pmap.c revision 1.45.2.2 1 /* $NetBSD: pmap.c,v 1.45.2.2 2001/01/17 16:37:46 he Exp $ */
2
3 /*-
4 * Copyright (c) 1996, 1997 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jeremy Cooper.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * XXX These comments aren't quite accurate. Need to change.
41 * The sun3x uses the MC68851 Memory Management Unit, which is built
42 * into the CPU. The 68851 maps virtual to physical addresses using
43 * a multi-level table lookup, which is stored in the very memory that
44 * it maps. The number of levels of lookup is configurable from one
45 * to four. In this implementation, we use three, named 'A' through 'C'.
46 *
47 * The MMU translates virtual addresses into physical addresses by
48 * traversing these tables in a proccess called a 'table walk'. The most
49 * significant 7 bits of the Virtual Address ('VA') being translated are
50 * used as an index into the level A table, whose base in physical memory
51 * is stored in a special MMU register, the 'CPU Root Pointer' or CRP. The
52 * address found at that index in the A table is used as the base
53 * address for the next table, the B table. The next six bits of the VA are
54 * used as an index into the B table, which in turn gives the base address
55 * of the third and final C table.
56 *
57 * The next six bits of the VA are used as an index into the C table to
58 * locate a Page Table Entry (PTE). The PTE is a physical address in memory
59 * to which the remaining 13 bits of the VA are added, producing the
60 * mapped physical address.
61 *
62 * To map the entire memory space in this manner would require 2114296 bytes
63 * of page tables per process - quite expensive. Instead we will
64 * allocate a fixed but considerably smaller space for the page tables at
65 * the time the VM system is initialized. When the pmap code is asked by
66 * the kernel to map a VA to a PA, it allocates tables as needed from this
67 * pool. When there are no more tables in the pool, tables are stolen
68 * from the oldest mapped entries in the tree. This is only possible
69 * because all memory mappings are stored in the kernel memory map
70 * structures, independent of the pmap structures. A VA which references
71 * one of these invalidated maps will cause a page fault. The kernel
72 * will determine that the page fault was caused by a task using a valid
73 * VA, but for some reason (which does not concern it), that address was
74 * not mapped. It will ask the pmap code to re-map the entry and then
75 * it will resume executing the faulting task.
76 *
77 * In this manner the most efficient use of the page table space is
78 * achieved. Tasks which do not execute often will have their tables
79 * stolen and reused by tasks which execute more frequently. The best
80 * size for the page table pool will probably be determined by
81 * experimentation.
82 *
83 * You read all of the comments so far. Good for you.
84 * Now go play!
85 */
86
87 /*** A Note About the 68851 Address Translation Cache
88 * The MC68851 has a 64 entry cache, called the Address Translation Cache
89 * or 'ATC'. This cache stores the most recently used page descriptors
90 * accessed by the MMU when it does translations. Using a marker called a
91 * 'task alias' the MMU can store the descriptors from 8 different table
92 * spaces concurrently. The task alias is associated with the base
93 * address of the level A table of that address space. When an address
94 * space is currently active (the CRP currently points to its A table)
95 * the only cached descriptors that will be obeyed are ones which have a
96 * matching task alias of the current space associated with them.
97 *
98 * Since the cache is always consulted before any table lookups are done,
99 * it is important that it accurately reflect the state of the MMU tables.
100 * Whenever a change has been made to a table that has been loaded into
101 * the MMU, the code must be sure to flush any cached entries that are
102 * affected by the change. These instances are documented in the code at
103 * various points.
104 */
105 /*** A Note About the Note About the 68851 Address Translation Cache
106 * 4 months into this code I discovered that the sun3x does not have
107 * a MC68851 chip. Instead, it has a version of this MMU that is part of the
108 * the 68030 CPU.
109 * All though it behaves very similarly to the 68851, it only has 1 task
110 * alias and a 22 entry cache. So sadly (or happily), the first paragraph
111 * of the previous note does not apply to the sun3x pmap.
112 */
113
114 #include "opt_ddb.h"
115
116 #include <sys/param.h>
117 #include <sys/systm.h>
118 #include <sys/proc.h>
119 #include <sys/malloc.h>
120 #include <sys/user.h>
121 #include <sys/queue.h>
122 #include <sys/kcore.h>
123
124 #include <vm/vm.h>
125 #include <vm/vm_kern.h>
126 #include <vm/vm_page.h>
127
128 #include <uvm/uvm.h>
129
130 #define PAGER_SVA (uvm.pager_sva)
131 #define PAGER_EVA (uvm.pager_eva)
132
133 #include <machine/cpu.h>
134 #include <machine/kcore.h>
135 #include <machine/mon.h>
136 #include <machine/pmap.h>
137 #include <machine/pte.h>
138 #include <machine/vmparam.h>
139
140 #include <sun3/sun3/cache.h>
141 #include <sun3/sun3/machdep.h>
142
143 #include "pmap_pvt.h"
144
145 /* XXX - What headers declare these? */
146 extern struct pcb *curpcb;
147 extern int physmem;
148
149 extern void copypage __P((const void*, void*));
150 extern void zeropage __P((void*));
151
152 /* Defined in locore.s */
153 extern char kernel_text[];
154
155 /* Defined by the linker */
156 extern char etext[], edata[], end[];
157 extern char *esym; /* DDB */
158
159 /*************************** DEBUGGING DEFINITIONS ***********************
160 * Macros, preprocessor defines and variables used in debugging can make *
161 * code hard to read. Anything used exclusively for debugging purposes *
162 * is defined here to avoid having such mess scattered around the file. *
163 *************************************************************************/
164 #ifdef PMAP_DEBUG
165 /*
166 * To aid the debugging process, macros should be expanded into smaller steps
167 * that accomplish the same goal, yet provide convenient places for placing
168 * breakpoints. When this code is compiled with PMAP_DEBUG mode defined, the
169 * 'INLINE' keyword is defined to an empty string. This way, any function
170 * defined to be a 'static INLINE' will become 'outlined' and compiled as
171 * a separate function, which is much easier to debug.
172 */
173 #define INLINE /* nothing */
174
175 /*
176 * It is sometimes convenient to watch the activity of a particular table
177 * in the system. The following variables are used for that purpose.
178 */
179 a_tmgr_t *pmap_watch_atbl = 0;
180 b_tmgr_t *pmap_watch_btbl = 0;
181 c_tmgr_t *pmap_watch_ctbl = 0;
182
183 int pmap_debug = 0;
184 #define DPRINT(args) if (pmap_debug) printf args
185
186 #else /********** Stuff below is defined if NOT debugging **************/
187
188 #define INLINE inline
189 #define DPRINT(args) /* nada */
190
191 #endif /* PMAP_DEBUG */
192 /*********************** END OF DEBUGGING DEFINITIONS ********************/
193
194 /*** Management Structure - Memory Layout
195 * For every MMU table in the sun3x pmap system there must be a way to
196 * manage it; we must know which process is using it, what other tables
197 * depend on it, and whether or not it contains any locked pages. This
198 * is solved by the creation of 'table management' or 'tmgr'
199 * structures. One for each MMU table in the system.
200 *
201 * MAP OF MEMORY USED BY THE PMAP SYSTEM
202 *
203 * towards lower memory
204 * kernAbase -> +-------------------------------------------------------+
205 * | Kernel MMU A level table |
206 * kernBbase -> +-------------------------------------------------------+
207 * | Kernel MMU B level tables |
208 * kernCbase -> +-------------------------------------------------------+
209 * | |
210 * | Kernel MMU C level tables |
211 * | |
212 * mmuCbase -> +-------------------------------------------------------+
213 * | User MMU C level tables |
214 * mmuAbase -> +-------------------------------------------------------+
215 * | |
216 * | User MMU A level tables |
217 * | |
218 * mmuBbase -> +-------------------------------------------------------+
219 * | User MMU B level tables |
220 * tmgrAbase -> +-------------------------------------------------------+
221 * | TMGR A level table structures |
222 * tmgrBbase -> +-------------------------------------------------------+
223 * | TMGR B level table structures |
224 * tmgrCbase -> +-------------------------------------------------------+
225 * | TMGR C level table structures |
226 * pvbase -> +-------------------------------------------------------+
227 * | Physical to Virtual mapping table (list heads) |
228 * pvebase -> +-------------------------------------------------------+
229 * | Physical to Virtual mapping table (list elements) |
230 * | |
231 * +-------------------------------------------------------+
232 * towards higher memory
233 *
234 * For every A table in the MMU A area, there will be a corresponding
235 * a_tmgr structure in the TMGR A area. The same will be true for
236 * the B and C tables. This arrangement will make it easy to find the
237 * controling tmgr structure for any table in the system by use of
238 * (relatively) simple macros.
239 */
240
241 /*
242 * Global variables for storing the base addresses for the areas
243 * labeled above.
244 */
245 static vm_offset_t kernAphys;
246 static mmu_long_dte_t *kernAbase;
247 static mmu_short_dte_t *kernBbase;
248 static mmu_short_pte_t *kernCbase;
249 static mmu_short_pte_t *mmuCbase;
250 static mmu_short_dte_t *mmuBbase;
251 static mmu_long_dte_t *mmuAbase;
252 static a_tmgr_t *Atmgrbase;
253 static b_tmgr_t *Btmgrbase;
254 static c_tmgr_t *Ctmgrbase;
255 static pv_t *pvbase;
256 static pv_elem_t *pvebase;
257 struct pmap kernel_pmap;
258
259 /*
260 * This holds the CRP currently loaded into the MMU.
261 */
262 struct mmu_rootptr kernel_crp;
263
264 /*
265 * Just all around global variables.
266 */
267 static TAILQ_HEAD(a_pool_head_struct, a_tmgr_struct) a_pool;
268 static TAILQ_HEAD(b_pool_head_struct, b_tmgr_struct) b_pool;
269 static TAILQ_HEAD(c_pool_head_struct, c_tmgr_struct) c_pool;
270
271
272 /*
273 * Flags used to mark the safety/availability of certain operations or
274 * resources.
275 */
276 static boolean_t pv_initialized = FALSE, /* PV system has been initialized. */
277 bootstrap_alloc_enabled = FALSE; /*Safe to use pmap_bootstrap_alloc().*/
278 int tmp_vpages_inuse; /* Temporary virtual pages are in use */
279
280 /*
281 * XXX: For now, retain the traditional variables that were
282 * used in the old pmap/vm interface (without NONCONTIG).
283 */
284 /* Kernel virtual address space available: */
285 vm_offset_t virtual_avail, virtual_end;
286 /* Physical address space available: */
287 vm_offset_t avail_start, avail_end;
288
289 /* This keep track of the end of the contiguously mapped range. */
290 vm_offset_t virtual_contig_end;
291
292 /* Physical address used by pmap_next_page() */
293 vm_offset_t avail_next;
294
295 /* These are used by pmap_copy_page(), etc. */
296 vm_offset_t tmp_vpages[2];
297
298 /*
299 * The 3/80 is the only member of the sun3x family that has non-contiguous
300 * physical memory. Memory is divided into 4 banks which are physically
301 * locatable on the system board. Although the size of these banks varies
302 * with the size of memory they contain, their base addresses are
303 * permenently fixed. The following structure, which describes these
304 * banks, is initialized by pmap_bootstrap() after it reads from a similar
305 * structure provided by the ROM Monitor.
306 *
307 * For the other machines in the sun3x architecture which do have contiguous
308 * RAM, this list will have only one entry, which will describe the entire
309 * range of available memory.
310 */
311 struct pmap_physmem_struct avail_mem[SUN3X_NPHYS_RAM_SEGS];
312 u_int total_phys_mem;
313
314 /*************************************************************************/
315
316 /*
317 * XXX - Should "tune" these based on statistics.
318 *
319 * My first guess about the relative numbers of these needed is
320 * based on the fact that a "typical" process will have several
321 * pages mapped at low virtual addresses (text, data, bss), then
322 * some mapped shared libraries, and then some stack pages mapped
323 * near the high end of the VA space. Each process can use only
324 * one A table, and most will use only two B tables (maybe three)
325 * and probably about four C tables. Therefore, the first guess
326 * at the relative numbers of these needed is 1:2:4 -gwr
327 *
328 * The number of C tables needed is closely related to the amount
329 * of physical memory available plus a certain amount attributable
330 * to the use of double mappings. With a few simulation statistics
331 * we can find a reasonably good estimation of this unknown value.
332 * Armed with that and the above ratios, we have a good idea of what
333 * is needed at each level. -j
334 *
335 * Note: It is not physical memory memory size, but the total mapped
336 * virtual space required by the combined working sets of all the
337 * currently _runnable_ processes. (Sleeping ones don't count.)
338 * The amount of physical memory should be irrelevant. -gwr
339 */
340 #ifdef FIXED_NTABLES
341 #define NUM_A_TABLES 16
342 #define NUM_B_TABLES 32
343 #define NUM_C_TABLES 64
344 #else
345 unsigned int NUM_A_TABLES, NUM_B_TABLES, NUM_C_TABLES;
346 #endif /* FIXED_NTABLES */
347
348 /*
349 * This determines our total virtual mapping capacity.
350 * Yes, it is a FIXED value so we can pre-allocate.
351 */
352 #define NUM_USER_PTES (NUM_C_TABLES * MMU_C_TBL_SIZE)
353
354 /*
355 * The size of the Kernel Virtual Address Space (KVAS)
356 * for purposes of MMU table allocation is -KERNBASE
357 * (length from KERNBASE to 0xFFFFffff)
358 */
359 #define KVAS_SIZE (-KERNBASE)
360
361 /* Numbers of kernel MMU tables to support KVAS_SIZE. */
362 #define KERN_B_TABLES (KVAS_SIZE >> MMU_TIA_SHIFT)
363 #define KERN_C_TABLES (KVAS_SIZE >> MMU_TIB_SHIFT)
364 #define NUM_KERN_PTES (KVAS_SIZE >> MMU_TIC_SHIFT)
365
366 /*************************** MISCELANEOUS MACROS *************************/
367 #define pmap_lock(pmap) simple_lock(&pmap->pm_lock)
368 #define pmap_unlock(pmap) simple_unlock(&pmap->pm_lock)
369 #define pmap_add_ref(pmap) ++pmap->pm_refcount
370 #define pmap_del_ref(pmap) --pmap->pm_refcount
371 #define pmap_refcount(pmap) pmap->pm_refcount
372
373 static INLINE void * mmu_ptov __P((vm_offset_t pa));
374 static INLINE vm_offset_t mmu_vtop __P((void * va));
375
376 #if 0
377 static INLINE a_tmgr_t * mmuA2tmgr __P((mmu_long_dte_t *));
378 #endif /* 0 */
379 static INLINE b_tmgr_t * mmuB2tmgr __P((mmu_short_dte_t *));
380 static INLINE c_tmgr_t * mmuC2tmgr __P((mmu_short_pte_t *));
381
382 static INLINE pv_t *pa2pv __P((vm_offset_t pa));
383 static INLINE int pteidx __P((mmu_short_pte_t *));
384 static INLINE pmap_t current_pmap __P((void));
385
386 /*
387 * We can always convert between virtual and physical addresses
388 * for anything in the range [KERNBASE ... avail_start] because
389 * that range is GUARANTEED to be mapped linearly.
390 * We rely heavily upon this feature!
391 */
392 static INLINE void *
393 mmu_ptov(pa)
394 vm_offset_t pa;
395 {
396 register vm_offset_t va;
397
398 va = (pa + KERNBASE);
399 #ifdef PMAP_DEBUG
400 if ((va < KERNBASE) || (va >= virtual_contig_end))
401 panic("mmu_ptov");
402 #endif
403 return ((void*)va);
404 }
405 static INLINE vm_offset_t
406 mmu_vtop(vva)
407 void *vva;
408 {
409 register vm_offset_t va;
410
411 va = (vm_offset_t)vva;
412 #ifdef PMAP_DEBUG
413 if ((va < KERNBASE) || (va >= virtual_contig_end))
414 panic("mmu_ptov");
415 #endif
416 return (va - KERNBASE);
417 }
418
419 /*
420 * These macros map MMU tables to their corresponding manager structures.
421 * They are needed quite often because many of the pointers in the pmap
422 * system reference MMU tables and not the structures that control them.
423 * There needs to be a way to find one when given the other and these
424 * macros do so by taking advantage of the memory layout described above.
425 * Here's a quick step through the first macro, mmuA2tmgr():
426 *
427 * 1) find the offset of the given MMU A table from the base of its table
428 * pool (table - mmuAbase).
429 * 2) convert this offset into a table index by dividing it by the
430 * size of one MMU 'A' table. (sizeof(mmu_long_dte_t) * MMU_A_TBL_SIZE)
431 * 3) use this index to select the corresponding 'A' table manager
432 * structure from the 'A' table manager pool (Atmgrbase[index]).
433 */
434 /* This function is not currently used. */
435 #if 0
436 static INLINE a_tmgr_t *
437 mmuA2tmgr(mmuAtbl)
438 mmu_long_dte_t *mmuAtbl;
439 {
440 register int idx;
441
442 /* Which table is this in? */
443 idx = (mmuAtbl - mmuAbase) / MMU_A_TBL_SIZE;
444 #ifdef PMAP_DEBUG
445 if ((idx < 0) || (idx >= NUM_A_TABLES))
446 panic("mmuA2tmgr");
447 #endif
448 return (&Atmgrbase[idx]);
449 }
450 #endif /* 0 */
451
452 static INLINE b_tmgr_t *
453 mmuB2tmgr(mmuBtbl)
454 mmu_short_dte_t *mmuBtbl;
455 {
456 register int idx;
457
458 /* Which table is this in? */
459 idx = (mmuBtbl - mmuBbase) / MMU_B_TBL_SIZE;
460 #ifdef PMAP_DEBUG
461 if ((idx < 0) || (idx >= NUM_B_TABLES))
462 panic("mmuB2tmgr");
463 #endif
464 return (&Btmgrbase[idx]);
465 }
466
467 /* mmuC2tmgr INTERNAL
468 **
469 * Given a pte known to belong to a C table, return the address of
470 * that table's management structure.
471 */
472 static INLINE c_tmgr_t *
473 mmuC2tmgr(mmuCtbl)
474 mmu_short_pte_t *mmuCtbl;
475 {
476 register int idx;
477
478 /* Which table is this in? */
479 idx = (mmuCtbl - mmuCbase) / MMU_C_TBL_SIZE;
480 #ifdef PMAP_DEBUG
481 if ((idx < 0) || (idx >= NUM_C_TABLES))
482 panic("mmuC2tmgr");
483 #endif
484 return (&Ctmgrbase[idx]);
485 }
486
487 /* This is now a function call below.
488 * #define pa2pv(pa) \
489 * (&pvbase[(unsigned long)\
490 * m68k_btop(pa)\
491 * ])
492 */
493
494 /* pa2pv INTERNAL
495 **
496 * Return the pv_list_head element which manages the given physical
497 * address.
498 */
499 static INLINE pv_t *
500 pa2pv(pa)
501 vm_offset_t pa;
502 {
503 register struct pmap_physmem_struct *bank;
504 register int idx;
505
506 bank = &avail_mem[0];
507 while (pa >= bank->pmem_end)
508 bank = bank->pmem_next;
509
510 pa -= bank->pmem_start;
511 idx = bank->pmem_pvbase + m68k_btop(pa);
512 #ifdef PMAP_DEBUG
513 if ((idx < 0) || (idx >= physmem))
514 panic("pa2pv");
515 #endif
516 return &pvbase[idx];
517 }
518
519 /* pteidx INTERNAL
520 **
521 * Return the index of the given PTE within the entire fixed table of
522 * PTEs.
523 */
524 static INLINE int
525 pteidx(pte)
526 mmu_short_pte_t *pte;
527 {
528 return (pte - kernCbase);
529 }
530
531 /*
532 * This just offers a place to put some debugging checks,
533 * and reduces the number of places "curproc" appears...
534 */
535 static INLINE pmap_t
536 current_pmap()
537 {
538 struct proc *p;
539 struct vmspace *vm;
540 vm_map_t map;
541 pmap_t pmap;
542
543 p = curproc; /* XXX */
544 if (p == NULL)
545 pmap = &kernel_pmap;
546 else {
547 vm = p->p_vmspace;
548 map = &vm->vm_map;
549 pmap = vm_map_pmap(map);
550 }
551
552 return (pmap);
553 }
554
555
556 /*************************** FUNCTION DEFINITIONS ************************
557 * These appear here merely for the compiler to enforce type checking on *
558 * all function calls. *
559 *************************************************************************/
560
561 /** External functions
562 ** - functions used within this module but written elsewhere.
563 ** both of these functions are in locore.s
564 ** XXX - These functions were later replaced with their more cryptic
565 ** hp300 counterparts. They may be removed now.
566 **/
567 #if 0 /* deprecated mmu */
568 void mmu_seturp __P((vm_offset_t));
569 void mmu_flush __P((int, vm_offset_t));
570 void mmu_flusha __P((void));
571 #endif /* 0 */
572
573 /** Internal functions
574 ** Most functions used only within this module are defined in
575 ** pmap_pvt.h (why not here if used only here?)
576 **/
577 static void pmap_page_upload __P((void));
578
579 /** Interface functions
580 ** - functions required by the Mach VM Pmap interface, with MACHINE_CONTIG
581 ** defined.
582 **/
583 #ifdef INCLUDED_IN_PMAP_H
584 void pmap_bootstrap __P((void));
585 void *pmap_bootstrap_alloc __P((int));
586 void pmap_enter __P((pmap_t, vm_offset_t, vm_offset_t, vm_prot_t, boolean_t,
587 vm_prot_t));
588 pmap_t pmap_create __P((vm_size_t));
589 void pmap_destroy __P((pmap_t));
590 void pmap_reference __P((pmap_t));
591 boolean_t pmap_is_referenced __P((vm_offset_t));
592 boolean_t pmap_is_modified __P((vm_offset_t));
593 void pmap_clear_modify __P((vm_offset_t));
594 vm_offset_t pmap_extract __P((pmap_t, vm_offset_t));
595 u_int pmap_free_pages __P((void));
596 #endif /* INCLUDED_IN_PMAP_H */
597 int pmap_page_index __P((vm_offset_t));
598 void pmap_pinit __P((pmap_t));
599 void pmap_release __P((pmap_t));
600
601 /********************************** CODE ********************************
602 * Functions that are called from other parts of the kernel are labeled *
603 * as 'INTERFACE' functions. Functions that are only called from *
604 * within the pmap module are labeled as 'INTERNAL' functions. *
605 * Functions that are internal, but are not (currently) used at all are *
606 * labeled 'INTERNAL_X'. *
607 ************************************************************************/
608
609 /* pmap_bootstrap INTERNAL
610 **
611 * Initializes the pmap system. Called at boot time from
612 * locore2.c:_vm_init()
613 *
614 * Reminder: having a pmap_bootstrap_alloc() and also having the VM
615 * system implement pmap_steal_memory() is redundant.
616 * Don't release this code without removing one or the other!
617 */
618 void
619 pmap_bootstrap(nextva)
620 vm_offset_t nextva;
621 {
622 struct physmemory *membank;
623 struct pmap_physmem_struct *pmap_membank;
624 vm_offset_t va, pa, eva;
625 int b, c, i, j; /* running table counts */
626 int size, resvmem;
627
628 /*
629 * This function is called by __bootstrap after it has
630 * determined the type of machine and made the appropriate
631 * patches to the ROM vectors (XXX- I don't quite know what I meant
632 * by that.) It allocates and sets up enough of the pmap system
633 * to manage the kernel's address space.
634 */
635
636 /*
637 * Determine the range of kernel virtual and physical
638 * space available. Note that we ABSOLUTELY DEPEND on
639 * the fact that the first bank of memory (4MB) is
640 * mapped linearly to KERNBASE (which we guaranteed in
641 * the first instructions of locore.s).
642 * That is plenty for our bootstrap work.
643 */
644 virtual_avail = m68k_round_page(nextva);
645 virtual_contig_end = KERNBASE + 0x400000; /* +4MB */
646 virtual_end = VM_MAX_KERNEL_ADDRESS;
647 /* Don't need avail_start til later. */
648
649 /* We may now call pmap_bootstrap_alloc(). */
650 bootstrap_alloc_enabled = TRUE;
651
652 /*
653 * This is a somewhat unwrapped loop to deal with
654 * copying the PROM's 'phsymem' banks into the pmap's
655 * banks. The following is always assumed:
656 * 1. There is always at least one bank of memory.
657 * 2. There is always a last bank of memory, and its
658 * pmem_next member must be set to NULL.
659 */
660 membank = romVectorPtr->v_physmemory;
661 pmap_membank = avail_mem;
662 total_phys_mem = 0;
663
664 for (;;) { /* break on !membank */
665 pmap_membank->pmem_start = membank->address;
666 pmap_membank->pmem_end = membank->address + membank->size;
667 total_phys_mem += membank->size;
668 membank = membank->next;
669 if (!membank)
670 break;
671 /* This silly syntax arises because pmap_membank
672 * is really a pre-allocated array, but it is put into
673 * use as a linked list.
674 */
675 pmap_membank->pmem_next = pmap_membank + 1;
676 pmap_membank = pmap_membank->pmem_next;
677 }
678 /* This is the last element. */
679 pmap_membank->pmem_next = NULL;
680
681 /*
682 * Note: total_phys_mem, physmem represent
683 * actual physical memory, including that
684 * reserved for the PROM monitor.
685 */
686 physmem = btoc(total_phys_mem);
687
688 /*
689 * The last bank of memory should be reduced to prevent the
690 * physical pages needed by the PROM monitor from being used
691 * in the VM system.
692 */
693 resvmem = total_phys_mem - *(romVectorPtr->memoryAvail);
694 resvmem = m68k_round_page(resvmem);
695 pmap_membank->pmem_end -= resvmem;
696
697 /*
698 * Avail_end is set to the first byte of physical memory
699 * after the end of the last bank. We use this only to
700 * determine if a physical address is "managed" memory.
701 */
702 avail_end = pmap_membank->pmem_end;
703
704 /*
705 * First allocate enough kernel MMU tables to map all
706 * of kernel virtual space from KERNBASE to 0xFFFFFFFF.
707 * Note: All must be aligned on 256 byte boundaries.
708 * Start with the level-A table (one of those).
709 */
710 size = sizeof(mmu_long_dte_t) * MMU_A_TBL_SIZE;
711 kernAbase = pmap_bootstrap_alloc(size);
712 bzero(kernAbase, size);
713
714 /* Now the level-B kernel tables... */
715 size = sizeof(mmu_short_dte_t) * MMU_B_TBL_SIZE * KERN_B_TABLES;
716 kernBbase = pmap_bootstrap_alloc(size);
717 bzero(kernBbase, size);
718
719 /* Now the level-C kernel tables... */
720 size = sizeof(mmu_short_pte_t) * MMU_C_TBL_SIZE * KERN_C_TABLES;
721 kernCbase = pmap_bootstrap_alloc(size);
722 bzero(kernCbase, size);
723 /*
724 * Note: In order for the PV system to work correctly, the kernel
725 * and user-level C tables must be allocated contiguously.
726 * Nothing should be allocated between here and the allocation of
727 * mmuCbase below. XXX: Should do this as one allocation, and
728 * then compute a pointer for mmuCbase instead of this...
729 *
730 * Allocate user MMU tables.
731 * These must be contiguous with the preceeding.
732 */
733
734 #ifndef FIXED_NTABLES
735 /*
736 * The number of user-level C tables that should be allocated is
737 * related to the size of physical memory. In general, there should
738 * be enough tables to map four times the amount of available RAM.
739 * The extra amount is needed because some table space is wasted by
740 * fragmentation.
741 */
742 NUM_C_TABLES = (total_phys_mem * 4) / (MMU_C_TBL_SIZE * MMU_PAGE_SIZE);
743 NUM_B_TABLES = NUM_C_TABLES / 2;
744 NUM_A_TABLES = NUM_B_TABLES / 2;
745 #endif /* !FIXED_NTABLES */
746
747 size = sizeof(mmu_short_pte_t) * MMU_C_TBL_SIZE * NUM_C_TABLES;
748 mmuCbase = pmap_bootstrap_alloc(size);
749
750 size = sizeof(mmu_short_dte_t) * MMU_B_TBL_SIZE * NUM_B_TABLES;
751 mmuBbase = pmap_bootstrap_alloc(size);
752
753 size = sizeof(mmu_long_dte_t) * MMU_A_TBL_SIZE * NUM_A_TABLES;
754 mmuAbase = pmap_bootstrap_alloc(size);
755
756 /*
757 * Fill in the never-changing part of the kernel tables.
758 * For simplicity, the kernel's mappings will be editable as a
759 * flat array of page table entries at kernCbase. The
760 * higher level 'A' and 'B' tables must be initialized to point
761 * to this lower one.
762 */
763 b = c = 0;
764
765 /*
766 * Invalidate all mappings below KERNBASE in the A table.
767 * This area has already been zeroed out, but it is good
768 * practice to explicitly show that we are interpreting
769 * it as a list of A table descriptors.
770 */
771 for (i = 0; i < MMU_TIA(KERNBASE); i++) {
772 kernAbase[i].addr.raw = 0;
773 }
774
775 /*
776 * Set up the kernel A and B tables so that they will reference the
777 * correct spots in the contiguous table of PTEs allocated for the
778 * kernel's virtual memory space.
779 */
780 for (i = MMU_TIA(KERNBASE); i < MMU_A_TBL_SIZE; i++) {
781 kernAbase[i].attr.raw =
782 MMU_LONG_DTE_LU | MMU_LONG_DTE_SUPV | MMU_DT_SHORT;
783 kernAbase[i].addr.raw = mmu_vtop(&kernBbase[b]);
784
785 for (j=0; j < MMU_B_TBL_SIZE; j++) {
786 kernBbase[b + j].attr.raw = mmu_vtop(&kernCbase[c])
787 | MMU_DT_SHORT;
788 c += MMU_C_TBL_SIZE;
789 }
790 b += MMU_B_TBL_SIZE;
791 }
792
793 /* XXX - Doing kernel_pmap a little further down. */
794
795 pmap_alloc_usermmu(); /* Allocate user MMU tables. */
796 pmap_alloc_usertmgr(); /* Allocate user MMU table managers.*/
797 pmap_alloc_pv(); /* Allocate physical->virtual map. */
798
799 /*
800 * We are now done with pmap_bootstrap_alloc(). Round up
801 * `virtual_avail' to the nearest page, and set the flag
802 * to prevent use of pmap_bootstrap_alloc() hereafter.
803 */
804 pmap_bootstrap_aalign(NBPG);
805 bootstrap_alloc_enabled = FALSE;
806
807 /*
808 * Now that we are done with pmap_bootstrap_alloc(), we
809 * must save the virtual and physical addresses of the
810 * end of the linearly mapped range, which are stored in
811 * virtual_contig_end and avail_start, respectively.
812 * These variables will never change after this point.
813 */
814 virtual_contig_end = virtual_avail;
815 avail_start = virtual_avail - KERNBASE;
816
817 /*
818 * `avail_next' is a running pointer used by pmap_next_page() to
819 * keep track of the next available physical page to be handed
820 * to the VM system during its initialization, in which it
821 * asks for physical pages, one at a time.
822 */
823 avail_next = avail_start;
824
825 /*
826 * Now allocate some virtual addresses, but not the physical pages
827 * behind them. Note that virtual_avail is already page-aligned.
828 *
829 * tmp_vpages[] is an array of two virtual pages used for temporary
830 * kernel mappings in the pmap module to facilitate various physical
831 * address-oritented operations.
832 */
833 tmp_vpages[0] = virtual_avail;
834 virtual_avail += NBPG;
835 tmp_vpages[1] = virtual_avail;
836 virtual_avail += NBPG;
837
838 /** Initialize the PV system **/
839 pmap_init_pv();
840
841 /*
842 * Fill in the kernel_pmap structure and kernel_crp.
843 */
844 kernAphys = mmu_vtop(kernAbase);
845 kernel_pmap.pm_a_tmgr = NULL;
846 kernel_pmap.pm_a_phys = kernAphys;
847 kernel_pmap.pm_refcount = 1; /* always in use */
848 simple_lock_init(&kernel_pmap.pm_lock);
849
850 kernel_crp.rp_attr = MMU_LONG_DTE_LU | MMU_DT_LONG;
851 kernel_crp.rp_addr = kernAphys;
852
853 /*
854 * Now pmap_enter_kernel() may be used safely and will be
855 * the main interface used hereafter to modify the kernel's
856 * virtual address space. Note that since we are still running
857 * under the PROM's address table, none of these table modifications
858 * actually take effect until pmap_takeover_mmu() is called.
859 *
860 * Note: Our tables do NOT have the PROM linear mappings!
861 * Only the mappings created here exist in our tables, so
862 * remember to map anything we expect to use.
863 */
864 va = (vm_offset_t) KERNBASE;
865 pa = 0;
866
867 /*
868 * The first page of the kernel virtual address space is the msgbuf
869 * page. The page attributes (data, non-cached) are set here, while
870 * the address is assigned to this global pointer in cpu_startup().
871 * It is non-cached, mostly due to paranoia.
872 */
873 pmap_enter_kernel(va, pa|PMAP_NC, VM_PROT_ALL);
874 va += NBPG; pa += NBPG;
875
876 /* Next page is used as the temporary stack. */
877 pmap_enter_kernel(va, pa, VM_PROT_ALL);
878 va += NBPG; pa += NBPG;
879
880 /*
881 * Map all of the kernel's text segment as read-only and cacheable.
882 * (Cacheable is implied by default). Unfortunately, the last bytes
883 * of kernel text and the first bytes of kernel data will often be
884 * sharing the same page. Therefore, the last page of kernel text
885 * has to be mapped as read/write, to accomodate the data.
886 */
887 eva = m68k_trunc_page((vm_offset_t)etext);
888 for (; va < eva; va += NBPG, pa += NBPG)
889 pmap_enter_kernel(va, pa, VM_PROT_READ|VM_PROT_EXECUTE);
890
891 /*
892 * Map all of the kernel's data as read/write and cacheable.
893 * This includes: data, BSS, symbols, and everything in the
894 * contiguous memory used by pmap_bootstrap_alloc()
895 */
896 for (; pa < avail_start; va += NBPG, pa += NBPG)
897 pmap_enter_kernel(va, pa, VM_PROT_READ|VM_PROT_WRITE);
898
899 /*
900 * At this point we are almost ready to take over the MMU. But first
901 * we must save the PROM's address space in our map, as we call its
902 * routines and make references to its data later in the kernel.
903 */
904 pmap_bootstrap_copyprom();
905 pmap_takeover_mmu();
906 pmap_bootstrap_setprom();
907
908 /* Notify the VM system of our page size. */
909 PAGE_SIZE = NBPG;
910 uvm_setpagesize();
911
912 pmap_page_upload();
913 }
914
915
916 /* pmap_alloc_usermmu INTERNAL
917 **
918 * Called from pmap_bootstrap() to allocate MMU tables that will
919 * eventually be used for user mappings.
920 */
921 void
922 pmap_alloc_usermmu()
923 {
924 /* XXX: Moved into caller. */
925 }
926
927 /* pmap_alloc_pv INTERNAL
928 **
929 * Called from pmap_bootstrap() to allocate the physical
930 * to virtual mapping list. Each physical page of memory
931 * in the system has a corresponding element in this list.
932 */
933 void
934 pmap_alloc_pv()
935 {
936 int i;
937 unsigned int total_mem;
938
939 /*
940 * Allocate a pv_head structure for every page of physical
941 * memory that will be managed by the system. Since memory on
942 * the 3/80 is non-contiguous, we cannot arrive at a total page
943 * count by subtraction of the lowest available address from the
944 * highest, but rather we have to step through each memory
945 * bank and add the number of pages in each to the total.
946 *
947 * At this time we also initialize the offset of each bank's
948 * starting pv_head within the pv_head list so that the physical
949 * memory state routines (pmap_is_referenced(),
950 * pmap_is_modified(), et al.) can quickly find coresponding
951 * pv_heads in spite of the non-contiguity.
952 */
953 total_mem = 0;
954 for (i = 0; i < SUN3X_NPHYS_RAM_SEGS; i++) {
955 avail_mem[i].pmem_pvbase = m68k_btop(total_mem);
956 total_mem += avail_mem[i].pmem_end -
957 avail_mem[i].pmem_start;
958 if (avail_mem[i].pmem_next == NULL)
959 break;
960 }
961 pvbase = (pv_t *) pmap_bootstrap_alloc(sizeof(pv_t) *
962 m68k_btop(total_phys_mem));
963 }
964
965 /* pmap_alloc_usertmgr INTERNAL
966 **
967 * Called from pmap_bootstrap() to allocate the structures which
968 * facilitate management of user MMU tables. Each user MMU table
969 * in the system has one such structure associated with it.
970 */
971 void
972 pmap_alloc_usertmgr()
973 {
974 /* Allocate user MMU table managers */
975 /* It would be a lot simpler to just make these BSS, but */
976 /* we may want to change their size at boot time... -j */
977 Atmgrbase = (a_tmgr_t *) pmap_bootstrap_alloc(sizeof(a_tmgr_t)
978 * NUM_A_TABLES);
979 Btmgrbase = (b_tmgr_t *) pmap_bootstrap_alloc(sizeof(b_tmgr_t)
980 * NUM_B_TABLES);
981 Ctmgrbase = (c_tmgr_t *) pmap_bootstrap_alloc(sizeof(c_tmgr_t)
982 * NUM_C_TABLES);
983
984 /*
985 * Allocate PV list elements for the physical to virtual
986 * mapping system.
987 */
988 pvebase = (pv_elem_t *) pmap_bootstrap_alloc(
989 sizeof(pv_elem_t) * (NUM_USER_PTES + NUM_KERN_PTES));
990 }
991
992 /* pmap_bootstrap_copyprom() INTERNAL
993 **
994 * Copy the PROM mappings into our own tables. Note, we
995 * can use physical addresses until __bootstrap returns.
996 */
997 void
998 pmap_bootstrap_copyprom()
999 {
1000 struct sunromvec *romp;
1001 int *mon_ctbl;
1002 mmu_short_pte_t *kpte;
1003 int i, len;
1004
1005 romp = romVectorPtr;
1006
1007 /*
1008 * Copy the mappings in SUN3X_MON_KDB_BASE...SUN3X_MONEND
1009 * Note: mon_ctbl[0] maps SUN3X_MON_KDB_BASE
1010 */
1011 mon_ctbl = *romp->monptaddr;
1012 i = m68k_btop(SUN3X_MON_KDB_BASE - KERNBASE);
1013 kpte = &kernCbase[i];
1014 len = m68k_btop(SUN3X_MONEND - SUN3X_MON_KDB_BASE);
1015
1016 for (i = 0; i < len; i++) {
1017 kpte[i].attr.raw = mon_ctbl[i];
1018 }
1019
1020 /*
1021 * Copy the mappings at MON_DVMA_BASE (to the end).
1022 * Note, in here, mon_ctbl[0] maps MON_DVMA_BASE.
1023 * Actually, we only want the last page, which the
1024 * PROM has set up for use by the "ie" driver.
1025 * (The i82686 needs its SCP there.)
1026 * If we copy all the mappings, pmap_enter_kernel
1027 * may complain about finding valid PTEs that are
1028 * not recorded in our PV lists...
1029 */
1030 mon_ctbl = *romp->shadowpteaddr;
1031 i = m68k_btop(SUN3X_MON_DVMA_BASE - KERNBASE);
1032 kpte = &kernCbase[i];
1033 len = m68k_btop(SUN3X_MON_DVMA_SIZE);
1034 for (i = (len-1); i < len; i++) {
1035 kpte[i].attr.raw = mon_ctbl[i];
1036 }
1037 }
1038
1039 /* pmap_takeover_mmu INTERNAL
1040 **
1041 * Called from pmap_bootstrap() after it has copied enough of the
1042 * PROM mappings into the kernel map so that we can use our own
1043 * MMU table.
1044 */
1045 void
1046 pmap_takeover_mmu()
1047 {
1048
1049 loadcrp(&kernel_crp);
1050 }
1051
1052 /* pmap_bootstrap_setprom() INTERNAL
1053 **
1054 * Set the PROM mappings so it can see kernel space.
1055 * Note that physical addresses are used here, which
1056 * we can get away with because this runs with the
1057 * low 1GB set for transparent translation.
1058 */
1059 void
1060 pmap_bootstrap_setprom()
1061 {
1062 mmu_long_dte_t *mon_dte;
1063 extern struct mmu_rootptr mon_crp;
1064 int i;
1065
1066 mon_dte = (mmu_long_dte_t *) mon_crp.rp_addr;
1067 for (i = MMU_TIA(KERNBASE); i < MMU_TIA(KERN_END); i++) {
1068 mon_dte[i].attr.raw = kernAbase[i].attr.raw;
1069 mon_dte[i].addr.raw = kernAbase[i].addr.raw;
1070 }
1071 }
1072
1073
1074 /* pmap_init INTERFACE
1075 **
1076 * Called at the end of vm_init() to set up the pmap system to go
1077 * into full time operation. All initialization of kernel_pmap
1078 * should be already done by now, so this should just do things
1079 * needed for user-level pmaps to work.
1080 */
1081 void
1082 pmap_init()
1083 {
1084 /** Initialize the manager pools **/
1085 TAILQ_INIT(&a_pool);
1086 TAILQ_INIT(&b_pool);
1087 TAILQ_INIT(&c_pool);
1088
1089 /**************************************************************
1090 * Initialize all tmgr structures and MMU tables they manage. *
1091 **************************************************************/
1092 /** Initialize A tables **/
1093 pmap_init_a_tables();
1094 /** Initialize B tables **/
1095 pmap_init_b_tables();
1096 /** Initialize C tables **/
1097 pmap_init_c_tables();
1098 }
1099
1100 /* pmap_init_a_tables() INTERNAL
1101 **
1102 * Initializes all A managers, their MMU A tables, and inserts
1103 * them into the A manager pool for use by the system.
1104 */
1105 void
1106 pmap_init_a_tables()
1107 {
1108 int i;
1109 a_tmgr_t *a_tbl;
1110
1111 for (i=0; i < NUM_A_TABLES; i++) {
1112 /* Select the next available A manager from the pool */
1113 a_tbl = &Atmgrbase[i];
1114
1115 /*
1116 * Clear its parent entry. Set its wired and valid
1117 * entry count to zero.
1118 */
1119 a_tbl->at_parent = NULL;
1120 a_tbl->at_wcnt = a_tbl->at_ecnt = 0;
1121
1122 /* Assign it the next available MMU A table from the pool */
1123 a_tbl->at_dtbl = &mmuAbase[i * MMU_A_TBL_SIZE];
1124
1125 /*
1126 * Initialize the MMU A table with the table in the `proc0',
1127 * or kernel, mapping. This ensures that every process has
1128 * the kernel mapped in the top part of its address space.
1129 */
1130 bcopy(kernAbase, a_tbl->at_dtbl, MMU_A_TBL_SIZE *
1131 sizeof(mmu_long_dte_t));
1132
1133 /*
1134 * Finally, insert the manager into the A pool,
1135 * making it ready to be used by the system.
1136 */
1137 TAILQ_INSERT_TAIL(&a_pool, a_tbl, at_link);
1138 }
1139 }
1140
1141 /* pmap_init_b_tables() INTERNAL
1142 **
1143 * Initializes all B table managers, their MMU B tables, and
1144 * inserts them into the B manager pool for use by the system.
1145 */
1146 void
1147 pmap_init_b_tables()
1148 {
1149 int i,j;
1150 b_tmgr_t *b_tbl;
1151
1152 for (i=0; i < NUM_B_TABLES; i++) {
1153 /* Select the next available B manager from the pool */
1154 b_tbl = &Btmgrbase[i];
1155
1156 b_tbl->bt_parent = NULL; /* clear its parent, */
1157 b_tbl->bt_pidx = 0; /* parent index, */
1158 b_tbl->bt_wcnt = 0; /* wired entry count, */
1159 b_tbl->bt_ecnt = 0; /* valid entry count. */
1160
1161 /* Assign it the next available MMU B table from the pool */
1162 b_tbl->bt_dtbl = &mmuBbase[i * MMU_B_TBL_SIZE];
1163
1164 /* Invalidate every descriptor in the table */
1165 for (j=0; j < MMU_B_TBL_SIZE; j++)
1166 b_tbl->bt_dtbl[j].attr.raw = MMU_DT_INVALID;
1167
1168 /* Insert the manager into the B pool */
1169 TAILQ_INSERT_TAIL(&b_pool, b_tbl, bt_link);
1170 }
1171 }
1172
1173 /* pmap_init_c_tables() INTERNAL
1174 **
1175 * Initializes all C table managers, their MMU C tables, and
1176 * inserts them into the C manager pool for use by the system.
1177 */
1178 void
1179 pmap_init_c_tables()
1180 {
1181 int i,j;
1182 c_tmgr_t *c_tbl;
1183
1184 for (i=0; i < NUM_C_TABLES; i++) {
1185 /* Select the next available C manager from the pool */
1186 c_tbl = &Ctmgrbase[i];
1187
1188 c_tbl->ct_parent = NULL; /* clear its parent, */
1189 c_tbl->ct_pidx = 0; /* parent index, */
1190 c_tbl->ct_wcnt = 0; /* wired entry count, */
1191 c_tbl->ct_ecnt = 0; /* valid entry count, */
1192 c_tbl->ct_pmap = NULL; /* parent pmap, */
1193 c_tbl->ct_va = 0; /* base of managed range */
1194
1195 /* Assign it the next available MMU C table from the pool */
1196 c_tbl->ct_dtbl = &mmuCbase[i * MMU_C_TBL_SIZE];
1197
1198 for (j=0; j < MMU_C_TBL_SIZE; j++)
1199 c_tbl->ct_dtbl[j].attr.raw = MMU_DT_INVALID;
1200
1201 TAILQ_INSERT_TAIL(&c_pool, c_tbl, ct_link);
1202 }
1203 }
1204
1205 /* pmap_init_pv() INTERNAL
1206 **
1207 * Initializes the Physical to Virtual mapping system.
1208 */
1209 void
1210 pmap_init_pv()
1211 {
1212 int i;
1213
1214 /* Initialize every PV head. */
1215 for (i = 0; i < m68k_btop(total_phys_mem); i++) {
1216 pvbase[i].pv_idx = PVE_EOL; /* Indicate no mappings */
1217 pvbase[i].pv_flags = 0; /* Zero out page flags */
1218 }
1219
1220 pv_initialized = TRUE;
1221 }
1222
1223 /* get_a_table INTERNAL
1224 **
1225 * Retrieve and return a level A table for use in a user map.
1226 */
1227 a_tmgr_t *
1228 get_a_table()
1229 {
1230 a_tmgr_t *tbl;
1231 pmap_t pmap;
1232
1233 /* Get the top A table in the pool */
1234 tbl = a_pool.tqh_first;
1235 if (tbl == NULL) {
1236 /*
1237 * XXX - Instead of panicing here and in other get_x_table
1238 * functions, we do have the option of sleeping on the head of
1239 * the table pool. Any function which updates the table pool
1240 * would then issue a wakeup() on the head, thus waking up any
1241 * processes waiting for a table.
1242 *
1243 * Actually, the place to sleep would be when some process
1244 * asks for a "wired" mapping that would run us short of
1245 * mapping resources. This design DEPENDS on always having
1246 * some mapping resources in the pool for stealing, so we
1247 * must make sure we NEVER let the pool become empty. -gwr
1248 */
1249 panic("get_a_table: out of A tables.");
1250 }
1251
1252 TAILQ_REMOVE(&a_pool, tbl, at_link);
1253 /*
1254 * If the table has a non-null parent pointer then it is in use.
1255 * Forcibly abduct it from its parent and clear its entries.
1256 * No re-entrancy worries here. This table would not be in the
1257 * table pool unless it was available for use.
1258 *
1259 * Note that the second argument to free_a_table() is FALSE. This
1260 * indicates that the table should not be relinked into the A table
1261 * pool. That is a job for the function that called us.
1262 */
1263 if (tbl->at_parent) {
1264 pmap = tbl->at_parent;
1265 free_a_table(tbl, FALSE);
1266 pmap->pm_a_tmgr = NULL;
1267 pmap->pm_a_phys = kernAphys;
1268 }
1269 #ifdef NON_REENTRANT
1270 /*
1271 * If the table isn't to be wired down, re-insert it at the
1272 * end of the pool.
1273 */
1274 if (!wired)
1275 /*
1276 * Quandary - XXX
1277 * Would it be better to let the calling function insert this
1278 * table into the queue? By inserting it here, we are allowing
1279 * it to be stolen immediately. The calling function is
1280 * probably not expecting to use a table that it is not
1281 * assured full control of.
1282 * Answer - In the intrest of re-entrancy, it is best to let
1283 * the calling function determine when a table is available
1284 * for use. Therefore this code block is not used.
1285 */
1286 TAILQ_INSERT_TAIL(&a_pool, tbl, at_link);
1287 #endif /* NON_REENTRANT */
1288 return tbl;
1289 }
1290
1291 /* get_b_table INTERNAL
1292 **
1293 * Return a level B table for use.
1294 */
1295 b_tmgr_t *
1296 get_b_table()
1297 {
1298 b_tmgr_t *tbl;
1299
1300 /* See 'get_a_table' for comments. */
1301 tbl = b_pool.tqh_first;
1302 if (tbl == NULL)
1303 panic("get_b_table: out of B tables.");
1304 TAILQ_REMOVE(&b_pool, tbl, bt_link);
1305 if (tbl->bt_parent) {
1306 tbl->bt_parent->at_dtbl[tbl->bt_pidx].attr.raw = MMU_DT_INVALID;
1307 tbl->bt_parent->at_ecnt--;
1308 free_b_table(tbl, FALSE);
1309 }
1310 #ifdef NON_REENTRANT
1311 if (!wired)
1312 /* XXX see quandary in get_b_table */
1313 /* XXX start lock */
1314 TAILQ_INSERT_TAIL(&b_pool, tbl, bt_link);
1315 /* XXX end lock */
1316 #endif /* NON_REENTRANT */
1317 return tbl;
1318 }
1319
1320 /* get_c_table INTERNAL
1321 **
1322 * Return a level C table for use.
1323 */
1324 c_tmgr_t *
1325 get_c_table()
1326 {
1327 c_tmgr_t *tbl;
1328
1329 /* See 'get_a_table' for comments */
1330 tbl = c_pool.tqh_first;
1331 if (tbl == NULL)
1332 panic("get_c_table: out of C tables.");
1333 TAILQ_REMOVE(&c_pool, tbl, ct_link);
1334 if (tbl->ct_parent) {
1335 tbl->ct_parent->bt_dtbl[tbl->ct_pidx].attr.raw = MMU_DT_INVALID;
1336 tbl->ct_parent->bt_ecnt--;
1337 free_c_table(tbl, FALSE);
1338 }
1339 #ifdef NON_REENTRANT
1340 if (!wired)
1341 /* XXX See quandary in get_a_table */
1342 /* XXX start lock */
1343 TAILQ_INSERT_TAIL(&c_pool, tbl, c_link);
1344 /* XXX end lock */
1345 #endif /* NON_REENTRANT */
1346
1347 return tbl;
1348 }
1349
1350 /*
1351 * The following 'free_table' and 'steal_table' functions are called to
1352 * detach tables from their current obligations (parents and children) and
1353 * prepare them for reuse in another mapping.
1354 *
1355 * Free_table is used when the calling function will handle the fate
1356 * of the parent table, such as returning it to the free pool when it has
1357 * no valid entries. Functions that do not want to handle this should
1358 * call steal_table, in which the parent table's descriptors and entry
1359 * count are automatically modified when this table is removed.
1360 */
1361
1362 /* free_a_table INTERNAL
1363 **
1364 * Unmaps the given A table and all child tables from their current
1365 * mappings. Returns the number of pages that were invalidated.
1366 * If 'relink' is true, the function will return the table to the head
1367 * of the available table pool.
1368 *
1369 * Cache note: The MC68851 will automatically flush all
1370 * descriptors derived from a given A table from its
1371 * Automatic Translation Cache (ATC) if we issue a
1372 * 'PFLUSHR' instruction with the base address of the
1373 * table. This function should do, and does so.
1374 * Note note: We are using an MC68030 - there is no
1375 * PFLUSHR.
1376 */
1377 int
1378 free_a_table(a_tbl, relink)
1379 a_tmgr_t *a_tbl;
1380 boolean_t relink;
1381 {
1382 int i, removed_cnt;
1383 mmu_long_dte_t *dte;
1384 mmu_short_dte_t *dtbl;
1385 b_tmgr_t *tmgr;
1386
1387 /*
1388 * Flush the ATC cache of all cached descriptors derived
1389 * from this table.
1390 * Sun3x does not use 68851's cached table feature
1391 * flush_atc_crp(mmu_vtop(a_tbl->dte));
1392 */
1393
1394 /*
1395 * Remove any pending cache flushes that were designated
1396 * for the pmap this A table belongs to.
1397 * a_tbl->parent->atc_flushq[0] = 0;
1398 * Not implemented in sun3x.
1399 */
1400
1401 /*
1402 * All A tables in the system should retain a map for the
1403 * kernel. If the table contains any valid descriptors
1404 * (other than those for the kernel area), invalidate them all,
1405 * stopping short of the kernel's entries.
1406 */
1407 removed_cnt = 0;
1408 if (a_tbl->at_ecnt) {
1409 dte = a_tbl->at_dtbl;
1410 for (i=0; i < MMU_TIA(KERNBASE); i++) {
1411 /*
1412 * If a table entry points to a valid B table, free
1413 * it and its children.
1414 */
1415 if (MMU_VALID_DT(dte[i])) {
1416 /*
1417 * The following block does several things,
1418 * from innermost expression to the
1419 * outermost:
1420 * 1) It extracts the base (cc 1996)
1421 * address of the B table pointed
1422 * to in the A table entry dte[i].
1423 * 2) It converts this base address into
1424 * the virtual address it can be
1425 * accessed with. (all MMU tables point
1426 * to physical addresses.)
1427 * 3) It finds the corresponding manager
1428 * structure which manages this MMU table.
1429 * 4) It frees the manager structure.
1430 * (This frees the MMU table and all
1431 * child tables. See 'free_b_table' for
1432 * details.)
1433 */
1434 dtbl = mmu_ptov(dte[i].addr.raw);
1435 tmgr = mmuB2tmgr(dtbl);
1436 removed_cnt += free_b_table(tmgr, TRUE);
1437 dte[i].attr.raw = MMU_DT_INVALID;
1438 }
1439 }
1440 a_tbl->at_ecnt = 0;
1441 }
1442 if (relink) {
1443 a_tbl->at_parent = NULL;
1444 TAILQ_REMOVE(&a_pool, a_tbl, at_link);
1445 TAILQ_INSERT_HEAD(&a_pool, a_tbl, at_link);
1446 }
1447 return removed_cnt;
1448 }
1449
1450 /* free_b_table INTERNAL
1451 **
1452 * Unmaps the given B table and all its children from their current
1453 * mappings. Returns the number of pages that were invalidated.
1454 * (For comments, see 'free_a_table()').
1455 */
1456 int
1457 free_b_table(b_tbl, relink)
1458 b_tmgr_t *b_tbl;
1459 boolean_t relink;
1460 {
1461 int i, removed_cnt;
1462 mmu_short_dte_t *dte;
1463 mmu_short_pte_t *dtbl;
1464 c_tmgr_t *tmgr;
1465
1466 removed_cnt = 0;
1467 if (b_tbl->bt_ecnt) {
1468 dte = b_tbl->bt_dtbl;
1469 for (i=0; i < MMU_B_TBL_SIZE; i++) {
1470 if (MMU_VALID_DT(dte[i])) {
1471 dtbl = mmu_ptov(MMU_DTE_PA(dte[i]));
1472 tmgr = mmuC2tmgr(dtbl);
1473 removed_cnt += free_c_table(tmgr, TRUE);
1474 dte[i].attr.raw = MMU_DT_INVALID;
1475 }
1476 }
1477 b_tbl->bt_ecnt = 0;
1478 }
1479
1480 if (relink) {
1481 b_tbl->bt_parent = NULL;
1482 TAILQ_REMOVE(&b_pool, b_tbl, bt_link);
1483 TAILQ_INSERT_HEAD(&b_pool, b_tbl, bt_link);
1484 }
1485 return removed_cnt;
1486 }
1487
1488 /* free_c_table INTERNAL
1489 **
1490 * Unmaps the given C table from use and returns it to the pool for
1491 * re-use. Returns the number of pages that were invalidated.
1492 *
1493 * This function preserves any physical page modification information
1494 * contained in the page descriptors within the C table by calling
1495 * 'pmap_remove_pte().'
1496 */
1497 int
1498 free_c_table(c_tbl, relink)
1499 c_tmgr_t *c_tbl;
1500 boolean_t relink;
1501 {
1502 int i, removed_cnt;
1503
1504 removed_cnt = 0;
1505 if (c_tbl->ct_ecnt) {
1506 for (i=0; i < MMU_C_TBL_SIZE; i++) {
1507 if (MMU_VALID_DT(c_tbl->ct_dtbl[i])) {
1508 pmap_remove_pte(&c_tbl->ct_dtbl[i]);
1509 removed_cnt++;
1510 }
1511 }
1512 c_tbl->ct_ecnt = 0;
1513 }
1514
1515 if (relink) {
1516 c_tbl->ct_parent = NULL;
1517 TAILQ_REMOVE(&c_pool, c_tbl, ct_link);
1518 TAILQ_INSERT_HEAD(&c_pool, c_tbl, ct_link);
1519 }
1520 return removed_cnt;
1521 }
1522
1523 #if 0
1524 /* free_c_table_novalid INTERNAL
1525 **
1526 * Frees the given C table manager without checking to see whether
1527 * or not it contains any valid page descriptors as it is assumed
1528 * that it does not.
1529 */
1530 void
1531 free_c_table_novalid(c_tbl)
1532 c_tmgr_t *c_tbl;
1533 {
1534 TAILQ_REMOVE(&c_pool, c_tbl, ct_link);
1535 TAILQ_INSERT_HEAD(&c_pool, c_tbl, ct_link);
1536 c_tbl->ct_parent->bt_dtbl[c_tbl->ct_pidx].attr.raw = MMU_DT_INVALID;
1537 c_tbl->ct_parent->bt_ecnt--;
1538 /*
1539 * XXX - Should call equiv. of 'free_b_table_novalid' here if
1540 * we just removed the last entry of the parent B table.
1541 * But I want to insure that this will not endanger pmap_enter()
1542 * with sudden removal of tables it is working with.
1543 *
1544 * We should probably add another field to each table, indicating
1545 * whether or not it is 'locked', ie. in the process of being
1546 * modified.
1547 */
1548 c_tbl->ct_parent = NULL;
1549 }
1550 #endif
1551
1552 /* pmap_remove_pte INTERNAL
1553 **
1554 * Unmap the given pte and preserve any page modification
1555 * information by transfering it to the pv head of the
1556 * physical page it maps to. This function does not update
1557 * any reference counts because it is assumed that the calling
1558 * function will do so.
1559 */
1560 void
1561 pmap_remove_pte(pte)
1562 mmu_short_pte_t *pte;
1563 {
1564 u_short pv_idx, targ_idx;
1565 int s;
1566 vm_offset_t pa;
1567 pv_t *pv;
1568
1569 pa = MMU_PTE_PA(*pte);
1570 if (is_managed(pa)) {
1571 pv = pa2pv(pa);
1572 targ_idx = pteidx(pte); /* Index of PTE being removed */
1573
1574 /*
1575 * If the PTE being removed is the first (or only) PTE in
1576 * the list of PTEs currently mapped to this page, remove the
1577 * PTE by changing the index found on the PV head. Otherwise
1578 * a linear search through the list will have to be executed
1579 * in order to find the PVE which points to the PTE being
1580 * removed, so that it may be modified to point to its new
1581 * neighbor.
1582 */
1583 s = splimp();
1584 pv_idx = pv->pv_idx; /* Index of first PTE in PV list */
1585 if (pv_idx == targ_idx) {
1586 pv->pv_idx = pvebase[targ_idx].pve_next;
1587 } else {
1588 /*
1589 * Find the PV element pointing to the target
1590 * element. Note: may have pv_idx==PVE_EOL
1591 */
1592 for (;;) {
1593 if (pv_idx == PVE_EOL) {
1594 #ifdef PMAP_DEBUG
1595 printf("pmap_remove_pte: PVE_EOL\n");
1596 Debugger();
1597 #endif
1598 goto pv_not_found;
1599 }
1600 if (pvebase[pv_idx].pve_next == targ_idx)
1601 break;
1602 pv_idx = pvebase[pv_idx].pve_next;
1603 }
1604 /*
1605 * At this point, pv_idx is the index of the PV
1606 * element just before the target element in the list.
1607 * Unlink the target.
1608 */
1609 pvebase[pv_idx].pve_next = pvebase[targ_idx].pve_next;
1610 pv_not_found:
1611 }
1612 /*
1613 * Save the mod/ref bits of the pte by simply
1614 * ORing the entire pte onto the pv_flags member
1615 * of the pv structure.
1616 * There is no need to use a separate bit pattern
1617 * for usage information on the pv head than that
1618 * which is used on the MMU ptes.
1619 */
1620 pv->pv_flags |= (u_short) pte->attr.raw;
1621 splx(s);
1622 }
1623
1624 pte->attr.raw = MMU_DT_INVALID;
1625 }
1626
1627 /* pmap_stroll INTERNAL
1628 **
1629 * Retrieve the addresses of all table managers involved in the mapping of
1630 * the given virtual address. If the table walk completed sucessfully,
1631 * return TRUE. If it was only partially sucessful, return FALSE.
1632 * The table walk performed by this function is important to many other
1633 * functions in this module.
1634 *
1635 * Note: This function ought to be easier to read.
1636 */
1637 boolean_t
1638 pmap_stroll(pmap, va, a_tbl, b_tbl, c_tbl, pte, a_idx, b_idx, pte_idx)
1639 pmap_t pmap;
1640 vm_offset_t va;
1641 a_tmgr_t **a_tbl;
1642 b_tmgr_t **b_tbl;
1643 c_tmgr_t **c_tbl;
1644 mmu_short_pte_t **pte;
1645 int *a_idx, *b_idx, *pte_idx;
1646 {
1647 mmu_long_dte_t *a_dte; /* A: long descriptor table */
1648 mmu_short_dte_t *b_dte; /* B: short descriptor table */
1649
1650 if (pmap == pmap_kernel())
1651 return FALSE;
1652
1653 /* Does the given pmap have its own A table? */
1654 *a_tbl = pmap->pm_a_tmgr;
1655 if (*a_tbl == NULL)
1656 return FALSE; /* No. Return unknown. */
1657 /* Does the A table have a valid B table
1658 * under the corresponding table entry?
1659 */
1660 *a_idx = MMU_TIA(va);
1661 a_dte = &((*a_tbl)->at_dtbl[*a_idx]);
1662 if (!MMU_VALID_DT(*a_dte))
1663 return FALSE; /* No. Return unknown. */
1664 /* Yes. Extract B table from the A table. */
1665 *b_tbl = mmuB2tmgr(mmu_ptov(a_dte->addr.raw));
1666 /* Does the B table have a valid C table
1667 * under the corresponding table entry?
1668 */
1669 *b_idx = MMU_TIB(va);
1670 b_dte = &((*b_tbl)->bt_dtbl[*b_idx]);
1671 if (!MMU_VALID_DT(*b_dte))
1672 return FALSE; /* No. Return unknown. */
1673 /* Yes. Extract C table from the B table. */
1674 *c_tbl = mmuC2tmgr(mmu_ptov(MMU_DTE_PA(*b_dte)));
1675 *pte_idx = MMU_TIC(va);
1676 *pte = &((*c_tbl)->ct_dtbl[*pte_idx]);
1677
1678 return TRUE;
1679 }
1680
1681 /* pmap_enter INTERFACE
1682 **
1683 * Called by the kernel to map a virtual address
1684 * to a physical address in the given process map.
1685 *
1686 * Note: this function should apply an exclusive lock
1687 * on the pmap system for its duration. (it certainly
1688 * would save my hair!!)
1689 * This function ought to be easier to read.
1690 */
1691 void
1692 pmap_enter(pmap, va, pa, prot, wired, access_type)
1693 pmap_t pmap;
1694 vm_offset_t va;
1695 vm_offset_t pa;
1696 vm_prot_t prot;
1697 boolean_t wired;
1698 vm_prot_t access_type;
1699 {
1700 boolean_t insert, managed; /* Marks the need for PV insertion.*/
1701 u_short nidx; /* PV list index */
1702 int s; /* Used for splimp()/splx() */
1703 int flags; /* Mapping flags. eg. Cache inhibit */
1704 u_int a_idx, b_idx, pte_idx; /* table indices */
1705 a_tmgr_t *a_tbl; /* A: long descriptor table manager */
1706 b_tmgr_t *b_tbl; /* B: short descriptor table manager */
1707 c_tmgr_t *c_tbl; /* C: short page table manager */
1708 mmu_long_dte_t *a_dte; /* A: long descriptor table */
1709 mmu_short_dte_t *b_dte; /* B: short descriptor table */
1710 mmu_short_pte_t *c_pte; /* C: short page descriptor table */
1711 pv_t *pv; /* pv list head */
1712 enum {NONE, NEWA, NEWB, NEWC} llevel; /* used at end */
1713
1714 if (pmap == NULL)
1715 return;
1716 if (pmap == pmap_kernel()) {
1717 pmap_enter_kernel(va, pa, prot);
1718 return;
1719 }
1720
1721 flags = (pa & ~MMU_PAGE_MASK);
1722 pa &= MMU_PAGE_MASK;
1723
1724 /*
1725 * Determine if the physical address being mapped is on-board RAM.
1726 * Any other area of the address space is likely to belong to a
1727 * device and hence it would be disasterous to cache its contents.
1728 */
1729 if ((managed = is_managed(pa)) == FALSE)
1730 flags |= PMAP_NC;
1731
1732 /*
1733 * For user mappings we walk along the MMU tables of the given
1734 * pmap, reaching a PTE which describes the virtual page being
1735 * mapped or changed. If any level of the walk ends in an invalid
1736 * entry, a table must be allocated and the entry must be updated
1737 * to point to it.
1738 * There is a bit of confusion as to whether this code must be
1739 * re-entrant. For now we will assume it is. To support
1740 * re-entrancy we must unlink tables from the table pool before
1741 * we assume we may use them. Tables are re-linked into the pool
1742 * when we are finished with them at the end of the function.
1743 * But I don't feel like doing that until we have proof that this
1744 * needs to be re-entrant.
1745 * 'llevel' records which tables need to be relinked.
1746 */
1747 llevel = NONE;
1748
1749 /*
1750 * Step 1 - Retrieve the A table from the pmap. If it has no
1751 * A table, allocate a new one from the available pool.
1752 */
1753
1754 a_tbl = pmap->pm_a_tmgr;
1755 if (a_tbl == NULL) {
1756 /*
1757 * This pmap does not currently have an A table. Allocate
1758 * a new one.
1759 */
1760 a_tbl = get_a_table();
1761 a_tbl->at_parent = pmap;
1762
1763 /*
1764 * Assign this new A table to the pmap, and calculate its
1765 * physical address so that loadcrp() can be used to make
1766 * the table active.
1767 */
1768 pmap->pm_a_tmgr = a_tbl;
1769 pmap->pm_a_phys = mmu_vtop(a_tbl->at_dtbl);
1770
1771 /*
1772 * If the process receiving a new A table is the current
1773 * process, we are responsible for setting the MMU so that
1774 * it becomes the current address space. This only adds
1775 * new mappings, so no need to flush anything.
1776 */
1777 if (pmap == current_pmap()) {
1778 kernel_crp.rp_addr = pmap->pm_a_phys;
1779 loadcrp(&kernel_crp);
1780 }
1781
1782 if (!wired)
1783 llevel = NEWA;
1784 } else {
1785 /*
1786 * Use the A table already allocated for this pmap.
1787 * Unlink it from the A table pool if necessary.
1788 */
1789 if (wired && !a_tbl->at_wcnt)
1790 TAILQ_REMOVE(&a_pool, a_tbl, at_link);
1791 }
1792
1793 /*
1794 * Step 2 - Walk into the B table. If there is no valid B table,
1795 * allocate one.
1796 */
1797
1798 a_idx = MMU_TIA(va); /* Calculate the TIA of the VA. */
1799 a_dte = &a_tbl->at_dtbl[a_idx]; /* Retrieve descriptor from table */
1800 if (MMU_VALID_DT(*a_dte)) { /* Is the descriptor valid? */
1801 /* The descriptor is valid. Use the B table it points to. */
1802 /*************************************
1803 * a_idx *
1804 * v *
1805 * a_tbl -> +-+-+-+-+-+-+-+-+-+-+-+- *
1806 * | | | | | | | | | | | | *
1807 * +-+-+-+-+-+-+-+-+-+-+-+- *
1808 * | *
1809 * \- b_tbl -> +-+- *
1810 * | | *
1811 * +-+- *
1812 *************************************/
1813 b_dte = mmu_ptov(a_dte->addr.raw);
1814 b_tbl = mmuB2tmgr(b_dte);
1815
1816 /*
1817 * If the requested mapping must be wired, but this table
1818 * being used to map it is not, the table must be removed
1819 * from the available pool and its wired entry count
1820 * incremented.
1821 */
1822 if (wired && !b_tbl->bt_wcnt) {
1823 TAILQ_REMOVE(&b_pool, b_tbl, bt_link);
1824 a_tbl->at_wcnt++;
1825 }
1826 } else {
1827 /* The descriptor is invalid. Allocate a new B table. */
1828 b_tbl = get_b_table();
1829
1830 /* Point the parent A table descriptor to this new B table. */
1831 a_dte->addr.raw = mmu_vtop(b_tbl->bt_dtbl);
1832 a_dte->attr.raw = MMU_LONG_DTE_LU | MMU_DT_SHORT;
1833 a_tbl->at_ecnt++; /* Update parent's valid entry count */
1834
1835 /* Create the necessary back references to the parent table */
1836 b_tbl->bt_parent = a_tbl;
1837 b_tbl->bt_pidx = a_idx;
1838
1839 /*
1840 * If this table is to be wired, make sure the parent A table
1841 * wired count is updated to reflect that it has another wired
1842 * entry.
1843 */
1844 if (wired)
1845 a_tbl->at_wcnt++;
1846 else if (llevel == NONE)
1847 llevel = NEWB;
1848 }
1849
1850 /*
1851 * Step 3 - Walk into the C table, if there is no valid C table,
1852 * allocate one.
1853 */
1854
1855 b_idx = MMU_TIB(va); /* Calculate the TIB of the VA */
1856 b_dte = &b_tbl->bt_dtbl[b_idx]; /* Retrieve descriptor from table */
1857 if (MMU_VALID_DT(*b_dte)) { /* Is the descriptor valid? */
1858 /* The descriptor is valid. Use the C table it points to. */
1859 /**************************************
1860 * c_idx *
1861 * | v *
1862 * \- b_tbl -> +-+-+-+-+-+-+-+-+-+-+- *
1863 * | | | | | | | | | | | *
1864 * +-+-+-+-+-+-+-+-+-+-+- *
1865 * | *
1866 * \- c_tbl -> +-+-- *
1867 * | | | *
1868 * +-+-- *
1869 **************************************/
1870 c_pte = mmu_ptov(MMU_PTE_PA(*b_dte));
1871 c_tbl = mmuC2tmgr(c_pte);
1872
1873 /* If mapping is wired and table is not */
1874 if (wired && !c_tbl->ct_wcnt) {
1875 TAILQ_REMOVE(&c_pool, c_tbl, ct_link);
1876 b_tbl->bt_wcnt++;
1877 }
1878 } else {
1879 /* The descriptor is invalid. Allocate a new C table. */
1880 c_tbl = get_c_table();
1881
1882 /* Point the parent B table descriptor to this new C table. */
1883 b_dte->attr.raw = mmu_vtop(c_tbl->ct_dtbl);
1884 b_dte->attr.raw |= MMU_DT_SHORT;
1885 b_tbl->bt_ecnt++; /* Update parent's valid entry count */
1886
1887 /* Create the necessary back references to the parent table */
1888 c_tbl->ct_parent = b_tbl;
1889 c_tbl->ct_pidx = b_idx;
1890 /*
1891 * Store the pmap and base virtual managed address for faster
1892 * retrieval in the PV functions.
1893 */
1894 c_tbl->ct_pmap = pmap;
1895 c_tbl->ct_va = (va & (MMU_TIA_MASK|MMU_TIB_MASK));
1896
1897 /*
1898 * If this table is to be wired, make sure the parent B table
1899 * wired count is updated to reflect that it has another wired
1900 * entry.
1901 */
1902 if (wired)
1903 b_tbl->bt_wcnt++;
1904 else if (llevel == NONE)
1905 llevel = NEWC;
1906 }
1907
1908 /*
1909 * Step 4 - Deposit a page descriptor (PTE) into the appropriate
1910 * slot of the C table, describing the PA to which the VA is mapped.
1911 */
1912
1913 pte_idx = MMU_TIC(va);
1914 c_pte = &c_tbl->ct_dtbl[pte_idx];
1915 if (MMU_VALID_DT(*c_pte)) { /* Is the entry currently valid? */
1916 /*
1917 * The PTE is currently valid. This particular call
1918 * is just a synonym for one (or more) of the following
1919 * operations:
1920 * change protection of a page
1921 * change wiring status of a page
1922 * remove the mapping of a page
1923 *
1924 * XXX - Semi critical: This code should unwire the PTE
1925 * and, possibly, associated parent tables if this is a
1926 * change wiring operation. Currently it does not.
1927 *
1928 * This may be ok if pmap_change_wiring() is the only
1929 * interface used to UNWIRE a page.
1930 */
1931
1932 /* First check if this is a wiring operation. */
1933 if (wired && (c_pte->attr.raw & MMU_SHORT_PTE_WIRED)) {
1934 /*
1935 * The PTE is already wired. To prevent it from being
1936 * counted as a new wiring operation, reset the 'wired'
1937 * variable.
1938 */
1939 wired = FALSE;
1940 }
1941
1942 /* Is the new address the same as the old? */
1943 if (MMU_PTE_PA(*c_pte) == pa) {
1944 /*
1945 * Yes, mark that it does not need to be reinserted
1946 * into the PV list.
1947 */
1948 insert = FALSE;
1949
1950 /*
1951 * Clear all but the modified, referenced and wired
1952 * bits on the PTE.
1953 */
1954 c_pte->attr.raw &= (MMU_SHORT_PTE_M
1955 | MMU_SHORT_PTE_USED | MMU_SHORT_PTE_WIRED);
1956 } else {
1957 /* No, remove the old entry */
1958 pmap_remove_pte(c_pte);
1959 insert = TRUE;
1960 }
1961
1962 /*
1963 * TLB flush is only necessary if modifying current map.
1964 * However, in pmap_enter(), the pmap almost always IS
1965 * the current pmap, so don't even bother to check.
1966 */
1967 TBIS(va);
1968 } else {
1969 /*
1970 * The PTE is invalid. Increment the valid entry count in
1971 * the C table manager to reflect the addition of a new entry.
1972 */
1973 c_tbl->ct_ecnt++;
1974
1975 /* XXX - temporarily make sure the PTE is cleared. */
1976 c_pte->attr.raw = 0;
1977
1978 /* It will also need to be inserted into the PV list. */
1979 insert = TRUE;
1980 }
1981
1982 /*
1983 * If page is changing from unwired to wired status, set an unused bit
1984 * within the PTE to indicate that it is wired. Also increment the
1985 * wired entry count in the C table manager.
1986 */
1987 if (wired) {
1988 c_pte->attr.raw |= MMU_SHORT_PTE_WIRED;
1989 c_tbl->ct_wcnt++;
1990 }
1991
1992 /*
1993 * Map the page, being careful to preserve modify/reference/wired
1994 * bits. At this point it is assumed that the PTE either has no bits
1995 * set, or if there are set bits, they are only modified, reference or
1996 * wired bits. If not, the following statement will cause erratic
1997 * behavior.
1998 */
1999 #ifdef PMAP_DEBUG
2000 if (c_pte->attr.raw & ~(MMU_SHORT_PTE_M |
2001 MMU_SHORT_PTE_USED | MMU_SHORT_PTE_WIRED)) {
2002 printf("pmap_enter: junk left in PTE at %p\n", c_pte);
2003 Debugger();
2004 }
2005 #endif
2006 c_pte->attr.raw |= ((u_long) pa | MMU_DT_PAGE);
2007
2008 /*
2009 * If the mapping should be read-only, set the write protect
2010 * bit in the PTE.
2011 */
2012 if (!(prot & VM_PROT_WRITE))
2013 c_pte->attr.raw |= MMU_SHORT_PTE_WP;
2014
2015 /*
2016 * If the mapping should be cache inhibited (indicated by the flag
2017 * bits found on the lower order of the physical address.)
2018 * mark the PTE as a cache inhibited page.
2019 */
2020 if (flags & PMAP_NC)
2021 c_pte->attr.raw |= MMU_SHORT_PTE_CI;
2022
2023 /*
2024 * If the physical address being mapped is managed by the PV
2025 * system then link the pte into the list of pages mapped to that
2026 * address.
2027 */
2028 if (insert && managed) {
2029 pv = pa2pv(pa);
2030 nidx = pteidx(c_pte);
2031
2032 s = splimp();
2033 pvebase[nidx].pve_next = pv->pv_idx;
2034 pv->pv_idx = nidx;
2035 splx(s);
2036 }
2037
2038 /* Move any allocated tables back into the active pool. */
2039
2040 switch (llevel) {
2041 case NEWA:
2042 TAILQ_INSERT_TAIL(&a_pool, a_tbl, at_link);
2043 /* FALLTHROUGH */
2044 case NEWB:
2045 TAILQ_INSERT_TAIL(&b_pool, b_tbl, bt_link);
2046 /* FALLTHROUGH */
2047 case NEWC:
2048 TAILQ_INSERT_TAIL(&c_pool, c_tbl, ct_link);
2049 /* FALLTHROUGH */
2050 default:
2051 break;
2052 }
2053 }
2054
2055 /* pmap_enter_kernel INTERNAL
2056 **
2057 * Map the given virtual address to the given physical address within the
2058 * kernel address space. This function exists because the kernel map does
2059 * not do dynamic table allocation. It consists of a contiguous array of ptes
2060 * and can be edited directly without the need to walk through any tables.
2061 *
2062 * XXX: "Danger, Will Robinson!"
2063 * Note that the kernel should never take a fault on any page
2064 * between [ KERNBASE .. virtual_avail ] and this is checked in
2065 * trap.c for kernel-mode MMU faults. This means that mappings
2066 * created in that range must be implicily wired. -gwr
2067 */
2068 void
2069 pmap_enter_kernel(va, pa, prot)
2070 vm_offset_t va;
2071 vm_offset_t pa;
2072 vm_prot_t prot;
2073 {
2074 boolean_t was_valid, insert;
2075 u_short pte_idx;
2076 int s, flags;
2077 mmu_short_pte_t *pte;
2078 pv_t *pv;
2079 vm_offset_t old_pa;
2080
2081 flags = (pa & ~MMU_PAGE_MASK);
2082 pa &= MMU_PAGE_MASK;
2083
2084 if (is_managed(pa))
2085 insert = TRUE;
2086 else
2087 insert = FALSE;
2088
2089 /*
2090 * Calculate the index of the PTE being modified.
2091 */
2092 pte_idx = (u_long) m68k_btop(va - KERNBASE);
2093
2094 /* This array is traditionally named "Sysmap" */
2095 pte = &kernCbase[pte_idx];
2096
2097 s = splimp();
2098 if (MMU_VALID_DT(*pte)) {
2099 was_valid = TRUE;
2100 /*
2101 * If the PTE already maps a different
2102 * physical address, umap and pv_unlink.
2103 */
2104 old_pa = MMU_PTE_PA(*pte);
2105 if (pa != old_pa)
2106 pmap_remove_pte(pte);
2107 else {
2108 /*
2109 * Old PA and new PA are the same. No need to
2110 * relink the mapping within the PV list.
2111 */
2112 insert = FALSE;
2113
2114 /*
2115 * Save any mod/ref bits on the PTE.
2116 */
2117 pte->attr.raw &= (MMU_SHORT_PTE_USED|MMU_SHORT_PTE_M);
2118 }
2119 } else {
2120 pte->attr.raw = MMU_DT_INVALID;
2121 was_valid = FALSE;
2122 }
2123
2124 /*
2125 * Map the page. Being careful to preserve modified/referenced bits
2126 * on the PTE.
2127 */
2128 pte->attr.raw |= (pa | MMU_DT_PAGE);
2129
2130 if (!(prot & VM_PROT_WRITE)) /* If access should be read-only */
2131 pte->attr.raw |= MMU_SHORT_PTE_WP;
2132 if (flags & PMAP_NC)
2133 pte->attr.raw |= MMU_SHORT_PTE_CI;
2134 if (was_valid)
2135 TBIS(va);
2136
2137 /*
2138 * Insert the PTE into the PV system, if need be.
2139 */
2140 if (insert) {
2141 pv = pa2pv(pa);
2142 pvebase[pte_idx].pve_next = pv->pv_idx;
2143 pv->pv_idx = pte_idx;
2144 }
2145 splx(s);
2146
2147 }
2148
2149 /* pmap_map INTERNAL
2150 **
2151 * Map a contiguous range of physical memory into a contiguous range of
2152 * the kernel virtual address space.
2153 *
2154 * Used for device mappings and early mapping of the kernel text/data/bss.
2155 * Returns the first virtual address beyond the end of the range.
2156 */
2157 vm_offset_t
2158 pmap_map(va, pa, endpa, prot)
2159 vm_offset_t va;
2160 vm_offset_t pa;
2161 vm_offset_t endpa;
2162 int prot;
2163 {
2164 int sz;
2165
2166 sz = endpa - pa;
2167 do {
2168 pmap_enter_kernel(va, pa, prot);
2169 va += NBPG;
2170 pa += NBPG;
2171 sz -= NBPG;
2172 } while (sz > 0);
2173 return(va);
2174 }
2175
2176 /* pmap_protect INTERFACE
2177 **
2178 * Apply the given protection to the given virtual address range within
2179 * the given map.
2180 *
2181 * It is ok for the protection applied to be stronger than what is
2182 * specified. We use this to our advantage when the given map has no
2183 * mapping for the virtual address. By skipping a page when this
2184 * is discovered, we are effectively applying a protection of VM_PROT_NONE,
2185 * and therefore do not need to map the page just to apply a protection
2186 * code. Only pmap_enter() needs to create new mappings if they do not exist.
2187 *
2188 * XXX - This function could be speeded up by using pmap_stroll() for inital
2189 * setup, and then manual scrolling in the for() loop.
2190 */
2191 void
2192 pmap_protect(pmap, startva, endva, prot)
2193 pmap_t pmap;
2194 vm_offset_t startva, endva;
2195 vm_prot_t prot;
2196 {
2197 boolean_t iscurpmap;
2198 int a_idx, b_idx, c_idx;
2199 a_tmgr_t *a_tbl;
2200 b_tmgr_t *b_tbl;
2201 c_tmgr_t *c_tbl;
2202 mmu_short_pte_t *pte;
2203
2204 if (pmap == NULL)
2205 return;
2206 if (pmap == pmap_kernel()) {
2207 pmap_protect_kernel(startva, endva, prot);
2208 return;
2209 }
2210
2211 /*
2212 * In this particular pmap implementation, there are only three
2213 * types of memory protection: 'all' (read/write/execute),
2214 * 'read-only' (read/execute) and 'none' (no mapping.)
2215 * It is not possible for us to treat 'executable' as a separate
2216 * protection type. Therefore, protection requests that seek to
2217 * remove execute permission while retaining read or write, and those
2218 * that make little sense (write-only for example) are ignored.
2219 */
2220 switch (prot) {
2221 case VM_PROT_NONE:
2222 /*
2223 * A request to apply the protection code of
2224 * 'VM_PROT_NONE' is a synonym for pmap_remove().
2225 */
2226 pmap_remove(pmap, startva, endva);
2227 return;
2228 case VM_PROT_EXECUTE:
2229 case VM_PROT_READ:
2230 case VM_PROT_READ|VM_PROT_EXECUTE:
2231 /* continue */
2232 break;
2233 case VM_PROT_WRITE:
2234 case VM_PROT_WRITE|VM_PROT_READ:
2235 case VM_PROT_WRITE|VM_PROT_EXECUTE:
2236 case VM_PROT_ALL:
2237 /* None of these should happen in a sane system. */
2238 return;
2239 }
2240
2241 /*
2242 * If the pmap has no A table, it has no mappings and therefore
2243 * there is nothing to protect.
2244 */
2245 if ((a_tbl = pmap->pm_a_tmgr) == NULL)
2246 return;
2247
2248 a_idx = MMU_TIA(startva);
2249 b_idx = MMU_TIB(startva);
2250 c_idx = MMU_TIC(startva);
2251 b_tbl = (b_tmgr_t *) c_tbl = NULL;
2252
2253 iscurpmap = (pmap == current_pmap());
2254 while (startva < endva) {
2255 if (b_tbl || MMU_VALID_DT(a_tbl->at_dtbl[a_idx])) {
2256 if (b_tbl == NULL) {
2257 b_tbl = (b_tmgr_t *) a_tbl->at_dtbl[a_idx].addr.raw;
2258 b_tbl = mmu_ptov((vm_offset_t) b_tbl);
2259 b_tbl = mmuB2tmgr((mmu_short_dte_t *) b_tbl);
2260 }
2261 if (c_tbl || MMU_VALID_DT(b_tbl->bt_dtbl[b_idx])) {
2262 if (c_tbl == NULL) {
2263 c_tbl = (c_tmgr_t *) MMU_DTE_PA(b_tbl->bt_dtbl[b_idx]);
2264 c_tbl = mmu_ptov((vm_offset_t) c_tbl);
2265 c_tbl = mmuC2tmgr((mmu_short_pte_t *) c_tbl);
2266 }
2267 if (MMU_VALID_DT(c_tbl->ct_dtbl[c_idx])) {
2268 pte = &c_tbl->ct_dtbl[c_idx];
2269 /* make the mapping read-only */
2270 pte->attr.raw |= MMU_SHORT_PTE_WP;
2271 /*
2272 * If we just modified the current address space,
2273 * flush any translations for the modified page from
2274 * the translation cache and any data from it in the
2275 * data cache.
2276 */
2277 if (iscurpmap)
2278 TBIS(startva);
2279 }
2280 startva += NBPG;
2281
2282 if (++c_idx >= MMU_C_TBL_SIZE) { /* exceeded C table? */
2283 c_tbl = NULL;
2284 c_idx = 0;
2285 if (++b_idx >= MMU_B_TBL_SIZE) { /* exceeded B table? */
2286 b_tbl = NULL;
2287 b_idx = 0;
2288 }
2289 }
2290 } else { /* C table wasn't valid */
2291 c_tbl = NULL;
2292 c_idx = 0;
2293 startva += MMU_TIB_RANGE;
2294 if (++b_idx >= MMU_B_TBL_SIZE) { /* exceeded B table? */
2295 b_tbl = NULL;
2296 b_idx = 0;
2297 }
2298 } /* C table */
2299 } else { /* B table wasn't valid */
2300 b_tbl = NULL;
2301 b_idx = 0;
2302 startva += MMU_TIA_RANGE;
2303 a_idx++;
2304 } /* B table */
2305 }
2306 }
2307
2308 /* pmap_protect_kernel INTERNAL
2309 **
2310 * Apply the given protection code to a kernel address range.
2311 */
2312 void
2313 pmap_protect_kernel(startva, endva, prot)
2314 vm_offset_t startva, endva;
2315 vm_prot_t prot;
2316 {
2317 vm_offset_t va;
2318 mmu_short_pte_t *pte;
2319
2320 pte = &kernCbase[(unsigned long) m68k_btop(startva - KERNBASE)];
2321 for (va = startva; va < endva; va += NBPG, pte++) {
2322 if (MMU_VALID_DT(*pte)) {
2323 switch (prot) {
2324 case VM_PROT_ALL:
2325 break;
2326 case VM_PROT_EXECUTE:
2327 case VM_PROT_READ:
2328 case VM_PROT_READ|VM_PROT_EXECUTE:
2329 pte->attr.raw |= MMU_SHORT_PTE_WP;
2330 break;
2331 case VM_PROT_NONE:
2332 /* this is an alias for 'pmap_remove_kernel' */
2333 pmap_remove_pte(pte);
2334 break;
2335 default:
2336 break;
2337 }
2338 /*
2339 * since this is the kernel, immediately flush any cached
2340 * descriptors for this address.
2341 */
2342 TBIS(va);
2343 }
2344 }
2345 }
2346
2347 /* pmap_change_wiring INTERFACE
2348 **
2349 * Changes the wiring of the specified page.
2350 *
2351 * This function is called from vm_fault.c to unwire
2352 * a mapping. It really should be called 'pmap_unwire'
2353 * because it is never asked to do anything but remove
2354 * wirings.
2355 */
2356 void
2357 pmap_change_wiring(pmap, va, wire)
2358 pmap_t pmap;
2359 vm_offset_t va;
2360 boolean_t wire;
2361 {
2362 int a_idx, b_idx, c_idx;
2363 a_tmgr_t *a_tbl;
2364 b_tmgr_t *b_tbl;
2365 c_tmgr_t *c_tbl;
2366 mmu_short_pte_t *pte;
2367
2368 /* Kernel mappings always remain wired. */
2369 if (pmap == pmap_kernel())
2370 return;
2371
2372 #ifdef PMAP_DEBUG
2373 if (wire == TRUE)
2374 panic("pmap_change_wiring: wire requested.");
2375 #endif
2376
2377 /*
2378 * Walk through the tables. If the walk terminates without
2379 * a valid PTE then the address wasn't wired in the first place.
2380 * Return immediately.
2381 */
2382 if (pmap_stroll(pmap, va, &a_tbl, &b_tbl, &c_tbl, &pte, &a_idx,
2383 &b_idx, &c_idx) == FALSE)
2384 return;
2385
2386
2387 /* Is the PTE wired? If not, return. */
2388 if (!(pte->attr.raw & MMU_SHORT_PTE_WIRED))
2389 return;
2390
2391 /* Remove the wiring bit. */
2392 pte->attr.raw &= ~(MMU_SHORT_PTE_WIRED);
2393
2394 /*
2395 * Decrement the wired entry count in the C table.
2396 * If it reaches zero the following things happen:
2397 * 1. The table no longer has any wired entries and is considered
2398 * unwired.
2399 * 2. It is placed on the available queue.
2400 * 3. The parent table's wired entry count is decremented.
2401 * 4. If it reaches zero, this process repeats at step 1 and
2402 * stops at after reaching the A table.
2403 */
2404 if (--c_tbl->ct_wcnt == 0) {
2405 TAILQ_INSERT_TAIL(&c_pool, c_tbl, ct_link);
2406 if (--b_tbl->bt_wcnt == 0) {
2407 TAILQ_INSERT_TAIL(&b_pool, b_tbl, bt_link);
2408 if (--a_tbl->at_wcnt == 0) {
2409 TAILQ_INSERT_TAIL(&a_pool, a_tbl, at_link);
2410 }
2411 }
2412 }
2413 }
2414
2415 /* pmap_pageable INTERFACE
2416 **
2417 * Make the specified range of addresses within the given pmap,
2418 * 'pageable' or 'not-pageable'. A pageable page must not cause
2419 * any faults when referenced. A non-pageable page may.
2420 *
2421 * This routine is only advisory. The VM system will call pmap_enter()
2422 * to wire or unwire pages that are going to be made pageable before calling
2423 * this function. By the time this routine is called, everything that needs
2424 * to be done has already been done.
2425 */
2426 void
2427 pmap_pageable(pmap, start, end, pageable)
2428 pmap_t pmap;
2429 vm_offset_t start, end;
2430 boolean_t pageable;
2431 {
2432 /* not implemented. */
2433 }
2434
2435 /* pmap_copy INTERFACE
2436 **
2437 * Copy the mappings of a range of addresses in one pmap, into
2438 * the destination address of another.
2439 *
2440 * This routine is advisory. Should we one day decide that MMU tables
2441 * may be shared by more than one pmap, this function should be used to
2442 * link them together. Until that day however, we do nothing.
2443 */
2444 void
2445 pmap_copy(pmap_a, pmap_b, dst, len, src)
2446 pmap_t pmap_a, pmap_b;
2447 vm_offset_t dst;
2448 vm_size_t len;
2449 vm_offset_t src;
2450 {
2451 /* not implemented. */
2452 }
2453
2454 /* pmap_copy_page INTERFACE
2455 **
2456 * Copy the contents of one physical page into another.
2457 *
2458 * This function makes use of two virtual pages allocated in pmap_bootstrap()
2459 * to map the two specified physical pages into the kernel address space.
2460 *
2461 * Note: We could use the transparent translation registers to make the
2462 * mappings. If we do so, be sure to disable interrupts before using them.
2463 */
2464 void
2465 pmap_copy_page(srcpa, dstpa)
2466 vm_offset_t srcpa, dstpa;
2467 {
2468 vm_offset_t srcva, dstva;
2469 int s;
2470
2471 srcva = tmp_vpages[0];
2472 dstva = tmp_vpages[1];
2473
2474 s = splimp();
2475 if (tmp_vpages_inuse++)
2476 panic("pmap_copy_page: temporary vpages are in use.");
2477
2478 /* Map pages as non-cacheable to avoid cache polution? */
2479 pmap_enter_kernel(srcva, srcpa, VM_PROT_READ);
2480 pmap_enter_kernel(dstva, dstpa, VM_PROT_READ|VM_PROT_WRITE);
2481
2482 /* Hand-optimized version of bcopy(src, dst, NBPG) */
2483 copypage((char *) srcva, (char *) dstva);
2484
2485 pmap_remove_kernel(srcva, srcva + NBPG);
2486 pmap_remove_kernel(dstva, dstva + NBPG);
2487
2488 --tmp_vpages_inuse;
2489 splx(s);
2490 }
2491
2492 /* pmap_zero_page INTERFACE
2493 **
2494 * Zero the contents of the specified physical page.
2495 *
2496 * Uses one of the virtual pages allocated in pmap_boostrap()
2497 * to map the specified page into the kernel address space.
2498 */
2499 void
2500 pmap_zero_page(dstpa)
2501 vm_offset_t dstpa;
2502 {
2503 vm_offset_t dstva;
2504 int s;
2505
2506 dstva = tmp_vpages[1];
2507 s = splimp();
2508 if (tmp_vpages_inuse++)
2509 panic("pmap_zero_page: temporary vpages are in use.");
2510
2511 /* The comments in pmap_copy_page() above apply here also. */
2512 pmap_enter_kernel(dstva, dstpa, VM_PROT_READ|VM_PROT_WRITE);
2513
2514 /* Hand-optimized version of bzero(ptr, NBPG) */
2515 zeropage((char *) dstva);
2516
2517 pmap_remove_kernel(dstva, dstva + NBPG);
2518
2519 --tmp_vpages_inuse;
2520 splx(s);
2521 }
2522
2523 /* pmap_collect INTERFACE
2524 **
2525 * Called from the VM system when we are about to swap out
2526 * the process using this pmap. This should give up any
2527 * resources held here, including all its MMU tables.
2528 */
2529 void
2530 pmap_collect(pmap)
2531 pmap_t pmap;
2532 {
2533 /* XXX - todo... */
2534 }
2535
2536 /* pmap_create INTERFACE
2537 **
2538 * Create and return a pmap structure.
2539 */
2540 pmap_t
2541 pmap_create(size)
2542 vm_size_t size;
2543 {
2544 pmap_t pmap;
2545
2546 if (size)
2547 return NULL;
2548
2549 pmap = (pmap_t) malloc(sizeof(struct pmap), M_VMPMAP, M_WAITOK);
2550 pmap_pinit(pmap);
2551
2552 return pmap;
2553 }
2554
2555 /* pmap_pinit INTERNAL
2556 **
2557 * Initialize a pmap structure.
2558 */
2559 void
2560 pmap_pinit(pmap)
2561 pmap_t pmap;
2562 {
2563 bzero(pmap, sizeof(struct pmap));
2564 pmap->pm_a_tmgr = NULL;
2565 pmap->pm_a_phys = kernAphys;
2566 pmap->pm_refcount = 1;
2567 simple_lock_init(&pmap->pm_lock);
2568 }
2569
2570 /* pmap_release INTERFACE
2571 **
2572 * Release any resources held by the given pmap.
2573 *
2574 * This is the reverse analog to pmap_pinit. It does not
2575 * necessarily mean for the pmap structure to be deallocated,
2576 * as in pmap_destroy.
2577 */
2578 void
2579 pmap_release(pmap)
2580 pmap_t pmap;
2581 {
2582 /*
2583 * As long as the pmap contains no mappings,
2584 * which always should be the case whenever
2585 * this function is called, there really should
2586 * be nothing to do.
2587 */
2588 #ifdef PMAP_DEBUG
2589 if (pmap == NULL)
2590 return;
2591 if (pmap == pmap_kernel())
2592 panic("pmap_release: kernel pmap");
2593 #endif
2594 /*
2595 * XXX - If this pmap has an A table, give it back.
2596 * The pmap SHOULD be empty by now, and pmap_remove
2597 * should have already given back the A table...
2598 * However, I see: pmap->pm_a_tmgr->at_ecnt == 1
2599 * at this point, which means some mapping was not
2600 * removed when it should have been. -gwr
2601 */
2602 if (pmap->pm_a_tmgr != NULL) {
2603 /* First make sure we are not using it! */
2604 if (kernel_crp.rp_addr == pmap->pm_a_phys) {
2605 kernel_crp.rp_addr = kernAphys;
2606 loadcrp(&kernel_crp);
2607 }
2608 #ifdef PMAP_DEBUG /* XXX - todo! */
2609 /* XXX - Now complain... */
2610 printf("pmap_release: still have table\n");
2611 Debugger();
2612 #endif
2613 free_a_table(pmap->pm_a_tmgr, TRUE);
2614 pmap->pm_a_tmgr = NULL;
2615 pmap->pm_a_phys = kernAphys;
2616 }
2617 }
2618
2619 /* pmap_reference INTERFACE
2620 **
2621 * Increment the reference count of a pmap.
2622 */
2623 void
2624 pmap_reference(pmap)
2625 pmap_t pmap;
2626 {
2627 if (pmap == NULL)
2628 return;
2629
2630 pmap_lock(pmap);
2631 pmap_add_ref(pmap);
2632 pmap_unlock(pmap);
2633 }
2634
2635 /* pmap_dereference INTERNAL
2636 **
2637 * Decrease the reference count on the given pmap
2638 * by one and return the current count.
2639 */
2640 int
2641 pmap_dereference(pmap)
2642 pmap_t pmap;
2643 {
2644 int rtn;
2645
2646 if (pmap == NULL)
2647 return 0;
2648
2649 pmap_lock(pmap);
2650 rtn = pmap_del_ref(pmap);
2651 pmap_unlock(pmap);
2652
2653 return rtn;
2654 }
2655
2656 /* pmap_destroy INTERFACE
2657 **
2658 * Decrement a pmap's reference count and delete
2659 * the pmap if it becomes zero. Will be called
2660 * only after all mappings have been removed.
2661 */
2662 void
2663 pmap_destroy(pmap)
2664 pmap_t pmap;
2665 {
2666 if (pmap == NULL)
2667 return;
2668 if (pmap == &kernel_pmap)
2669 panic("pmap_destroy: kernel_pmap!");
2670 if (pmap_dereference(pmap) == 0) {
2671 pmap_release(pmap);
2672 free(pmap, M_VMPMAP);
2673 }
2674 }
2675
2676 /* pmap_is_referenced INTERFACE
2677 **
2678 * Determine if the given physical page has been
2679 * referenced (read from [or written to.])
2680 */
2681 boolean_t
2682 pmap_is_referenced(pa)
2683 vm_offset_t pa;
2684 {
2685 pv_t *pv;
2686 int idx, s;
2687
2688 if (!pv_initialized)
2689 return FALSE;
2690 /* XXX - this may be unecessary. */
2691 if (!is_managed(pa))
2692 return FALSE;
2693
2694 pv = pa2pv(pa);
2695 /*
2696 * Check the flags on the pv head. If they are set,
2697 * return immediately. Otherwise a search must be done.
2698 */
2699 if (pv->pv_flags & PV_FLAGS_USED)
2700 return TRUE;
2701
2702 s = splimp();
2703 /*
2704 * Search through all pv elements pointing
2705 * to this page and query their reference bits
2706 */
2707 for (idx = pv->pv_idx;
2708 idx != PVE_EOL;
2709 idx = pvebase[idx].pve_next) {
2710
2711 if (MMU_PTE_USED(kernCbase[idx])) {
2712 splx(s);
2713 return TRUE;
2714 }
2715 }
2716 splx(s);
2717
2718 return FALSE;
2719 }
2720
2721 /* pmap_is_modified INTERFACE
2722 **
2723 * Determine if the given physical page has been
2724 * modified (written to.)
2725 */
2726 boolean_t
2727 pmap_is_modified(pa)
2728 vm_offset_t pa;
2729 {
2730 pv_t *pv;
2731 int idx, s;
2732
2733 if (!pv_initialized)
2734 return FALSE;
2735 /* XXX - this may be unecessary. */
2736 if (!is_managed(pa))
2737 return FALSE;
2738
2739 /* see comments in pmap_is_referenced() */
2740 pv = pa2pv(pa);
2741 if (pv->pv_flags & PV_FLAGS_MDFY)
2742 return TRUE;
2743
2744 s = splimp();
2745 for (idx = pv->pv_idx;
2746 idx != PVE_EOL;
2747 idx = pvebase[idx].pve_next) {
2748
2749 if (MMU_PTE_MODIFIED(kernCbase[idx])) {
2750 splx(s);
2751 return TRUE;
2752 }
2753 }
2754 splx(s);
2755
2756 return FALSE;
2757 }
2758
2759 /* pmap_page_protect INTERFACE
2760 **
2761 * Applies the given protection to all mappings to the given
2762 * physical page.
2763 */
2764 void
2765 pmap_page_protect(pa, prot)
2766 vm_offset_t pa;
2767 vm_prot_t prot;
2768 {
2769 pv_t *pv;
2770 int idx, s;
2771 vm_offset_t va;
2772 struct mmu_short_pte_struct *pte;
2773 c_tmgr_t *c_tbl;
2774 pmap_t pmap, curpmap;
2775
2776 if (!is_managed(pa))
2777 return;
2778
2779 curpmap = current_pmap();
2780 pv = pa2pv(pa);
2781 s = splimp();
2782
2783 for (idx = pv->pv_idx;
2784 idx != PVE_EOL;
2785 idx = pvebase[idx].pve_next) {
2786
2787 pte = &kernCbase[idx];
2788 switch (prot) {
2789 case VM_PROT_ALL:
2790 /* do nothing */
2791 break;
2792 case VM_PROT_EXECUTE:
2793 case VM_PROT_READ:
2794 case VM_PROT_READ|VM_PROT_EXECUTE:
2795 /*
2796 * Determine the virtual address mapped by
2797 * the PTE and flush ATC entries if necessary.
2798 */
2799 va = pmap_get_pteinfo(idx, &pmap, &c_tbl);
2800 /* XXX don't write protect pager mappings */
2801 if (va >= PAGER_SVA && va < PAGER_EVA) {
2802 #ifdef PMAP_DEBUG
2803 /* XXX - Does this actually happen? */
2804 printf("pmap_page_protect: in pager!\n");
2805 Debugger();
2806 #endif
2807 } else
2808 pte->attr.raw |= MMU_SHORT_PTE_WP;
2809 if (pmap == curpmap || pmap == pmap_kernel())
2810 TBIS(va);
2811 break;
2812 case VM_PROT_NONE:
2813 /* Save the mod/ref bits. */
2814 pv->pv_flags |= pte->attr.raw;
2815 /* Invalidate the PTE. */
2816 pte->attr.raw = MMU_DT_INVALID;
2817
2818 /*
2819 * Update table counts. And flush ATC entries
2820 * if necessary.
2821 */
2822 va = pmap_get_pteinfo(idx, &pmap, &c_tbl);
2823
2824 /*
2825 * If the PTE belongs to the kernel map,
2826 * be sure to flush the page it maps.
2827 */
2828 if (pmap == pmap_kernel()) {
2829 TBIS(va);
2830 } else {
2831 /*
2832 * The PTE belongs to a user map.
2833 * update the entry count in the C
2834 * table to which it belongs and flush
2835 * the ATC if the mapping belongs to
2836 * the current pmap.
2837 */
2838 c_tbl->ct_ecnt--;
2839 if (pmap == curpmap)
2840 TBIS(va);
2841 }
2842 break;
2843 default:
2844 break;
2845 }
2846 }
2847
2848 /*
2849 * If the protection code indicates that all mappings to the page
2850 * be removed, truncate the PV list to zero entries.
2851 */
2852 if (prot == VM_PROT_NONE)
2853 pv->pv_idx = PVE_EOL;
2854 splx(s);
2855 }
2856
2857 /* pmap_get_pteinfo INTERNAL
2858 **
2859 * Called internally to find the pmap and virtual address within that
2860 * map to which the pte at the given index maps. Also includes the PTE's C
2861 * table manager.
2862 *
2863 * Returns the pmap in the argument provided, and the virtual address
2864 * by return value.
2865 */
2866 vm_offset_t
2867 pmap_get_pteinfo(idx, pmap, tbl)
2868 u_int idx;
2869 pmap_t *pmap;
2870 c_tmgr_t **tbl;
2871 {
2872 vm_offset_t va = 0;
2873
2874 /*
2875 * Determine if the PTE is a kernel PTE or a user PTE.
2876 */
2877 if (idx >= NUM_KERN_PTES) {
2878 /*
2879 * The PTE belongs to a user mapping.
2880 */
2881 /* XXX: Would like an inline for this to validate idx... */
2882 *tbl = &Ctmgrbase[(idx - NUM_KERN_PTES) / MMU_C_TBL_SIZE];
2883
2884 *pmap = (*tbl)->ct_pmap;
2885 /*
2886 * To find the va to which the PTE maps, we first take
2887 * the table's base virtual address mapping which is stored
2888 * in ct_va. We then increment this address by a page for
2889 * every slot skipped until we reach the PTE.
2890 */
2891 va = (*tbl)->ct_va;
2892 va += m68k_ptob(idx % MMU_C_TBL_SIZE);
2893 } else {
2894 /*
2895 * The PTE belongs to the kernel map.
2896 */
2897 *pmap = pmap_kernel();
2898
2899 va = m68k_ptob(idx);
2900 va += KERNBASE;
2901 }
2902
2903 return va;
2904 }
2905
2906 /* pmap_clear_modify INTERFACE
2907 **
2908 * Clear the modification bit on the page at the specified
2909 * physical address.
2910 *
2911 */
2912 void
2913 pmap_clear_modify(pa)
2914 vm_offset_t pa;
2915 {
2916 if (!is_managed(pa))
2917 return;
2918 pmap_clear_pv(pa, PV_FLAGS_MDFY);
2919 }
2920
2921 /* pmap_clear_reference INTERFACE
2922 **
2923 * Clear the referenced bit on the page at the specified
2924 * physical address.
2925 */
2926 void
2927 pmap_clear_reference(pa)
2928 vm_offset_t pa;
2929 {
2930 if (!is_managed(pa))
2931 return;
2932 pmap_clear_pv(pa, PV_FLAGS_USED);
2933 }
2934
2935 /* pmap_clear_pv INTERNAL
2936 **
2937 * Clears the specified flag from the specified physical address.
2938 * (Used by pmap_clear_modify() and pmap_clear_reference().)
2939 *
2940 * Flag is one of:
2941 * PV_FLAGS_MDFY - Page modified bit.
2942 * PV_FLAGS_USED - Page used (referenced) bit.
2943 *
2944 * This routine must not only clear the flag on the pv list
2945 * head. It must also clear the bit on every pte in the pv
2946 * list associated with the address.
2947 */
2948 void
2949 pmap_clear_pv(pa, flag)
2950 vm_offset_t pa;
2951 int flag;
2952 {
2953 pv_t *pv;
2954 int idx, s;
2955 vm_offset_t va;
2956 pmap_t pmap;
2957 mmu_short_pte_t *pte;
2958 c_tmgr_t *c_tbl;
2959
2960 pv = pa2pv(pa);
2961
2962 s = splimp();
2963 pv->pv_flags &= ~(flag);
2964
2965 for (idx = pv->pv_idx;
2966 idx != PVE_EOL;
2967 idx = pvebase[idx].pve_next) {
2968
2969 pte = &kernCbase[idx];
2970 pte->attr.raw &= ~(flag);
2971 /*
2972 * The MC68030 MMU will not set the modified or
2973 * referenced bits on any MMU tables for which it has
2974 * a cached descriptor with its modify bit set. To insure
2975 * that it will modify these bits on the PTE during the next
2976 * time it is written to or read from, we must flush it from
2977 * the ATC.
2978 *
2979 * Ordinarily it is only necessary to flush the descriptor
2980 * if it is used in the current address space. But since I
2981 * am not sure that there will always be a notion of
2982 * 'the current address space' when this function is called,
2983 * I will skip the test and always flush the address. It
2984 * does no harm.
2985 */
2986 va = pmap_get_pteinfo(idx, &pmap, &c_tbl);
2987 TBIS(va);
2988 }
2989 splx(s);
2990 }
2991
2992 /* pmap_extract INTERFACE
2993 **
2994 * Return the physical address mapped by the virtual address
2995 * in the specified pmap or 0 if it is not known.
2996 *
2997 * Note: this function should also apply an exclusive lock
2998 * on the pmap system during its duration.
2999 */
3000 vm_offset_t
3001 pmap_extract(pmap, va)
3002 pmap_t pmap;
3003 vm_offset_t va;
3004 {
3005 int a_idx, b_idx, pte_idx;
3006 a_tmgr_t *a_tbl;
3007 b_tmgr_t *b_tbl;
3008 c_tmgr_t *c_tbl;
3009 mmu_short_pte_t *c_pte;
3010
3011 if (pmap == pmap_kernel())
3012 return pmap_extract_kernel(va);
3013 if (pmap == NULL)
3014 return 0;
3015
3016 if (pmap_stroll(pmap, va, &a_tbl, &b_tbl, &c_tbl,
3017 &c_pte, &a_idx, &b_idx, &pte_idx) == FALSE)
3018 return 0;
3019
3020 if (!MMU_VALID_DT(*c_pte))
3021 return 0;
3022
3023 return (MMU_PTE_PA(*c_pte));
3024 }
3025
3026 /* pmap_extract_kernel INTERNAL
3027 **
3028 * Extract a translation from the kernel address space.
3029 */
3030 vm_offset_t
3031 pmap_extract_kernel(va)
3032 vm_offset_t va;
3033 {
3034 mmu_short_pte_t *pte;
3035
3036 pte = &kernCbase[(u_int) m68k_btop(va - KERNBASE)];
3037 return MMU_PTE_PA(*pte);
3038 }
3039
3040 /* pmap_remove_kernel INTERNAL
3041 **
3042 * Remove the mapping of a range of virtual addresses from the kernel map.
3043 * The arguments are already page-aligned.
3044 */
3045 void
3046 pmap_remove_kernel(sva, eva)
3047 vm_offset_t sva;
3048 vm_offset_t eva;
3049 {
3050 int idx, eidx;
3051
3052 #ifdef PMAP_DEBUG
3053 if ((sva & PGOFSET) || (eva & PGOFSET))
3054 panic("pmap_remove_kernel: alignment");
3055 #endif
3056
3057 idx = m68k_btop(sva - KERNBASE);
3058 eidx = m68k_btop(eva - KERNBASE);
3059
3060 while (idx < eidx) {
3061 pmap_remove_pte(&kernCbase[idx++]);
3062 TBIS(sva);
3063 sva += NBPG;
3064 }
3065 }
3066
3067 /* pmap_remove INTERFACE
3068 **
3069 * Remove the mapping of a range of virtual addresses from the given pmap.
3070 *
3071 * If the range contains any wired entries, this function will probably create
3072 * disaster.
3073 */
3074 void
3075 pmap_remove(pmap, start, end)
3076 pmap_t pmap;
3077 vm_offset_t start;
3078 vm_offset_t end;
3079 {
3080
3081 if (pmap == pmap_kernel()) {
3082 pmap_remove_kernel(start, end);
3083 return;
3084 }
3085
3086 /*
3087 * XXX - Temporary(?) statement to prevent panic caused
3088 * by vm_alloc_with_pager() handing us a software map (ie NULL)
3089 * to remove because it couldn't get backing store.
3090 * (I guess.)
3091 */
3092 if (pmap == NULL)
3093 return;
3094
3095 /*
3096 * If the pmap doesn't have an A table of its own, it has no mappings
3097 * that can be removed.
3098 */
3099 if (pmap->pm_a_tmgr == NULL)
3100 return;
3101
3102 /*
3103 * Remove the specified range from the pmap. If the function
3104 * returns true, the operation removed all the valid mappings
3105 * in the pmap and freed its A table. If this happened to the
3106 * currently loaded pmap, the MMU root pointer must be reloaded
3107 * with the default 'kernel' map.
3108 */
3109 if (pmap_remove_a(pmap->pm_a_tmgr, start, end)) {
3110 if (kernel_crp.rp_addr == pmap->pm_a_phys) {
3111 kernel_crp.rp_addr = kernAphys;
3112 loadcrp(&kernel_crp);
3113 /* will do TLB flush below */
3114 }
3115 pmap->pm_a_tmgr = NULL;
3116 pmap->pm_a_phys = kernAphys;
3117 }
3118
3119 /*
3120 * If we just modified the current address space,
3121 * make sure to flush the MMU cache.
3122 *
3123 * XXX - this could be an unecessarily large flush.
3124 * XXX - Could decide, based on the size of the VA range
3125 * to be removed, whether to flush "by pages" or "all".
3126 */
3127 if (pmap == current_pmap())
3128 TBIAU();
3129 }
3130
3131 /* pmap_remove_a INTERNAL
3132 **
3133 * This is function number one in a set of three that removes a range
3134 * of memory in the most efficient manner by removing the highest possible
3135 * tables from the memory space. This particular function attempts to remove
3136 * as many B tables as it can, delegating the remaining fragmented ranges to
3137 * pmap_remove_b().
3138 *
3139 * If the removal operation results in an empty A table, the function returns
3140 * TRUE.
3141 *
3142 * It's ugly but will do for now.
3143 */
3144 boolean_t
3145 pmap_remove_a(a_tbl, start, end)
3146 a_tmgr_t *a_tbl;
3147 vm_offset_t start;
3148 vm_offset_t end;
3149 {
3150 boolean_t empty;
3151 int idx;
3152 vm_offset_t nstart, nend;
3153 b_tmgr_t *b_tbl;
3154 mmu_long_dte_t *a_dte;
3155 mmu_short_dte_t *b_dte;
3156
3157 /*
3158 * The following code works with what I call a 'granularity
3159 * reduction algorithim'. A range of addresses will always have
3160 * the following properties, which are classified according to
3161 * how the range relates to the size of the current granularity
3162 * - an A table entry:
3163 *
3164 * 1 2 3 4
3165 * -+---+---+---+---+---+---+---+-
3166 * -+---+---+---+---+---+---+---+-
3167 *
3168 * A range will always start on a granularity boundary, illustrated
3169 * by '+' signs in the table above, or it will start at some point
3170 * inbetween a granularity boundary, as illustrated by point 1.
3171 * The first step in removing a range of addresses is to remove the
3172 * range between 1 and 2, the nearest granularity boundary. This
3173 * job is handled by the section of code governed by the
3174 * 'if (start < nstart)' statement.
3175 *
3176 * A range will always encompass zero or more intergral granules,
3177 * illustrated by points 2 and 3. Integral granules are easy to
3178 * remove. The removal of these granules is the second step, and
3179 * is handled by the code block 'if (nstart < nend)'.
3180 *
3181 * Lastly, a range will always end on a granularity boundary,
3182 * ill. by point 3, or it will fall just beyond one, ill. by point
3183 * 4. The last step involves removing this range and is handled by
3184 * the code block 'if (nend < end)'.
3185 */
3186 nstart = MMU_ROUND_UP_A(start);
3187 nend = MMU_ROUND_A(end);
3188
3189 if (start < nstart) {
3190 /*
3191 * This block is executed if the range starts between
3192 * a granularity boundary.
3193 *
3194 * First find the DTE which is responsible for mapping
3195 * the start of the range.
3196 */
3197 idx = MMU_TIA(start);
3198 a_dte = &a_tbl->at_dtbl[idx];
3199
3200 /*
3201 * If the DTE is valid then delegate the removal of the sub
3202 * range to pmap_remove_b(), which can remove addresses at
3203 * a finer granularity.
3204 */
3205 if (MMU_VALID_DT(*a_dte)) {
3206 b_dte = mmu_ptov(a_dte->addr.raw);
3207 b_tbl = mmuB2tmgr(b_dte);
3208
3209 /*
3210 * The sub range to be removed starts at the start
3211 * of the full range we were asked to remove, and ends
3212 * at the greater of:
3213 * 1. The end of the full range, -or-
3214 * 2. The end of the full range, rounded down to the
3215 * nearest granularity boundary.
3216 */
3217 if (end < nstart)
3218 empty = pmap_remove_b(b_tbl, start, end);
3219 else
3220 empty = pmap_remove_b(b_tbl, start, nstart);
3221
3222 /*
3223 * If the removal resulted in an empty B table,
3224 * invalidate the DTE that points to it and decrement
3225 * the valid entry count of the A table.
3226 */
3227 if (empty) {
3228 a_dte->attr.raw = MMU_DT_INVALID;
3229 a_tbl->at_ecnt--;
3230 }
3231 }
3232 /*
3233 * If the DTE is invalid, the address range is already non-
3234 * existant and can simply be skipped.
3235 */
3236 }
3237 if (nstart < nend) {
3238 /*
3239 * This block is executed if the range spans a whole number
3240 * multiple of granules (A table entries.)
3241 *
3242 * First find the DTE which is responsible for mapping
3243 * the start of the first granule involved.
3244 */
3245 idx = MMU_TIA(nstart);
3246 a_dte = &a_tbl->at_dtbl[idx];
3247
3248 /*
3249 * Remove entire sub-granules (B tables) one at a time,
3250 * until reaching the end of the range.
3251 */
3252 for (; nstart < nend; a_dte++, nstart += MMU_TIA_RANGE)
3253 if (MMU_VALID_DT(*a_dte)) {
3254 /*
3255 * Find the B table manager for the
3256 * entry and free it.
3257 */
3258 b_dte = mmu_ptov(a_dte->addr.raw);
3259 b_tbl = mmuB2tmgr(b_dte);
3260 free_b_table(b_tbl, TRUE);
3261
3262 /*
3263 * Invalidate the DTE that points to the
3264 * B table and decrement the valid entry
3265 * count of the A table.
3266 */
3267 a_dte->attr.raw = MMU_DT_INVALID;
3268 a_tbl->at_ecnt--;
3269 }
3270 }
3271 if (nend < end) {
3272 /*
3273 * This block is executed if the range ends beyond a
3274 * granularity boundary.
3275 *
3276 * First find the DTE which is responsible for mapping
3277 * the start of the nearest (rounded down) granularity
3278 * boundary.
3279 */
3280 idx = MMU_TIA(nend);
3281 a_dte = &a_tbl->at_dtbl[idx];
3282
3283 /*
3284 * If the DTE is valid then delegate the removal of the sub
3285 * range to pmap_remove_b(), which can remove addresses at
3286 * a finer granularity.
3287 */
3288 if (MMU_VALID_DT(*a_dte)) {
3289 /*
3290 * Find the B table manager for the entry
3291 * and hand it to pmap_remove_b() along with
3292 * the sub range.
3293 */
3294 b_dte = mmu_ptov(a_dte->addr.raw);
3295 b_tbl = mmuB2tmgr(b_dte);
3296
3297 empty = pmap_remove_b(b_tbl, nend, end);
3298
3299 /*
3300 * If the removal resulted in an empty B table,
3301 * invalidate the DTE that points to it and decrement
3302 * the valid entry count of the A table.
3303 */
3304 if (empty) {
3305 a_dte->attr.raw = MMU_DT_INVALID;
3306 a_tbl->at_ecnt--;
3307 }
3308 }
3309 }
3310
3311 /*
3312 * If there are no more entries in the A table, release it
3313 * back to the available pool and return TRUE.
3314 */
3315 if (a_tbl->at_ecnt == 0) {
3316 a_tbl->at_parent = NULL;
3317 TAILQ_REMOVE(&a_pool, a_tbl, at_link);
3318 TAILQ_INSERT_HEAD(&a_pool, a_tbl, at_link);
3319 empty = TRUE;
3320 } else {
3321 empty = FALSE;
3322 }
3323
3324 return empty;
3325 }
3326
3327 /* pmap_remove_b INTERNAL
3328 **
3329 * Remove a range of addresses from an address space, trying to remove entire
3330 * C tables if possible.
3331 *
3332 * If the operation results in an empty B table, the function returns TRUE.
3333 */
3334 boolean_t
3335 pmap_remove_b(b_tbl, start, end)
3336 b_tmgr_t *b_tbl;
3337 vm_offset_t start;
3338 vm_offset_t end;
3339 {
3340 boolean_t empty;
3341 int idx;
3342 vm_offset_t nstart, nend, rstart;
3343 c_tmgr_t *c_tbl;
3344 mmu_short_dte_t *b_dte;
3345 mmu_short_pte_t *c_dte;
3346
3347
3348 nstart = MMU_ROUND_UP_B(start);
3349 nend = MMU_ROUND_B(end);
3350
3351 if (start < nstart) {
3352 idx = MMU_TIB(start);
3353 b_dte = &b_tbl->bt_dtbl[idx];
3354 if (MMU_VALID_DT(*b_dte)) {
3355 c_dte = mmu_ptov(MMU_DTE_PA(*b_dte));
3356 c_tbl = mmuC2tmgr(c_dte);
3357 if (end < nstart)
3358 empty = pmap_remove_c(c_tbl, start, end);
3359 else
3360 empty = pmap_remove_c(c_tbl, start, nstart);
3361 if (empty) {
3362 b_dte->attr.raw = MMU_DT_INVALID;
3363 b_tbl->bt_ecnt--;
3364 }
3365 }
3366 }
3367 if (nstart < nend) {
3368 idx = MMU_TIB(nstart);
3369 b_dte = &b_tbl->bt_dtbl[idx];
3370 rstart = nstart;
3371 while (rstart < nend) {
3372 if (MMU_VALID_DT(*b_dte)) {
3373 c_dte = mmu_ptov(MMU_DTE_PA(*b_dte));
3374 c_tbl = mmuC2tmgr(c_dte);
3375 free_c_table(c_tbl, TRUE);
3376 b_dte->attr.raw = MMU_DT_INVALID;
3377 b_tbl->bt_ecnt--;
3378 }
3379 b_dte++;
3380 rstart += MMU_TIB_RANGE;
3381 }
3382 }
3383 if (nend < end) {
3384 idx = MMU_TIB(nend);
3385 b_dte = &b_tbl->bt_dtbl[idx];
3386 if (MMU_VALID_DT(*b_dte)) {
3387 c_dte = mmu_ptov(MMU_DTE_PA(*b_dte));
3388 c_tbl = mmuC2tmgr(c_dte);
3389 empty = pmap_remove_c(c_tbl, nend, end);
3390 if (empty) {
3391 b_dte->attr.raw = MMU_DT_INVALID;
3392 b_tbl->bt_ecnt--;
3393 }
3394 }
3395 }
3396
3397 if (b_tbl->bt_ecnt == 0) {
3398 b_tbl->bt_parent = NULL;
3399 TAILQ_REMOVE(&b_pool, b_tbl, bt_link);
3400 TAILQ_INSERT_HEAD(&b_pool, b_tbl, bt_link);
3401 empty = TRUE;
3402 } else {
3403 empty = FALSE;
3404 }
3405
3406 return empty;
3407 }
3408
3409 /* pmap_remove_c INTERNAL
3410 **
3411 * Remove a range of addresses from the given C table.
3412 */
3413 boolean_t
3414 pmap_remove_c(c_tbl, start, end)
3415 c_tmgr_t *c_tbl;
3416 vm_offset_t start;
3417 vm_offset_t end;
3418 {
3419 boolean_t empty;
3420 int idx;
3421 mmu_short_pte_t *c_pte;
3422
3423 idx = MMU_TIC(start);
3424 c_pte = &c_tbl->ct_dtbl[idx];
3425 for (;start < end; start += MMU_PAGE_SIZE, c_pte++) {
3426 if (MMU_VALID_DT(*c_pte)) {
3427 pmap_remove_pte(c_pte);
3428 c_tbl->ct_ecnt--;
3429 }
3430 }
3431
3432 if (c_tbl->ct_ecnt == 0) {
3433 c_tbl->ct_parent = NULL;
3434 TAILQ_REMOVE(&c_pool, c_tbl, ct_link);
3435 TAILQ_INSERT_HEAD(&c_pool, c_tbl, ct_link);
3436 empty = TRUE;
3437 } else {
3438 empty = FALSE;
3439 }
3440
3441 return empty;
3442 }
3443
3444 /* is_managed INTERNAL
3445 **
3446 * Determine if the given physical address is managed by the PV system.
3447 * Note that this logic assumes that no one will ask for the status of
3448 * addresses which lie in-between the memory banks on the 3/80. If they
3449 * do so, it will falsely report that it is managed.
3450 *
3451 * Note: A "managed" address is one that was reported to the VM system as
3452 * a "usable page" during system startup. As such, the VM system expects the
3453 * pmap module to keep an accurate track of the useage of those pages.
3454 * Any page not given to the VM system at startup does not exist (as far as
3455 * the VM system is concerned) and is therefore "unmanaged." Examples are
3456 * those pages which belong to the ROM monitor and the memory allocated before
3457 * the VM system was started.
3458 */
3459 boolean_t
3460 is_managed(pa)
3461 vm_offset_t pa;
3462 {
3463 if (pa >= avail_start && pa < avail_end)
3464 return TRUE;
3465 else
3466 return FALSE;
3467 }
3468
3469 /* pmap_bootstrap_alloc INTERNAL
3470 **
3471 * Used internally for memory allocation at startup when malloc is not
3472 * available. This code will fail once it crosses the first memory
3473 * bank boundary on the 3/80. Hopefully by then however, the VM system
3474 * will be in charge of allocation.
3475 */
3476 void *
3477 pmap_bootstrap_alloc(size)
3478 int size;
3479 {
3480 void *rtn;
3481
3482 #ifdef PMAP_DEBUG
3483 if (bootstrap_alloc_enabled == FALSE) {
3484 mon_printf("pmap_bootstrap_alloc: disabled\n");
3485 sunmon_abort();
3486 }
3487 #endif
3488
3489 rtn = (void *) virtual_avail;
3490 virtual_avail += size;
3491
3492 #ifdef PMAP_DEBUG
3493 if (virtual_avail > virtual_contig_end) {
3494 mon_printf("pmap_bootstrap_alloc: out of mem\n");
3495 sunmon_abort();
3496 }
3497 #endif
3498
3499 return rtn;
3500 }
3501
3502 /* pmap_bootstap_aalign INTERNAL
3503 **
3504 * Used to insure that the next call to pmap_bootstrap_alloc() will
3505 * return a chunk of memory aligned to the specified size.
3506 *
3507 * Note: This function will only support alignment sizes that are powers
3508 * of two.
3509 */
3510 void
3511 pmap_bootstrap_aalign(size)
3512 int size;
3513 {
3514 int off;
3515
3516 off = virtual_avail & (size - 1);
3517 if (off) {
3518 (void) pmap_bootstrap_alloc(size - off);
3519 }
3520 }
3521
3522 /* pmap_pa_exists
3523 **
3524 * Used by the /dev/mem driver to see if a given PA is memory
3525 * that can be mapped. (The PA is not in a hole.)
3526 */
3527 int
3528 pmap_pa_exists(pa)
3529 vm_offset_t pa;
3530 {
3531 register int i;
3532
3533 for (i = 0; i < SUN3X_NPHYS_RAM_SEGS; i++) {
3534 if ((pa >= avail_mem[i].pmem_start) &&
3535 (pa < avail_mem[i].pmem_end))
3536 return (1);
3537 if (avail_mem[i].pmem_next == NULL)
3538 break;
3539 }
3540 return (0);
3541 }
3542
3543 /* Called only from locore.s and pmap.c */
3544 void _pmap_switch __P((pmap_t pmap));
3545
3546 /*
3547 * _pmap_switch INTERNAL
3548 *
3549 * This is called by locore.s:cpu_switch() when it is
3550 * switching to a new process. Load new translations.
3551 * Note: done in-line by locore.s unless PMAP_DEBUG
3552 *
3553 * Note that we do NOT allocate a context here, but
3554 * share the "kernel only" context until we really
3555 * need our own context for user-space mappings in
3556 * pmap_enter_user(). [ s/context/mmu A table/ ]
3557 */
3558 void
3559 _pmap_switch(pmap)
3560 pmap_t pmap;
3561 {
3562 u_long rootpa;
3563
3564 /*
3565 * Only do reload/flush if we have to.
3566 * Note that if the old and new process
3567 * were BOTH using the "null" context,
3568 * then this will NOT flush the TLB.
3569 */
3570 rootpa = pmap->pm_a_phys;
3571 if (kernel_crp.rp_addr != rootpa) {
3572 DPRINT(("pmap_activate(%p)\n", pmap));
3573 kernel_crp.rp_addr = rootpa;
3574 loadcrp(&kernel_crp);
3575 TBIAU();
3576 }
3577 }
3578
3579 /*
3580 * Exported version of pmap_activate(). This is called from the
3581 * machine-independent VM code when a process is given a new pmap.
3582 * If (p == curproc) do like cpu_switch would do; otherwise just
3583 * take this as notification that the process has a new pmap.
3584 */
3585 void
3586 pmap_activate(p)
3587 struct proc *p;
3588 {
3589 pmap_t pmap = p->p_vmspace->vm_map.pmap;
3590 int s;
3591
3592 if (p == curproc) {
3593 s = splimp();
3594 _pmap_switch(pmap);
3595 splx(s);
3596 }
3597 }
3598
3599 /*
3600 * pmap_deactivate INTERFACE
3601 **
3602 * This is called to deactivate the specified process's address space.
3603 * XXX The semantics of this function are currently not well-defined.
3604 */
3605 void
3606 pmap_deactivate(p)
3607 struct proc *p;
3608 {
3609 /* not implemented. */
3610 }
3611
3612 /* pmap_update
3613 **
3614 * Apply any delayed changes scheduled for all pmaps immediately.
3615 *
3616 * No delayed operations are currently done in this pmap.
3617 */
3618 void
3619 pmap_update()
3620 {
3621 /* not implemented. */
3622 }
3623
3624 /*
3625 * Fill in the sun3x-specific part of the kernel core header
3626 * for dumpsys(). (See machdep.c for the rest.)
3627 */
3628 void
3629 pmap_kcore_hdr(sh)
3630 struct sun3x_kcore_hdr *sh;
3631 {
3632 u_long spa, len;
3633 int i;
3634
3635 sh->pg_frame = MMU_SHORT_PTE_BASEADDR;
3636 sh->pg_valid = MMU_DT_PAGE;
3637 sh->contig_end = virtual_contig_end;
3638 sh->kernCbase = (u_long) kernCbase;
3639 for (i = 0; i < SUN3X_NPHYS_RAM_SEGS; i++) {
3640 spa = avail_mem[i].pmem_start;
3641 spa = m68k_trunc_page(spa);
3642 len = avail_mem[i].pmem_end - spa;
3643 len = m68k_round_page(len);
3644 sh->ram_segs[i].start = spa;
3645 sh->ram_segs[i].size = len;
3646 }
3647 }
3648
3649
3650 /* pmap_virtual_space INTERFACE
3651 **
3652 * Return the current available range of virtual addresses in the
3653 * arguuments provided. Only really called once.
3654 */
3655 void
3656 pmap_virtual_space(vstart, vend)
3657 vm_offset_t *vstart, *vend;
3658 {
3659 *vstart = virtual_avail;
3660 *vend = virtual_end;
3661 }
3662
3663 /*
3664 * Provide memory to the VM system.
3665 *
3666 * Assume avail_start is always in the
3667 * first segment as pmap_bootstrap does.
3668 */
3669 static void
3670 pmap_page_upload()
3671 {
3672 vm_offset_t a, b; /* memory range */
3673 int i;
3674
3675 /* Supply the memory in segments. */
3676 for (i = 0; i < SUN3X_NPHYS_RAM_SEGS; i++) {
3677 a = atop(avail_mem[i].pmem_start);
3678 b = atop(avail_mem[i].pmem_end);
3679 if (i == 0)
3680 a = atop(avail_start);
3681
3682 uvm_page_physload(a, b, a, b, VM_FREELIST_DEFAULT);
3683
3684 if (avail_mem[i].pmem_next == NULL)
3685 break;
3686 }
3687 }
3688
3689 /* pmap_page_index INTERFACE
3690 **
3691 * Return the index of the given physical page in a list of useable
3692 * physical pages in the system. Holes in physical memory may be counted
3693 * if so desired. As long as pmap_free_pages() and pmap_page_index()
3694 * agree as to whether holes in memory do or do not count as valid pages,
3695 * it really doesn't matter. However, if you like to save a little
3696 * memory, don't count holes as valid pages. This is even more true when
3697 * the holes are large.
3698 *
3699 * We will not count holes as valid pages. We can generate page indices
3700 * that conform to this by using the memory bank structures initialized
3701 * in pmap_alloc_pv().
3702 */
3703 int
3704 pmap_page_index(pa)
3705 vm_offset_t pa;
3706 {
3707 struct pmap_physmem_struct *bank = avail_mem;
3708 vm_offset_t off;
3709
3710 /* Search for the memory bank with this page. */
3711 /* XXX - What if it is not physical memory? */
3712 while (pa > bank->pmem_end)
3713 bank = bank->pmem_next;
3714 off = pa - bank->pmem_start;
3715
3716 return (bank->pmem_pvbase + m68k_btop(off));
3717 }
3718
3719 /* pmap_count INTERFACE
3720 **
3721 * Return the number of resident (valid) pages in the given pmap.
3722 *
3723 * Note: If this function is handed the kernel map, it will report
3724 * that it has no mappings. Hopefully the VM system won't ask for kernel
3725 * map statistics.
3726 */
3727 segsz_t
3728 pmap_count(pmap, type)
3729 pmap_t pmap;
3730 int type;
3731 {
3732 u_int count;
3733 int a_idx, b_idx;
3734 a_tmgr_t *a_tbl;
3735 b_tmgr_t *b_tbl;
3736 c_tmgr_t *c_tbl;
3737
3738 /*
3739 * If the pmap does not have its own A table manager, it has no
3740 * valid entires.
3741 */
3742 if (pmap->pm_a_tmgr == NULL)
3743 return 0;
3744
3745 a_tbl = pmap->pm_a_tmgr;
3746
3747 count = 0;
3748 for (a_idx = 0; a_idx < MMU_TIA(KERNBASE); a_idx++) {
3749 if (MMU_VALID_DT(a_tbl->at_dtbl[a_idx])) {
3750 b_tbl = mmuB2tmgr(mmu_ptov(a_tbl->at_dtbl[a_idx].addr.raw));
3751 for (b_idx = 0; b_idx < MMU_B_TBL_SIZE; b_idx++) {
3752 if (MMU_VALID_DT(b_tbl->bt_dtbl[b_idx])) {
3753 c_tbl = mmuC2tmgr(
3754 mmu_ptov(MMU_DTE_PA(b_tbl->bt_dtbl[b_idx])));
3755 if (type == 0)
3756 /*
3757 * A resident entry count has been requested.
3758 */
3759 count += c_tbl->ct_ecnt;
3760 else
3761 /*
3762 * A wired entry count has been requested.
3763 */
3764 count += c_tbl->ct_wcnt;
3765 }
3766 }
3767 }
3768 }
3769
3770 return count;
3771 }
3772
3773 /************************ SUN3 COMPATIBILITY ROUTINES ********************
3774 * The following routines are only used by DDB for tricky kernel text *
3775 * text operations in db_memrw.c. They are provided for sun3 *
3776 * compatibility. *
3777 *************************************************************************/
3778 /* get_pte INTERNAL
3779 **
3780 * Return the page descriptor the describes the kernel mapping
3781 * of the given virtual address.
3782 */
3783 extern u_long ptest_addr __P((u_long)); /* XXX: locore.s */
3784 u_int
3785 get_pte(va)
3786 vm_offset_t va;
3787 {
3788 u_long pte_pa;
3789 mmu_short_pte_t *pte;
3790
3791 /* Get the physical address of the PTE */
3792 pte_pa = ptest_addr(va & ~PGOFSET);
3793
3794 /* Convert to a virtual address... */
3795 pte = (mmu_short_pte_t *) (KERNBASE + pte_pa);
3796
3797 /* Make sure it is in our level-C tables... */
3798 if ((pte < kernCbase) ||
3799 (pte >= &mmuCbase[NUM_USER_PTES]))
3800 return 0;
3801
3802 /* ... and just return its contents. */
3803 return (pte->attr.raw);
3804 }
3805
3806
3807 /* set_pte INTERNAL
3808 **
3809 * Set the page descriptor that describes the kernel mapping
3810 * of the given virtual address.
3811 */
3812 void
3813 set_pte(va, pte)
3814 vm_offset_t va;
3815 u_int pte;
3816 {
3817 u_long idx;
3818
3819 if (va < KERNBASE)
3820 return;
3821
3822 idx = (unsigned long) m68k_btop(va - KERNBASE);
3823 kernCbase[idx].attr.raw = pte;
3824 TBIS(va);
3825 }
3826
3827 /*
3828 * Routine: pmap_procwr
3829 *
3830 * Function:
3831 * Synchronize caches corresponding to [addr, addr+len) in p.
3832 */
3833 void
3834 pmap_procwr(p, va, len)
3835 struct proc *p;
3836 vaddr_t va;
3837 size_t len;
3838 {
3839 (void)cachectl1(0x80000004, va, len, p);
3840 }
3841
3842
3843 #ifdef PMAP_DEBUG
3844 /************************** DEBUGGING ROUTINES **************************
3845 * The following routines are meant to be an aid to debugging the pmap *
3846 * system. They are callable from the DDB command line and should be *
3847 * prepared to be handed unstable or incomplete states of the system. *
3848 ************************************************************************/
3849
3850 /* pv_list
3851 **
3852 * List all pages found on the pv list for the given physical page.
3853 * To avoid endless loops, the listing will stop at the end of the list
3854 * or after 'n' entries - whichever comes first.
3855 */
3856 void
3857 pv_list(pa, n)
3858 vm_offset_t pa;
3859 int n;
3860 {
3861 int idx;
3862 vm_offset_t va;
3863 pv_t *pv;
3864 c_tmgr_t *c_tbl;
3865 pmap_t pmap;
3866
3867 pv = pa2pv(pa);
3868 idx = pv->pv_idx;
3869
3870 for (;idx != PVE_EOL && n > 0;
3871 idx=pvebase[idx].pve_next, n--) {
3872
3873 va = pmap_get_pteinfo(idx, &pmap, &c_tbl);
3874 printf("idx %d, pmap 0x%x, va 0x%x, c_tbl %x\n",
3875 idx, (u_int) pmap, (u_int) va, (u_int) c_tbl);
3876 }
3877 }
3878 #endif /* PMAP_DEBUG */
3879
3880 #ifdef NOT_YET
3881 /* and maybe not ever */
3882 /************************** LOW-LEVEL ROUTINES **************************
3883 * These routines will eventualy be re-written into assembly and placed *
3884 * in locore.s. They are here now as stubs so that the pmap module can *
3885 * be linked as a standalone user program for testing. *
3886 ************************************************************************/
3887 /* flush_atc_crp INTERNAL
3888 **
3889 * Flush all page descriptors derived from the given CPU Root Pointer
3890 * (CRP), or 'A' table as it is known here, from the 68851's automatic
3891 * cache.
3892 */
3893 void
3894 flush_atc_crp(a_tbl)
3895 {
3896 mmu_long_rp_t rp;
3897
3898 /* Create a temporary root table pointer that points to the
3899 * given A table.
3900 */
3901 rp.attr.raw = ~MMU_LONG_RP_LU;
3902 rp.addr.raw = (unsigned int) a_tbl;
3903
3904 mmu_pflushr(&rp);
3905 /* mmu_pflushr:
3906 * movel sp(4)@,a0
3907 * pflushr a0@
3908 * rts
3909 */
3910 }
3911 #endif /* NOT_YET */
3912