_VALID_DT(c_tbl->ct_dtbl[i])) {
   1527 				pmap_remove_pte(&c_tbl->ct_dtbl[i]);
   1528 				removed_cnt++;
   1529 			}
   1530 		}
   1531 		c_tbl->ct_ecnt = 0;
   1532 	}
   1533 
   1534 	if (relink) {
   1535 		c_tbl->ct_parent = NULL;
   1536 		TAILQ_REMOVE(&c_pool, c_tbl, ct_link);
   1537 		TAILQ_INSERT_HEAD(&c_pool, c_tbl, ct_link);
   1538 	}
   1539 	return removed_cnt;
   1540 }
   1541 
   1542 #if 0
   1543 /* free_c_table_novalid			INTERNAL
   1544  **
   1545  * Frees the given C table manager without checking to see whether
   1546  * or not it contains any valid page descriptors as it is assumed
   1547  * that it does not.
   1548  */
   1549 void
   1550 free_c_table_novalid(c_tbl)
   1551 	c_tmgr_t *c_tbl;
   1552 {
   1553 	TAILQ_REMOVE(&c_pool, c_tbl, ct_link);
   1554 	TAILQ_INSERT_HEAD(&c_pool, c_tbl, ct_link);
   1555 	c_tbl->ct_parent->bt_dtbl[c_tbl->ct_pidx].attr.raw = MMU_DT_INVALID;
   1556 	c_tbl->ct_parent->bt_ecnt--;
   1557 	/*
   1558 	 * XXX - Should call equiv. of 'free_b_table_novalid' here if
   1559 	 * we just removed the last entry of the parent B table.
   1560 	 * But I want to insure that this will not endanger pmap_enter()
   1561 	 * with sudden removal of tables it is working with.
   1562 	 *
   1563 	 * We should probably add another field to each table, indicating
   1564 	 * whether or not it is 'locked', ie. in the process of being
   1565 	 * modified.
   1566 	 */
   1567 	c_tbl->ct_parent = NULL;
   1568 }
   1569 #endif
   1570 
   1571 /* pmap_remove_pte			INTERNAL
   1572  **
   1573  * Unmap the given pte and preserve any page modification
   1574  * information by transfering it to the pv head of the
   1575  * physical page it maps to.  This function does not update
   1576  * any reference counts because it is assumed that the calling
   1577  * function will do so.
   1578  */
   1579 void
   1580 pmap_remove_pte(pte)
   1581 	mmu_short_pte_t *pte;
   1582 {
   1583 	u_short     pv_idx, targ_idx;
   1584 	int         s;
   1585 	vm_offset_t pa;
   1586 	pv_t       *pv;
   1587 
   1588 	pa = MMU_PTE_PA(*pte);
   1589 	if (is_managed(pa)) {
   1590 		pv = pa2pv(pa);
   1591 		targ_idx = pteidx(pte);	/* Index of PTE being removed    */
   1592 
   1593 		/*
   1594 		 * If the PTE being removed is the first (or only) PTE in
   1595 		 * the list of PTEs currently mapped to this page, remove the
   1596 		 * PTE by changing the index found on the PV head.  Otherwise
   1597 		 * a linear search through the list will have to be executed
   1598 		 * in order to find the PVE which points to the PTE being
   1599 		 * removed, so that it may be modified to point to its new
   1600 		 * neighbor.
   1601 		 */
   1602 		s = splimp();
   1603 		pv_idx = pv->pv_idx;	/* Index of first PTE in PV list */
   1604 		if (pv_idx == targ_idx) {
   1605 			pv->pv_idx = pvebase[targ_idx].pve_next;
   1606 		} else {
   1607 			/*
   1608 			 * Find the PV element pointing to the target
   1609 			 * element.  Note: may have pv_idx==PVE_EOL
   1610 			 */
   1611 			for (;;) {
   1612 				if (pv_idx == PVE_EOL) {
   1613 #ifdef	PMAP_DEBUG
   1614 					printf("pmap_remove_pte: PVE_EOL\n");
   1615 					Debugger();
   1616 #endif
   1617 					goto pv_not_found;
   1618 				}
   1619 				if (pvebase[pv_idx].pve_next == targ_idx)
   1620 					break;
   1621 				pv_idx = pvebase[pv_idx].pve_next;
   1622 			}
   1623 			/*
   1624 			 * At this point, pv_idx is the index of the PV
   1625 			 * element just before the target element in the list.
   1626 			 * Unlink the target.
   1627 			 */
   1628 			pvebase[pv_idx].pve_next = pvebase[targ_idx].pve_next;
   1629 		pv_not_found:
   1630 		}
   1631 		/*
   1632 		 * Save the mod/ref bits of the pte by simply
   1633 		 * ORing the entire pte onto the pv_flags member
   1634 		 * of the pv structure.
   1635 		 * There is no need to use a separate bit pattern
   1636 		 * for usage information on the pv head than that
   1637 		 * which is used on the MMU ptes.
   1638 		 */
   1639 		pv->pv_flags |= (u_short) pte->attr.raw;
   1640 		splx(s);
   1641 	}
   1642 
   1643 	pte->attr.raw = MMU_DT_INVALID;
   1644 }
   1645 
   1646 /* pmap_stroll			INTERNAL
   1647  **
   1648  * Retrieve the addresses of all table managers involved in the mapping of
   1649  * the given virtual address.  If the table walk completed sucessfully,
   1650  * return TRUE.  If it was only partially sucessful, return FALSE.
   1651  * The table walk performed by this function is important to many other
   1652  * functions in this module.
   1653  *
   1654  * Note: This function ought to be easier to read.
   1655  */
   1656 boolean_t
   1657 pmap_stroll(pmap, va, a_tbl, b_tbl, c_tbl, pte, a_idx, b_idx, pte_idx)
   1658 	pmap_t pmap;
   1659 	vm_offset_t va;
   1660 	a_tmgr_t **a_tbl;
   1661 	b_tmgr_t **b_tbl;
   1662 	c_tmgr_t **c_tbl;
   1663 	mmu_short_pte_t **pte;
   1664 	int *a_idx, *b_idx, *pte_idx;
   1665 {
   1666 	mmu_long_dte_t *a_dte;   /* A: long descriptor table          */
   1667 	mmu_short_dte_t *b_dte;  /* B: short descriptor table         */
   1668 
   1669 	if (pmap == pmap_kernel())
   1670 		return FALSE;
   1671 
   1672 	/* Does the given pmap have its own A table? */
   1673 	*a_tbl = pmap->pm_a_tmgr;
   1674 	if (*a_tbl == NULL)
   1675 		return FALSE; /* No.  Return unknown. */
   1676 	/* Does the A table have a valid B table
   1677 	 * under the corresponding table entry?
   1678 	 */
   1679 	*a_idx = MMU_TIA(va);
   1680 	a_dte = &((*a_tbl)->at_dtbl[*a_idx]);
   1681 	if (!MMU_VALID_DT(*a_dte))
   1682 		return FALSE; /* No. Return unknown. */
   1683 	/* Yes. Extract B table from the A table. */
   1684 	*b_tbl = mmuB2tmgr(mmu_ptov(a_dte->addr.raw));
   1685 	/* Does the B table have a valid C table
   1686 	 * under the corresponding table entry?
   1687 	 */
   1688 	*b_idx = MMU_TIB(va);
   1689 	b_dte = &((*b_tbl)->bt_dtbl[*b_idx]);
   1690 	if (!MMU_VALID_DT(*b_dte))
   1691 		return FALSE; /* No. Return unknown. */
   1692 	/* Yes. Extract C table from the B table. */
   1693 	*c_tbl = mmuC2tmgr(mmu_ptov(MMU_DTE_PA(*b_dte)));
   1694 	*pte_idx = MMU_TIC(va);
   1695 	*pte = &((*c_tbl)->ct_dtbl[*pte_idx]);
   1696 
   1697 	return	TRUE;
   1698 }
   1699 
   1700 /* pmap_enter			INTERFACE
   1701  **
   1702  * Called by the kernel to map a virtual address
   1703  * to a physical address in the given process map.
   1704  *
   1705  * Note: this function should apply an exclusive lock
   1706  * on the pmap system for its duration.  (it certainly
   1707  * would save my hair!!)
   1708  * This function ought to be easier to read.
   1709  */
   1710 void
   1711 pmap_enter(pmap, va, pa, prot, wired)
   1712 	pmap_t	pmap;
   1713 	vm_offset_t va;
   1714 	vm_offset_t pa;
   1715 	vm_prot_t prot;
   1716 	boolean_t wired;
   1717 {
   1718 	boolean_t insert, managed; /* Marks the need for PV insertion.*/
   1719 	u_short nidx;            /* PV list index                     */
   1720 	int s;                   /* Used for splimp()/splx()          */
   1721 	int flags;               /* Mapping flags. eg. Cache inhibit  */
   1722 	u_int a_idx, b_idx, pte_idx; /* table indices                 */
   1723 	a_tmgr_t *a_tbl;         /* A: long descriptor table manager  */
   1724 	b_tmgr_t *b_tbl;         /* B: short descriptor table manager */
   1725 	c_tmgr_t *c_tbl;         /* C: short page table manager       */
   1726 	mmu_long_dte_t *a_dte;   /* A: long descriptor table          */
   1727 	mmu_short_dte_t *b_dte;  /* B: short descriptor table         */
   1728 	mmu_short_pte_t *c_pte;  /* C: short page descriptor table    */
   1729 	pv_t      *pv;           /* pv list head                      */
   1730 	enum {NONE, NEWA, NEWB, NEWC} llevel; /* used at end   */
   1731 
   1732 	if (pmap == NULL)
   1733 		return;
   1734 	if (pmap == pmap_kernel()) {
   1735 		pmap_enter_kernel(va, pa, prot);
   1736 		return;
   1737 	}
   1738 
   1739 	flags  = (pa & ~MMU_PAGE_MASK);
   1740 	pa    &= MMU_PAGE_MASK;
   1741 
   1742 	/*
   1743 	 * Determine if the physical address being mapped is on-board RAM.
   1744 	 * Any other area of the address space is likely to belong to a
   1745 	 * device and hence it would be disasterous to cache its contents.
   1746 	 */
   1747 	if ((managed = is_managed(pa)) == FALSE)
   1748 		flags |= PMAP_NC;
   1749 
   1750 	/*
   1751 	 * For user mappings we walk along the MMU tables of the given
   1752 	 * pmap, reaching a PTE which describes the virtual page being
   1753 	 * mapped or changed.  If any level of the walk ends in an invalid
   1754 	 * entry, a table must be allocated and the entry must be updated
   1755 	 * to point to it.
   1756 	 * There is a bit of confusion as to whether this code must be
   1757 	 * re-entrant.  For now we will assume it is.  To support
   1758 	 * re-entrancy we must unlink tables from the table pool before
   1759 	 * we assume we may use them.  Tables are re-linked into the pool
   1760 	 * when we are finished with them at the end of the function.
   1761 	 * But I don't feel like doing that until we have proof that this
   1762 	 * needs to be re-entrant.
   1763 	 * 'llevel' records which tables need to be relinked.
   1764 	 */
   1765 	llevel = NONE;
   1766 
   1767 	/*
   1768 	 * Step 1 - Retrieve the A table from the pmap.  If it has no
   1769 	 * A table, allocate a new one from the available pool.
   1770 	 */
   1771 
   1772 	a_tbl = pmap->pm_a_tmgr;
   1773 	if (a_tbl == NULL) {
   1774 		/*
   1775 		 * This pmap does not currently have an A table.  Allocate
   1776 		 * a new one.
   1777 		 */
   1778 		a_tbl = get_a_table();
   1779 		a_tbl->at_parent = pmap;
   1780 
   1781 		/*
   1782 		 * Assign this new A table to the pmap, and calculate its
   1783 		 * physical address so that loadcrp() can be used to make
   1784 		 * the table active.
   1785 		 */
   1786 		pmap->pm_a_tmgr = a_tbl;
   1787 		pmap->pm_a_phys = mmu_vtop(a_tbl->at_dtbl);
   1788 
   1789 		/*
   1790 		 * If the process receiving a new A table is the current
   1791 		 * process, we are responsible for setting the MMU so that
   1792 		 * it becomes the current address space.  This only adds
   1793 		 * new mappings, so no need to flush anything.
   1794 		 */
   1795 		if (pmap == current_pmap()) {
   1796 			kernel_crp.rp_addr = pmap->pm_a_phys;
   1797 			loadcrp(&kernel_crp);
   1798 		}
   1799 
   1800 		if (!wired)
   1801 			llevel = NEWA;
   1802 	} else {
   1803 		/*
   1804 		 * Use the A table already allocated for this pmap.
   1805 		 * Unlink it from the A table pool if necessary.
   1806 		 */
   1807 		if (wired && !a_tbl->at_wcnt)
   1808 			TAILQ_REMOVE(&a_pool, a_tbl, at_link);
   1809 	}
   1810 
   1811 	/*
   1812 	 * Step 2 - Walk into the B table.  If there is no valid B table,
   1813 	 * allocate one.
   1814 	 */
   1815 
   1816 	a_idx = MMU_TIA(va);            /* Calculate the TIA of the VA. */
   1817 	a_dte = &a_tbl->at_dtbl[a_idx]; /* Retrieve descriptor from table */
   1818 	if (MMU_VALID_DT(*a_dte)) {     /* Is the descriptor valid? */
   1819 		/* The descriptor is valid.  Use the B table it points to. */
   1820 		/*************************************
   1821 		 *               a_idx               *
   1822 		 *                 v                 *
   1823 		 * a_tbl -> +-+-+-+-+-+-+-+-+-+-+-+- *
   1824 		 *          | | | | | | | | | | | |  *
   1825 		 *          +-+-+-+-+-+-+-+-+-+-+-+- *
   1826 		 *                 |                 *
   1827 		 *                 \- b_tbl -> +-+-  *
   1828 		 *                             | |   *
   1829 		 *                             +-+-  *
   1830 		 *************************************/
   1831 		b_dte = mmu_ptov(a_dte->addr.raw);
   1832 		b_tbl = mmuB2tmgr(b_dte);
   1833 
   1834 		/*
   1835 		 * If the requested mapping must be wired, but this table
   1836 		 * being used to map it is not, the table must be removed
   1837 		 * from the available pool and its wired entry count
   1838 		 * incremented.
   1839 		 */
   1840 		if (wired && !b_tbl->bt_wcnt) {
   1841 			TAILQ_REMOVE(&b_pool, b_tbl, bt_link);
   1842 			a_tbl->at_wcnt++;
   1843 		}
   1844 	} else {
   1845 		/* The descriptor is invalid.  Allocate a new B table. */
   1846 		b_tbl = get_b_table();
   1847 
   1848 		/* Point the parent A table descriptor to this new B table. */
   1849 		a_dte->addr.raw = mmu_vtop(b_tbl->bt_dtbl);
   1850 		a_dte->attr.raw = MMU_LONG_DTE_LU | MMU_DT_SHORT;
   1851 		a_tbl->at_ecnt++; /* Update parent's valid entry count */
   1852 
   1853 		/* Create the necessary back references to the parent table */
   1854 		b_tbl->bt_parent = a_tbl;
   1855 		b_tbl->bt_pidx = a_idx;
   1856 
   1857 		/*
   1858 		 * If this table is to be wired, make sure the parent A table
   1859 		 * wired count is updated to reflect that it has another wired
   1860 		 * entry.
   1861 		 */
   1862 		if (wired)
   1863 			a_tbl->at_wcnt++;
   1864 		else if (llevel == NONE)
   1865 			llevel = NEWB;
   1866 	}
   1867 
   1868 	/*
   1869 	 * Step 3 - Walk into the C table, if there is no valid C table,
   1870 	 * allocate one.
   1871 	 */
   1872 
   1873 	b_idx = MMU_TIB(va);            /* Calculate the TIB of the VA */
   1874 	b_dte = &b_tbl->bt_dtbl[b_idx]; /* Retrieve descriptor from table */
   1875 	if (MMU_VALID_DT(*b_dte)) {     /* Is the descriptor valid? */
   1876 		/* The descriptor is valid.  Use the C table it points to. */
   1877 		/**************************************
   1878 		 *               c_idx                *
   1879 		 * |                v                 *
   1880 		 * \- b_tbl -> +-+-+-+-+-+-+-+-+-+-+- *
   1881 		 *             | | | | | | | | | | |  *
   1882 		 *             +-+-+-+-+-+-+-+-+-+-+- *
   1883 		 *                  |                 *
   1884 		 *                  \- c_tbl -> +-+-- *
   1885 		 *                              | | | *
   1886 		 *                              +-+-- *
   1887 		 **************************************/
   1888 		c_pte = mmu_ptov(MMU_PTE_PA(*b_dte));
   1889 		c_tbl = mmuC2tmgr(c_pte);
   1890 
   1891 		/* If mapping is wired and table is not */
   1892 		if (wired && !c_tbl->ct_wcnt) {
   1893 			TAILQ_REMOVE(&c_pool, c_tbl, ct_link);
   1894 			b_tbl->bt_wcnt++;
   1895 		}
   1896 	} else {
   1897 		/* The descriptor is invalid.  Allocate a new C table. */
   1898 		c_tbl = get_c_table();
   1899 
   1900 		/* Point the parent B table descriptor to this new C table. */
   1901 		b_dte->attr.raw = mmu_vtop(c_tbl->ct_dtbl);
   1902 		b_dte->attr.raw |= MMU_DT_SHORT;
   1903 		b_tbl->bt_ecnt++; /* Update parent's valid entry count */
   1904 
   1905 		/* Create the necessary back references to the parent table */
   1906 		c_tbl->ct_parent = b_tbl;
   1907 		c_tbl->ct_pidx = b_idx;
   1908 		/*
   1909 		 * Store the pmap and base virtual managed address for faster
   1910 		 * retrieval in the PV functions.
   1911 		 */
   1912 		c_tbl->ct_pmap = pmap;
   1913 		c_tbl->ct_va = (va & (MMU_TIA_MASK|MMU_TIB_MASK));
   1914 
   1915 		/*
   1916 		 * If this table is to be wired, make sure the parent B table
   1917 		 * wired count is updated to reflect that it has another wired
   1918 		 * entry.
   1919 		 */
   1920 		if (wired)
   1921 			b_tbl->bt_wcnt++;
   1922 		else if (llevel == NONE)
   1923 			llevel = NEWC;
   1924 	}
   1925 
   1926 	/*
   1927 	 * Step 4 - Deposit a page descriptor (PTE) into the appropriate
   1928 	 * slot of the C table, describing the PA to which the VA is mapped.
   1929 	 */
   1930 
   1931 	pte_idx = MMU_TIC(va);
   1932 	c_pte = &c_tbl->ct_dtbl[pte_idx];
   1933 	if (MMU_VALID_DT(*c_pte)) { /* Is the entry currently valid? */
   1934 		/*
   1935 		 * The PTE is currently valid.  This particular call
   1936 		 * is just a synonym for one (or more) of the following
   1937 		 * operations:
   1938 		 *     change protection of a page
   1939 		 *     change wiring status of a page
   1940 		 *     remove the mapping of a page
   1941 		 *
   1942 		 * XXX - Semi critical: This code should unwire the PTE
   1943 		 * and, possibly, associated parent tables if this is a
   1944 		 * change wiring operation.  Currently it does not.
   1945 		 *
   1946 		 * This may be ok if pmap_change_wiring() is the only
   1947 		 * interface used to UNWIRE a page.
   1948 		 */
   1949 
   1950 		/* First check if this is a wiring operation. */
   1951 		if (wired && (c_pte->attr.raw & MMU_SHORT_PTE_WIRED)) {
   1952 			/*
   1953 			 * The PTE is already wired.  To prevent it from being
   1954 			 * counted as a new wiring operation, reset the 'wired'
   1955 			 * variable.
   1956 			 */
   1957 			wired = FALSE;
   1958 		}
   1959 
   1960 		/* Is the new address the same as the old? */
   1961 		if (MMU_PTE_PA(*c_pte) == pa) {
   1962 			/*
   1963 			 * Yes, mark that it does not need to be reinserted
   1964 			 * into the PV list.
   1965 			 */
   1966 			insert = FALSE;
   1967 
   1968 			/*
   1969 			 * Clear all but the modified, referenced and wired
   1970 			 * bits on the PTE.
   1971 			 */
   1972 			c_pte->attr.raw &= (MMU_SHORT_PTE_M
   1973 				| MMU_SHORT_PTE_USED | MMU_SHORT_PTE_WIRED);
   1974 		} else {
   1975 			/* No, remove the old entry */
   1976 			pmap_remove_pte(c_pte);
   1977 			insert = TRUE;
   1978 		}
   1979 
   1980 		/*
   1981 		 * TLB flush is only necessary if modifying current map.
   1982 		 * However, in pmap_enter(), the pmap almost always IS
   1983 		 * the current pmap, so don't even bother to check.
   1984 		 */
   1985 		TBIS(va);
   1986 	} else {
   1987 		/*
   1988 		 * The PTE is invalid.  Increment the valid entry count in
   1989 		 * the C table manager to reflect the addition of a new entry.
   1990 		 */
   1991 		c_tbl->ct_ecnt++;
   1992 
   1993 		/* XXX - temporarily make sure the PTE is cleared. */
   1994 		c_pte->attr.raw = 0;
   1995 
   1996 		/* It will also need to be inserted into the PV list. */
   1997 		insert = TRUE;
   1998 	}
   1999 
   2000 	/*
   2001 	 * If page is changing from unwired to wired status, set an unused bit
   2002 	 * within the PTE to indicate that it is wired.  Also increment the
   2003 	 * wired entry count in the C table manager.
   2004 	 */
   2005 	if (wired) {
   2006 		c_pte->attr.raw |= MMU_SHORT_PTE_WIRED;
   2007 		c_tbl->ct_wcnt++;
   2008 	}
   2009 
   2010 	/*
   2011 	 * Map the page, being careful to preserve modify/reference/wired
   2012 	 * bits.  At this point it is assumed that the PTE either has no bits
   2013 	 * set, or if there are set bits, they are only modified, reference or
   2014 	 * wired bits.  If not, the following statement will cause erratic
   2015 	 * behavior.
   2016 	 */
   2017 #ifdef	PMAP_DEBUG
   2018 	if (c_pte->attr.raw & ~(MMU_SHORT_PTE_M |
   2019 		MMU_SHORT_PTE_USED | MMU_SHORT_PTE_WIRED)) {
   2020 		printf("pmap_enter: junk left in PTE at %p\n", c_pte);
   2021 		Debugger();
   2022 	}
   2023 #endif
   2024 	c_pte->attr.raw |= ((u_long) pa | MMU_DT_PAGE);
   2025 
   2026 	/*
   2027 	 * If the mapping should be read-only, set the write protect
   2028 	 * bit in the PTE.
   2029 	 */
   2030 	if (!(prot & VM_PROT_WRITE))
   2031 		c_pte->attr.raw |= MMU_SHORT_PTE_WP;
   2032 
   2033 	/*
   2034 	 * If the mapping should be cache inhibited (indicated by the flag
   2035 	 * bits found on the lower order of the physical address.)
   2036 	 * mark the PTE as a cache inhibited page.
   2037 	 */
   2038 	if (flags & PMAP_NC)
   2039 		c_pte->attr.raw |= MMU_SHORT_PTE_CI;
   2040 
   2041 	/*
   2042 	 * If the physical address being mapped is managed by the PV
   2043 	 * system then link the pte into the list of pages mapped to that
   2044 	 * address.
   2045 	 */
   2046 	if (insert && managed) {
   2047 		pv = pa2pv(pa);
   2048 		nidx = pteidx(c_pte);
   2049 
   2050 		s = splimp();
   2051 		pvebase[nidx].pve_next = pv->pv_idx;
   2052 		pv->pv_idx = nidx;
   2053 		splx(s);
   2054 	}
   2055 
   2056 	/* Move any allocated tables back into the active pool. */
   2057 
   2058 	switch (llevel) {
   2059 		case NEWA:
   2060 			TAILQ_INSERT_TAIL(&a_pool, a_tbl, at_link);
   2061 			/* FALLTHROUGH */
   2062 		case NEWB:
   2063 			TAILQ_INSERT_TAIL(&b_pool, b_tbl, bt_link);
   2064 			/* FALLTHROUGH */
   2065 		case NEWC:
   2066 			TAILQ_INSERT_TAIL(&c_pool, c_tbl, ct_link);
   2067 			/* FALLTHROUGH */
   2068 		default:
   2069 			break;
   2070 	}
   2071 }
   2072 
   2073 /* pmap_enter_kernel			INTERNAL
   2074  **
   2075  * Map the given virtual address to the given physical address within the
   2076  * kernel address space.  This function exists because the kernel map does
   2077  * not do dynamic table allocation.  It consists of a contiguous array of ptes
   2078  * and can be edited directly without the need to walk through any tables.
   2079  *
   2080  * XXX: "Danger, Will Robinson!"
   2081  * Note that the kernel should never take a fault on any page
   2082  * between [ KERNBASE .. virtual_avail ] and this is checked in
   2083  * trap.c for kernel-mode MMU faults.  This means that mappings
   2084  * created in that range must be implicily wired. -gwr
   2085  */
   2086 void
   2087 pmap_enter_kernel(va, pa, prot)
   2088 	vm_offset_t va;
   2089 	vm_offset_t pa;
   2090 	vm_prot_t   prot;
   2091 {
   2092 	boolean_t       was_valid, insert;
   2093 	u_short         pte_idx;
   2094 	int             s, flags;
   2095 	mmu_short_pte_t *pte;
   2096 	pv_t            *pv;
   2097 	vm_offset_t     old_pa;
   2098 
   2099 	flags = (pa & ~MMU_PAGE_MASK);
   2100 	pa &= MMU_PAGE_MASK;
   2101 
   2102 	if (is_managed(pa))
   2103 		insert = TRUE;
   2104 	else
   2105 		insert = FALSE;
   2106 
   2107 	/*
   2108 	 * Calculate the index of the PTE being modified.
   2109 	 */
   2110 	pte_idx = (u_long) m68k_btop(va - KERNBASE);
   2111 
   2112 	/* This array is traditionally named "Sysmap" */
   2113 	pte = &kernCbase[pte_idx];
   2114 
   2115 	s = splimp();
   2116 	if (MMU_VALID_DT(*pte)) {
   2117 		was_valid = TRUE;
   2118 		/*
   2119 		 * If the PTE already maps a different
   2120 		 * physical address, umap and pv_unlink.
   2121 		 */
   2122 		old_pa = MMU_PTE_PA(*pte);
   2123 		if (pa != old_pa)
   2124 			pmap_remove_pte(pte);
   2125 		else {
   2126 		    /*
   2127 		     * Old PA and new PA are the same.  No need to
   2128 		     * relink the mapping within the PV list.
   2129 		     */
   2130 		     insert = FALSE;
   2131 
   2132 		    /*
   2133 		     * Save any mod/ref bits on the PTE.
   2134 		     */
   2135 		    pte->attr.raw &= (MMU_SHORT_PTE_USED|MMU_SHORT_PTE_M);
   2136 		}
   2137 	} else {
   2138 		pte->attr.raw = MMU_DT_INVALID;
   2139 		was_valid = FALSE;
   2140 	}
   2141 
   2142 	/*
   2143 	 * Map the page.  Being careful to preserve modified/referenced bits
   2144 	 * on the PTE.
   2145 	 */
   2146 	pte->attr.raw |= (pa | MMU_DT_PAGE);
   2147 
   2148 	if (!(prot & VM_PROT_WRITE)) /* If access should be read-only */
   2149 		pte->attr.raw |= MMU_SHORT_PTE_WP;
   2150 	if (flags & PMAP_NC)
   2151 		pte->attr.raw |= MMU_SHORT_PTE_CI;
   2152 	if (was_valid)
   2153 		TBIS(va);
   2154 
   2155 	/*
   2156 	 * Insert the PTE into the PV system, if need be.
   2157 	 */
   2158 	if (insert) {
   2159 		pv = pa2pv(pa);
   2160 		pvebase[pte_idx].pve_next = pv->pv_idx;
   2161 		pv->pv_idx = pte_idx;
   2162 	}
   2163 	splx(s);
   2164 
   2165 }
   2166 
   2167 /* pmap_map			INTERNAL
   2168  **
   2169  * Map a contiguous range of physical memory into a contiguous range of
   2170  * the kernel virtual address space.
   2171  *
   2172  * Used for device mappings and early mapping of the kernel text/data/bss.
   2173  * Returns the first virtual address beyond the end of the range.
   2174  */
   2175 vm_offset_t
   2176 pmap_map(va, pa, endpa, prot)
   2177 	vm_offset_t	va;
   2178 	vm_offset_t	pa;
   2179 	vm_offset_t	endpa;
   2180 	int		prot;
   2181 {
   2182 	int sz;
   2183 
   2184 	sz = endpa - pa;
   2185 	do {
   2186 		pmap_enter_kernel(va, pa, prot);
   2187 		va += NBPG;
   2188 		pa += NBPG;
   2189 		sz -= NBPG;
   2190 	} while (sz > 0);
   2191 	return(va);
   2192 }
   2193 
   2194 /* pmap_protect			INTERFACE
   2195  **
   2196  * Apply the given protection to the given virtual address range within
   2197  * the given map.
   2198  *
   2199  * It is ok for the protection applied to be stronger than what is
   2200  * specified.  We use this to our advantage when the given map has no
   2201  * mapping for the virtual address.  By skipping a page when this
   2202  * is discovered, we are effectively applying a protection of VM_PROT_NONE,
   2203  * and therefore do not need to map the page just to apply a protection
   2204  * code.  Only pmap_enter() needs to create new mappings if they do not exist.
   2205  *
   2206  * XXX - This function could be speeded up by using pmap_stroll() for inital
   2207  *       setup, and then manual scrolling in the for() loop.
   2208  */
   2209 void
   2210 pmap_protect(pmap, startva, endva, prot)
   2211 	pmap_t pmap;
   2212 	vm_offset_t startva, endva;
   2213 	vm_prot_t prot;
   2214 {
   2215 	boolean_t iscurpmap;
   2216 	int a_idx, b_idx, c_idx;
   2217 	a_tmgr_t *a_tbl;
   2218 	b_tmgr_t *b_tbl;
   2219 	c_tmgr_t *c_tbl;
   2220 	mmu_short_pte_t *pte;
   2221 
   2222 	if (pmap == NULL)
   2223 		return;
   2224 	if (pmap == pmap_kernel()) {
   2225 		pmap_protect_kernel(startva, endva, prot);
   2226 		return;
   2227 	}
   2228 
   2229 	/*
   2230 	 * In this particular pmap implementation, there are only three
   2231 	 * types of memory protection: 'all' (read/write/execute),
   2232 	 * 'read-only' (read/execute) and 'none' (no mapping.)
   2233 	 * It is not possible for us to treat 'executable' as a separate
   2234 	 * protection type.  Therefore, protection requests that seek to
   2235 	 * remove execute permission while retaining read or write, and those
   2236 	 * that make little sense (write-only for example) are ignored.
   2237 	 */
   2238 	switch (prot) {
   2239 		case VM_PROT_NONE:
   2240 			/*
   2241 			 * A request to apply the protection code of
   2242 			 * 'VM_PROT_NONE' is a synonym for pmap_remove().
   2243 			 */
   2244 			pmap_remove(pmap, startva, endva);
   2245 			return;
   2246 		case	VM_PROT_EXECUTE:
   2247 		case	VM_PROT_READ:
   2248 		case	VM_PROT_READ|VM_PROT_EXECUTE:
   2249 			/* continue */
   2250 			break;
   2251 		case	VM_PROT_WRITE:
   2252 		case	VM_PROT_WRITE|VM_PROT_READ:
   2253 		case	VM_PROT_WRITE|VM_PROT_EXECUTE:
   2254 		case	VM_PROT_ALL:
   2255 			/* None of these should happen in a sane system. */
   2256 			return;
   2257 	}
   2258 
   2259 	/*
   2260 	 * If the pmap has no A table, it has no mappings and therefore
   2261 	 * there is nothing to protect.
   2262 	 */
   2263 	if ((a_tbl = pmap->pm_a_tmgr) == NULL)
   2264 		return;
   2265 
   2266 	a_idx = MMU_TIA(startva);
   2267 	b_idx = MMU_TIB(startva);
   2268 	c_idx = MMU_TIC(startva);
   2269 	b_tbl = (b_tmgr_t *) c_tbl = NULL;
   2270 
   2271 	iscurpmap = (pmap == current_pmap());
   2272 	while (startva < endva) {
   2273 		if (b_tbl || MMU_VALID_DT(a_tbl->at_dtbl[a_idx])) {
   2274 		  if (b_tbl == NULL) {
   2275 		    b_tbl = (b_tmgr_t *) a_tbl->at_dtbl[a_idx].addr.raw;
   2276 		    b_tbl = mmu_ptov((vm_offset_t) b_tbl);
   2277 		    b_tbl = mmuB2tmgr((mmu_short_dte_t *) b_tbl);
   2278 		  }
   2279 		  if (c_tbl || MMU_VALID_DT(b_tbl->bt_dtbl[b_idx])) {
   2280 		    if (c_tbl == NULL) {
   2281 		      c_tbl = (c_tmgr_t *) MMU_DTE_PA(b_tbl->bt_dtbl[b_idx]);
   2282 		      c_tbl = mmu_ptov((vm_offset_t) c_tbl);
   2283 		      c_tbl = mmuC2tmgr((mmu_short_pte_t *) c_tbl);
   2284 		    }
   2285 		    if (MMU_VALID_DT(c_tbl->ct_dtbl[c_idx])) {
   2286 		      pte = &c_tbl->ct_dtbl[c_idx];
   2287 		      /* make the mapping read-only */
   2288 		      pte->attr.raw |= MMU_SHORT_PTE_WP;
   2289 		      /*
   2290 		       * If we just modified the current address space,
   2291 		       * flush any translations for the modified page from
   2292 		       * the translation cache and any data from it in the
   2293 		       * data cache.
   2294 		       */
   2295 		      if (iscurpmap)
   2296 		          TBIS(startva);
   2297 		    }
   2298 		    startva += NBPG;
   2299 
   2300 		    if (++c_idx >= MMU_C_TBL_SIZE) { /* exceeded C table? */
   2301 		      c_tbl = NULL;
   2302 		      c_idx = 0;
   2303 		      if (++b_idx >= MMU_B_TBL_SIZE) { /* exceeded B table? */
   2304 		        b_tbl = NULL;
   2305 		        b_idx = 0;
   2306 		      }
   2307 		    }
   2308 		  } else { /* C table wasn't valid */
   2309 		    c_tbl = NULL;
   2310 		    c_idx = 0;
   2311 		    startva += MMU_TIB_RANGE;
   2312 		    if (++b_idx >= MMU_B_TBL_SIZE) { /* exceeded B table? */
   2313 		      b_tbl = NULL;
   2314 		      b_idx = 0;
   2315 		    }
   2316 		  } /* C table */
   2317 		} else { /* B table wasn't valid */
   2318 		  b_tbl = NULL;
   2319 		  b_idx = 0;
   2320 		  startva += MMU_TIA_RANGE;
   2321 		  a_idx++;
   2322 		} /* B table */
   2323 	}
   2324 }
   2325 
   2326 /* pmap_protect_kernel			INTERNAL
   2327  **
   2328  * Apply the given protection code to a kernel address range.
   2329  */
   2330 void
   2331 pmap_protect_kernel(startva, endva, prot)
   2332 	vm_offset_t startva, endva;
   2333 	vm_prot_t prot;
   2334 {
   2335 	vm_offset_t va;
   2336 	mmu_short_pte_t *pte;
   2337 
   2338 	pte = &kernCbase[(unsigned long) m68k_btop(startva - KERNBASE)];
   2339 	for (va = startva; va < endva; va += NBPG, pte++) {
   2340 		if (MMU_VALID_DT(*pte)) {
   2341 		    switch (prot) {
   2342 		        case VM_PROT_ALL:
   2343 		            break;
   2344 		        case VM_PROT_EXECUTE:
   2345 		        case VM_PROT_READ:
   2346 		        case VM_PROT_READ|VM_PROT_EXECUTE:
   2347 		            pte->attr.raw |= MMU_SHORT_PTE_WP;
   2348 		            break;
   2349 		        case VM_PROT_NONE:
   2350 		            /* this is an alias for 'pmap_remove_kernel' */
   2351 		            pmap_remove_pte(pte);
   2352 		            break;
   2353 		        default:
   2354 		            break;
   2355 		    }
   2356 		    /*
   2357 		     * since this is the kernel, immediately flush any cached
   2358 		     * descriptors for this address.
   2359 		     */
   2360 		    TBIS(va);
   2361 		}
   2362 	}
   2363 }
   2364 
   2365 /* pmap_change_wiring			INTERFACE
   2366  **
   2367  * Changes the wiring of the specified page.
   2368  *
   2369  * This function is called from vm_fault.c to unwire
   2370  * a mapping.  It really should be called 'pmap_unwire'
   2371  * because it is never asked to do anything but remove
   2372  * wirings.
   2373  */
   2374 void
   2375 pmap_change_wiring(pmap, va, wire)
   2376 	pmap_t pmap;
   2377 	vm_offset_t va;
   2378 	boolean_t wire;
   2379 {
   2380 	int a_idx, b_idx, c_idx;
   2381 	a_tmgr_t *a_tbl;
   2382 	b_tmgr_t *b_tbl;
   2383 	c_tmgr_t *c_tbl;
   2384 	mmu_short_pte_t *pte;
   2385 
   2386 	/* Kernel mappings always remain wired. */
   2387 	if (pmap == pmap_kernel())
   2388 		return;
   2389 
   2390 #ifdef	PMAP_DEBUG
   2391 	if (wire == TRUE)
   2392 		panic("pmap_change_wiring: wire requested.");
   2393 #endif
   2394 
   2395 	/*
   2396 	 * Walk through the tables.  If the walk terminates without
   2397 	 * a valid PTE then the address wasn't wired in the first place.
   2398 	 * Return immediately.
   2399 	 */
   2400 	if (pmap_stroll(pmap, va, &a_tbl, &b_tbl, &c_tbl, &pte, &a_idx,
   2401 		&b_idx, &c_idx) == FALSE)
   2402 		return;
   2403 
   2404 
   2405 	/* Is the PTE wired?  If not, return. */
   2406 	if (!(pte->attr.raw & MMU_SHORT_PTE_WIRED))
   2407 		return;
   2408 
   2409 	/* Remove the wiring bit. */
   2410 	pte->attr.raw &= ~(MMU_SHORT_PTE_WIRED);
   2411 
   2412 	/*
   2413 	 * Decrement the wired entry count in the C table.
   2414 	 * If it reaches zero the following things happen:
   2415 	 * 1. The table no longer has any wired entries and is considered
   2416 	 *    unwired.
   2417 	 * 2. It is placed on the available queue.
   2418 	 * 3. The parent table's wired entry count is decremented.
   2419 	 * 4. If it reaches zero, this process repeats at step 1 and
   2420 	 *    stops at after reaching the A table.
   2421 	 */
   2422 	if (--c_tbl->ct_wcnt == 0) {
   2423 		TAILQ_INSERT_TAIL(&c_pool, c_tbl, ct_link);
   2424 		if (--b_tbl->bt_wcnt == 0) {
   2425 			TAILQ_INSERT_TAIL(&b_pool, b_tbl, bt_link);
   2426 			if (--a_tbl->at_wcnt == 0) {
   2427 				TAILQ_INSERT_TAIL(&a_pool, a_tbl, at_link);
   2428 			}
   2429 		}
   2430 	}
   2431 }
   2432 
   2433 /* pmap_pageable			INTERFACE
   2434  **
   2435  * Make the specified range of addresses within the given pmap,
   2436  * 'pageable' or 'not-pageable'.  A pageable page must not cause
   2437  * any faults when referenced.  A non-pageable page may.
   2438  *
   2439  * This routine is only advisory.  The VM system will call pmap_enter()
   2440  * to wire or unwire pages that are going to be made pageable before calling
   2441  * this function.  By the time this routine is called, everything that needs
   2442  * to be done has already been done.
   2443  */
   2444 void
   2445 pmap_pageable(pmap, start, end, pageable)
   2446 	pmap_t pmap;
   2447 	vm_offset_t start, end;
   2448 	boolean_t pageable;
   2449 {
   2450 	/* not implemented. */
   2451 }
   2452 
   2453 /* pmap_copy				INTERFACE
   2454  **
   2455  * Copy the mappings of a range of addresses in one pmap, into
   2456  * the destination address of another.
   2457  *
   2458  * This routine is advisory.  Should we one day decide that MMU tables
   2459  * may be shared by more than one pmap, this function should be used to
   2460  * link them together.  Until that day however, we do nothing.
   2461  */
   2462 void
   2463 pmap_copy(pmap_a, pmap_b, dst, len, src)
   2464 	pmap_t pmap_a, pmap_b;
   2465 	vm_offset_t dst;
   2466 	vm_size_t   len;
   2467 	vm_offset_t src;
   2468 {
   2469 	/* not implemented. */
   2470 }
   2471 
   2472 /* pmap_copy_page			INTERFACE
   2473  **
   2474  * Copy the contents of one physical page into another.
   2475  *
   2476  * This function makes use of two virtual pages allocated in pmap_bootstrap()
   2477  * to map the two specified physical pages into the kernel address space.
   2478  *
   2479  * Note: We could use the transparent translation registers to make the
   2480  * mappings.  If we do so, be sure to disable interrupts before using them.
   2481  */
   2482 void
   2483 pmap_copy_page(srcpa, dstpa)
   2484 	vm_offset_t srcpa, dstpa;
   2485 {
   2486 	vm_offset_t srcva, dstva;
   2487 	int s;
   2488 
   2489 	srcva = tmp_vpages[0];
   2490 	dstva = tmp_vpages[1];
   2491 
   2492 	s = splimp();
   2493 	if (tmp_vpages_inuse++)
   2494 		panic("pmap_copy_page: temporary vpages are in use.");
   2495 
   2496 	/* Map pages as non-cacheable to avoid cache polution? */
   2497 	pmap_enter_kernel(srcva, srcpa, VM_PROT_READ);
   2498 	pmap_enter_kernel(dstva, dstpa, VM_PROT_READ|VM_PROT_WRITE);
   2499 
   2500 	/* Hand-optimized version of bcopy(src, dst, NBPG) */
   2501 	copypage((char *) srcva, (char *) dstva);
   2502 
   2503 	pmap_remove_kernel(srcva, srcva + NBPG);
   2504 	pmap_remove_kernel(dstva, dstva + NBPG);
   2505 
   2506 	--tmp_vpages_inuse;
   2507 	splx(s);
   2508 }
   2509 
   2510 /* pmap_zero_page			INTERFACE
   2511  **
   2512  * Zero the contents of the specified physical page.
   2513  *
   2514  * Uses one of the virtual pages allocated in pmap_boostrap()
   2515  * to map the specified page into the kernel address space.
   2516  */
   2517 void
   2518 pmap_zero_page(dstpa)
   2519 	vm_offset_t dstpa;
   2520 {
   2521 	vm_offset_t dstva;
   2522 	int s;
   2523 
   2524 	dstva = tmp_vpages[1];
   2525 	s = splimp();
   2526 	if (tmp_vpages_inuse++)
   2527 		panic("pmap_zero_page: temporary vpages are in use.");
   2528 
   2529 	/* The comments in pmap_copy_page() above apply here also. */
   2530 	pmap_enter_kernel(dstva, dstpa, VM_PROT_READ|VM_PROT_WRITE);
   2531 
   2532 	/* Hand-optimized version of bzero(ptr, NBPG) */
   2533 	zeropage((char *) dstva);
   2534 
   2535 	pmap_remove_kernel(dstva, dstva + NBPG);
   2536 
   2537 	--tmp_vpages_inuse;
   2538 	splx(s);
   2539 }
   2540 
   2541 /* pmap_collect			INTERFACE
   2542  **
   2543  * Called from the VM system when we are about to swap out
   2544  * the process using this pmap.  This should give up any
   2545  * resources held here, including all its MMU tables.
   2546  */
   2547 void
   2548 pmap_collect(pmap)
   2549 	pmap_t pmap;
   2550 {
   2551 	/* XXX - todo... */
   2552 }
   2553 
   2554 /* pmap_create			INTERFACE
   2555  **
   2556  * Create and return a pmap structure.
   2557  */
   2558 pmap_t
   2559 pmap_create(size)
   2560 	vm_size_t size;
   2561 {
   2562 	pmap_t	pmap;
   2563 
   2564 	if (size)
   2565 		return NULL;
   2566 
   2567 	pmap = (pmap_t) malloc(sizeof(struct pmap), M_VMPMAP, M_WAITOK);
   2568 	pmap_pinit(pmap);
   2569 
   2570 	return pmap;
   2571 }
   2572 
   2573 /* pmap_pinit			INTERNAL
   2574  **
   2575  * Initialize a pmap structure.
   2576  */
   2577 void
   2578 pmap_pinit(pmap)
   2579 	pmap_t pmap;
   2580 {
   2581 	bzero(pmap, sizeof(struct pmap));
   2582 	pmap->pm_a_tmgr = NULL;
   2583 	pmap->pm_a_phys = kernAphys;
   2584 }
   2585 
   2586 /* pmap_release				INTERFACE
   2587  **
   2588  * Release any resources held by the given pmap.
   2589  *
   2590  * This is the reverse analog to pmap_pinit.  It does not
   2591  * necessarily mean for the pmap structure to be deallocated,
   2592  * as in pmap_destroy.
   2593  */
   2594 void
   2595 pmap_release(pmap)
   2596 	pmap_t pmap;
   2597 {
   2598 	/*
   2599 	 * As long as the pmap contains no mappings,
   2600 	 * which always should be the case whenever
   2601 	 * this function is called, there really should
   2602 	 * be nothing to do.
   2603 	 */
   2604 #ifdef	PMAP_DEBUG
   2605 	if (pmap == NULL)
   2606 		return;
   2607 	if (pmap == pmap_kernel())
   2608 		panic("pmap_release: kernel pmap");
   2609 #endif
   2610 	/*
   2611 	 * XXX - If this pmap has an A table, give it back.
   2612 	 * The pmap SHOULD be empty by now, and pmap_remove
   2613 	 * should have already given back the A table...
   2614 	 * However, I see:  pmap->pm_a_tmgr->at_ecnt == 1
   2615 	 * at this point, which means some mapping was not
   2616 	 * removed when it should have been. -gwr
   2617 	 */
   2618 	if (pmap->pm_a_tmgr != NULL) {
   2619 		/* First make sure we are not using it! */
   2620 		if (kernel_crp.rp_addr == pmap->pm_a_phys) {
   2621 			kernel_crp.rp_addr = kernAphys;
   2622 			loadcrp(&kernel_crp);
   2623 		}
   2624 #ifdef	PMAP_DEBUG /* XXX - todo! */
   2625 		/* XXX - Now complain... */
   2626 		printf("pmap_release: still have table\n");
   2627 		Debugger();
   2628 #endif
   2629 		free_a_table(pmap->pm_a_tmgr, TRUE);
   2630 		pmap->pm_a_tmgr = NULL;
   2631 		pmap->pm_a_phys = kernAphys;
   2632 	}
   2633 }
   2634 
   2635 /* pmap_reference			INTERFACE
   2636  **
   2637  * Increment the reference count of a pmap.
   2638  */
   2639 void
   2640 pmap_reference(pmap)
   2641 	pmap_t pmap;
   2642 {
   2643 	if (pmap == NULL)
   2644 		return;
   2645 
   2646 	/* pmap_lock(pmap); */
   2647 	pmap->pm_refcount++;
   2648 	/* pmap_unlock(pmap); */
   2649 }
   2650 
   2651 /* pmap_dereference			INTERNAL
   2652  **
   2653  * Decrease the reference count on the given pmap
   2654  * by one and return the current count.
   2655  */
   2656 int
   2657 pmap_dereference(pmap)
   2658 	pmap_t pmap;
   2659 {
   2660 	int rtn;
   2661 
   2662 	if (pmap == NULL)
   2663 		return 0;
   2664 
   2665 	/* pmap_lock(pmap); */
   2666 	rtn = --pmap->pm_refcount;
   2667 	/* pmap_unlock(pmap); */
   2668 
   2669 	return rtn;
   2670 }
   2671 
   2672 /* pmap_destroy			INTERFACE
   2673  **
   2674  * Decrement a pmap's reference count and delete
   2675  * the pmap if it becomes zero.  Will be called
   2676  * only after all mappings have been removed.
   2677  */
   2678 void
   2679 pmap_destroy(pmap)
   2680 	pmap_t pmap;
   2681 {
   2682 	if (pmap == NULL)
   2683 		return;
   2684 	if (pmap == &kernel_pmap)
   2685 		panic("pmap_destroy: kernel_pmap!");
   2686 	if (pmap_dereference(pmap) == 0) {
   2687 		pmap_release(pmap);
   2688 		free(pmap, M_VMPMAP);
   2689 	}
   2690 }
   2691 
   2692 /* pmap_is_referenced			INTERFACE
   2693  **
   2694  * Determine if the given physical page has been
   2695  * referenced (read from [or written to.])
   2696  */
   2697 boolean_t
   2698 pmap_is_referenced(pa)
   2699 	vm_offset_t pa;
   2700 {
   2701 	pv_t      *pv;
   2702 	int       idx, s;
   2703 
   2704 	if (!pv_initialized)
   2705 		return FALSE;
   2706 	/* XXX - this may be unecessary. */
   2707 	if (!is_managed(pa))
   2708 		return FALSE;
   2709 
   2710 	pv = pa2pv(pa);
   2711 	/*
   2712 	 * Check the flags on the pv head.  If they are set,
   2713 	 * return immediately.  Otherwise a search must be done.
   2714 	 */
   2715 	if (pv->pv_flags & PV_FLAGS_USED)
   2716 		return TRUE;
   2717 
   2718 	s = splimp();
   2719 	/*
   2720 	 * Search through all pv elements pointing
   2721 	 * to this page and query their reference bits
   2722 	 */
   2723 	for (idx = pv->pv_idx;
   2724 		 idx != PVE_EOL;
   2725 		 idx = pvebase[idx].pve_next) {
   2726 
   2727 		if (MMU_PTE_USED(kernCbase[idx])) {
   2728 			splx(s);
   2729 			return TRUE;
   2730 		}
   2731 	}
   2732 	splx(s);
   2733 
   2734 	return FALSE;
   2735 }
   2736 
   2737 /* pmap_is_modified			INTERFACE
   2738  **
   2739  * Determine if the given physical page has been
   2740  * modified (written to.)
   2741  */
   2742 boolean_t
   2743 pmap_is_modified(pa)
   2744 	vm_offset_t pa;
   2745 {
   2746 	pv_t      *pv;
   2747 	int       idx, s;
   2748 
   2749 	if (!pv_initialized)
   2750 		return FALSE;
   2751 	/* XXX - this may be unecessary. */
   2752 	if (!is_managed(pa))
   2753 		return FALSE;
   2754 
   2755 	/* see comments in pmap_is_referenced() */
   2756 	pv = pa2pv(pa);
   2757 	if (pv->pv_flags & PV_FLAGS_MDFY)
   2758 		return TRUE;
   2759 
   2760 	s = splimp();
   2761 	for (idx = pv->pv_idx;
   2762 		 idx != PVE_EOL;
   2763 		 idx = pvebase[idx].pve_next) {
   2764 
   2765 		if (MMU_PTE_MODIFIED(kernCbase[idx])) {
   2766 			splx(s);
   2767 			return TRUE;
   2768 		}
   2769 	}
   2770 	splx(s);
   2771 
   2772 	return FALSE;
   2773 }
   2774 
   2775 /* pmap_page_protect			INTERFACE
   2776  **
   2777  * Applies the given protection to all mappings to the given
   2778  * physical page.
   2779  */
   2780 void
   2781 pmap_page_protect(pa, prot)
   2782 	vm_offset_t pa;
   2783 	vm_prot_t prot;
   2784 {
   2785 	pv_t      *pv;
   2786 	int       idx, s;
   2787 	vm_offset_t va;
   2788 	struct mmu_short_pte_struct *pte;
   2789 	c_tmgr_t  *c_tbl;
   2790 	pmap_t    pmap, curpmap;
   2791 
   2792 	if (!is_managed(pa))
   2793 		return;
   2794 
   2795 	curpmap = current_pmap();
   2796 	pv = pa2pv(pa);
   2797 	s = splimp();
   2798 
   2799 	for (idx = pv->pv_idx;
   2800 		 idx != PVE_EOL;
   2801 		 idx = pvebase[idx].pve_next) {
   2802 
   2803 		pte = &kernCbase[idx];
   2804 		switch (prot) {
   2805 			case VM_PROT_ALL:
   2806 				/* do nothing */
   2807 				break;
   2808 			case VM_PROT_EXECUTE:
   2809 			case VM_PROT_READ:
   2810 			case VM_PROT_READ|VM_PROT_EXECUTE:
   2811 				pte->attr.raw |= MMU_SHORT_PTE_WP;
   2812 
   2813 				/*
   2814 				 * Determine the virtual address mapped by
   2815 				 * the PTE and flush ATC entries if necessary.
   2816 				 */
   2817 				va = pmap_get_pteinfo(idx, &pmap, &c_tbl);
   2818 				if (pmap == curpmap || pmap == pmap_kernel())
   2819 					TBIS(va);
   2820 				break;
   2821 			case VM_PROT_NONE:
   2822 				/* Save the mod/ref bits. */
   2823 				pv->pv_flags |= pte->attr.raw;
   2824 				/* Invalidate the PTE. */
   2825 				pte->attr.raw = MMU_DT_INVALID;
   2826 
   2827 				/*
   2828 				 * Update table counts.  And flush ATC entries
   2829 				 * if necessary.
   2830 				 */
   2831 				va = pmap_get_pteinfo(idx, &pmap, &c_tbl);
   2832 
   2833 				/*
   2834 				 * If the PTE belongs to the kernel map,
   2835 				 * be sure to flush the page it maps.
   2836 				 */
   2837 				if (pmap == pmap_kernel()) {
   2838 					TBIS(va);
   2839 				} else {
   2840 					/*
   2841 					 * The PTE belongs to a user map.
   2842 					 * update the entry count in the C
   2843 					 * table to which it belongs and flush
   2844 					 * the ATC if the mapping belongs to
   2845 					 * the current pmap.
   2846 					 */
   2847 					c_tbl->ct_ecnt--;
   2848 					if (pmap == curpmap)
   2849 						TBIS(va);
   2850 				}
   2851 				break;
   2852 			default:
   2853 				break;
   2854 		}
   2855 	}
   2856 
   2857 	/*
   2858 	 * If the protection code indicates that all mappings to the page
   2859 	 * be removed, truncate the PV list to zero entries.
   2860 	 */
   2861 	if (prot == VM_PROT_NONE)
   2862 		pv->pv_idx = PVE_EOL;
   2863 	splx(s);
   2864 }
   2865 
   2866 /* pmap_get_pteinfo		INTERNAL
   2867  **
   2868  * Called internally to find the pmap and virtual address within that
   2869  * map to which the pte at the given index maps.  Also includes the PTE's C
   2870  * table manager.
   2871  *
   2872  * Returns the pmap in the argument provided, and the virtual address
   2873  * by return value.
   2874  */
   2875 vm_offset_t
   2876 pmap_get_pteinfo(idx, pmap, tbl)
   2877 	u_int idx;
   2878 	pmap_t *pmap;
   2879 	c_tmgr_t **tbl;
   2880 {
   2881 	vm_offset_t     va = 0;
   2882 
   2883 	/*
   2884 	 * Determine if the PTE is a kernel PTE or a user PTE.
   2885 	 */
   2886 	if (idx >= NUM_KERN_PTES) {
   2887 		/*
   2888 		 * The PTE belongs to a user mapping.
   2889 		 */
   2890 		/* XXX: Would like an inline for this to validate idx... */
   2891 		*tbl = &Ctmgrbase[(idx - NUM_KERN_PTES) / MMU_C_TBL_SIZE];
   2892 
   2893 		*pmap = (*tbl)->ct_pmap;
   2894 		/*
   2895 		 * To find the va to which the PTE maps, we first take
   2896 		 * the table's base virtual address mapping which is stored
   2897 		 * in ct_va.  We then increment this address by a page for
   2898 		 * every slot skipped until we reach the PTE.
   2899 		 */
   2900 		va =    (*tbl)->ct_va;
   2901 		va += m68k_ptob(idx % MMU_C_TBL_SIZE);
   2902 	} else {
   2903 		/*
   2904 		 * The PTE belongs to the kernel map.
   2905 		 */
   2906 		*pmap = pmap_kernel();
   2907 
   2908 		va = m68k_ptob(idx);
   2909 		va += KERNBASE;
   2910 	}
   2911 
   2912 	return va;
   2913 }
   2914 
   2915 /* pmap_clear_modify			INTERFACE
   2916  **
   2917  * Clear the modification bit on the page at the specified
   2918  * physical address.
   2919  *
   2920  */
   2921 void
   2922 pmap_clear_modify(pa)
   2923 	vm_offset_t pa;
   2924 {
   2925 	if (!is_managed(pa))
   2926 		return;
   2927 	pmap_clear_pv(pa, PV_FLAGS_MDFY);
   2928 }
   2929 
   2930 /* pmap_clear_reference			INTERFACE
   2931  **
   2932  * Clear the referenced bit on the page at the specified
   2933  * physical address.
   2934  */
   2935 void
   2936 pmap_clear_reference(pa)
   2937 	vm_offset_t pa;
   2938 {
   2939 	if (!is_managed(pa))
   2940 		return;
   2941 	pmap_clear_pv(pa, PV_FLAGS_USED);
   2942 }
   2943 
   2944 /* pmap_clear_pv			INTERNAL
   2945  **
   2946  * Clears the specified flag from the specified physical address.
   2947  * (Used by pmap_clear_modify() and pmap_clear_reference().)
   2948  *
   2949  * Flag is one of:
   2950  *   PV_FLAGS_MDFY - Page modified bit.
   2951  *   PV_FLAGS_USED - Page used (referenced) bit.
   2952  *
   2953  * This routine must not only clear the flag on the pv list
   2954  * head.  It must also clear the bit on every pte in the pv
   2955  * list associated with the address.
   2956  */
   2957 void
   2958 pmap_clear_pv(pa, flag)
   2959 	vm_offset_t pa;
   2960 	int flag;
   2961 {
   2962 	pv_t      *pv;
   2963 	int       idx, s;
   2964 	vm_offset_t     va;
   2965 	pmap_t          pmap;
   2966 	mmu_short_pte_t *pte;
   2967 	c_tmgr_t        *c_tbl;
   2968 
   2969 	pv = pa2pv(pa);
   2970 
   2971 	s = splimp();
   2972 	pv->pv_flags &= ~(flag);
   2973 
   2974 	for (idx = pv->pv_idx;
   2975 		 idx != PVE_EOL;
   2976 		 idx = pvebase[idx].pve_next) {
   2977 
   2978 		pte = &kernCbase[idx];
   2979 		pte->attr.raw &= ~(flag);
   2980 		/*
   2981 		 * The MC68030 MMU will not set the modified or
   2982 		 * referenced bits on any MMU tables for which it has
   2983 		 * a cached descriptor with its modify bit set.  To insure
   2984 		 * that it will modify these bits on the PTE during the next
   2985 		 * time it is written to or read from, we must flush it from
   2986 		 * the ATC.
   2987 		 *
   2988 		 * Ordinarily it is only necessary to flush the descriptor
   2989 		 * if it is used in the current address space.  But since I
   2990 		 * am not sure that there will always be a notion of
   2991 		 * 'the current address space' when this function is called,
   2992 		 * I will skip the test and always flush the address.  It
   2993 		 * does no harm.
   2994 		 */
   2995 		va = pmap_get_pteinfo(idx, &pmap, &c_tbl);
   2996 		TBIS(va);
   2997 	}
   2998 	splx(s);
   2999 }
   3000 
   3001 /* pmap_extract			INTERFACE
   3002  **
   3003  * Return the physical address mapped by the virtual address
   3004  * in the specified pmap or 0 if it is not known.
   3005  *
   3006  * Note: this function should also apply an exclusive lock
   3007  * on the pmap system during its duration.
   3008  */
   3009 vm_offset_t
   3010 pmap_extract(pmap, va)
   3011 	pmap_t      pmap;
   3012 	vm_offset_t va;
   3013 {
   3014 	int a_idx, b_idx, pte_idx;
   3015 	a_tmgr_t	*a_tbl;
   3016 	b_tmgr_t	*b_tbl;
   3017 	c_tmgr_t	*c_tbl;
   3018 	mmu_short_pte_t	*c_pte;
   3019 
   3020 	if (pmap == pmap_kernel())
   3021 		return pmap_extract_kernel(va);
   3022 	if (pmap == NULL)
   3023 		return 0;
   3024 
   3025 	if (pmap_stroll(pmap, va, &a_tbl, &b_tbl, &c_tbl,
   3026 		&c_pte, &a_idx, &b_idx, &pte_idx) == FALSE)
   3027 		return 0;
   3028 
   3029 	if (!MMU_VALID_DT(*c_pte))
   3030 		return 0;
   3031 
   3032 	return (MMU_PTE_PA(*c_pte));
   3033 }
   3034 
   3035 /* pmap_extract_kernel		INTERNAL
   3036  **
   3037  * Extract a translation from the kernel address space.
   3038  */
   3039 vm_offset_t
   3040 pmap_extract_kernel(va)
   3041 	vm_offset_t va;
   3042 {
   3043 	mmu_short_pte_t *pte;
   3044 
   3045 	pte = &kernCbase[(u_int) m68k_btop(va - KERNBASE)];
   3046 	return MMU_PTE_PA(*pte);
   3047 }
   3048 
   3049 /* pmap_remove_kernel		INTERNAL
   3050  **
   3051  * Remove the mapping of a range of virtual addresses from the kernel map.
   3052  * The arguments are already page-aligned.
   3053  */
   3054 void
   3055 pmap_remove_kernel(sva, eva)
   3056 	vm_offset_t sva;
   3057 	vm_offset_t eva;
   3058 {
   3059 	int idx, eidx;
   3060 
   3061 #ifdef	PMAP_DEBUG
   3062 	if ((sva & PGOFSET) || (eva & PGOFSET))
   3063 		panic("pmap_remove_kernel: alignment");
   3064 #endif
   3065 
   3066 	idx  = m68k_btop(sva - KERNBASE);
   3067 	eidx = m68k_btop(eva - KERNBASE);
   3068 
   3069 	while (idx < eidx) {
   3070 		pmap_remove_pte(&kernCbase[idx++]);
   3071 		TBIS(sva);
   3072 		sva += NBPG;
   3073 	}
   3074 }
   3075 
   3076 /* pmap_remove			INTERFACE
   3077  **
   3078  * Remove the mapping of a range of virtual addresses from the given pmap.
   3079  *
   3080  * If the range contains any wired entries, this function will probably create
   3081  * disaster.
   3082  */
   3083 void
   3084 pmap_remove(pmap, start, end)
   3085 	pmap_t pmap;
   3086 	vm_offset_t start;
   3087 	vm_offset_t end;
   3088 {
   3089 
   3090 	if (pmap == pmap_kernel()) {
   3091 		pmap_remove_kernel(start, end);
   3092 		return;
   3093 	}
   3094 
   3095 	/*
   3096 	 * XXX - Temporary(?) statement to prevent panic caused
   3097 	 * by vm_alloc_with_pager() handing us a software map (ie NULL)
   3098 	 * to remove because it couldn't get backing store.
   3099 	 * (I guess.)
   3100 	 */
   3101 	if (pmap == NULL)
   3102 		return;
   3103 
   3104 	/*
   3105 	 * If the pmap doesn't have an A table of its own, it has no mappings
   3106 	 * that can be removed.
   3107 	 */
   3108 	if (pmap->pm_a_tmgr == NULL)
   3109 		return;
   3110 
   3111 	/*
   3112 	 * Remove the specified range from the pmap.  If the function
   3113 	 * returns true, the operation removed all the valid mappings
   3114 	 * in the pmap and freed its A table.  If this happened to the
   3115 	 * currently loaded pmap, the MMU root pointer must be reloaded
   3116 	 * with the default 'kernel' map.
   3117 	 */
   3118 	if (pmap_remove_a(pmap->pm_a_tmgr, start, end)) {
   3119 		if (kernel_crp.rp_addr == pmap->pm_a_phys) {
   3120 			kernel_crp.rp_addr = kernAphys;
   3121 			loadcrp(&kernel_crp);
   3122 			/* will do TLB flush below */
   3123 		}
   3124 		pmap->pm_a_tmgr = NULL;
   3125 		pmap->pm_a_phys = kernAphys;
   3126 	}
   3127 
   3128 	/*
   3129 	 * If we just modified the current address space,
   3130 	 * make sure to flush the MMU cache.
   3131 	 *
   3132 	 * XXX - this could be an unecessarily large flush.
   3133 	 * XXX - Could decide, based on the size of the VA range
   3134 	 * to be removed, whether to flush "by pages" or "all".
   3135 	 */
   3136 	if (pmap == current_pmap())
   3137 		TBIAU();
   3138 }
   3139 
   3140 /* pmap_remove_a			INTERNAL
   3141  **
   3142  * This is function number one in a set of three that removes a range
   3143  * of memory in the most efficient manner by removing the highest possible
   3144  * tables from the memory space.  This particular function attempts to remove
   3145  * as many B tables as it can, delegating the remaining fragmented ranges to
   3146  * pmap_remove_b().
   3147  *
   3148  * If the removal operation results in an empty A table, the function returns
   3149  * TRUE.
   3150  *
   3151  * It's ugly but will do for now.
   3152  */
   3153 boolean_t
   3154 pmap_remove_a(a_tbl, start, end)
   3155 	a_tmgr_t *a_tbl;
   3156 	vm_offset_t start;
   3157 	vm_offset_t end;
   3158 {
   3159 	boolean_t empty;
   3160 	int idx;
   3161 	vm_offset_t nstart, nend;
   3162 	b_tmgr_t *b_tbl;
   3163 	mmu_long_dte_t  *a_dte;
   3164 	mmu_short_dte_t *b_dte;
   3165 
   3166 	/*
   3167 	 * The following code works with what I call a 'granularity
   3168 	 * reduction algorithim'.  A range of addresses will always have
   3169 	 * the following properties, which are classified according to
   3170 	 * how the range relates to the size of the current granularity
   3171 	 * - an A table entry:
   3172 	 *
   3173 	 *            1 2       3 4
   3174 	 * -+---+---+---+---+---+---+---+-
   3175 	 * -+---+---+---+---+---+---+---+-
   3176 	 *
   3177 	 * A range will always start on a granularity boundary, illustrated
   3178 	 * by '+' signs in the table above, or it will start at some point
   3179 	 * inbetween a granularity boundary, as illustrated by point 1.
   3180 	 * The first step in removing a range of addresses is to remove the
   3181 	 * range between 1 and 2, the nearest granularity boundary.  This
   3182 	 * job is handled by the section of code governed by the
   3183 	 * 'if (start < nstart)' statement.
   3184 	 *
   3185 	 * A range will always encompass zero or more intergral granules,
   3186 	 * illustrated by points 2 and 3.  Integral granules are easy to
   3187 	 * remove.  The removal of these granules is the second step, and
   3188 	 * is handled by the code block 'if (nstart < nend)'.
   3189 	 *
   3190 	 * Lastly, a range will always end on a granularity boundary,
   3191 	 * ill. by point 3, or it will fall just beyond one, ill. by point
   3192 	 * 4.  The last step involves removing this range and is handled by
   3193 	 * the code block 'if (nend < end)'.
   3194 	 */
   3195 	nstart = MMU_ROUND_UP_A(start);
   3196 	nend = MMU_ROUND_A(end);
   3197 
   3198 	if (start < nstart) {
   3199 		/*
   3200 		 * This block is executed if the range starts between
   3201 		 * a granularity boundary.
   3202 		 *
   3203 		 * First find the DTE which is responsible for mapping
   3204 		 * the start of the range.
   3205 		 */
   3206 		idx = MMU_TIA(start);
   3207 		a_dte = &a_tbl->at_dtbl[idx];
   3208 
   3209 		/*
   3210 		 * If the DTE is valid then delegate the removal of the sub
   3211 		 * range to pmap_remove_b(), which can remove addresses at
   3212 		 * a finer granularity.
   3213 		 */
   3214 		if (MMU_VALID_DT(*a_dte)) {
   3215 			b_dte = mmu_ptov(a_dte->addr.raw);
   3216 			b_tbl = mmuB2tmgr(b_dte);
   3217 
   3218 			/*
   3219 			 * The sub range to be removed starts at the start
   3220 			 * of the full range we were asked to remove, and ends
   3221 			 * at the greater of:
   3222 			 * 1. The end of the full range, -or-
   3223 			 * 2. The end of the full range, rounded down to the
   3224 			 *    nearest granularity boundary.
   3225 			 */
   3226 			if (end < nstart)
   3227 				empty = pmap_remove_b(b_tbl, start, end);
   3228 			else
   3229 				empty = pmap_remove_b(b_tbl, start, nstart);
   3230 
   3231 			/*
   3232 			 * If the removal resulted in an empty B table,
   3233 			 * invalidate the DTE that points to it and decrement
   3234 			 * the valid entry count of the A table.
   3235 			 */
   3236 			if (empty) {
   3237 				a_dte->attr.raw = MMU_DT_INVALID;
   3238 				a_tbl->at_ecnt--;
   3239 			}
   3240 		}
   3241 		/*
   3242 		 * If the DTE is invalid, the address range is already non-
   3243 		 * existant and can simply be skipped.
   3244 		 */
   3245 	}
   3246 	if (nstart < nend) {
   3247 		/*
   3248 		 * This block is executed if the range spans a whole number
   3249 		 * multiple of granules (A table entries.)
   3250 		 *
   3251 		 * First find the DTE which is responsible for mapping
   3252 		 * the start of the first granule involved.
   3253 		 */
   3254 		idx = MMU_TIA(nstart);
   3255 		a_dte = &a_tbl->at_dtbl[idx];
   3256 
   3257 		/*
   3258 		 * Remove entire sub-granules (B tables) one at a time,
   3259 		 * until reaching the end of the range.
   3260 		 */
   3261 		for (; nstart < nend; a_dte++, nstart += MMU_TIA_RANGE)
   3262 			if (MMU_VALID_DT(*a_dte)) {
   3263 				/*
   3264 				 * Find the B table manager for the
   3265 				 * entry and free it.
   3266 				 */
   3267 				b_dte = mmu_ptov(a_dte->addr.raw);
   3268 				b_tbl = mmuB2tmgr(b_dte);
   3269 				free_b_table(b_tbl, TRUE);
   3270 
   3271 				/*
   3272 				 * Invalidate the DTE that points to the
   3273 				 * B table and decrement the valid entry
   3274 				 * count of the A table.
   3275 				 */
   3276 				a_dte->attr.raw = MMU_DT_INVALID;
   3277 				a_tbl->at_ecnt--;
   3278 			}
   3279 	}
   3280 	if (nend < end) {
   3281 		/*
   3282 		 * This block is executed if the range ends beyond a
   3283 		 * granularity boundary.
   3284 		 *
   3285 		 * First find the DTE which is responsible for mapping
   3286 		 * the start of the nearest (rounded down) granularity
   3287 		 * boundary.
   3288 		 */
   3289 		idx = MMU_TIA(nend);
   3290 		a_dte = &a_tbl->at_dtbl[idx];
   3291 
   3292 		/*
   3293 		 * If the DTE is valid then delegate the removal of the sub
   3294 		 * range to pmap_remove_b(), which can remove addresses at
   3295 		 * a finer granularity.
   3296 		 */
   3297 		if (MMU_VALID_DT(*a_dte)) {
   3298 			/*
   3299 			 * Find the B table manager for the entry
   3300 			 * and hand it to pmap_remove_b() along with
   3301 			 * the sub range.
   3302 			 */
   3303 			b_dte = mmu_ptov(a_dte->addr.raw);
   3304 			b_tbl = mmuB2tmgr(b_dte);
   3305 
   3306 			empty = pmap_remove_b(b_tbl, nend, end);
   3307 
   3308 			/*
   3309 			 * If the removal resulted in an empty B table,
   3310 			 * invalidate the DTE that points to it and decrement
   3311 			 * the valid entry count of the A table.
   3312 			 */
   3313 			if (empty) {
   3314 				a_dte->attr.raw = MMU_DT_INVALID;
   3315 				a_tbl->at_ecnt--;
   3316 			}
   3317 		}
   3318 	}
   3319 
   3320 	/*
   3321 	 * If there are no more entries in the A table, release it
   3322 	 * back to the available pool and return TRUE.
   3323 	 */
   3324 	if (a_tbl->at_ecnt == 0) {
   3325 		a_tbl->at_parent = NULL;
   3326 		TAILQ_REMOVE(&a_pool, a_tbl, at_link);
   3327 		TAILQ_INSERT_HEAD(&a_pool, a_tbl, at_link);
   3328 		empty = TRUE;
   3329 	} else {
   3330 		empty = FALSE;
   3331 	}
   3332 
   3333 	return empty;
   3334 }
   3335 
   3336 /* pmap_remove_b			INTERNAL
   3337  **
   3338  * Remove a range of addresses from an address space, trying to remove entire
   3339  * C tables if possible.
   3340  *
   3341  * If the operation results in an empty B table, the function returns TRUE.
   3342  */
   3343 boolean_t
   3344 pmap_remove_b(b_tbl, start, end)
   3345 	b_tmgr_t *b_tbl;
   3346 	vm_offset_t start;
   3347 	vm_offset_t end;
   3348 {
   3349 	boolean_t empty;
   3350 	int idx;
   3351 	vm_offset_t nstart, nend, rstart;
   3352 	c_tmgr_t *c_tbl;
   3353 	mmu_short_dte_t  *b_dte;
   3354 	mmu_short_pte_t  *c_dte;
   3355 
   3356 
   3357 	nstart = MMU_ROUND_UP_B(start);
   3358 	nend = MMU_ROUND_B(end);
   3359 
   3360 	if (start < nstart) {
   3361 		idx = MMU_TIB(start);
   3362 		b_dte = &b_tbl->bt_dtbl[idx];
   3363 		if (MMU_VALID_DT(*b_dte)) {
   3364 			c_dte = mmu_ptov(MMU_DTE_PA(*b_dte));
   3365 			c_tbl = mmuC2tmgr(c_dte);
   3366 			if (end < nstart)
   3367 				empty = pmap_remove_c(c_tbl, start, end);
   3368 			else
   3369 				empty = pmap_remove_c(c_tbl, start, nstart);
   3370 			if (empty) {
   3371 				b_dte->attr.raw = MMU_DT_INVALID;
   3372 				b_tbl->bt_ecnt--;
   3373 			}
   3374 		}
   3375 	}
   3376 	if (nstart < nend) {
   3377 		idx = MMU_TIB(nstart);
   3378 		b_dte = &b_tbl->bt_dtbl[idx];
   3379 		rstart = nstart;
   3380 		while (rstart < nend) {
   3381 			if (MMU_VALID_DT(*b_dte)) {
   3382 				c_dte = mmu_ptov(MMU_DTE_PA(*b_dte));
   3383 				c_tbl = mmuC2tmgr(c_dte);
   3384 				free_c_table(c_tbl, TRUE);
   3385 				b_dte->attr.raw = MMU_DT_INVALID;
   3386 				b_tbl->bt_ecnt--;
   3387 			}
   3388 			b_dte++;
   3389 			rstart += MMU_TIB_RANGE;
   3390 		}
   3391 	}
   3392 	if (nend < end) {
   3393 		idx = MMU_TIB(nend);
   3394 		b_dte = &b_tbl->bt_dtbl[idx];
   3395 		if (MMU_VALID_DT(*b_dte)) {
   3396 			c_dte = mmu_ptov(MMU_DTE_PA(*b_dte));
   3397 			c_tbl = mmuC2tmgr(c_dte);
   3398 			empty = pmap_remove_c(c_tbl, nend, end);
   3399 			if (empty) {
   3400 				b_dte->attr.raw = MMU_DT_INVALID;
   3401 				b_tbl->bt_ecnt--;
   3402 			}
   3403 		}
   3404 	}
   3405 
   3406 	if (b_tbl->bt_ecnt == 0) {
   3407 		b_tbl->bt_parent = NULL;
   3408 		TAILQ_REMOVE(&b_pool, b_tbl, bt_link);
   3409 		TAILQ_INSERT_HEAD(&b_pool, b_tbl, bt_link);
   3410 		empty = TRUE;
   3411 	} else {
   3412 		empty = FALSE;
   3413 	}
   3414 
   3415 	return empty;
   3416 }
   3417 
   3418 /* pmap_remove_c			INTERNAL
   3419  **
   3420  * Remove a range of addresses from the given C table.
   3421  */
   3422 boolean_t
   3423 pmap_remove_c(c_tbl, start, end)
   3424 	c_tmgr_t *c_tbl;
   3425 	vm_offset_t start;
   3426 	vm_offset_t end;
   3427 {
   3428 	boolean_t empty;
   3429 	int idx;
   3430 	mmu_short_pte_t *c_pte;
   3431 
   3432 	idx = MMU_TIC(start);
   3433 	c_pte = &c_tbl->ct_dtbl[idx];
   3434 	for (;start < end; start += MMU_PAGE_SIZE, c_pte++) {
   3435 		if (MMU_VALID_DT(*c_pte)) {
   3436 			pmap_remove_pte(c_pte);
   3437 			c_tbl->ct_ecnt--;
   3438 		}
   3439 	}
   3440 
   3441 	if (c_tbl->ct_ecnt == 0) {
   3442 		c_tbl->ct_parent = NULL;
   3443 		TAILQ_REMOVE(&c_pool, c_tbl, ct_link);
   3444 		TAILQ_INSERT_HEAD(&c_pool, c_tbl, ct_link);
   3445 		empty = TRUE;
   3446 	} else {
   3447 		empty = FALSE;
   3448 	}
   3449 
   3450 	return empty;
   3451 }
   3452 
   3453 /* is_managed				INTERNAL
   3454  **
   3455  * Determine if the given physical address is managed by the PV system.
   3456  * Note that this logic assumes that no one will ask for the status of
   3457  * addresses which lie in-between the memory banks on the 3/80.  If they
   3458  * do so, it will falsely report that it is managed.
   3459  *
   3460  * Note: A "managed" address is one that was reported to the VM system as
   3461  * a "usable page" during system startup.  As such, the VM system expects the
   3462  * pmap module to keep an accurate track of the useage of those pages.
   3463  * Any page not given to the VM system at startup does not exist (as far as
   3464  * the VM system is concerned) and is therefore "unmanaged."  Examples are
   3465  * those pages which belong to the ROM monitor and the memory allocated before
   3466  * the VM system was started.
   3467  */
   3468 boolean_t
   3469 is_managed(pa)
   3470 	vm_offset_t pa;
   3471 {
   3472 	if (pa >= avail_start && pa < avail_end)
   3473 		return TRUE;
   3474 	else
   3475 		return FALSE;
   3476 }
   3477 
   3478 /* pmap_bootstrap_alloc			INTERNAL
   3479  **
   3480  * Used internally for memory allocation at startup when malloc is not
   3481  * available.  This code will fail once it crosses the first memory
   3482  * bank boundary on the 3/80.  Hopefully by then however, the VM system
   3483  * will be in charge of allocation.
   3484  */
   3485 void *
   3486 pmap_bootstrap_alloc(size)
   3487 	int size;
   3488 {
   3489 	void *rtn;
   3490 
   3491 #ifdef	PMAP_DEBUG
   3492 	if (bootstrap_alloc_enabled == FALSE) {
   3493 		mon_printf("pmap_bootstrap_alloc: disabled\n");
   3494 		sunmon_abort();
   3495 	}
   3496 #endif
   3497 
   3498 	rtn = (void *) virtual_avail;
   3499 	virtual_avail += size;
   3500 
   3501 #ifdef	PMAP_DEBUG
   3502 	if (virtual_avail > virtual_contig_end) {
   3503 		mon_printf("pmap_bootstrap_alloc: out of mem\n");
   3504 		sunmon_abort();
   3505 	}
   3506 #endif
   3507 
   3508 	return rtn;
   3509 }
   3510 
   3511 /* pmap_bootstap_aalign			INTERNAL
   3512  **
   3513  * Used to insure that the next call to pmap_bootstrap_alloc() will
   3514  * return a chunk of memory aligned to the specified size.
   3515  *
   3516  * Note: This function will only support alignment sizes that are powers
   3517  * of two.
   3518  */
   3519 void
   3520 pmap_bootstrap_aalign(size)
   3521 	int size;
   3522 {
   3523 	int off;
   3524 
   3525 	off = virtual_avail & (size - 1);
   3526 	if (off) {
   3527 		(void) pmap_bootstrap_alloc(size - off);
   3528 	}
   3529 }
   3530 
   3531 /* pmap_pa_exists
   3532  **
   3533  * Used by the /dev/mem driver to see if a given PA is memory
   3534  * that can be mapped.  (The PA is not in a hole.)
   3535  */
   3536 int
   3537 pmap_pa_exists(pa)
   3538 	vm_offset_t pa;
   3539 {
   3540 	register int i;
   3541 
   3542 	for (i = 0; i < SUN3X_NPHYS_RAM_SEGS; i++) {
   3543 		if ((pa >= avail_mem[i].pmem_start) &&
   3544 			(pa <  avail_mem[i].pmem_end))
   3545 			return (1);
   3546 		if (avail_mem[i].pmem_next == NULL)
   3547 			break;
   3548 	}
   3549 	return (0);
   3550 }
   3551 
   3552 /* Called only from locore.s and pmap.c */
   3553 void	_pmap_switch __P((pmap_t pmap));
   3554 
   3555 /*
   3556  * _pmap_switch			INTERNAL
   3557  *
   3558  * This is called by locore.s:cpu_switch() when it is
   3559  * switching to a new process.  Load new translations.
   3560  * Note: done in-line by locore.s unless PMAP_DEBUG
   3561  *
   3562  * Note that we do NOT allocate a context here, but
   3563  * share the "kernel only" context until we really
   3564  * need our own context for user-space mappings in
   3565  * pmap_enter_user().  [ s/context/mmu A table/ ]
   3566  */
   3567 void
   3568 _pmap_switch(pmap)
   3569 	pmap_t pmap;
   3570 {
   3571 	u_long rootpa;
   3572 
   3573 	/*
   3574 	 * Only do reload/flush if we have to.
   3575 	 * Note that if the old and new process
   3576 	 * were BOTH using the "null" context,
   3577 	 * then this will NOT flush the TLB.
   3578 	 */
   3579 	rootpa = pmap->pm_a_phys;
   3580 	if (kernel_crp.rp_addr != rootpa) {
   3581 		DPRINT(("pmap_activate(%p)\n", pmap));
   3582 		kernel_crp.rp_addr = rootpa;
   3583 		loadcrp(&kernel_crp);
   3584 		TBIAU();
   3585 	}
   3586 }
   3587 
   3588 /*
   3589  * Exported version of pmap_activate().  This is called from the
   3590  * machine-independent VM code when a process is given a new pmap.
   3591  * If (p == curproc) do like cpu_switch would do; otherwise just
   3592  * take this as notification that the process has a new pmap.
   3593  */
   3594 void
   3595 pmap_activate(p)
   3596 	struct proc *p;
   3597 {
   3598 	pmap_t pmap = p->p_vmspace->vm_map.pmap;
   3599 	int s;
   3600 
   3601 	if (p == curproc) {
   3602 		s = splimp();
   3603 		_pmap_switch(pmap);
   3604 		splx(s);
   3605 	}
   3606 }
   3607 
   3608 /*
   3609  * pmap_deactivate			INTERFACE
   3610  **
   3611  * This is called to deactivate the specified process's address space.
   3612  * XXX The semantics of this function are currently not well-defined.
   3613  */
   3614 void
   3615 pmap_deactivate(p)
   3616 struct proc *p;
   3617 {
   3618 	/* not implemented. */
   3619 }
   3620 
   3621 /* pmap_update
   3622  **
   3623  * Apply any delayed changes scheduled for all pmaps immediately.
   3624  *
   3625  * No delayed operations are currently done in this pmap.
   3626  */
   3627 void
   3628 pmap_update()
   3629 {
   3630 	/* not implemented. */
   3631 }
   3632 
   3633 /*
   3634  * Fill in the sun3x-specific part of the kernel core header
   3635  * for dumpsys().  (See machdep.c for the rest.)
   3636  */
   3637 void
   3638 pmap_kcore_hdr(sh)
   3639 	struct sun3x_kcore_hdr *sh;
   3640 {
   3641 	u_long spa, len;
   3642 	int i;
   3643 
   3644 	sh->pg_frame = MMU_SHORT_PTE_BASEADDR;
   3645 	sh->pg_valid = MMU_DT_PAGE;
   3646 	sh->contig_end = virtual_contig_end;
   3647 	sh->kernCbase = (u_long) kernCbase;
   3648 	for (i = 0; i < SUN3X_NPHYS_RAM_SEGS; i++) {
   3649 		spa = avail_mem[i].pmem_start;
   3650 		spa = m68k_trunc_page(spa);
   3651 		len = avail_mem[i].pmem_end - spa;
   3652 		len = m68k_round_page(len);
   3653 		sh->ram_segs[i].start = spa;
   3654 		sh->ram_segs[i].size  = len;
   3655 	}
   3656 }
   3657 
   3658 
   3659 /* pmap_virtual_space			INTERFACE
   3660  **
   3661  * Return the current available range of virtual addresses in the
   3662  * arguuments provided.  Only really called once.
   3663  */
   3664 void
   3665 pmap_virtual_space(vstart, vend)
   3666 	vm_offset_t *vstart, *vend;
   3667 {
   3668 	*vstart = virtual_avail;
   3669 	*vend = virtual_end;
   3670 }
   3671 
   3672 #if defined(MACHINE_NEW_NONCONTIG)
   3673 
   3674 /*
   3675  * Provide memory to the VM system.
   3676  *
   3677  * Assume avail_start is always in the
   3678  * first segment as pmap_bootstrap does.
   3679  */
   3680 static void
   3681 pmap_page_upload()
   3682 {
   3683 	vm_offset_t	a, b;	/* memory range */
   3684 	int i;
   3685 
   3686 	/* Supply the memory in segments. */
   3687 	for (i = 0; i < SUN3X_NPHYS_RAM_SEGS; i++) {
   3688 		a = atop(avail_mem[i].pmem_start);
   3689 		b = atop(avail_mem[i].pmem_end);
   3690 		if (i == 0)
   3691 			a = atop(avail_start);
   3692 
   3693 #if defined(UVM)
   3694 		uvm_page_physload(a, b, a, b, VM_FREELIST_DEFAULT);
   3695 #else
   3696 		vm_page_physload(a, b, a, b);
   3697 #endif
   3698 
   3699 		if (avail_mem[i].pmem_next == NULL)
   3700 			break;
   3701 	}
   3702 }
   3703 
   3704 #else	/* MACHINE_NEW_NONCONTIG */
   3705 
   3706 /* pmap_free_pages			INTERFACE
   3707  **
   3708  * Return the number of physical pages still available.
   3709  *
   3710  * This is probably going to be a mess, but it's only called
   3711  * once and it's the only function left that I have to implement!
   3712  */
   3713 u_int
   3714 pmap_free_pages()
   3715 {
   3716 	int i;
   3717 	u_int left;
   3718 	vm_offset_t avail;
   3719 
   3720 	avail = avail_next;
   3721 	left = 0;
   3722 	i = 0;
   3723 	while (avail >= avail_mem[i].pmem_end) {
   3724 		if (avail_mem[i].pmem_next == NULL)
   3725 			return 0;
   3726 		i++;
   3727 	}
   3728 	while (i < SUN3X_NPHYS_RAM_SEGS) {
   3729 		if (avail < avail_mem[i].pmem_start) {
   3730 			/* Avail is inside a hole, march it
   3731 			 * up to the next bank.
   3732 			 */
   3733 			avail = avail_mem[i].pmem_start;
   3734 		}
   3735 		left += m68k_btop(avail_mem[i].pmem_end - avail);
   3736 		if (avail_mem[i].pmem_next == NULL)
   3737 			break;
   3738 		i++;
   3739 	}
   3740 
   3741 	return left;
   3742 }
   3743 
   3744 /* pmap_next_page			INTERFACE
   3745  **
   3746  * Place the physical address of the next available page in the
   3747  * argument given.  Returns FALSE if there are no more pages left.
   3748  *
   3749  * This function must jump over any holes in physical memory.
   3750  * Once this function is used, any use of pmap_bootstrap_alloc()
   3751  * is a sin.  Sinners will be punished with erratic behavior.
   3752  */
   3753 boolean_t
   3754 pmap_next_page(pa)
   3755 	vm_offset_t *pa;
   3756 {
   3757 	static struct pmap_physmem_struct *curbank = avail_mem;
   3758 
   3759 	/* XXX - temporary ROM saving hack. */
   3760 	if (avail_next >= avail_end)
   3761 		return FALSE;
   3762 
   3763 	if (avail_next >= curbank->pmem_end)
   3764 		if (curbank->pmem_next == NULL)
   3765 			return FALSE;
   3766 		else {
   3767 			curbank = curbank->pmem_next;
   3768 			avail_next = curbank->pmem_start;
   3769 		}
   3770 
   3771 	*pa = avail_next;
   3772 	avail_next += NBPG;
   3773 	return TRUE;
   3774 }
   3775 
   3776 #endif /* ! MACHINE_NEW_NONCONTIG */
   3777 
   3778 /* pmap_page_index			INTERFACE
   3779  **
   3780  * Return the index of the given physical page in a list of useable
   3781  * physical pages in the system.  Holes in physical memory may be counted
   3782  * if so desired.  As long as pmap_free_pages() and pmap_page_index()
   3783  * agree as to whether holes in memory do or do not count as valid pages,
   3784  * it really doesn't matter.  However, if you like to save a little
   3785  * memory, don't count holes as valid pages.  This is even more true when
   3786  * the holes are large.
   3787  *
   3788  * We will not count holes as valid pages.  We can generate page indices
   3789  * that conform to this by using the memory bank structures initialized
   3790  * in pmap_alloc_pv().
   3791  */
   3792 int
   3793 pmap_page_index(pa)
   3794 	vm_offset_t pa;
   3795 {
   3796 	struct pmap_physmem_struct *bank = avail_mem;
   3797 	vm_offset_t off;
   3798 
   3799 	/* Search for the memory bank with this page. */
   3800 	/* XXX - What if it is not physical memory? */
   3801 	while (pa > bank->pmem_end)
   3802 		bank = bank->pmem_next;
   3803 	off = pa - bank->pmem_start;
   3804 
   3805 	return (bank->pmem_pvbase + m68k_btop(off));
   3806 }
   3807 
   3808 /* pmap_count			INTERFACE
   3809  **
   3810  * Return the number of resident (valid) pages in the given pmap.
   3811  *
   3812  * Note:  If this function is handed the kernel map, it will report
   3813  * that it has no mappings.  Hopefully the VM system won't ask for kernel
   3814  * map statistics.
   3815  */
   3816 segsz_t
   3817 pmap_count(pmap, type)
   3818 	pmap_t pmap;
   3819 	int    type;
   3820 {
   3821 	u_int     count;
   3822 	int       a_idx, b_idx;
   3823 	a_tmgr_t *a_tbl;
   3824 	b_tmgr_t *b_tbl;
   3825 	c_tmgr_t *c_tbl;
   3826 
   3827 	/*
   3828 	 * If the pmap does not have its own A table manager, it has no
   3829 	 * valid entires.
   3830 	 */
   3831 	if (pmap->pm_a_tmgr == NULL)
   3832 		return 0;
   3833 
   3834 	a_tbl = pmap->pm_a_tmgr;
   3835 
   3836 	count = 0;
   3837 	for (a_idx = 0; a_idx < MMU_TIA(KERNBASE); a_idx++) {
   3838 	    if (MMU_VALID_DT(a_tbl->at_dtbl[a_idx])) {
   3839 	        b_tbl = mmuB2tmgr(mmu_ptov(a_tbl->at_dtbl[a_idx].addr.raw));
   3840 	        for (b_idx = 0; b_idx < MMU_B_TBL_SIZE; b_idx++) {
   3841 	            if (MMU_VALID_DT(b_tbl->bt_dtbl[b_idx])) {
   3842 	                c_tbl = mmuC2tmgr(
   3843 	                    mmu_ptov(MMU_DTE_PA(b_tbl->bt_dtbl[b_idx])));
   3844 	                if (type == 0)
   3845 	                    /*
   3846 	                     * A resident entry count has been requested.
   3847 	                     */
   3848 	                    count += c_tbl->ct_ecnt;
   3849 	                else
   3850 	                    /*
   3851 	                     * A wired entry count has been requested.
   3852 	                     */
   3853 	                    count += c_tbl->ct_wcnt;
   3854 	            }
   3855 	        }
   3856 	    }
   3857 	}
   3858 
   3859 	return count;
   3860 }
   3861 
   3862 /************************ SUN3 COMPATIBILITY ROUTINES ********************
   3863  * The following routines are only used by DDB for tricky kernel text    *
   3864  * text operations in db_memrw.c.  They are provided for sun3            *
   3865  * compatibility.                                                        *
   3866  *************************************************************************/
   3867 /* get_pte			INTERNAL
   3868  **
   3869  * Return the page descriptor the describes the kernel mapping
   3870  * of the given virtual address.
   3871  */
   3872 extern u_long ptest_addr __P((u_long));	/* XXX: locore.s */
   3873 u_int
   3874 get_pte(va)
   3875 	vm_offset_t va;
   3876 {
   3877 	u_long pte_pa;
   3878 	mmu_short_pte_t *pte;
   3879 
   3880 	/* Get the physical address of the PTE */
   3881 	pte_pa = ptest_addr(va & ~PGOFSET);
   3882 
   3883 	/* Convert to a virtual address... */
   3884 	pte = (mmu_short_pte_t *) (KERNBASE + pte_pa);
   3885 
   3886 	/* Make sure it is in our level-C tables... */
   3887 	if ((pte < kernCbase) ||
   3888 		(pte >= &mmuCbase[NUM_USER_PTES]))
   3889 		return 0;
   3890 
   3891 	/* ... and just return its contents. */
   3892 	return (pte->attr.raw);
   3893 }
   3894 
   3895 
   3896 /* set_pte			INTERNAL
   3897  **
   3898  * Set the page descriptor that describes the kernel mapping
   3899  * of the given virtual address.
   3900  */
   3901 void
   3902 set_pte(va, pte)
   3903 	vm_offset_t va;
   3904 	u_int pte;
   3905 {
   3906 	u_long idx;
   3907 
   3908 	if (va < KERNBASE)
   3909 		return;
   3910 
   3911 	idx = (unsigned long) m68k_btop(va - KERNBASE);
   3912 	kernCbase[idx].attr.raw = pte;
   3913 	TBIS(va);
   3914 }
   3915 
   3916 #ifdef	PMAP_DEBUG
   3917 /************************** DEBUGGING ROUTINES **************************
   3918  * The following routines are meant to be an aid to debugging the pmap  *
   3919  * system.  They are callable from the DDB command line and should be   *
   3920  * prepared to be handed unstable or incomplete states of the system.   *
   3921  ************************************************************************/
   3922 
   3923 /* pv_list
   3924  **
   3925  * List all pages found on the pv list for the given physical page.
   3926  * To avoid endless loops, the listing will stop at the end of the list
   3927  * or after 'n' entries - whichever comes first.
   3928  */
   3929 void
   3930 pv_list(pa, n)
   3931 	vm_offset_t pa;
   3932 	int n;
   3933 {
   3934 	int  idx;
   3935 	vm_offset_t va;
   3936 	pv_t *pv;
   3937 	c_tmgr_t *c_tbl;
   3938 	pmap_t pmap;
   3939 
   3940 	pv = pa2pv(pa);
   3941 	idx = pv->pv_idx;
   3942 
   3943 	for (;idx != PVE_EOL && n > 0;
   3944 		 idx=pvebase[idx].pve_next, n--) {
   3945 
   3946 		va = pmap_get_pteinfo(idx, &pmap, &c_tbl);
   3947 		printf("idx %d, pmap 0x%x, va 0x%x, c_tbl %x\n",
   3948 			idx, (u_int) pmap, (u_int) va, (u_int) c_tbl);
   3949 	}
   3950 }
   3951 #endif	/* PMAP_DEBUG */
   3952 
   3953 #ifdef NOT_YET
   3954 /* and maybe not ever */
   3955 /************************** LOW-LEVEL ROUTINES **************************
   3956  * These routines will eventualy be re-written into assembly and placed *
   3957  * in locore.s.  They are here now as stubs so that the pmap module can *
   3958  * be linked as a standalone user program for testing.                  *
   3959  ************************************************************************/
   3960 /* flush_atc_crp			INTERNAL
   3961  **
   3962  * Flush all page descriptors derived from the given CPU Root Pointer
   3963  * (CRP), or 'A' table as it is known here, from the 68851's automatic
   3964  * cache.
   3965  */
   3966 void
   3967 flush_atc_crp(a_tbl)
   3968 {
   3969 	mmu_long_rp_t rp;
   3970 
   3971 	/* Create a temporary root table pointer that points to the
   3972 	 * given A table.
   3973 	 */
   3974 	rp.attr.raw = ~MMU_LONG_RP_LU;
   3975 	rp.addr.raw = (unsigned int) a_tbl;
   3976 
   3977 	mmu_pflushr(&rp);
   3978 	/* mmu_pflushr:
   3979 	 * 	movel   sp(4)@,a0
   3980 	 * 	pflushr a0@
   3981 	 *	rts
   3982 	 */
   3983 }
   3984 #endif /* NOT_YET */
   3985