Home | History | Annotate | Line # | Download | only in sun3x
pmap.c revision 1.44
      1 /*	$NetBSD: pmap.c,v 1.44 1999/03/26 23:41:37 mycroft Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1996, 1997 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jeremy Cooper.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  * 3. All advertising materials mentioning features or use of this software
     19  *    must display the following acknowledgement:
     20  *        This product includes software developed by the NetBSD
     21  *        Foundation, Inc. and its contributors.
     22  * 4. Neither the name of The NetBSD Foundation nor the names of its
     23  *    contributors may be used to endorse or promote products derived
     24  *    from this software without specific prior written permission.
     25  *
     26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36  * POSSIBILITY OF SUCH DAMAGE.
     37  */
     38 
     39 /*
     40  * XXX These comments aren't quite accurate.  Need to change.
     41  * The sun3x uses the MC68851 Memory Management Unit, which is built
     42  * into the CPU.  The 68851 maps virtual to physical addresses using
     43  * a multi-level table lookup, which is stored in the very memory that
     44  * it maps.  The number of levels of lookup is configurable from one
     45  * to four.  In this implementation, we use three, named 'A' through 'C'.
     46  *
     47  * The MMU translates virtual addresses into physical addresses by
     48  * traversing these tables in a proccess called a 'table walk'.  The most
     49  * significant 7 bits of the Virtual Address ('VA') being translated are
     50  * used as an index into the level A table, whose base in physical memory
     51  * is stored in a special MMU register, the 'CPU Root Pointer' or CRP.  The
     52  * address found at that index in the A table is used as the base
     53  * address for the next table, the B table.  The next six bits of the VA are
     54  * used as an index into the B table, which in turn gives the base address
     55  * of the third and final C table.
     56  *
     57  * The next six bits of the VA are used as an index into the C table to
     58  * locate a Page Table Entry (PTE).  The PTE is a physical address in memory
     59  * to which the remaining 13 bits of the VA are added, producing the
     60  * mapped physical address.
     61  *
     62  * To map the entire memory space in this manner would require 2114296 bytes
     63  * of page tables per process - quite expensive.  Instead we will
     64  * allocate a fixed but considerably smaller space for the page tables at
     65  * the time the VM system is initialized.  When the pmap code is asked by
     66  * the kernel to map a VA to a PA, it allocates tables as needed from this
     67  * pool.  When there are no more tables in the pool, tables are stolen
     68  * from the oldest mapped entries in the tree.  This is only possible
     69  * because all memory mappings are stored in the kernel memory map
     70  * structures, independent of the pmap structures.  A VA which references
     71  * one of these invalidated maps will cause a page fault.  The kernel
     72  * will determine that the page fault was caused by a task using a valid
     73  * VA, but for some reason (which does not concern it), that address was
     74  * not mapped.  It will ask the pmap code to re-map the entry and then
     75  * it will resume executing the faulting task.
     76  *
     77  * In this manner the most efficient use of the page table space is
     78  * achieved.  Tasks which do not execute often will have their tables
     79  * stolen and reused by tasks which execute more frequently.  The best
     80  * size for the page table pool will probably be determined by
     81  * experimentation.
     82  *
     83  * You read all of the comments so far.  Good for you.
     84  * Now go play!
     85  */
     86 
     87 /*** A Note About the 68851 Address Translation Cache
     88  * The MC68851 has a 64 entry cache, called the Address Translation Cache
     89  * or 'ATC'.  This cache stores the most recently used page descriptors
     90  * accessed by the MMU when it does translations.  Using a marker called a
     91  * 'task alias' the MMU can store the descriptors from 8 different table
     92  * spaces concurrently.  The task alias is associated with the base
     93  * address of the level A table of that address space.  When an address
     94  * space is currently active (the CRP currently points to its A table)
     95  * the only cached descriptors that will be obeyed are ones which have a
     96  * matching task alias of the current space associated with them.
     97  *
     98  * Since the cache is always consulted before any table lookups are done,
     99  * it is important that it accurately reflect the state of the MMU tables.
    100  * Whenever a change has been made to a table that has been loaded into
    101  * the MMU, the code must be sure to flush any cached entries that are
    102  * affected by the change.  These instances are documented in the code at
    103  * various points.
    104  */
    105 /*** A Note About the Note About the 68851 Address Translation Cache
    106  * 4 months into this code I discovered that the sun3x does not have
    107  * a MC68851 chip. Instead, it has a version of this MMU that is part of the
    108  * the 68030 CPU.
    109  * All though it behaves very similarly to the 68851, it only has 1 task
    110  * alias and a 22 entry cache.  So sadly (or happily), the first paragraph
    111  * of the previous note does not apply to the sun3x pmap.
    112  */
    113 
    114 #include <sys/param.h>
    115 #include <sys/systm.h>
    116 #include <sys/proc.h>
    117 #include <sys/malloc.h>
    118 #include <sys/user.h>
    119 #include <sys/queue.h>
    120 #include <sys/kcore.h>
    121 
    122 #include <vm/vm.h>
    123 #include <vm/vm_kern.h>
    124 #include <vm/vm_page.h>
    125 
    126 #include <uvm/uvm.h>
    127 
    128 #define PAGER_SVA (uvm.pager_sva)
    129 #define PAGER_EVA (uvm.pager_eva)
    130 
    131 #include <machine/cpu.h>
    132 #include <machine/kcore.h>
    133 #include <machine/mon.h>
    134 #include <machine/pmap.h>
    135 #include <machine/pte.h>
    136 #include <machine/vmparam.h>
    137 
    138 #include <sun3/sun3/cache.h>
    139 #include <sun3/sun3/machdep.h>
    140 
    141 #include "pmap_pvt.h"
    142 
    143 /* XXX - What headers declare these? */
    144 extern struct pcb *curpcb;
    145 extern int physmem;
    146 
    147 extern void copypage __P((const void*, void*));
    148 extern void zeropage __P((void*));
    149 
    150 /* Defined in locore.s */
    151 extern char kernel_text[];
    152 
    153 /* Defined by the linker */
    154 extern char etext[], edata[], end[];
    155 extern char *esym;	/* DDB */
    156 
    157 /*************************** DEBUGGING DEFINITIONS ***********************
    158  * Macros, preprocessor defines and variables used in debugging can make *
    159  * code hard to read.  Anything used exclusively for debugging purposes  *
    160  * is defined here to avoid having such mess scattered around the file.  *
    161  *************************************************************************/
    162 #ifdef	PMAP_DEBUG
    163 /*
    164  * To aid the debugging process, macros should be expanded into smaller steps
    165  * that accomplish the same goal, yet provide convenient places for placing
    166  * breakpoints.  When this code is compiled with PMAP_DEBUG mode defined, the
    167  * 'INLINE' keyword is defined to an empty string.  This way, any function
    168  * defined to be a 'static INLINE' will become 'outlined' and compiled as
    169  * a separate function, which is much easier to debug.
    170  */
    171 #define	INLINE	/* nothing */
    172 
    173 /*
    174  * It is sometimes convenient to watch the activity of a particular table
    175  * in the system.  The following variables are used for that purpose.
    176  */
    177 a_tmgr_t *pmap_watch_atbl = 0;
    178 b_tmgr_t *pmap_watch_btbl = 0;
    179 c_tmgr_t *pmap_watch_ctbl = 0;
    180 
    181 int pmap_debug = 0;
    182 #define DPRINT(args) if (pmap_debug) printf args
    183 
    184 #else	/********** Stuff below is defined if NOT debugging **************/
    185 
    186 #define	INLINE	inline
    187 #define DPRINT(args)  /* nada */
    188 
    189 #endif	/* PMAP_DEBUG */
    190 /*********************** END OF DEBUGGING DEFINITIONS ********************/
    191 
    192 /*** Management Structure - Memory Layout
    193  * For every MMU table in the sun3x pmap system there must be a way to
    194  * manage it; we must know which process is using it, what other tables
    195  * depend on it, and whether or not it contains any locked pages.  This
    196  * is solved by the creation of 'table management'  or 'tmgr'
    197  * structures.  One for each MMU table in the system.
    198  *
    199  *                        MAP OF MEMORY USED BY THE PMAP SYSTEM
    200  *
    201  *      towards lower memory
    202  * kernAbase -> +-------------------------------------------------------+
    203  *              | Kernel     MMU A level table                          |
    204  * kernBbase -> +-------------------------------------------------------+
    205  *              | Kernel     MMU B level tables                         |
    206  * kernCbase -> +-------------------------------------------------------+
    207  *              |                                                       |
    208  *              | Kernel     MMU C level tables                         |
    209  *              |                                                       |
    210  * mmuCbase  -> +-------------------------------------------------------+
    211  *              | User       MMU C level tables                         |
    212  * mmuAbase  -> +-------------------------------------------------------+
    213  *              |                                                       |
    214  *              | User       MMU A level tables                         |
    215  *              |                                                       |
    216  * mmuBbase  -> +-------------------------------------------------------+
    217  *              | User       MMU B level tables                         |
    218  * tmgrAbase -> +-------------------------------------------------------+
    219  *              |  TMGR A level table structures                        |
    220  * tmgrBbase -> +-------------------------------------------------------+
    221  *              |  TMGR B level table structures                        |
    222  * tmgrCbase -> +-------------------------------------------------------+
    223  *              |  TMGR C level table structures                        |
    224  * pvbase    -> +-------------------------------------------------------+
    225  *              |  Physical to Virtual mapping table (list heads)       |
    226  * pvebase   -> +-------------------------------------------------------+
    227  *              |  Physical to Virtual mapping table (list elements)    |
    228  *              |                                                       |
    229  *              +-------------------------------------------------------+
    230  *      towards higher memory
    231  *
    232  * For every A table in the MMU A area, there will be a corresponding
    233  * a_tmgr structure in the TMGR A area.  The same will be true for
    234  * the B and C tables.  This arrangement will make it easy to find the
    235  * controling tmgr structure for any table in the system by use of
    236  * (relatively) simple macros.
    237  */
    238 
    239 /*
    240  * Global variables for storing the base addresses for the areas
    241  * labeled above.
    242  */
    243 static vm_offset_t  	kernAphys;
    244 static mmu_long_dte_t	*kernAbase;
    245 static mmu_short_dte_t	*kernBbase;
    246 static mmu_short_pte_t	*kernCbase;
    247 static mmu_short_pte_t	*mmuCbase;
    248 static mmu_short_dte_t	*mmuBbase;
    249 static mmu_long_dte_t	*mmuAbase;
    250 static a_tmgr_t		*Atmgrbase;
    251 static b_tmgr_t		*Btmgrbase;
    252 static c_tmgr_t		*Ctmgrbase;
    253 static pv_t 		*pvbase;
    254 static pv_elem_t	*pvebase;
    255 struct pmap 		kernel_pmap;
    256 
    257 /*
    258  * This holds the CRP currently loaded into the MMU.
    259  */
    260 struct mmu_rootptr kernel_crp;
    261 
    262 /*
    263  * Just all around global variables.
    264  */
    265 static TAILQ_HEAD(a_pool_head_struct, a_tmgr_struct) a_pool;
    266 static TAILQ_HEAD(b_pool_head_struct, b_tmgr_struct) b_pool;
    267 static TAILQ_HEAD(c_pool_head_struct, c_tmgr_struct) c_pool;
    268 
    269 
    270 /*
    271  * Flags used to mark the safety/availability of certain operations or
    272  * resources.
    273  */
    274 static boolean_t pv_initialized = FALSE, /* PV system has been initialized. */
    275        bootstrap_alloc_enabled = FALSE; /*Safe to use pmap_bootstrap_alloc().*/
    276 int tmp_vpages_inuse;	/* Temporary virtual pages are in use */
    277 
    278 /*
    279  * XXX:  For now, retain the traditional variables that were
    280  * used in the old pmap/vm interface (without NONCONTIG).
    281  */
    282 /* Kernel virtual address space available: */
    283 vm_offset_t	virtual_avail, virtual_end;
    284 /* Physical address space available: */
    285 vm_offset_t	avail_start, avail_end;
    286 
    287 /* This keep track of the end of the contiguously mapped range. */
    288 vm_offset_t virtual_contig_end;
    289 
    290 /* Physical address used by pmap_next_page() */
    291 vm_offset_t avail_next;
    292 
    293 /* These are used by pmap_copy_page(), etc. */
    294 vm_offset_t tmp_vpages[2];
    295 
    296 /*
    297  * The 3/80 is the only member of the sun3x family that has non-contiguous
    298  * physical memory.  Memory is divided into 4 banks which are physically
    299  * locatable on the system board.  Although the size of these banks varies
    300  * with the size of memory they contain, their base addresses are
    301  * permenently fixed.  The following structure, which describes these
    302  * banks, is initialized by pmap_bootstrap() after it reads from a similar
    303  * structure provided by the ROM Monitor.
    304  *
    305  * For the other machines in the sun3x architecture which do have contiguous
    306  * RAM, this list will have only one entry, which will describe the entire
    307  * range of available memory.
    308  */
    309 struct pmap_physmem_struct avail_mem[SUN3X_NPHYS_RAM_SEGS];
    310 u_int total_phys_mem;
    311 
    312 /*************************************************************************/
    313 
    314 /*
    315  * XXX - Should "tune" these based on statistics.
    316  *
    317  * My first guess about the relative numbers of these needed is
    318  * based on the fact that a "typical" process will have several
    319  * pages mapped at low virtual addresses (text, data, bss), then
    320  * some mapped shared libraries, and then some stack pages mapped
    321  * near the high end of the VA space.  Each process can use only
    322  * one A table, and most will use only two B tables (maybe three)
    323  * and probably about four C tables.  Therefore, the first guess
    324  * at the relative numbers of these needed is 1:2:4 -gwr
    325  *
    326  * The number of C tables needed is closely related to the amount
    327  * of physical memory available plus a certain amount attributable
    328  * to the use of double mappings.  With a few simulation statistics
    329  * we can find a reasonably good estimation of this unknown value.
    330  * Armed with that and the above ratios, we have a good idea of what
    331  * is needed at each level. -j
    332  *
    333  * Note: It is not physical memory memory size, but the total mapped
    334  * virtual space required by the combined working sets of all the
    335  * currently _runnable_ processes.  (Sleeping ones don't count.)
    336  * The amount of physical memory should be irrelevant. -gwr
    337  */
    338 #ifdef	FIXED_NTABLES
    339 #define NUM_A_TABLES	16
    340 #define NUM_B_TABLES	32
    341 #define NUM_C_TABLES	64
    342 #else
    343 unsigned int	NUM_A_TABLES, NUM_B_TABLES, NUM_C_TABLES;
    344 #endif	/* FIXED_NTABLES */
    345 
    346 /*
    347  * This determines our total virtual mapping capacity.
    348  * Yes, it is a FIXED value so we can pre-allocate.
    349  */
    350 #define NUM_USER_PTES	(NUM_C_TABLES * MMU_C_TBL_SIZE)
    351 
    352 /*
    353  * The size of the Kernel Virtual Address Space (KVAS)
    354  * for purposes of MMU table allocation is -KERNBASE
    355  * (length from KERNBASE to 0xFFFFffff)
    356  */
    357 #define	KVAS_SIZE		(-KERNBASE)
    358 
    359 /* Numbers of kernel MMU tables to support KVAS_SIZE. */
    360 #define KERN_B_TABLES	(KVAS_SIZE >> MMU_TIA_SHIFT)
    361 #define KERN_C_TABLES	(KVAS_SIZE >> MMU_TIB_SHIFT)
    362 #define	NUM_KERN_PTES	(KVAS_SIZE >> MMU_TIC_SHIFT)
    363 
    364 /*************************** MISCELANEOUS MACROS *************************/
    365 #define PMAP_LOCK()	;	/* Nothing, for now */
    366 #define PMAP_UNLOCK()	;	/* same. */
    367 #define	NULL 0
    368 
    369 static INLINE void *      mmu_ptov __P((vm_offset_t pa));
    370 static INLINE vm_offset_t mmu_vtop __P((void * va));
    371 
    372 #if	0
    373 static INLINE a_tmgr_t * mmuA2tmgr __P((mmu_long_dte_t *));
    374 #endif /* 0 */
    375 static INLINE b_tmgr_t * mmuB2tmgr __P((mmu_short_dte_t *));
    376 static INLINE c_tmgr_t * mmuC2tmgr __P((mmu_short_pte_t *));
    377 
    378 static INLINE pv_t *pa2pv __P((vm_offset_t pa));
    379 static INLINE int   pteidx __P((mmu_short_pte_t *));
    380 static INLINE pmap_t current_pmap __P((void));
    381 
    382 /*
    383  * We can always convert between virtual and physical addresses
    384  * for anything in the range [KERNBASE ... avail_start] because
    385  * that range is GUARANTEED to be mapped linearly.
    386  * We rely heavily upon this feature!
    387  */
    388 static INLINE void *
    389 mmu_ptov(pa)
    390 	vm_offset_t pa;
    391 {
    392 	register vm_offset_t va;
    393 
    394 	va = (pa + KERNBASE);
    395 #ifdef	PMAP_DEBUG
    396 	if ((va < KERNBASE) || (va >= virtual_contig_end))
    397 		panic("mmu_ptov");
    398 #endif
    399 	return ((void*)va);
    400 }
    401 static INLINE vm_offset_t
    402 mmu_vtop(vva)
    403 	void *vva;
    404 {
    405 	register vm_offset_t va;
    406 
    407 	va = (vm_offset_t)vva;
    408 #ifdef	PMAP_DEBUG
    409 	if ((va < KERNBASE) || (va >= virtual_contig_end))
    410 		panic("mmu_ptov");
    411 #endif
    412 	return (va - KERNBASE);
    413 }
    414 
    415 /*
    416  * These macros map MMU tables to their corresponding manager structures.
    417  * They are needed quite often because many of the pointers in the pmap
    418  * system reference MMU tables and not the structures that control them.
    419  * There needs to be a way to find one when given the other and these
    420  * macros do so by taking advantage of the memory layout described above.
    421  * Here's a quick step through the first macro, mmuA2tmgr():
    422  *
    423  * 1) find the offset of the given MMU A table from the base of its table
    424  *    pool (table - mmuAbase).
    425  * 2) convert this offset into a table index by dividing it by the
    426  *    size of one MMU 'A' table. (sizeof(mmu_long_dte_t) * MMU_A_TBL_SIZE)
    427  * 3) use this index to select the corresponding 'A' table manager
    428  *    structure from the 'A' table manager pool (Atmgrbase[index]).
    429  */
    430 /*  This function is not currently used. */
    431 #if	0
    432 static INLINE a_tmgr_t *
    433 mmuA2tmgr(mmuAtbl)
    434 	mmu_long_dte_t *mmuAtbl;
    435 {
    436 	register int idx;
    437 
    438 	/* Which table is this in? */
    439 	idx = (mmuAtbl - mmuAbase) / MMU_A_TBL_SIZE;
    440 #ifdef	PMAP_DEBUG
    441 	if ((idx < 0) || (idx >= NUM_A_TABLES))
    442 		panic("mmuA2tmgr");
    443 #endif
    444 	return (&Atmgrbase[idx]);
    445 }
    446 #endif	/* 0 */
    447 
    448 static INLINE b_tmgr_t *
    449 mmuB2tmgr(mmuBtbl)
    450 	mmu_short_dte_t *mmuBtbl;
    451 {
    452 	register int idx;
    453 
    454 	/* Which table is this in? */
    455 	idx = (mmuBtbl - mmuBbase) / MMU_B_TBL_SIZE;
    456 #ifdef	PMAP_DEBUG
    457 	if ((idx < 0) || (idx >= NUM_B_TABLES))
    458 		panic("mmuB2tmgr");
    459 #endif
    460 	return (&Btmgrbase[idx]);
    461 }
    462 
    463 /* mmuC2tmgr			INTERNAL
    464  **
    465  * Given a pte known to belong to a C table, return the address of
    466  * that table's management structure.
    467  */
    468 static INLINE c_tmgr_t *
    469 mmuC2tmgr(mmuCtbl)
    470 	mmu_short_pte_t *mmuCtbl;
    471 {
    472 	register int idx;
    473 
    474 	/* Which table is this in? */
    475 	idx = (mmuCtbl - mmuCbase) / MMU_C_TBL_SIZE;
    476 #ifdef	PMAP_DEBUG
    477 	if ((idx < 0) || (idx >= NUM_C_TABLES))
    478 		panic("mmuC2tmgr");
    479 #endif
    480 	return (&Ctmgrbase[idx]);
    481 }
    482 
    483 /* This is now a function call below.
    484  * #define pa2pv(pa) \
    485  *	(&pvbase[(unsigned long)\
    486  *		m68k_btop(pa)\
    487  *	])
    488  */
    489 
    490 /* pa2pv			INTERNAL
    491  **
    492  * Return the pv_list_head element which manages the given physical
    493  * address.
    494  */
    495 static INLINE pv_t *
    496 pa2pv(pa)
    497 	vm_offset_t pa;
    498 {
    499 	register struct pmap_physmem_struct *bank;
    500 	register int idx;
    501 
    502 	bank = &avail_mem[0];
    503 	while (pa >= bank->pmem_end)
    504 		bank = bank->pmem_next;
    505 
    506 	pa -= bank->pmem_start;
    507 	idx = bank->pmem_pvbase + m68k_btop(pa);
    508 #ifdef	PMAP_DEBUG
    509 	if ((idx < 0) || (idx >= physmem))
    510 		panic("pa2pv");
    511 #endif
    512 	return &pvbase[idx];
    513 }
    514 
    515 /* pteidx			INTERNAL
    516  **
    517  * Return the index of the given PTE within the entire fixed table of
    518  * PTEs.
    519  */
    520 static INLINE int
    521 pteidx(pte)
    522 	mmu_short_pte_t *pte;
    523 {
    524 	return (pte - kernCbase);
    525 }
    526 
    527 /*
    528  * This just offers a place to put some debugging checks,
    529  * and reduces the number of places "curproc" appears...
    530  */
    531 static INLINE pmap_t
    532 current_pmap()
    533 {
    534 	struct proc *p;
    535 	struct vmspace *vm;
    536 	vm_map_t	map;
    537 	pmap_t	pmap;
    538 
    539 	p = curproc;	/* XXX */
    540 	if (p == NULL)
    541 		pmap = &kernel_pmap;
    542 	else {
    543 		vm = p->p_vmspace;
    544 		map = &vm->vm_map;
    545 		pmap = vm_map_pmap(map);
    546 	}
    547 
    548 	return (pmap);
    549 }
    550 
    551 
    552 /*************************** FUNCTION DEFINITIONS ************************
    553  * These appear here merely for the compiler to enforce type checking on *
    554  * all function calls.                                                   *
    555  *************************************************************************/
    556 
    557 /** External functions
    558  ** - functions used within this module but written elsewhere.
    559  **   both of these functions are in locore.s
    560  ** XXX - These functions were later replaced with their more cryptic
    561  **       hp300 counterparts.  They may be removed now.
    562  **/
    563 #if	0	/* deprecated mmu */
    564 void   mmu_seturp __P((vm_offset_t));
    565 void   mmu_flush __P((int, vm_offset_t));
    566 void   mmu_flusha __P((void));
    567 #endif	/* 0 */
    568 
    569 /** Internal functions
    570  ** Most functions used only within this module are defined in
    571  **   pmap_pvt.h (why not here if used only here?)
    572  **/
    573 static void pmap_page_upload __P((void));
    574 
    575 /** Interface functions
    576  ** - functions required by the Mach VM Pmap interface, with MACHINE_CONTIG
    577  **   defined.
    578  **/
    579 #ifdef INCLUDED_IN_PMAP_H
    580 void   pmap_bootstrap __P((void));
    581 void  *pmap_bootstrap_alloc __P((int));
    582 void   pmap_enter __P((pmap_t, vm_offset_t, vm_offset_t, vm_prot_t, boolean_t,
    583 	   vm_prot_t));
    584 pmap_t pmap_create __P((vm_size_t));
    585 void   pmap_destroy __P((pmap_t));
    586 void   pmap_reference __P((pmap_t));
    587 boolean_t   pmap_is_referenced __P((vm_offset_t));
    588 boolean_t   pmap_is_modified __P((vm_offset_t));
    589 void   pmap_clear_modify __P((vm_offset_t));
    590 vm_offset_t pmap_extract __P((pmap_t, vm_offset_t));
    591 u_int  pmap_free_pages __P((void));
    592 #endif /* INCLUDED_IN_PMAP_H */
    593 int    pmap_page_index __P((vm_offset_t));
    594 void pmap_pinit __P((pmap_t));
    595 void pmap_release __P((pmap_t));
    596 
    597 /********************************** CODE ********************************
    598  * Functions that are called from other parts of the kernel are labeled *
    599  * as 'INTERFACE' functions.  Functions that are only called from       *
    600  * within the pmap module are labeled as 'INTERNAL' functions.          *
    601  * Functions that are internal, but are not (currently) used at all are *
    602  * labeled 'INTERNAL_X'.                                                *
    603  ************************************************************************/
    604 
    605 /* pmap_bootstrap			INTERNAL
    606  **
    607  * Initializes the pmap system.  Called at boot time from
    608  * locore2.c:_vm_init()
    609  *
    610  * Reminder: having a pmap_bootstrap_alloc() and also having the VM
    611  *           system implement pmap_steal_memory() is redundant.
    612  *           Don't release this code without removing one or the other!
    613  */
    614 void
    615 pmap_bootstrap(nextva)
    616 	vm_offset_t nextva;
    617 {
    618 	struct physmemory *membank;
    619 	struct pmap_physmem_struct *pmap_membank;
    620 	vm_offset_t va, pa, eva;
    621 	int b, c, i, j;	/* running table counts */
    622 	int size, resvmem;
    623 
    624 	/*
    625 	 * This function is called by __bootstrap after it has
    626 	 * determined the type of machine and made the appropriate
    627 	 * patches to the ROM vectors (XXX- I don't quite know what I meant
    628 	 * by that.)  It allocates and sets up enough of the pmap system
    629 	 * to manage the kernel's address space.
    630 	 */
    631 
    632 	/*
    633 	 * Determine the range of kernel virtual and physical
    634 	 * space available. Note that we ABSOLUTELY DEPEND on
    635 	 * the fact that the first bank of memory (4MB) is
    636 	 * mapped linearly to KERNBASE (which we guaranteed in
    637 	 * the first instructions of locore.s).
    638 	 * That is plenty for our bootstrap work.
    639 	 */
    640 	virtual_avail = m68k_round_page(nextva);
    641 	virtual_contig_end = KERNBASE + 0x400000; /* +4MB */
    642 	virtual_end = VM_MAX_KERNEL_ADDRESS;
    643 	/* Don't need avail_start til later. */
    644 
    645 	/* We may now call pmap_bootstrap_alloc(). */
    646 	bootstrap_alloc_enabled = TRUE;
    647 
    648 	/*
    649 	 * This is a somewhat unwrapped loop to deal with
    650 	 * copying the PROM's 'phsymem' banks into the pmap's
    651 	 * banks.  The following is always assumed:
    652 	 * 1. There is always at least one bank of memory.
    653 	 * 2. There is always a last bank of memory, and its
    654 	 *    pmem_next member must be set to NULL.
    655 	 */
    656 	membank = romVectorPtr->v_physmemory;
    657 	pmap_membank = avail_mem;
    658 	total_phys_mem = 0;
    659 
    660 	for (;;) { /* break on !membank */
    661 		pmap_membank->pmem_start = membank->address;
    662 		pmap_membank->pmem_end = membank->address + membank->size;
    663 		total_phys_mem += membank->size;
    664 		membank = membank->next;
    665 		if (!membank)
    666 			break;
    667 		/* This silly syntax arises because pmap_membank
    668 		 * is really a pre-allocated array, but it is put into
    669 		 * use as a linked list.
    670 		 */
    671 		pmap_membank->pmem_next = pmap_membank + 1;
    672 		pmap_membank = pmap_membank->pmem_next;
    673 	}
    674 	/* This is the last element. */
    675 	pmap_membank->pmem_next = NULL;
    676 
    677 	/*
    678 	 * Note: total_phys_mem, physmem represent
    679 	 * actual physical memory, including that
    680 	 * reserved for the PROM monitor.
    681 	 */
    682 	physmem = btoc(total_phys_mem);
    683 
    684 	/*
    685 	 * The last bank of memory should be reduced to prevent the
    686 	 * physical pages needed by the PROM monitor from being used
    687 	 * in the VM system.
    688 	 */
    689 	resvmem = total_phys_mem - *(romVectorPtr->memoryAvail);
    690 	resvmem = m68k_round_page(resvmem);
    691 	pmap_membank->pmem_end -= resvmem;
    692 
    693 	/*
    694 	 * Avail_end is set to the first byte of physical memory
    695 	 * after the end of the last bank.  We use this only to
    696 	 * determine if a physical address is "managed" memory.
    697 	 */
    698 	avail_end = pmap_membank->pmem_end;
    699 
    700 	/*
    701 	 * First allocate enough kernel MMU tables to map all
    702 	 * of kernel virtual space from KERNBASE to 0xFFFFFFFF.
    703 	 * Note: All must be aligned on 256 byte boundaries.
    704 	 * Start with the level-A table (one of those).
    705 	 */
    706 	size = sizeof(mmu_long_dte_t)  * MMU_A_TBL_SIZE;
    707 	kernAbase = pmap_bootstrap_alloc(size);
    708 	bzero(kernAbase, size);
    709 
    710 	/* Now the level-B kernel tables... */
    711 	size = sizeof(mmu_short_dte_t) * MMU_B_TBL_SIZE * KERN_B_TABLES;
    712 	kernBbase = pmap_bootstrap_alloc(size);
    713 	bzero(kernBbase, size);
    714 
    715 	/* Now the level-C kernel tables... */
    716 	size = sizeof(mmu_short_pte_t) * MMU_C_TBL_SIZE * KERN_C_TABLES;
    717 	kernCbase = pmap_bootstrap_alloc(size);
    718 	bzero(kernCbase, size);
    719 	/*
    720 	 * Note: In order for the PV system to work correctly, the kernel
    721 	 * and user-level C tables must be allocated contiguously.
    722 	 * Nothing should be allocated between here and the allocation of
    723 	 * mmuCbase below.  XXX: Should do this as one allocation, and
    724 	 * then compute a pointer for mmuCbase instead of this...
    725 	 *
    726 	 * Allocate user MMU tables.
    727 	 * These must be contiguous with the preceeding.
    728 	 */
    729 
    730 #ifndef	FIXED_NTABLES
    731 	/*
    732 	 * The number of user-level C tables that should be allocated is
    733 	 * related to the size of physical memory.  In general, there should
    734 	 * be enough tables to map four times the amount of available RAM.
    735 	 * The extra amount is needed because some table space is wasted by
    736 	 * fragmentation.
    737 	 */
    738 	NUM_C_TABLES = (total_phys_mem * 4) / (MMU_C_TBL_SIZE * MMU_PAGE_SIZE);
    739 	NUM_B_TABLES = NUM_C_TABLES / 2;
    740 	NUM_A_TABLES = NUM_B_TABLES / 2;
    741 #endif	/* !FIXED_NTABLES */
    742 
    743 	size = sizeof(mmu_short_pte_t) * MMU_C_TBL_SIZE	* NUM_C_TABLES;
    744 	mmuCbase = pmap_bootstrap_alloc(size);
    745 
    746 	size = sizeof(mmu_short_dte_t) * MMU_B_TBL_SIZE	* NUM_B_TABLES;
    747 	mmuBbase = pmap_bootstrap_alloc(size);
    748 
    749 	size = sizeof(mmu_long_dte_t)  * MMU_A_TBL_SIZE * NUM_A_TABLES;
    750 	mmuAbase = pmap_bootstrap_alloc(size);
    751 
    752 	/*
    753 	 * Fill in the never-changing part of the kernel tables.
    754 	 * For simplicity, the kernel's mappings will be editable as a
    755 	 * flat array of page table entries at kernCbase.  The
    756 	 * higher level 'A' and 'B' tables must be initialized to point
    757 	 * to this lower one.
    758 	 */
    759 	b = c = 0;
    760 
    761 	/*
    762 	 * Invalidate all mappings below KERNBASE in the A table.
    763 	 * This area has already been zeroed out, but it is good
    764 	 * practice to explicitly show that we are interpreting
    765 	 * it as a list of A table descriptors.
    766 	 */
    767 	for (i = 0; i < MMU_TIA(KERNBASE); i++) {
    768 		kernAbase[i].addr.raw = 0;
    769 	}
    770 
    771 	/*
    772 	 * Set up the kernel A and B tables so that they will reference the
    773 	 * correct spots in the contiguous table of PTEs allocated for the
    774 	 * kernel's virtual memory space.
    775 	 */
    776 	for (i = MMU_TIA(KERNBASE); i < MMU_A_TBL_SIZE; i++) {
    777 		kernAbase[i].attr.raw =
    778 			MMU_LONG_DTE_LU | MMU_LONG_DTE_SUPV | MMU_DT_SHORT;
    779 		kernAbase[i].addr.raw = mmu_vtop(&kernBbase[b]);
    780 
    781 		for (j=0; j < MMU_B_TBL_SIZE; j++) {
    782 			kernBbase[b + j].attr.raw = mmu_vtop(&kernCbase[c])
    783 				| MMU_DT_SHORT;
    784 			c += MMU_C_TBL_SIZE;
    785 		}
    786 		b += MMU_B_TBL_SIZE;
    787 	}
    788 
    789 	/* XXX - Doing kernel_pmap a little further down. */
    790 
    791 	pmap_alloc_usermmu();	/* Allocate user MMU tables.        */
    792 	pmap_alloc_usertmgr();	/* Allocate user MMU table managers.*/
    793 	pmap_alloc_pv();	/* Allocate physical->virtual map.  */
    794 
    795 	/*
    796 	 * We are now done with pmap_bootstrap_alloc().  Round up
    797 	 * `virtual_avail' to the nearest page, and set the flag
    798 	 * to prevent use of pmap_bootstrap_alloc() hereafter.
    799 	 */
    800 	pmap_bootstrap_aalign(NBPG);
    801 	bootstrap_alloc_enabled = FALSE;
    802 
    803 	/*
    804 	 * Now that we are done with pmap_bootstrap_alloc(), we
    805 	 * must save the virtual and physical addresses of the
    806 	 * end of the linearly mapped range, which are stored in
    807 	 * virtual_contig_end and avail_start, respectively.
    808 	 * These variables will never change after this point.
    809 	 */
    810 	virtual_contig_end = virtual_avail;
    811 	avail_start = virtual_avail - KERNBASE;
    812 
    813 	/*
    814 	 * `avail_next' is a running pointer used by pmap_next_page() to
    815 	 * keep track of the next available physical page to be handed
    816 	 * to the VM system during its initialization, in which it
    817 	 * asks for physical pages, one at a time.
    818 	 */
    819 	avail_next = avail_start;
    820 
    821 	/*
    822 	 * Now allocate some virtual addresses, but not the physical pages
    823 	 * behind them.  Note that virtual_avail is already page-aligned.
    824 	 *
    825 	 * tmp_vpages[] is an array of two virtual pages used for temporary
    826 	 * kernel mappings in the pmap module to facilitate various physical
    827 	 * address-oritented operations.
    828 	 */
    829 	tmp_vpages[0] = virtual_avail;
    830 	virtual_avail += NBPG;
    831 	tmp_vpages[1] = virtual_avail;
    832 	virtual_avail += NBPG;
    833 
    834 	/** Initialize the PV system **/
    835 	pmap_init_pv();
    836 
    837 	/*
    838 	 * Fill in the kernel_pmap structure and kernel_crp.
    839 	 */
    840 	kernAphys = mmu_vtop(kernAbase);
    841 	kernel_pmap.pm_a_tmgr = NULL;
    842 	kernel_pmap.pm_a_phys = kernAphys;
    843 	kernel_pmap.pm_refcount = 1; /* always in use */
    844 
    845 	kernel_crp.rp_attr = MMU_LONG_DTE_LU | MMU_DT_LONG;
    846 	kernel_crp.rp_addr = kernAphys;
    847 
    848 	/*
    849 	 * Now pmap_enter_kernel() may be used safely and will be
    850 	 * the main interface used hereafter to modify the kernel's
    851 	 * virtual address space.  Note that since we are still running
    852 	 * under the PROM's address table, none of these table modifications
    853 	 * actually take effect until pmap_takeover_mmu() is called.
    854 	 *
    855 	 * Note: Our tables do NOT have the PROM linear mappings!
    856 	 * Only the mappings created here exist in our tables, so
    857 	 * remember to map anything we expect to use.
    858 	 */
    859 	va = (vm_offset_t) KERNBASE;
    860 	pa = 0;
    861 
    862 	/*
    863 	 * The first page of the kernel virtual address space is the msgbuf
    864 	 * page.  The page attributes (data, non-cached) are set here, while
    865 	 * the address is assigned to this global pointer in cpu_startup().
    866 	 * It is non-cached, mostly due to paranoia.
    867 	 */
    868 	pmap_enter_kernel(va, pa|PMAP_NC, VM_PROT_ALL);
    869 	va += NBPG; pa += NBPG;
    870 
    871 	/* Next page is used as the temporary stack. */
    872 	pmap_enter_kernel(va, pa, VM_PROT_ALL);
    873 	va += NBPG; pa += NBPG;
    874 
    875 	/*
    876 	 * Map all of the kernel's text segment as read-only and cacheable.
    877 	 * (Cacheable is implied by default).  Unfortunately, the last bytes
    878 	 * of kernel text and the first bytes of kernel data will often be
    879 	 * sharing the same page.  Therefore, the last page of kernel text
    880 	 * has to be mapped as read/write, to accomodate the data.
    881 	 */
    882 	eva = m68k_trunc_page((vm_offset_t)etext);
    883 	for (; va < eva; va += NBPG, pa += NBPG)
    884 		pmap_enter_kernel(va, pa, VM_PROT_READ|VM_PROT_EXECUTE);
    885 
    886 	/*
    887 	 * Map all of the kernel's data as read/write and cacheable.
    888 	 * This includes: data, BSS, symbols, and everything in the
    889 	 * contiguous memory used by pmap_bootstrap_alloc()
    890 	 */
    891 	for (; pa < avail_start; va += NBPG, pa += NBPG)
    892 		pmap_enter_kernel(va, pa, VM_PROT_READ|VM_PROT_WRITE);
    893 
    894 	/*
    895 	 * At this point we are almost ready to take over the MMU.  But first
    896 	 * we must save the PROM's address space in our map, as we call its
    897 	 * routines and make references to its data later in the kernel.
    898 	 */
    899 	pmap_bootstrap_copyprom();
    900 	pmap_takeover_mmu();
    901 	pmap_bootstrap_setprom();
    902 
    903 	/* Notify the VM system of our page size. */
    904 	PAGE_SIZE = NBPG;
    905 	uvm_setpagesize();
    906 
    907 	pmap_page_upload();
    908 }
    909 
    910 
    911 /* pmap_alloc_usermmu			INTERNAL
    912  **
    913  * Called from pmap_bootstrap() to allocate MMU tables that will
    914  * eventually be used for user mappings.
    915  */
    916 void
    917 pmap_alloc_usermmu()
    918 {
    919 	/* XXX: Moved into caller. */
    920 }
    921 
    922 /* pmap_alloc_pv			INTERNAL
    923  **
    924  * Called from pmap_bootstrap() to allocate the physical
    925  * to virtual mapping list.  Each physical page of memory
    926  * in the system has a corresponding element in this list.
    927  */
    928 void
    929 pmap_alloc_pv()
    930 {
    931 	int	i;
    932 	unsigned int	total_mem;
    933 
    934 	/*
    935 	 * Allocate a pv_head structure for every page of physical
    936 	 * memory that will be managed by the system.  Since memory on
    937 	 * the 3/80 is non-contiguous, we cannot arrive at a total page
    938 	 * count by subtraction of the lowest available address from the
    939 	 * highest, but rather we have to step through each memory
    940 	 * bank and add the number of pages in each to the total.
    941 	 *
    942 	 * At this time we also initialize the offset of each bank's
    943 	 * starting pv_head within the pv_head list so that the physical
    944 	 * memory state routines (pmap_is_referenced(),
    945 	 * pmap_is_modified(), et al.) can quickly find coresponding
    946 	 * pv_heads in spite of the non-contiguity.
    947 	 */
    948 	total_mem = 0;
    949 	for (i = 0; i < SUN3X_NPHYS_RAM_SEGS; i++) {
    950 		avail_mem[i].pmem_pvbase = m68k_btop(total_mem);
    951 		total_mem += avail_mem[i].pmem_end -
    952 			avail_mem[i].pmem_start;
    953 		if (avail_mem[i].pmem_next == NULL)
    954 			break;
    955 	}
    956 	pvbase = (pv_t *) pmap_bootstrap_alloc(sizeof(pv_t) *
    957 		m68k_btop(total_phys_mem));
    958 }
    959 
    960 /* pmap_alloc_usertmgr			INTERNAL
    961  **
    962  * Called from pmap_bootstrap() to allocate the structures which
    963  * facilitate management of user MMU tables.  Each user MMU table
    964  * in the system has one such structure associated with it.
    965  */
    966 void
    967 pmap_alloc_usertmgr()
    968 {
    969 	/* Allocate user MMU table managers */
    970 	/* It would be a lot simpler to just make these BSS, but */
    971 	/* we may want to change their size at boot time... -j */
    972 	Atmgrbase = (a_tmgr_t *) pmap_bootstrap_alloc(sizeof(a_tmgr_t)
    973 		* NUM_A_TABLES);
    974 	Btmgrbase = (b_tmgr_t *) pmap_bootstrap_alloc(sizeof(b_tmgr_t)
    975 		* NUM_B_TABLES);
    976 	Ctmgrbase = (c_tmgr_t *) pmap_bootstrap_alloc(sizeof(c_tmgr_t)
    977 		* NUM_C_TABLES);
    978 
    979 	/*
    980 	 * Allocate PV list elements for the physical to virtual
    981 	 * mapping system.
    982 	 */
    983 	pvebase = (pv_elem_t *) pmap_bootstrap_alloc(
    984 		sizeof(pv_elem_t) * (NUM_USER_PTES + NUM_KERN_PTES));
    985 }
    986 
    987 /* pmap_bootstrap_copyprom()			INTERNAL
    988  **
    989  * Copy the PROM mappings into our own tables.  Note, we
    990  * can use physical addresses until __bootstrap returns.
    991  */
    992 void
    993 pmap_bootstrap_copyprom()
    994 {
    995 	struct sunromvec *romp;
    996 	int *mon_ctbl;
    997 	mmu_short_pte_t *kpte;
    998 	int i, len;
    999 
   1000 	romp = romVectorPtr;
   1001 
   1002 	/*
   1003 	 * Copy the mappings in SUN3X_MON_KDB_BASE...SUN3X_MONEND
   1004 	 * Note: mon_ctbl[0] maps SUN3X_MON_KDB_BASE
   1005 	 */
   1006 	mon_ctbl = *romp->monptaddr;
   1007 	i = m68k_btop(SUN3X_MON_KDB_BASE - KERNBASE);
   1008 	kpte = &kernCbase[i];
   1009 	len = m68k_btop(SUN3X_MONEND - SUN3X_MON_KDB_BASE);
   1010 
   1011 	for (i = 0; i < len; i++) {
   1012 		kpte[i].attr.raw = mon_ctbl[i];
   1013 	}
   1014 
   1015 	/*
   1016 	 * Copy the mappings at MON_DVMA_BASE (to the end).
   1017 	 * Note, in here, mon_ctbl[0] maps MON_DVMA_BASE.
   1018 	 * Actually, we only want the last page, which the
   1019 	 * PROM has set up for use by the "ie" driver.
   1020 	 * (The i82686 needs its SCP there.)
   1021 	 * If we copy all the mappings, pmap_enter_kernel
   1022 	 * may complain about finding valid PTEs that are
   1023 	 * not recorded in our PV lists...
   1024 	 */
   1025 	mon_ctbl = *romp->shadowpteaddr;
   1026 	i = m68k_btop(SUN3X_MON_DVMA_BASE - KERNBASE);
   1027 	kpte = &kernCbase[i];
   1028 	len = m68k_btop(SUN3X_MON_DVMA_SIZE);
   1029 	for (i = (len-1); i < len; i++) {
   1030 		kpte[i].attr.raw = mon_ctbl[i];
   1031 	}
   1032 }
   1033 
   1034 /* pmap_takeover_mmu			INTERNAL
   1035  **
   1036  * Called from pmap_bootstrap() after it has copied enough of the
   1037  * PROM mappings into the kernel map so that we can use our own
   1038  * MMU table.
   1039  */
   1040 void
   1041 pmap_takeover_mmu()
   1042 {
   1043 
   1044 	loadcrp(&kernel_crp);
   1045 }
   1046 
   1047 /* pmap_bootstrap_setprom()			INTERNAL
   1048  **
   1049  * Set the PROM mappings so it can see kernel space.
   1050  * Note that physical addresses are used here, which
   1051  * we can get away with because this runs with the
   1052  * low 1GB set for transparent translation.
   1053  */
   1054 void
   1055 pmap_bootstrap_setprom()
   1056 {
   1057 	mmu_long_dte_t *mon_dte;
   1058 	extern struct mmu_rootptr mon_crp;
   1059 	int i;
   1060 
   1061 	mon_dte = (mmu_long_dte_t *) mon_crp.rp_addr;
   1062 	for (i = MMU_TIA(KERNBASE); i < MMU_TIA(KERN_END); i++) {
   1063 		mon_dte[i].attr.raw = kernAbase[i].attr.raw;
   1064 		mon_dte[i].addr.raw = kernAbase[i].addr.raw;
   1065 	}
   1066 }
   1067 
   1068 
   1069 /* pmap_init			INTERFACE
   1070  **
   1071  * Called at the end of vm_init() to set up the pmap system to go
   1072  * into full time operation.  All initialization of kernel_pmap
   1073  * should be already done by now, so this should just do things
   1074  * needed for user-level pmaps to work.
   1075  */
   1076 void
   1077 pmap_init()
   1078 {
   1079 	/** Initialize the manager pools **/
   1080 	TAILQ_INIT(&a_pool);
   1081 	TAILQ_INIT(&b_pool);
   1082 	TAILQ_INIT(&c_pool);
   1083 
   1084 	/**************************************************************
   1085 	 * Initialize all tmgr structures and MMU tables they manage. *
   1086 	 **************************************************************/
   1087 	/** Initialize A tables **/
   1088 	pmap_init_a_tables();
   1089 	/** Initialize B tables **/
   1090 	pmap_init_b_tables();
   1091 	/** Initialize C tables **/
   1092 	pmap_init_c_tables();
   1093 }
   1094 
   1095 /* pmap_init_a_tables()			INTERNAL
   1096  **
   1097  * Initializes all A managers, their MMU A tables, and inserts
   1098  * them into the A manager pool for use by the system.
   1099  */
   1100 void
   1101 pmap_init_a_tables()
   1102 {
   1103 	int i;
   1104 	a_tmgr_t *a_tbl;
   1105 
   1106 	for (i=0; i < NUM_A_TABLES; i++) {
   1107 		/* Select the next available A manager from the pool */
   1108 		a_tbl = &Atmgrbase[i];
   1109 
   1110 		/*
   1111 		 * Clear its parent entry.  Set its wired and valid
   1112 		 * entry count to zero.
   1113 		 */
   1114 		a_tbl->at_parent = NULL;
   1115 		a_tbl->at_wcnt = a_tbl->at_ecnt = 0;
   1116 
   1117 		/* Assign it the next available MMU A table from the pool */
   1118 		a_tbl->at_dtbl = &mmuAbase[i * MMU_A_TBL_SIZE];
   1119 
   1120 		/*
   1121 		 * Initialize the MMU A table with the table in the `proc0',
   1122 		 * or kernel, mapping.  This ensures that every process has
   1123 		 * the kernel mapped in the top part of its address space.
   1124 		 */
   1125 		bcopy(kernAbase, a_tbl->at_dtbl, MMU_A_TBL_SIZE *
   1126 			sizeof(mmu_long_dte_t));
   1127 
   1128 		/*
   1129 		 * Finally, insert the manager into the A pool,
   1130 		 * making it ready to be used by the system.
   1131 		 */
   1132 		TAILQ_INSERT_TAIL(&a_pool, a_tbl, at_link);
   1133     }
   1134 }
   1135 
   1136 /* pmap_init_b_tables()			INTERNAL
   1137  **
   1138  * Initializes all B table managers, their MMU B tables, and
   1139  * inserts them into the B manager pool for use by the system.
   1140  */
   1141 void
   1142 pmap_init_b_tables()
   1143 {
   1144 	int i,j;
   1145 	b_tmgr_t *b_tbl;
   1146 
   1147 	for (i=0; i < NUM_B_TABLES; i++) {
   1148 		/* Select the next available B manager from the pool */
   1149 		b_tbl = &Btmgrbase[i];
   1150 
   1151 		b_tbl->bt_parent = NULL;	/* clear its parent,  */
   1152 		b_tbl->bt_pidx = 0;		/* parent index,      */
   1153 		b_tbl->bt_wcnt = 0;		/* wired entry count, */
   1154 		b_tbl->bt_ecnt = 0;		/* valid entry count. */
   1155 
   1156 		/* Assign it the next available MMU B table from the pool */
   1157 		b_tbl->bt_dtbl = &mmuBbase[i * MMU_B_TBL_SIZE];
   1158 
   1159 		/* Invalidate every descriptor in the table */
   1160 		for (j=0; j < MMU_B_TBL_SIZE; j++)
   1161 			b_tbl->bt_dtbl[j].attr.raw = MMU_DT_INVALID;
   1162 
   1163 		/* Insert the manager into the B pool */
   1164 		TAILQ_INSERT_TAIL(&b_pool, b_tbl, bt_link);
   1165 	}
   1166 }
   1167 
   1168 /* pmap_init_c_tables()			INTERNAL
   1169  **
   1170  * Initializes all C table managers, their MMU C tables, and
   1171  * inserts them into the C manager pool for use by the system.
   1172  */
   1173 void
   1174 pmap_init_c_tables()
   1175 {
   1176 	int i,j;
   1177 	c_tmgr_t *c_tbl;
   1178 
   1179 	for (i=0; i < NUM_C_TABLES; i++) {
   1180 		/* Select the next available C manager from the pool */
   1181 		c_tbl = &Ctmgrbase[i];
   1182 
   1183 		c_tbl->ct_parent = NULL;	/* clear its parent,  */
   1184 		c_tbl->ct_pidx = 0;		/* parent index,      */
   1185 		c_tbl->ct_wcnt = 0;		/* wired entry count, */
   1186 		c_tbl->ct_ecnt = 0;		/* valid entry count, */
   1187 		c_tbl->ct_pmap = NULL;		/* parent pmap,       */
   1188 		c_tbl->ct_va = 0;		/* base of managed range */
   1189 
   1190 		/* Assign it the next available MMU C table from the pool */
   1191 		c_tbl->ct_dtbl = &mmuCbase[i * MMU_C_TBL_SIZE];
   1192 
   1193 		for (j=0; j < MMU_C_TBL_SIZE; j++)
   1194 			c_tbl->ct_dtbl[j].attr.raw = MMU_DT_INVALID;
   1195 
   1196 		TAILQ_INSERT_TAIL(&c_pool, c_tbl, ct_link);
   1197 	}
   1198 }
   1199 
   1200 /* pmap_init_pv()			INTERNAL
   1201  **
   1202  * Initializes the Physical to Virtual mapping system.
   1203  */
   1204 void
   1205 pmap_init_pv()
   1206 {
   1207 	int	i;
   1208 
   1209 	/* Initialize every PV head. */
   1210 	for (i = 0; i < m68k_btop(total_phys_mem); i++) {
   1211 		pvbase[i].pv_idx = PVE_EOL;	/* Indicate no mappings */
   1212 		pvbase[i].pv_flags = 0;		/* Zero out page flags  */
   1213 	}
   1214 
   1215 	pv_initialized = TRUE;
   1216 }
   1217 
   1218 /* get_a_table			INTERNAL
   1219  **
   1220  * Retrieve and return a level A table for use in a user map.
   1221  */
   1222 a_tmgr_t *
   1223 get_a_table()
   1224 {
   1225 	a_tmgr_t *tbl;
   1226 	pmap_t pmap;
   1227 
   1228 	/* Get the top A table in the pool */
   1229 	tbl = a_pool.tqh_first;
   1230 	if (tbl == NULL) {
   1231 		/*
   1232 		 * XXX - Instead of panicing here and in other get_x_table
   1233 		 * functions, we do have the option of sleeping on the head of
   1234 		 * the table pool.  Any function which updates the table pool
   1235 		 * would then issue a wakeup() on the head, thus waking up any
   1236 		 * processes waiting for a table.
   1237 		 *
   1238 		 * Actually, the place to sleep would be when some process
   1239 		 * asks for a "wired" mapping that would run us short of
   1240 		 * mapping resources.  This design DEPENDS on always having
   1241 		 * some mapping resources in the pool for stealing, so we
   1242 		 * must make sure we NEVER let the pool become empty. -gwr
   1243 		 */
   1244 		panic("get_a_table: out of A tables.");
   1245 	}
   1246 
   1247 	TAILQ_REMOVE(&a_pool, tbl, at_link);
   1248 	/*
   1249 	 * If the table has a non-null parent pointer then it is in use.
   1250 	 * Forcibly abduct it from its parent and clear its entries.
   1251 	 * No re-entrancy worries here.  This table would not be in the
   1252 	 * table pool unless it was available for use.
   1253 	 *
   1254 	 * Note that the second argument to free_a_table() is FALSE.  This
   1255 	 * indicates that the table should not be relinked into the A table
   1256 	 * pool.  That is a job for the function that called us.
   1257 	 */
   1258 	if (tbl->at_parent) {
   1259 		pmap = tbl->at_parent;
   1260 		free_a_table(tbl, FALSE);
   1261 		pmap->pm_a_tmgr = NULL;
   1262 		pmap->pm_a_phys = kernAphys;
   1263 	}
   1264 #ifdef  NON_REENTRANT
   1265 	/*
   1266 	 * If the table isn't to be wired down, re-insert it at the
   1267 	 * end of the pool.
   1268 	 */
   1269 	if (!wired)
   1270 		/*
   1271 		 * Quandary - XXX
   1272 		 * Would it be better to let the calling function insert this
   1273 		 * table into the queue?  By inserting it here, we are allowing
   1274 		 * it to be stolen immediately.  The calling function is
   1275 		 * probably not expecting to use a table that it is not
   1276 		 * assured full control of.
   1277 		 * Answer - In the intrest of re-entrancy, it is best to let
   1278 		 * the calling function determine when a table is available
   1279 		 * for use.  Therefore this code block is not used.
   1280 		 */
   1281 		TAILQ_INSERT_TAIL(&a_pool, tbl, at_link);
   1282 #endif	/* NON_REENTRANT */
   1283 	return tbl;
   1284 }
   1285 
   1286 /* get_b_table			INTERNAL
   1287  **
   1288  * Return a level B table for use.
   1289  */
   1290 b_tmgr_t *
   1291 get_b_table()
   1292 {
   1293 	b_tmgr_t *tbl;
   1294 
   1295 	/* See 'get_a_table' for comments. */
   1296 	tbl = b_pool.tqh_first;
   1297 	if (tbl == NULL)
   1298 		panic("get_b_table: out of B tables.");
   1299 	TAILQ_REMOVE(&b_pool, tbl, bt_link);
   1300 	if (tbl->bt_parent) {
   1301 		tbl->bt_parent->at_dtbl[tbl->bt_pidx].attr.raw = MMU_DT_INVALID;
   1302 		tbl->bt_parent->at_ecnt--;
   1303 		free_b_table(tbl, FALSE);
   1304 	}
   1305 #ifdef	NON_REENTRANT
   1306 	if (!wired)
   1307 		/* XXX see quandary in get_b_table */
   1308 		/* XXX start lock */
   1309 		TAILQ_INSERT_TAIL(&b_pool, tbl, bt_link);
   1310 		/* XXX end lock */
   1311 #endif	/* NON_REENTRANT */
   1312 	return tbl;
   1313 }
   1314 
   1315 /* get_c_table			INTERNAL
   1316  **
   1317  * Return a level C table for use.
   1318  */
   1319 c_tmgr_t *
   1320 get_c_table()
   1321 {
   1322 	c_tmgr_t *tbl;
   1323 
   1324 	/* See 'get_a_table' for comments */
   1325 	tbl = c_pool.tqh_first;
   1326 	if (tbl == NULL)
   1327 		panic("get_c_table: out of C tables.");
   1328 	TAILQ_REMOVE(&c_pool, tbl, ct_link);
   1329 	if (tbl->ct_parent) {
   1330 		tbl->ct_parent->bt_dtbl[tbl->ct_pidx].attr.raw = MMU_DT_INVALID;
   1331 		tbl->ct_parent->bt_ecnt--;
   1332 		free_c_table(tbl, FALSE);
   1333 	}
   1334 #ifdef	NON_REENTRANT
   1335 	if (!wired)
   1336 		/* XXX See quandary in get_a_table */
   1337 		/* XXX start lock */
   1338 		TAILQ_INSERT_TAIL(&c_pool, tbl, c_link);
   1339 		/* XXX end lock */
   1340 #endif	/* NON_REENTRANT */
   1341 
   1342 	return tbl;
   1343 }
   1344 
   1345 /*
   1346  * The following 'free_table' and 'steal_table' functions are called to
   1347  * detach tables from their current obligations (parents and children) and
   1348  * prepare them for reuse in another mapping.
   1349  *
   1350  * Free_table is used when the calling function will handle the fate
   1351  * of the parent table, such as returning it to the free pool when it has
   1352  * no valid entries.  Functions that do not want to handle this should
   1353  * call steal_table, in which the parent table's descriptors and entry
   1354  * count are automatically modified when this table is removed.
   1355  */
   1356 
   1357 /* free_a_table			INTERNAL
   1358  **
   1359  * Unmaps the given A table and all child tables from their current
   1360  * mappings.  Returns the number of pages that were invalidated.
   1361  * If 'relink' is true, the function will return the table to the head
   1362  * of the available table pool.
   1363  *
   1364  * Cache note: The MC68851 will automatically flush all
   1365  * descriptors derived from a given A table from its
   1366  * Automatic Translation Cache (ATC) if we issue a
   1367  * 'PFLUSHR' instruction with the base address of the
   1368  * table.  This function should do, and does so.
   1369  * Note note: We are using an MC68030 - there is no
   1370  * PFLUSHR.
   1371  */
   1372 int
   1373 free_a_table(a_tbl, relink)
   1374 	a_tmgr_t *a_tbl;
   1375 	boolean_t relink;
   1376 {
   1377 	int i, removed_cnt;
   1378 	mmu_long_dte_t	*dte;
   1379 	mmu_short_dte_t *dtbl;
   1380 	b_tmgr_t	*tmgr;
   1381 
   1382 	/*
   1383 	 * Flush the ATC cache of all cached descriptors derived
   1384 	 * from this table.
   1385 	 * Sun3x does not use 68851's cached table feature
   1386 	 * flush_atc_crp(mmu_vtop(a_tbl->dte));
   1387 	 */
   1388 
   1389 	/*
   1390 	 * Remove any pending cache flushes that were designated
   1391 	 * for the pmap this A table belongs to.
   1392 	 * a_tbl->parent->atc_flushq[0] = 0;
   1393 	 * Not implemented in sun3x.
   1394 	 */
   1395 
   1396 	/*
   1397 	 * All A tables in the system should retain a map for the
   1398 	 * kernel. If the table contains any valid descriptors
   1399 	 * (other than those for the kernel area), invalidate them all,
   1400 	 * stopping short of the kernel's entries.
   1401 	 */
   1402 	removed_cnt = 0;
   1403 	if (a_tbl->at_ecnt) {
   1404 		dte = a_tbl->at_dtbl;
   1405 		for (i=0; i < MMU_TIA(KERNBASE); i++) {
   1406 			/*
   1407 			 * If a table entry points to a valid B table, free
   1408 			 * it and its children.
   1409 			 */
   1410 			if (MMU_VALID_DT(dte[i])) {
   1411 				/*
   1412 				 * The following block does several things,
   1413 				 * from innermost expression to the
   1414 				 * outermost:
   1415 				 * 1) It extracts the base (cc 1996)
   1416 				 *    address of the B table pointed
   1417 				 *    to in the A table entry dte[i].
   1418 				 * 2) It converts this base address into
   1419 				 *    the virtual address it can be
   1420 				 *    accessed with. (all MMU tables point
   1421 				 *    to physical addresses.)
   1422 				 * 3) It finds the corresponding manager
   1423 				 *    structure which manages this MMU table.
   1424 				 * 4) It frees the manager structure.
   1425 				 *    (This frees the MMU table and all
   1426 				 *    child tables. See 'free_b_table' for
   1427 				 *    details.)
   1428 				 */
   1429 				dtbl = mmu_ptov(dte[i].addr.raw);
   1430 				tmgr = mmuB2tmgr(dtbl);
   1431 				removed_cnt += free_b_table(tmgr, TRUE);
   1432 				dte[i].attr.raw = MMU_DT_INVALID;
   1433 			}
   1434 		}
   1435 		a_tbl->at_ecnt = 0;
   1436 	}
   1437 	if (relink) {
   1438 		a_tbl->at_parent = NULL;
   1439 		TAILQ_REMOVE(&a_pool, a_tbl, at_link);
   1440 		TAILQ_INSERT_HEAD(&a_pool, a_tbl, at_link);
   1441 	}
   1442 	return removed_cnt;
   1443 }
   1444 
   1445 /* free_b_table			INTERNAL
   1446  **
   1447  * Unmaps the given B table and all its children from their current
   1448  * mappings.  Returns the number of pages that were invalidated.
   1449  * (For comments, see 'free_a_table()').
   1450  */
   1451 int
   1452 free_b_table(b_tbl, relink)
   1453 	b_tmgr_t *b_tbl;
   1454 	boolean_t relink;
   1455 {
   1456 	int i, removed_cnt;
   1457 	mmu_short_dte_t *dte;
   1458 	mmu_short_pte_t	*dtbl;
   1459 	c_tmgr_t	*tmgr;
   1460 
   1461 	removed_cnt = 0;
   1462 	if (b_tbl->bt_ecnt) {
   1463 		dte = b_tbl->bt_dtbl;
   1464 		for (i=0; i < MMU_B_TBL_SIZE; i++) {
   1465 			if (MMU_VALID_DT(dte[i])) {
   1466 				dtbl = mmu_ptov(MMU_DTE_PA(dte[i]));
   1467 				tmgr = mmuC2tmgr(dtbl);
   1468 				removed_cnt += free_c_table(tmgr, TRUE);
   1469 				dte[i].attr.raw = MMU_DT_INVALID;
   1470 			}
   1471 		}
   1472 		b_tbl->bt_ecnt = 0;
   1473 	}
   1474 
   1475 	if (relink) {
   1476 		b_tbl->bt_parent = NULL;
   1477 		TAILQ_REMOVE(&b_pool, b_tbl, bt_link);
   1478 		TAILQ_INSERT_HEAD(&b_pool, b_tbl, bt_link);
   1479 	}
   1480 	return removed_cnt;
   1481 }
   1482 
   1483 /* free_c_table			INTERNAL
   1484  **
   1485  * Unmaps the given C table from use and returns it to the pool for
   1486  * re-use.  Returns the number of pages that were invalidated.
   1487  *
   1488  * This function preserves any physical page modification information
   1489  * contained in the page descriptors within the C table by calling
   1490  * 'pmap_remove_pte().'
   1491  */
   1492 int
   1493 free_c_table(c_tbl, relink)
   1494 	c_tmgr_t *c_tbl;
   1495 	boolean_t relink;
   1496 {
   1497 	int i, removed_cnt;
   1498 
   1499 	removed_cnt = 0;
   1500 	if (c_tbl->ct_ecnt) {
   1501 		for (i=0; i < MMU_C_TBL_SIZE; i++) {
   1502 			if (MMU_VALID_DT(c_tbl->ct_dtbl[i])) {
   1503 				pmap_remove_pte(&c_tbl->ct_dtbl[i]);
   1504 				removed_cnt++;
   1505 			}
   1506 		}
   1507 		c_tbl->ct_ecnt = 0;
   1508 	}
   1509 
   1510 	if (relink) {
   1511 		c_tbl->ct_parent = NULL;
   1512 		TAILQ_REMOVE(&c_pool, c_tbl, ct_link);
   1513 		TAILQ_INSERT_HEAD(&c_pool, c_tbl, ct_link);
   1514 	}
   1515 	return removed_cnt;
   1516 }
   1517 
   1518 #if 0
   1519 /* free_c_table_novalid			INTERNAL
   1520  **
   1521  * Frees the given C table manager without checking to see whether
   1522  * or not it contains any valid page descriptors as it is assumed
   1523  * that it does not.
   1524  */
   1525 void
   1526 free_c_table_novalid(c_tbl)
   1527 	c_tmgr_t *c_tbl;
   1528 {
   1529 	TAILQ_REMOVE(&c_pool, c_tbl, ct_link);
   1530 	TAILQ_INSERT_HEAD(&c_pool, c_tbl, ct_link);
   1531 	c_tbl->ct_parent->bt_dtbl[c_tbl->ct_pidx].attr.raw = MMU_DT_INVALID;
   1532 	c_tbl->ct_parent->bt_ecnt--;
   1533 	/*
   1534 	 * XXX - Should call equiv. of 'free_b_table_novalid' here if
   1535 	 * we just removed the last entry of the parent B table.
   1536 	 * But I want to insure that this will not endanger pmap_enter()
   1537 	 * with sudden removal of tables it is working with.
   1538 	 *
   1539 	 * We should probably add another field to each table, indicating
   1540 	 * whether or not it is 'locked', ie. in the process of being
   1541 	 * modified.
   1542 	 */
   1543 	c_tbl->ct_parent = NULL;
   1544 }
   1545 #endif
   1546 
   1547 /* pmap_remove_pte			INTERNAL
   1548  **
   1549  * Unmap the given pte and preserve any page modification
   1550  * information by transfering it to the pv head of the
   1551  * physical page it maps to.  This function does not update
   1552  * any reference counts because it is assumed that the calling
   1553  * function will do so.
   1554  */
   1555 void
   1556 pmap_remove_pte(pte)
   1557 	mmu_short_pte_t *pte;
   1558 {
   1559 	u_short     pv_idx, targ_idx;
   1560 	int         s;
   1561 	vm_offset_t pa;
   1562 	pv_t       *pv;
   1563 
   1564 	pa = MMU_PTE_PA(*pte);
   1565 	if (is_managed(pa)) {
   1566 		pv = pa2pv(pa);
   1567 		targ_idx = pteidx(pte);	/* Index of PTE being removed    */
   1568 
   1569 		/*
   1570 		 * If the PTE being removed is the first (or only) PTE in
   1571 		 * the list of PTEs currently mapped to this page, remove the
   1572 		 * PTE by changing the index found on the PV head.  Otherwise
   1573 		 * a linear search through the list will have to be executed
   1574 		 * in order to find the PVE which points to the PTE being
   1575 		 * removed, so that it may be modified to point to its new
   1576 		 * neighbor.
   1577 		 */
   1578 		s = splimp();
   1579 		pv_idx = pv->pv_idx;	/* Index of first PTE in PV list */
   1580 		if (pv_idx == targ_idx) {
   1581 			pv->pv_idx = pvebase[targ_idx].pve_next;
   1582 		} else {
   1583 			/*
   1584 			 * Find the PV element pointing to the target
   1585 			 * element.  Note: may have pv_idx==PVE_EOL
   1586 			 */
   1587 			for (;;) {
   1588 				if (pv_idx == PVE_EOL) {
   1589 #ifdef	PMAP_DEBUG
   1590 					printf("pmap_remove_pte: PVE_EOL\n");
   1591 					Debugger();
   1592 #endif
   1593 					goto pv_not_found;
   1594 				}
   1595 				if (pvebase[pv_idx].pve_next == targ_idx)
   1596 					break;
   1597 				pv_idx = pvebase[pv_idx].pve_next;
   1598 			}
   1599 			/*
   1600 			 * At this point, pv_idx is the index of the PV
   1601 			 * element just before the target element in the list.
   1602 			 * Unlink the target.
   1603 			 */
   1604 			pvebase[pv_idx].pve_next = pvebase[targ_idx].pve_next;
   1605 		pv_not_found:
   1606 		}
   1607 		/*
   1608 		 * Save the mod/ref bits of the pte by simply
   1609 		 * ORing the entire pte onto the pv_flags member
   1610 		 * of the pv structure.
   1611 		 * There is no need to use a separate bit pattern
   1612 		 * for usage information on the pv head than that
   1613 		 * which is used on the MMU ptes.
   1614 		 */
   1615 		pv->pv_flags |= (u_short) pte->attr.raw;
   1616 		splx(s);
   1617 	}
   1618 
   1619 	pte->attr.raw = MMU_DT_INVALID;
   1620 }
   1621 
   1622 /* pmap_stroll			INTERNAL
   1623  **
   1624  * Retrieve the addresses of all table managers involved in the mapping of
   1625  * the given virtual address.  If the table walk completed sucessfully,
   1626  * return TRUE.  If it was only partially sucessful, return FALSE.
   1627  * The table walk performed by this function is important to many other
   1628  * functions in this module.
   1629  *
   1630  * Note: This function ought to be easier to read.
   1631  */
   1632 boolean_t
   1633 pmap_stroll(pmap, va, a_tbl, b_tbl, c_tbl, pte, a_idx, b_idx, pte_idx)
   1634 	pmap_t pmap;
   1635 	vm_offset_t va;
   1636 	a_tmgr_t **a_tbl;
   1637 	b_tmgr_t **b_tbl;
   1638 	c_tmgr_t **c_tbl;
   1639 	mmu_short_pte_t **pte;
   1640 	int *a_idx, *b_idx, *pte_idx;
   1641 {
   1642 	mmu_long_dte_t *a_dte;   /* A: long descriptor table          */
   1643 	mmu_short_dte_t *b_dte;  /* B: short descriptor table         */
   1644 
   1645 	if (pmap == pmap_kernel())
   1646 		return FALSE;
   1647 
   1648 	/* Does the given pmap have its own A table? */
   1649 	*a_tbl = pmap->pm_a_tmgr;
   1650 	if (*a_tbl == NULL)
   1651 		return FALSE; /* No.  Return unknown. */
   1652 	/* Does the A table have a valid B table
   1653 	 * under the corresponding table entry?
   1654 	 */
   1655 	*a_idx = MMU_TIA(va);
   1656 	a_dte = &((*a_tbl)->at_dtbl[*a_idx]);
   1657 	if (!MMU_VALID_DT(*a_dte))
   1658 		return FALSE; /* No. Return unknown. */
   1659 	/* Yes. Extract B table from the A table. */
   1660 	*b_tbl = mmuB2tmgr(mmu_ptov(a_dte->addr.raw));
   1661 	/* Does the B table have a valid C table
   1662 	 * under the corresponding table entry?
   1663 	 */
   1664 	*b_idx = MMU_TIB(va);
   1665 	b_dte = &((*b_tbl)->bt_dtbl[*b_idx]);
   1666 	if (!MMU_VALID_DT(*b_dte))
   1667 		return FALSE; /* No. Return unknown. */
   1668 	/* Yes. Extract C table from the B table. */
   1669 	*c_tbl = mmuC2tmgr(mmu_ptov(MMU_DTE_PA(*b_dte)));
   1670 	*pte_idx = MMU_TIC(va);
   1671 	*pte = &((*c_tbl)->ct_dtbl[*pte_idx]);
   1672 
   1673 	return	TRUE;
   1674 }
   1675 
   1676 /* pmap_enter			INTERFACE
   1677  **
   1678  * Called by the kernel to map a virtual address
   1679  * to a physical address in the given process map.
   1680  *
   1681  * Note: this function should apply an exclusive lock
   1682  * on the pmap system for its duration.  (it certainly
   1683  * would save my hair!!)
   1684  * This function ought to be easier to read.
   1685  */
   1686 void
   1687 pmap_enter(pmap, va, pa, prot, wired, access_type)
   1688 	pmap_t	pmap;
   1689 	vm_offset_t va;
   1690 	vm_offset_t pa;
   1691 	vm_prot_t prot;
   1692 	boolean_t wired;
   1693 	vm_prot_t access_type;
   1694 {
   1695 	boolean_t insert, managed; /* Marks the need for PV insertion.*/
   1696 	u_short nidx;            /* PV list index                     */
   1697 	int s;                   /* Used for splimp()/splx()          */
   1698 	int flags;               /* Mapping flags. eg. Cache inhibit  */
   1699 	u_int a_idx, b_idx, pte_idx; /* table indices                 */
   1700 	a_tmgr_t *a_tbl;         /* A: long descriptor table manager  */
   1701 	b_tmgr_t *b_tbl;         /* B: short descriptor table manager */
   1702 	c_tmgr_t *c_tbl;         /* C: short page table manager       */
   1703 	mmu_long_dte_t *a_dte;   /* A: long descriptor table          */
   1704 	mmu_short_dte_t *b_dte;  /* B: short descriptor table         */
   1705 	mmu_short_pte_t *c_pte;  /* C: short page descriptor table    */
   1706 	pv_t      *pv;           /* pv list head                      */
   1707 	enum {NONE, NEWA, NEWB, NEWC} llevel; /* used at end   */
   1708 
   1709 	if (pmap == NULL)
   1710 		return;
   1711 	if (pmap == pmap_kernel()) {
   1712 		pmap_enter_kernel(va, pa, prot);
   1713 		return;
   1714 	}
   1715 
   1716 	flags  = (pa & ~MMU_PAGE_MASK);
   1717 	pa    &= MMU_PAGE_MASK;
   1718 
   1719 	/*
   1720 	 * Determine if the physical address being mapped is on-board RAM.
   1721 	 * Any other area of the address space is likely to belong to a
   1722 	 * device and hence it would be disasterous to cache its contents.
   1723 	 */
   1724 	if ((managed = is_managed(pa)) == FALSE)
   1725 		flags |= PMAP_NC;
   1726 
   1727 	/*
   1728 	 * For user mappings we walk along the MMU tables of the given
   1729 	 * pmap, reaching a PTE which describes the virtual page being
   1730 	 * mapped or changed.  If any level of the walk ends in an invalid
   1731 	 * entry, a table must be allocated and the entry must be updated
   1732 	 * to point to it.
   1733 	 * There is a bit of confusion as to whether this code must be
   1734 	 * re-entrant.  For now we will assume it is.  To support
   1735 	 * re-entrancy we must unlink tables from the table pool before
   1736 	 * we assume we may use them.  Tables are re-linked into the pool
   1737 	 * when we are finished with them at the end of the function.
   1738 	 * But I don't feel like doing that until we have proof that this
   1739 	 * needs to be re-entrant.
   1740 	 * 'llevel' records which tables need to be relinked.
   1741 	 */
   1742 	llevel = NONE;
   1743 
   1744 	/*
   1745 	 * Step 1 - Retrieve the A table from the pmap.  If it has no
   1746 	 * A table, allocate a new one from the available pool.
   1747 	 */
   1748 
   1749 	a_tbl = pmap->pm_a_tmgr;
   1750 	if (a_tbl == NULL) {
   1751 		/*
   1752 		 * This pmap does not currently have an A table.  Allocate
   1753 		 * a new one.
   1754 		 */
   1755 		a_tbl = get_a_table();
   1756 		a_tbl->at_parent = pmap;
   1757 
   1758 		/*
   1759 		 * Assign this new A table to the pmap, and calculate its
   1760 		 * physical address so that loadcrp() can be used to make
   1761 		 * the table active.
   1762 		 */
   1763 		pmap->pm_a_tmgr = a_tbl;
   1764 		pmap->pm_a_phys = mmu_vtop(a_tbl->at_dtbl);
   1765 
   1766 		/*
   1767 		 * If the process receiving a new A table is the current
   1768 		 * process, we are responsible for setting the MMU so that
   1769 		 * it becomes the current address space.  This only adds
   1770 		 * new mappings, so no need to flush anything.
   1771 		 */
   1772 		if (pmap == current_pmap()) {
   1773 			kernel_crp.rp_addr = pmap->pm_a_phys;
   1774 			loadcrp(&kernel_crp);
   1775 		}
   1776 
   1777 		if (!wired)
   1778 			llevel = NEWA;
   1779 	} else {
   1780 		/*
   1781 		 * Use the A table already allocated for this pmap.
   1782 		 * Unlink it from the A table pool if necessary.
   1783 		 */
   1784 		if (wired && !a_tbl->at_wcnt)
   1785 			TAILQ_REMOVE(&a_pool, a_tbl, at_link);
   1786 	}
   1787 
   1788 	/*
   1789 	 * Step 2 - Walk into the B table.  If there is no valid B table,
   1790 	 * allocate one.
   1791 	 */
   1792 
   1793 	a_idx = MMU_TIA(va);            /* Calculate the TIA of the VA. */
   1794 	a_dte = &a_tbl->at_dtbl[a_idx]; /* Retrieve descriptor from table */
   1795 	if (MMU_VALID_DT(*a_dte)) {     /* Is the descriptor valid? */
   1796 		/* The descriptor is valid.  Use the B table it points to. */
   1797 		/*************************************
   1798 		 *               a_idx               *
   1799 		 *                 v                 *
   1800 		 * a_tbl -> +-+-+-+-+-+-+-+-+-+-+-+- *
   1801 		 *          | | | | | | | | | | | |  *
   1802 		 *          +-+-+-+-+-+-+-+-+-+-+-+- *
   1803 		 *                 |                 *
   1804 		 *                 \- b_tbl -> +-+-  *
   1805 		 *                             | |   *
   1806 		 *                             +-+-  *
   1807 		 *************************************/
   1808 		b_dte = mmu_ptov(a_dte->addr.raw);
   1809 		b_tbl = mmuB2tmgr(b_dte);
   1810 
   1811 		/*
   1812 		 * If the requested mapping must be wired, but this table
   1813 		 * being used to map it is not, the table must be removed
   1814 		 * from the available pool and its wired entry count
   1815 		 * incremented.
   1816 		 */
   1817 		if (wired && !b_tbl->bt_wcnt) {
   1818 			TAILQ_REMOVE(&b_pool, b_tbl, bt_link);
   1819 			a_tbl->at_wcnt++;
   1820 		}
   1821 	} else {
   1822 		/* The descriptor is invalid.  Allocate a new B table. */
   1823 		b_tbl = get_b_table();
   1824 
   1825 		/* Point the parent A table descriptor to this new B table. */
   1826 		a_dte->addr.raw = mmu_vtop(b_tbl->bt_dtbl);
   1827 		a_dte->attr.raw = MMU_LONG_DTE_LU | MMU_DT_SHORT;
   1828 		a_tbl->at_ecnt++; /* Update parent's valid entry count */
   1829 
   1830 		/* Create the necessary back references to the parent table */
   1831 		b_tbl->bt_parent = a_tbl;
   1832 		b_tbl->bt_pidx = a_idx;
   1833 
   1834 		/*
   1835 		 * If this table is to be wired, make sure the parent A table
   1836 		 * wired count is updated to reflect that it has another wired
   1837 		 * entry.
   1838 		 */
   1839 		if (wired)
   1840 			a_tbl->at_wcnt++;
   1841 		else if (llevel == NONE)
   1842 			llevel = NEWB;
   1843 	}
   1844 
   1845 	/*
   1846 	 * Step 3 - Walk into the C table, if there is no valid C table,
   1847 	 * allocate one.
   1848 	 */
   1849 
   1850 	b_idx = MMU_TIB(va);            /* Calculate the TIB of the VA */
   1851 	b_dte = &b_tbl->bt_dtbl[b_idx]; /* Retrieve descriptor from table */
   1852 	if (MMU_VALID_DT(*b_dte)) {     /* Is the descriptor valid? */
   1853 		/* The descriptor is valid.  Use the C table it points to. */
   1854 		/**************************************
   1855 		 *               c_idx                *
   1856 		 * |                v                 *
   1857 		 * \- b_tbl -> +-+-+-+-+-+-+-+-+-+-+- *
   1858 		 *             | | | | | | | | | | |  *
   1859 		 *             +-+-+-+-+-+-+-+-+-+-+- *
   1860 		 *                  |                 *
   1861 		 *                  \- c_tbl -> +-+-- *
   1862 		 *                              | | | *
   1863 		 *                              +-+-- *
   1864 		 **************************************/
   1865 		c_pte = mmu_ptov(MMU_PTE_PA(*b_dte));
   1866 		c_tbl = mmuC2tmgr(c_pte);
   1867 
   1868 		/* If mapping is wired and table is not */
   1869 		if (wired && !c_tbl->ct_wcnt) {
   1870 			TAILQ_REMOVE(&c_pool, c_tbl, ct_link);
   1871 			b_tbl->bt_wcnt++;
   1872 		}
   1873 	} else {
   1874 		/* The descriptor is invalid.  Allocate a new C table. */
   1875 		c_tbl = get_c_table();
   1876 
   1877 		/* Point the parent B table descriptor to this new C table. */
   1878 		b_dte->attr.raw = mmu_vtop(c_tbl->ct_dtbl);
   1879 		b_dte->attr.raw |= MMU_DT_SHORT;
   1880 		b_tbl->bt_ecnt++; /* Update parent's valid entry count */
   1881 
   1882 		/* Create the necessary back references to the parent table */
   1883 		c_tbl->ct_parent = b_tbl;
   1884 		c_tbl->ct_pidx = b_idx;
   1885 		/*
   1886 		 * Store the pmap and base virtual managed address for faster
   1887 		 * retrieval in the PV functions.
   1888 		 */
   1889 		c_tbl->ct_pmap = pmap;
   1890 		c_tbl->ct_va = (va & (MMU_TIA_MASK|MMU_TIB_MASK));
   1891 
   1892 		/*
   1893 		 * If this table is to be wired, make sure the parent B table
   1894 		 * wired count is updated to reflect that it has another wired
   1895 		 * entry.
   1896 		 */
   1897 		if (wired)
   1898 			b_tbl->bt_wcnt++;
   1899 		else if (llevel == NONE)
   1900 			llevel = NEWC;
   1901 	}
   1902 
   1903 	/*
   1904 	 * Step 4 - Deposit a page descriptor (PTE) into the appropriate
   1905 	 * slot of the C table, describing the PA to which the VA is mapped.
   1906 	 */
   1907 
   1908 	pte_idx = MMU_TIC(va);
   1909 	c_pte = &c_tbl->ct_dtbl[pte_idx];
   1910 	if (MMU_VALID_DT(*c_pte)) { /* Is the entry currently valid? */
   1911 		/*
   1912 		 * The PTE is currently valid.  This particular call
   1913 		 * is just a synonym for one (or more) of the following
   1914 		 * operations:
   1915 		 *     change protection of a page
   1916 		 *     change wiring status of a page
   1917 		 *     remove the mapping of a page
   1918 		 *
   1919 		 * XXX - Semi critical: This code should unwire the PTE
   1920 		 * and, possibly, associated parent tables if this is a
   1921 		 * change wiring operation.  Currently it does not.
   1922 		 *
   1923 		 * This may be ok if pmap_change_wiring() is the only
   1924 		 * interface used to UNWIRE a page.
   1925 		 */
   1926 
   1927 		/* First check if this is a wiring operation. */
   1928 		if (wired && (c_pte->attr.raw & MMU_SHORT_PTE_WIRED)) {
   1929 			/*
   1930 			 * The PTE is already wired.  To prevent it from being
   1931 			 * counted as a new wiring operation, reset the 'wired'
   1932 			 * variable.
   1933 			 */
   1934 			wired = FALSE;
   1935 		}
   1936 
   1937 		/* Is the new address the same as the old? */
   1938 		if (MMU_PTE_PA(*c_pte) == pa) {
   1939 			/*
   1940 			 * Yes, mark that it does not need to be reinserted
   1941 			 * into the PV list.
   1942 			 */
   1943 			insert = FALSE;
   1944 
   1945 			/*
   1946 			 * Clear all but the modified, referenced and wired
   1947 			 * bits on the PTE.
   1948 			 */
   1949 			c_pte->attr.raw &= (MMU_SHORT_PTE_M
   1950 				| MMU_SHORT_PTE_USED | MMU_SHORT_PTE_WIRED);
   1951 		} else {
   1952 			/* No, remove the old entry */
   1953 			pmap_remove_pte(c_pte);
   1954 			insert = TRUE;
   1955 		}
   1956 
   1957 		/*
   1958 		 * TLB flush is only necessary if modifying current map.
   1959 		 * However, in pmap_enter(), the pmap almost always IS
   1960 		 * the current pmap, so don't even bother to check.
   1961 		 */
   1962 		TBIS(va);
   1963 	} else {
   1964 		/*
   1965 		 * The PTE is invalid.  Increment the valid entry count in
   1966 		 * the C table manager to reflect the addition of a new entry.
   1967 		 */
   1968 		c_tbl->ct_ecnt++;
   1969 
   1970 		/* XXX - temporarily make sure the PTE is cleared. */
   1971 		c_pte->attr.raw = 0;
   1972 
   1973 		/* It will also need to be inserted into the PV list. */
   1974 		insert = TRUE;
   1975 	}
   1976 
   1977 	/*
   1978 	 * If page is changing from unwired to wired status, set an unused bit
   1979 	 * within the PTE to indicate that it is wired.  Also increment the
   1980 	 * wired entry count in the C table manager.
   1981 	 */
   1982 	if (wired) {
   1983 		c_pte->attr.raw |= MMU_SHORT_PTE_WIRED;
   1984 		c_tbl->ct_wcnt++;
   1985 	}
   1986 
   1987 	/*
   1988 	 * Map the page, being careful to preserve modify/reference/wired
   1989 	 * bits.  At this point it is assumed that the PTE either has no bits
   1990 	 * set, or if there are set bits, they are only modified, reference or
   1991 	 * wired bits.  If not, the following statement will cause erratic
   1992 	 * behavior.
   1993 	 */
   1994 #ifdef	PMAP_DEBUG
   1995 	if (c_pte->attr.raw & ~(MMU_SHORT_PTE_M |
   1996 		MMU_SHORT_PTE_USED | MMU_SHORT_PTE_WIRED)) {
   1997 		printf("pmap_enter: junk left in PTE at %p\n", c_pte);
   1998 		Debugger();
   1999 	}
   2000 #endif
   2001 	c_pte->attr.raw |= ((u_long) pa | MMU_DT_PAGE);
   2002 
   2003 	/*
   2004 	 * If the mapping should be read-only, set the write protect
   2005 	 * bit in the PTE.
   2006 	 */
   2007 	if (!(prot & VM_PROT_WRITE))
   2008 		c_pte->attr.raw |= MMU_SHORT_PTE_WP;
   2009 
   2010 	/*
   2011 	 * If the mapping should be cache inhibited (indicated by the flag
   2012 	 * bits found on the lower order of the physical address.)
   2013 	 * mark the PTE as a cache inhibited page.
   2014 	 */
   2015 	if (flags & PMAP_NC)
   2016 		c_pte->attr.raw |= MMU_SHORT_PTE_CI;
   2017 
   2018 	/*
   2019 	 * If the physical address being mapped is managed by the PV
   2020 	 * system then link the pte into the list of pages mapped to that
   2021 	 * address.
   2022 	 */
   2023 	if (insert && managed) {
   2024 		pv = pa2pv(pa);
   2025 		nidx = pteidx(c_pte);
   2026 
   2027 		s = splimp();
   2028 		pvebase[nidx].pve_next = pv->pv_idx;
   2029 		pv->pv_idx = nidx;
   2030 		splx(s);
   2031 	}
   2032 
   2033 	/* Move any allocated tables back into the active pool. */
   2034 
   2035 	switch (llevel) {
   2036 		case NEWA:
   2037 			TAILQ_INSERT_TAIL(&a_pool, a_tbl, at_link);
   2038 			/* FALLTHROUGH */
   2039 		case NEWB:
   2040 			TAILQ_INSERT_TAIL(&b_pool, b_tbl, bt_link);
   2041 			/* FALLTHROUGH */
   2042 		case NEWC:
   2043 			TAILQ_INSERT_TAIL(&c_pool, c_tbl, ct_link);
   2044 			/* FALLTHROUGH */
   2045 		default:
   2046 			break;
   2047 	}
   2048 }
   2049 
   2050 /* pmap_enter_kernel			INTERNAL
   2051  **
   2052  * Map the given virtual address to the given physical address within the
   2053  * kernel address space.  This function exists because the kernel map does
   2054  * not do dynamic table allocation.  It consists of a contiguous array of ptes
   2055  * and can be edited directly without the need to walk through any tables.
   2056  *
   2057  * XXX: "Danger, Will Robinson!"
   2058  * Note that the kernel should never take a fault on any page
   2059  * between [ KERNBASE .. virtual_avail ] and this is checked in
   2060  * trap.c for kernel-mode MMU faults.  This means that mappings
   2061  * created in that range must be implicily wired. -gwr
   2062  */
   2063 void
   2064 pmap_enter_kernel(va, pa, prot)
   2065 	vm_offset_t va;
   2066 	vm_offset_t pa;
   2067 	vm_prot_t   prot;
   2068 {
   2069 	boolean_t       was_valid, insert;
   2070 	u_short         pte_idx;
   2071 	int             s, flags;
   2072 	mmu_short_pte_t *pte;
   2073 	pv_t            *pv;
   2074 	vm_offset_t     old_pa;
   2075 
   2076 	flags = (pa & ~MMU_PAGE_MASK);
   2077 	pa &= MMU_PAGE_MASK;
   2078 
   2079 	if (is_managed(pa))
   2080 		insert = TRUE;
   2081 	else
   2082 		insert = FALSE;
   2083 
   2084 	/*
   2085 	 * Calculate the index of the PTE being modified.
   2086 	 */
   2087 	pte_idx = (u_long) m68k_btop(va - KERNBASE);
   2088 
   2089 	/* This array is traditionally named "Sysmap" */
   2090 	pte = &kernCbase[pte_idx];
   2091 
   2092 	s = splimp();
   2093 	if (MMU_VALID_DT(*pte)) {
   2094 		was_valid = TRUE;
   2095 		/*
   2096 		 * If the PTE already maps a different
   2097 		 * physical address, umap and pv_unlink.
   2098 		 */
   2099 		old_pa = MMU_PTE_PA(*pte);
   2100 		if (pa != old_pa)
   2101 			pmap_remove_pte(pte);
   2102 		else {
   2103 		    /*
   2104 		     * Old PA and new PA are the same.  No need to
   2105 		     * relink the mapping within the PV list.
   2106 		     */
   2107 		     insert = FALSE;
   2108 
   2109 		    /*
   2110 		     * Save any mod/ref bits on the PTE.
   2111 		     */
   2112 		    pte->attr.raw &= (MMU_SHORT_PTE_USED|MMU_SHORT_PTE_M);
   2113 		}
   2114 	} else {
   2115 		pte->attr.raw = MMU_DT_INVALID;
   2116 		was_valid = FALSE;
   2117 	}
   2118 
   2119 	/*
   2120 	 * Map the page.  Being careful to preserve modified/referenced bits
   2121 	 * on the PTE.
   2122 	 */
   2123 	pte->attr.raw |= (pa | MMU_DT_PAGE);
   2124 
   2125 	if (!(prot & VM_PROT_WRITE)) /* If access should be read-only */
   2126 		pte->attr.raw |= MMU_SHORT_PTE_WP;
   2127 	if (flags & PMAP_NC)
   2128 		pte->attr.raw |= MMU_SHORT_PTE_CI;
   2129 	if (was_valid)
   2130 		TBIS(va);
   2131 
   2132 	/*
   2133 	 * Insert the PTE into the PV system, if need be.
   2134 	 */
   2135 	if (insert) {
   2136 		pv = pa2pv(pa);
   2137 		pvebase[pte_idx].pve_next = pv->pv_idx;
   2138 		pv->pv_idx = pte_idx;
   2139 	}
   2140 	splx(s);
   2141 
   2142 }
   2143 
   2144 /* pmap_map			INTERNAL
   2145  **
   2146  * Map a contiguous range of physical memory into a contiguous range of
   2147  * the kernel virtual address space.
   2148  *
   2149  * Used for device mappings and early mapping of the kernel text/data/bss.
   2150  * Returns the first virtual address beyond the end of the range.
   2151  */
   2152 vm_offset_t
   2153 pmap_map(va, pa, endpa, prot)
   2154 	vm_offset_t	va;
   2155 	vm_offset_t	pa;
   2156 	vm_offset_t	endpa;
   2157 	int		prot;
   2158 {
   2159 	int sz;
   2160 
   2161 	sz = endpa - pa;
   2162 	do {
   2163 		pmap_enter_kernel(va, pa, prot);
   2164 		va += NBPG;
   2165 		pa += NBPG;
   2166 		sz -= NBPG;
   2167 	} while (sz > 0);
   2168 	return(va);
   2169 }
   2170 
   2171 /* pmap_protect			INTERFACE
   2172  **
   2173  * Apply the given protection to the given virtual address range within
   2174  * the given map.
   2175  *
   2176  * It is ok for the protection applied to be stronger than what is
   2177  * specified.  We use this to our advantage when the given map has no
   2178  * mapping for the virtual address.  By skipping a page when this
   2179  * is discovered, we are effectively applying a protection of VM_PROT_NONE,
   2180  * and therefore do not need to map the page just to apply a protection
   2181  * code.  Only pmap_enter() needs to create new mappings if they do not exist.
   2182  *
   2183  * XXX - This function could be speeded up by using pmap_stroll() for inital
   2184  *       setup, and then manual scrolling in the for() loop.
   2185  */
   2186 void
   2187 pmap_protect(pmap, startva, endva, prot)
   2188 	pmap_t pmap;
   2189 	vm_offset_t startva, endva;
   2190 	vm_prot_t prot;
   2191 {
   2192 	boolean_t iscurpmap;
   2193 	int a_idx, b_idx, c_idx;
   2194 	a_tmgr_t *a_tbl;
   2195 	b_tmgr_t *b_tbl;
   2196 	c_tmgr_t *c_tbl;
   2197 	mmu_short_pte_t *pte;
   2198 
   2199 	if (pmap == NULL)
   2200 		return;
   2201 	if (pmap == pmap_kernel()) {
   2202 		pmap_protect_kernel(startva, endva, prot);
   2203 		return;
   2204 	}
   2205 
   2206 	/*
   2207 	 * In this particular pmap implementation, there are only three
   2208 	 * types of memory protection: 'all' (read/write/execute),
   2209 	 * 'read-only' (read/execute) and 'none' (no mapping.)
   2210 	 * It is not possible for us to treat 'executable' as a separate
   2211 	 * protection type.  Therefore, protection requests that seek to
   2212 	 * remove execute permission while retaining read or write, and those
   2213 	 * that make little sense (write-only for example) are ignored.
   2214 	 */
   2215 	switch (prot) {
   2216 		case VM_PROT_NONE:
   2217 			/*
   2218 			 * A request to apply the protection code of
   2219 			 * 'VM_PROT_NONE' is a synonym for pmap_remove().
   2220 			 */
   2221 			pmap_remove(pmap, startva, endva);
   2222 			return;
   2223 		case	VM_PROT_EXECUTE:
   2224 		case	VM_PROT_READ:
   2225 		case	VM_PROT_READ|VM_PROT_EXECUTE:
   2226 			/* continue */
   2227 			break;
   2228 		case	VM_PROT_WRITE:
   2229 		case	VM_PROT_WRITE|VM_PROT_READ:
   2230 		case	VM_PROT_WRITE|VM_PROT_EXECUTE:
   2231 		case	VM_PROT_ALL:
   2232 			/* None of these should happen in a sane system. */
   2233 			return;
   2234 	}
   2235 
   2236 	/*
   2237 	 * If the pmap has no A table, it has no mappings and therefore
   2238 	 * there is nothing to protect.
   2239 	 */
   2240 	if ((a_tbl = pmap->pm_a_tmgr) == NULL)
   2241 		return;
   2242 
   2243 	a_idx = MMU_TIA(startva);
   2244 	b_idx = MMU_TIB(startva);
   2245 	c_idx = MMU_TIC(startva);
   2246 	b_tbl = (b_tmgr_t *) c_tbl = NULL;
   2247 
   2248 	iscurpmap = (pmap == current_pmap());
   2249 	while (startva < endva) {
   2250 		if (b_tbl || MMU_VALID_DT(a_tbl->at_dtbl[a_idx])) {
   2251 		  if (b_tbl == NULL) {
   2252 		    b_tbl = (b_tmgr_t *) a_tbl->at_dtbl[a_idx].addr.raw;
   2253 		    b_tbl = mmu_ptov((vm_offset_t) b_tbl);
   2254 		    b_tbl = mmuB2tmgr((mmu_short_dte_t *) b_tbl);
   2255 		  }
   2256 		  if (c_tbl || MMU_VALID_DT(b_tbl->bt_dtbl[b_idx])) {
   2257 		    if (c_tbl == NULL) {
   2258 		      c_tbl = (c_tmgr_t *) MMU_DTE_PA(b_tbl->bt_dtbl[b_idx]);
   2259 		      c_tbl = mmu_ptov((vm_offset_t) c_tbl);
   2260 		      c_tbl = mmuC2tmgr((mmu_short_pte_t *) c_tbl);
   2261 		    }
   2262 		    if (MMU_VALID_DT(c_tbl->ct_dtbl[c_idx])) {
   2263 		      pte = &c_tbl->ct_dtbl[c_idx];
   2264 		      /* make the mapping read-only */
   2265 		      pte->attr.raw |= MMU_SHORT_PTE_WP;
   2266 		      /*
   2267 		       * If we just modified the current address space,
   2268 		       * flush any translations for the modified page from
   2269 		       * the translation cache and any data from it in the
   2270 		       * data cache.
   2271 		       */
   2272 		      if (iscurpmap)
   2273 		          TBIS(startva);
   2274 		    }
   2275 		    startva += NBPG;
   2276 
   2277 		    if (++c_idx >= MMU_C_TBL_SIZE) { /* exceeded C table? */
   2278 		      c_tbl = NULL;
   2279 		      c_idx = 0;
   2280 		      if (++b_idx >= MMU_B_TBL_SIZE) { /* exceeded B table? */
   2281 		        b_tbl = NULL;
   2282 		        b_idx = 0;
   2283 		      }
   2284 		    }
   2285 		  } else { /* C table wasn't valid */
   2286 		    c_tbl = NULL;
   2287 		    c_idx = 0;
   2288 		    startva += MMU_TIB_RANGE;
   2289 		    if (++b_idx >= MMU_B_TBL_SIZE) { /* exceeded B table? */
   2290 		      b_tbl = NULL;
   2291 		      b_idx = 0;
   2292 		    }
   2293 		  } /* C table */
   2294 		} else { /* B table wasn't valid */
   2295 		  b_tbl = NULL;
   2296 		  b_idx = 0;
   2297 		  startva += MMU_TIA_RANGE;
   2298 		  a_idx++;
   2299 		} /* B table */
   2300 	}
   2301 }
   2302 
   2303 /* pmap_protect_kernel			INTERNAL
   2304  **
   2305  * Apply the given protection code to a kernel address range.
   2306  */
   2307 void
   2308 pmap_protect_kernel(startva, endva, prot)
   2309 	vm_offset_t startva, endva;
   2310 	vm_prot_t prot;
   2311 {
   2312 	vm_offset_t va;
   2313 	mmu_short_pte_t *pte;
   2314 
   2315 	pte = &kernCbase[(unsigned long) m68k_btop(startva - KERNBASE)];
   2316 	for (va = startva; va < endva; va += NBPG, pte++) {
   2317 		if (MMU_VALID_DT(*pte)) {
   2318 		    switch (prot) {
   2319 		        case VM_PROT_ALL:
   2320 		            break;
   2321 		        case VM_PROT_EXECUTE:
   2322 		        case VM_PROT_READ:
   2323 		        case VM_PROT_READ|VM_PROT_EXECUTE:
   2324 		            pte->attr.raw |= MMU_SHORT_PTE_WP;
   2325 		            break;
   2326 		        case VM_PROT_NONE:
   2327 		            /* this is an alias for 'pmap_remove_kernel' */
   2328 		            pmap_remove_pte(pte);
   2329 		            break;
   2330 		        default:
   2331 		            break;
   2332 		    }
   2333 		    /*
   2334 		     * since this is the kernel, immediately flush any cached
   2335 		     * descriptors for this address.
   2336 		     */
   2337 		    TBIS(va);
   2338 		}
   2339 	}
   2340 }
   2341 
   2342 /* pmap_change_wiring			INTERFACE
   2343  **
   2344  * Changes the wiring of the specified page.
   2345  *
   2346  * This function is called from vm_fault.c to unwire
   2347  * a mapping.  It really should be called 'pmap_unwire'
   2348  * because it is never asked to do anything but remove
   2349  * wirings.
   2350  */
   2351 void
   2352 pmap_change_wiring(pmap, va, wire)
   2353 	pmap_t pmap;
   2354 	vm_offset_t va;
   2355 	boolean_t wire;
   2356 {
   2357 	int a_idx, b_idx, c_idx;
   2358 	a_tmgr_t *a_tbl;
   2359 	b_tmgr_t *b_tbl;
   2360 	c_tmgr_t *c_tbl;
   2361 	mmu_short_pte_t *pte;
   2362 
   2363 	/* Kernel mappings always remain wired. */
   2364 	if (pmap == pmap_kernel())
   2365 		return;
   2366 
   2367 #ifdef	PMAP_DEBUG
   2368 	if (wire == TRUE)
   2369 		panic("pmap_change_wiring: wire requested.");
   2370 #endif
   2371 
   2372 	/*
   2373 	 * Walk through the tables.  If the walk terminates without
   2374 	 * a valid PTE then the address wasn't wired in the first place.
   2375 	 * Return immediately.
   2376 	 */
   2377 	if (pmap_stroll(pmap, va, &a_tbl, &b_tbl, &c_tbl, &pte, &a_idx,
   2378 		&b_idx, &c_idx) == FALSE)
   2379 		return;
   2380 
   2381 
   2382 	/* Is the PTE wired?  If not, return. */
   2383 	if (!(pte->attr.raw & MMU_SHORT_PTE_WIRED))
   2384 		return;
   2385 
   2386 	/* Remove the wiring bit. */
   2387 	pte->attr.raw &= ~(MMU_SHORT_PTE_WIRED);
   2388 
   2389 	/*
   2390 	 * Decrement the wired entry count in the C table.
   2391 	 * If it reaches zero the following things happen:
   2392 	 * 1. The table no longer has any wired entries and is considered
   2393 	 *    unwired.
   2394 	 * 2. It is placed on the available queue.
   2395 	 * 3. The parent table's wired entry count is decremented.
   2396 	 * 4. If it reaches zero, this process repeats at step 1 and
   2397 	 *    stops at after reaching the A table.
   2398 	 */
   2399 	if (--c_tbl->ct_wcnt == 0) {
   2400 		TAILQ_INSERT_TAIL(&c_pool, c_tbl, ct_link);
   2401 		if (--b_tbl->bt_wcnt == 0) {
   2402 			TAILQ_INSERT_TAIL(&b_pool, b_tbl, bt_link);
   2403 			if (--a_tbl->at_wcnt == 0) {
   2404 				TAILQ_INSERT_TAIL(&a_pool, a_tbl, at_link);
   2405 			}
   2406 		}
   2407 	}
   2408 }
   2409 
   2410 /* pmap_pageable			INTERFACE
   2411  **
   2412  * Make the specified range of addresses within the given pmap,
   2413  * 'pageable' or 'not-pageable'.  A pageable page must not cause
   2414  * any faults when referenced.  A non-pageable page may.
   2415  *
   2416  * This routine is only advisory.  The VM system will call pmap_enter()
   2417  * to wire or unwire pages that are going to be made pageable before calling
   2418  * this function.  By the time this routine is called, everything that needs
   2419  * to be done has already been done.
   2420  */
   2421 void
   2422 pmap_pageable(pmap, start, end, pageable)
   2423 	pmap_t pmap;
   2424 	vm_offset_t start, end;
   2425 	boolean_t pageable;
   2426 {
   2427 	/* not implemented. */
   2428 }
   2429 
   2430 /* pmap_copy				INTERFACE
   2431  **
   2432  * Copy the mappings of a range of addresses in one pmap, into
   2433  * the destination address of another.
   2434  *
   2435  * This routine is advisory.  Should we one day decide that MMU tables
   2436  * may be shared by more than one pmap, this function should be used to
   2437  * link them together.  Until that day however, we do nothing.
   2438  */
   2439 void
   2440 pmap_copy(pmap_a, pmap_b, dst, len, src)
   2441 	pmap_t pmap_a, pmap_b;
   2442 	vm_offset_t dst;
   2443 	vm_size_t   len;
   2444 	vm_offset_t src;
   2445 {
   2446 	/* not implemented. */
   2447 }
   2448 
   2449 /* pmap_copy_page			INTERFACE
   2450  **
   2451  * Copy the contents of one physical page into another.
   2452  *
   2453  * This function makes use of two virtual pages allocated in pmap_bootstrap()
   2454  * to map the two specified physical pages into the kernel address space.
   2455  *
   2456  * Note: We could use the transparent translation registers to make the
   2457  * mappings.  If we do so, be sure to disable interrupts before using them.
   2458  */
   2459 void
   2460 pmap_copy_page(srcpa, dstpa)
   2461 	vm_offset_t srcpa, dstpa;
   2462 {
   2463 	vm_offset_t srcva, dstva;
   2464 	int s;
   2465 
   2466 	srcva = tmp_vpages[0];
   2467 	dstva = tmp_vpages[1];
   2468 
   2469 	s = splimp();
   2470 	if (tmp_vpages_inuse++)
   2471 		panic("pmap_copy_page: temporary vpages are in use.");
   2472 
   2473 	/* Map pages as non-cacheable to avoid cache polution? */
   2474 	pmap_enter_kernel(srcva, srcpa, VM_PROT_READ);
   2475 	pmap_enter_kernel(dstva, dstpa, VM_PROT_READ|VM_PROT_WRITE);
   2476 
   2477 	/* Hand-optimized version of bcopy(src, dst, NBPG) */
   2478 	copypage((char *) srcva, (char *) dstva);
   2479 
   2480 	pmap_remove_kernel(srcva, srcva + NBPG);
   2481 	pmap_remove_kernel(dstva, dstva + NBPG);
   2482 
   2483 	--tmp_vpages_inuse;
   2484 	splx(s);
   2485 }
   2486 
   2487 /* pmap_zero_page			INTERFACE
   2488  **
   2489  * Zero the contents of the specified physical page.
   2490  *
   2491  * Uses one of the virtual pages allocated in pmap_boostrap()
   2492  * to map the specified page into the kernel address space.
   2493  */
   2494 void
   2495 pmap_zero_page(dstpa)
   2496 	vm_offset_t dstpa;
   2497 {
   2498 	vm_offset_t dstva;
   2499 	int s;
   2500 
   2501 	dstva = tmp_vpages[1];
   2502 	s = splimp();
   2503 	if (tmp_vpages_inuse++)
   2504 		panic("pmap_zero_page: temporary vpages are in use.");
   2505 
   2506 	/* The comments in pmap_copy_page() above apply here also. */
   2507 	pmap_enter_kernel(dstva, dstpa, VM_PROT_READ|VM_PROT_WRITE);
   2508 
   2509 	/* Hand-optimized version of bzero(ptr, NBPG) */
   2510 	zeropage((char *) dstva);
   2511 
   2512 	pmap_remove_kernel(dstva, dstva + NBPG);
   2513 
   2514 	--tmp_vpages_inuse;
   2515 	splx(s);
   2516 }
   2517 
   2518 /* pmap_collect			INTERFACE
   2519  **
   2520  * Called from the VM system when we are about to swap out
   2521  * the process using this pmap.  This should give up any
   2522  * resources held here, including all its MMU tables.
   2523  */
   2524 void
   2525 pmap_collect(pmap)
   2526 	pmap_t pmap;
   2527 {
   2528 	/* XXX - todo... */
   2529 }
   2530 
   2531 /* pmap_create			INTERFACE
   2532  **
   2533  * Create and return a pmap structure.
   2534  */
   2535 pmap_t
   2536 pmap_create(size)
   2537 	vm_size_t size;
   2538 {
   2539 	pmap_t	pmap;
   2540 
   2541 	if (size)
   2542 		return NULL;
   2543 
   2544 	pmap = (pmap_t) malloc(sizeof(struct pmap), M_VMPMAP, M_WAITOK);
   2545 	pmap_pinit(pmap);
   2546 
   2547 	return pmap;
   2548 }
   2549 
   2550 /* pmap_pinit			INTERNAL
   2551  **
   2552  * Initialize a pmap structure.
   2553  */
   2554 void
   2555 pmap_pinit(pmap)
   2556 	pmap_t pmap;
   2557 {
   2558 	bzero(pmap, sizeof(struct pmap));
   2559 	pmap->pm_a_tmgr = NULL;
   2560 	pmap->pm_a_phys = kernAphys;
   2561 }
   2562 
   2563 /* pmap_release				INTERFACE
   2564  **
   2565  * Release any resources held by the given pmap.
   2566  *
   2567  * This is the reverse analog to pmap_pinit.  It does not
   2568  * necessarily mean for the pmap structure to be deallocated,
   2569  * as in pmap_destroy.
   2570  */
   2571 void
   2572 pmap_release(pmap)
   2573 	pmap_t pmap;
   2574 {
   2575 	/*
   2576 	 * As long as the pmap contains no mappings,
   2577 	 * which always should be the case whenever
   2578 	 * this function is called, there really should
   2579 	 * be nothing to do.
   2580 	 */
   2581 #ifdef	PMAP_DEBUG
   2582 	if (pmap == NULL)
   2583 		return;
   2584 	if (pmap == pmap_kernel())
   2585 		panic("pmap_release: kernel pmap");
   2586 #endif
   2587 	/*
   2588 	 * XXX - If this pmap has an A table, give it back.
   2589 	 * The pmap SHOULD be empty by now, and pmap_remove
   2590 	 * should have already given back the A table...
   2591 	 * However, I see:  pmap->pm_a_tmgr->at_ecnt == 1
   2592 	 * at this point, which means some mapping was not
   2593 	 * removed when it should have been. -gwr
   2594 	 */
   2595 	if (pmap->pm_a_tmgr != NULL) {
   2596 		/* First make sure we are not using it! */
   2597 		if (kernel_crp.rp_addr == pmap->pm_a_phys) {
   2598 			kernel_crp.rp_addr = kernAphys;
   2599 			loadcrp(&kernel_crp);
   2600 		}
   2601 #ifdef	PMAP_DEBUG /* XXX - todo! */
   2602 		/* XXX - Now complain... */
   2603 		printf("pmap_release: still have table\n");
   2604 		Debugger();
   2605 #endif
   2606 		free_a_table(pmap->pm_a_tmgr, TRUE);
   2607 		pmap->pm_a_tmgr = NULL;
   2608 		pmap->pm_a_phys = kernAphys;
   2609 	}
   2610 }
   2611 
   2612 /* pmap_reference			INTERFACE
   2613  **
   2614  * Increment the reference count of a pmap.
   2615  */
   2616 void
   2617 pmap_reference(pmap)
   2618 	pmap_t pmap;
   2619 {
   2620 	if (pmap == NULL)
   2621 		return;
   2622 
   2623 	/* pmap_lock(pmap); */
   2624 	pmap->pm_refcount++;
   2625 	/* pmap_unlock(pmap); */
   2626 }
   2627 
   2628 /* pmap_dereference			INTERNAL
   2629  **
   2630  * Decrease the reference count on the given pmap
   2631  * by one and return the current count.
   2632  */
   2633 int
   2634 pmap_dereference(pmap)
   2635 	pmap_t pmap;
   2636 {
   2637 	int rtn;
   2638 
   2639 	if (pmap == NULL)
   2640 		return 0;
   2641 
   2642 	/* pmap_lock(pmap); */
   2643 	rtn = --pmap->pm_refcount;
   2644 	/* pmap_unlock(pmap); */
   2645 
   2646 	return rtn;
   2647 }
   2648 
   2649 /* pmap_destroy			INTERFACE
   2650  **
   2651  * Decrement a pmap's reference count and delete
   2652  * the pmap if it becomes zero.  Will be called
   2653  * only after all mappings have been removed.
   2654  */
   2655 void
   2656 pmap_destroy(pmap)
   2657 	pmap_t pmap;
   2658 {
   2659 	if (pmap == NULL)
   2660 		return;
   2661 	if (pmap == &kernel_pmap)
   2662 		panic("pmap_destroy: kernel_pmap!");
   2663 	if (pmap_dereference(pmap) == 0) {
   2664 		pmap_release(pmap);
   2665 		free(pmap, M_VMPMAP);
   2666 	}
   2667 }
   2668 
   2669 /* pmap_is_referenced			INTERFACE
   2670  **
   2671  * Determine if the given physical page has been
   2672  * referenced (read from [or written to.])
   2673  */
   2674 boolean_t
   2675 pmap_is_referenced(pa)
   2676 	vm_offset_t pa;
   2677 {
   2678 	pv_t      *pv;
   2679 	int       idx, s;
   2680 
   2681 	if (!pv_initialized)
   2682 		return FALSE;
   2683 	/* XXX - this may be unecessary. */
   2684 	if (!is_managed(pa))
   2685 		return FALSE;
   2686 
   2687 	pv = pa2pv(pa);
   2688 	/*
   2689 	 * Check the flags on the pv head.  If they are set,
   2690 	 * return immediately.  Otherwise a search must be done.
   2691 	 */
   2692 	if (pv->pv_flags & PV_FLAGS_USED)
   2693 		return TRUE;
   2694 
   2695 	s = splimp();
   2696 	/*
   2697 	 * Search through all pv elements pointing
   2698 	 * to this page and query their reference bits
   2699 	 */
   2700 	for (idx = pv->pv_idx;
   2701 		 idx != PVE_EOL;
   2702 		 idx = pvebase[idx].pve_next) {
   2703 
   2704 		if (MMU_PTE_USED(kernCbase[idx])) {
   2705 			splx(s);
   2706 			return TRUE;
   2707 		}
   2708 	}
   2709 	splx(s);
   2710 
   2711 	return FALSE;
   2712 }
   2713 
   2714 /* pmap_is_modified			INTERFACE
   2715  **
   2716  * Determine if the given physical page has been
   2717  * modified (written to.)
   2718  */
   2719 boolean_t
   2720 pmap_is_modified(pa)
   2721 	vm_offset_t pa;
   2722 {
   2723 	pv_t      *pv;
   2724 	int       idx, s;
   2725 
   2726 	if (!pv_initialized)
   2727 		return FALSE;
   2728 	/* XXX - this may be unecessary. */
   2729 	if (!is_managed(pa))
   2730 		return FALSE;
   2731 
   2732 	/* see comments in pmap_is_referenced() */
   2733 	pv = pa2pv(pa);
   2734 	if (pv->pv_flags & PV_FLAGS_MDFY)
   2735 		return TRUE;
   2736 
   2737 	s = splimp();
   2738 	for (idx = pv->pv_idx;
   2739 		 idx != PVE_EOL;
   2740 		 idx = pvebase[idx].pve_next) {
   2741 
   2742 		if (MMU_PTE_MODIFIED(kernCbase[idx])) {
   2743 			splx(s);
   2744 			return TRUE;
   2745 		}
   2746 	}
   2747 	splx(s);
   2748 
   2749 	return FALSE;
   2750 }
   2751 
   2752 /* pmap_page_protect			INTERFACE
   2753  **
   2754  * Applies the given protection to all mappings to the given
   2755  * physical page.
   2756  */
   2757 void
   2758 pmap_page_protect(pa, prot)
   2759 	vm_offset_t pa;
   2760 	vm_prot_t prot;
   2761 {
   2762 	pv_t      *pv;
   2763 	int       idx, s;
   2764 	vm_offset_t va;
   2765 	struct mmu_short_pte_struct *pte;
   2766 	c_tmgr_t  *c_tbl;
   2767 	pmap_t    pmap, curpmap;
   2768 
   2769 	if (!is_managed(pa))
   2770 		return;
   2771 
   2772 	curpmap = current_pmap();
   2773 	pv = pa2pv(pa);
   2774 	s = splimp();
   2775 
   2776 	for (idx = pv->pv_idx;
   2777 		 idx != PVE_EOL;
   2778 		 idx = pvebase[idx].pve_next) {
   2779 
   2780 		pte = &kernCbase[idx];
   2781 		switch (prot) {
   2782 			case VM_PROT_ALL:
   2783 				/* do nothing */
   2784 				break;
   2785 			case VM_PROT_EXECUTE:
   2786 			case VM_PROT_READ:
   2787 			case VM_PROT_READ|VM_PROT_EXECUTE:
   2788 				/*
   2789 				 * Determine the virtual address mapped by
   2790 				 * the PTE and flush ATC entries if necessary.
   2791 				 */
   2792 				va = pmap_get_pteinfo(idx, &pmap, &c_tbl);
   2793 				/* XXX don't write protect pager mappings */
   2794 				if (va >= PAGER_SVA && va < PAGER_EVA) {
   2795 #ifdef	PMAP_DEBUG
   2796 					/* XXX - Does this actually happen? */
   2797 					printf("pmap_page_protect: in pager!\n");
   2798 					Debugger();
   2799 #endif
   2800 				} else
   2801 					pte->attr.raw |= MMU_SHORT_PTE_WP;
   2802 				if (pmap == curpmap || pmap == pmap_kernel())
   2803 					TBIS(va);
   2804 				break;
   2805 			case VM_PROT_NONE:
   2806 				/* Save the mod/ref bits. */
   2807 				pv->pv_flags |= pte->attr.raw;
   2808 				/* Invalidate the PTE. */
   2809 				pte->attr.raw = MMU_DT_INVALID;
   2810 
   2811 				/*
   2812 				 * Update table counts.  And flush ATC entries
   2813 				 * if necessary.
   2814 				 */
   2815 				va = pmap_get_pteinfo(idx, &pmap, &c_tbl);
   2816 
   2817 				/*
   2818 				 * If the PTE belongs to the kernel map,
   2819 				 * be sure to flush the page it maps.
   2820 				 */
   2821 				if (pmap == pmap_kernel()) {
   2822 					TBIS(va);
   2823 				} else {
   2824 					/*
   2825 					 * The PTE belongs to a user map.
   2826 					 * update the entry count in the C
   2827 					 * table to which it belongs and flush
   2828 					 * the ATC if the mapping belongs to
   2829 					 * the current pmap.
   2830 					 */
   2831 					c_tbl->ct_ecnt--;
   2832 					if (pmap == curpmap)
   2833 						TBIS(va);
   2834 				}
   2835 				break;
   2836 			default:
   2837 				break;
   2838 		}
   2839 	}
   2840 
   2841 	/*
   2842 	 * If the protection code indicates that all mappings to the page
   2843 	 * be removed, truncate the PV list to zero entries.
   2844 	 */
   2845 	if (prot == VM_PROT_NONE)
   2846 		pv->pv_idx = PVE_EOL;
   2847 	splx(s);
   2848 }
   2849 
   2850 /* pmap_get_pteinfo		INTERNAL
   2851  **
   2852  * Called internally to find the pmap and virtual address within that
   2853  * map to which the pte at the given index maps.  Also includes the PTE's C
   2854  * table manager.
   2855  *
   2856  * Returns the pmap in the argument provided, and the virtual address
   2857  * by return value.
   2858  */
   2859 vm_offset_t
   2860 pmap_get_pteinfo(idx, pmap, tbl)
   2861 	u_int idx;
   2862 	pmap_t *pmap;
   2863 	c_tmgr_t **tbl;
   2864 {
   2865 	vm_offset_t     va = 0;
   2866 
   2867 	/*
   2868 	 * Determine if the PTE is a kernel PTE or a user PTE.
   2869 	 */
   2870 	if (idx >= NUM_KERN_PTES) {
   2871 		/*
   2872 		 * The PTE belongs to a user mapping.
   2873 		 */
   2874 		/* XXX: Would like an inline for this to validate idx... */
   2875 		*tbl = &Ctmgrbase[(idx - NUM_KERN_PTES) / MMU_C_TBL_SIZE];
   2876 
   2877 		*pmap = (*tbl)->ct_pmap;
   2878 		/*
   2879 		 * To find the va to which the PTE maps, we first take
   2880 		 * the table's base virtual address mapping which is stored
   2881 		 * in ct_va.  We then increment this address by a page for
   2882 		 * every slot skipped until we reach the PTE.
   2883 		 */
   2884 		va =    (*tbl)->ct_va;
   2885 		va += m68k_ptob(idx % MMU_C_TBL_SIZE);
   2886 	} else {
   2887 		/*
   2888 		 * The PTE belongs to the kernel map.
   2889 		 */
   2890 		*pmap = pmap_kernel();
   2891 
   2892 		va = m68k_ptob(idx);
   2893 		va += KERNBASE;
   2894 	}
   2895 
   2896 	return va;
   2897 }
   2898 
   2899 /* pmap_clear_modify			INTERFACE
   2900  **
   2901  * Clear the modification bit on the page at the specified
   2902  * physical address.
   2903  *
   2904  */
   2905 void
   2906 pmap_clear_modify(pa)
   2907 	vm_offset_t pa;
   2908 {
   2909 	if (!is_managed(pa))
   2910 		return;
   2911 	pmap_clear_pv(pa, PV_FLAGS_MDFY);
   2912 }
   2913 
   2914 /* pmap_clear_reference			INTERFACE
   2915  **
   2916  * Clear the referenced bit on the page at the specified
   2917  * physical address.
   2918  */
   2919 void
   2920 pmap_clear_reference(pa)
   2921 	vm_offset_t pa;
   2922 {
   2923 	if (!is_managed(pa))
   2924 		return;
   2925 	pmap_clear_pv(pa, PV_FLAGS_USED);
   2926 }
   2927 
   2928 /* pmap_clear_pv			INTERNAL
   2929  **
   2930  * Clears the specified flag from the specified physical address.
   2931  * (Used by pmap_clear_modify() and pmap_clear_reference().)
   2932  *
   2933  * Flag is one of:
   2934  *   PV_FLAGS_MDFY - Page modified bit.
   2935  *   PV_FLAGS_USED - Page used (referenced) bit.
   2936  *
   2937  * This routine must not only clear the flag on the pv list
   2938  * head.  It must also clear the bit on every pte in the pv
   2939  * list associated with the address.
   2940  */
   2941 void
   2942 pmap_clear_pv(pa, flag)
   2943 	vm_offset_t pa;
   2944 	int flag;
   2945 {
   2946 	pv_t      *pv;
   2947 	int       idx, s;
   2948 	vm_offset_t     va;
   2949 	pmap_t          pmap;
   2950 	mmu_short_pte_t *pte;
   2951 	c_tmgr_t        *c_tbl;
   2952 
   2953 	pv = pa2pv(pa);
   2954 
   2955 	s = splimp();
   2956 	pv->pv_flags &= ~(flag);
   2957 
   2958 	for (idx = pv->pv_idx;
   2959 		 idx != PVE_EOL;
   2960 		 idx = pvebase[idx].pve_next) {
   2961 
   2962 		pte = &kernCbase[idx];
   2963 		pte->attr.raw &= ~(flag);
   2964 		/*
   2965 		 * The MC68030 MMU will not set the modified or
   2966 		 * referenced bits on any MMU tables for which it has
   2967 		 * a cached descriptor with its modify bit set.  To insure
   2968 		 * that it will modify these bits on the PTE during the next
   2969 		 * time it is written to or read from, we must flush it from
   2970 		 * the ATC.
   2971 		 *
   2972 		 * Ordinarily it is only necessary to flush the descriptor
   2973 		 * if it is used in the current address space.  But since I
   2974 		 * am not sure that there will always be a notion of
   2975 		 * 'the current address space' when this function is called,
   2976 		 * I will skip the test and always flush the address.  It
   2977 		 * does no harm.
   2978 		 */
   2979 		va = pmap_get_pteinfo(idx, &pmap, &c_tbl);
   2980 		TBIS(va);
   2981 	}
   2982 	splx(s);
   2983 }
   2984 
   2985 /* pmap_extract			INTERFACE
   2986  **
   2987  * Return the physical address mapped by the virtual address
   2988  * in the specified pmap or 0 if it is not known.
   2989  *
   2990  * Note: this function should also apply an exclusive lock
   2991  * on the pmap system during its duration.
   2992  */
   2993 vm_offset_t
   2994 pmap_extract(pmap, va)
   2995 	pmap_t      pmap;
   2996 	vm_offset_t va;
   2997 {
   2998 	int a_idx, b_idx, pte_idx;
   2999 	a_tmgr_t	*a_tbl;
   3000 	b_tmgr_t	*b_tbl;
   3001 	c_tmgr_t	*c_tbl;
   3002 	mmu_short_pte_t	*c_pte;
   3003 
   3004 	if (pmap == pmap_kernel())
   3005 		return pmap_extract_kernel(va);
   3006 	if (pmap == NULL)
   3007 		return 0;
   3008 
   3009 	if (pmap_stroll(pmap, va, &a_tbl, &b_tbl, &c_tbl,
   3010 		&c_pte, &a_idx, &b_idx, &pte_idx) == FALSE)
   3011 		return 0;
   3012 
   3013 	if (!MMU_VALID_DT(*c_pte))
   3014 		return 0;
   3015 
   3016 	return (MMU_PTE_PA(*c_pte));
   3017 }
   3018 
   3019 /* pmap_extract_kernel		INTERNAL
   3020  **
   3021  * Extract a translation from the kernel address space.
   3022  */
   3023 vm_offset_t
   3024 pmap_extract_kernel(va)
   3025 	vm_offset_t va;
   3026 {
   3027 	mmu_short_pte_t *pte;
   3028 
   3029 	pte = &kernCbase[(u_int) m68k_btop(va - KERNBASE)];
   3030 	return MMU_PTE_PA(*pte);
   3031 }
   3032 
   3033 /* pmap_remove_kernel		INTERNAL
   3034  **
   3035  * Remove the mapping of a range of virtual addresses from the kernel map.
   3036  * The arguments are already page-aligned.
   3037  */
   3038 void
   3039 pmap_remove_kernel(sva, eva)
   3040 	vm_offset_t sva;
   3041 	vm_offset_t eva;
   3042 {
   3043 	int idx, eidx;
   3044 
   3045 #ifdef	PMAP_DEBUG
   3046 	if ((sva & PGOFSET) || (eva & PGOFSET))
   3047 		panic("pmap_remove_kernel: alignment");
   3048 #endif
   3049 
   3050 	idx  = m68k_btop(sva - KERNBASE);
   3051 	eidx = m68k_btop(eva - KERNBASE);
   3052 
   3053 	while (idx < eidx) {
   3054 		pmap_remove_pte(&kernCbase[idx++]);
   3055 		TBIS(sva);
   3056 		sva += NBPG;
   3057 	}
   3058 }
   3059 
   3060 /* pmap_remove			INTERFACE
   3061  **
   3062  * Remove the mapping of a range of virtual addresses from the given pmap.
   3063  *
   3064  * If the range contains any wired entries, this function will probably create
   3065  * disaster.
   3066  */
   3067 void
   3068 pmap_remove(pmap, start, end)
   3069 	pmap_t pmap;
   3070 	vm_offset_t start;
   3071 	vm_offset_t end;
   3072 {
   3073 
   3074 	if (pmap == pmap_kernel()) {
   3075 		pmap_remove_kernel(start, end);
   3076 		return;
   3077 	}
   3078 
   3079 	/*
   3080 	 * XXX - Temporary(?) statement to prevent panic caused
   3081 	 * by vm_alloc_with_pager() handing us a software map (ie NULL)
   3082 	 * to remove because it couldn't get backing store.
   3083 	 * (I guess.)
   3084 	 */
   3085 	if (pmap == NULL)
   3086 		return;
   3087 
   3088 	/*
   3089 	 * If the pmap doesn't have an A table of its own, it has no mappings
   3090 	 * that can be removed.
   3091 	 */
   3092 	if (pmap->pm_a_tmgr == NULL)
   3093 		return;
   3094 
   3095 	/*
   3096 	 * Remove the specified range from the pmap.  If the function
   3097 	 * returns true, the operation removed all the valid mappings
   3098 	 * in the pmap and freed its A table.  If this happened to the
   3099 	 * currently loaded pmap, the MMU root pointer must be reloaded
   3100 	 * with the default 'kernel' map.
   3101 	 */
   3102 	if (pmap_remove_a(pmap->pm_a_tmgr, start, end)) {
   3103 		if (kernel_crp.rp_addr == pmap->pm_a_phys) {
   3104 			kernel_crp.rp_addr = kernAphys;
   3105 			loadcrp(&kernel_crp);
   3106 			/* will do TLB flush below */
   3107 		}
   3108 		pmap->pm_a_tmgr = NULL;
   3109 		pmap->pm_a_phys = kernAphys;
   3110 	}
   3111 
   3112 	/*
   3113 	 * If we just modified the current address space,
   3114 	 * make sure to flush the MMU cache.
   3115 	 *
   3116 	 * XXX - this could be an unecessarily large flush.
   3117 	 * XXX - Could decide, based on the size of the VA range
   3118 	 * to be removed, whether to flush "by pages" or "all".
   3119 	 */
   3120 	if (pmap == current_pmap())
   3121 		TBIAU();
   3122 }
   3123 
   3124 /* pmap_remove_a			INTERNAL
   3125  **
   3126  * This is function number one in a set of three that removes a range
   3127  * of memory in the most efficient manner by removing the highest possible
   3128  * tables from the memory space.  This particular function attempts to remove
   3129  * as many B tables as it can, delegating the remaining fragmented ranges to
   3130  * pmap_remove_b().
   3131  *
   3132  * If the removal operation results in an empty A table, the function returns
   3133  * TRUE.
   3134  *
   3135  * It's ugly but will do for now.
   3136  */
   3137 boolean_t
   3138 pmap_remove_a(a_tbl, start, end)
   3139 	a_tmgr_t *a_tbl;
   3140 	vm_offset_t start;
   3141 	vm_offset_t end;
   3142 {
   3143 	boolean_t empty;
   3144 	int idx;
   3145 	vm_offset_t nstart, nend;
   3146 	b_tmgr_t *b_tbl;
   3147 	mmu_long_dte_t  *a_dte;
   3148 	mmu_short_dte_t *b_dte;
   3149 
   3150 	/*
   3151 	 * The following code works with what I call a 'granularity
   3152 	 * reduction algorithim'.  A range of addresses will always have
   3153 	 * the following properties, which are classified according to
   3154 	 * how the range relates to the size of the current granularity
   3155 	 * - an A table entry:
   3156 	 *
   3157 	 *            1 2       3 4
   3158 	 * -+---+---+---+---+---+---+---+-
   3159 	 * -+---+---+---+---+---+---+---+-
   3160 	 *
   3161 	 * A range will always start on a granularity boundary, illustrated
   3162 	 * by '+' signs in the table above, or it will start at some point
   3163 	 * inbetween a granularity boundary, as illustrated by point 1.
   3164 	 * The first step in removing a range of addresses is to remove the
   3165 	 * range between 1 and 2, the nearest granularity boundary.  This
   3166 	 * job is handled by the section of code governed by the
   3167 	 * 'if (start < nstart)' statement.
   3168 	 *
   3169 	 * A range will always encompass zero or more intergral granules,
   3170 	 * illustrated by points 2 and 3.  Integral granules are easy to
   3171 	 * remove.  The removal of these granules is the second step, and
   3172 	 * is handled by the code block 'if (nstart < nend)'.
   3173 	 *
   3174 	 * Lastly, a range will always end on a granularity boundary,
   3175 	 * ill. by point 3, or it will fall just beyond one, ill. by point
   3176 	 * 4.  The last step involves removing this range and is handled by
   3177 	 * the code block 'if (nend < end)'.
   3178 	 */
   3179 	nstart = MMU_ROUND_UP_A(start);
   3180 	nend = MMU_ROUND_A(end);
   3181 
   3182 	if (start < nstart) {
   3183 		/*
   3184 		 * This block is executed if the range starts between
   3185 		 * a granularity boundary.
   3186 		 *
   3187 		 * First find the DTE which is responsible for mapping
   3188 		 * the start of the range.
   3189 		 */
   3190 		idx = MMU_TIA(start);
   3191 		a_dte = &a_tbl->at_dtbl[idx];
   3192 
   3193 		/*
   3194 		 * If the DTE is valid then delegate the removal of the sub
   3195 		 * range to pmap_remove_b(), which can remove addresses at
   3196 		 * a finer granularity.
   3197 		 */
   3198 		if (MMU_VALID_DT(*a_dte)) {
   3199 			b_dte = mmu_ptov(a_dte->addr.raw);
   3200 			b_tbl = mmuB2tmgr(b_dte);
   3201 
   3202 			/*
   3203 			 * The sub range to be removed starts at the start
   3204 			 * of the full range we were asked to remove, and ends
   3205 			 * at the greater of:
   3206 			 * 1. The end of the full range, -or-
   3207 			 * 2. The end of the full range, rounded down to the
   3208 			 *    nearest granularity boundary.
   3209 			 */
   3210 			if (end < nstart)
   3211 				empty = pmap_remove_b(b_tbl, start, end);
   3212 			else
   3213 				empty = pmap_remove_b(b_tbl, start, nstart);
   3214 
   3215 			/*
   3216 			 * If the removal resulted in an empty B table,
   3217 			 * invalidate the DTE that points to it and decrement
   3218 			 * the valid entry count of the A table.
   3219 			 */
   3220 			if (empty) {
   3221 				a_dte->attr.raw = MMU_DT_INVALID;
   3222 				a_tbl->at_ecnt--;
   3223 			}
   3224 		}
   3225 		/*
   3226 		 * If the DTE is invalid, the address range is already non-
   3227 		 * existant and can simply be skipped.
   3228 		 */
   3229 	}
   3230 	if (nstart < nend) {
   3231 		/*
   3232 		 * This block is executed if the range spans a whole number
   3233 		 * multiple of granules (A table entries.)
   3234 		 *
   3235 		 * First find the DTE which is responsible for mapping
   3236 		 * the start of the first granule involved.
   3237 		 */
   3238 		idx = MMU_TIA(nstart);
   3239 		a_dte = &a_tbl->at_dtbl[idx];
   3240 
   3241 		/*
   3242 		 * Remove entire sub-granules (B tables) one at a time,
   3243 		 * until reaching the end of the range.
   3244 		 */
   3245 		for (; nstart < nend; a_dte++, nstart += MMU_TIA_RANGE)
   3246 			if (MMU_VALID_DT(*a_dte)) {
   3247 				/*
   3248 				 * Find the B table manager for the
   3249 				 * entry and free it.
   3250 				 */
   3251 				b_dte = mmu_ptov(a_dte->addr.raw);
   3252 				b_tbl = mmuB2tmgr(b_dte);
   3253 				free_b_table(b_tbl, TRUE);
   3254 
   3255 				/*
   3256 				 * Invalidate the DTE that points to the
   3257 				 * B table and decrement the valid entry
   3258 				 * count of the A table.
   3259 				 */
   3260 				a_dte->attr.raw = MMU_DT_INVALID;
   3261 				a_tbl->at_ecnt--;
   3262 			}
   3263 	}
   3264 	if (nend < end) {
   3265 		/*
   3266 		 * This block is executed if the range ends beyond a
   3267 		 * granularity boundary.
   3268 		 *
   3269 		 * First find the DTE which is responsible for mapping
   3270 		 * the start of the nearest (rounded down) granularity
   3271 		 * boundary.
   3272 		 */
   3273 		idx = MMU_TIA(nend);
   3274 		a_dte = &a_tbl->at_dtbl[idx];
   3275 
   3276 		/*
   3277 		 * If the DTE is valid then delegate the removal of the sub
   3278 		 * range to pmap_remove_b(), which can remove addresses at
   3279 		 * a finer granularity.
   3280 		 */
   3281 		if (MMU_VALID_DT(*a_dte)) {
   3282 			/*
   3283 			 * Find the B table manager for the entry
   3284 			 * and hand it to pmap_remove_b() along with
   3285 			 * the sub range.
   3286 			 */
   3287 			b_dte = mmu_ptov(a_dte->addr.raw);
   3288 			b_tbl = mmuB2tmgr(b_dte);
   3289 
   3290 			empty = pmap_remove_b(b_tbl, nend, end);
   3291 
   3292 			/*
   3293 			 * If the removal resulted in an empty B table,
   3294 			 * invalidate the DTE that points to it and decrement
   3295 			 * the valid entry count of the A table.
   3296 			 */
   3297 			if (empty) {
   3298 				a_dte->attr.raw = MMU_DT_INVALID;
   3299 				a_tbl->at_ecnt--;
   3300 			}
   3301 		}
   3302 	}
   3303 
   3304 	/*
   3305 	 * If there are no more entries in the A table, release it
   3306 	 * back to the available pool and return TRUE.
   3307 	 */
   3308 	if (a_tbl->at_ecnt == 0) {
   3309 		a_tbl->at_parent = NULL;
   3310 		TAILQ_REMOVE(&a_pool, a_tbl, at_link);
   3311 		TAILQ_INSERT_HEAD(&a_pool, a_tbl, at_link);
   3312 		empty = TRUE;
   3313 	} else {
   3314 		empty = FALSE;
   3315 	}
   3316 
   3317 	return empty;
   3318 }
   3319 
   3320 /* pmap_remove_b			INTERNAL
   3321  **
   3322  * Remove a range of addresses from an address space, trying to remove entire
   3323  * C tables if possible.
   3324  *
   3325  * If the operation results in an empty B table, the function returns TRUE.
   3326  */
   3327 boolean_t
   3328 pmap_remove_b(b_tbl, start, end)
   3329 	b_tmgr_t *b_tbl;
   3330 	vm_offset_t start;
   3331 	vm_offset_t end;
   3332 {
   3333 	boolean_t empty;
   3334 	int idx;
   3335 	vm_offset_t nstart, nend, rstart;
   3336 	c_tmgr_t *c_tbl;
   3337 	mmu_short_dte_t  *b_dte;
   3338 	mmu_short_pte_t  *c_dte;
   3339 
   3340 
   3341 	nstart = MMU_ROUND_UP_B(start);
   3342 	nend = MMU_ROUND_B(end);
   3343 
   3344 	if (start < nstart) {
   3345 		idx = MMU_TIB(start);
   3346 		b_dte = &b_tbl->bt_dtbl[idx];
   3347 		if (MMU_VALID_DT(*b_dte)) {
   3348 			c_dte = mmu_ptov(MMU_DTE_PA(*b_dte));
   3349 			c_tbl = mmuC2tmgr(c_dte);
   3350 			if (end < nstart)
   3351 				empty = pmap_remove_c(c_tbl, start, end);
   3352 			else
   3353 				empty = pmap_remove_c(c_tbl, start, nstart);
   3354 			if (empty) {
   3355 				b_dte->attr.raw = MMU_DT_INVALID;
   3356 				b_tbl->bt_ecnt--;
   3357 			}
   3358 		}
   3359 	}
   3360 	if (nstart < nend) {
   3361 		idx = MMU_TIB(nstart);
   3362 		b_dte = &b_tbl->bt_dtbl[idx];
   3363 		rstart = nstart;
   3364 		while (rstart < nend) {
   3365 			if (MMU_VALID_DT(*b_dte)) {
   3366 				c_dte = mmu_ptov(MMU_DTE_PA(*b_dte));
   3367 				c_tbl = mmuC2tmgr(c_dte);
   3368 				free_c_table(c_tbl, TRUE);
   3369 				b_dte->attr.raw = MMU_DT_INVALID;
   3370 				b_tbl->bt_ecnt--;
   3371 			}
   3372 			b_dte++;
   3373 			rstart += MMU_TIB_RANGE;
   3374 		}
   3375 	}
   3376 	if (nend < end) {
   3377 		idx = MMU_TIB(nend);
   3378 		b_dte = &b_tbl->bt_dtbl[idx];
   3379 		if (MMU_VALID_DT(*b_dte)) {
   3380 			c_dte = mmu_ptov(MMU_DTE_PA(*b_dte));
   3381 			c_tbl = mmuC2tmgr(c_dte);
   3382 			empty = pmap_remove_c(c_tbl, nend, end);
   3383 			if (empty) {
   3384 				b_dte->attr.raw = MMU_DT_INVALID;
   3385 				b_tbl->bt_ecnt--;
   3386 			}
   3387 		}
   3388 	}
   3389 
   3390 	if (b_tbl->bt_ecnt == 0) {
   3391 		b_tbl->bt_parent = NULL;
   3392 		TAILQ_REMOVE(&b_pool, b_tbl, bt_link);
   3393 		TAILQ_INSERT_HEAD(&b_pool, b_tbl, bt_link);
   3394 		empty = TRUE;
   3395 	} else {
   3396 		empty = FALSE;
   3397 	}
   3398 
   3399 	return empty;
   3400 }
   3401 
   3402 /* pmap_remove_c			INTERNAL
   3403  **
   3404  * Remove a range of addresses from the given C table.
   3405  */
   3406 boolean_t
   3407 pmap_remove_c(c_tbl, start, end)
   3408 	c_tmgr_t *c_tbl;
   3409 	vm_offset_t start;
   3410 	vm_offset_t end;
   3411 {
   3412 	boolean_t empty;
   3413 	int idx;
   3414 	mmu_short_pte_t *c_pte;
   3415 
   3416 	idx = MMU_TIC(start);
   3417 	c_pte = &c_tbl->ct_dtbl[idx];
   3418 	for (;start < end; start += MMU_PAGE_SIZE, c_pte++) {
   3419 		if (MMU_VALID_DT(*c_pte)) {
   3420 			pmap_remove_pte(c_pte);
   3421 			c_tbl->ct_ecnt--;
   3422 		}
   3423 	}
   3424 
   3425 	if (c_tbl->ct_ecnt == 0) {
   3426 		c_tbl->ct_parent = NULL;
   3427 		TAILQ_REMOVE(&c_pool, c_tbl, ct_link);
   3428 		TAILQ_INSERT_HEAD(&c_pool, c_tbl, ct_link);
   3429 		empty = TRUE;
   3430 	} else {
   3431 		empty = FALSE;
   3432 	}
   3433 
   3434 	return empty;
   3435 }
   3436 
   3437 /* is_managed				INTERNAL
   3438  **
   3439  * Determine if the given physical address is managed by the PV system.
   3440  * Note that this logic assumes that no one will ask for the status of
   3441  * addresses which lie in-between the memory banks on the 3/80.  If they
   3442  * do so, it will falsely report that it is managed.
   3443  *
   3444  * Note: A "managed" address is one that was reported to the VM system as
   3445  * a "usable page" during system startup.  As such, the VM system expects the
   3446  * pmap module to keep an accurate track of the useage of those pages.
   3447  * Any page not given to the VM system at startup does not exist (as far as
   3448  * the VM system is concerned) and is therefore "unmanaged."  Examples are
   3449  * those pages which belong to the ROM monitor and the memory allocated before
   3450  * the VM system was started.
   3451  */
   3452 boolean_t
   3453 is_managed(pa)
   3454 	vm_offset_t pa;
   3455 {
   3456 	if (pa >= avail_start && pa < avail_end)
   3457 		return TRUE;
   3458 	else
   3459 		return FALSE;
   3460 }
   3461 
   3462 /* pmap_bootstrap_alloc			INTERNAL
   3463  **
   3464  * Used internally for memory allocation at startup when malloc is not
   3465  * available.  This code will fail once it crosses the first memory
   3466  * bank boundary on the 3/80.  Hopefully by then however, the VM system
   3467  * will be in charge of allocation.
   3468  */
   3469 void *
   3470 pmap_bootstrap_alloc(size)
   3471 	int size;
   3472 {
   3473 	void *rtn;
   3474 
   3475 #ifdef	PMAP_DEBUG
   3476 	if (bootstrap_alloc_enabled == FALSE) {
   3477 		mon_printf("pmap_bootstrap_alloc: disabled\n");
   3478 		sunmon_abort();
   3479 	}
   3480 #endif
   3481 
   3482 	rtn = (void *) virtual_avail;
   3483 	virtual_avail += size;
   3484 
   3485 #ifdef	PMAP_DEBUG
   3486 	if (virtual_avail > virtual_contig_end) {
   3487 		mon_printf("pmap_bootstrap_alloc: out of mem\n");
   3488 		sunmon_abort();
   3489 	}
   3490 #endif
   3491 
   3492 	return rtn;
   3493 }
   3494 
   3495 /* pmap_bootstap_aalign			INTERNAL
   3496  **
   3497  * Used to insure that the next call to pmap_bootstrap_alloc() will
   3498  * return a chunk of memory aligned to the specified size.
   3499  *
   3500  * Note: This function will only support alignment sizes that are powers
   3501  * of two.
   3502  */
   3503 void
   3504 pmap_bootstrap_aalign(size)
   3505 	int size;
   3506 {
   3507 	int off;
   3508 
   3509 	off = virtual_avail & (size - 1);
   3510 	if (off) {
   3511 		(void) pmap_bootstrap_alloc(size - off);
   3512 	}
   3513 }
   3514 
   3515 /* pmap_pa_exists
   3516  **
   3517  * Used by the /dev/mem driver to see if a given PA is memory
   3518  * that can be mapped.  (The PA is not in a hole.)
   3519  */
   3520 int
   3521 pmap_pa_exists(pa)
   3522 	vm_offset_t pa;
   3523 {
   3524 	register int i;
   3525 
   3526 	for (i = 0; i < SUN3X_NPHYS_RAM_SEGS; i++) {
   3527 		if ((pa >= avail_mem[i].pmem_start) &&
   3528 			(pa <  avail_mem[i].pmem_end))
   3529 			return (1);
   3530 		if (avail_mem[i].pmem_next == NULL)
   3531 			break;
   3532 	}
   3533 	return (0);
   3534 }
   3535 
   3536 /* Called only from locore.s and pmap.c */
   3537 void	_pmap_switch __P((pmap_t pmap));
   3538 
   3539 /*
   3540  * _pmap_switch			INTERNAL
   3541  *
   3542  * This is called by locore.s:cpu_switch() when it is
   3543  * switching to a new process.  Load new translations.
   3544  * Note: done in-line by locore.s unless PMAP_DEBUG
   3545  *
   3546  * Note that we do NOT allocate a context here, but
   3547  * share the "kernel only" context until we really
   3548  * need our own context for user-space mappings in
   3549  * pmap_enter_user().  [ s/context/mmu A table/ ]
   3550  */
   3551 void
   3552 _pmap_switch(pmap)
   3553 	pmap_t pmap;
   3554 {
   3555 	u_long rootpa;
   3556 
   3557 	/*
   3558 	 * Only do reload/flush if we have to.
   3559 	 * Note that if the old and new process
   3560 	 * were BOTH using the "null" context,
   3561 	 * then this will NOT flush the TLB.
   3562 	 */
   3563 	rootpa = pmap->pm_a_phys;
   3564 	if (kernel_crp.rp_addr != rootpa) {
   3565 		DPRINT(("pmap_activate(%p)\n", pmap));
   3566 		kernel_crp.rp_addr = rootpa;
   3567 		loadcrp(&kernel_crp);
   3568 		TBIAU();
   3569 	}
   3570 }
   3571 
   3572 /*
   3573  * Exported version of pmap_activate().  This is called from the
   3574  * machine-independent VM code when a process is given a new pmap.
   3575  * If (p == curproc) do like cpu_switch would do; otherwise just
   3576  * take this as notification that the process has a new pmap.
   3577  */
   3578 void
   3579 pmap_activate(p)
   3580 	struct proc *p;
   3581 {
   3582 	pmap_t pmap = p->p_vmspace->vm_map.pmap;
   3583 	int s;
   3584 
   3585 	if (p == curproc) {
   3586 		s = splimp();
   3587 		_pmap_switch(pmap);
   3588 		splx(s);
   3589 	}
   3590 }
   3591 
   3592 /*
   3593  * pmap_deactivate			INTERFACE
   3594  **
   3595  * This is called to deactivate the specified process's address space.
   3596  * XXX The semantics of this function are currently not well-defined.
   3597  */
   3598 void
   3599 pmap_deactivate(p)
   3600 struct proc *p;
   3601 {
   3602 	/* not implemented. */
   3603 }
   3604 
   3605 /* pmap_update
   3606  **
   3607  * Apply any delayed changes scheduled for all pmaps immediately.
   3608  *
   3609  * No delayed operations are currently done in this pmap.
   3610  */
   3611 void
   3612 pmap_update()
   3613 {
   3614 	/* not implemented. */
   3615 }
   3616 
   3617 /*
   3618  * Fill in the sun3x-specific part of the kernel core header
   3619  * for dumpsys().  (See machdep.c for the rest.)
   3620  */
   3621 void
   3622 pmap_kcore_hdr(sh)
   3623 	struct sun3x_kcore_hdr *sh;
   3624 {
   3625 	u_long spa, len;
   3626 	int i;
   3627 
   3628 	sh->pg_frame = MMU_SHORT_PTE_BASEADDR;
   3629 	sh->pg_valid = MMU_DT_PAGE;
   3630 	sh->contig_end = virtual_contig_end;
   3631 	sh->kernCbase = (u_long) kernCbase;
   3632 	for (i = 0; i < SUN3X_NPHYS_RAM_SEGS; i++) {
   3633 		spa = avail_mem[i].pmem_start;
   3634 		spa = m68k_trunc_page(spa);
   3635 		len = avail_mem[i].pmem_end - spa;
   3636 		len = m68k_round_page(len);
   3637 		sh->ram_segs[i].start = spa;
   3638 		sh->ram_segs[i].size  = len;
   3639 	}
   3640 }
   3641 
   3642 
   3643 /* pmap_virtual_space			INTERFACE
   3644  **
   3645  * Return the current available range of virtual addresses in the
   3646  * arguuments provided.  Only really called once.
   3647  */
   3648 void
   3649 pmap_virtual_space(vstart, vend)
   3650 	vm_offset_t *vstart, *vend;
   3651 {
   3652 	*vstart = virtual_avail;
   3653 	*vend = virtual_end;
   3654 }
   3655 
   3656 /*
   3657  * Provide memory to the VM system.
   3658  *
   3659  * Assume avail_start is always in the
   3660  * first segment as pmap_bootstrap does.
   3661  */
   3662 static void
   3663 pmap_page_upload()
   3664 {
   3665 	vm_offset_t	a, b;	/* memory range */
   3666 	int i;
   3667 
   3668 	/* Supply the memory in segments. */
   3669 	for (i = 0; i < SUN3X_NPHYS_RAM_SEGS; i++) {
   3670 		a = atop(avail_mem[i].pmem_start);
   3671 		b = atop(avail_mem[i].pmem_end);
   3672 		if (i == 0)
   3673 			a = atop(avail_start);
   3674 
   3675 		uvm_page_physload(a, b, a, b, VM_FREELIST_DEFAULT);
   3676 
   3677 		if (avail_mem[i].pmem_next == NULL)
   3678 			break;
   3679 	}
   3680 }
   3681 
   3682 /* pmap_page_index			INTERFACE
   3683  **
   3684  * Return the index of the given physical page in a list of useable
   3685  * physical pages in the system.  Holes in physical memory may be counted
   3686  * if so desired.  As long as pmap_free_pages() and pmap_page_index()
   3687  * agree as to whether holes in memory do or do not count as valid pages,
   3688  * it really doesn't matter.  However, if you like to save a little
   3689  * memory, don't count holes as valid pages.  This is even more true when
   3690  * the holes are large.
   3691  *
   3692  * We will not count holes as valid pages.  We can generate page indices
   3693  * that conform to this by using the memory bank structures initialized
   3694  * in pmap_alloc_pv().
   3695  */
   3696 int
   3697 pmap_page_index(pa)
   3698 	vm_offset_t pa;
   3699 {
   3700 	struct pmap_physmem_struct *bank = avail_mem;
   3701 	vm_offset_t off;
   3702 
   3703 	/* Search for the memory bank with this page. */
   3704 	/* XXX - What if it is not physical memory? */
   3705 	while (pa > bank->pmem_end)
   3706 		bank = bank->pmem_next;
   3707 	off = pa - bank->pmem_start;
   3708 
   3709 	return (bank->pmem_pvbase + m68k_btop(off));
   3710 }
   3711 
   3712 /* pmap_count			INTERFACE
   3713  **
   3714  * Return the number of resident (valid) pages in the given pmap.
   3715  *
   3716  * Note:  If this function is handed the kernel map, it will report
   3717  * that it has no mappings.  Hopefully the VM system won't ask for kernel
   3718  * map statistics.
   3719  */
   3720 segsz_t
   3721 pmap_count(pmap, type)
   3722 	pmap_t pmap;
   3723 	int    type;
   3724 {
   3725 	u_int     count;
   3726 	int       a_idx, b_idx;
   3727 	a_tmgr_t *a_tbl;
   3728 	b_tmgr_t *b_tbl;
   3729 	c_tmgr_t *c_tbl;
   3730 
   3731 	/*
   3732 	 * If the pmap does not have its own A table manager, it has no
   3733 	 * valid entires.
   3734 	 */
   3735 	if (pmap->pm_a_tmgr == NULL)
   3736 		return 0;
   3737 
   3738 	a_tbl = pmap->pm_a_tmgr;
   3739 
   3740 	count = 0;
   3741 	for (a_idx = 0; a_idx < MMU_TIA(KERNBASE); a_idx++) {
   3742 	    if (MMU_VALID_DT(a_tbl->at_dtbl[a_idx])) {
   3743 	        b_tbl = mmuB2tmgr(mmu_ptov(a_tbl->at_dtbl[a_idx].addr.raw));
   3744 	        for (b_idx = 0; b_idx < MMU_B_TBL_SIZE; b_idx++) {
   3745 	            if (MMU_VALID_DT(b_tbl->bt_dtbl[b_idx])) {
   3746 	                c_tbl = mmuC2tmgr(
   3747 	                    mmu_ptov(MMU_DTE_PA(b_tbl->bt_dtbl[b_idx])));
   3748 	                if (type == 0)
   3749 	                    /*
   3750 	                     * A resident entry count has been requested.
   3751 	                     */
   3752 	                    count += c_tbl->ct_ecnt;
   3753 	                else
   3754 	                    /*
   3755 	                     * A wired entry count has been requested.
   3756 	                     */
   3757 	                    count += c_tbl->ct_wcnt;
   3758 	            }
   3759 	        }
   3760 	    }
   3761 	}
   3762 
   3763 	return count;
   3764 }
   3765 
   3766 /************************ SUN3 COMPATIBILITY ROUTINES ********************
   3767  * The following routines are only used by DDB for tricky kernel text    *
   3768  * text operations in db_memrw.c.  They are provided for sun3            *
   3769  * compatibility.                                                        *
   3770  *************************************************************************/
   3771 /* get_pte			INTERNAL
   3772  **
   3773  * Return the page descriptor the describes the kernel mapping
   3774  * of the given virtual address.
   3775  */
   3776 extern u_long ptest_addr __P((u_long));	/* XXX: locore.s */
   3777 u_int
   3778 get_pte(va)
   3779 	vm_offset_t va;
   3780 {
   3781 	u_long pte_pa;
   3782 	mmu_short_pte_t *pte;
   3783 
   3784 	/* Get the physical address of the PTE */
   3785 	pte_pa = ptest_addr(va & ~PGOFSET);
   3786 
   3787 	/* Convert to a virtual address... */
   3788 	pte = (mmu_short_pte_t *) (KERNBASE + pte_pa);
   3789 
   3790 	/* Make sure it is in our level-C tables... */
   3791 	if ((pte < kernCbase) ||
   3792 		(pte >= &mmuCbase[NUM_USER_PTES]))
   3793 		return 0;
   3794 
   3795 	/* ... and just return its contents. */
   3796 	return (pte->attr.raw);
   3797 }
   3798 
   3799 
   3800 /* set_pte			INTERNAL
   3801  **
   3802  * Set the page descriptor that describes the kernel mapping
   3803  * of the given virtual address.
   3804  */
   3805 void
   3806 set_pte(va, pte)
   3807 	vm_offset_t va;
   3808 	u_int pte;
   3809 {
   3810 	u_long idx;
   3811 
   3812 	if (va < KERNBASE)
   3813 		return;
   3814 
   3815 	idx = (unsigned long) m68k_btop(va - KERNBASE);
   3816 	kernCbase[idx].attr.raw = pte;
   3817 	TBIS(va);
   3818 }
   3819 
   3820 /*
   3821  *	Routine:        pmap_procwr
   3822  *
   3823  *	Function:
   3824  *		Synchronize caches corresponding to [addr, addr+len) in p.
   3825  */
   3826 void
   3827 pmap_procwr(p, va, len)
   3828 	struct proc	*p;
   3829 	vaddr_t		va;
   3830 	size_t		len;
   3831 {
   3832 	(void)cachectl1(0x80000004, va, len, p);
   3833 }
   3834 
   3835 
   3836 #ifdef	PMAP_DEBUG
   3837 /************************** DEBUGGING ROUTINES **************************
   3838  * The following routines are meant to be an aid to debugging the pmap  *
   3839  * system.  They are callable from the DDB command line and should be   *
   3840  * prepared to be handed unstable or incomplete states of the system.   *
   3841  ************************************************************************/
   3842 
   3843 /* pv_list
   3844  **
   3845  * List all pages found on the pv list for the given physical page.
   3846  * To avoid endless loops, the listing will stop at the end of the list
   3847  * or after 'n' entries - whichever comes first.
   3848  */
   3849 void
   3850 pv_list(pa, n)
   3851 	vm_offset_t pa;
   3852 	int n;
   3853 {
   3854 	int  idx;
   3855 	vm_offset_t va;
   3856 	pv_t *pv;
   3857 	c_tmgr_t *c_tbl;
   3858 	pmap_t pmap;
   3859 
   3860 	pv = pa2pv(pa);
   3861 	idx = pv->pv_idx;
   3862 
   3863 	for (;idx != PVE_EOL && n > 0;
   3864 		 idx=pvebase[idx].pve_next, n--) {
   3865 
   3866 		va = pmap_get_pteinfo(idx, &pmap, &c_tbl);
   3867 		printf("idx %d, pmap 0x%x, va 0x%x, c_tbl %x\n",
   3868 			idx, (u_int) pmap, (u_int) va, (u_int) c_tbl);
   3869 	}
   3870 }
   3871 #endif	/* PMAP_DEBUG */
   3872 
   3873 #ifdef NOT_YET
   3874 /* and maybe not ever */
   3875 /************************** LOW-LEVEL ROUTINES **************************
   3876  * These routines will eventualy be re-written into assembly and placed *
   3877  * in locore.s.  They are here now as stubs so that the pmap module can *
   3878  * be linked as a standalone user program for testing.                  *
   3879  ************************************************************************/
   3880 /* flush_atc_crp			INTERNAL
   3881  **
   3882  * Flush all page descriptors derived from the given CPU Root Pointer
   3883  * (CRP), or 'A' table as it is known here, from the 68851's automatic
   3884  * cache.
   3885  */
   3886 void
   3887 flush_atc_crp(a_tbl)
   3888 {
   3889 	mmu_long_rp_t rp;
   3890 
   3891 	/* Create a temporary root table pointer that points to the
   3892 	 * given A table.
   3893 	 */
   3894 	rp.attr.raw = ~MMU_LONG_RP_LU;
   3895 	rp.addr.raw = (unsigned int) a_tbl;
   3896 
   3897 	mmu_pflushr(&rp);
   3898 	/* mmu_pflushr:
   3899 	 * 	movel   sp(4)@,a0
   3900 	 * 	pflushr a0@
   3901 	 *	rts
   3902 	 */
   3903 }
   3904 #endif /* NOT_YET */
   3905