Home | History | Annotate | Line # | Download | only in sun3x
pmap.c revision 1.40
      1 /*	$NetBSD: pmap.c,v 1.40 1998/12/12 05:25:01 gwr Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1996, 1997 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jeremy Cooper.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  * 3. All advertising materials mentioning features or use of this software
     19  *    must display the following acknowledgement:
     20  *        This product includes software developed by the NetBSD
     21  *        Foundation, Inc. and its contributors.
     22  * 4. Neither the name of The NetBSD Foundation nor the names of its
     23  *    contributors may be used to endorse or promote products derived
     24  *    from this software without specific prior written permission.
     25  *
     26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36  * POSSIBILITY OF SUCH DAMAGE.
     37  */
     38 
     39 /*
     40  * XXX These comments aren't quite accurate.  Need to change.
     41  * The sun3x uses the MC68851 Memory Management Unit, which is built
     42  * into the CPU.  The 68851 maps virtual to physical addresses using
     43  * a multi-level table lookup, which is stored in the very memory that
     44  * it maps.  The number of levels of lookup is configurable from one
     45  * to four.  In this implementation, we use three, named 'A' through 'C'.
     46  *
     47  * The MMU translates virtual addresses into physical addresses by
     48  * traversing these tables in a proccess called a 'table walk'.  The most
     49  * significant 7 bits of the Virtual Address ('VA') being translated are
     50  * used as an index into the level A table, whose base in physical memory
     51  * is stored in a special MMU register, the 'CPU Root Pointer' or CRP.  The
     52  * address found at that index in the A table is used as the base
     53  * address for the next table, the B table.  The next six bits of the VA are
     54  * used as an index into the B table, which in turn gives the base address
     55  * of the third and final C table.
     56  *
     57  * The next six bits of the VA are used as an index into the C table to
     58  * locate a Page Table Entry (PTE).  The PTE is a physical address in memory
     59  * to which the remaining 13 bits of the VA are added, producing the
     60  * mapped physical address.
     61  *
     62  * To map the entire memory space in this manner would require 2114296 bytes
     63  * of page tables per process - quite expensive.  Instead we will
     64  * allocate a fixed but considerably smaller space for the page tables at
     65  * the time the VM system is initialized.  When the pmap code is asked by
     66  * the kernel to map a VA to a PA, it allocates tables as needed from this
     67  * pool.  When there are no more tables in the pool, tables are stolen
     68  * from the oldest mapped entries in the tree.  This is only possible
     69  * because all memory mappings are stored in the kernel memory map
     70  * structures, independent of the pmap structures.  A VA which references
     71  * one of these invalidated maps will cause a page fault.  The kernel
     72  * will determine that the page fault was caused by a task using a valid
     73  * VA, but for some reason (which does not concern it), that address was
     74  * not mapped.  It will ask the pmap code to re-map the entry and then
     75  * it will resume executing the faulting task.
     76  *
     77  * In this manner the most efficient use of the page table space is
     78  * achieved.  Tasks which do not execute often will have their tables
     79  * stolen and reused by tasks which execute more frequently.  The best
     80  * size for the page table pool will probably be determined by
     81  * experimentation.
     82  *
     83  * You read all of the comments so far.  Good for you.
     84  * Now go play!
     85  */
     86 
     87 /*** A Note About the 68851 Address Translation Cache
     88  * The MC68851 has a 64 entry cache, called the Address Translation Cache
     89  * or 'ATC'.  This cache stores the most recently used page descriptors
     90  * accessed by the MMU when it does translations.  Using a marker called a
     91  * 'task alias' the MMU can store the descriptors from 8 different table
     92  * spaces concurrently.  The task alias is associated with the base
     93  * address of the level A table of that address space.  When an address
     94  * space is currently active (the CRP currently points to its A table)
     95  * the only cached descriptors that will be obeyed are ones which have a
     96  * matching task alias of the current space associated with them.
     97  *
     98  * Since the cache is always consulted before any table lookups are done,
     99  * it is important that it accurately reflect the state of the MMU tables.
    100  * Whenever a change has been made to a table that has been loaded into
    101  * the MMU, the code must be sure to flush any cached entries that are
    102  * affected by the change.  These instances are documented in the code at
    103  * various points.
    104  */
    105 /*** A Note About the Note About the 68851 Address Translation Cache
    106  * 4 months into this code I discovered that the sun3x does not have
    107  * a MC68851 chip. Instead, it has a version of this MMU that is part of the
    108  * the 68030 CPU.
    109  * All though it behaves very similarly to the 68851, it only has 1 task
    110  * alias and a 22 entry cache.  So sadly (or happily), the first paragraph
    111  * of the previous note does not apply to the sun3x pmap.
    112  */
    113 
    114 #include "opt_uvm.h"
    115 
    116 #include <sys/param.h>
    117 #include <sys/systm.h>
    118 #include <sys/proc.h>
    119 #include <sys/malloc.h>
    120 #include <sys/user.h>
    121 #include <sys/queue.h>
    122 #include <sys/kcore.h>
    123 
    124 #include <vm/vm.h>
    125 #include <vm/vm_kern.h>
    126 #include <vm/vm_page.h>
    127 
    128 #if defined(UVM)
    129 #include <uvm/uvm.h>
    130 /* XXX - Gratuitous name changes... */
    131 #define vm_set_page_size uvm_setpagesize
    132 /* XXX - Pager hacks... (explain?) */
    133 #define PAGER_SVA (uvm.pager_sva)
    134 #define PAGER_EVA (uvm.pager_eva)
    135 #else	/* UVM */
    136 extern vm_offset_t pager_sva, pager_eva;
    137 #define PAGER_SVA (pager_sva)
    138 #define PAGER_EVA (pager_eva)
    139 #endif	/* UVM */
    140 
    141 #include <machine/cpu.h>
    142 #include <machine/kcore.h>
    143 #include <machine/mon.h>
    144 #include <machine/pmap.h>
    145 #include <machine/pte.h>
    146 #include <machine/vmparam.h>
    147 
    148 #include <sun3/sun3/cache.h>
    149 #include <sun3/sun3/machdep.h>
    150 
    151 #include "pmap_pvt.h"
    152 
    153 /* XXX - What headers declare these? */
    154 extern struct pcb *curpcb;
    155 extern int physmem;
    156 
    157 extern void copypage __P((const void*, void*));
    158 extern void zeropage __P((void*));
    159 
    160 /* Defined in locore.s */
    161 extern char kernel_text[];
    162 
    163 /* Defined by the linker */
    164 extern char etext[], edata[], end[];
    165 extern char *esym;	/* DDB */
    166 
    167 /*************************** DEBUGGING DEFINITIONS ***********************
    168  * Macros, preprocessor defines and variables used in debugging can make *
    169  * code hard to read.  Anything used exclusively for debugging purposes  *
    170  * is defined here to avoid having such mess scattered around the file.  *
    171  *************************************************************************/
    172 #ifdef	PMAP_DEBUG
    173 /*
    174  * To aid the debugging process, macros should be expanded into smaller steps
    175  * that accomplish the same goal, yet provide convenient places for placing
    176  * breakpoints.  When this code is compiled with PMAP_DEBUG mode defined, the
    177  * 'INLINE' keyword is defined to an empty string.  This way, any function
    178  * defined to be a 'static INLINE' will become 'outlined' and compiled as
    179  * a separate function, which is much easier to debug.
    180  */
    181 #define	INLINE	/* nothing */
    182 
    183 /*
    184  * It is sometimes convenient to watch the activity of a particular table
    185  * in the system.  The following variables are used for that purpose.
    186  */
    187 a_tmgr_t *pmap_watch_atbl = 0;
    188 b_tmgr_t *pmap_watch_btbl = 0;
    189 c_tmgr_t *pmap_watch_ctbl = 0;
    190 
    191 int pmap_debug = 0;
    192 #define DPRINT(args) if (pmap_debug) printf args
    193 
    194 #else	/********** Stuff below is defined if NOT debugging **************/
    195 
    196 #define	INLINE	inline
    197 #define DPRINT(args)  /* nada */
    198 
    199 #endif	/* PMAP_DEBUG */
    200 /*********************** END OF DEBUGGING DEFINITIONS ********************/
    201 
    202 /*** Management Structure - Memory Layout
    203  * For every MMU table in the sun3x pmap system there must be a way to
    204  * manage it; we must know which process is using it, what other tables
    205  * depend on it, and whether or not it contains any locked pages.  This
    206  * is solved by the creation of 'table management'  or 'tmgr'
    207  * structures.  One for each MMU table in the system.
    208  *
    209  *                        MAP OF MEMORY USED BY THE PMAP SYSTEM
    210  *
    211  *      towards lower memory
    212  * kernAbase -> +-------------------------------------------------------+
    213  *              | Kernel     MMU A level table                          |
    214  * kernBbase -> +-------------------------------------------------------+
    215  *              | Kernel     MMU B level tables                         |
    216  * kernCbase -> +-------------------------------------------------------+
    217  *              |                                                       |
    218  *              | Kernel     MMU C level tables                         |
    219  *              |                                                       |
    220  * mmuCbase  -> +-------------------------------------------------------+
    221  *              | User       MMU C level tables                         |
    222  * mmuAbase  -> +-------------------------------------------------------+
    223  *              |                                                       |
    224  *              | User       MMU A level tables                         |
    225  *              |                                                       |
    226  * mmuBbase  -> +-------------------------------------------------------+
    227  *              | User       MMU B level tables                         |
    228  * tmgrAbase -> +-------------------------------------------------------+
    229  *              |  TMGR A level table structures                        |
    230  * tmgrBbase -> +-------------------------------------------------------+
    231  *              |  TMGR B level table structures                        |
    232  * tmgrCbase -> +-------------------------------------------------------+
    233  *              |  TMGR C level table structures                        |
    234  * pvbase    -> +-------------------------------------------------------+
    235  *              |  Physical to Virtual mapping table (list heads)       |
    236  * pvebase   -> +-------------------------------------------------------+
    237  *              |  Physical to Virtual mapping table (list elements)    |
    238  *              |                                                       |
    239  *              +-------------------------------------------------------+
    240  *      towards higher memory
    241  *
    242  * For every A table in the MMU A area, there will be a corresponding
    243  * a_tmgr structure in the TMGR A area.  The same will be true for
    244  * the B and C tables.  This arrangement will make it easy to find the
    245  * controling tmgr structure for any table in the system by use of
    246  * (relatively) simple macros.
    247  */
    248 
    249 /*
    250  * Global variables for storing the base addresses for the areas
    251  * labeled above.
    252  */
    253 static vm_offset_t  	kernAphys;
    254 static mmu_long_dte_t	*kernAbase;
    255 static mmu_short_dte_t	*kernBbase;
    256 static mmu_short_pte_t	*kernCbase;
    257 static mmu_short_pte_t	*mmuCbase;
    258 static mmu_short_dte_t	*mmuBbase;
    259 static mmu_long_dte_t	*mmuAbase;
    260 static a_tmgr_t		*Atmgrbase;
    261 static b_tmgr_t		*Btmgrbase;
    262 static c_tmgr_t		*Ctmgrbase;
    263 static pv_t 		*pvbase;
    264 static pv_elem_t	*pvebase;
    265 struct pmap 		kernel_pmap;
    266 
    267 /*
    268  * This holds the CRP currently loaded into the MMU.
    269  */
    270 struct mmu_rootptr kernel_crp;
    271 
    272 /*
    273  * Just all around global variables.
    274  */
    275 static TAILQ_HEAD(a_pool_head_struct, a_tmgr_struct) a_pool;
    276 static TAILQ_HEAD(b_pool_head_struct, b_tmgr_struct) b_pool;
    277 static TAILQ_HEAD(c_pool_head_struct, c_tmgr_struct) c_pool;
    278 
    279 
    280 /*
    281  * Flags used to mark the safety/availability of certain operations or
    282  * resources.
    283  */
    284 static boolean_t pv_initialized = FALSE, /* PV system has been initialized. */
    285        bootstrap_alloc_enabled = FALSE; /*Safe to use pmap_bootstrap_alloc().*/
    286 int tmp_vpages_inuse;	/* Temporary virtual pages are in use */
    287 
    288 /*
    289  * XXX:  For now, retain the traditional variables that were
    290  * used in the old pmap/vm interface (without NONCONTIG).
    291  */
    292 /* Kernel virtual address space available: */
    293 vm_offset_t	virtual_avail, virtual_end;
    294 /* Physical address space available: */
    295 vm_offset_t	avail_start, avail_end;
    296 
    297 /* This keep track of the end of the contiguously mapped range. */
    298 vm_offset_t virtual_contig_end;
    299 
    300 /* Physical address used by pmap_next_page() */
    301 vm_offset_t avail_next;
    302 
    303 /* These are used by pmap_copy_page(), etc. */
    304 vm_offset_t tmp_vpages[2];
    305 
    306 /*
    307  * The 3/80 is the only member of the sun3x family that has non-contiguous
    308  * physical memory.  Memory is divided into 4 banks which are physically
    309  * locatable on the system board.  Although the size of these banks varies
    310  * with the size of memory they contain, their base addresses are
    311  * permenently fixed.  The following structure, which describes these
    312  * banks, is initialized by pmap_bootstrap() after it reads from a similar
    313  * structure provided by the ROM Monitor.
    314  *
    315  * For the other machines in the sun3x architecture which do have contiguous
    316  * RAM, this list will have only one entry, which will describe the entire
    317  * range of available memory.
    318  */
    319 struct pmap_physmem_struct avail_mem[SUN3X_NPHYS_RAM_SEGS];
    320 u_int total_phys_mem;
    321 
    322 /*************************************************************************/
    323 
    324 /*
    325  * XXX - Should "tune" these based on statistics.
    326  *
    327  * My first guess about the relative numbers of these needed is
    328  * based on the fact that a "typical" process will have several
    329  * pages mapped at low virtual addresses (text, data, bss), then
    330  * some mapped shared libraries, and then some stack pages mapped
    331  * near the high end of the VA space.  Each process can use only
    332  * one A table, and most will use only two B tables (maybe three)
    333  * and probably about four C tables.  Therefore, the first guess
    334  * at the relative numbers of these needed is 1:2:4 -gwr
    335  *
    336  * The number of C tables needed is closely related to the amount
    337  * of physical memory available plus a certain amount attributable
    338  * to the use of double mappings.  With a few simulation statistics
    339  * we can find a reasonably good estimation of this unknown value.
    340  * Armed with that and the above ratios, we have a good idea of what
    341  * is needed at each level. -j
    342  *
    343  * Note: It is not physical memory memory size, but the total mapped
    344  * virtual space required by the combined working sets of all the
    345  * currently _runnable_ processes.  (Sleeping ones don't count.)
    346  * The amount of physical memory should be irrelevant. -gwr
    347  */
    348 #ifdef	FIXED_NTABLES
    349 #define NUM_A_TABLES	16
    350 #define NUM_B_TABLES	32
    351 #define NUM_C_TABLES	64
    352 #else
    353 unsigned int	NUM_A_TABLES, NUM_B_TABLES, NUM_C_TABLES;
    354 #endif	/* FIXED_NTABLES */
    355 
    356 /*
    357  * This determines our total virtual mapping capacity.
    358  * Yes, it is a FIXED value so we can pre-allocate.
    359  */
    360 #define NUM_USER_PTES	(NUM_C_TABLES * MMU_C_TBL_SIZE)
    361 
    362 /*
    363  * The size of the Kernel Virtual Address Space (KVAS)
    364  * for purposes of MMU table allocation is -KERNBASE
    365  * (length from KERNBASE to 0xFFFFffff)
    366  */
    367 #define	KVAS_SIZE		(-KERNBASE)
    368 
    369 /* Numbers of kernel MMU tables to support KVAS_SIZE. */
    370 #define KERN_B_TABLES	(KVAS_SIZE >> MMU_TIA_SHIFT)
    371 #define KERN_C_TABLES	(KVAS_SIZE >> MMU_TIB_SHIFT)
    372 #define	NUM_KERN_PTES	(KVAS_SIZE >> MMU_TIC_SHIFT)
    373 
    374 /*************************** MISCELANEOUS MACROS *************************/
    375 #define PMAP_LOCK()	;	/* Nothing, for now */
    376 #define PMAP_UNLOCK()	;	/* same. */
    377 #define	NULL 0
    378 
    379 static INLINE void *      mmu_ptov __P((vm_offset_t pa));
    380 static INLINE vm_offset_t mmu_vtop __P((void * va));
    381 
    382 #if	0
    383 static INLINE a_tmgr_t * mmuA2tmgr __P((mmu_long_dte_t *));
    384 #endif /* 0 */
    385 static INLINE b_tmgr_t * mmuB2tmgr __P((mmu_short_dte_t *));
    386 static INLINE c_tmgr_t * mmuC2tmgr __P((mmu_short_pte_t *));
    387 
    388 static INLINE pv_t *pa2pv __P((vm_offset_t pa));
    389 static INLINE int   pteidx __P((mmu_short_pte_t *));
    390 static INLINE pmap_t current_pmap __P((void));
    391 
    392 /*
    393  * We can always convert between virtual and physical addresses
    394  * for anything in the range [KERNBASE ... avail_start] because
    395  * that range is GUARANTEED to be mapped linearly.
    396  * We rely heavily upon this feature!
    397  */
    398 static INLINE void *
    399 mmu_ptov(pa)
    400 	vm_offset_t pa;
    401 {
    402 	register vm_offset_t va;
    403 
    404 	va = (pa + KERNBASE);
    405 #ifdef	PMAP_DEBUG
    406 	if ((va < KERNBASE) || (va >= virtual_contig_end))
    407 		panic("mmu_ptov");
    408 #endif
    409 	return ((void*)va);
    410 }
    411 static INLINE vm_offset_t
    412 mmu_vtop(vva)
    413 	void *vva;
    414 {
    415 	register vm_offset_t va;
    416 
    417 	va = (vm_offset_t)vva;
    418 #ifdef	PMAP_DEBUG
    419 	if ((va < KERNBASE) || (va >= virtual_contig_end))
    420 		panic("mmu_ptov");
    421 #endif
    422 	return (va - KERNBASE);
    423 }
    424 
    425 /*
    426  * These macros map MMU tables to their corresponding manager structures.
    427  * They are needed quite often because many of the pointers in the pmap
    428  * system reference MMU tables and not the structures that control them.
    429  * There needs to be a way to find one when given the other and these
    430  * macros do so by taking advantage of the memory layout described above.
    431  * Here's a quick step through the first macro, mmuA2tmgr():
    432  *
    433  * 1) find the offset of the given MMU A table from the base of its table
    434  *    pool (table - mmuAbase).
    435  * 2) convert this offset into a table index by dividing it by the
    436  *    size of one MMU 'A' table. (sizeof(mmu_long_dte_t) * MMU_A_TBL_SIZE)
    437  * 3) use this index to select the corresponding 'A' table manager
    438  *    structure from the 'A' table manager pool (Atmgrbase[index]).
    439  */
    440 /*  This function is not currently used. */
    441 #if	0
    442 static INLINE a_tmgr_t *
    443 mmuA2tmgr(mmuAtbl)
    444 	mmu_long_dte_t *mmuAtbl;
    445 {
    446 	register int idx;
    447 
    448 	/* Which table is this in? */
    449 	idx = (mmuAtbl - mmuAbase) / MMU_A_TBL_SIZE;
    450 #ifdef	PMAP_DEBUG
    451 	if ((idx < 0) || (idx >= NUM_A_TABLES))
    452 		panic("mmuA2tmgr");
    453 #endif
    454 	return (&Atmgrbase[idx]);
    455 }
    456 #endif	/* 0 */
    457 
    458 static INLINE b_tmgr_t *
    459 mmuB2tmgr(mmuBtbl)
    460 	mmu_short_dte_t *mmuBtbl;
    461 {
    462 	register int idx;
    463 
    464 	/* Which table is this in? */
    465 	idx = (mmuBtbl - mmuBbase) / MMU_B_TBL_SIZE;
    466 #ifdef	PMAP_DEBUG
    467 	if ((idx < 0) || (idx >= NUM_B_TABLES))
    468 		panic("mmuB2tmgr");
    469 #endif
    470 	return (&Btmgrbase[idx]);
    471 }
    472 
    473 /* mmuC2tmgr			INTERNAL
    474  **
    475  * Given a pte known to belong to a C table, return the address of
    476  * that table's management structure.
    477  */
    478 static INLINE c_tmgr_t *
    479 mmuC2tmgr(mmuCtbl)
    480 	mmu_short_pte_t *mmuCtbl;
    481 {
    482 	register int idx;
    483 
    484 	/* Which table is this in? */
    485 	idx = (mmuCtbl - mmuCbase) / MMU_C_TBL_SIZE;
    486 #ifdef	PMAP_DEBUG
    487 	if ((idx < 0) || (idx >= NUM_C_TABLES))
    488 		panic("mmuC2tmgr");
    489 #endif
    490 	return (&Ctmgrbase[idx]);
    491 }
    492 
    493 /* This is now a function call below.
    494  * #define pa2pv(pa) \
    495  *	(&pvbase[(unsigned long)\
    496  *		m68k_btop(pa)\
    497  *	])
    498  */
    499 
    500 /* pa2pv			INTERNAL
    501  **
    502  * Return the pv_list_head element which manages the given physical
    503  * address.
    504  */
    505 static INLINE pv_t *
    506 pa2pv(pa)
    507 	vm_offset_t pa;
    508 {
    509 	register struct pmap_physmem_struct *bank;
    510 	register int idx;
    511 
    512 	bank = &avail_mem[0];
    513 	while (pa >= bank->pmem_end)
    514 		bank = bank->pmem_next;
    515 
    516 	pa -= bank->pmem_start;
    517 	idx = bank->pmem_pvbase + m68k_btop(pa);
    518 #ifdef	PMAP_DEBUG
    519 	if ((idx < 0) || (idx >= physmem))
    520 		panic("pa2pv");
    521 #endif
    522 	return &pvbase[idx];
    523 }
    524 
    525 /* pteidx			INTERNAL
    526  **
    527  * Return the index of the given PTE within the entire fixed table of
    528  * PTEs.
    529  */
    530 static INLINE int
    531 pteidx(pte)
    532 	mmu_short_pte_t *pte;
    533 {
    534 	return (pte - kernCbase);
    535 }
    536 
    537 /*
    538  * This just offers a place to put some debugging checks,
    539  * and reduces the number of places "curproc" appears...
    540  */
    541 static INLINE pmap_t
    542 current_pmap()
    543 {
    544 	struct proc *p;
    545 	struct vmspace *vm;
    546 	vm_map_t	map;
    547 	pmap_t	pmap;
    548 
    549 	p = curproc;	/* XXX */
    550 	if (p == NULL)
    551 		pmap = &kernel_pmap;
    552 	else {
    553 		vm = p->p_vmspace;
    554 		map = &vm->vm_map;
    555 		pmap = vm_map_pmap(map);
    556 	}
    557 
    558 	return (pmap);
    559 }
    560 
    561 
    562 /*************************** FUNCTION DEFINITIONS ************************
    563  * These appear here merely for the compiler to enforce type checking on *
    564  * all function calls.                                                   *
    565  *************************************************************************/
    566 
    567 /** External functions
    568  ** - functions used within this module but written elsewhere.
    569  **   both of these functions are in locore.s
    570  ** XXX - These functions were later replaced with their more cryptic
    571  **       hp300 counterparts.  They may be removed now.
    572  **/
    573 #if	0	/* deprecated mmu */
    574 void   mmu_seturp __P((vm_offset_t));
    575 void   mmu_flush __P((int, vm_offset_t));
    576 void   mmu_flusha __P((void));
    577 #endif	/* 0 */
    578 
    579 /** Internal functions
    580  ** Most functions used only within this module are defined in
    581  **   pmap_pvt.h (why not here if used only here?)
    582  **/
    583 #ifdef MACHINE_NEW_NONCONTIG
    584 static void pmap_page_upload __P((void));
    585 #endif
    586 
    587 /** Interface functions
    588  ** - functions required by the Mach VM Pmap interface, with MACHINE_CONTIG
    589  **   defined.
    590  **/
    591 #ifdef INCLUDED_IN_PMAP_H
    592 void   pmap_bootstrap __P((void));
    593 void  *pmap_bootstrap_alloc __P((int));
    594 void   pmap_enter __P((pmap_t, vm_offset_t, vm_offset_t, vm_prot_t, boolean_t));
    595 pmap_t pmap_create __P((vm_size_t));
    596 void   pmap_destroy __P((pmap_t));
    597 void   pmap_reference __P((pmap_t));
    598 boolean_t   pmap_is_referenced __P((vm_offset_t));
    599 boolean_t   pmap_is_modified __P((vm_offset_t));
    600 void   pmap_clear_modify __P((vm_offset_t));
    601 vm_offset_t pmap_extract __P((pmap_t, vm_offset_t));
    602 u_int  pmap_free_pages __P((void));
    603 #endif /* INCLUDED_IN_PMAP_H */
    604 int    pmap_page_index __P((vm_offset_t));
    605 void pmap_pinit __P((pmap_t));
    606 void pmap_release __P((pmap_t));
    607 
    608 /********************************** CODE ********************************
    609  * Functions that are called from other parts of the kernel are labeled *
    610  * as 'INTERFACE' functions.  Functions that are only called from       *
    611  * within the pmap module are labeled as 'INTERNAL' functions.          *
    612  * Functions that are internal, but are not (currently) used at all are *
    613  * labeled 'INTERNAL_X'.                                                *
    614  ************************************************************************/
    615 
    616 /* pmap_bootstrap			INTERNAL
    617  **
    618  * Initializes the pmap system.  Called at boot time from
    619  * locore2.c:_vm_init()
    620  *
    621  * Reminder: having a pmap_bootstrap_alloc() and also having the VM
    622  *           system implement pmap_steal_memory() is redundant.
    623  *           Don't release this code without removing one or the other!
    624  */
    625 void
    626 pmap_bootstrap(nextva)
    627 	vm_offset_t nextva;
    628 {
    629 	struct physmemory *membank;
    630 	struct pmap_physmem_struct *pmap_membank;
    631 	vm_offset_t va, pa, eva;
    632 	int b, c, i, j;	/* running table counts */
    633 	int size, resvmem;
    634 
    635 	/*
    636 	 * This function is called by __bootstrap after it has
    637 	 * determined the type of machine and made the appropriate
    638 	 * patches to the ROM vectors (XXX- I don't quite know what I meant
    639 	 * by that.)  It allocates and sets up enough of the pmap system
    640 	 * to manage the kernel's address space.
    641 	 */
    642 
    643 	/*
    644 	 * Determine the range of kernel virtual and physical
    645 	 * space available. Note that we ABSOLUTELY DEPEND on
    646 	 * the fact that the first bank of memory (4MB) is
    647 	 * mapped linearly to KERNBASE (which we guaranteed in
    648 	 * the first instructions of locore.s).
    649 	 * That is plenty for our bootstrap work.
    650 	 */
    651 	virtual_avail = m68k_round_page(nextva);
    652 	virtual_contig_end = KERNBASE + 0x400000; /* +4MB */
    653 	virtual_end = VM_MAX_KERNEL_ADDRESS;
    654 	/* Don't need avail_start til later. */
    655 
    656 	/* We may now call pmap_bootstrap_alloc(). */
    657 	bootstrap_alloc_enabled = TRUE;
    658 
    659 	/*
    660 	 * This is a somewhat unwrapped loop to deal with
    661 	 * copying the PROM's 'phsymem' banks into the pmap's
    662 	 * banks.  The following is always assumed:
    663 	 * 1. There is always at least one bank of memory.
    664 	 * 2. There is always a last bank of memory, and its
    665 	 *    pmem_next member must be set to NULL.
    666 	 */
    667 	membank = romVectorPtr->v_physmemory;
    668 	pmap_membank = avail_mem;
    669 	total_phys_mem = 0;
    670 
    671 	for (;;) { /* break on !membank */
    672 		pmap_membank->pmem_start = membank->address;
    673 		pmap_membank->pmem_end = membank->address + membank->size;
    674 		total_phys_mem += membank->size;
    675 		membank = membank->next;
    676 		if (!membank)
    677 			break;
    678 		/* This silly syntax arises because pmap_membank
    679 		 * is really a pre-allocated array, but it is put into
    680 		 * use as a linked list.
    681 		 */
    682 		pmap_membank->pmem_next = pmap_membank + 1;
    683 		pmap_membank = pmap_membank->pmem_next;
    684 	}
    685 	/* This is the last element. */
    686 	pmap_membank->pmem_next = NULL;
    687 
    688 	/*
    689 	 * Note: total_phys_mem, physmem represent
    690 	 * actual physical memory, including that
    691 	 * reserved for the PROM monitor.
    692 	 */
    693 	physmem = btoc(total_phys_mem);
    694 
    695 	/*
    696 	 * The last bank of memory should be reduced to prevent the
    697 	 * physical pages needed by the PROM monitor from being used
    698 	 * in the VM system.
    699 	 */
    700 	resvmem = total_phys_mem - *(romVectorPtr->memoryAvail);
    701 	resvmem = m68k_round_page(resvmem);
    702 	pmap_membank->pmem_end -= resvmem;
    703 
    704 	/*
    705 	 * Avail_end is set to the first byte of physical memory
    706 	 * after the end of the last bank.  We use this only to
    707 	 * determine if a physical address is "managed" memory.
    708 	 */
    709 	avail_end = pmap_membank->pmem_end;
    710 
    711 	/*
    712 	 * First allocate enough kernel MMU tables to map all
    713 	 * of kernel virtual space from KERNBASE to 0xFFFFFFFF.
    714 	 * Note: All must be aligned on 256 byte boundaries.
    715 	 * Start with the level-A table (one of those).
    716 	 */
    717 	size = sizeof(mmu_long_dte_t)  * MMU_A_TBL_SIZE;
    718 	kernAbase = pmap_bootstrap_alloc(size);
    719 	bzero(kernAbase, size);
    720 
    721 	/* Now the level-B kernel tables... */
    722 	size = sizeof(mmu_short_dte_t) * MMU_B_TBL_SIZE * KERN_B_TABLES;
    723 	kernBbase = pmap_bootstrap_alloc(size);
    724 	bzero(kernBbase, size);
    725 
    726 	/* Now the level-C kernel tables... */
    727 	size = sizeof(mmu_short_pte_t) * MMU_C_TBL_SIZE * KERN_C_TABLES;
    728 	kernCbase = pmap_bootstrap_alloc(size);
    729 	bzero(kernCbase, size);
    730 	/*
    731 	 * Note: In order for the PV system to work correctly, the kernel
    732 	 * and user-level C tables must be allocated contiguously.
    733 	 * Nothing should be allocated between here and the allocation of
    734 	 * mmuCbase below.  XXX: Should do this as one allocation, and
    735 	 * then compute a pointer for mmuCbase instead of this...
    736 	 *
    737 	 * Allocate user MMU tables.
    738 	 * These must be contiguous with the preceeding.
    739 	 */
    740 
    741 #ifndef	FIXED_NTABLES
    742 	/*
    743 	 * The number of user-level C tables that should be allocated is
    744 	 * related to the size of physical memory.  In general, there should
    745 	 * be enough tables to map four times the amount of available RAM.
    746 	 * The extra amount is needed because some table space is wasted by
    747 	 * fragmentation.
    748 	 */
    749 	NUM_C_TABLES = (total_phys_mem * 4) / (MMU_C_TBL_SIZE * MMU_PAGE_SIZE);
    750 	NUM_B_TABLES = NUM_C_TABLES / 2;
    751 	NUM_A_TABLES = NUM_B_TABLES / 2;
    752 #endif	/* !FIXED_NTABLES */
    753 
    754 	size = sizeof(mmu_short_pte_t) * MMU_C_TBL_SIZE	* NUM_C_TABLES;
    755 	mmuCbase = pmap_bootstrap_alloc(size);
    756 
    757 	size = sizeof(mmu_short_dte_t) * MMU_B_TBL_SIZE	* NUM_B_TABLES;
    758 	mmuBbase = pmap_bootstrap_alloc(size);
    759 
    760 	size = sizeof(mmu_long_dte_t)  * MMU_A_TBL_SIZE * NUM_A_TABLES;
    761 	mmuAbase = pmap_bootstrap_alloc(size);
    762 
    763 	/*
    764 	 * Fill in the never-changing part of the kernel tables.
    765 	 * For simplicity, the kernel's mappings will be editable as a
    766 	 * flat array of page table entries at kernCbase.  The
    767 	 * higher level 'A' and 'B' tables must be initialized to point
    768 	 * to this lower one.
    769 	 */
    770 	b = c = 0;
    771 
    772 	/*
    773 	 * Invalidate all mappings below KERNBASE in the A table.
    774 	 * This area has already been zeroed out, but it is good
    775 	 * practice to explicitly show that we are interpreting
    776 	 * it as a list of A table descriptors.
    777 	 */
    778 	for (i = 0; i < MMU_TIA(KERNBASE); i++) {
    779 		kernAbase[i].addr.raw = 0;
    780 	}
    781 
    782 	/*
    783 	 * Set up the kernel A and B tables so that they will reference the
    784 	 * correct spots in the contiguous table of PTEs allocated for the
    785 	 * kernel's virtual memory space.
    786 	 */
    787 	for (i = MMU_TIA(KERNBASE); i < MMU_A_TBL_SIZE; i++) {
    788 		kernAbase[i].attr.raw =
    789 			MMU_LONG_DTE_LU | MMU_LONG_DTE_SUPV | MMU_DT_SHORT;
    790 		kernAbase[i].addr.raw = mmu_vtop(&kernBbase[b]);
    791 
    792 		for (j=0; j < MMU_B_TBL_SIZE; j++) {
    793 			kernBbase[b + j].attr.raw = mmu_vtop(&kernCbase[c])
    794 				| MMU_DT_SHORT;
    795 			c += MMU_C_TBL_SIZE;
    796 		}
    797 		b += MMU_B_TBL_SIZE;
    798 	}
    799 
    800 	/* XXX - Doing kernel_pmap a little further down. */
    801 
    802 	pmap_alloc_usermmu();	/* Allocate user MMU tables.        */
    803 	pmap_alloc_usertmgr();	/* Allocate user MMU table managers.*/
    804 	pmap_alloc_pv();	/* Allocate physical->virtual map.  */
    805 
    806 	/*
    807 	 * We are now done with pmap_bootstrap_alloc().  Round up
    808 	 * `virtual_avail' to the nearest page, and set the flag
    809 	 * to prevent use of pmap_bootstrap_alloc() hereafter.
    810 	 */
    811 	pmap_bootstrap_aalign(NBPG);
    812 	bootstrap_alloc_enabled = FALSE;
    813 
    814 	/*
    815 	 * Now that we are done with pmap_bootstrap_alloc(), we
    816 	 * must save the virtual and physical addresses of the
    817 	 * end of the linearly mapped range, which are stored in
    818 	 * virtual_contig_end and avail_start, respectively.
    819 	 * These variables will never change after this point.
    820 	 */
    821 	virtual_contig_end = virtual_avail;
    822 	avail_start = virtual_avail - KERNBASE;
    823 
    824 	/*
    825 	 * `avail_next' is a running pointer used by pmap_next_page() to
    826 	 * keep track of the next available physical page to be handed
    827 	 * to the VM system during its initialization, in which it
    828 	 * asks for physical pages, one at a time.
    829 	 */
    830 	avail_next = avail_start;
    831 
    832 	/*
    833 	 * Now allocate some virtual addresses, but not the physical pages
    834 	 * behind them.  Note that virtual_avail is already page-aligned.
    835 	 *
    836 	 * tmp_vpages[] is an array of two virtual pages used for temporary
    837 	 * kernel mappings in the pmap module to facilitate various physical
    838 	 * address-oritented operations.
    839 	 */
    840 	tmp_vpages[0] = virtual_avail;
    841 	virtual_avail += NBPG;
    842 	tmp_vpages[1] = virtual_avail;
    843 	virtual_avail += NBPG;
    844 
    845 	/** Initialize the PV system **/
    846 	pmap_init_pv();
    847 
    848 	/*
    849 	 * Fill in the kernel_pmap structure and kernel_crp.
    850 	 */
    851 	kernAphys = mmu_vtop(kernAbase);
    852 	kernel_pmap.pm_a_tmgr = NULL;
    853 	kernel_pmap.pm_a_phys = kernAphys;
    854 	kernel_pmap.pm_refcount = 1; /* always in use */
    855 
    856 	kernel_crp.rp_attr = MMU_LONG_DTE_LU | MMU_DT_LONG;
    857 	kernel_crp.rp_addr = kernAphys;
    858 
    859 	/*
    860 	 * Now pmap_enter_kernel() may be used safely and will be
    861 	 * the main interface used hereafter to modify the kernel's
    862 	 * virtual address space.  Note that since we are still running
    863 	 * under the PROM's address table, none of these table modifications
    864 	 * actually take effect until pmap_takeover_mmu() is called.
    865 	 *
    866 	 * Note: Our tables do NOT have the PROM linear mappings!
    867 	 * Only the mappings created here exist in our tables, so
    868 	 * remember to map anything we expect to use.
    869 	 */
    870 	va = (vm_offset_t) KERNBASE;
    871 	pa = 0;
    872 
    873 	/*
    874 	 * The first page of the kernel virtual address space is the msgbuf
    875 	 * page.  The page attributes (data, non-cached) are set here, while
    876 	 * the address is assigned to this global pointer in cpu_startup().
    877 	 * It is non-cached, mostly due to paranoia.
    878 	 */
    879 	pmap_enter_kernel(va, pa|PMAP_NC, VM_PROT_ALL);
    880 	va += NBPG; pa += NBPG;
    881 
    882 	/* Next page is used as the temporary stack. */
    883 	pmap_enter_kernel(va, pa, VM_PROT_ALL);
    884 	va += NBPG; pa += NBPG;
    885 
    886 	/*
    887 	 * Map all of the kernel's text segment as read-only and cacheable.
    888 	 * (Cacheable is implied by default).  Unfortunately, the last bytes
    889 	 * of kernel text and the first bytes of kernel data will often be
    890 	 * sharing the same page.  Therefore, the last page of kernel text
    891 	 * has to be mapped as read/write, to accomodate the data.
    892 	 */
    893 	eva = m68k_trunc_page((vm_offset_t)etext);
    894 	for (; va < eva; va += NBPG, pa += NBPG)
    895 		pmap_enter_kernel(va, pa, VM_PROT_READ|VM_PROT_EXECUTE);
    896 
    897 	/*
    898 	 * Map all of the kernel's data as read/write and cacheable.
    899 	 * This includes: data, BSS, symbols, and everything in the
    900 	 * contiguous memory used by pmap_bootstrap_alloc()
    901 	 */
    902 	for (; pa < avail_start; va += NBPG, pa += NBPG)
    903 		pmap_enter_kernel(va, pa, VM_PROT_READ|VM_PROT_WRITE);
    904 
    905 	/*
    906 	 * At this point we are almost ready to take over the MMU.  But first
    907 	 * we must save the PROM's address space in our map, as we call its
    908 	 * routines and make references to its data later in the kernel.
    909 	 */
    910 	pmap_bootstrap_copyprom();
    911 	pmap_takeover_mmu();
    912 	pmap_bootstrap_setprom();
    913 
    914 	/* Notify the VM system of our page size. */
    915 	PAGE_SIZE = NBPG;
    916 	vm_set_page_size();
    917 
    918 #if defined(MACHINE_NEW_NONCONTIG)
    919 	pmap_page_upload();
    920 #endif
    921 }
    922 
    923 
    924 /* pmap_alloc_usermmu			INTERNAL
    925  **
    926  * Called from pmap_bootstrap() to allocate MMU tables that will
    927  * eventually be used for user mappings.
    928  */
    929 void
    930 pmap_alloc_usermmu()
    931 {
    932 	/* XXX: Moved into caller. */
    933 }
    934 
    935 /* pmap_alloc_pv			INTERNAL
    936  **
    937  * Called from pmap_bootstrap() to allocate the physical
    938  * to virtual mapping list.  Each physical page of memory
    939  * in the system has a corresponding element in this list.
    940  */
    941 void
    942 pmap_alloc_pv()
    943 {
    944 	int	i;
    945 	unsigned int	total_mem;
    946 
    947 	/*
    948 	 * Allocate a pv_head structure for every page of physical
    949 	 * memory that will be managed by the system.  Since memory on
    950 	 * the 3/80 is non-contiguous, we cannot arrive at a total page
    951 	 * count by subtraction of the lowest available address from the
    952 	 * highest, but rather we have to step through each memory
    953 	 * bank and add the number of pages in each to the total.
    954 	 *
    955 	 * At this time we also initialize the offset of each bank's
    956 	 * starting pv_head within the pv_head list so that the physical
    957 	 * memory state routines (pmap_is_referenced(),
    958 	 * pmap_is_modified(), et al.) can quickly find coresponding
    959 	 * pv_heads in spite of the non-contiguity.
    960 	 */
    961 	total_mem = 0;
    962 	for (i = 0; i < SUN3X_NPHYS_RAM_SEGS; i++) {
    963 		avail_mem[i].pmem_pvbase = m68k_btop(total_mem);
    964 		total_mem += avail_mem[i].pmem_end -
    965 			avail_mem[i].pmem_start;
    966 		if (avail_mem[i].pmem_next == NULL)
    967 			break;
    968 	}
    969 	pvbase = (pv_t *) pmap_bootstrap_alloc(sizeof(pv_t) *
    970 		m68k_btop(total_phys_mem));
    971 }
    972 
    973 /* pmap_alloc_usertmgr			INTERNAL
    974  **
    975  * Called from pmap_bootstrap() to allocate the structures which
    976  * facilitate management of user MMU tables.  Each user MMU table
    977  * in the system has one such structure associated with it.
    978  */
    979 void
    980 pmap_alloc_usertmgr()
    981 {
    982 	/* Allocate user MMU table managers */
    983 	/* It would be a lot simpler to just make these BSS, but */
    984 	/* we may want to change their size at boot time... -j */
    985 	Atmgrbase = (a_tmgr_t *) pmap_bootstrap_alloc(sizeof(a_tmgr_t)
    986 		* NUM_A_TABLES);
    987 	Btmgrbase = (b_tmgr_t *) pmap_bootstrap_alloc(sizeof(b_tmgr_t)
    988 		* NUM_B_TABLES);
    989 	Ctmgrbase = (c_tmgr_t *) pmap_bootstrap_alloc(sizeof(c_tmgr_t)
    990 		* NUM_C_TABLES);
    991 
    992 	/*
    993 	 * Allocate PV list elements for the physical to virtual
    994 	 * mapping system.
    995 	 */
    996 	pvebase = (pv_elem_t *) pmap_bootstrap_alloc(
    997 		sizeof(pv_elem_t) * (NUM_USER_PTES + NUM_KERN_PTES));
    998 }
    999 
   1000 /* pmap_bootstrap_copyprom()			INTERNAL
   1001  **
   1002  * Copy the PROM mappings into our own tables.  Note, we
   1003  * can use physical addresses until __bootstrap returns.
   1004  */
   1005 void
   1006 pmap_bootstrap_copyprom()
   1007 {
   1008 	struct sunromvec *romp;
   1009 	int *mon_ctbl;
   1010 	mmu_short_pte_t *kpte;
   1011 	int i, len;
   1012 
   1013 	romp = romVectorPtr;
   1014 
   1015 	/*
   1016 	 * Copy the mappings in SUN3X_MON_KDB_BASE...SUN3X_MONEND
   1017 	 * Note: mon_ctbl[0] maps SUN3X_MON_KDB_BASE
   1018 	 */
   1019 	mon_ctbl = *romp->monptaddr;
   1020 	i = m68k_btop(SUN3X_MON_KDB_BASE - KERNBASE);
   1021 	kpte = &kernCbase[i];
   1022 	len = m68k_btop(SUN3X_MONEND - SUN3X_MON_KDB_BASE);
   1023 
   1024 	for (i = 0; i < len; i++) {
   1025 		kpte[i].attr.raw = mon_ctbl[i];
   1026 	}
   1027 
   1028 	/*
   1029 	 * Copy the mappings at MON_DVMA_BASE (to the end).
   1030 	 * Note, in here, mon_ctbl[0] maps MON_DVMA_BASE.
   1031 	 * Actually, we only want the last page, which the
   1032 	 * PROM has set up for use by the "ie" driver.
   1033 	 * (The i82686 needs its SCP there.)
   1034 	 * If we copy all the mappings, pmap_enter_kernel
   1035 	 * may complain about finding valid PTEs that are
   1036 	 * not recorded in our PV lists...
   1037 	 */
   1038 	mon_ctbl = *romp->shadowpteaddr;
   1039 	i = m68k_btop(SUN3X_MON_DVMA_BASE - KERNBASE);
   1040 	kpte = &kernCbase[i];
   1041 	len = m68k_btop(SUN3X_MON_DVMA_SIZE);
   1042 	for (i = (len-1); i < len; i++) {
   1043 		kpte[i].attr.raw = mon_ctbl[i];
   1044 	}
   1045 }
   1046 
   1047 /* pmap_takeover_mmu			INTERNAL
   1048  **
   1049  * Called from pmap_bootstrap() after it has copied enough of the
   1050  * PROM mappings into the kernel map so that we can use our own
   1051  * MMU table.
   1052  */
   1053 void
   1054 pmap_takeover_mmu()
   1055 {
   1056 
   1057 	loadcrp(&kernel_crp);
   1058 }
   1059 
   1060 /* pmap_bootstrap_setprom()			INTERNAL
   1061  **
   1062  * Set the PROM mappings so it can see kernel space.
   1063  * Note that physical addresses are used here, which
   1064  * we can get away with because this runs with the
   1065  * low 1GB set for transparent translation.
   1066  */
   1067 void
   1068 pmap_bootstrap_setprom()
   1069 {
   1070 	mmu_long_dte_t *mon_dte;
   1071 	extern struct mmu_rootptr mon_crp;
   1072 	int i;
   1073 
   1074 	mon_dte = (mmu_long_dte_t *) mon_crp.rp_addr;
   1075 	for (i = MMU_TIA(KERNBASE); i < MMU_TIA(KERN_END); i++) {
   1076 		mon_dte[i].attr.raw = kernAbase[i].attr.raw;
   1077 		mon_dte[i].addr.raw = kernAbase[i].addr.raw;
   1078 	}
   1079 }
   1080 
   1081 
   1082 /* pmap_init			INTERFACE
   1083  **
   1084  * Called at the end of vm_init() to set up the pmap system to go
   1085  * into full time operation.  All initialization of kernel_pmap
   1086  * should be already done by now, so this should just do things
   1087  * needed for user-level pmaps to work.
   1088  */
   1089 void
   1090 pmap_init()
   1091 {
   1092 	/** Initialize the manager pools **/
   1093 	TAILQ_INIT(&a_pool);
   1094 	TAILQ_INIT(&b_pool);
   1095 	TAILQ_INIT(&c_pool);
   1096 
   1097 	/**************************************************************
   1098 	 * Initialize all tmgr structures and MMU tables they manage. *
   1099 	 **************************************************************/
   1100 	/** Initialize A tables **/
   1101 	pmap_init_a_tables();
   1102 	/** Initialize B tables **/
   1103 	pmap_init_b_tables();
   1104 	/** Initialize C tables **/
   1105 	pmap_init_c_tables();
   1106 }
   1107 
   1108 /* pmap_init_a_tables()			INTERNAL
   1109  **
   1110  * Initializes all A managers, their MMU A tables, and inserts
   1111  * them into the A manager pool for use by the system.
   1112  */
   1113 void
   1114 pmap_init_a_tables()
   1115 {
   1116 	int i;
   1117 	a_tmgr_t *a_tbl;
   1118 
   1119 	for (i=0; i < NUM_A_TABLES; i++) {
   1120 		/* Select the next available A manager from the pool */
   1121 		a_tbl = &Atmgrbase[i];
   1122 
   1123 		/*
   1124 		 * Clear its parent entry.  Set its wired and valid
   1125 		 * entry count to zero.
   1126 		 */
   1127 		a_tbl->at_parent = NULL;
   1128 		a_tbl->at_wcnt = a_tbl->at_ecnt = 0;
   1129 
   1130 		/* Assign it the next available MMU A table from the pool */
   1131 		a_tbl->at_dtbl = &mmuAbase[i * MMU_A_TBL_SIZE];
   1132 
   1133 		/*
   1134 		 * Initialize the MMU A table with the table in the `proc0',
   1135 		 * or kernel, mapping.  This ensures that every process has
   1136 		 * the kernel mapped in the top part of its address space.
   1137 		 */
   1138 		bcopy(kernAbase, a_tbl->at_dtbl, MMU_A_TBL_SIZE *
   1139 			sizeof(mmu_long_dte_t));
   1140 
   1141 		/*
   1142 		 * Finally, insert the manager into the A pool,
   1143 		 * making it ready to be used by the system.
   1144 		 */
   1145 		TAILQ_INSERT_TAIL(&a_pool, a_tbl, at_link);
   1146     }
   1147 }
   1148 
   1149 /* pmap_init_b_tables()			INTERNAL
   1150  **
   1151  * Initializes all B table managers, their MMU B tables, and
   1152  * inserts them into the B manager pool for use by the system.
   1153  */
   1154 void
   1155 pmap_init_b_tables()
   1156 {
   1157 	int i,j;
   1158 	b_tmgr_t *b_tbl;
   1159 
   1160 	for (i=0; i < NUM_B_TABLES; i++) {
   1161 		/* Select the next available B manager from the pool */
   1162 		b_tbl = &Btmgrbase[i];
   1163 
   1164 		b_tbl->bt_parent = NULL;	/* clear its parent,  */
   1165 		b_tbl->bt_pidx = 0;		/* parent index,      */
   1166 		b_tbl->bt_wcnt = 0;		/* wired entry count, */
   1167 		b_tbl->bt_ecnt = 0;		/* valid entry count. */
   1168 
   1169 		/* Assign it the next available MMU B table from the pool */
   1170 		b_tbl->bt_dtbl = &mmuBbase[i * MMU_B_TBL_SIZE];
   1171 
   1172 		/* Invalidate every descriptor in the table */
   1173 		for (j=0; j < MMU_B_TBL_SIZE; j++)
   1174 			b_tbl->bt_dtbl[j].attr.raw = MMU_DT_INVALID;
   1175 
   1176 		/* Insert the manager into the B pool */
   1177 		TAILQ_INSERT_TAIL(&b_pool, b_tbl, bt_link);
   1178 	}
   1179 }
   1180 
   1181 /* pmap_init_c_tables()			INTERNAL
   1182  **
   1183  * Initializes all C table managers, their MMU C tables, and
   1184  * inserts them into the C manager pool for use by the system.
   1185  */
   1186 void
   1187 pmap_init_c_tables()
   1188 {
   1189 	int i,j;
   1190 	c_tmgr_t *c_tbl;
   1191 
   1192 	for (i=0; i < NUM_C_TABLES; i++) {
   1193 		/* Select the next available C manager from the pool */
   1194 		c_tbl = &Ctmgrbase[i];
   1195 
   1196 		c_tbl->ct_parent = NULL;	/* clear its parent,  */
   1197 		c_tbl->ct_pidx = 0;		/* parent index,      */
   1198 		c_tbl->ct_wcnt = 0;		/* wired entry count, */
   1199 		c_tbl->ct_ecnt = 0;		/* valid entry count, */
   1200 		c_tbl->ct_pmap = NULL;		/* parent pmap,       */
   1201 		c_tbl->ct_va = 0;		/* base of managed range */
   1202 
   1203 		/* Assign it the next available MMU C table from the pool */
   1204 		c_tbl->ct_dtbl = &mmuCbase[i * MMU_C_TBL_SIZE];
   1205 
   1206 		for (j=0; j < MMU_C_TBL_SIZE; j++)
   1207 			c_tbl->ct_dtbl[j].attr.raw = MMU_DT_INVALID;
   1208 
   1209 		TAILQ_INSERT_TAIL(&c_pool, c_tbl, ct_link);
   1210 	}
   1211 }
   1212 
   1213 /* pmap_init_pv()			INTERNAL
   1214  **
   1215  * Initializes the Physical to Virtual mapping system.
   1216  */
   1217 void
   1218 pmap_init_pv()
   1219 {
   1220 	int	i;
   1221 
   1222 	/* Initialize every PV head. */
   1223 	for (i = 0; i < m68k_btop(total_phys_mem); i++) {
   1224 		pvbase[i].pv_idx = PVE_EOL;	/* Indicate no mappings */
   1225 		pvbase[i].pv_flags = 0;		/* Zero out page flags  */
   1226 	}
   1227 
   1228 	pv_initialized = TRUE;
   1229 }
   1230 
   1231 /* get_a_table			INTERNAL
   1232  **
   1233  * Retrieve and return a level A table for use in a user map.
   1234  */
   1235 a_tmgr_t *
   1236 get_a_table()
   1237 {
   1238 	a_tmgr_t *tbl;
   1239 	pmap_t pmap;
   1240 
   1241 	/* Get the top A table in the pool */
   1242 	tbl = a_pool.tqh_first;
   1243 	if (tbl == NULL) {
   1244 		/*
   1245 		 * XXX - Instead of panicing here and in other get_x_table
   1246 		 * functions, we do have the option of sleeping on the head of
   1247 		 * the table pool.  Any function which updates the table pool
   1248 		 * would then issue a wakeup() on the head, thus waking up any
   1249 		 * processes waiting for a table.
   1250 		 *
   1251 		 * Actually, the place to sleep would be when some process
   1252 		 * asks for a "wired" mapping that would run us short of
   1253 		 * mapping resources.  This design DEPENDS on always having
   1254 		 * some mapping resources in the pool for stealing, so we
   1255 		 * must make sure we NEVER let the pool become empty. -gwr
   1256 		 */
   1257 		panic("get_a_table: out of A tables.");
   1258 	}
   1259 
   1260 	TAILQ_REMOVE(&a_pool, tbl, at_link);
   1261 	/*
   1262 	 * If the table has a non-null parent pointer then it is in use.
   1263 	 * Forcibly abduct it from its parent and clear its entries.
   1264 	 * No re-entrancy worries here.  This table would not be in the
   1265 	 * table pool unless it was available for use.
   1266 	 *
   1267 	 * Note that the second argument to free_a_table() is FALSE.  This
   1268 	 * indicates that the table should not be relinked into the A table
   1269 	 * pool.  That is a job for the function that called us.
   1270 	 */
   1271 	if (tbl->at_parent) {
   1272 		pmap = tbl->at_parent;
   1273 		free_a_table(tbl, FALSE);
   1274 		pmap->pm_a_tmgr = NULL;
   1275 		pmap->pm_a_phys = kernAphys;
   1276 	}
   1277 #ifdef  NON_REENTRANT
   1278 	/*
   1279 	 * If the table isn't to be wired down, re-insert it at the
   1280 	 * end of the pool.
   1281 	 */
   1282 	if (!wired)
   1283 		/*
   1284 		 * Quandary - XXX
   1285 		 * Would it be better to let the calling function insert this
   1286 		 * table into the queue?  By inserting it here, we are allowing
   1287 		 * it to be stolen immediately.  The calling function is
   1288 		 * probably not expecting to use a table that it is not
   1289 		 * assured full control of.
   1290 		 * Answer - In the intrest of re-entrancy, it is best to let
   1291 		 * the calling function determine when a table is available
   1292 		 * for use.  Therefore this code block is not used.
   1293 		 */
   1294 		TAILQ_INSERT_TAIL(&a_pool, tbl, at_link);
   1295 #endif	/* NON_REENTRANT */
   1296 	return tbl;
   1297 }
   1298 
   1299 /* get_b_table			INTERNAL
   1300  **
   1301  * Return a level B table for use.
   1302  */
   1303 b_tmgr_t *
   1304 get_b_table()
   1305 {
   1306 	b_tmgr_t *tbl;
   1307 
   1308 	/* See 'get_a_table' for comments. */
   1309 	tbl = b_pool.tqh_first;
   1310 	if (tbl == NULL)
   1311 		panic("get_b_table: out of B tables.");
   1312 	TAILQ_REMOVE(&b_pool, tbl, bt_link);
   1313 	if (tbl->bt_parent) {
   1314 		tbl->bt_parent->at_dtbl[tbl->bt_pidx].attr.raw = MMU_DT_INVALID;
   1315 		tbl->bt_parent->at_ecnt--;
   1316 		free_b_table(tbl, FALSE);
   1317 	}
   1318 #ifdef	NON_REENTRANT
   1319 	if (!wired)
   1320 		/* XXX see quandary in get_b_table */
   1321 		/* XXX start lock */
   1322 		TAILQ_INSERT_TAIL(&b_pool, tbl, bt_link);
   1323 		/* XXX end lock */
   1324 #endif	/* NON_REENTRANT */
   1325 	return tbl;
   1326 }
   1327 
   1328 /* get_c_table			INTERNAL
   1329  **
   1330  * Return a level C table for use.
   1331  */
   1332 c_tmgr_t *
   1333 get_c_table()
   1334 {
   1335 	c_tmgr_t *tbl;
   1336 
   1337 	/* See 'get_a_table' for comments */
   1338 	tbl = c_pool.tqh_first;
   1339 	if (tbl == NULL)
   1340 		panic("get_c_table: out of C tables.");
   1341 	TAILQ_REMOVE(&c_pool, tbl, ct_link);
   1342 	if (tbl->ct_parent) {
   1343 		tbl->ct_parent->bt_dtbl[tbl->ct_pidx].attr.raw = MMU_DT_INVALID;
   1344 		tbl->ct_parent->bt_ecnt--;
   1345 		free_c_table(tbl, FALSE);
   1346 	}
   1347 #ifdef	NON_REENTRANT
   1348 	if (!wired)
   1349 		/* XXX See quandary in get_a_table */
   1350 		/* XXX start lock */
   1351 		TAILQ_INSERT_TAIL(&c_pool, tbl, c_link);
   1352 		/* XXX end lock */
   1353 #endif	/* NON_REENTRANT */
   1354 
   1355 	return tbl;
   1356 }
   1357 
   1358 /*
   1359  * The following 'free_table' and 'steal_table' functions are called to
   1360  * detach tables from their current obligations (parents and children) and
   1361  * prepare them for reuse in another mapping.
   1362  *
   1363  * Free_table is used when the calling function will handle the fate
   1364  * of the parent table, such as returning it to the free pool when it has
   1365  * no valid entries.  Functions that do not want to handle this should
   1366  * call steal_table, in which the parent table's descriptors and entry
   1367  * count are automatically modified when this table is removed.
   1368  */
   1369 
   1370 /* free_a_table			INTERNAL
   1371  **
   1372  * Unmaps the given A table and all child tables from their current
   1373  * mappings.  Returns the number of pages that were invalidated.
   1374  * If 'relink' is true, the function will return the table to the head
   1375  * of the available table pool.
   1376  *
   1377  * Cache note: The MC68851 will automatically flush all
   1378  * descriptors derived from a given A table from its
   1379  * Automatic Translation Cache (ATC) if we issue a
   1380  * 'PFLUSHR' instruction with the base address of the
   1381  * table.  This function should do, and does so.
   1382  * Note note: We are using an MC68030 - there is no
   1383  * PFLUSHR.
   1384  */
   1385 int
   1386 free_a_table(a_tbl, relink)
   1387 	a_tmgr_t *a_tbl;
   1388 	boolean_t relink;
   1389 {
   1390 	int i, removed_cnt;
   1391 	mmu_long_dte_t	*dte;
   1392 	mmu_short_dte_t *dtbl;
   1393 	b_tmgr_t	*tmgr;
   1394 
   1395 	/*
   1396 	 * Flush the ATC cache of all cached descriptors derived
   1397 	 * from this table.
   1398 	 * Sun3x does not use 68851's cached table feature
   1399 	 * flush_atc_crp(mmu_vtop(a_tbl->dte));
   1400 	 */
   1401 
   1402 	/*
   1403 	 * Remove any pending cache flushes that were designated
   1404 	 * for the pmap this A table belongs to.
   1405 	 * a_tbl->parent->atc_flushq[0] = 0;
   1406 	 * Not implemented in sun3x.
   1407 	 */
   1408 
   1409 	/*
   1410 	 * All A tables in the system should retain a map for the
   1411 	 * kernel. If the table contains any valid descriptors
   1412 	 * (other than those for the kernel area), invalidate them all,
   1413 	 * stopping short of the kernel's entries.
   1414 	 */
   1415 	removed_cnt = 0;
   1416 	if (a_tbl->at_ecnt) {
   1417 		dte = a_tbl->at_dtbl;
   1418 		for (i=0; i < MMU_TIA(KERNBASE); i++) {
   1419 			/*
   1420 			 * If a table entry points to a valid B table, free
   1421 			 * it and its children.
   1422 			 */
   1423 			if (MMU_VALID_DT(dte[i])) {
   1424 				/*
   1425 				 * The following block does several things,
   1426 				 * from innermost expression to the
   1427 				 * outermost:
   1428 				 * 1) It extracts the base (cc 1996)
   1429 				 *    address of the B table pointed
   1430 				 *    to in the A table entry dte[i].
   1431 				 * 2) It converts this base address into
   1432 				 *    the virtual address it can be
   1433 				 *    accessed with. (all MMU tables point
   1434 				 *    to physical addresses.)
   1435 				 * 3) It finds the corresponding manager
   1436 				 *    structure which manages this MMU table.
   1437 				 * 4) It frees the manager structure.
   1438 				 *    (This frees the MMU table and all
   1439 				 *    child tables. See 'free_b_table' for
   1440 				 *    details.)
   1441 				 */
   1442 				dtbl = mmu_ptov(dte[i].addr.raw);
   1443 				tmgr = mmuB2tmgr(dtbl);
   1444 				removed_cnt += free_b_table(tmgr, TRUE);
   1445 				dte[i].attr.raw = MMU_DT_INVALID;
   1446 			}
   1447 		}
   1448 		a_tbl->at_ecnt = 0;
   1449 	}
   1450 	if (relink) {
   1451 		a_tbl->at_parent = NULL;
   1452 		TAILQ_REMOVE(&a_pool, a_tbl, at_link);
   1453 		TAILQ_INSERT_HEAD(&a_pool, a_tbl, at_link);
   1454 	}
   1455 	return removed_cnt;
   1456 }
   1457 
   1458 /* free_b_table			INTERNAL
   1459  **
   1460  * Unmaps the given B table and all its children from their current
   1461  * mappings.  Returns the number of pages that were invalidated.
   1462  * (For comments, see 'free_a_table()').
   1463  */
   1464 int
   1465 free_b_table(b_tbl, relink)
   1466 	b_tmgr_t *b_tbl;
   1467 	boolean_t relink;
   1468 {
   1469 	int i, removed_cnt;
   1470 	mmu_short_dte_t *dte;
   1471 	mmu_short_pte_t	*dtbl;
   1472 	c_tmgr_t	*tmgr;
   1473 
   1474 	removed_cnt = 0;
   1475 	if (b_tbl->bt_ecnt) {
   1476 		dte = b_tbl->bt_dtbl;
   1477 		for (i=0; i < MMU_B_TBL_SIZE; i++) {
   1478 			if (MMU_VALID_DT(dte[i])) {
   1479 				dtbl = mmu_ptov(MMU_DTE_PA(dte[i]));
   1480 				tmgr = mmuC2tmgr(dtbl);
   1481 				removed_cnt += free_c_table(tmgr, TRUE);
   1482 				dte[i].attr.raw = MMU_DT_INVALID;
   1483 			}
   1484 		}
   1485 		b_tbl->bt_ecnt = 0;
   1486 	}
   1487 
   1488 	if (relink) {
   1489 		b_tbl->bt_parent = NULL;
   1490 		TAILQ_REMOVE(&b_pool, b_tbl, bt_link);
   1491 		TAILQ_INSERT_HEAD(&b_pool, b_tbl, bt_link);
   1492 	}
   1493 	return removed_cnt;
   1494 }
   1495 
   1496 /* free_c_table			INTERNAL
   1497  **
   1498  * Unmaps the given C table from use and returns it to the pool for
   1499  * re-use.  Returns the number of pages that were invalidated.
   1500  *
   1501  * This function preserves any physical page modification information
   1502  * contained in the page descriptors within the C table by calling
   1503  * 'pmap_remove_pte().'
   1504  */
   1505 int
   1506 free_c_table(c_tbl, relink)
   1507 	c_tmgr_t *c_tbl;
   1508 	boolean_t relink;
   1509 {
   1510 	int i, removed_cnt;
   1511 
   1512 	removed_cnt = 0;
   1513 	if (c_tbl->ct_ecnt) {
   1514 		for (i=0; i < MMU_C_TBL_SIZE; i++) {
   1515 			if (MMU_VALID_DT(c_tbl->ct_dtbl[i])) {
   1516 				pmap_remove_pte(&c_tbl->ct_dtbl[i]);
   1517 				removed_cnt++;
   1518 			}
   1519 		}
   1520 		c_tbl->ct_ecnt = 0;
   1521 	}
   1522 
   1523 	if (relink) {
   1524 		c_tbl->ct_parent = NULL;
   1525 		TAILQ_REMOVE(&c_pool, c_tbl, ct_link);
   1526 		TAILQ_INSERT_HEAD(&c_pool, c_tbl, ct_link);
   1527 	}
   1528 	return removed_cnt;
   1529 }
   1530 
   1531 #if 0
   1532 /* free_c_table_novalid			INTERNAL
   1533  **
   1534  * Frees the given C table manager without checking to see whether
   1535  * or not it contains any valid page descriptors as it is assumed
   1536  * that it does not.
   1537  */
   1538 void
   1539 free_c_table_novalid(c_tbl)
   1540 	c_tmgr_t *c_tbl;
   1541 {
   1542 	TAILQ_REMOVE(&c_pool, c_tbl, ct_link);
   1543 	TAILQ_INSERT_HEAD(&c_pool, c_tbl, ct_link);
   1544 	c_tbl->ct_parent->bt_dtbl[c_tbl->ct_pidx].attr.raw = MMU_DT_INVALID;
   1545 	c_tbl->ct_parent->bt_ecnt--;
   1546 	/*
   1547 	 * XXX - Should call equiv. of 'free_b_table_novalid' here if
   1548 	 * we just removed the last entry of the parent B table.
   1549 	 * But I want to insure that this will not endanger pmap_enter()
   1550 	 * with sudden removal of tables it is working with.
   1551 	 *
   1552 	 * We should probably add another field to each table, indicating
   1553 	 * whether or not it is 'locked', ie. in the process of being
   1554 	 * modified.
   1555 	 */
   1556 	c_tbl->ct_parent = NULL;
   1557 }
   1558 #endif
   1559 
   1560 /* pmap_remove_pte			INTERNAL
   1561  **
   1562  * Unmap the given pte and preserve any page modification
   1563  * information by transfering it to the pv head of the
   1564  * physical page it maps to.  This function does not update
   1565  * any reference counts because it is assumed that the calling
   1566  * function will do so.
   1567  */
   1568 void
   1569 pmap_remove_pte(pte)
   1570 	mmu_short_pte_t *pte;
   1571 {
   1572 	u_short     pv_idx, targ_idx;
   1573 	int         s;
   1574 	vm_offset_t pa;
   1575 	pv_t       *pv;
   1576 
   1577 	pa = MMU_PTE_PA(*pte);
   1578 	if (is_managed(pa)) {
   1579 		pv = pa2pv(pa);
   1580 		targ_idx = pteidx(pte);	/* Index of PTE being removed    */
   1581 
   1582 		/*
   1583 		 * If the PTE being removed is the first (or only) PTE in
   1584 		 * the list of PTEs currently mapped to this page, remove the
   1585 		 * PTE by changing the index found on the PV head.  Otherwise
   1586 		 * a linear search through the list will have to be executed
   1587 		 * in order to find the PVE which points to the PTE being
   1588 		 * removed, so that it may be modified to point to its new
   1589 		 * neighbor.
   1590 		 */
   1591 		s = splimp();
   1592 		pv_idx = pv->pv_idx;	/* Index of first PTE in PV list */
   1593 		if (pv_idx == targ_idx) {
   1594 			pv->pv_idx = pvebase[targ_idx].pve_next;
   1595 		} else {
   1596 			/*
   1597 			 * Find the PV element pointing to the target
   1598 			 * element.  Note: may have pv_idx==PVE_EOL
   1599 			 */
   1600 			for (;;) {
   1601 				if (pv_idx == PVE_EOL) {
   1602 #ifdef	PMAP_DEBUG
   1603 					printf("pmap_remove_pte: PVE_EOL\n");
   1604 					Debugger();
   1605 #endif
   1606 					goto pv_not_found;
   1607 				}
   1608 				if (pvebase[pv_idx].pve_next == targ_idx)
   1609 					break;
   1610 				pv_idx = pvebase[pv_idx].pve_next;
   1611 			}
   1612 			/*
   1613 			 * At this point, pv_idx is the index of the PV
   1614 			 * element just before the target element in the list.
   1615 			 * Unlink the target.
   1616 			 */
   1617 			pvebase[pv_idx].pve_next = pvebase[targ_idx].pve_next;
   1618 		pv_not_found:
   1619 		}
   1620 		/*
   1621 		 * Save the mod/ref bits of the pte by simply
   1622 		 * ORing the entire pte onto the pv_flags member
   1623 		 * of the pv structure.
   1624 		 * There is no need to use a separate bit pattern
   1625 		 * for usage information on the pv head than that
   1626 		 * which is used on the MMU ptes.
   1627 		 */
   1628 		pv->pv_flags |= (u_short) pte->attr.raw;
   1629 		splx(s);
   1630 	}
   1631 
   1632 	pte->attr.raw = MMU_DT_INVALID;
   1633 }
   1634 
   1635 /* pmap_stroll			INTERNAL
   1636  **
   1637  * Retrieve the addresses of all table managers involved in the mapping of
   1638  * the given virtual address.  If the table walk completed sucessfully,
   1639  * return TRUE.  If it was only partially sucessful, return FALSE.
   1640  * The table walk performed by this function is important to many other
   1641  * functions in this module.
   1642  *
   1643  * Note: This function ought to be easier to read.
   1644  */
   1645 boolean_t
   1646 pmap_stroll(pmap, va, a_tbl, b_tbl, c_tbl, pte, a_idx, b_idx, pte_idx)
   1647 	pmap_t pmap;
   1648 	vm_offset_t va;
   1649 	a_tmgr_t **a_tbl;
   1650 	b_tmgr_t **b_tbl;
   1651 	c_tmgr_t **c_tbl;
   1652 	mmu_short_pte_t **pte;
   1653 	int *a_idx, *b_idx, *pte_idx;
   1654 {
   1655 	mmu_long_dte_t *a_dte;   /* A: long descriptor table          */
   1656 	mmu_short_dte_t *b_dte;  /* B: short descriptor table         */
   1657 
   1658 	if (pmap == pmap_kernel())
   1659 		return FALSE;
   1660 
   1661 	/* Does the given pmap have its own A table? */
   1662 	*a_tbl = pmap->pm_a_tmgr;
   1663 	if (*a_tbl == NULL)
   1664 		return FALSE; /* No.  Return unknown. */
   1665 	/* Does the A table have a valid B table
   1666 	 * under the corresponding table entry?
   1667 	 */
   1668 	*a_idx = MMU_TIA(va);
   1669 	a_dte = &((*a_tbl)->at_dtbl[*a_idx]);
   1670 	if (!MMU_VALID_DT(*a_dte))
   1671 		return FALSE; /* No. Return unknown. */
   1672 	/* Yes. Extract B table from the A table. */
   1673 	*b_tbl = mmuB2tmgr(mmu_ptov(a_dte->addr.raw));
   1674 	/* Does the B table have a valid C table
   1675 	 * under the corresponding table entry?
   1676 	 */
   1677 	*b_idx = MMU_TIB(va);
   1678 	b_dte = &((*b_tbl)->bt_dtbl[*b_idx]);
   1679 	if (!MMU_VALID_DT(*b_dte))
   1680 		return FALSE; /* No. Return unknown. */
   1681 	/* Yes. Extract C table from the B table. */
   1682 	*c_tbl = mmuC2tmgr(mmu_ptov(MMU_DTE_PA(*b_dte)));
   1683 	*pte_idx = MMU_TIC(va);
   1684 	*pte = &((*c_tbl)->ct_dtbl[*pte_idx]);
   1685 
   1686 	return	TRUE;
   1687 }
   1688 
   1689 /* pmap_enter			INTERFACE
   1690  **
   1691  * Called by the kernel to map a virtual address
   1692  * to a physical address in the given process map.
   1693  *
   1694  * Note: this function should apply an exclusive lock
   1695  * on the pmap system for its duration.  (it certainly
   1696  * would save my hair!!)
   1697  * This function ought to be easier to read.
   1698  */
   1699 void
   1700 pmap_enter(pmap, va, pa, prot, wired)
   1701 	pmap_t	pmap;
   1702 	vm_offset_t va;
   1703 	vm_offset_t pa;
   1704 	vm_prot_t prot;
   1705 	boolean_t wired;
   1706 {
   1707 	boolean_t insert, managed; /* Marks the need for PV insertion.*/
   1708 	u_short nidx;            /* PV list index                     */
   1709 	int s;                   /* Used for splimp()/splx()          */
   1710 	int flags;               /* Mapping flags. eg. Cache inhibit  */
   1711 	u_int a_idx, b_idx, pte_idx; /* table indices                 */
   1712 	a_tmgr_t *a_tbl;         /* A: long descriptor table manager  */
   1713 	b_tmgr_t *b_tbl;         /* B: short descriptor table manager */
   1714 	c_tmgr_t *c_tbl;         /* C: short page table manager       */
   1715 	mmu_long_dte_t *a_dte;   /* A: long descriptor table          */
   1716 	mmu_short_dte_t *b_dte;  /* B: short descriptor table         */
   1717 	mmu_short_pte_t *c_pte;  /* C: short page descriptor table    */
   1718 	pv_t      *pv;           /* pv list head                      */
   1719 	enum {NONE, NEWA, NEWB, NEWC} llevel; /* used at end   */
   1720 
   1721 	if (pmap == NULL)
   1722 		return;
   1723 	if (pmap == pmap_kernel()) {
   1724 		pmap_enter_kernel(va, pa, prot);
   1725 		return;
   1726 	}
   1727 
   1728 	flags  = (pa & ~MMU_PAGE_MASK);
   1729 	pa    &= MMU_PAGE_MASK;
   1730 
   1731 	/*
   1732 	 * Determine if the physical address being mapped is on-board RAM.
   1733 	 * Any other area of the address space is likely to belong to a
   1734 	 * device and hence it would be disasterous to cache its contents.
   1735 	 */
   1736 	if ((managed = is_managed(pa)) == FALSE)
   1737 		flags |= PMAP_NC;
   1738 
   1739 	/*
   1740 	 * For user mappings we walk along the MMU tables of the given
   1741 	 * pmap, reaching a PTE which describes the virtual page being
   1742 	 * mapped or changed.  If any level of the walk ends in an invalid
   1743 	 * entry, a table must be allocated and the entry must be updated
   1744 	 * to point to it.
   1745 	 * There is a bit of confusion as to whether this code must be
   1746 	 * re-entrant.  For now we will assume it is.  To support
   1747 	 * re-entrancy we must unlink tables from the table pool before
   1748 	 * we assume we may use them.  Tables are re-linked into the pool
   1749 	 * when we are finished with them at the end of the function.
   1750 	 * But I don't feel like doing that until we have proof that this
   1751 	 * needs to be re-entrant.
   1752 	 * 'llevel' records which tables need to be relinked.
   1753 	 */
   1754 	llevel = NONE;
   1755 
   1756 	/*
   1757 	 * Step 1 - Retrieve the A table from the pmap.  If it has no
   1758 	 * A table, allocate a new one from the available pool.
   1759 	 */
   1760 
   1761 	a_tbl = pmap->pm_a_tmgr;
   1762 	if (a_tbl == NULL) {
   1763 		/*
   1764 		 * This pmap does not currently have an A table.  Allocate
   1765 		 * a new one.
   1766 		 */
   1767 		a_tbl = get_a_table();
   1768 		a_tbl->at_parent = pmap;
   1769 
   1770 		/*
   1771 		 * Assign this new A table to the pmap, and calculate its
   1772 		 * physical address so that loadcrp() can be used to make
   1773 		 * the table active.
   1774 		 */
   1775 		pmap->pm_a_tmgr = a_tbl;
   1776 		pmap->pm_a_phys = mmu_vtop(a_tbl->at_dtbl);
   1777 
   1778 		/*
   1779 		 * If the process receiving a new A table is the current
   1780 		 * process, we are responsible for setting the MMU so that
   1781 		 * it becomes the current address space.  This only adds
   1782 		 * new mappings, so no need to flush anything.
   1783 		 */
   1784 		if (pmap == current_pmap()) {
   1785 			kernel_crp.rp_addr = pmap->pm_a_phys;
   1786 			loadcrp(&kernel_crp);
   1787 		}
   1788 
   1789 		if (!wired)
   1790 			llevel = NEWA;
   1791 	} else {
   1792 		/*
   1793 		 * Use the A table already allocated for this pmap.
   1794 		 * Unlink it from the A table pool if necessary.
   1795 		 */
   1796 		if (wired && !a_tbl->at_wcnt)
   1797 			TAILQ_REMOVE(&a_pool, a_tbl, at_link);
   1798 	}
   1799 
   1800 	/*
   1801 	 * Step 2 - Walk into the B table.  If there is no valid B table,
   1802 	 * allocate one.
   1803 	 */
   1804 
   1805 	a_idx = MMU_TIA(va);            /* Calculate the TIA of the VA. */
   1806 	a_dte = &a_tbl->at_dtbl[a_idx]; /* Retrieve descriptor from table */
   1807 	if (MMU_VALID_DT(*a_dte)) {     /* Is the descriptor valid? */
   1808 		/* The descriptor is valid.  Use the B table it points to. */
   1809 		/*************************************
   1810 		 *               a_idx               *
   1811 		 *                 v                 *
   1812 		 * a_tbl -> +-+-+-+-+-+-+-+-+-+-+-+- *
   1813 		 *          | | | | | | | | | | | |  *
   1814 		 *          +-+-+-+-+-+-+-+-+-+-+-+- *
   1815 		 *                 |                 *
   1816 		 *                 \- b_tbl -> +-+-  *
   1817 		 *                             | |   *
   1818 		 *                             +-+-  *
   1819 		 *************************************/
   1820 		b_dte = mmu_ptov(a_dte->addr.raw);
   1821 		b_tbl = mmuB2tmgr(b_dte);
   1822 
   1823 		/*
   1824 		 * If the requested mapping must be wired, but this table
   1825 		 * being used to map it is not, the table must be removed
   1826 		 * from the available pool and its wired entry count
   1827 		 * incremented.
   1828 		 */
   1829 		if (wired && !b_tbl->bt_wcnt) {
   1830 			TAILQ_REMOVE(&b_pool, b_tbl, bt_link);
   1831 			a_tbl->at_wcnt++;
   1832 		}
   1833 	} else {
   1834 		/* The descriptor is invalid.  Allocate a new B table. */
   1835 		b_tbl = get_b_table();
   1836 
   1837 		/* Point the parent A table descriptor to this new B table. */
   1838 		a_dte->addr.raw = mmu_vtop(b_tbl->bt_dtbl);
   1839 		a_dte->attr.raw = MMU_LONG_DTE_LU | MMU_DT_SHORT;
   1840 		a_tbl->at_ecnt++; /* Update parent's valid entry count */
   1841 
   1842 		/* Create the necessary back references to the parent table */
   1843 		b_tbl->bt_parent = a_tbl;
   1844 		b_tbl->bt_pidx = a_idx;
   1845 
   1846 		/*
   1847 		 * If this table is to be wired, make sure the parent A table
   1848 		 * wired count is updated to reflect that it has another wired
   1849 		 * entry.
   1850 		 */
   1851 		if (wired)
   1852 			a_tbl->at_wcnt++;
   1853 		else if (llevel == NONE)
   1854 			llevel = NEWB;
   1855 	}
   1856 
   1857 	/*
   1858 	 * Step 3 - Walk into the C table, if there is no valid C table,
   1859 	 * allocate one.
   1860 	 */
   1861 
   1862 	b_idx = MMU_TIB(va);            /* Calculate the TIB of the VA */
   1863 	b_dte = &b_tbl->bt_dtbl[b_idx]; /* Retrieve descriptor from table */
   1864 	if (MMU_VALID_DT(*b_dte)) {     /* Is the descriptor valid? */
   1865 		/* The descriptor is valid.  Use the C table it points to. */
   1866 		/**************************************
   1867 		 *               c_idx                *
   1868 		 * |                v                 *
   1869 		 * \- b_tbl -> +-+-+-+-+-+-+-+-+-+-+- *
   1870 		 *             | | | | | | | | | | |  *
   1871 		 *             +-+-+-+-+-+-+-+-+-+-+- *
   1872 		 *                  |                 *
   1873 		 *                  \- c_tbl -> +-+-- *
   1874 		 *                              | | | *
   1875 		 *                              +-+-- *
   1876 		 **************************************/
   1877 		c_pte = mmu_ptov(MMU_PTE_PA(*b_dte));
   1878 		c_tbl = mmuC2tmgr(c_pte);
   1879 
   1880 		/* If mapping is wired and table is not */
   1881 		if (wired && !c_tbl->ct_wcnt) {
   1882 			TAILQ_REMOVE(&c_pool, c_tbl, ct_link);
   1883 			b_tbl->bt_wcnt++;
   1884 		}
   1885 	} else {
   1886 		/* The descriptor is invalid.  Allocate a new C table. */
   1887 		c_tbl = get_c_table();
   1888 
   1889 		/* Point the parent B table descriptor to this new C table. */
   1890 		b_dte->attr.raw = mmu_vtop(c_tbl->ct_dtbl);
   1891 		b_dte->attr.raw |= MMU_DT_SHORT;
   1892 		b_tbl->bt_ecnt++; /* Update parent's valid entry count */
   1893 
   1894 		/* Create the necessary back references to the parent table */
   1895 		c_tbl->ct_parent = b_tbl;
   1896 		c_tbl->ct_pidx = b_idx;
   1897 		/*
   1898 		 * Store the pmap and base virtual managed address for faster
   1899 		 * retrieval in the PV functions.
   1900 		 */
   1901 		c_tbl->ct_pmap = pmap;
   1902 		c_tbl->ct_va = (va & (MMU_TIA_MASK|MMU_TIB_MASK));
   1903 
   1904 		/*
   1905 		 * If this table is to be wired, make sure the parent B table
   1906 		 * wired count is updated to reflect that it has another wired
   1907 		 * entry.
   1908 		 */
   1909 		if (wired)
   1910 			b_tbl->bt_wcnt++;
   1911 		else if (llevel == NONE)
   1912 			llevel = NEWC;
   1913 	}
   1914 
   1915 	/*
   1916 	 * Step 4 - Deposit a page descriptor (PTE) into the appropriate
   1917 	 * slot of the C table, describing the PA to which the VA is mapped.
   1918 	 */
   1919 
   1920 	pte_idx = MMU_TIC(va);
   1921 	c_pte = &c_tbl->ct_dtbl[pte_idx];
   1922 	if (MMU_VALID_DT(*c_pte)) { /* Is the entry currently valid? */
   1923 		/*
   1924 		 * The PTE is currently valid.  This particular call
   1925 		 * is just a synonym for one (or more) of the following
   1926 		 * operations:
   1927 		 *     change protection of a page
   1928 		 *     change wiring status of a page
   1929 		 *     remove the mapping of a page
   1930 		 *
   1931 		 * XXX - Semi critical: This code should unwire the PTE
   1932 		 * and, possibly, associated parent tables if this is a
   1933 		 * change wiring operation.  Currently it does not.
   1934 		 *
   1935 		 * This may be ok if pmap_change_wiring() is the only
   1936 		 * interface used to UNWIRE a page.
   1937 		 */
   1938 
   1939 		/* First check if this is a wiring operation. */
   1940 		if (wired && (c_pte->attr.raw & MMU_SHORT_PTE_WIRED)) {
   1941 			/*
   1942 			 * The PTE is already wired.  To prevent it from being
   1943 			 * counted as a new wiring operation, reset the 'wired'
   1944 			 * variable.
   1945 			 */
   1946 			wired = FALSE;
   1947 		}
   1948 
   1949 		/* Is the new address the same as the old? */
   1950 		if (MMU_PTE_PA(*c_pte) == pa) {
   1951 			/*
   1952 			 * Yes, mark that it does not need to be reinserted
   1953 			 * into the PV list.
   1954 			 */
   1955 			insert = FALSE;
   1956 
   1957 			/*
   1958 			 * Clear all but the modified, referenced and wired
   1959 			 * bits on the PTE.
   1960 			 */
   1961 			c_pte->attr.raw &= (MMU_SHORT_PTE_M
   1962 				| MMU_SHORT_PTE_USED | MMU_SHORT_PTE_WIRED);
   1963 		} else {
   1964 			/* No, remove the old entry */
   1965 			pmap_remove_pte(c_pte);
   1966 			insert = TRUE;
   1967 		}
   1968 
   1969 		/*
   1970 		 * TLB flush is only necessary if modifying current map.
   1971 		 * However, in pmap_enter(), the pmap almost always IS
   1972 		 * the current pmap, so don't even bother to check.
   1973 		 */
   1974 		TBIS(va);
   1975 	} else {
   1976 		/*
   1977 		 * The PTE is invalid.  Increment the valid entry count in
   1978 		 * the C table manager to reflect the addition of a new entry.
   1979 		 */
   1980 		c_tbl->ct_ecnt++;
   1981 
   1982 		/* XXX - temporarily make sure the PTE is cleared. */
   1983 		c_pte->attr.raw = 0;
   1984 
   1985 		/* It will also need to be inserted into the PV list. */
   1986 		insert = TRUE;
   1987 	}
   1988 
   1989 	/*
   1990 	 * If page is changing from unwired to wired status, set an unused bit
   1991 	 * within the PTE to indicate that it is wired.  Also increment the
   1992 	 * wired entry count in the C table manager.
   1993 	 */
   1994 	if (wired) {
   1995 		c_pte->attr.raw |= MMU_SHORT_PTE_WIRED;
   1996 		c_tbl->ct_wcnt++;
   1997 	}
   1998 
   1999 	/*
   2000 	 * Map the page, being careful to preserve modify/reference/wired
   2001 	 * bits.  At this point it is assumed that the PTE either has no bits
   2002 	 * set, or if there are set bits, they are only modified, reference or
   2003 	 * wired bits.  If not, the following statement will cause erratic
   2004 	 * behavior.
   2005 	 */
   2006 #ifdef	PMAP_DEBUG
   2007 	if (c_pte->attr.raw & ~(MMU_SHORT_PTE_M |
   2008 		MMU_SHORT_PTE_USED | MMU_SHORT_PTE_WIRED)) {
   2009 		printf("pmap_enter: junk left in PTE at %p\n", c_pte);
   2010 		Debugger();
   2011 	}
   2012 #endif
   2013 	c_pte->attr.raw |= ((u_long) pa | MMU_DT_PAGE);
   2014 
   2015 	/*
   2016 	 * If the mapping should be read-only, set the write protect
   2017 	 * bit in the PTE.
   2018 	 */
   2019 	if (!(prot & VM_PROT_WRITE))
   2020 		c_pte->attr.raw |= MMU_SHORT_PTE_WP;
   2021 
   2022 	/*
   2023 	 * If the mapping should be cache inhibited (indicated by the flag
   2024 	 * bits found on the lower order of the physical address.)
   2025 	 * mark the PTE as a cache inhibited page.
   2026 	 */
   2027 	if (flags & PMAP_NC)
   2028 		c_pte->attr.raw |= MMU_SHORT_PTE_CI;
   2029 
   2030 	/*
   2031 	 * If the physical address being mapped is managed by the PV
   2032 	 * system then link the pte into the list of pages mapped to that
   2033 	 * address.
   2034 	 */
   2035 	if (insert && managed) {
   2036 		pv = pa2pv(pa);
   2037 		nidx = pteidx(c_pte);
   2038 
   2039 		s = splimp();
   2040 		pvebase[nidx].pve_next = pv->pv_idx;
   2041 		pv->pv_idx = nidx;
   2042 		splx(s);
   2043 	}
   2044 
   2045 	/* Move any allocated tables back into the active pool. */
   2046 
   2047 	switch (llevel) {
   2048 		case NEWA:
   2049 			TAILQ_INSERT_TAIL(&a_pool, a_tbl, at_link);
   2050 			/* FALLTHROUGH */
   2051 		case NEWB:
   2052 			TAILQ_INSERT_TAIL(&b_pool, b_tbl, bt_link);
   2053 			/* FALLTHROUGH */
   2054 		case NEWC:
   2055 			TAILQ_INSERT_TAIL(&c_pool, c_tbl, ct_link);
   2056 			/* FALLTHROUGH */
   2057 		default:
   2058 			break;
   2059 	}
   2060 }
   2061 
   2062 /* pmap_enter_kernel			INTERNAL
   2063  **
   2064  * Map the given virtual address to the given physical address within the
   2065  * kernel address space.  This function exists because the kernel map does
   2066  * not do dynamic table allocation.  It consists of a contiguous array of ptes
   2067  * and can be edited directly without the need to walk through any tables.
   2068  *
   2069  * XXX: "Danger, Will Robinson!"
   2070  * Note that the kernel should never take a fault on any page
   2071  * between [ KERNBASE .. virtual_avail ] and this is checked in
   2072  * trap.c for kernel-mode MMU faults.  This means that mappings
   2073  * created in that range must be implicily wired. -gwr
   2074  */
   2075 void
   2076 pmap_enter_kernel(va, pa, prot)
   2077 	vm_offset_t va;
   2078 	vm_offset_t pa;
   2079 	vm_prot_t   prot;
   2080 {
   2081 	boolean_t       was_valid, insert;
   2082 	u_short         pte_idx;
   2083 	int             s, flags;
   2084 	mmu_short_pte_t *pte;
   2085 	pv_t            *pv;
   2086 	vm_offset_t     old_pa;
   2087 
   2088 	flags = (pa & ~MMU_PAGE_MASK);
   2089 	pa &= MMU_PAGE_MASK;
   2090 
   2091 	if (is_managed(pa))
   2092 		insert = TRUE;
   2093 	else
   2094 		insert = FALSE;
   2095 
   2096 	/*
   2097 	 * Calculate the index of the PTE being modified.
   2098 	 */
   2099 	pte_idx = (u_long) m68k_btop(va - KERNBASE);
   2100 
   2101 	/* This array is traditionally named "Sysmap" */
   2102 	pte = &kernCbase[pte_idx];
   2103 
   2104 	s = splimp();
   2105 	if (MMU_VALID_DT(*pte)) {
   2106 		was_valid = TRUE;
   2107 		/*
   2108 		 * If the PTE already maps a different
   2109 		 * physical address, umap and pv_unlink.
   2110 		 */
   2111 		old_pa = MMU_PTE_PA(*pte);
   2112 		if (pa != old_pa)
   2113 			pmap_remove_pte(pte);
   2114 		else {
   2115 		    /*
   2116 		     * Old PA and new PA are the same.  No need to
   2117 		     * relink the mapping within the PV list.
   2118 		     */
   2119 		     insert = FALSE;
   2120 
   2121 		    /*
   2122 		     * Save any mod/ref bits on the PTE.
   2123 		     */
   2124 		    pte->attr.raw &= (MMU_SHORT_PTE_USED|MMU_SHORT_PTE_M);
   2125 		}
   2126 	} else {
   2127 		pte->attr.raw = MMU_DT_INVALID;
   2128 		was_valid = FALSE;
   2129 	}
   2130 
   2131 	/*
   2132 	 * Map the page.  Being careful to preserve modified/referenced bits
   2133 	 * on the PTE.
   2134 	 */
   2135 	pte->attr.raw |= (pa | MMU_DT_PAGE);
   2136 
   2137 	if (!(prot & VM_PROT_WRITE)) /* If access should be read-only */
   2138 		pte->attr.raw |= MMU_SHORT_PTE_WP;
   2139 	if (flags & PMAP_NC)
   2140 		pte->attr.raw |= MMU_SHORT_PTE_CI;
   2141 	if (was_valid)
   2142 		TBIS(va);
   2143 
   2144 	/*
   2145 	 * Insert the PTE into the PV system, if need be.
   2146 	 */
   2147 	if (insert) {
   2148 		pv = pa2pv(pa);
   2149 		pvebase[pte_idx].pve_next = pv->pv_idx;
   2150 		pv->pv_idx = pte_idx;
   2151 	}
   2152 	splx(s);
   2153 
   2154 }
   2155 
   2156 /* pmap_map			INTERNAL
   2157  **
   2158  * Map a contiguous range of physical memory into a contiguous range of
   2159  * the kernel virtual address space.
   2160  *
   2161  * Used for device mappings and early mapping of the kernel text/data/bss.
   2162  * Returns the first virtual address beyond the end of the range.
   2163  */
   2164 vm_offset_t
   2165 pmap_map(va, pa, endpa, prot)
   2166 	vm_offset_t	va;
   2167 	vm_offset_t	pa;
   2168 	vm_offset_t	endpa;
   2169 	int		prot;
   2170 {
   2171 	int sz;
   2172 
   2173 	sz = endpa - pa;
   2174 	do {
   2175 		pmap_enter_kernel(va, pa, prot);
   2176 		va += NBPG;
   2177 		pa += NBPG;
   2178 		sz -= NBPG;
   2179 	} while (sz > 0);
   2180 	return(va);
   2181 }
   2182 
   2183 /* pmap_protect			INTERFACE
   2184  **
   2185  * Apply the given protection to the given virtual address range within
   2186  * the given map.
   2187  *
   2188  * It is ok for the protection applied to be stronger than what is
   2189  * specified.  We use this to our advantage when the given map has no
   2190  * mapping for the virtual address.  By skipping a page when this
   2191  * is discovered, we are effectively applying a protection of VM_PROT_NONE,
   2192  * and therefore do not need to map the page just to apply a protection
   2193  * code.  Only pmap_enter() needs to create new mappings if they do not exist.
   2194  *
   2195  * XXX - This function could be speeded up by using pmap_stroll() for inital
   2196  *       setup, and then manual scrolling in the for() loop.
   2197  */
   2198 void
   2199 pmap_protect(pmap, startva, endva, prot)
   2200 	pmap_t pmap;
   2201 	vm_offset_t startva, endva;
   2202 	vm_prot_t prot;
   2203 {
   2204 	boolean_t iscurpmap;
   2205 	int a_idx, b_idx, c_idx;
   2206 	a_tmgr_t *a_tbl;
   2207 	b_tmgr_t *b_tbl;
   2208 	c_tmgr_t *c_tbl;
   2209 	mmu_short_pte_t *pte;
   2210 
   2211 	if (pmap == NULL)
   2212 		return;
   2213 	if (pmap == pmap_kernel()) {
   2214 		pmap_protect_kernel(startva, endva, prot);
   2215 		return;
   2216 	}
   2217 
   2218 	/*
   2219 	 * In this particular pmap implementation, there are only three
   2220 	 * types of memory protection: 'all' (read/write/execute),
   2221 	 * 'read-only' (read/execute) and 'none' (no mapping.)
   2222 	 * It is not possible for us to treat 'executable' as a separate
   2223 	 * protection type.  Therefore, protection requests that seek to
   2224 	 * remove execute permission while retaining read or write, and those
   2225 	 * that make little sense (write-only for example) are ignored.
   2226 	 */
   2227 	switch (prot) {
   2228 		case VM_PROT_NONE:
   2229 			/*
   2230 			 * A request to apply the protection code of
   2231 			 * 'VM_PROT_NONE' is a synonym for pmap_remove().
   2232 			 */
   2233 			pmap_remove(pmap, startva, endva);
   2234 			return;
   2235 		case	VM_PROT_EXECUTE:
   2236 		case	VM_PROT_READ:
   2237 		case	VM_PROT_READ|VM_PROT_EXECUTE:
   2238 			/* continue */
   2239 			break;
   2240 		case	VM_PROT_WRITE:
   2241 		case	VM_PROT_WRITE|VM_PROT_READ:
   2242 		case	VM_PROT_WRITE|VM_PROT_EXECUTE:
   2243 		case	VM_PROT_ALL:
   2244 			/* None of these should happen in a sane system. */
   2245 			return;
   2246 	}
   2247 
   2248 	/*
   2249 	 * If the pmap has no A table, it has no mappings and therefore
   2250 	 * there is nothing to protect.
   2251 	 */
   2252 	if ((a_tbl = pmap->pm_a_tmgr) == NULL)
   2253 		return;
   2254 
   2255 	a_idx = MMU_TIA(startva);
   2256 	b_idx = MMU_TIB(startva);
   2257 	c_idx = MMU_TIC(startva);
   2258 	b_tbl = (b_tmgr_t *) c_tbl = NULL;
   2259 
   2260 	iscurpmap = (pmap == current_pmap());
   2261 	while (startva < endva) {
   2262 		if (b_tbl || MMU_VALID_DT(a_tbl->at_dtbl[a_idx])) {
   2263 		  if (b_tbl == NULL) {
   2264 		    b_tbl = (b_tmgr_t *) a_tbl->at_dtbl[a_idx].addr.raw;
   2265 		    b_tbl = mmu_ptov((vm_offset_t) b_tbl);
   2266 		    b_tbl = mmuB2tmgr((mmu_short_dte_t *) b_tbl);
   2267 		  }
   2268 		  if (c_tbl || MMU_VALID_DT(b_tbl->bt_dtbl[b_idx])) {
   2269 		    if (c_tbl == NULL) {
   2270 		      c_tbl = (c_tmgr_t *) MMU_DTE_PA(b_tbl->bt_dtbl[b_idx]);
   2271 		      c_tbl = mmu_ptov((vm_offset_t) c_tbl);
   2272 		      c_tbl = mmuC2tmgr((mmu_short_pte_t *) c_tbl);
   2273 		    }
   2274 		    if (MMU_VALID_DT(c_tbl->ct_dtbl[c_idx])) {
   2275 		      pte = &c_tbl->ct_dtbl[c_idx];
   2276 		      /* make the mapping read-only */
   2277 		      pte->attr.raw |= MMU_SHORT_PTE_WP;
   2278 		      /*
   2279 		       * If we just modified the current address space,
   2280 		       * flush any translations for the modified page from
   2281 		       * the translation cache and any data from it in the
   2282 		       * data cache.
   2283 		       */
   2284 		      if (iscurpmap)
   2285 		          TBIS(startva);
   2286 		    }
   2287 		    startva += NBPG;
   2288 
   2289 		    if (++c_idx >= MMU_C_TBL_SIZE) { /* exceeded C table? */
   2290 		      c_tbl = NULL;
   2291 		      c_idx = 0;
   2292 		      if (++b_idx >= MMU_B_TBL_SIZE) { /* exceeded B table? */
   2293 		        b_tbl = NULL;
   2294 		        b_idx = 0;
   2295 		      }
   2296 		    }
   2297 		  } else { /* C table wasn't valid */
   2298 		    c_tbl = NULL;
   2299 		    c_idx = 0;
   2300 		    startva += MMU_TIB_RANGE;
   2301 		    if (++b_idx >= MMU_B_TBL_SIZE) { /* exceeded B table? */
   2302 		      b_tbl = NULL;
   2303 		      b_idx = 0;
   2304 		    }
   2305 		  } /* C table */
   2306 		} else { /* B table wasn't valid */
   2307 		  b_tbl = NULL;
   2308 		  b_idx = 0;
   2309 		  startva += MMU_TIA_RANGE;
   2310 		  a_idx++;
   2311 		} /* B table */
   2312 	}
   2313 }
   2314 
   2315 /* pmap_protect_kernel			INTERNAL
   2316  **
   2317  * Apply the given protection code to a kernel address range.
   2318  */
   2319 void
   2320 pmap_protect_kernel(startva, endva, prot)
   2321 	vm_offset_t startva, endva;
   2322 	vm_prot_t prot;
   2323 {
   2324 	vm_offset_t va;
   2325 	mmu_short_pte_t *pte;
   2326 
   2327 	pte = &kernCbase[(unsigned long) m68k_btop(startva - KERNBASE)];
   2328 	for (va = startva; va < endva; va += NBPG, pte++) {
   2329 		if (MMU_VALID_DT(*pte)) {
   2330 		    switch (prot) {
   2331 		        case VM_PROT_ALL:
   2332 		            break;
   2333 		        case VM_PROT_EXECUTE:
   2334 		        case VM_PROT_READ:
   2335 		        case VM_PROT_READ|VM_PROT_EXECUTE:
   2336 		            pte->attr.raw |= MMU_SHORT_PTE_WP;
   2337 		            break;
   2338 		        case VM_PROT_NONE:
   2339 		            /* this is an alias for 'pmap_remove_kernel' */
   2340 		            pmap_remove_pte(pte);
   2341 		            break;
   2342 		        default:
   2343 		            break;
   2344 		    }
   2345 		    /*
   2346 		     * since this is the kernel, immediately flush any cached
   2347 		     * descriptors for this address.
   2348 		     */
   2349 		    TBIS(va);
   2350 		}
   2351 	}
   2352 }
   2353 
   2354 /* pmap_change_wiring			INTERFACE
   2355  **
   2356  * Changes the wiring of the specified page.
   2357  *
   2358  * This function is called from vm_fault.c to unwire
   2359  * a mapping.  It really should be called 'pmap_unwire'
   2360  * because it is never asked to do anything but remove
   2361  * wirings.
   2362  */
   2363 void
   2364 pmap_change_wiring(pmap, va, wire)
   2365 	pmap_t pmap;
   2366 	vm_offset_t va;
   2367 	boolean_t wire;
   2368 {
   2369 	int a_idx, b_idx, c_idx;
   2370 	a_tmgr_t *a_tbl;
   2371 	b_tmgr_t *b_tbl;
   2372 	c_tmgr_t *c_tbl;
   2373 	mmu_short_pte_t *pte;
   2374 
   2375 	/* Kernel mappings always remain wired. */
   2376 	if (pmap == pmap_kernel())
   2377 		return;
   2378 
   2379 #ifdef	PMAP_DEBUG
   2380 	if (wire == TRUE)
   2381 		panic("pmap_change_wiring: wire requested.");
   2382 #endif
   2383 
   2384 	/*
   2385 	 * Walk through the tables.  If the walk terminates without
   2386 	 * a valid PTE then the address wasn't wired in the first place.
   2387 	 * Return immediately.
   2388 	 */
   2389 	if (pmap_stroll(pmap, va, &a_tbl, &b_tbl, &c_tbl, &pte, &a_idx,
   2390 		&b_idx, &c_idx) == FALSE)
   2391 		return;
   2392 
   2393 
   2394 	/* Is the PTE wired?  If not, return. */
   2395 	if (!(pte->attr.raw & MMU_SHORT_PTE_WIRED))
   2396 		return;
   2397 
   2398 	/* Remove the wiring bit. */
   2399 	pte->attr.raw &= ~(MMU_SHORT_PTE_WIRED);
   2400 
   2401 	/*
   2402 	 * Decrement the wired entry count in the C table.
   2403 	 * If it reaches zero the following things happen:
   2404 	 * 1. The table no longer has any wired entries and is considered
   2405 	 *    unwired.
   2406 	 * 2. It is placed on the available queue.
   2407 	 * 3. The parent table's wired entry count is decremented.
   2408 	 * 4. If it reaches zero, this process repeats at step 1 and
   2409 	 *    stops at after reaching the A table.
   2410 	 */
   2411 	if (--c_tbl->ct_wcnt == 0) {
   2412 		TAILQ_INSERT_TAIL(&c_pool, c_tbl, ct_link);
   2413 		if (--b_tbl->bt_wcnt == 0) {
   2414 			TAILQ_INSERT_TAIL(&b_pool, b_tbl, bt_link);
   2415 			if (--a_tbl->at_wcnt == 0) {
   2416 				TAILQ_INSERT_TAIL(&a_pool, a_tbl, at_link);
   2417 			}
   2418 		}
   2419 	}
   2420 }
   2421 
   2422 /* pmap_pageable			INTERFACE
   2423  **
   2424  * Make the specified range of addresses within the given pmap,
   2425  * 'pageable' or 'not-pageable'.  A pageable page must not cause
   2426  * any faults when referenced.  A non-pageable page may.
   2427  *
   2428  * This routine is only advisory.  The VM system will call pmap_enter()
   2429  * to wire or unwire pages that are going to be made pageable before calling
   2430  * this function.  By the time this routine is called, everything that needs
   2431  * to be done has already been done.
   2432  */
   2433 void
   2434 pmap_pageable(pmap, start, end, pageable)
   2435 	pmap_t pmap;
   2436 	vm_offset_t start, end;
   2437 	boolean_t pageable;
   2438 {
   2439 	/* not implemented. */
   2440 }
   2441 
   2442 /* pmap_copy				INTERFACE
   2443  **
   2444  * Copy the mappings of a range of addresses in one pmap, into
   2445  * the destination address of another.
   2446  *
   2447  * This routine is advisory.  Should we one day decide that MMU tables
   2448  * may be shared by more than one pmap, this function should be used to
   2449  * link them together.  Until that day however, we do nothing.
   2450  */
   2451 void
   2452 pmap_copy(pmap_a, pmap_b, dst, len, src)
   2453 	pmap_t pmap_a, pmap_b;
   2454 	vm_offset_t dst;
   2455 	vm_size_t   len;
   2456 	vm_offset_t src;
   2457 {
   2458 	/* not implemented. */
   2459 }
   2460 
   2461 /* pmap_copy_page			INTERFACE
   2462  **
   2463  * Copy the contents of one physical page into another.
   2464  *
   2465  * This function makes use of two virtual pages allocated in pmap_bootstrap()
   2466  * to map the two specified physical pages into the kernel address space.
   2467  *
   2468  * Note: We could use the transparent translation registers to make the
   2469  * mappings.  If we do so, be sure to disable interrupts before using them.
   2470  */
   2471 void
   2472 pmap_copy_page(srcpa, dstpa)
   2473 	vm_offset_t srcpa, dstpa;
   2474 {
   2475 	vm_offset_t srcva, dstva;
   2476 	int s;
   2477 
   2478 	srcva = tmp_vpages[0];
   2479 	dstva = tmp_vpages[1];
   2480 
   2481 	s = splimp();
   2482 	if (tmp_vpages_inuse++)
   2483 		panic("pmap_copy_page: temporary vpages are in use.");
   2484 
   2485 	/* Map pages as non-cacheable to avoid cache polution? */
   2486 	pmap_enter_kernel(srcva, srcpa, VM_PROT_READ);
   2487 	pmap_enter_kernel(dstva, dstpa, VM_PROT_READ|VM_PROT_WRITE);
   2488 
   2489 	/* Hand-optimized version of bcopy(src, dst, NBPG) */
   2490 	copypage((char *) srcva, (char *) dstva);
   2491 
   2492 	pmap_remove_kernel(srcva, srcva + NBPG);
   2493 	pmap_remove_kernel(dstva, dstva + NBPG);
   2494 
   2495 	--tmp_vpages_inuse;
   2496 	splx(s);
   2497 }
   2498 
   2499 /* pmap_zero_page			INTERFACE
   2500  **
   2501  * Zero the contents of the specified physical page.
   2502  *
   2503  * Uses one of the virtual pages allocated in pmap_boostrap()
   2504  * to map the specified page into the kernel address space.
   2505  */
   2506 void
   2507 pmap_zero_page(dstpa)
   2508 	vm_offset_t dstpa;
   2509 {
   2510 	vm_offset_t dstva;
   2511 	int s;
   2512 
   2513 	dstva = tmp_vpages[1];
   2514 	s = splimp();
   2515 	if (tmp_vpages_inuse++)
   2516 		panic("pmap_zero_page: temporary vpages are in use.");
   2517 
   2518 	/* The comments in pmap_copy_page() above apply here also. */
   2519 	pmap_enter_kernel(dstva, dstpa, VM_PROT_READ|VM_PROT_WRITE);
   2520 
   2521 	/* Hand-optimized version of bzero(ptr, NBPG) */
   2522 	zeropage((char *) dstva);
   2523 
   2524 	pmap_remove_kernel(dstva, dstva + NBPG);
   2525 
   2526 	--tmp_vpages_inuse;
   2527 	splx(s);
   2528 }
   2529 
   2530 /* pmap_collect			INTERFACE
   2531  **
   2532  * Called from the VM system when we are about to swap out
   2533  * the process using this pmap.  This should give up any
   2534  * resources held here, including all its MMU tables.
   2535  */
   2536 void
   2537 pmap_collect(pmap)
   2538 	pmap_t pmap;
   2539 {
   2540 	/* XXX - todo... */
   2541 }
   2542 
   2543 /* pmap_create			INTERFACE
   2544  **
   2545  * Create and return a pmap structure.
   2546  */
   2547 pmap_t
   2548 pmap_create(size)
   2549 	vm_size_t size;
   2550 {
   2551 	pmap_t	pmap;
   2552 
   2553 	if (size)
   2554 		return NULL;
   2555 
   2556 	pmap = (pmap_t) malloc(sizeof(struct pmap), M_VMPMAP, M_WAITOK);
   2557 	pmap_pinit(pmap);
   2558 
   2559 	return pmap;
   2560 }
   2561 
   2562 /* pmap_pinit			INTERNAL
   2563  **
   2564  * Initialize a pmap structure.
   2565  */
   2566 void
   2567 pmap_pinit(pmap)
   2568 	pmap_t pmap;
   2569 {
   2570 	bzero(pmap, sizeof(struct pmap));
   2571 	pmap->pm_a_tmgr = NULL;
   2572 	pmap->pm_a_phys = kernAphys;
   2573 }
   2574 
   2575 /* pmap_release				INTERFACE
   2576  **
   2577  * Release any resources held by the given pmap.
   2578  *
   2579  * This is the reverse analog to pmap_pinit.  It does not
   2580  * necessarily mean for the pmap structure to be deallocated,
   2581  * as in pmap_destroy.
   2582  */
   2583 void
   2584 pmap_release(pmap)
   2585 	pmap_t pmap;
   2586 {
   2587 	/*
   2588 	 * As long as the pmap contains no mappings,
   2589 	 * which always should be the case whenever
   2590 	 * this function is called, there really should
   2591 	 * be nothing to do.
   2592 	 */
   2593 #ifdef	PMAP_DEBUG
   2594 	if (pmap == NULL)
   2595 		return;
   2596 	if (pmap == pmap_kernel())
   2597 		panic("pmap_release: kernel pmap");
   2598 #endif
   2599 	/*
   2600 	 * XXX - If this pmap has an A table, give it back.
   2601 	 * The pmap SHOULD be empty by now, and pmap_remove
   2602 	 * should have already given back the A table...
   2603 	 * However, I see:  pmap->pm_a_tmgr->at_ecnt == 1
   2604 	 * at this point, which means some mapping was not
   2605 	 * removed when it should have been. -gwr
   2606 	 */
   2607 	if (pmap->pm_a_tmgr != NULL) {
   2608 		/* First make sure we are not using it! */
   2609 		if (kernel_crp.rp_addr == pmap->pm_a_phys) {
   2610 			kernel_crp.rp_addr = kernAphys;
   2611 			loadcrp(&kernel_crp);
   2612 		}
   2613 #ifdef	PMAP_DEBUG /* XXX - todo! */
   2614 		/* XXX - Now complain... */
   2615 		printf("pmap_release: still have table\n");
   2616 		Debugger();
   2617 #endif
   2618 		free_a_table(pmap->pm_a_tmgr, TRUE);
   2619 		pmap->pm_a_tmgr = NULL;
   2620 		pmap->pm_a_phys = kernAphys;
   2621 	}
   2622 }
   2623 
   2624 /* pmap_reference			INTERFACE
   2625  **
   2626  * Increment the reference count of a pmap.
   2627  */
   2628 void
   2629 pmap_reference(pmap)
   2630 	pmap_t pmap;
   2631 {
   2632 	if (pmap == NULL)
   2633 		return;
   2634 
   2635 	/* pmap_lock(pmap); */
   2636 	pmap->pm_refcount++;
   2637 	/* pmap_unlock(pmap); */
   2638 }
   2639 
   2640 /* pmap_dereference			INTERNAL
   2641  **
   2642  * Decrease the reference count on the given pmap
   2643  * by one and return the current count.
   2644  */
   2645 int
   2646 pmap_dereference(pmap)
   2647 	pmap_t pmap;
   2648 {
   2649 	int rtn;
   2650 
   2651 	if (pmap == NULL)
   2652 		return 0;
   2653 
   2654 	/* pmap_lock(pmap); */
   2655 	rtn = --pmap->pm_refcount;
   2656 	/* pmap_unlock(pmap); */
   2657 
   2658 	return rtn;
   2659 }
   2660 
   2661 /* pmap_destroy			INTERFACE
   2662  **
   2663  * Decrement a pmap's reference count and delete
   2664  * the pmap if it becomes zero.  Will be called
   2665  * only after all mappings have been removed.
   2666  */
   2667 void
   2668 pmap_destroy(pmap)
   2669 	pmap_t pmap;
   2670 {
   2671 	if (pmap == NULL)
   2672 		return;
   2673 	if (pmap == &kernel_pmap)
   2674 		panic("pmap_destroy: kernel_pmap!");
   2675 	if (pmap_dereference(pmap) == 0) {
   2676 		pmap_release(pmap);
   2677 		free(pmap, M_VMPMAP);
   2678 	}
   2679 }
   2680 
   2681 /* pmap_is_referenced			INTERFACE
   2682  **
   2683  * Determine if the given physical page has been
   2684  * referenced (read from [or written to.])
   2685  */
   2686 boolean_t
   2687 pmap_is_referenced(pa)
   2688 	vm_offset_t pa;
   2689 {
   2690 	pv_t      *pv;
   2691 	int       idx, s;
   2692 
   2693 	if (!pv_initialized)
   2694 		return FALSE;
   2695 	/* XXX - this may be unecessary. */
   2696 	if (!is_managed(pa))
   2697 		return FALSE;
   2698 
   2699 	pv = pa2pv(pa);
   2700 	/*
   2701 	 * Check the flags on the pv head.  If they are set,
   2702 	 * return immediately.  Otherwise a search must be done.
   2703 	 */
   2704 	if (pv->pv_flags & PV_FLAGS_USED)
   2705 		return TRUE;
   2706 
   2707 	s = splimp();
   2708 	/*
   2709 	 * Search through all pv elements pointing
   2710 	 * to this page and query their reference bits
   2711 	 */
   2712 	for (idx = pv->pv_idx;
   2713 		 idx != PVE_EOL;
   2714 		 idx = pvebase[idx].pve_next) {
   2715 
   2716 		if (MMU_PTE_USED(kernCbase[idx])) {
   2717 			splx(s);
   2718 			return TRUE;
   2719 		}
   2720 	}
   2721 	splx(s);
   2722 
   2723 	return FALSE;
   2724 }
   2725 
   2726 /* pmap_is_modified			INTERFACE
   2727  **
   2728  * Determine if the given physical page has been
   2729  * modified (written to.)
   2730  */
   2731 boolean_t
   2732 pmap_is_modified(pa)
   2733 	vm_offset_t pa;
   2734 {
   2735 	pv_t      *pv;
   2736 	int       idx, s;
   2737 
   2738 	if (!pv_initialized)
   2739 		return FALSE;
   2740 	/* XXX - this may be unecessary. */
   2741 	if (!is_managed(pa))
   2742 		return FALSE;
   2743 
   2744 	/* see comments in pmap_is_referenced() */
   2745 	pv = pa2pv(pa);
   2746 	if (pv->pv_flags & PV_FLAGS_MDFY)
   2747 		return TRUE;
   2748 
   2749 	s = splimp();
   2750 	for (idx = pv->pv_idx;
   2751 		 idx != PVE_EOL;
   2752 		 idx = pvebase[idx].pve_next) {
   2753 
   2754 		if (MMU_PTE_MODIFIED(kernCbase[idx])) {
   2755 			splx(s);
   2756 			return TRUE;
   2757 		}
   2758 	}
   2759 	splx(s);
   2760 
   2761 	return FALSE;
   2762 }
   2763 
   2764 /* pmap_page_protect			INTERFACE
   2765  **
   2766  * Applies the given protection to all mappings to the given
   2767  * physical page.
   2768  */
   2769 void
   2770 pmap_page_protect(pa, prot)
   2771 	vm_offset_t pa;
   2772 	vm_prot_t prot;
   2773 {
   2774 	pv_t      *pv;
   2775 	int       idx, s;
   2776 	vm_offset_t va;
   2777 	struct mmu_short_pte_struct *pte;
   2778 	c_tmgr_t  *c_tbl;
   2779 	pmap_t    pmap, curpmap;
   2780 
   2781 	if (!is_managed(pa))
   2782 		return;
   2783 
   2784 	curpmap = current_pmap();
   2785 	pv = pa2pv(pa);
   2786 	s = splimp();
   2787 
   2788 	for (idx = pv->pv_idx;
   2789 		 idx != PVE_EOL;
   2790 		 idx = pvebase[idx].pve_next) {
   2791 
   2792 		pte = &kernCbase[idx];
   2793 		switch (prot) {
   2794 			case VM_PROT_ALL:
   2795 				/* do nothing */
   2796 				break;
   2797 			case VM_PROT_EXECUTE:
   2798 			case VM_PROT_READ:
   2799 			case VM_PROT_READ|VM_PROT_EXECUTE:
   2800 				/*
   2801 				 * Determine the virtual address mapped by
   2802 				 * the PTE and flush ATC entries if necessary.
   2803 				 */
   2804 				va = pmap_get_pteinfo(idx, &pmap, &c_tbl);
   2805 				/* XXX don't write protect pager mappings */
   2806 				if (va >= PAGER_SVA && va < PAGER_EVA) {
   2807 #ifdef	PMAP_DEBUG
   2808 					/* XXX - Does this actually happen? */
   2809 					printf("pmap_page_protect: in pager!\n");
   2810 					Debugger();
   2811 #endif
   2812 				} else
   2813 					pte->attr.raw |= MMU_SHORT_PTE_WP;
   2814 				if (pmap == curpmap || pmap == pmap_kernel())
   2815 					TBIS(va);
   2816 				break;
   2817 			case VM_PROT_NONE:
   2818 				/* Save the mod/ref bits. */
   2819 				pv->pv_flags |= pte->attr.raw;
   2820 				/* Invalidate the PTE. */
   2821 				pte->attr.raw = MMU_DT_INVALID;
   2822 
   2823 				/*
   2824 				 * Update table counts.  And flush ATC entries
   2825 				 * if necessary.
   2826 				 */
   2827 				va = pmap_get_pteinfo(idx, &pmap, &c_tbl);
   2828 
   2829 				/*
   2830 				 * If the PTE belongs to the kernel map,
   2831 				 * be sure to flush the page it maps.
   2832 				 */
   2833 				if (pmap == pmap_kernel()) {
   2834 					TBIS(va);
   2835 				} else {
   2836 					/*
   2837 					 * The PTE belongs to a user map.
   2838 					 * update the entry count in the C
   2839 					 * table to which it belongs and flush
   2840 					 * the ATC if the mapping belongs to
   2841 					 * the current pmap.
   2842 					 */
   2843 					c_tbl->ct_ecnt--;
   2844 					if (pmap == curpmap)
   2845 						TBIS(va);
   2846 				}
   2847 				break;
   2848 			default:
   2849 				break;
   2850 		}
   2851 	}
   2852 
   2853 	/*
   2854 	 * If the protection code indicates that all mappings to the page
   2855 	 * be removed, truncate the PV list to zero entries.
   2856 	 */
   2857 	if (prot == VM_PROT_NONE)
   2858 		pv->pv_idx = PVE_EOL;
   2859 	splx(s);
   2860 }
   2861 
   2862 /* pmap_get_pteinfo		INTERNAL
   2863  **
   2864  * Called internally to find the pmap and virtual address within that
   2865  * map to which the pte at the given index maps.  Also includes the PTE's C
   2866  * table manager.
   2867  *
   2868  * Returns the pmap in the argument provided, and the virtual address
   2869  * by return value.
   2870  */
   2871 vm_offset_t
   2872 pmap_get_pteinfo(idx, pmap, tbl)
   2873 	u_int idx;
   2874 	pmap_t *pmap;
   2875 	c_tmgr_t **tbl;
   2876 {
   2877 	vm_offset_t     va = 0;
   2878 
   2879 	/*
   2880 	 * Determine if the PTE is a kernel PTE or a user PTE.
   2881 	 */
   2882 	if (idx >= NUM_KERN_PTES) {
   2883 		/*
   2884 		 * The PTE belongs to a user mapping.
   2885 		 */
   2886 		/* XXX: Would like an inline for this to validate idx... */
   2887 		*tbl = &Ctmgrbase[(idx - NUM_KERN_PTES) / MMU_C_TBL_SIZE];
   2888 
   2889 		*pmap = (*tbl)->ct_pmap;
   2890 		/*
   2891 		 * To find the va to which the PTE maps, we first take
   2892 		 * the table's base virtual address mapping which is stored
   2893 		 * in ct_va.  We then increment this address by a page for
   2894 		 * every slot skipped until we reach the PTE.
   2895 		 */
   2896 		va =    (*tbl)->ct_va;
   2897 		va += m68k_ptob(idx % MMU_C_TBL_SIZE);
   2898 	} else {
   2899 		/*
   2900 		 * The PTE belongs to the kernel map.
   2901 		 */
   2902 		*pmap = pmap_kernel();
   2903 
   2904 		va = m68k_ptob(idx);
   2905 		va += KERNBASE;
   2906 	}
   2907 
   2908 	return va;
   2909 }
   2910 
   2911 /* pmap_clear_modify			INTERFACE
   2912  **
   2913  * Clear the modification bit on the page at the specified
   2914  * physical address.
   2915  *
   2916  */
   2917 void
   2918 pmap_clear_modify(pa)
   2919 	vm_offset_t pa;
   2920 {
   2921 	if (!is_managed(pa))
   2922 		return;
   2923 	pmap_clear_pv(pa, PV_FLAGS_MDFY);
   2924 }
   2925 
   2926 /* pmap_clear_reference			INTERFACE
   2927  **
   2928  * Clear the referenced bit on the page at the specified
   2929  * physical address.
   2930  */
   2931 void
   2932 pmap_clear_reference(pa)
   2933 	vm_offset_t pa;
   2934 {
   2935 	if (!is_managed(pa))
   2936 		return;
   2937 	pmap_clear_pv(pa, PV_FLAGS_USED);
   2938 }
   2939 
   2940 /* pmap_clear_pv			INTERNAL
   2941  **
   2942  * Clears the specified flag from the specified physical address.
   2943  * (Used by pmap_clear_modify() and pmap_clear_reference().)
   2944  *
   2945  * Flag is one of:
   2946  *   PV_FLAGS_MDFY - Page modified bit.
   2947  *   PV_FLAGS_USED - Page used (referenced) bit.
   2948  *
   2949  * This routine must not only clear the flag on the pv list
   2950  * head.  It must also clear the bit on every pte in the pv
   2951  * list associated with the address.
   2952  */
   2953 void
   2954 pmap_clear_pv(pa, flag)
   2955 	vm_offset_t pa;
   2956 	int flag;
   2957 {
   2958 	pv_t      *pv;
   2959 	int       idx, s;
   2960 	vm_offset_t     va;
   2961 	pmap_t          pmap;
   2962 	mmu_short_pte_t *pte;
   2963 	c_tmgr_t        *c_tbl;
   2964 
   2965 	pv = pa2pv(pa);
   2966 
   2967 	s = splimp();
   2968 	pv->pv_flags &= ~(flag);
   2969 
   2970 	for (idx = pv->pv_idx;
   2971 		 idx != PVE_EOL;
   2972 		 idx = pvebase[idx].pve_next) {
   2973 
   2974 		pte = &kernCbase[idx];
   2975 		pte->attr.raw &= ~(flag);
   2976 		/*
   2977 		 * The MC68030 MMU will not set the modified or
   2978 		 * referenced bits on any MMU tables for which it has
   2979 		 * a cached descriptor with its modify bit set.  To insure
   2980 		 * that it will modify these bits on the PTE during the next
   2981 		 * time it is written to or read from, we must flush it from
   2982 		 * the ATC.
   2983 		 *
   2984 		 * Ordinarily it is only necessary to flush the descriptor
   2985 		 * if it is used in the current address space.  But since I
   2986 		 * am not sure that there will always be a notion of
   2987 		 * 'the current address space' when this function is called,
   2988 		 * I will skip the test and always flush the address.  It
   2989 		 * does no harm.
   2990 		 */
   2991 		va = pmap_get_pteinfo(idx, &pmap, &c_tbl);
   2992 		TBIS(va);
   2993 	}
   2994 	splx(s);
   2995 }
   2996 
   2997 /* pmap_extract			INTERFACE
   2998  **
   2999  * Return the physical address mapped by the virtual address
   3000  * in the specified pmap or 0 if it is not known.
   3001  *
   3002  * Note: this function should also apply an exclusive lock
   3003  * on the pmap system during its duration.
   3004  */
   3005 vm_offset_t
   3006 pmap_extract(pmap, va)
   3007 	pmap_t      pmap;
   3008 	vm_offset_t va;
   3009 {
   3010 	int a_idx, b_idx, pte_idx;
   3011 	a_tmgr_t	*a_tbl;
   3012 	b_tmgr_t	*b_tbl;
   3013 	c_tmgr_t	*c_tbl;
   3014 	mmu_short_pte_t	*c_pte;
   3015 
   3016 	if (pmap == pmap_kernel())
   3017 		return pmap_extract_kernel(va);
   3018 	if (pmap == NULL)
   3019 		return 0;
   3020 
   3021 	if (pmap_stroll(pmap, va, &a_tbl, &b_tbl, &c_tbl,
   3022 		&c_pte, &a_idx, &b_idx, &pte_idx) == FALSE)
   3023 		return 0;
   3024 
   3025 	if (!MMU_VALID_DT(*c_pte))
   3026 		return 0;
   3027 
   3028 	return (MMU_PTE_PA(*c_pte));
   3029 }
   3030 
   3031 /* pmap_extract_kernel		INTERNAL
   3032  **
   3033  * Extract a translation from the kernel address space.
   3034  */
   3035 vm_offset_t
   3036 pmap_extract_kernel(va)
   3037 	vm_offset_t va;
   3038 {
   3039 	mmu_short_pte_t *pte;
   3040 
   3041 	pte = &kernCbase[(u_int) m68k_btop(va - KERNBASE)];
   3042 	return MMU_PTE_PA(*pte);
   3043 }
   3044 
   3045 /* pmap_remove_kernel		INTERNAL
   3046  **
   3047  * Remove the mapping of a range of virtual addresses from the kernel map.
   3048  * The arguments are already page-aligned.
   3049  */
   3050 void
   3051 pmap_remove_kernel(sva, eva)
   3052 	vm_offset_t sva;
   3053 	vm_offset_t eva;
   3054 {
   3055 	int idx, eidx;
   3056 
   3057 #ifdef	PMAP_DEBUG
   3058 	if ((sva & PGOFSET) || (eva & PGOFSET))
   3059 		panic("pmap_remove_kernel: alignment");
   3060 #endif
   3061 
   3062 	idx  = m68k_btop(sva - KERNBASE);
   3063 	eidx = m68k_btop(eva - KERNBASE);
   3064 
   3065 	while (idx < eidx) {
   3066 		pmap_remove_pte(&kernCbase[idx++]);
   3067 		TBIS(sva);
   3068 		sva += NBPG;
   3069 	}
   3070 }
   3071 
   3072 /* pmap_remove			INTERFACE
   3073  **
   3074  * Remove the mapping of a range of virtual addresses from the given pmap.
   3075  *
   3076  * If the range contains any wired entries, this function will probably create
   3077  * disaster.
   3078  */
   3079 void
   3080 pmap_remove(pmap, start, end)
   3081 	pmap_t pmap;
   3082 	vm_offset_t start;
   3083 	vm_offset_t end;
   3084 {
   3085 
   3086 	if (pmap == pmap_kernel()) {
   3087 		pmap_remove_kernel(start, end);
   3088 		return;
   3089 	}
   3090 
   3091 	/*
   3092 	 * XXX - Temporary(?) statement to prevent panic caused
   3093 	 * by vm_alloc_with_pager() handing us a software map (ie NULL)
   3094 	 * to remove because it couldn't get backing store.
   3095 	 * (I guess.)
   3096 	 */
   3097 	if (pmap == NULL)
   3098 		return;
   3099 
   3100 	/*
   3101 	 * If the pmap doesn't have an A table of its own, it has no mappings
   3102 	 * that can be removed.
   3103 	 */
   3104 	if (pmap->pm_a_tmgr == NULL)
   3105 		return;
   3106 
   3107 	/*
   3108 	 * Remove the specified range from the pmap.  If the function
   3109 	 * returns true, the operation removed all the valid mappings
   3110 	 * in the pmap and freed its A table.  If this happened to the
   3111 	 * currently loaded pmap, the MMU root pointer must be reloaded
   3112 	 * with the default 'kernel' map.
   3113 	 */
   3114 	if (pmap_remove_a(pmap->pm_a_tmgr, start, end)) {
   3115 		if (kernel_crp.rp_addr == pmap->pm_a_phys) {
   3116 			kernel_crp.rp_addr = kernAphys;
   3117 			loadcrp(&kernel_crp);
   3118 			/* will do TLB flush below */
   3119 		}
   3120 		pmap->pm_a_tmgr = NULL;
   3121 		pmap->pm_a_phys = kernAphys;
   3122 	}
   3123 
   3124 	/*
   3125 	 * If we just modified the current address space,
   3126 	 * make sure to flush the MMU cache.
   3127 	 *
   3128 	 * XXX - this could be an unecessarily large flush.
   3129 	 * XXX - Could decide, based on the size of the VA range
   3130 	 * to be removed, whether to flush "by pages" or "all".
   3131 	 */
   3132 	if (pmap == current_pmap())
   3133 		TBIAU();
   3134 }
   3135 
   3136 /* pmap_remove_a			INTERNAL
   3137  **
   3138  * This is function number one in a set of three that removes a range
   3139  * of memory in the most efficient manner by removing the highest possible
   3140  * tables from the memory space.  This particular function attempts to remove
   3141  * as many B tables as it can, delegating the remaining fragmented ranges to
   3142  * pmap_remove_b().
   3143  *
   3144  * If the removal operation results in an empty A table, the function returns
   3145  * TRUE.
   3146  *
   3147  * It's ugly but will do for now.
   3148  */
   3149 boolean_t
   3150 pmap_remove_a(a_tbl, start, end)
   3151 	a_tmgr_t *a_tbl;
   3152 	vm_offset_t start;
   3153 	vm_offset_t end;
   3154 {
   3155 	boolean_t empty;
   3156 	int idx;
   3157 	vm_offset_t nstart, nend;
   3158 	b_tmgr_t *b_tbl;
   3159 	mmu_long_dte_t  *a_dte;
   3160 	mmu_short_dte_t *b_dte;
   3161 
   3162 	/*
   3163 	 * The following code works with what I call a 'granularity
   3164 	 * reduction algorithim'.  A range of addresses will always have
   3165 	 * the following properties, which are classified according to
   3166 	 * how the range relates to the size of the current granularity
   3167 	 * - an A table entry:
   3168 	 *
   3169 	 *            1 2       3 4
   3170 	 * -+---+---+---+---+---+---+---+-
   3171 	 * -+---+---+---+---+---+---+---+-
   3172 	 *
   3173 	 * A range will always start on a granularity boundary, illustrated
   3174 	 * by '+' signs in the table above, or it will start at some point
   3175 	 * inbetween a granularity boundary, as illustrated by point 1.
   3176 	 * The first step in removing a range of addresses is to remove the
   3177 	 * range between 1 and 2, the nearest granularity boundary.  This
   3178 	 * job is handled by the section of code governed by the
   3179 	 * 'if (start < nstart)' statement.
   3180 	 *
   3181 	 * A range will always encompass zero or more intergral granules,
   3182 	 * illustrated by points 2 and 3.  Integral granules are easy to
   3183 	 * remove.  The removal of these granules is the second step, and
   3184 	 * is handled by the code block 'if (nstart < nend)'.
   3185 	 *
   3186 	 * Lastly, a range will always end on a granularity boundary,
   3187 	 * ill. by point 3, or it will fall just beyond one, ill. by point
   3188 	 * 4.  The last step involves removing this range and is handled by
   3189 	 * the code block 'if (nend < end)'.
   3190 	 */
   3191 	nstart = MMU_ROUND_UP_A(start);
   3192 	nend = MMU_ROUND_A(end);
   3193 
   3194 	if (start < nstart) {
   3195 		/*
   3196 		 * This block is executed if the range starts between
   3197 		 * a granularity boundary.
   3198 		 *
   3199 		 * First find the DTE which is responsible for mapping
   3200 		 * the start of the range.
   3201 		 */
   3202 		idx = MMU_TIA(start);
   3203 		a_dte = &a_tbl->at_dtbl[idx];
   3204 
   3205 		/*
   3206 		 * If the DTE is valid then delegate the removal of the sub
   3207 		 * range to pmap_remove_b(), which can remove addresses at
   3208 		 * a finer granularity.
   3209 		 */
   3210 		if (MMU_VALID_DT(*a_dte)) {
   3211 			b_dte = mmu_ptov(a_dte->addr.raw);
   3212 			b_tbl = mmuB2tmgr(b_dte);
   3213 
   3214 			/*
   3215 			 * The sub range to be removed starts at the start
   3216 			 * of the full range we were asked to remove, and ends
   3217 			 * at the greater of:
   3218 			 * 1. The end of the full range, -or-
   3219 			 * 2. The end of the full range, rounded down to the
   3220 			 *    nearest granularity boundary.
   3221 			 */
   3222 			if (end < nstart)
   3223 				empty = pmap_remove_b(b_tbl, start, end);
   3224 			else
   3225 				empty = pmap_remove_b(b_tbl, start, nstart);
   3226 
   3227 			/*
   3228 			 * If the removal resulted in an empty B table,
   3229 			 * invalidate the DTE that points to it and decrement
   3230 			 * the valid entry count of the A table.
   3231 			 */
   3232 			if (empty) {
   3233 				a_dte->attr.raw = MMU_DT_INVALID;
   3234 				a_tbl->at_ecnt--;
   3235 			}
   3236 		}
   3237 		/*
   3238 		 * If the DTE is invalid, the address range is already non-
   3239 		 * existant and can simply be skipped.
   3240 		 */
   3241 	}
   3242 	if (nstart < nend) {
   3243 		/*
   3244 		 * This block is executed if the range spans a whole number
   3245 		 * multiple of granules (A table entries.)
   3246 		 *
   3247 		 * First find the DTE which is responsible for mapping
   3248 		 * the start of the first granule involved.
   3249 		 */
   3250 		idx = MMU_TIA(nstart);
   3251 		a_dte = &a_tbl->at_dtbl[idx];
   3252 
   3253 		/*
   3254 		 * Remove entire sub-granules (B tables) one at a time,
   3255 		 * until reaching the end of the range.
   3256 		 */
   3257 		for (; nstart < nend; a_dte++, nstart += MMU_TIA_RANGE)
   3258 			if (MMU_VALID_DT(*a_dte)) {
   3259 				/*
   3260 				 * Find the B table manager for the
   3261 				 * entry and free it.
   3262 				 */
   3263 				b_dte = mmu_ptov(a_dte->addr.raw);
   3264 				b_tbl = mmuB2tmgr(b_dte);
   3265 				free_b_table(b_tbl, TRUE);
   3266 
   3267 				/*
   3268 				 * Invalidate the DTE that points to the
   3269 				 * B table and decrement the valid entry
   3270 				 * count of the A table.
   3271 				 */
   3272 				a_dte->attr.raw = MMU_DT_INVALID;
   3273 				a_tbl->at_ecnt--;
   3274 			}
   3275 	}
   3276 	if (nend < end) {
   3277 		/*
   3278 		 * This block is executed if the range ends beyond a
   3279 		 * granularity boundary.
   3280 		 *
   3281 		 * First find the DTE which is responsible for mapping
   3282 		 * the start of the nearest (rounded down) granularity
   3283 		 * boundary.
   3284 		 */
   3285 		idx = MMU_TIA(nend);
   3286 		a_dte = &a_tbl->at_dtbl[idx];
   3287 
   3288 		/*
   3289 		 * If the DTE is valid then delegate the removal of the sub
   3290 		 * range to pmap_remove_b(), which can remove addresses at
   3291 		 * a finer granularity.
   3292 		 */
   3293 		if (MMU_VALID_DT(*a_dte)) {
   3294 			/*
   3295 			 * Find the B table manager for the entry
   3296 			 * and hand it to pmap_remove_b() along with
   3297 			 * the sub range.
   3298 			 */
   3299 			b_dte = mmu_ptov(a_dte->addr.raw);
   3300 			b_tbl = mmuB2tmgr(b_dte);
   3301 
   3302 			empty = pmap_remove_b(b_tbl, nend, end);
   3303 
   3304 			/*
   3305 			 * If the removal resulted in an empty B table,
   3306 			 * invalidate the DTE that points to it and decrement
   3307 			 * the valid entry count of the A table.
   3308 			 */
   3309 			if (empty) {
   3310 				a_dte->attr.raw = MMU_DT_INVALID;
   3311 				a_tbl->at_ecnt--;
   3312 			}
   3313 		}
   3314 	}
   3315 
   3316 	/*
   3317 	 * If there are no more entries in the A table, release it
   3318 	 * back to the available pool and return TRUE.
   3319 	 */
   3320 	if (a_tbl->at_ecnt == 0) {
   3321 		a_tbl->at_parent = NULL;
   3322 		TAILQ_REMOVE(&a_pool, a_tbl, at_link);
   3323 		TAILQ_INSERT_HEAD(&a_pool, a_tbl, at_link);
   3324 		empty = TRUE;
   3325 	} else {
   3326 		empty = FALSE;
   3327 	}
   3328 
   3329 	return empty;
   3330 }
   3331 
   3332 /* pmap_remove_b			INTERNAL
   3333  **
   3334  * Remove a range of addresses from an address space, trying to remove entire
   3335  * C tables if possible.
   3336  *
   3337  * If the operation results in an empty B table, the function returns TRUE.
   3338  */
   3339 boolean_t
   3340 pmap_remove_b(b_tbl, start, end)
   3341 	b_tmgr_t *b_tbl;
   3342 	vm_offset_t start;
   3343 	vm_offset_t end;
   3344 {
   3345 	boolean_t empty;
   3346 	int idx;
   3347 	vm_offset_t nstart, nend, rstart;
   3348 	c_tmgr_t *c_tbl;
   3349 	mmu_short_dte_t  *b_dte;
   3350 	mmu_short_pte_t  *c_dte;
   3351 
   3352 
   3353 	nstart = MMU_ROUND_UP_B(start);
   3354 	nend = MMU_ROUND_B(end);
   3355 
   3356 	if (start < nstart) {
   3357 		idx = MMU_TIB(start);
   3358 		b_dte = &b_tbl->bt_dtbl[idx];
   3359 		if (MMU_VALID_DT(*b_dte)) {
   3360 			c_dte = mmu_ptov(MMU_DTE_PA(*b_dte));
   3361 			c_tbl = mmuC2tmgr(c_dte);
   3362 			if (end < nstart)
   3363 				empty = pmap_remove_c(c_tbl, start, end);
   3364 			else
   3365 				empty = pmap_remove_c(c_tbl, start, nstart);
   3366 			if (empty) {
   3367 				b_dte->attr.raw = MMU_DT_INVALID;
   3368 				b_tbl->bt_ecnt--;
   3369 			}
   3370 		}
   3371 	}
   3372 	if (nstart < nend) {
   3373 		idx = MMU_TIB(nstart);
   3374 		b_dte = &b_tbl->bt_dtbl[idx];
   3375 		rstart = nstart;
   3376 		while (rstart < nend) {
   3377 			if (MMU_VALID_DT(*b_dte)) {
   3378 				c_dte = mmu_ptov(MMU_DTE_PA(*b_dte));
   3379 				c_tbl = mmuC2tmgr(c_dte);
   3380 				free_c_table(c_tbl, TRUE);
   3381 				b_dte->attr.raw = MMU_DT_INVALID;
   3382 				b_tbl->bt_ecnt--;
   3383 			}
   3384 			b_dte++;
   3385 			rstart += MMU_TIB_RANGE;
   3386 		}
   3387 	}
   3388 	if (nend < end) {
   3389 		idx = MMU_TIB(nend);
   3390 		b_dte = &b_tbl->bt_dtbl[idx];
   3391 		if (MMU_VALID_DT(*b_dte)) {
   3392 			c_dte = mmu_ptov(MMU_DTE_PA(*b_dte));
   3393 			c_tbl = mmuC2tmgr(c_dte);
   3394 			empty = pmap_remove_c(c_tbl, nend, end);
   3395 			if (empty) {
   3396 				b_dte->attr.raw = MMU_DT_INVALID;
   3397 				b_tbl->bt_ecnt--;
   3398 			}
   3399 		}
   3400 	}
   3401 
   3402 	if (b_tbl->bt_ecnt == 0) {
   3403 		b_tbl->bt_parent = NULL;
   3404 		TAILQ_REMOVE(&b_pool, b_tbl, bt_link);
   3405 		TAILQ_INSERT_HEAD(&b_pool, b_tbl, bt_link);
   3406 		empty = TRUE;
   3407 	} else {
   3408 		empty = FALSE;
   3409 	}
   3410 
   3411 	return empty;
   3412 }
   3413 
   3414 /* pmap_remove_c			INTERNAL
   3415  **
   3416  * Remove a range of addresses from the given C table.
   3417  */
   3418 boolean_t
   3419 pmap_remove_c(c_tbl, start, end)
   3420 	c_tmgr_t *c_tbl;
   3421 	vm_offset_t start;
   3422 	vm_offset_t end;
   3423 {
   3424 	boolean_t empty;
   3425 	int idx;
   3426 	mmu_short_pte_t *c_pte;
   3427 
   3428 	idx = MMU_TIC(start);
   3429 	c_pte = &c_tbl->ct_dtbl[idx];
   3430 	for (;start < end; start += MMU_PAGE_SIZE, c_pte++) {
   3431 		if (MMU_VALID_DT(*c_pte)) {
   3432 			pmap_remove_pte(c_pte);
   3433 			c_tbl->ct_ecnt--;
   3434 		}
   3435 	}
   3436 
   3437 	if (c_tbl->ct_ecnt == 0) {
   3438 		c_tbl->ct_parent = NULL;
   3439 		TAILQ_REMOVE(&c_pool, c_tbl, ct_link);
   3440 		TAILQ_INSERT_HEAD(&c_pool, c_tbl, ct_link);
   3441 		empty = TRUE;
   3442 	} else {
   3443 		empty = FALSE;
   3444 	}
   3445 
   3446 	return empty;
   3447 }
   3448 
   3449 /* is_managed				INTERNAL
   3450  **
   3451  * Determine if the given physical address is managed by the PV system.
   3452  * Note that this logic assumes that no one will ask for the status of
   3453  * addresses which lie in-between the memory banks on the 3/80.  If they
   3454  * do so, it will falsely report that it is managed.
   3455  *
   3456  * Note: A "managed" address is one that was reported to the VM system as
   3457  * a "usable page" during system startup.  As such, the VM system expects the
   3458  * pmap module to keep an accurate track of the useage of those pages.
   3459  * Any page not given to the VM system at startup does not exist (as far as
   3460  * the VM system is concerned) and is therefore "unmanaged."  Examples are
   3461  * those pages which belong to the ROM monitor and the memory allocated before
   3462  * the VM system was started.
   3463  */
   3464 boolean_t
   3465 is_managed(pa)
   3466 	vm_offset_t pa;
   3467 {
   3468 	if (pa >= avail_start && pa < avail_end)
   3469 		return TRUE;
   3470 	else
   3471 		return FALSE;
   3472 }
   3473 
   3474 /* pmap_bootstrap_alloc			INTERNAL
   3475  **
   3476  * Used internally for memory allocation at startup when malloc is not
   3477  * available.  This code will fail once it crosses the first memory
   3478  * bank boundary on the 3/80.  Hopefully by then however, the VM system
   3479  * will be in charge of allocation.
   3480  */
   3481 void *
   3482 pmap_bootstrap_alloc(size)
   3483 	int size;
   3484 {
   3485 	void *rtn;
   3486 
   3487 #ifdef	PMAP_DEBUG
   3488 	if (bootstrap_alloc_enabled == FALSE) {
   3489 		mon_printf("pmap_bootstrap_alloc: disabled\n");
   3490 		sunmon_abort();
   3491 	}
   3492 #endif
   3493 
   3494 	rtn = (void *) virtual_avail;
   3495 	virtual_avail += size;
   3496 
   3497 #ifdef	PMAP_DEBUG
   3498 	if (virtual_avail > virtual_contig_end) {
   3499 		mon_printf("pmap_bootstrap_alloc: out of mem\n");
   3500 		sunmon_abort();
   3501 	}
   3502 #endif
   3503 
   3504 	return rtn;
   3505 }
   3506 
   3507 /* pmap_bootstap_aalign			INTERNAL
   3508  **
   3509  * Used to insure that the next call to pmap_bootstrap_alloc() will
   3510  * return a chunk of memory aligned to the specified size.
   3511  *
   3512  * Note: This function will only support alignment sizes that are powers
   3513  * of two.
   3514  */
   3515 void
   3516 pmap_bootstrap_aalign(size)
   3517 	int size;
   3518 {
   3519 	int off;
   3520 
   3521 	off = virtual_avail & (size - 1);
   3522 	if (off) {
   3523 		(void) pmap_bootstrap_alloc(size - off);
   3524 	}
   3525 }
   3526 
   3527 /* pmap_pa_exists
   3528  **
   3529  * Used by the /dev/mem driver to see if a given PA is memory
   3530  * that can be mapped.  (The PA is not in a hole.)
   3531  */
   3532 int
   3533 pmap_pa_exists(pa)
   3534 	vm_offset_t pa;
   3535 {
   3536 	register int i;
   3537 
   3538 	for (i = 0; i < SUN3X_NPHYS_RAM_SEGS; i++) {
   3539 		if ((pa >= avail_mem[i].pmem_start) &&
   3540 			(pa <  avail_mem[i].pmem_end))
   3541 			return (1);
   3542 		if (avail_mem[i].pmem_next == NULL)
   3543 			break;
   3544 	}
   3545 	return (0);
   3546 }
   3547 
   3548 /* Called only from locore.s and pmap.c */
   3549 void	_pmap_switch __P((pmap_t pmap));
   3550 
   3551 /*
   3552  * _pmap_switch			INTERNAL
   3553  *
   3554  * This is called by locore.s:cpu_switch() when it is
   3555  * switching to a new process.  Load new translations.
   3556  * Note: done in-line by locore.s unless PMAP_DEBUG
   3557  *
   3558  * Note that we do NOT allocate a context here, but
   3559  * share the "kernel only" context until we really
   3560  * need our own context for user-space mappings in
   3561  * pmap_enter_user().  [ s/context/mmu A table/ ]
   3562  */
   3563 void
   3564 _pmap_switch(pmap)
   3565 	pmap_t pmap;
   3566 {
   3567 	u_long rootpa;
   3568 
   3569 	/*
   3570 	 * Only do reload/flush if we have to.
   3571 	 * Note that if the old and new process
   3572 	 * were BOTH using the "null" context,
   3573 	 * then this will NOT flush the TLB.
   3574 	 */
   3575 	rootpa = pmap->pm_a_phys;
   3576 	if (kernel_crp.rp_addr != rootpa) {
   3577 		DPRINT(("pmap_activate(%p)\n", pmap));
   3578 		kernel_crp.rp_addr = rootpa;
   3579 		loadcrp(&kernel_crp);
   3580 		TBIAU();
   3581 	}
   3582 }
   3583 
   3584 /*
   3585  * Exported version of pmap_activate().  This is called from the
   3586  * machine-independent VM code when a process is given a new pmap.
   3587  * If (p == curproc) do like cpu_switch would do; otherwise just
   3588  * take this as notification that the process has a new pmap.
   3589  */
   3590 void
   3591 pmap_activate(p)
   3592 	struct proc *p;
   3593 {
   3594 	pmap_t pmap = p->p_vmspace->vm_map.pmap;
   3595 	int s;
   3596 
   3597 	if (p == curproc) {
   3598 		s = splimp();
   3599 		_pmap_switch(pmap);
   3600 		splx(s);
   3601 	}
   3602 }
   3603 
   3604 /*
   3605  * pmap_deactivate			INTERFACE
   3606  **
   3607  * This is called to deactivate the specified process's address space.
   3608  * XXX The semantics of this function are currently not well-defined.
   3609  */
   3610 void
   3611 pmap_deactivate(p)
   3612 struct proc *p;
   3613 {
   3614 	/* not implemented. */
   3615 }
   3616 
   3617 /* pmap_update
   3618  **
   3619  * Apply any delayed changes scheduled for all pmaps immediately.
   3620  *
   3621  * No delayed operations are currently done in this pmap.
   3622  */
   3623 void
   3624 pmap_update()
   3625 {
   3626 	/* not implemented. */
   3627 }
   3628 
   3629 /*
   3630  * Fill in the sun3x-specific part of the kernel core header
   3631  * for dumpsys().  (See machdep.c for the rest.)
   3632  */
   3633 void
   3634 pmap_kcore_hdr(sh)
   3635 	struct sun3x_kcore_hdr *sh;
   3636 {
   3637 	u_long spa, len;
   3638 	int i;
   3639 
   3640 	sh->pg_frame = MMU_SHORT_PTE_BASEADDR;
   3641 	sh->pg_valid = MMU_DT_PAGE;
   3642 	sh->contig_end = virtual_contig_end;
   3643 	sh->kernCbase = (u_long) kernCbase;
   3644 	for (i = 0; i < SUN3X_NPHYS_RAM_SEGS; i++) {
   3645 		spa = avail_mem[i].pmem_start;
   3646 		spa = m68k_trunc_page(spa);
   3647 		len = avail_mem[i].pmem_end - spa;
   3648 		len = m68k_round_page(len);
   3649 		sh->ram_segs[i].start = spa;
   3650 		sh->ram_segs[i].size  = len;
   3651 	}
   3652 }
   3653 
   3654 
   3655 /* pmap_virtual_space			INTERFACE
   3656  **
   3657  * Return the current available range of virtual addresses in the
   3658  * arguuments provided.  Only really called once.
   3659  */
   3660 void
   3661 pmap_virtual_space(vstart, vend)
   3662 	vm_offset_t *vstart, *vend;
   3663 {
   3664 	*vstart = virtual_avail;
   3665 	*vend = virtual_end;
   3666 }
   3667 
   3668 #if defined(MACHINE_NEW_NONCONTIG)
   3669 
   3670 /*
   3671  * Provide memory to the VM system.
   3672  *
   3673  * Assume avail_start is always in the
   3674  * first segment as pmap_bootstrap does.
   3675  */
   3676 static void
   3677 pmap_page_upload()
   3678 {
   3679 	vm_offset_t	a, b;	/* memory range */
   3680 	int i;
   3681 
   3682 	/* Supply the memory in segments. */
   3683 	for (i = 0; i < SUN3X_NPHYS_RAM_SEGS; i++) {
   3684 		a = atop(avail_mem[i].pmem_start);
   3685 		b = atop(avail_mem[i].pmem_end);
   3686 		if (i == 0)
   3687 			a = atop(avail_start);
   3688 
   3689 #if defined(UVM)
   3690 		uvm_page_physload(a, b, a, b, VM_FREELIST_DEFAULT);
   3691 #else
   3692 		vm_page_physload(a, b, a, b);
   3693 #endif
   3694 
   3695 		if (avail_mem[i].pmem_next == NULL)
   3696 			break;
   3697 	}
   3698 }
   3699 
   3700 #else	/* MACHINE_NEW_NONCONTIG */
   3701 
   3702 /* pmap_free_pages			INTERFACE
   3703  **
   3704  * Return the number of physical pages still available.
   3705  *
   3706  * This is probably going to be a mess, but it's only called
   3707  * once and it's the only function left that I have to implement!
   3708  */
   3709 u_int
   3710 pmap_free_pages()
   3711 {
   3712 	int i;
   3713 	u_int left;
   3714 	vm_offset_t avail;
   3715 
   3716 	avail = avail_next;
   3717 	left = 0;
   3718 	i = 0;
   3719 	while (avail >= avail_mem[i].pmem_end) {
   3720 		if (avail_mem[i].pmem_next == NULL)
   3721 			return 0;
   3722 		i++;
   3723 	}
   3724 	while (i < SUN3X_NPHYS_RAM_SEGS) {
   3725 		if (avail < avail_mem[i].pmem_start) {
   3726 			/* Avail is inside a hole, march it
   3727 			 * up to the next bank.
   3728 			 */
   3729 			avail = avail_mem[i].pmem_start;
   3730 		}
   3731 		left += m68k_btop(avail_mem[i].pmem_end - avail);
   3732 		if (avail_mem[i].pmem_next == NULL)
   3733 			break;
   3734 		i++;
   3735 	}
   3736 
   3737 	return left;
   3738 }
   3739 
   3740 /* pmap_next_page			INTERFACE
   3741  **
   3742  * Place the physical address of the next available page in the
   3743  * argument given.  Returns FALSE if there are no more pages left.
   3744  *
   3745  * This function must jump over any holes in physical memory.
   3746  * Once this function is used, any use of pmap_bootstrap_alloc()
   3747  * is a sin.  Sinners will be punished with erratic behavior.
   3748  */
   3749 boolean_t
   3750 pmap_next_page(pa)
   3751 	vm_offset_t *pa;
   3752 {
   3753 	static struct pmap_physmem_struct *curbank = avail_mem;
   3754 
   3755 	/* XXX - temporary ROM saving hack. */
   3756 	if (avail_next >= avail_end)
   3757 		return FALSE;
   3758 
   3759 	if (avail_next >= curbank->pmem_end)
   3760 		if (curbank->pmem_next == NULL)
   3761 			return FALSE;
   3762 		else {
   3763 			curbank = curbank->pmem_next;
   3764 			avail_next = curbank->pmem_start;
   3765 		}
   3766 
   3767 	*pa = avail_next;
   3768 	avail_next += NBPG;
   3769 	return TRUE;
   3770 }
   3771 
   3772 #endif /* ! MACHINE_NEW_NONCONTIG */
   3773 
   3774 /* pmap_page_index			INTERFACE
   3775  **
   3776  * Return the index of the given physical page in a list of useable
   3777  * physical pages in the system.  Holes in physical memory may be counted
   3778  * if so desired.  As long as pmap_free_pages() and pmap_page_index()
   3779  * agree as to whether holes in memory do or do not count as valid pages,
   3780  * it really doesn't matter.  However, if you like to save a little
   3781  * memory, don't count holes as valid pages.  This is even more true when
   3782  * the holes are large.
   3783  *
   3784  * We will not count holes as valid pages.  We can generate page indices
   3785  * that conform to this by using the memory bank structures initialized
   3786  * in pmap_alloc_pv().
   3787  */
   3788 int
   3789 pmap_page_index(pa)
   3790 	vm_offset_t pa;
   3791 {
   3792 	struct pmap_physmem_struct *bank = avail_mem;
   3793 	vm_offset_t off;
   3794 
   3795 	/* Search for the memory bank with this page. */
   3796 	/* XXX - What if it is not physical memory? */
   3797 	while (pa > bank->pmem_end)
   3798 		bank = bank->pmem_next;
   3799 	off = pa - bank->pmem_start;
   3800 
   3801 	return (bank->pmem_pvbase + m68k_btop(off));
   3802 }
   3803 
   3804 /* pmap_count			INTERFACE
   3805  **
   3806  * Return the number of resident (valid) pages in the given pmap.
   3807  *
   3808  * Note:  If this function is handed the kernel map, it will report
   3809  * that it has no mappings.  Hopefully the VM system won't ask for kernel
   3810  * map statistics.
   3811  */
   3812 segsz_t
   3813 pmap_count(pmap, type)
   3814 	pmap_t pmap;
   3815 	int    type;
   3816 {
   3817 	u_int     count;
   3818 	int       a_idx, b_idx;
   3819 	a_tmgr_t *a_tbl;
   3820 	b_tmgr_t *b_tbl;
   3821 	c_tmgr_t *c_tbl;
   3822 
   3823 	/*
   3824 	 * If the pmap does not have its own A table manager, it has no
   3825 	 * valid entires.
   3826 	 */
   3827 	if (pmap->pm_a_tmgr == NULL)
   3828 		return 0;
   3829 
   3830 	a_tbl = pmap->pm_a_tmgr;
   3831 
   3832 	count = 0;
   3833 	for (a_idx = 0; a_idx < MMU_TIA(KERNBASE); a_idx++) {
   3834 	    if (MMU_VALID_DT(a_tbl->at_dtbl[a_idx])) {
   3835 	        b_tbl = mmuB2tmgr(mmu_ptov(a_tbl->at_dtbl[a_idx].addr.raw));
   3836 	        for (b_idx = 0; b_idx < MMU_B_TBL_SIZE; b_idx++) {
   3837 	            if (MMU_VALID_DT(b_tbl->bt_dtbl[b_idx])) {
   3838 	                c_tbl = mmuC2tmgr(
   3839 	                    mmu_ptov(MMU_DTE_PA(b_tbl->bt_dtbl[b_idx])));
   3840 	                if (type == 0)
   3841 	                    /*
   3842 	                     * A resident entry count has been requested.
   3843 	                     */
   3844 	                    count += c_tbl->ct_ecnt;
   3845 	                else
   3846 	                    /*
   3847 	                     * A wired entry count has been requested.
   3848 	                     */
   3849 	                    count += c_tbl->ct_wcnt;
   3850 	            }
   3851 	        }
   3852 	    }
   3853 	}
   3854 
   3855 	return count;
   3856 }
   3857 
   3858 /************************ SUN3 COMPATIBILITY ROUTINES ********************
   3859  * The following routines are only used by DDB for tricky kernel text    *
   3860  * text operations in db_memrw.c.  They are provided for sun3            *
   3861  * compatibility.                                                        *
   3862  *************************************************************************/
   3863 /* get_pte			INTERNAL
   3864  **
   3865  * Return the page descriptor the describes the kernel mapping
   3866  * of the given virtual address.
   3867  */
   3868 extern u_long ptest_addr __P((u_long));	/* XXX: locore.s */
   3869 u_int
   3870 get_pte(va)
   3871 	vm_offset_t va;
   3872 {
   3873 	u_long pte_pa;
   3874 	mmu_short_pte_t *pte;
   3875 
   3876 	/* Get the physical address of the PTE */
   3877 	pte_pa = ptest_addr(va & ~PGOFSET);
   3878 
   3879 	/* Convert to a virtual address... */
   3880 	pte = (mmu_short_pte_t *) (KERNBASE + pte_pa);
   3881 
   3882 	/* Make sure it is in our level-C tables... */
   3883 	if ((pte < kernCbase) ||
   3884 		(pte >= &mmuCbase[NUM_USER_PTES]))
   3885 		return 0;
   3886 
   3887 	/* ... and just return its contents. */
   3888 	return (pte->attr.raw);
   3889 }
   3890 
   3891 
   3892 /* set_pte			INTERNAL
   3893  **
   3894  * Set the page descriptor that describes the kernel mapping
   3895  * of the given virtual address.
   3896  */
   3897 void
   3898 set_pte(va, pte)
   3899 	vm_offset_t va;
   3900 	u_int pte;
   3901 {
   3902 	u_long idx;
   3903 
   3904 	if (va < KERNBASE)
   3905 		return;
   3906 
   3907 	idx = (unsigned long) m68k_btop(va - KERNBASE);
   3908 	kernCbase[idx].attr.raw = pte;
   3909 	TBIS(va);
   3910 }
   3911 
   3912 #ifdef	PMAP_DEBUG
   3913 /************************** DEBUGGING ROUTINES **************************
   3914  * The following routines are meant to be an aid to debugging the pmap  *
   3915  * system.  They are callable from the DDB command line and should be   *
   3916  * prepared to be handed unstable or incomplete states of the system.   *
   3917  ************************************************************************/
   3918 
   3919 /* pv_list
   3920  **
   3921  * List all pages found on the pv list for the given physical page.
   3922  * To avoid endless loops, the listing will stop at the end of the list
   3923  * or after 'n' entries - whichever comes first.
   3924  */
   3925 void
   3926 pv_list(pa, n)
   3927 	vm_offset_t pa;
   3928 	int n;
   3929 {
   3930 	int  idx;
   3931 	vm_offset_t va;
   3932 	pv_t *pv;
   3933 	c_tmgr_t *c_tbl;
   3934 	pmap_t pmap;
   3935 
   3936 	pv = pa2pv(pa);
   3937 	idx = pv->pv_idx;
   3938 
   3939 	for (;idx != PVE_EOL && n > 0;
   3940 		 idx=pvebase[idx].pve_next, n--) {
   3941 
   3942 		va = pmap_get_pteinfo(idx, &pmap, &c_tbl);
   3943 		printf("idx %d, pmap 0x%x, va 0x%x, c_tbl %x\n",
   3944 			idx, (u_int) pmap, (u_int) va, (u_int) c_tbl);
   3945 	}
   3946 }
   3947 #endif	/* PMAP_DEBUG */
   3948 
   3949 #ifdef NOT_YET
   3950 /* and maybe not ever */
   3951 /************************** LOW-LEVEL ROUTINES **************************
   3952  * These routines will eventualy be re-written into assembly and placed *
   3953  * in locore.s.  They are here now as stubs so that the pmap module can *
   3954  * be linked as a standalone user program for testing.                  *
   3955  ************************************************************************/
   3956 /* flush_atc_crp			INTERNAL
   3957  **
   3958  * Flush all page descriptors derived from the given CPU Root Pointer
   3959  * (CRP), or 'A' table as it is known here, from the 68851's automatic
   3960  * cache.
   3961  */
   3962 void
   3963 flush_atc_crp(a_tbl)
   3964 {
   3965 	mmu_long_rp_t rp;
   3966 
   3967 	/* Create a temporary root table pointer that points to the
   3968 	 * given A table.
   3969 	 */
   3970 	rp.attr.raw = ~MMU_LONG_RP_LU;
   3971 	rp.addr.raw = (unsigned int) a_tbl;
   3972 
   3973 	mmu_pflushr(&rp);
   3974 	/* mmu_pflushr:
   3975 	 * 	movel   sp(4)@,a0
   3976 	 * 	pflushr a0@
   3977 	 *	rts
   3978 	 */
   3979 }
   3980 #endif /* NOT_YET */
   3981