pmap.c revision 1.50 1 /* $NetBSD: pmap.c,v 1.50 1999/09/19 19:05:44 chs Exp $ */
2
3 /*-
4 * Copyright (c) 1996, 1997 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jeremy Cooper.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * XXX These comments aren't quite accurate. Need to change.
41 * The sun3x uses the MC68851 Memory Management Unit, which is built
42 * into the CPU. The 68851 maps virtual to physical addresses using
43 * a multi-level table lookup, which is stored in the very memory that
44 * it maps. The number of levels of lookup is configurable from one
45 * to four. In this implementation, we use three, named 'A' through 'C'.
46 *
47 * The MMU translates virtual addresses into physical addresses by
48 * traversing these tables in a proccess called a 'table walk'. The most
49 * significant 7 bits of the Virtual Address ('VA') being translated are
50 * used as an index into the level A table, whose base in physical memory
51 * is stored in a special MMU register, the 'CPU Root Pointer' or CRP. The
52 * address found at that index in the A table is used as the base
53 * address for the next table, the B table. The next six bits of the VA are
54 * used as an index into the B table, which in turn gives the base address
55 * of the third and final C table.
56 *
57 * The next six bits of the VA are used as an index into the C table to
58 * locate a Page Table Entry (PTE). The PTE is a physical address in memory
59 * to which the remaining 13 bits of the VA are added, producing the
60 * mapped physical address.
61 *
62 * To map the entire memory space in this manner would require 2114296 bytes
63 * of page tables per process - quite expensive. Instead we will
64 * allocate a fixed but considerably smaller space for the page tables at
65 * the time the VM system is initialized. When the pmap code is asked by
66 * the kernel to map a VA to a PA, it allocates tables as needed from this
67 * pool. When there are no more tables in the pool, tables are stolen
68 * from the oldest mapped entries in the tree. This is only possible
69 * because all memory mappings are stored in the kernel memory map
70 * structures, independent of the pmap structures. A VA which references
71 * one of these invalidated maps will cause a page fault. The kernel
72 * will determine that the page fault was caused by a task using a valid
73 * VA, but for some reason (which does not concern it), that address was
74 * not mapped. It will ask the pmap code to re-map the entry and then
75 * it will resume executing the faulting task.
76 *
77 * In this manner the most efficient use of the page table space is
78 * achieved. Tasks which do not execute often will have their tables
79 * stolen and reused by tasks which execute more frequently. The best
80 * size for the page table pool will probably be determined by
81 * experimentation.
82 *
83 * You read all of the comments so far. Good for you.
84 * Now go play!
85 */
86
87 /*** A Note About the 68851 Address Translation Cache
88 * The MC68851 has a 64 entry cache, called the Address Translation Cache
89 * or 'ATC'. This cache stores the most recently used page descriptors
90 * accessed by the MMU when it does translations. Using a marker called a
91 * 'task alias' the MMU can store the descriptors from 8 different table
92 * spaces concurrently. The task alias is associated with the base
93 * address of the level A table of that address space. When an address
94 * space is currently active (the CRP currently points to its A table)
95 * the only cached descriptors that will be obeyed are ones which have a
96 * matching task alias of the current space associated with them.
97 *
98 * Since the cache is always consulted before any table lookups are done,
99 * it is important that it accurately reflect the state of the MMU tables.
100 * Whenever a change has been made to a table that has been loaded into
101 * the MMU, the code must be sure to flush any cached entries that are
102 * affected by the change. These instances are documented in the code at
103 * various points.
104 */
105 /*** A Note About the Note About the 68851 Address Translation Cache
106 * 4 months into this code I discovered that the sun3x does not have
107 * a MC68851 chip. Instead, it has a version of this MMU that is part of the
108 * the 68030 CPU.
109 * All though it behaves very similarly to the 68851, it only has 1 task
110 * alias and a 22 entry cache. So sadly (or happily), the first paragraph
111 * of the previous note does not apply to the sun3x pmap.
112 */
113
114 #include "opt_ddb.h"
115
116 #include <sys/param.h>
117 #include <sys/systm.h>
118 #include <sys/proc.h>
119 #include <sys/malloc.h>
120 #include <sys/user.h>
121 #include <sys/queue.h>
122 #include <sys/kcore.h>
123
124 #include <vm/vm.h>
125 #include <vm/vm_kern.h>
126 #include <vm/vm_page.h>
127
128 #include <uvm/uvm.h>
129
130 #define PAGER_SVA (uvm.pager_sva)
131 #define PAGER_EVA (uvm.pager_eva)
132
133 #include <machine/cpu.h>
134 #include <machine/kcore.h>
135 #include <machine/mon.h>
136 #include <machine/pmap.h>
137 #include <machine/pte.h>
138 #include <machine/vmparam.h>
139
140 #include <sun3/sun3/cache.h>
141 #include <sun3/sun3/machdep.h>
142
143 #include "pmap_pvt.h"
144
145 /* XXX - What headers declare these? */
146 extern struct pcb *curpcb;
147 extern int physmem;
148
149 extern void copypage __P((const void*, void*));
150 extern void zeropage __P((void*));
151
152 /* Defined in locore.s */
153 extern char kernel_text[];
154
155 /* Defined by the linker */
156 extern char etext[], edata[], end[];
157 extern char *esym; /* DDB */
158
159 /*************************** DEBUGGING DEFINITIONS ***********************
160 * Macros, preprocessor defines and variables used in debugging can make *
161 * code hard to read. Anything used exclusively for debugging purposes *
162 * is defined here to avoid having such mess scattered around the file. *
163 *************************************************************************/
164 #ifdef PMAP_DEBUG
165 /*
166 * To aid the debugging process, macros should be expanded into smaller steps
167 * that accomplish the same goal, yet provide convenient places for placing
168 * breakpoints. When this code is compiled with PMAP_DEBUG mode defined, the
169 * 'INLINE' keyword is defined to an empty string. This way, any function
170 * defined to be a 'static INLINE' will become 'outlined' and compiled as
171 * a separate function, which is much easier to debug.
172 */
173 #define INLINE /* nothing */
174
175 /*
176 * It is sometimes convenient to watch the activity of a particular table
177 * in the system. The following variables are used for that purpose.
178 */
179 a_tmgr_t *pmap_watch_atbl = 0;
180 b_tmgr_t *pmap_watch_btbl = 0;
181 c_tmgr_t *pmap_watch_ctbl = 0;
182
183 int pmap_debug = 0;
184 #define DPRINT(args) if (pmap_debug) printf args
185
186 #else /********** Stuff below is defined if NOT debugging **************/
187
188 #define INLINE inline
189 #define DPRINT(args) /* nada */
190
191 #endif /* PMAP_DEBUG */
192 /*********************** END OF DEBUGGING DEFINITIONS ********************/
193
194 /*** Management Structure - Memory Layout
195 * For every MMU table in the sun3x pmap system there must be a way to
196 * manage it; we must know which process is using it, what other tables
197 * depend on it, and whether or not it contains any locked pages. This
198 * is solved by the creation of 'table management' or 'tmgr'
199 * structures. One for each MMU table in the system.
200 *
201 * MAP OF MEMORY USED BY THE PMAP SYSTEM
202 *
203 * towards lower memory
204 * kernAbase -> +-------------------------------------------------------+
205 * | Kernel MMU A level table |
206 * kernBbase -> +-------------------------------------------------------+
207 * | Kernel MMU B level tables |
208 * kernCbase -> +-------------------------------------------------------+
209 * | |
210 * | Kernel MMU C level tables |
211 * | |
212 * mmuCbase -> +-------------------------------------------------------+
213 * | User MMU C level tables |
214 * mmuAbase -> +-------------------------------------------------------+
215 * | |
216 * | User MMU A level tables |
217 * | |
218 * mmuBbase -> +-------------------------------------------------------+
219 * | User MMU B level tables |
220 * tmgrAbase -> +-------------------------------------------------------+
221 * | TMGR A level table structures |
222 * tmgrBbase -> +-------------------------------------------------------+
223 * | TMGR B level table structures |
224 * tmgrCbase -> +-------------------------------------------------------+
225 * | TMGR C level table structures |
226 * pvbase -> +-------------------------------------------------------+
227 * | Physical to Virtual mapping table (list heads) |
228 * pvebase -> +-------------------------------------------------------+
229 * | Physical to Virtual mapping table (list elements) |
230 * | |
231 * +-------------------------------------------------------+
232 * towards higher memory
233 *
234 * For every A table in the MMU A area, there will be a corresponding
235 * a_tmgr structure in the TMGR A area. The same will be true for
236 * the B and C tables. This arrangement will make it easy to find the
237 * controling tmgr structure for any table in the system by use of
238 * (relatively) simple macros.
239 */
240
241 /*
242 * Global variables for storing the base addresses for the areas
243 * labeled above.
244 */
245 static vm_offset_t kernAphys;
246 static mmu_long_dte_t *kernAbase;
247 static mmu_short_dte_t *kernBbase;
248 static mmu_short_pte_t *kernCbase;
249 static mmu_short_pte_t *mmuCbase;
250 static mmu_short_dte_t *mmuBbase;
251 static mmu_long_dte_t *mmuAbase;
252 static a_tmgr_t *Atmgrbase;
253 static b_tmgr_t *Btmgrbase;
254 static c_tmgr_t *Ctmgrbase;
255 static pv_t *pvbase;
256 static pv_elem_t *pvebase;
257 struct pmap kernel_pmap;
258
259 /*
260 * This holds the CRP currently loaded into the MMU.
261 */
262 struct mmu_rootptr kernel_crp;
263
264 /*
265 * Just all around global variables.
266 */
267 static TAILQ_HEAD(a_pool_head_struct, a_tmgr_struct) a_pool;
268 static TAILQ_HEAD(b_pool_head_struct, b_tmgr_struct) b_pool;
269 static TAILQ_HEAD(c_pool_head_struct, c_tmgr_struct) c_pool;
270
271
272 /*
273 * Flags used to mark the safety/availability of certain operations or
274 * resources.
275 */
276 static boolean_t pv_initialized = FALSE, /* PV system has been initialized. */
277 bootstrap_alloc_enabled = FALSE; /*Safe to use pmap_bootstrap_alloc().*/
278 int tmp_vpages_inuse; /* Temporary virtual pages are in use */
279
280 /*
281 * XXX: For now, retain the traditional variables that were
282 * used in the old pmap/vm interface (without NONCONTIG).
283 */
284 /* Kernel virtual address space available: */
285 vm_offset_t virtual_avail, virtual_end;
286 /* Physical address space available: */
287 vm_offset_t avail_start, avail_end;
288
289 /* This keep track of the end of the contiguously mapped range. */
290 vm_offset_t virtual_contig_end;
291
292 /* Physical address used by pmap_next_page() */
293 vm_offset_t avail_next;
294
295 /* These are used by pmap_copy_page(), etc. */
296 vm_offset_t tmp_vpages[2];
297
298 /*
299 * The 3/80 is the only member of the sun3x family that has non-contiguous
300 * physical memory. Memory is divided into 4 banks which are physically
301 * locatable on the system board. Although the size of these banks varies
302 * with the size of memory they contain, their base addresses are
303 * permenently fixed. The following structure, which describes these
304 * banks, is initialized by pmap_bootstrap() after it reads from a similar
305 * structure provided by the ROM Monitor.
306 *
307 * For the other machines in the sun3x architecture which do have contiguous
308 * RAM, this list will have only one entry, which will describe the entire
309 * range of available memory.
310 */
311 struct pmap_physmem_struct avail_mem[SUN3X_NPHYS_RAM_SEGS];
312 u_int total_phys_mem;
313
314 /*************************************************************************/
315
316 /*
317 * XXX - Should "tune" these based on statistics.
318 *
319 * My first guess about the relative numbers of these needed is
320 * based on the fact that a "typical" process will have several
321 * pages mapped at low virtual addresses (text, data, bss), then
322 * some mapped shared libraries, and then some stack pages mapped
323 * near the high end of the VA space. Each process can use only
324 * one A table, and most will use only two B tables (maybe three)
325 * and probably about four C tables. Therefore, the first guess
326 * at the relative numbers of these needed is 1:2:4 -gwr
327 *
328 * The number of C tables needed is closely related to the amount
329 * of physical memory available plus a certain amount attributable
330 * to the use of double mappings. With a few simulation statistics
331 * we can find a reasonably good estimation of this unknown value.
332 * Armed with that and the above ratios, we have a good idea of what
333 * is needed at each level. -j
334 *
335 * Note: It is not physical memory memory size, but the total mapped
336 * virtual space required by the combined working sets of all the
337 * currently _runnable_ processes. (Sleeping ones don't count.)
338 * The amount of physical memory should be irrelevant. -gwr
339 */
340 #ifdef FIXED_NTABLES
341 #define NUM_A_TABLES 16
342 #define NUM_B_TABLES 32
343 #define NUM_C_TABLES 64
344 #else
345 unsigned int NUM_A_TABLES, NUM_B_TABLES, NUM_C_TABLES;
346 #endif /* FIXED_NTABLES */
347
348 /*
349 * This determines our total virtual mapping capacity.
350 * Yes, it is a FIXED value so we can pre-allocate.
351 */
352 #define NUM_USER_PTES (NUM_C_TABLES * MMU_C_TBL_SIZE)
353
354 /*
355 * The size of the Kernel Virtual Address Space (KVAS)
356 * for purposes of MMU table allocation is -KERNBASE
357 * (length from KERNBASE to 0xFFFFffff)
358 */
359 #define KVAS_SIZE (-KERNBASE)
360
361 /* Numbers of kernel MMU tables to support KVAS_SIZE. */
362 #define KERN_B_TABLES (KVAS_SIZE >> MMU_TIA_SHIFT)
363 #define KERN_C_TABLES (KVAS_SIZE >> MMU_TIB_SHIFT)
364 #define NUM_KERN_PTES (KVAS_SIZE >> MMU_TIC_SHIFT)
365
366 /*************************** MISCELANEOUS MACROS *************************/
367 #define PMAP_LOCK() ; /* Nothing, for now */
368 #define PMAP_UNLOCK() ; /* same. */
369 #define NULL 0
370
371 static INLINE void * mmu_ptov __P((vm_offset_t pa));
372 static INLINE vm_offset_t mmu_vtop __P((void * va));
373
374 #if 0
375 static INLINE a_tmgr_t * mmuA2tmgr __P((mmu_long_dte_t *));
376 #endif /* 0 */
377 static INLINE b_tmgr_t * mmuB2tmgr __P((mmu_short_dte_t *));
378 static INLINE c_tmgr_t * mmuC2tmgr __P((mmu_short_pte_t *));
379
380 static INLINE pv_t *pa2pv __P((vm_offset_t pa));
381 static INLINE int pteidx __P((mmu_short_pte_t *));
382 static INLINE pmap_t current_pmap __P((void));
383
384 /*
385 * We can always convert between virtual and physical addresses
386 * for anything in the range [KERNBASE ... avail_start] because
387 * that range is GUARANTEED to be mapped linearly.
388 * We rely heavily upon this feature!
389 */
390 static INLINE void *
391 mmu_ptov(pa)
392 vm_offset_t pa;
393 {
394 register vm_offset_t va;
395
396 va = (pa + KERNBASE);
397 #ifdef PMAP_DEBUG
398 if ((va < KERNBASE) || (va >= virtual_contig_end))
399 panic("mmu_ptov");
400 #endif
401 return ((void*)va);
402 }
403 static INLINE vm_offset_t
404 mmu_vtop(vva)
405 void *vva;
406 {
407 register vm_offset_t va;
408
409 va = (vm_offset_t)vva;
410 #ifdef PMAP_DEBUG
411 if ((va < KERNBASE) || (va >= virtual_contig_end))
412 panic("mmu_ptov");
413 #endif
414 return (va - KERNBASE);
415 }
416
417 /*
418 * These macros map MMU tables to their corresponding manager structures.
419 * They are needed quite often because many of the pointers in the pmap
420 * system reference MMU tables and not the structures that control them.
421 * There needs to be a way to find one when given the other and these
422 * macros do so by taking advantage of the memory layout described above.
423 * Here's a quick step through the first macro, mmuA2tmgr():
424 *
425 * 1) find the offset of the given MMU A table from the base of its table
426 * pool (table - mmuAbase).
427 * 2) convert this offset into a table index by dividing it by the
428 * size of one MMU 'A' table. (sizeof(mmu_long_dte_t) * MMU_A_TBL_SIZE)
429 * 3) use this index to select the corresponding 'A' table manager
430 * structure from the 'A' table manager pool (Atmgrbase[index]).
431 */
432 /* This function is not currently used. */
433 #if 0
434 static INLINE a_tmgr_t *
435 mmuA2tmgr(mmuAtbl)
436 mmu_long_dte_t *mmuAtbl;
437 {
438 register int idx;
439
440 /* Which table is this in? */
441 idx = (mmuAtbl - mmuAbase) / MMU_A_TBL_SIZE;
442 #ifdef PMAP_DEBUG
443 if ((idx < 0) || (idx >= NUM_A_TABLES))
444 panic("mmuA2tmgr");
445 #endif
446 return (&Atmgrbase[idx]);
447 }
448 #endif /* 0 */
449
450 static INLINE b_tmgr_t *
451 mmuB2tmgr(mmuBtbl)
452 mmu_short_dte_t *mmuBtbl;
453 {
454 register int idx;
455
456 /* Which table is this in? */
457 idx = (mmuBtbl - mmuBbase) / MMU_B_TBL_SIZE;
458 #ifdef PMAP_DEBUG
459 if ((idx < 0) || (idx >= NUM_B_TABLES))
460 panic("mmuB2tmgr");
461 #endif
462 return (&Btmgrbase[idx]);
463 }
464
465 /* mmuC2tmgr INTERNAL
466 **
467 * Given a pte known to belong to a C table, return the address of
468 * that table's management structure.
469 */
470 static INLINE c_tmgr_t *
471 mmuC2tmgr(mmuCtbl)
472 mmu_short_pte_t *mmuCtbl;
473 {
474 register int idx;
475
476 /* Which table is this in? */
477 idx = (mmuCtbl - mmuCbase) / MMU_C_TBL_SIZE;
478 #ifdef PMAP_DEBUG
479 if ((idx < 0) || (idx >= NUM_C_TABLES))
480 panic("mmuC2tmgr");
481 #endif
482 return (&Ctmgrbase[idx]);
483 }
484
485 /* This is now a function call below.
486 * #define pa2pv(pa) \
487 * (&pvbase[(unsigned long)\
488 * m68k_btop(pa)\
489 * ])
490 */
491
492 /* pa2pv INTERNAL
493 **
494 * Return the pv_list_head element which manages the given physical
495 * address.
496 */
497 static INLINE pv_t *
498 pa2pv(pa)
499 vm_offset_t pa;
500 {
501 register struct pmap_physmem_struct *bank;
502 register int idx;
503
504 bank = &avail_mem[0];
505 while (pa >= bank->pmem_end)
506 bank = bank->pmem_next;
507
508 pa -= bank->pmem_start;
509 idx = bank->pmem_pvbase + m68k_btop(pa);
510 #ifdef PMAP_DEBUG
511 if ((idx < 0) || (idx >= physmem))
512 panic("pa2pv");
513 #endif
514 return &pvbase[idx];
515 }
516
517 /* pteidx INTERNAL
518 **
519 * Return the index of the given PTE within the entire fixed table of
520 * PTEs.
521 */
522 static INLINE int
523 pteidx(pte)
524 mmu_short_pte_t *pte;
525 {
526 return (pte - kernCbase);
527 }
528
529 /*
530 * This just offers a place to put some debugging checks,
531 * and reduces the number of places "curproc" appears...
532 */
533 static INLINE pmap_t
534 current_pmap()
535 {
536 struct proc *p;
537 struct vmspace *vm;
538 vm_map_t map;
539 pmap_t pmap;
540
541 p = curproc; /* XXX */
542 if (p == NULL)
543 pmap = &kernel_pmap;
544 else {
545 vm = p->p_vmspace;
546 map = &vm->vm_map;
547 pmap = vm_map_pmap(map);
548 }
549
550 return (pmap);
551 }
552
553
554 /*************************** FUNCTION DEFINITIONS ************************
555 * These appear here merely for the compiler to enforce type checking on *
556 * all function calls. *
557 *************************************************************************/
558
559 /** External functions
560 ** - functions used within this module but written elsewhere.
561 ** both of these functions are in locore.s
562 ** XXX - These functions were later replaced with their more cryptic
563 ** hp300 counterparts. They may be removed now.
564 **/
565 #if 0 /* deprecated mmu */
566 void mmu_seturp __P((vm_offset_t));
567 void mmu_flush __P((int, vm_offset_t));
568 void mmu_flusha __P((void));
569 #endif /* 0 */
570
571 /** Internal functions
572 ** Most functions used only within this module are defined in
573 ** pmap_pvt.h (why not here if used only here?)
574 **/
575 static void pmap_page_upload __P((void));
576
577 /** Interface functions
578 ** - functions required by the Mach VM Pmap interface, with MACHINE_CONTIG
579 ** defined.
580 **/
581 int pmap_page_index __P((vm_offset_t));
582 void pmap_pinit __P((pmap_t));
583 void pmap_release __P((pmap_t));
584
585 /********************************** CODE ********************************
586 * Functions that are called from other parts of the kernel are labeled *
587 * as 'INTERFACE' functions. Functions that are only called from *
588 * within the pmap module are labeled as 'INTERNAL' functions. *
589 * Functions that are internal, but are not (currently) used at all are *
590 * labeled 'INTERNAL_X'. *
591 ************************************************************************/
592
593 /* pmap_bootstrap INTERNAL
594 **
595 * Initializes the pmap system. Called at boot time from
596 * locore2.c:_vm_init()
597 *
598 * Reminder: having a pmap_bootstrap_alloc() and also having the VM
599 * system implement pmap_steal_memory() is redundant.
600 * Don't release this code without removing one or the other!
601 */
602 void
603 pmap_bootstrap(nextva)
604 vm_offset_t nextva;
605 {
606 struct physmemory *membank;
607 struct pmap_physmem_struct *pmap_membank;
608 vm_offset_t va, pa, eva;
609 int b, c, i, j; /* running table counts */
610 int size, resvmem;
611
612 /*
613 * This function is called by __bootstrap after it has
614 * determined the type of machine and made the appropriate
615 * patches to the ROM vectors (XXX- I don't quite know what I meant
616 * by that.) It allocates and sets up enough of the pmap system
617 * to manage the kernel's address space.
618 */
619
620 /*
621 * Determine the range of kernel virtual and physical
622 * space available. Note that we ABSOLUTELY DEPEND on
623 * the fact that the first bank of memory (4MB) is
624 * mapped linearly to KERNBASE (which we guaranteed in
625 * the first instructions of locore.s).
626 * That is plenty for our bootstrap work.
627 */
628 virtual_avail = m68k_round_page(nextva);
629 virtual_contig_end = KERNBASE + 0x400000; /* +4MB */
630 virtual_end = VM_MAX_KERNEL_ADDRESS;
631 /* Don't need avail_start til later. */
632
633 /* We may now call pmap_bootstrap_alloc(). */
634 bootstrap_alloc_enabled = TRUE;
635
636 /*
637 * This is a somewhat unwrapped loop to deal with
638 * copying the PROM's 'phsymem' banks into the pmap's
639 * banks. The following is always assumed:
640 * 1. There is always at least one bank of memory.
641 * 2. There is always a last bank of memory, and its
642 * pmem_next member must be set to NULL.
643 */
644 membank = romVectorPtr->v_physmemory;
645 pmap_membank = avail_mem;
646 total_phys_mem = 0;
647
648 for (;;) { /* break on !membank */
649 pmap_membank->pmem_start = membank->address;
650 pmap_membank->pmem_end = membank->address + membank->size;
651 total_phys_mem += membank->size;
652 membank = membank->next;
653 if (!membank)
654 break;
655 /* This silly syntax arises because pmap_membank
656 * is really a pre-allocated array, but it is put into
657 * use as a linked list.
658 */
659 pmap_membank->pmem_next = pmap_membank + 1;
660 pmap_membank = pmap_membank->pmem_next;
661 }
662 /* This is the last element. */
663 pmap_membank->pmem_next = NULL;
664
665 /*
666 * Note: total_phys_mem, physmem represent
667 * actual physical memory, including that
668 * reserved for the PROM monitor.
669 */
670 physmem = btoc(total_phys_mem);
671
672 /*
673 * The last bank of memory should be reduced to prevent the
674 * physical pages needed by the PROM monitor from being used
675 * in the VM system.
676 */
677 resvmem = total_phys_mem - *(romVectorPtr->memoryAvail);
678 resvmem = m68k_round_page(resvmem);
679 pmap_membank->pmem_end -= resvmem;
680
681 /*
682 * Avail_end is set to the first byte of physical memory
683 * after the end of the last bank. We use this only to
684 * determine if a physical address is "managed" memory.
685 */
686 avail_end = pmap_membank->pmem_end;
687
688 /*
689 * First allocate enough kernel MMU tables to map all
690 * of kernel virtual space from KERNBASE to 0xFFFFFFFF.
691 * Note: All must be aligned on 256 byte boundaries.
692 * Start with the level-A table (one of those).
693 */
694 size = sizeof(mmu_long_dte_t) * MMU_A_TBL_SIZE;
695 kernAbase = pmap_bootstrap_alloc(size);
696 bzero(kernAbase, size);
697
698 /* Now the level-B kernel tables... */
699 size = sizeof(mmu_short_dte_t) * MMU_B_TBL_SIZE * KERN_B_TABLES;
700 kernBbase = pmap_bootstrap_alloc(size);
701 bzero(kernBbase, size);
702
703 /* Now the level-C kernel tables... */
704 size = sizeof(mmu_short_pte_t) * MMU_C_TBL_SIZE * KERN_C_TABLES;
705 kernCbase = pmap_bootstrap_alloc(size);
706 bzero(kernCbase, size);
707 /*
708 * Note: In order for the PV system to work correctly, the kernel
709 * and user-level C tables must be allocated contiguously.
710 * Nothing should be allocated between here and the allocation of
711 * mmuCbase below. XXX: Should do this as one allocation, and
712 * then compute a pointer for mmuCbase instead of this...
713 *
714 * Allocate user MMU tables.
715 * These must be contiguous with the preceeding.
716 */
717
718 #ifndef FIXED_NTABLES
719 /*
720 * The number of user-level C tables that should be allocated is
721 * related to the size of physical memory. In general, there should
722 * be enough tables to map four times the amount of available RAM.
723 * The extra amount is needed because some table space is wasted by
724 * fragmentation.
725 */
726 NUM_C_TABLES = (total_phys_mem * 4) / (MMU_C_TBL_SIZE * MMU_PAGE_SIZE);
727 NUM_B_TABLES = NUM_C_TABLES / 2;
728 NUM_A_TABLES = NUM_B_TABLES / 2;
729 #endif /* !FIXED_NTABLES */
730
731 size = sizeof(mmu_short_pte_t) * MMU_C_TBL_SIZE * NUM_C_TABLES;
732 mmuCbase = pmap_bootstrap_alloc(size);
733
734 size = sizeof(mmu_short_dte_t) * MMU_B_TBL_SIZE * NUM_B_TABLES;
735 mmuBbase = pmap_bootstrap_alloc(size);
736
737 size = sizeof(mmu_long_dte_t) * MMU_A_TBL_SIZE * NUM_A_TABLES;
738 mmuAbase = pmap_bootstrap_alloc(size);
739
740 /*
741 * Fill in the never-changing part of the kernel tables.
742 * For simplicity, the kernel's mappings will be editable as a
743 * flat array of page table entries at kernCbase. The
744 * higher level 'A' and 'B' tables must be initialized to point
745 * to this lower one.
746 */
747 b = c = 0;
748
749 /*
750 * Invalidate all mappings below KERNBASE in the A table.
751 * This area has already been zeroed out, but it is good
752 * practice to explicitly show that we are interpreting
753 * it as a list of A table descriptors.
754 */
755 for (i = 0; i < MMU_TIA(KERNBASE); i++) {
756 kernAbase[i].addr.raw = 0;
757 }
758
759 /*
760 * Set up the kernel A and B tables so that they will reference the
761 * correct spots in the contiguous table of PTEs allocated for the
762 * kernel's virtual memory space.
763 */
764 for (i = MMU_TIA(KERNBASE); i < MMU_A_TBL_SIZE; i++) {
765 kernAbase[i].attr.raw =
766 MMU_LONG_DTE_LU | MMU_LONG_DTE_SUPV | MMU_DT_SHORT;
767 kernAbase[i].addr.raw = mmu_vtop(&kernBbase[b]);
768
769 for (j=0; j < MMU_B_TBL_SIZE; j++) {
770 kernBbase[b + j].attr.raw = mmu_vtop(&kernCbase[c])
771 | MMU_DT_SHORT;
772 c += MMU_C_TBL_SIZE;
773 }
774 b += MMU_B_TBL_SIZE;
775 }
776
777 /* XXX - Doing kernel_pmap a little further down. */
778
779 pmap_alloc_usermmu(); /* Allocate user MMU tables. */
780 pmap_alloc_usertmgr(); /* Allocate user MMU table managers.*/
781 pmap_alloc_pv(); /* Allocate physical->virtual map. */
782
783 /*
784 * We are now done with pmap_bootstrap_alloc(). Round up
785 * `virtual_avail' to the nearest page, and set the flag
786 * to prevent use of pmap_bootstrap_alloc() hereafter.
787 */
788 pmap_bootstrap_aalign(NBPG);
789 bootstrap_alloc_enabled = FALSE;
790
791 /*
792 * Now that we are done with pmap_bootstrap_alloc(), we
793 * must save the virtual and physical addresses of the
794 * end of the linearly mapped range, which are stored in
795 * virtual_contig_end and avail_start, respectively.
796 * These variables will never change after this point.
797 */
798 virtual_contig_end = virtual_avail;
799 avail_start = virtual_avail - KERNBASE;
800
801 /*
802 * `avail_next' is a running pointer used by pmap_next_page() to
803 * keep track of the next available physical page to be handed
804 * to the VM system during its initialization, in which it
805 * asks for physical pages, one at a time.
806 */
807 avail_next = avail_start;
808
809 /*
810 * Now allocate some virtual addresses, but not the physical pages
811 * behind them. Note that virtual_avail is already page-aligned.
812 *
813 * tmp_vpages[] is an array of two virtual pages used for temporary
814 * kernel mappings in the pmap module to facilitate various physical
815 * address-oritented operations.
816 */
817 tmp_vpages[0] = virtual_avail;
818 virtual_avail += NBPG;
819 tmp_vpages[1] = virtual_avail;
820 virtual_avail += NBPG;
821
822 /** Initialize the PV system **/
823 pmap_init_pv();
824
825 /*
826 * Fill in the kernel_pmap structure and kernel_crp.
827 */
828 kernAphys = mmu_vtop(kernAbase);
829 kernel_pmap.pm_a_tmgr = NULL;
830 kernel_pmap.pm_a_phys = kernAphys;
831 kernel_pmap.pm_refcount = 1; /* always in use */
832
833 kernel_crp.rp_attr = MMU_LONG_DTE_LU | MMU_DT_LONG;
834 kernel_crp.rp_addr = kernAphys;
835
836 /*
837 * Now pmap_enter_kernel() may be used safely and will be
838 * the main interface used hereafter to modify the kernel's
839 * virtual address space. Note that since we are still running
840 * under the PROM's address table, none of these table modifications
841 * actually take effect until pmap_takeover_mmu() is called.
842 *
843 * Note: Our tables do NOT have the PROM linear mappings!
844 * Only the mappings created here exist in our tables, so
845 * remember to map anything we expect to use.
846 */
847 va = (vm_offset_t) KERNBASE;
848 pa = 0;
849
850 /*
851 * The first page of the kernel virtual address space is the msgbuf
852 * page. The page attributes (data, non-cached) are set here, while
853 * the address is assigned to this global pointer in cpu_startup().
854 * It is non-cached, mostly due to paranoia.
855 */
856 pmap_enter_kernel(va, pa|PMAP_NC, VM_PROT_ALL);
857 va += NBPG; pa += NBPG;
858
859 /* Next page is used as the temporary stack. */
860 pmap_enter_kernel(va, pa, VM_PROT_ALL);
861 va += NBPG; pa += NBPG;
862
863 /*
864 * Map all of the kernel's text segment as read-only and cacheable.
865 * (Cacheable is implied by default). Unfortunately, the last bytes
866 * of kernel text and the first bytes of kernel data will often be
867 * sharing the same page. Therefore, the last page of kernel text
868 * has to be mapped as read/write, to accomodate the data.
869 */
870 eva = m68k_trunc_page((vm_offset_t)etext);
871 for (; va < eva; va += NBPG, pa += NBPG)
872 pmap_enter_kernel(va, pa, VM_PROT_READ|VM_PROT_EXECUTE);
873
874 /*
875 * Map all of the kernel's data as read/write and cacheable.
876 * This includes: data, BSS, symbols, and everything in the
877 * contiguous memory used by pmap_bootstrap_alloc()
878 */
879 for (; pa < avail_start; va += NBPG, pa += NBPG)
880 pmap_enter_kernel(va, pa, VM_PROT_READ|VM_PROT_WRITE);
881
882 /*
883 * At this point we are almost ready to take over the MMU. But first
884 * we must save the PROM's address space in our map, as we call its
885 * routines and make references to its data later in the kernel.
886 */
887 pmap_bootstrap_copyprom();
888 pmap_takeover_mmu();
889 pmap_bootstrap_setprom();
890
891 /* Notify the VM system of our page size. */
892 PAGE_SIZE = NBPG;
893 uvm_setpagesize();
894
895 pmap_page_upload();
896 }
897
898
899 /* pmap_alloc_usermmu INTERNAL
900 **
901 * Called from pmap_bootstrap() to allocate MMU tables that will
902 * eventually be used for user mappings.
903 */
904 void
905 pmap_alloc_usermmu()
906 {
907 /* XXX: Moved into caller. */
908 }
909
910 /* pmap_alloc_pv INTERNAL
911 **
912 * Called from pmap_bootstrap() to allocate the physical
913 * to virtual mapping list. Each physical page of memory
914 * in the system has a corresponding element in this list.
915 */
916 void
917 pmap_alloc_pv()
918 {
919 int i;
920 unsigned int total_mem;
921
922 /*
923 * Allocate a pv_head structure for every page of physical
924 * memory that will be managed by the system. Since memory on
925 * the 3/80 is non-contiguous, we cannot arrive at a total page
926 * count by subtraction of the lowest available address from the
927 * highest, but rather we have to step through each memory
928 * bank and add the number of pages in each to the total.
929 *
930 * At this time we also initialize the offset of each bank's
931 * starting pv_head within the pv_head list so that the physical
932 * memory state routines (pmap_is_referenced(),
933 * pmap_is_modified(), et al.) can quickly find coresponding
934 * pv_heads in spite of the non-contiguity.
935 */
936 total_mem = 0;
937 for (i = 0; i < SUN3X_NPHYS_RAM_SEGS; i++) {
938 avail_mem[i].pmem_pvbase = m68k_btop(total_mem);
939 total_mem += avail_mem[i].pmem_end -
940 avail_mem[i].pmem_start;
941 if (avail_mem[i].pmem_next == NULL)
942 break;
943 }
944 pvbase = (pv_t *) pmap_bootstrap_alloc(sizeof(pv_t) *
945 m68k_btop(total_phys_mem));
946 }
947
948 /* pmap_alloc_usertmgr INTERNAL
949 **
950 * Called from pmap_bootstrap() to allocate the structures which
951 * facilitate management of user MMU tables. Each user MMU table
952 * in the system has one such structure associated with it.
953 */
954 void
955 pmap_alloc_usertmgr()
956 {
957 /* Allocate user MMU table managers */
958 /* It would be a lot simpler to just make these BSS, but */
959 /* we may want to change their size at boot time... -j */
960 Atmgrbase = (a_tmgr_t *) pmap_bootstrap_alloc(sizeof(a_tmgr_t)
961 * NUM_A_TABLES);
962 Btmgrbase = (b_tmgr_t *) pmap_bootstrap_alloc(sizeof(b_tmgr_t)
963 * NUM_B_TABLES);
964 Ctmgrbase = (c_tmgr_t *) pmap_bootstrap_alloc(sizeof(c_tmgr_t)
965 * NUM_C_TABLES);
966
967 /*
968 * Allocate PV list elements for the physical to virtual
969 * mapping system.
970 */
971 pvebase = (pv_elem_t *) pmap_bootstrap_alloc(
972 sizeof(pv_elem_t) * (NUM_USER_PTES + NUM_KERN_PTES));
973 }
974
975 /* pmap_bootstrap_copyprom() INTERNAL
976 **
977 * Copy the PROM mappings into our own tables. Note, we
978 * can use physical addresses until __bootstrap returns.
979 */
980 void
981 pmap_bootstrap_copyprom()
982 {
983 struct sunromvec *romp;
984 int *mon_ctbl;
985 mmu_short_pte_t *kpte;
986 int i, len;
987
988 romp = romVectorPtr;
989
990 /*
991 * Copy the mappings in SUN3X_MON_KDB_BASE...SUN3X_MONEND
992 * Note: mon_ctbl[0] maps SUN3X_MON_KDB_BASE
993 */
994 mon_ctbl = *romp->monptaddr;
995 i = m68k_btop(SUN3X_MON_KDB_BASE - KERNBASE);
996 kpte = &kernCbase[i];
997 len = m68k_btop(SUN3X_MONEND - SUN3X_MON_KDB_BASE);
998
999 for (i = 0; i < len; i++) {
1000 kpte[i].attr.raw = mon_ctbl[i];
1001 }
1002
1003 /*
1004 * Copy the mappings at MON_DVMA_BASE (to the end).
1005 * Note, in here, mon_ctbl[0] maps MON_DVMA_BASE.
1006 * Actually, we only want the last page, which the
1007 * PROM has set up for use by the "ie" driver.
1008 * (The i82686 needs its SCP there.)
1009 * If we copy all the mappings, pmap_enter_kernel
1010 * may complain about finding valid PTEs that are
1011 * not recorded in our PV lists...
1012 */
1013 mon_ctbl = *romp->shadowpteaddr;
1014 i = m68k_btop(SUN3X_MON_DVMA_BASE - KERNBASE);
1015 kpte = &kernCbase[i];
1016 len = m68k_btop(SUN3X_MON_DVMA_SIZE);
1017 for (i = (len-1); i < len; i++) {
1018 kpte[i].attr.raw = mon_ctbl[i];
1019 }
1020 }
1021
1022 /* pmap_takeover_mmu INTERNAL
1023 **
1024 * Called from pmap_bootstrap() after it has copied enough of the
1025 * PROM mappings into the kernel map so that we can use our own
1026 * MMU table.
1027 */
1028 void
1029 pmap_takeover_mmu()
1030 {
1031
1032 loadcrp(&kernel_crp);
1033 }
1034
1035 /* pmap_bootstrap_setprom() INTERNAL
1036 **
1037 * Set the PROM mappings so it can see kernel space.
1038 * Note that physical addresses are used here, which
1039 * we can get away with because this runs with the
1040 * low 1GB set for transparent translation.
1041 */
1042 void
1043 pmap_bootstrap_setprom()
1044 {
1045 mmu_long_dte_t *mon_dte;
1046 extern struct mmu_rootptr mon_crp;
1047 int i;
1048
1049 mon_dte = (mmu_long_dte_t *) mon_crp.rp_addr;
1050 for (i = MMU_TIA(KERNBASE); i < MMU_TIA(KERN_END); i++) {
1051 mon_dte[i].attr.raw = kernAbase[i].attr.raw;
1052 mon_dte[i].addr.raw = kernAbase[i].addr.raw;
1053 }
1054 }
1055
1056
1057 /* pmap_init INTERFACE
1058 **
1059 * Called at the end of vm_init() to set up the pmap system to go
1060 * into full time operation. All initialization of kernel_pmap
1061 * should be already done by now, so this should just do things
1062 * needed for user-level pmaps to work.
1063 */
1064 void
1065 pmap_init()
1066 {
1067 /** Initialize the manager pools **/
1068 TAILQ_INIT(&a_pool);
1069 TAILQ_INIT(&b_pool);
1070 TAILQ_INIT(&c_pool);
1071
1072 /**************************************************************
1073 * Initialize all tmgr structures and MMU tables they manage. *
1074 **************************************************************/
1075 /** Initialize A tables **/
1076 pmap_init_a_tables();
1077 /** Initialize B tables **/
1078 pmap_init_b_tables();
1079 /** Initialize C tables **/
1080 pmap_init_c_tables();
1081 }
1082
1083 /* pmap_init_a_tables() INTERNAL
1084 **
1085 * Initializes all A managers, their MMU A tables, and inserts
1086 * them into the A manager pool for use by the system.
1087 */
1088 void
1089 pmap_init_a_tables()
1090 {
1091 int i;
1092 a_tmgr_t *a_tbl;
1093
1094 for (i=0; i < NUM_A_TABLES; i++) {
1095 /* Select the next available A manager from the pool */
1096 a_tbl = &Atmgrbase[i];
1097
1098 /*
1099 * Clear its parent entry. Set its wired and valid
1100 * entry count to zero.
1101 */
1102 a_tbl->at_parent = NULL;
1103 a_tbl->at_wcnt = a_tbl->at_ecnt = 0;
1104
1105 /* Assign it the next available MMU A table from the pool */
1106 a_tbl->at_dtbl = &mmuAbase[i * MMU_A_TBL_SIZE];
1107
1108 /*
1109 * Initialize the MMU A table with the table in the `proc0',
1110 * or kernel, mapping. This ensures that every process has
1111 * the kernel mapped in the top part of its address space.
1112 */
1113 bcopy(kernAbase, a_tbl->at_dtbl, MMU_A_TBL_SIZE *
1114 sizeof(mmu_long_dte_t));
1115
1116 /*
1117 * Finally, insert the manager into the A pool,
1118 * making it ready to be used by the system.
1119 */
1120 TAILQ_INSERT_TAIL(&a_pool, a_tbl, at_link);
1121 }
1122 }
1123
1124 /* pmap_init_b_tables() INTERNAL
1125 **
1126 * Initializes all B table managers, their MMU B tables, and
1127 * inserts them into the B manager pool for use by the system.
1128 */
1129 void
1130 pmap_init_b_tables()
1131 {
1132 int i,j;
1133 b_tmgr_t *b_tbl;
1134
1135 for (i=0; i < NUM_B_TABLES; i++) {
1136 /* Select the next available B manager from the pool */
1137 b_tbl = &Btmgrbase[i];
1138
1139 b_tbl->bt_parent = NULL; /* clear its parent, */
1140 b_tbl->bt_pidx = 0; /* parent index, */
1141 b_tbl->bt_wcnt = 0; /* wired entry count, */
1142 b_tbl->bt_ecnt = 0; /* valid entry count. */
1143
1144 /* Assign it the next available MMU B table from the pool */
1145 b_tbl->bt_dtbl = &mmuBbase[i * MMU_B_TBL_SIZE];
1146
1147 /* Invalidate every descriptor in the table */
1148 for (j=0; j < MMU_B_TBL_SIZE; j++)
1149 b_tbl->bt_dtbl[j].attr.raw = MMU_DT_INVALID;
1150
1151 /* Insert the manager into the B pool */
1152 TAILQ_INSERT_TAIL(&b_pool, b_tbl, bt_link);
1153 }
1154 }
1155
1156 /* pmap_init_c_tables() INTERNAL
1157 **
1158 * Initializes all C table managers, their MMU C tables, and
1159 * inserts them into the C manager pool for use by the system.
1160 */
1161 void
1162 pmap_init_c_tables()
1163 {
1164 int i,j;
1165 c_tmgr_t *c_tbl;
1166
1167 for (i=0; i < NUM_C_TABLES; i++) {
1168 /* Select the next available C manager from the pool */
1169 c_tbl = &Ctmgrbase[i];
1170
1171 c_tbl->ct_parent = NULL; /* clear its parent, */
1172 c_tbl->ct_pidx = 0; /* parent index, */
1173 c_tbl->ct_wcnt = 0; /* wired entry count, */
1174 c_tbl->ct_ecnt = 0; /* valid entry count, */
1175 c_tbl->ct_pmap = NULL; /* parent pmap, */
1176 c_tbl->ct_va = 0; /* base of managed range */
1177
1178 /* Assign it the next available MMU C table from the pool */
1179 c_tbl->ct_dtbl = &mmuCbase[i * MMU_C_TBL_SIZE];
1180
1181 for (j=0; j < MMU_C_TBL_SIZE; j++)
1182 c_tbl->ct_dtbl[j].attr.raw = MMU_DT_INVALID;
1183
1184 TAILQ_INSERT_TAIL(&c_pool, c_tbl, ct_link);
1185 }
1186 }
1187
1188 /* pmap_init_pv() INTERNAL
1189 **
1190 * Initializes the Physical to Virtual mapping system.
1191 */
1192 void
1193 pmap_init_pv()
1194 {
1195 int i;
1196
1197 /* Initialize every PV head. */
1198 for (i = 0; i < m68k_btop(total_phys_mem); i++) {
1199 pvbase[i].pv_idx = PVE_EOL; /* Indicate no mappings */
1200 pvbase[i].pv_flags = 0; /* Zero out page flags */
1201 }
1202
1203 pv_initialized = TRUE;
1204 }
1205
1206 /* get_a_table INTERNAL
1207 **
1208 * Retrieve and return a level A table for use in a user map.
1209 */
1210 a_tmgr_t *
1211 get_a_table()
1212 {
1213 a_tmgr_t *tbl;
1214 pmap_t pmap;
1215
1216 /* Get the top A table in the pool */
1217 tbl = a_pool.tqh_first;
1218 if (tbl == NULL) {
1219 /*
1220 * XXX - Instead of panicing here and in other get_x_table
1221 * functions, we do have the option of sleeping on the head of
1222 * the table pool. Any function which updates the table pool
1223 * would then issue a wakeup() on the head, thus waking up any
1224 * processes waiting for a table.
1225 *
1226 * Actually, the place to sleep would be when some process
1227 * asks for a "wired" mapping that would run us short of
1228 * mapping resources. This design DEPENDS on always having
1229 * some mapping resources in the pool for stealing, so we
1230 * must make sure we NEVER let the pool become empty. -gwr
1231 */
1232 panic("get_a_table: out of A tables.");
1233 }
1234
1235 TAILQ_REMOVE(&a_pool, tbl, at_link);
1236 /*
1237 * If the table has a non-null parent pointer then it is in use.
1238 * Forcibly abduct it from its parent and clear its entries.
1239 * No re-entrancy worries here. This table would not be in the
1240 * table pool unless it was available for use.
1241 *
1242 * Note that the second argument to free_a_table() is FALSE. This
1243 * indicates that the table should not be relinked into the A table
1244 * pool. That is a job for the function that called us.
1245 */
1246 if (tbl->at_parent) {
1247 pmap = tbl->at_parent;
1248 free_a_table(tbl, FALSE);
1249 pmap->pm_a_tmgr = NULL;
1250 pmap->pm_a_phys = kernAphys;
1251 }
1252 #ifdef NON_REENTRANT
1253 /*
1254 * If the table isn't to be wired down, re-insert it at the
1255 * end of the pool.
1256 */
1257 if (!wired)
1258 /*
1259 * Quandary - XXX
1260 * Would it be better to let the calling function insert this
1261 * table into the queue? By inserting it here, we are allowing
1262 * it to be stolen immediately. The calling function is
1263 * probably not expecting to use a table that it is not
1264 * assured full control of.
1265 * Answer - In the intrest of re-entrancy, it is best to let
1266 * the calling function determine when a table is available
1267 * for use. Therefore this code block is not used.
1268 */
1269 TAILQ_INSERT_TAIL(&a_pool, tbl, at_link);
1270 #endif /* NON_REENTRANT */
1271 return tbl;
1272 }
1273
1274 /* get_b_table INTERNAL
1275 **
1276 * Return a level B table for use.
1277 */
1278 b_tmgr_t *
1279 get_b_table()
1280 {
1281 b_tmgr_t *tbl;
1282
1283 /* See 'get_a_table' for comments. */
1284 tbl = b_pool.tqh_first;
1285 if (tbl == NULL)
1286 panic("get_b_table: out of B tables.");
1287 TAILQ_REMOVE(&b_pool, tbl, bt_link);
1288 if (tbl->bt_parent) {
1289 tbl->bt_parent->at_dtbl[tbl->bt_pidx].attr.raw = MMU_DT_INVALID;
1290 tbl->bt_parent->at_ecnt--;
1291 free_b_table(tbl, FALSE);
1292 }
1293 #ifdef NON_REENTRANT
1294 if (!wired)
1295 /* XXX see quandary in get_b_table */
1296 /* XXX start lock */
1297 TAILQ_INSERT_TAIL(&b_pool, tbl, bt_link);
1298 /* XXX end lock */
1299 #endif /* NON_REENTRANT */
1300 return tbl;
1301 }
1302
1303 /* get_c_table INTERNAL
1304 **
1305 * Return a level C table for use.
1306 */
1307 c_tmgr_t *
1308 get_c_table()
1309 {
1310 c_tmgr_t *tbl;
1311
1312 /* See 'get_a_table' for comments */
1313 tbl = c_pool.tqh_first;
1314 if (tbl == NULL)
1315 panic("get_c_table: out of C tables.");
1316 TAILQ_REMOVE(&c_pool, tbl, ct_link);
1317 if (tbl->ct_parent) {
1318 tbl->ct_parent->bt_dtbl[tbl->ct_pidx].attr.raw = MMU_DT_INVALID;
1319 tbl->ct_parent->bt_ecnt--;
1320 free_c_table(tbl, FALSE);
1321 }
1322 #ifdef NON_REENTRANT
1323 if (!wired)
1324 /* XXX See quandary in get_a_table */
1325 /* XXX start lock */
1326 TAILQ_INSERT_TAIL(&c_pool, tbl, c_link);
1327 /* XXX end lock */
1328 #endif /* NON_REENTRANT */
1329
1330 return tbl;
1331 }
1332
1333 /*
1334 * The following 'free_table' and 'steal_table' functions are called to
1335 * detach tables from their current obligations (parents and children) and
1336 * prepare them for reuse in another mapping.
1337 *
1338 * Free_table is used when the calling function will handle the fate
1339 * of the parent table, such as returning it to the free pool when it has
1340 * no valid entries. Functions that do not want to handle this should
1341 * call steal_table, in which the parent table's descriptors and entry
1342 * count are automatically modified when this table is removed.
1343 */
1344
1345 /* free_a_table INTERNAL
1346 **
1347 * Unmaps the given A table and all child tables from their current
1348 * mappings. Returns the number of pages that were invalidated.
1349 * If 'relink' is true, the function will return the table to the head
1350 * of the available table pool.
1351 *
1352 * Cache note: The MC68851 will automatically flush all
1353 * descriptors derived from a given A table from its
1354 * Automatic Translation Cache (ATC) if we issue a
1355 * 'PFLUSHR' instruction with the base address of the
1356 * table. This function should do, and does so.
1357 * Note note: We are using an MC68030 - there is no
1358 * PFLUSHR.
1359 */
1360 int
1361 free_a_table(a_tbl, relink)
1362 a_tmgr_t *a_tbl;
1363 boolean_t relink;
1364 {
1365 int i, removed_cnt;
1366 mmu_long_dte_t *dte;
1367 mmu_short_dte_t *dtbl;
1368 b_tmgr_t *tmgr;
1369
1370 /*
1371 * Flush the ATC cache of all cached descriptors derived
1372 * from this table.
1373 * Sun3x does not use 68851's cached table feature
1374 * flush_atc_crp(mmu_vtop(a_tbl->dte));
1375 */
1376
1377 /*
1378 * Remove any pending cache flushes that were designated
1379 * for the pmap this A table belongs to.
1380 * a_tbl->parent->atc_flushq[0] = 0;
1381 * Not implemented in sun3x.
1382 */
1383
1384 /*
1385 * All A tables in the system should retain a map for the
1386 * kernel. If the table contains any valid descriptors
1387 * (other than those for the kernel area), invalidate them all,
1388 * stopping short of the kernel's entries.
1389 */
1390 removed_cnt = 0;
1391 if (a_tbl->at_ecnt) {
1392 dte = a_tbl->at_dtbl;
1393 for (i=0; i < MMU_TIA(KERNBASE); i++) {
1394 /*
1395 * If a table entry points to a valid B table, free
1396 * it and its children.
1397 */
1398 if (MMU_VALID_DT(dte[i])) {
1399 /*
1400 * The following block does several things,
1401 * from innermost expression to the
1402 * outermost:
1403 * 1) It extracts the base (cc 1996)
1404 * address of the B table pointed
1405 * to in the A table entry dte[i].
1406 * 2) It converts this base address into
1407 * the virtual address it can be
1408 * accessed with. (all MMU tables point
1409 * to physical addresses.)
1410 * 3) It finds the corresponding manager
1411 * structure which manages this MMU table.
1412 * 4) It frees the manager structure.
1413 * (This frees the MMU table and all
1414 * child tables. See 'free_b_table' for
1415 * details.)
1416 */
1417 dtbl = mmu_ptov(dte[i].addr.raw);
1418 tmgr = mmuB2tmgr(dtbl);
1419 removed_cnt += free_b_table(tmgr, TRUE);
1420 dte[i].attr.raw = MMU_DT_INVALID;
1421 }
1422 }
1423 a_tbl->at_ecnt = 0;
1424 }
1425 if (relink) {
1426 a_tbl->at_parent = NULL;
1427 TAILQ_REMOVE(&a_pool, a_tbl, at_link);
1428 TAILQ_INSERT_HEAD(&a_pool, a_tbl, at_link);
1429 }
1430 return removed_cnt;
1431 }
1432
1433 /* free_b_table INTERNAL
1434 **
1435 * Unmaps the given B table and all its children from their current
1436 * mappings. Returns the number of pages that were invalidated.
1437 * (For comments, see 'free_a_table()').
1438 */
1439 int
1440 free_b_table(b_tbl, relink)
1441 b_tmgr_t *b_tbl;
1442 boolean_t relink;
1443 {
1444 int i, removed_cnt;
1445 mmu_short_dte_t *dte;
1446 mmu_short_pte_t *dtbl;
1447 c_tmgr_t *tmgr;
1448
1449 removed_cnt = 0;
1450 if (b_tbl->bt_ecnt) {
1451 dte = b_tbl->bt_dtbl;
1452 for (i=0; i < MMU_B_TBL_SIZE; i++) {
1453 if (MMU_VALID_DT(dte[i])) {
1454 dtbl = mmu_ptov(MMU_DTE_PA(dte[i]));
1455 tmgr = mmuC2tmgr(dtbl);
1456 removed_cnt += free_c_table(tmgr, TRUE);
1457 dte[i].attr.raw = MMU_DT_INVALID;
1458 }
1459 }
1460 b_tbl->bt_ecnt = 0;
1461 }
1462
1463 if (relink) {
1464 b_tbl->bt_parent = NULL;
1465 TAILQ_REMOVE(&b_pool, b_tbl, bt_link);
1466 TAILQ_INSERT_HEAD(&b_pool, b_tbl, bt_link);
1467 }
1468 return removed_cnt;
1469 }
1470
1471 /* free_c_table INTERNAL
1472 **
1473 * Unmaps the given C table from use and returns it to the pool for
1474 * re-use. Returns the number of pages that were invalidated.
1475 *
1476 * This function preserves any physical page modification information
1477 * contained in the page descriptors within the C table by calling
1478 * 'pmap_remove_pte().'
1479 */
1480 int
1481 free_c_table(c_tbl, relink)
1482 c_tmgr_t *c_tbl;
1483 boolean_t relink;
1484 {
1485 int i, removed_cnt;
1486
1487 removed_cnt = 0;
1488 if (c_tbl->ct_ecnt) {
1489 for (i=0; i < MMU_C_TBL_SIZE; i++) {
1490 if (MMU_VALID_DT(c_tbl->ct_dtbl[i])) {
1491 pmap_remove_pte(&c_tbl->ct_dtbl[i]);
1492 removed_cnt++;
1493 }
1494 }
1495 c_tbl->ct_ecnt = 0;
1496 }
1497
1498 if (relink) {
1499 c_tbl->ct_parent = NULL;
1500 TAILQ_REMOVE(&c_pool, c_tbl, ct_link);
1501 TAILQ_INSERT_HEAD(&c_pool, c_tbl, ct_link);
1502 }
1503 return removed_cnt;
1504 }
1505
1506 #if 0
1507 /* free_c_table_novalid INTERNAL
1508 **
1509 * Frees the given C table manager without checking to see whether
1510 * or not it contains any valid page descriptors as it is assumed
1511 * that it does not.
1512 */
1513 void
1514 free_c_table_novalid(c_tbl)
1515 c_tmgr_t *c_tbl;
1516 {
1517 TAILQ_REMOVE(&c_pool, c_tbl, ct_link);
1518 TAILQ_INSERT_HEAD(&c_pool, c_tbl, ct_link);
1519 c_tbl->ct_parent->bt_dtbl[c_tbl->ct_pidx].attr.raw = MMU_DT_INVALID;
1520 c_tbl->ct_parent->bt_ecnt--;
1521 /*
1522 * XXX - Should call equiv. of 'free_b_table_novalid' here if
1523 * we just removed the last entry of the parent B table.
1524 * But I want to insure that this will not endanger pmap_enter()
1525 * with sudden removal of tables it is working with.
1526 *
1527 * We should probably add another field to each table, indicating
1528 * whether or not it is 'locked', ie. in the process of being
1529 * modified.
1530 */
1531 c_tbl->ct_parent = NULL;
1532 }
1533 #endif
1534
1535 /* pmap_remove_pte INTERNAL
1536 **
1537 * Unmap the given pte and preserve any page modification
1538 * information by transfering it to the pv head of the
1539 * physical page it maps to. This function does not update
1540 * any reference counts because it is assumed that the calling
1541 * function will do so.
1542 */
1543 void
1544 pmap_remove_pte(pte)
1545 mmu_short_pte_t *pte;
1546 {
1547 u_short pv_idx, targ_idx;
1548 int s;
1549 vm_offset_t pa;
1550 pv_t *pv;
1551
1552 pa = MMU_PTE_PA(*pte);
1553 if (is_managed(pa)) {
1554 pv = pa2pv(pa);
1555 targ_idx = pteidx(pte); /* Index of PTE being removed */
1556
1557 /*
1558 * If the PTE being removed is the first (or only) PTE in
1559 * the list of PTEs currently mapped to this page, remove the
1560 * PTE by changing the index found on the PV head. Otherwise
1561 * a linear search through the list will have to be executed
1562 * in order to find the PVE which points to the PTE being
1563 * removed, so that it may be modified to point to its new
1564 * neighbor.
1565 */
1566 s = splimp();
1567 pv_idx = pv->pv_idx; /* Index of first PTE in PV list */
1568 if (pv_idx == targ_idx) {
1569 pv->pv_idx = pvebase[targ_idx].pve_next;
1570 } else {
1571 /*
1572 * Find the PV element pointing to the target
1573 * element. Note: may have pv_idx==PVE_EOL
1574 */
1575 for (;;) {
1576 if (pv_idx == PVE_EOL) {
1577 #ifdef PMAP_DEBUG
1578 printf("pmap_remove_pte: PVE_EOL\n");
1579 Debugger();
1580 #endif
1581 goto pv_not_found;
1582 }
1583 if (pvebase[pv_idx].pve_next == targ_idx)
1584 break;
1585 pv_idx = pvebase[pv_idx].pve_next;
1586 }
1587 /*
1588 * At this point, pv_idx is the index of the PV
1589 * element just before the target element in the list.
1590 * Unlink the target.
1591 */
1592 pvebase[pv_idx].pve_next = pvebase[targ_idx].pve_next;
1593 pv_not_found:
1594 }
1595 /*
1596 * Save the mod/ref bits of the pte by simply
1597 * ORing the entire pte onto the pv_flags member
1598 * of the pv structure.
1599 * There is no need to use a separate bit pattern
1600 * for usage information on the pv head than that
1601 * which is used on the MMU ptes.
1602 */
1603 pv->pv_flags |= (u_short) pte->attr.raw;
1604 splx(s);
1605 }
1606
1607 pte->attr.raw = MMU_DT_INVALID;
1608 }
1609
1610 /* pmap_stroll INTERNAL
1611 **
1612 * Retrieve the addresses of all table managers involved in the mapping of
1613 * the given virtual address. If the table walk completed sucessfully,
1614 * return TRUE. If it was only partially sucessful, return FALSE.
1615 * The table walk performed by this function is important to many other
1616 * functions in this module.
1617 *
1618 * Note: This function ought to be easier to read.
1619 */
1620 boolean_t
1621 pmap_stroll(pmap, va, a_tbl, b_tbl, c_tbl, pte, a_idx, b_idx, pte_idx)
1622 pmap_t pmap;
1623 vm_offset_t va;
1624 a_tmgr_t **a_tbl;
1625 b_tmgr_t **b_tbl;
1626 c_tmgr_t **c_tbl;
1627 mmu_short_pte_t **pte;
1628 int *a_idx, *b_idx, *pte_idx;
1629 {
1630 mmu_long_dte_t *a_dte; /* A: long descriptor table */
1631 mmu_short_dte_t *b_dte; /* B: short descriptor table */
1632
1633 if (pmap == pmap_kernel())
1634 return FALSE;
1635
1636 /* Does the given pmap have its own A table? */
1637 *a_tbl = pmap->pm_a_tmgr;
1638 if (*a_tbl == NULL)
1639 return FALSE; /* No. Return unknown. */
1640 /* Does the A table have a valid B table
1641 * under the corresponding table entry?
1642 */
1643 *a_idx = MMU_TIA(va);
1644 a_dte = &((*a_tbl)->at_dtbl[*a_idx]);
1645 if (!MMU_VALID_DT(*a_dte))
1646 return FALSE; /* No. Return unknown. */
1647 /* Yes. Extract B table from the A table. */
1648 *b_tbl = mmuB2tmgr(mmu_ptov(a_dte->addr.raw));
1649 /* Does the B table have a valid C table
1650 * under the corresponding table entry?
1651 */
1652 *b_idx = MMU_TIB(va);
1653 b_dte = &((*b_tbl)->bt_dtbl[*b_idx]);
1654 if (!MMU_VALID_DT(*b_dte))
1655 return FALSE; /* No. Return unknown. */
1656 /* Yes. Extract C table from the B table. */
1657 *c_tbl = mmuC2tmgr(mmu_ptov(MMU_DTE_PA(*b_dte)));
1658 *pte_idx = MMU_TIC(va);
1659 *pte = &((*c_tbl)->ct_dtbl[*pte_idx]);
1660
1661 return TRUE;
1662 }
1663
1664 /* pmap_enter INTERFACE
1665 **
1666 * Called by the kernel to map a virtual address
1667 * to a physical address in the given process map.
1668 *
1669 * Note: this function should apply an exclusive lock
1670 * on the pmap system for its duration. (it certainly
1671 * would save my hair!!)
1672 * This function ought to be easier to read.
1673 */
1674 void
1675 pmap_enter(pmap, va, pa, prot, wired, access_type)
1676 pmap_t pmap;
1677 vm_offset_t va;
1678 vm_offset_t pa;
1679 vm_prot_t prot;
1680 boolean_t wired;
1681 vm_prot_t access_type;
1682 {
1683 boolean_t insert, managed; /* Marks the need for PV insertion.*/
1684 u_short nidx; /* PV list index */
1685 int s; /* Used for splimp()/splx() */
1686 int flags; /* Mapping flags. eg. Cache inhibit */
1687 u_int a_idx, b_idx, pte_idx; /* table indices */
1688 a_tmgr_t *a_tbl; /* A: long descriptor table manager */
1689 b_tmgr_t *b_tbl; /* B: short descriptor table manager */
1690 c_tmgr_t *c_tbl; /* C: short page table manager */
1691 mmu_long_dte_t *a_dte; /* A: long descriptor table */
1692 mmu_short_dte_t *b_dte; /* B: short descriptor table */
1693 mmu_short_pte_t *c_pte; /* C: short page descriptor table */
1694 pv_t *pv; /* pv list head */
1695 enum {NONE, NEWA, NEWB, NEWC} llevel; /* used at end */
1696
1697 if (pmap == NULL)
1698 return;
1699 if (pmap == pmap_kernel()) {
1700 pmap_enter_kernel(va, pa, prot);
1701 return;
1702 }
1703
1704 flags = (pa & ~MMU_PAGE_MASK);
1705 pa &= MMU_PAGE_MASK;
1706
1707 /*
1708 * Determine if the physical address being mapped is on-board RAM.
1709 * Any other area of the address space is likely to belong to a
1710 * device and hence it would be disasterous to cache its contents.
1711 */
1712 if ((managed = is_managed(pa)) == FALSE)
1713 flags |= PMAP_NC;
1714
1715 /*
1716 * For user mappings we walk along the MMU tables of the given
1717 * pmap, reaching a PTE which describes the virtual page being
1718 * mapped or changed. If any level of the walk ends in an invalid
1719 * entry, a table must be allocated and the entry must be updated
1720 * to point to it.
1721 * There is a bit of confusion as to whether this code must be
1722 * re-entrant. For now we will assume it is. To support
1723 * re-entrancy we must unlink tables from the table pool before
1724 * we assume we may use them. Tables are re-linked into the pool
1725 * when we are finished with them at the end of the function.
1726 * But I don't feel like doing that until we have proof that this
1727 * needs to be re-entrant.
1728 * 'llevel' records which tables need to be relinked.
1729 */
1730 llevel = NONE;
1731
1732 /*
1733 * Step 1 - Retrieve the A table from the pmap. If it has no
1734 * A table, allocate a new one from the available pool.
1735 */
1736
1737 a_tbl = pmap->pm_a_tmgr;
1738 if (a_tbl == NULL) {
1739 /*
1740 * This pmap does not currently have an A table. Allocate
1741 * a new one.
1742 */
1743 a_tbl = get_a_table();
1744 a_tbl->at_parent = pmap;
1745
1746 /*
1747 * Assign this new A table to the pmap, and calculate its
1748 * physical address so that loadcrp() can be used to make
1749 * the table active.
1750 */
1751 pmap->pm_a_tmgr = a_tbl;
1752 pmap->pm_a_phys = mmu_vtop(a_tbl->at_dtbl);
1753
1754 /*
1755 * If the process receiving a new A table is the current
1756 * process, we are responsible for setting the MMU so that
1757 * it becomes the current address space. This only adds
1758 * new mappings, so no need to flush anything.
1759 */
1760 if (pmap == current_pmap()) {
1761 kernel_crp.rp_addr = pmap->pm_a_phys;
1762 loadcrp(&kernel_crp);
1763 }
1764
1765 if (!wired)
1766 llevel = NEWA;
1767 } else {
1768 /*
1769 * Use the A table already allocated for this pmap.
1770 * Unlink it from the A table pool if necessary.
1771 */
1772 if (wired && !a_tbl->at_wcnt)
1773 TAILQ_REMOVE(&a_pool, a_tbl, at_link);
1774 }
1775
1776 /*
1777 * Step 2 - Walk into the B table. If there is no valid B table,
1778 * allocate one.
1779 */
1780
1781 a_idx = MMU_TIA(va); /* Calculate the TIA of the VA. */
1782 a_dte = &a_tbl->at_dtbl[a_idx]; /* Retrieve descriptor from table */
1783 if (MMU_VALID_DT(*a_dte)) { /* Is the descriptor valid? */
1784 /* The descriptor is valid. Use the B table it points to. */
1785 /*************************************
1786 * a_idx *
1787 * v *
1788 * a_tbl -> +-+-+-+-+-+-+-+-+-+-+-+- *
1789 * | | | | | | | | | | | | *
1790 * +-+-+-+-+-+-+-+-+-+-+-+- *
1791 * | *
1792 * \- b_tbl -> +-+- *
1793 * | | *
1794 * +-+- *
1795 *************************************/
1796 b_dte = mmu_ptov(a_dte->addr.raw);
1797 b_tbl = mmuB2tmgr(b_dte);
1798
1799 /*
1800 * If the requested mapping must be wired, but this table
1801 * being used to map it is not, the table must be removed
1802 * from the available pool and its wired entry count
1803 * incremented.
1804 */
1805 if (wired && !b_tbl->bt_wcnt) {
1806 TAILQ_REMOVE(&b_pool, b_tbl, bt_link);
1807 a_tbl->at_wcnt++;
1808 }
1809 } else {
1810 /* The descriptor is invalid. Allocate a new B table. */
1811 b_tbl = get_b_table();
1812
1813 /* Point the parent A table descriptor to this new B table. */
1814 a_dte->addr.raw = mmu_vtop(b_tbl->bt_dtbl);
1815 a_dte->attr.raw = MMU_LONG_DTE_LU | MMU_DT_SHORT;
1816 a_tbl->at_ecnt++; /* Update parent's valid entry count */
1817
1818 /* Create the necessary back references to the parent table */
1819 b_tbl->bt_parent = a_tbl;
1820 b_tbl->bt_pidx = a_idx;
1821
1822 /*
1823 * If this table is to be wired, make sure the parent A table
1824 * wired count is updated to reflect that it has another wired
1825 * entry.
1826 */
1827 if (wired)
1828 a_tbl->at_wcnt++;
1829 else if (llevel == NONE)
1830 llevel = NEWB;
1831 }
1832
1833 /*
1834 * Step 3 - Walk into the C table, if there is no valid C table,
1835 * allocate one.
1836 */
1837
1838 b_idx = MMU_TIB(va); /* Calculate the TIB of the VA */
1839 b_dte = &b_tbl->bt_dtbl[b_idx]; /* Retrieve descriptor from table */
1840 if (MMU_VALID_DT(*b_dte)) { /* Is the descriptor valid? */
1841 /* The descriptor is valid. Use the C table it points to. */
1842 /**************************************
1843 * c_idx *
1844 * | v *
1845 * \- b_tbl -> +-+-+-+-+-+-+-+-+-+-+- *
1846 * | | | | | | | | | | | *
1847 * +-+-+-+-+-+-+-+-+-+-+- *
1848 * | *
1849 * \- c_tbl -> +-+-- *
1850 * | | | *
1851 * +-+-- *
1852 **************************************/
1853 c_pte = mmu_ptov(MMU_PTE_PA(*b_dte));
1854 c_tbl = mmuC2tmgr(c_pte);
1855
1856 /* If mapping is wired and table is not */
1857 if (wired && !c_tbl->ct_wcnt) {
1858 TAILQ_REMOVE(&c_pool, c_tbl, ct_link);
1859 b_tbl->bt_wcnt++;
1860 }
1861 } else {
1862 /* The descriptor is invalid. Allocate a new C table. */
1863 c_tbl = get_c_table();
1864
1865 /* Point the parent B table descriptor to this new C table. */
1866 b_dte->attr.raw = mmu_vtop(c_tbl->ct_dtbl);
1867 b_dte->attr.raw |= MMU_DT_SHORT;
1868 b_tbl->bt_ecnt++; /* Update parent's valid entry count */
1869
1870 /* Create the necessary back references to the parent table */
1871 c_tbl->ct_parent = b_tbl;
1872 c_tbl->ct_pidx = b_idx;
1873 /*
1874 * Store the pmap and base virtual managed address for faster
1875 * retrieval in the PV functions.
1876 */
1877 c_tbl->ct_pmap = pmap;
1878 c_tbl->ct_va = (va & (MMU_TIA_MASK|MMU_TIB_MASK));
1879
1880 /*
1881 * If this table is to be wired, make sure the parent B table
1882 * wired count is updated to reflect that it has another wired
1883 * entry.
1884 */
1885 if (wired)
1886 b_tbl->bt_wcnt++;
1887 else if (llevel == NONE)
1888 llevel = NEWC;
1889 }
1890
1891 /*
1892 * Step 4 - Deposit a page descriptor (PTE) into the appropriate
1893 * slot of the C table, describing the PA to which the VA is mapped.
1894 */
1895
1896 pte_idx = MMU_TIC(va);
1897 c_pte = &c_tbl->ct_dtbl[pte_idx];
1898 if (MMU_VALID_DT(*c_pte)) { /* Is the entry currently valid? */
1899 /*
1900 * The PTE is currently valid. This particular call
1901 * is just a synonym for one (or more) of the following
1902 * operations:
1903 * change protection of a page
1904 * change wiring status of a page
1905 * remove the mapping of a page
1906 *
1907 * XXX - Semi critical: This code should unwire the PTE
1908 * and, possibly, associated parent tables if this is a
1909 * change wiring operation. Currently it does not.
1910 *
1911 * This may be ok if pmap_unwire() is the only
1912 * interface used to UNWIRE a page.
1913 */
1914
1915 /* First check if this is a wiring operation. */
1916 if (wired && (c_pte->attr.raw & MMU_SHORT_PTE_WIRED)) {
1917 /*
1918 * The PTE is already wired. To prevent it from being
1919 * counted as a new wiring operation, reset the 'wired'
1920 * variable.
1921 */
1922 wired = FALSE;
1923 }
1924
1925 /* Is the new address the same as the old? */
1926 if (MMU_PTE_PA(*c_pte) == pa) {
1927 /*
1928 * Yes, mark that it does not need to be reinserted
1929 * into the PV list.
1930 */
1931 insert = FALSE;
1932
1933 /*
1934 * Clear all but the modified, referenced and wired
1935 * bits on the PTE.
1936 */
1937 c_pte->attr.raw &= (MMU_SHORT_PTE_M
1938 | MMU_SHORT_PTE_USED | MMU_SHORT_PTE_WIRED);
1939 } else {
1940 /* No, remove the old entry */
1941 pmap_remove_pte(c_pte);
1942 insert = TRUE;
1943 }
1944
1945 /*
1946 * TLB flush is only necessary if modifying current map.
1947 * However, in pmap_enter(), the pmap almost always IS
1948 * the current pmap, so don't even bother to check.
1949 */
1950 TBIS(va);
1951 } else {
1952 /*
1953 * The PTE is invalid. Increment the valid entry count in
1954 * the C table manager to reflect the addition of a new entry.
1955 */
1956 c_tbl->ct_ecnt++;
1957
1958 /* XXX - temporarily make sure the PTE is cleared. */
1959 c_pte->attr.raw = 0;
1960
1961 /* It will also need to be inserted into the PV list. */
1962 insert = TRUE;
1963 }
1964
1965 /*
1966 * If page is changing from unwired to wired status, set an unused bit
1967 * within the PTE to indicate that it is wired. Also increment the
1968 * wired entry count in the C table manager.
1969 */
1970 if (wired) {
1971 c_pte->attr.raw |= MMU_SHORT_PTE_WIRED;
1972 c_tbl->ct_wcnt++;
1973 }
1974
1975 /*
1976 * Map the page, being careful to preserve modify/reference/wired
1977 * bits. At this point it is assumed that the PTE either has no bits
1978 * set, or if there are set bits, they are only modified, reference or
1979 * wired bits. If not, the following statement will cause erratic
1980 * behavior.
1981 */
1982 #ifdef PMAP_DEBUG
1983 if (c_pte->attr.raw & ~(MMU_SHORT_PTE_M |
1984 MMU_SHORT_PTE_USED | MMU_SHORT_PTE_WIRED)) {
1985 printf("pmap_enter: junk left in PTE at %p\n", c_pte);
1986 Debugger();
1987 }
1988 #endif
1989 c_pte->attr.raw |= ((u_long) pa | MMU_DT_PAGE);
1990
1991 /*
1992 * If the mapping should be read-only, set the write protect
1993 * bit in the PTE.
1994 */
1995 if (!(prot & VM_PROT_WRITE))
1996 c_pte->attr.raw |= MMU_SHORT_PTE_WP;
1997
1998 /*
1999 * If the mapping should be cache inhibited (indicated by the flag
2000 * bits found on the lower order of the physical address.)
2001 * mark the PTE as a cache inhibited page.
2002 */
2003 if (flags & PMAP_NC)
2004 c_pte->attr.raw |= MMU_SHORT_PTE_CI;
2005
2006 /*
2007 * If the physical address being mapped is managed by the PV
2008 * system then link the pte into the list of pages mapped to that
2009 * address.
2010 */
2011 if (insert && managed) {
2012 pv = pa2pv(pa);
2013 nidx = pteidx(c_pte);
2014
2015 s = splimp();
2016 pvebase[nidx].pve_next = pv->pv_idx;
2017 pv->pv_idx = nidx;
2018 splx(s);
2019 }
2020
2021 /* Move any allocated tables back into the active pool. */
2022
2023 switch (llevel) {
2024 case NEWA:
2025 TAILQ_INSERT_TAIL(&a_pool, a_tbl, at_link);
2026 /* FALLTHROUGH */
2027 case NEWB:
2028 TAILQ_INSERT_TAIL(&b_pool, b_tbl, bt_link);
2029 /* FALLTHROUGH */
2030 case NEWC:
2031 TAILQ_INSERT_TAIL(&c_pool, c_tbl, ct_link);
2032 /* FALLTHROUGH */
2033 default:
2034 break;
2035 }
2036 }
2037
2038 /* pmap_enter_kernel INTERNAL
2039 **
2040 * Map the given virtual address to the given physical address within the
2041 * kernel address space. This function exists because the kernel map does
2042 * not do dynamic table allocation. It consists of a contiguous array of ptes
2043 * and can be edited directly without the need to walk through any tables.
2044 *
2045 * XXX: "Danger, Will Robinson!"
2046 * Note that the kernel should never take a fault on any page
2047 * between [ KERNBASE .. virtual_avail ] and this is checked in
2048 * trap.c for kernel-mode MMU faults. This means that mappings
2049 * created in that range must be implicily wired. -gwr
2050 */
2051 void
2052 pmap_enter_kernel(va, pa, prot)
2053 vm_offset_t va;
2054 vm_offset_t pa;
2055 vm_prot_t prot;
2056 {
2057 boolean_t was_valid, insert;
2058 u_short pte_idx;
2059 int s, flags;
2060 mmu_short_pte_t *pte;
2061 pv_t *pv;
2062 vm_offset_t old_pa;
2063
2064 flags = (pa & ~MMU_PAGE_MASK);
2065 pa &= MMU_PAGE_MASK;
2066
2067 if (is_managed(pa))
2068 insert = TRUE;
2069 else
2070 insert = FALSE;
2071
2072 /*
2073 * Calculate the index of the PTE being modified.
2074 */
2075 pte_idx = (u_long) m68k_btop(va - KERNBASE);
2076
2077 /* This array is traditionally named "Sysmap" */
2078 pte = &kernCbase[pte_idx];
2079
2080 s = splimp();
2081 if (MMU_VALID_DT(*pte)) {
2082 was_valid = TRUE;
2083 /*
2084 * If the PTE already maps a different
2085 * physical address, umap and pv_unlink.
2086 */
2087 old_pa = MMU_PTE_PA(*pte);
2088 if (pa != old_pa)
2089 pmap_remove_pte(pte);
2090 else {
2091 /*
2092 * Old PA and new PA are the same. No need to
2093 * relink the mapping within the PV list.
2094 */
2095 insert = FALSE;
2096
2097 /*
2098 * Save any mod/ref bits on the PTE.
2099 */
2100 pte->attr.raw &= (MMU_SHORT_PTE_USED|MMU_SHORT_PTE_M);
2101 }
2102 } else {
2103 pte->attr.raw = MMU_DT_INVALID;
2104 was_valid = FALSE;
2105 }
2106
2107 /*
2108 * Map the page. Being careful to preserve modified/referenced bits
2109 * on the PTE.
2110 */
2111 pte->attr.raw |= (pa | MMU_DT_PAGE);
2112
2113 if (!(prot & VM_PROT_WRITE)) /* If access should be read-only */
2114 pte->attr.raw |= MMU_SHORT_PTE_WP;
2115 if (flags & PMAP_NC)
2116 pte->attr.raw |= MMU_SHORT_PTE_CI;
2117 if (was_valid)
2118 TBIS(va);
2119
2120 /*
2121 * Insert the PTE into the PV system, if need be.
2122 */
2123 if (insert) {
2124 pv = pa2pv(pa);
2125 pvebase[pte_idx].pve_next = pv->pv_idx;
2126 pv->pv_idx = pte_idx;
2127 }
2128 splx(s);
2129
2130 }
2131
2132 void
2133 pmap_kenter_pa(va, pa, prot)
2134 vaddr_t va;
2135 paddr_t pa;
2136 vm_prot_t prot;
2137 {
2138 pmap_enter(pmap_kernel(), va, pa, prot, TRUE, 0);
2139 }
2140
2141 void
2142 pmap_kenter_pgs(va, pgs, npgs)
2143 vaddr_t va;
2144 struct vm_page **pgs;
2145 int npgs;
2146 {
2147 int i;
2148
2149 for (i = 0; i < npgs; i++, va += PAGE_SIZE) {
2150 pmap_enter(pmap_kernel(), va, VM_PAGE_TO_PHYS(pgs[i]),
2151 VM_PROT_READ|VM_PROT_WRITE, TRUE, 0);
2152 }
2153 }
2154
2155 void
2156 pmap_kremove(va, len)
2157 vaddr_t va;
2158 vsize_t len;
2159 {
2160 for (len >>= PAGE_SHIFT; len > 0; len--, va += PAGE_SIZE) {
2161 pmap_remove(pmap_kernel(), va, va + PAGE_SIZE);
2162 }
2163 }
2164
2165 /* pmap_map INTERNAL
2166 **
2167 * Map a contiguous range of physical memory into a contiguous range of
2168 * the kernel virtual address space.
2169 *
2170 * Used for device mappings and early mapping of the kernel text/data/bss.
2171 * Returns the first virtual address beyond the end of the range.
2172 */
2173 vm_offset_t
2174 pmap_map(va, pa, endpa, prot)
2175 vm_offset_t va;
2176 vm_offset_t pa;
2177 vm_offset_t endpa;
2178 int prot;
2179 {
2180 int sz;
2181
2182 sz = endpa - pa;
2183 do {
2184 pmap_enter_kernel(va, pa, prot);
2185 va += NBPG;
2186 pa += NBPG;
2187 sz -= NBPG;
2188 } while (sz > 0);
2189 return(va);
2190 }
2191
2192 /* pmap_protect INTERFACE
2193 **
2194 * Apply the given protection to the given virtual address range within
2195 * the given map.
2196 *
2197 * It is ok for the protection applied to be stronger than what is
2198 * specified. We use this to our advantage when the given map has no
2199 * mapping for the virtual address. By skipping a page when this
2200 * is discovered, we are effectively applying a protection of VM_PROT_NONE,
2201 * and therefore do not need to map the page just to apply a protection
2202 * code. Only pmap_enter() needs to create new mappings if they do not exist.
2203 *
2204 * XXX - This function could be speeded up by using pmap_stroll() for inital
2205 * setup, and then manual scrolling in the for() loop.
2206 */
2207 void
2208 pmap_protect(pmap, startva, endva, prot)
2209 pmap_t pmap;
2210 vm_offset_t startva, endva;
2211 vm_prot_t prot;
2212 {
2213 boolean_t iscurpmap;
2214 int a_idx, b_idx, c_idx;
2215 a_tmgr_t *a_tbl;
2216 b_tmgr_t *b_tbl;
2217 c_tmgr_t *c_tbl;
2218 mmu_short_pte_t *pte;
2219
2220 if (pmap == NULL)
2221 return;
2222 if (pmap == pmap_kernel()) {
2223 pmap_protect_kernel(startva, endva, prot);
2224 return;
2225 }
2226
2227 /*
2228 * In this particular pmap implementation, there are only three
2229 * types of memory protection: 'all' (read/write/execute),
2230 * 'read-only' (read/execute) and 'none' (no mapping.)
2231 * It is not possible for us to treat 'executable' as a separate
2232 * protection type. Therefore, protection requests that seek to
2233 * remove execute permission while retaining read or write, and those
2234 * that make little sense (write-only for example) are ignored.
2235 */
2236 switch (prot) {
2237 case VM_PROT_NONE:
2238 /*
2239 * A request to apply the protection code of
2240 * 'VM_PROT_NONE' is a synonym for pmap_remove().
2241 */
2242 pmap_remove(pmap, startva, endva);
2243 return;
2244 case VM_PROT_EXECUTE:
2245 case VM_PROT_READ:
2246 case VM_PROT_READ|VM_PROT_EXECUTE:
2247 /* continue */
2248 break;
2249 case VM_PROT_WRITE:
2250 case VM_PROT_WRITE|VM_PROT_READ:
2251 case VM_PROT_WRITE|VM_PROT_EXECUTE:
2252 case VM_PROT_ALL:
2253 /* None of these should happen in a sane system. */
2254 return;
2255 }
2256
2257 /*
2258 * If the pmap has no A table, it has no mappings and therefore
2259 * there is nothing to protect.
2260 */
2261 if ((a_tbl = pmap->pm_a_tmgr) == NULL)
2262 return;
2263
2264 a_idx = MMU_TIA(startva);
2265 b_idx = MMU_TIB(startva);
2266 c_idx = MMU_TIC(startva);
2267 b_tbl = (b_tmgr_t *) c_tbl = NULL;
2268
2269 iscurpmap = (pmap == current_pmap());
2270 while (startva < endva) {
2271 if (b_tbl || MMU_VALID_DT(a_tbl->at_dtbl[a_idx])) {
2272 if (b_tbl == NULL) {
2273 b_tbl = (b_tmgr_t *) a_tbl->at_dtbl[a_idx].addr.raw;
2274 b_tbl = mmu_ptov((vm_offset_t) b_tbl);
2275 b_tbl = mmuB2tmgr((mmu_short_dte_t *) b_tbl);
2276 }
2277 if (c_tbl || MMU_VALID_DT(b_tbl->bt_dtbl[b_idx])) {
2278 if (c_tbl == NULL) {
2279 c_tbl = (c_tmgr_t *) MMU_DTE_PA(b_tbl->bt_dtbl[b_idx]);
2280 c_tbl = mmu_ptov((vm_offset_t) c_tbl);
2281 c_tbl = mmuC2tmgr((mmu_short_pte_t *) c_tbl);
2282 }
2283 if (MMU_VALID_DT(c_tbl->ct_dtbl[c_idx])) {
2284 pte = &c_tbl->ct_dtbl[c_idx];
2285 /* make the mapping read-only */
2286 pte->attr.raw |= MMU_SHORT_PTE_WP;
2287 /*
2288 * If we just modified the current address space,
2289 * flush any translations for the modified page from
2290 * the translation cache and any data from it in the
2291 * data cache.
2292 */
2293 if (iscurpmap)
2294 TBIS(startva);
2295 }
2296 startva += NBPG;
2297
2298 if (++c_idx >= MMU_C_TBL_SIZE) { /* exceeded C table? */
2299 c_tbl = NULL;
2300 c_idx = 0;
2301 if (++b_idx >= MMU_B_TBL_SIZE) { /* exceeded B table? */
2302 b_tbl = NULL;
2303 b_idx = 0;
2304 }
2305 }
2306 } else { /* C table wasn't valid */
2307 c_tbl = NULL;
2308 c_idx = 0;
2309 startva += MMU_TIB_RANGE;
2310 if (++b_idx >= MMU_B_TBL_SIZE) { /* exceeded B table? */
2311 b_tbl = NULL;
2312 b_idx = 0;
2313 }
2314 } /* C table */
2315 } else { /* B table wasn't valid */
2316 b_tbl = NULL;
2317 b_idx = 0;
2318 startva += MMU_TIA_RANGE;
2319 a_idx++;
2320 } /* B table */
2321 }
2322 }
2323
2324 /* pmap_protect_kernel INTERNAL
2325 **
2326 * Apply the given protection code to a kernel address range.
2327 */
2328 void
2329 pmap_protect_kernel(startva, endva, prot)
2330 vm_offset_t startva, endva;
2331 vm_prot_t prot;
2332 {
2333 vm_offset_t va;
2334 mmu_short_pte_t *pte;
2335
2336 pte = &kernCbase[(unsigned long) m68k_btop(startva - KERNBASE)];
2337 for (va = startva; va < endva; va += NBPG, pte++) {
2338 if (MMU_VALID_DT(*pte)) {
2339 switch (prot) {
2340 case VM_PROT_ALL:
2341 break;
2342 case VM_PROT_EXECUTE:
2343 case VM_PROT_READ:
2344 case VM_PROT_READ|VM_PROT_EXECUTE:
2345 pte->attr.raw |= MMU_SHORT_PTE_WP;
2346 break;
2347 case VM_PROT_NONE:
2348 /* this is an alias for 'pmap_remove_kernel' */
2349 pmap_remove_pte(pte);
2350 break;
2351 default:
2352 break;
2353 }
2354 /*
2355 * since this is the kernel, immediately flush any cached
2356 * descriptors for this address.
2357 */
2358 TBIS(va);
2359 }
2360 }
2361 }
2362
2363 /* pmap_unwire INTERFACE
2364 **
2365 * Clear the wired attribute of the specified page.
2366 *
2367 * This function is called from vm_fault.c to unwire
2368 * a mapping.
2369 */
2370 void
2371 pmap_unwire(pmap, va)
2372 pmap_t pmap;
2373 vm_offset_t va;
2374 {
2375 int a_idx, b_idx, c_idx;
2376 a_tmgr_t *a_tbl;
2377 b_tmgr_t *b_tbl;
2378 c_tmgr_t *c_tbl;
2379 mmu_short_pte_t *pte;
2380
2381 /* Kernel mappings always remain wired. */
2382 if (pmap == pmap_kernel())
2383 return;
2384
2385 /*
2386 * Walk through the tables. If the walk terminates without
2387 * a valid PTE then the address wasn't wired in the first place.
2388 * Return immediately.
2389 */
2390 if (pmap_stroll(pmap, va, &a_tbl, &b_tbl, &c_tbl, &pte, &a_idx,
2391 &b_idx, &c_idx) == FALSE)
2392 return;
2393
2394
2395 /* Is the PTE wired? If not, return. */
2396 if (!(pte->attr.raw & MMU_SHORT_PTE_WIRED))
2397 return;
2398
2399 /* Remove the wiring bit. */
2400 pte->attr.raw &= ~(MMU_SHORT_PTE_WIRED);
2401
2402 /*
2403 * Decrement the wired entry count in the C table.
2404 * If it reaches zero the following things happen:
2405 * 1. The table no longer has any wired entries and is considered
2406 * unwired.
2407 * 2. It is placed on the available queue.
2408 * 3. The parent table's wired entry count is decremented.
2409 * 4. If it reaches zero, this process repeats at step 1 and
2410 * stops at after reaching the A table.
2411 */
2412 if (--c_tbl->ct_wcnt == 0) {
2413 TAILQ_INSERT_TAIL(&c_pool, c_tbl, ct_link);
2414 if (--b_tbl->bt_wcnt == 0) {
2415 TAILQ_INSERT_TAIL(&b_pool, b_tbl, bt_link);
2416 if (--a_tbl->at_wcnt == 0) {
2417 TAILQ_INSERT_TAIL(&a_pool, a_tbl, at_link);
2418 }
2419 }
2420 }
2421 }
2422
2423 /* pmap_copy INTERFACE
2424 **
2425 * Copy the mappings of a range of addresses in one pmap, into
2426 * the destination address of another.
2427 *
2428 * This routine is advisory. Should we one day decide that MMU tables
2429 * may be shared by more than one pmap, this function should be used to
2430 * link them together. Until that day however, we do nothing.
2431 */
2432 void
2433 pmap_copy(pmap_a, pmap_b, dst, len, src)
2434 pmap_t pmap_a, pmap_b;
2435 vm_offset_t dst;
2436 vm_size_t len;
2437 vm_offset_t src;
2438 {
2439 /* not implemented. */
2440 }
2441
2442 /* pmap_copy_page INTERFACE
2443 **
2444 * Copy the contents of one physical page into another.
2445 *
2446 * This function makes use of two virtual pages allocated in pmap_bootstrap()
2447 * to map the two specified physical pages into the kernel address space.
2448 *
2449 * Note: We could use the transparent translation registers to make the
2450 * mappings. If we do so, be sure to disable interrupts before using them.
2451 */
2452 void
2453 pmap_copy_page(srcpa, dstpa)
2454 vm_offset_t srcpa, dstpa;
2455 {
2456 vm_offset_t srcva, dstva;
2457 int s;
2458
2459 srcva = tmp_vpages[0];
2460 dstva = tmp_vpages[1];
2461
2462 s = splimp();
2463 if (tmp_vpages_inuse++)
2464 panic("pmap_copy_page: temporary vpages are in use.");
2465
2466 /* Map pages as non-cacheable to avoid cache polution? */
2467 pmap_enter_kernel(srcva, srcpa, VM_PROT_READ);
2468 pmap_enter_kernel(dstva, dstpa, VM_PROT_READ|VM_PROT_WRITE);
2469
2470 /* Hand-optimized version of bcopy(src, dst, NBPG) */
2471 copypage((char *) srcva, (char *) dstva);
2472
2473 pmap_remove_kernel(srcva, srcva + NBPG);
2474 pmap_remove_kernel(dstva, dstva + NBPG);
2475
2476 --tmp_vpages_inuse;
2477 splx(s);
2478 }
2479
2480 /* pmap_zero_page INTERFACE
2481 **
2482 * Zero the contents of the specified physical page.
2483 *
2484 * Uses one of the virtual pages allocated in pmap_boostrap()
2485 * to map the specified page into the kernel address space.
2486 */
2487 void
2488 pmap_zero_page(dstpa)
2489 vm_offset_t dstpa;
2490 {
2491 vm_offset_t dstva;
2492 int s;
2493
2494 dstva = tmp_vpages[1];
2495 s = splimp();
2496 if (tmp_vpages_inuse++)
2497 panic("pmap_zero_page: temporary vpages are in use.");
2498
2499 /* The comments in pmap_copy_page() above apply here also. */
2500 pmap_enter_kernel(dstva, dstpa, VM_PROT_READ|VM_PROT_WRITE);
2501
2502 /* Hand-optimized version of bzero(ptr, NBPG) */
2503 zeropage((char *) dstva);
2504
2505 pmap_remove_kernel(dstva, dstva + NBPG);
2506
2507 --tmp_vpages_inuse;
2508 splx(s);
2509 }
2510
2511 /* pmap_collect INTERFACE
2512 **
2513 * Called from the VM system when we are about to swap out
2514 * the process using this pmap. This should give up any
2515 * resources held here, including all its MMU tables.
2516 */
2517 void
2518 pmap_collect(pmap)
2519 pmap_t pmap;
2520 {
2521 /* XXX - todo... */
2522 }
2523
2524 /* pmap_create INTERFACE
2525 **
2526 * Create and return a pmap structure.
2527 */
2528 pmap_t
2529 pmap_create()
2530 {
2531 pmap_t pmap;
2532
2533 pmap = (pmap_t) malloc(sizeof(struct pmap), M_VMPMAP, M_WAITOK);
2534 pmap_pinit(pmap);
2535 return pmap;
2536 }
2537
2538 /* pmap_pinit INTERNAL
2539 **
2540 * Initialize a pmap structure.
2541 */
2542 void
2543 pmap_pinit(pmap)
2544 pmap_t pmap;
2545 {
2546 bzero(pmap, sizeof(struct pmap));
2547 pmap->pm_a_tmgr = NULL;
2548 pmap->pm_a_phys = kernAphys;
2549 }
2550
2551 /* pmap_release INTERFACE
2552 **
2553 * Release any resources held by the given pmap.
2554 *
2555 * This is the reverse analog to pmap_pinit. It does not
2556 * necessarily mean for the pmap structure to be deallocated,
2557 * as in pmap_destroy.
2558 */
2559 void
2560 pmap_release(pmap)
2561 pmap_t pmap;
2562 {
2563 /*
2564 * As long as the pmap contains no mappings,
2565 * which always should be the case whenever
2566 * this function is called, there really should
2567 * be nothing to do.
2568 */
2569 #ifdef PMAP_DEBUG
2570 if (pmap == NULL)
2571 return;
2572 if (pmap == pmap_kernel())
2573 panic("pmap_release: kernel pmap");
2574 #endif
2575 /*
2576 * XXX - If this pmap has an A table, give it back.
2577 * The pmap SHOULD be empty by now, and pmap_remove
2578 * should have already given back the A table...
2579 * However, I see: pmap->pm_a_tmgr->at_ecnt == 1
2580 * at this point, which means some mapping was not
2581 * removed when it should have been. -gwr
2582 */
2583 if (pmap->pm_a_tmgr != NULL) {
2584 /* First make sure we are not using it! */
2585 if (kernel_crp.rp_addr == pmap->pm_a_phys) {
2586 kernel_crp.rp_addr = kernAphys;
2587 loadcrp(&kernel_crp);
2588 }
2589 #ifdef PMAP_DEBUG /* XXX - todo! */
2590 /* XXX - Now complain... */
2591 printf("pmap_release: still have table\n");
2592 Debugger();
2593 #endif
2594 free_a_table(pmap->pm_a_tmgr, TRUE);
2595 pmap->pm_a_tmgr = NULL;
2596 pmap->pm_a_phys = kernAphys;
2597 }
2598 }
2599
2600 /* pmap_reference INTERFACE
2601 **
2602 * Increment the reference count of a pmap.
2603 */
2604 void
2605 pmap_reference(pmap)
2606 pmap_t pmap;
2607 {
2608 if (pmap == NULL)
2609 return;
2610
2611 /* pmap_lock(pmap); */
2612 pmap->pm_refcount++;
2613 /* pmap_unlock(pmap); */
2614 }
2615
2616 /* pmap_dereference INTERNAL
2617 **
2618 * Decrease the reference count on the given pmap
2619 * by one and return the current count.
2620 */
2621 int
2622 pmap_dereference(pmap)
2623 pmap_t pmap;
2624 {
2625 int rtn;
2626
2627 if (pmap == NULL)
2628 return 0;
2629
2630 /* pmap_lock(pmap); */
2631 rtn = --pmap->pm_refcount;
2632 /* pmap_unlock(pmap); */
2633
2634 return rtn;
2635 }
2636
2637 /* pmap_destroy INTERFACE
2638 **
2639 * Decrement a pmap's reference count and delete
2640 * the pmap if it becomes zero. Will be called
2641 * only after all mappings have been removed.
2642 */
2643 void
2644 pmap_destroy(pmap)
2645 pmap_t pmap;
2646 {
2647 if (pmap == NULL)
2648 return;
2649 if (pmap == &kernel_pmap)
2650 panic("pmap_destroy: kernel_pmap!");
2651 if (pmap_dereference(pmap) == 0) {
2652 pmap_release(pmap);
2653 free(pmap, M_VMPMAP);
2654 }
2655 }
2656
2657 /* pmap_is_referenced INTERFACE
2658 **
2659 * Determine if the given physical page has been
2660 * referenced (read from [or written to.])
2661 */
2662 boolean_t
2663 pmap_is_referenced(pg)
2664 struct vm_page *pg;
2665 {
2666 paddr_t pa = VM_PAGE_TO_PHYS(pg);
2667 pv_t *pv;
2668 int idx, s;
2669
2670 if (!pv_initialized)
2671 return FALSE;
2672 /* XXX - this may be unecessary. */
2673 if (!is_managed(pa))
2674 return FALSE;
2675
2676 pv = pa2pv(pa);
2677 /*
2678 * Check the flags on the pv head. If they are set,
2679 * return immediately. Otherwise a search must be done.
2680 */
2681 if (pv->pv_flags & PV_FLAGS_USED)
2682 return TRUE;
2683
2684 s = splimp();
2685 /*
2686 * Search through all pv elements pointing
2687 * to this page and query their reference bits
2688 */
2689 for (idx = pv->pv_idx;
2690 idx != PVE_EOL;
2691 idx = pvebase[idx].pve_next) {
2692
2693 if (MMU_PTE_USED(kernCbase[idx])) {
2694 splx(s);
2695 return TRUE;
2696 }
2697 }
2698 splx(s);
2699
2700 return FALSE;
2701 }
2702
2703 /* pmap_is_modified INTERFACE
2704 **
2705 * Determine if the given physical page has been
2706 * modified (written to.)
2707 */
2708 boolean_t
2709 pmap_is_modified(pg)
2710 struct vm_page *pg;
2711 {
2712 paddr_t pa = VM_PAGE_TO_PHYS(pg);
2713 pv_t *pv;
2714 int idx, s;
2715
2716 if (!pv_initialized)
2717 return FALSE;
2718 /* XXX - this may be unecessary. */
2719 if (!is_managed(pa))
2720 return FALSE;
2721
2722 /* see comments in pmap_is_referenced() */
2723 pv = pa2pv(pa);
2724 if (pv->pv_flags & PV_FLAGS_MDFY)
2725 return TRUE;
2726
2727 s = splimp();
2728 for (idx = pv->pv_idx;
2729 idx != PVE_EOL;
2730 idx = pvebase[idx].pve_next) {
2731
2732 if (MMU_PTE_MODIFIED(kernCbase[idx])) {
2733 splx(s);
2734 return TRUE;
2735 }
2736 }
2737 splx(s);
2738
2739 return FALSE;
2740 }
2741
2742 /* pmap_page_protect INTERFACE
2743 **
2744 * Applies the given protection to all mappings to the given
2745 * physical page.
2746 */
2747 void
2748 pmap_page_protect(pg, prot)
2749 struct vm_page *pg;
2750 vm_prot_t prot;
2751 {
2752 paddr_t pa = VM_PAGE_TO_PHYS(pg);
2753 pv_t *pv;
2754 int idx, s;
2755 vm_offset_t va;
2756 struct mmu_short_pte_struct *pte;
2757 c_tmgr_t *c_tbl;
2758 pmap_t pmap, curpmap;
2759
2760 if (!is_managed(pa))
2761 return;
2762
2763 curpmap = current_pmap();
2764 pv = pa2pv(pa);
2765 s = splimp();
2766
2767 for (idx = pv->pv_idx;
2768 idx != PVE_EOL;
2769 idx = pvebase[idx].pve_next) {
2770
2771 pte = &kernCbase[idx];
2772 switch (prot) {
2773 case VM_PROT_ALL:
2774 /* do nothing */
2775 break;
2776 case VM_PROT_EXECUTE:
2777 case VM_PROT_READ:
2778 case VM_PROT_READ|VM_PROT_EXECUTE:
2779 /*
2780 * Determine the virtual address mapped by
2781 * the PTE and flush ATC entries if necessary.
2782 */
2783 va = pmap_get_pteinfo(idx, &pmap, &c_tbl);
2784 /* XXX don't write protect pager mappings */
2785 if (va >= PAGER_SVA && va < PAGER_EVA) {
2786 #ifdef PMAP_DEBUG
2787 /* XXX - Does this actually happen? */
2788 printf("pmap_page_protect: in pager!\n");
2789 Debugger();
2790 #endif
2791 } else
2792 pte->attr.raw |= MMU_SHORT_PTE_WP;
2793 if (pmap == curpmap || pmap == pmap_kernel())
2794 TBIS(va);
2795 break;
2796 case VM_PROT_NONE:
2797 /* Save the mod/ref bits. */
2798 pv->pv_flags |= pte->attr.raw;
2799 /* Invalidate the PTE. */
2800 pte->attr.raw = MMU_DT_INVALID;
2801
2802 /*
2803 * Update table counts. And flush ATC entries
2804 * if necessary.
2805 */
2806 va = pmap_get_pteinfo(idx, &pmap, &c_tbl);
2807
2808 /*
2809 * If the PTE belongs to the kernel map,
2810 * be sure to flush the page it maps.
2811 */
2812 if (pmap == pmap_kernel()) {
2813 TBIS(va);
2814 } else {
2815 /*
2816 * The PTE belongs to a user map.
2817 * update the entry count in the C
2818 * table to which it belongs and flush
2819 * the ATC if the mapping belongs to
2820 * the current pmap.
2821 */
2822 c_tbl->ct_ecnt--;
2823 if (pmap == curpmap)
2824 TBIS(va);
2825 }
2826 break;
2827 default:
2828 break;
2829 }
2830 }
2831
2832 /*
2833 * If the protection code indicates that all mappings to the page
2834 * be removed, truncate the PV list to zero entries.
2835 */
2836 if (prot == VM_PROT_NONE)
2837 pv->pv_idx = PVE_EOL;
2838 splx(s);
2839 }
2840
2841 /* pmap_get_pteinfo INTERNAL
2842 **
2843 * Called internally to find the pmap and virtual address within that
2844 * map to which the pte at the given index maps. Also includes the PTE's C
2845 * table manager.
2846 *
2847 * Returns the pmap in the argument provided, and the virtual address
2848 * by return value.
2849 */
2850 vm_offset_t
2851 pmap_get_pteinfo(idx, pmap, tbl)
2852 u_int idx;
2853 pmap_t *pmap;
2854 c_tmgr_t **tbl;
2855 {
2856 vm_offset_t va = 0;
2857
2858 /*
2859 * Determine if the PTE is a kernel PTE or a user PTE.
2860 */
2861 if (idx >= NUM_KERN_PTES) {
2862 /*
2863 * The PTE belongs to a user mapping.
2864 */
2865 /* XXX: Would like an inline for this to validate idx... */
2866 *tbl = &Ctmgrbase[(idx - NUM_KERN_PTES) / MMU_C_TBL_SIZE];
2867
2868 *pmap = (*tbl)->ct_pmap;
2869 /*
2870 * To find the va to which the PTE maps, we first take
2871 * the table's base virtual address mapping which is stored
2872 * in ct_va. We then increment this address by a page for
2873 * every slot skipped until we reach the PTE.
2874 */
2875 va = (*tbl)->ct_va;
2876 va += m68k_ptob(idx % MMU_C_TBL_SIZE);
2877 } else {
2878 /*
2879 * The PTE belongs to the kernel map.
2880 */
2881 *pmap = pmap_kernel();
2882
2883 va = m68k_ptob(idx);
2884 va += KERNBASE;
2885 }
2886
2887 return va;
2888 }
2889
2890 /* pmap_clear_modify INTERFACE
2891 **
2892 * Clear the modification bit on the page at the specified
2893 * physical address.
2894 *
2895 */
2896 boolean_t
2897 pmap_clear_modify(pg)
2898 struct vm_page *pg;
2899 {
2900 paddr_t pa = VM_PAGE_TO_PHYS(pg);
2901 boolean_t rv;
2902
2903 if (!is_managed(pa))
2904 return FALSE;
2905 rv = pmap_is_modified(pg);
2906 pmap_clear_pv(pa, PV_FLAGS_MDFY);
2907 return rv;
2908 }
2909
2910 /* pmap_clear_reference INTERFACE
2911 **
2912 * Clear the referenced bit on the page at the specified
2913 * physical address.
2914 */
2915 boolean_t
2916 pmap_clear_reference(pg)
2917 struct vm_page *pg;
2918 {
2919 paddr_t pa = VM_PAGE_TO_PHYS(pg);
2920 boolean_t rv;
2921
2922 if (!is_managed(pa))
2923 return FALSE;
2924 rv = pmap_is_referenced(pg);
2925 pmap_clear_pv(pa, PV_FLAGS_USED);
2926 return rv;
2927 }
2928
2929 /* pmap_clear_pv INTERNAL
2930 **
2931 * Clears the specified flag from the specified physical address.
2932 * (Used by pmap_clear_modify() and pmap_clear_reference().)
2933 *
2934 * Flag is one of:
2935 * PV_FLAGS_MDFY - Page modified bit.
2936 * PV_FLAGS_USED - Page used (referenced) bit.
2937 *
2938 * This routine must not only clear the flag on the pv list
2939 * head. It must also clear the bit on every pte in the pv
2940 * list associated with the address.
2941 */
2942 void
2943 pmap_clear_pv(pa, flag)
2944 vm_offset_t pa;
2945 int flag;
2946 {
2947 pv_t *pv;
2948 int idx, s;
2949 vm_offset_t va;
2950 pmap_t pmap;
2951 mmu_short_pte_t *pte;
2952 c_tmgr_t *c_tbl;
2953
2954 pv = pa2pv(pa);
2955
2956 s = splimp();
2957 pv->pv_flags &= ~(flag);
2958
2959 for (idx = pv->pv_idx;
2960 idx != PVE_EOL;
2961 idx = pvebase[idx].pve_next) {
2962
2963 pte = &kernCbase[idx];
2964 pte->attr.raw &= ~(flag);
2965 /*
2966 * The MC68030 MMU will not set the modified or
2967 * referenced bits on any MMU tables for which it has
2968 * a cached descriptor with its modify bit set. To insure
2969 * that it will modify these bits on the PTE during the next
2970 * time it is written to or read from, we must flush it from
2971 * the ATC.
2972 *
2973 * Ordinarily it is only necessary to flush the descriptor
2974 * if it is used in the current address space. But since I
2975 * am not sure that there will always be a notion of
2976 * 'the current address space' when this function is called,
2977 * I will skip the test and always flush the address. It
2978 * does no harm.
2979 */
2980 va = pmap_get_pteinfo(idx, &pmap, &c_tbl);
2981 TBIS(va);
2982 }
2983 splx(s);
2984 }
2985
2986 /* pmap_extract INTERFACE
2987 **
2988 * Return the physical address mapped by the virtual address
2989 * in the specified pmap.
2990 *
2991 * Note: this function should also apply an exclusive lock
2992 * on the pmap system during its duration.
2993 */
2994 boolean_t
2995 pmap_extract(pmap, va, pap)
2996 pmap_t pmap;
2997 vaddr_t va;
2998 paddr_t *pap;
2999 {
3000 int a_idx, b_idx, pte_idx;
3001 a_tmgr_t *a_tbl;
3002 b_tmgr_t *b_tbl;
3003 c_tmgr_t *c_tbl;
3004 mmu_short_pte_t *c_pte;
3005
3006 if (pmap == pmap_kernel())
3007 return pmap_extract_kernel(va, pap);
3008 if (pmap == NULL)
3009 return FALSE;
3010
3011 if (pmap_stroll(pmap, va, &a_tbl, &b_tbl, &c_tbl,
3012 &c_pte, &a_idx, &b_idx, &pte_idx) == FALSE)
3013 return FALSE;
3014
3015 if (!MMU_VALID_DT(*c_pte))
3016 return FALSE;
3017
3018 if (pap != NULL)
3019 *pap = MMU_PTE_PA(*c_pte);
3020 return (TRUE);
3021 }
3022
3023 /* pmap_extract_kernel INTERNAL
3024 **
3025 * Extract a translation from the kernel address space.
3026 */
3027 boolean_t
3028 pmap_extract_kernel(va, pap)
3029 vaddr_t va;
3030 paddr_t *pap;
3031 {
3032 mmu_short_pte_t *pte;
3033
3034 pte = &kernCbase[(u_int) m68k_btop(va - KERNBASE)];
3035 if (!MMU_VALID_DT(*pte))
3036 return (FALSE);
3037 if (pap != NULL)
3038 *pap = MMU_PTE_PA(*pte);
3039 return (TRUE);
3040 }
3041
3042 /* pmap_remove_kernel INTERNAL
3043 **
3044 * Remove the mapping of a range of virtual addresses from the kernel map.
3045 * The arguments are already page-aligned.
3046 */
3047 void
3048 pmap_remove_kernel(sva, eva)
3049 vm_offset_t sva;
3050 vm_offset_t eva;
3051 {
3052 int idx, eidx;
3053
3054 #ifdef PMAP_DEBUG
3055 if ((sva & PGOFSET) || (eva & PGOFSET))
3056 panic("pmap_remove_kernel: alignment");
3057 #endif
3058
3059 idx = m68k_btop(sva - KERNBASE);
3060 eidx = m68k_btop(eva - KERNBASE);
3061
3062 while (idx < eidx) {
3063 pmap_remove_pte(&kernCbase[idx++]);
3064 TBIS(sva);
3065 sva += NBPG;
3066 }
3067 }
3068
3069 /* pmap_remove INTERFACE
3070 **
3071 * Remove the mapping of a range of virtual addresses from the given pmap.
3072 *
3073 * If the range contains any wired entries, this function will probably create
3074 * disaster.
3075 */
3076 void
3077 pmap_remove(pmap, start, end)
3078 pmap_t pmap;
3079 vm_offset_t start;
3080 vm_offset_t end;
3081 {
3082
3083 if (pmap == pmap_kernel()) {
3084 pmap_remove_kernel(start, end);
3085 return;
3086 }
3087
3088 /*
3089 * XXX - Temporary(?) statement to prevent panic caused
3090 * by vm_alloc_with_pager() handing us a software map (ie NULL)
3091 * to remove because it couldn't get backing store.
3092 * (I guess.)
3093 */
3094 if (pmap == NULL)
3095 return;
3096
3097 /*
3098 * If the pmap doesn't have an A table of its own, it has no mappings
3099 * that can be removed.
3100 */
3101 if (pmap->pm_a_tmgr == NULL)
3102 return;
3103
3104 /*
3105 * Remove the specified range from the pmap. If the function
3106 * returns true, the operation removed all the valid mappings
3107 * in the pmap and freed its A table. If this happened to the
3108 * currently loaded pmap, the MMU root pointer must be reloaded
3109 * with the default 'kernel' map.
3110 */
3111 if (pmap_remove_a(pmap->pm_a_tmgr, start, end)) {
3112 if (kernel_crp.rp_addr == pmap->pm_a_phys) {
3113 kernel_crp.rp_addr = kernAphys;
3114 loadcrp(&kernel_crp);
3115 /* will do TLB flush below */
3116 }
3117 pmap->pm_a_tmgr = NULL;
3118 pmap->pm_a_phys = kernAphys;
3119 }
3120
3121 /*
3122 * If we just modified the current address space,
3123 * make sure to flush the MMU cache.
3124 *
3125 * XXX - this could be an unecessarily large flush.
3126 * XXX - Could decide, based on the size of the VA range
3127 * to be removed, whether to flush "by pages" or "all".
3128 */
3129 if (pmap == current_pmap())
3130 TBIAU();
3131 }
3132
3133 /* pmap_remove_a INTERNAL
3134 **
3135 * This is function number one in a set of three that removes a range
3136 * of memory in the most efficient manner by removing the highest possible
3137 * tables from the memory space. This particular function attempts to remove
3138 * as many B tables as it can, delegating the remaining fragmented ranges to
3139 * pmap_remove_b().
3140 *
3141 * If the removal operation results in an empty A table, the function returns
3142 * TRUE.
3143 *
3144 * It's ugly but will do for now.
3145 */
3146 boolean_t
3147 pmap_remove_a(a_tbl, start, end)
3148 a_tmgr_t *a_tbl;
3149 vm_offset_t start;
3150 vm_offset_t end;
3151 {
3152 boolean_t empty;
3153 int idx;
3154 vm_offset_t nstart, nend;
3155 b_tmgr_t *b_tbl;
3156 mmu_long_dte_t *a_dte;
3157 mmu_short_dte_t *b_dte;
3158
3159 /*
3160 * The following code works with what I call a 'granularity
3161 * reduction algorithim'. A range of addresses will always have
3162 * the following properties, which are classified according to
3163 * how the range relates to the size of the current granularity
3164 * - an A table entry:
3165 *
3166 * 1 2 3 4
3167 * -+---+---+---+---+---+---+---+-
3168 * -+---+---+---+---+---+---+---+-
3169 *
3170 * A range will always start on a granularity boundary, illustrated
3171 * by '+' signs in the table above, or it will start at some point
3172 * inbetween a granularity boundary, as illustrated by point 1.
3173 * The first step in removing a range of addresses is to remove the
3174 * range between 1 and 2, the nearest granularity boundary. This
3175 * job is handled by the section of code governed by the
3176 * 'if (start < nstart)' statement.
3177 *
3178 * A range will always encompass zero or more intergral granules,
3179 * illustrated by points 2 and 3. Integral granules are easy to
3180 * remove. The removal of these granules is the second step, and
3181 * is handled by the code block 'if (nstart < nend)'.
3182 *
3183 * Lastly, a range will always end on a granularity boundary,
3184 * ill. by point 3, or it will fall just beyond one, ill. by point
3185 * 4. The last step involves removing this range and is handled by
3186 * the code block 'if (nend < end)'.
3187 */
3188 nstart = MMU_ROUND_UP_A(start);
3189 nend = MMU_ROUND_A(end);
3190
3191 if (start < nstart) {
3192 /*
3193 * This block is executed if the range starts between
3194 * a granularity boundary.
3195 *
3196 * First find the DTE which is responsible for mapping
3197 * the start of the range.
3198 */
3199 idx = MMU_TIA(start);
3200 a_dte = &a_tbl->at_dtbl[idx];
3201
3202 /*
3203 * If the DTE is valid then delegate the removal of the sub
3204 * range to pmap_remove_b(), which can remove addresses at
3205 * a finer granularity.
3206 */
3207 if (MMU_VALID_DT(*a_dte)) {
3208 b_dte = mmu_ptov(a_dte->addr.raw);
3209 b_tbl = mmuB2tmgr(b_dte);
3210
3211 /*
3212 * The sub range to be removed starts at the start
3213 * of the full range we were asked to remove, and ends
3214 * at the greater of:
3215 * 1. The end of the full range, -or-
3216 * 2. The end of the full range, rounded down to the
3217 * nearest granularity boundary.
3218 */
3219 if (end < nstart)
3220 empty = pmap_remove_b(b_tbl, start, end);
3221 else
3222 empty = pmap_remove_b(b_tbl, start, nstart);
3223
3224 /*
3225 * If the removal resulted in an empty B table,
3226 * invalidate the DTE that points to it and decrement
3227 * the valid entry count of the A table.
3228 */
3229 if (empty) {
3230 a_dte->attr.raw = MMU_DT_INVALID;
3231 a_tbl->at_ecnt--;
3232 }
3233 }
3234 /*
3235 * If the DTE is invalid, the address range is already non-
3236 * existant and can simply be skipped.
3237 */
3238 }
3239 if (nstart < nend) {
3240 /*
3241 * This block is executed if the range spans a whole number
3242 * multiple of granules (A table entries.)
3243 *
3244 * First find the DTE which is responsible for mapping
3245 * the start of the first granule involved.
3246 */
3247 idx = MMU_TIA(nstart);
3248 a_dte = &a_tbl->at_dtbl[idx];
3249
3250 /*
3251 * Remove entire sub-granules (B tables) one at a time,
3252 * until reaching the end of the range.
3253 */
3254 for (; nstart < nend; a_dte++, nstart += MMU_TIA_RANGE)
3255 if (MMU_VALID_DT(*a_dte)) {
3256 /*
3257 * Find the B table manager for the
3258 * entry and free it.
3259 */
3260 b_dte = mmu_ptov(a_dte->addr.raw);
3261 b_tbl = mmuB2tmgr(b_dte);
3262 free_b_table(b_tbl, TRUE);
3263
3264 /*
3265 * Invalidate the DTE that points to the
3266 * B table and decrement the valid entry
3267 * count of the A table.
3268 */
3269 a_dte->attr.raw = MMU_DT_INVALID;
3270 a_tbl->at_ecnt--;
3271 }
3272 }
3273 if (nend < end) {
3274 /*
3275 * This block is executed if the range ends beyond a
3276 * granularity boundary.
3277 *
3278 * First find the DTE which is responsible for mapping
3279 * the start of the nearest (rounded down) granularity
3280 * boundary.
3281 */
3282 idx = MMU_TIA(nend);
3283 a_dte = &a_tbl->at_dtbl[idx];
3284
3285 /*
3286 * If the DTE is valid then delegate the removal of the sub
3287 * range to pmap_remove_b(), which can remove addresses at
3288 * a finer granularity.
3289 */
3290 if (MMU_VALID_DT(*a_dte)) {
3291 /*
3292 * Find the B table manager for the entry
3293 * and hand it to pmap_remove_b() along with
3294 * the sub range.
3295 */
3296 b_dte = mmu_ptov(a_dte->addr.raw);
3297 b_tbl = mmuB2tmgr(b_dte);
3298
3299 empty = pmap_remove_b(b_tbl, nend, end);
3300
3301 /*
3302 * If the removal resulted in an empty B table,
3303 * invalidate the DTE that points to it and decrement
3304 * the valid entry count of the A table.
3305 */
3306 if (empty) {
3307 a_dte->attr.raw = MMU_DT_INVALID;
3308 a_tbl->at_ecnt--;
3309 }
3310 }
3311 }
3312
3313 /*
3314 * If there are no more entries in the A table, release it
3315 * back to the available pool and return TRUE.
3316 */
3317 if (a_tbl->at_ecnt == 0) {
3318 a_tbl->at_parent = NULL;
3319 TAILQ_REMOVE(&a_pool, a_tbl, at_link);
3320 TAILQ_INSERT_HEAD(&a_pool, a_tbl, at_link);
3321 empty = TRUE;
3322 } else {
3323 empty = FALSE;
3324 }
3325
3326 return empty;
3327 }
3328
3329 /* pmap_remove_b INTERNAL
3330 **
3331 * Remove a range of addresses from an address space, trying to remove entire
3332 * C tables if possible.
3333 *
3334 * If the operation results in an empty B table, the function returns TRUE.
3335 */
3336 boolean_t
3337 pmap_remove_b(b_tbl, start, end)
3338 b_tmgr_t *b_tbl;
3339 vm_offset_t start;
3340 vm_offset_t end;
3341 {
3342 boolean_t empty;
3343 int idx;
3344 vm_offset_t nstart, nend, rstart;
3345 c_tmgr_t *c_tbl;
3346 mmu_short_dte_t *b_dte;
3347 mmu_short_pte_t *c_dte;
3348
3349
3350 nstart = MMU_ROUND_UP_B(start);
3351 nend = MMU_ROUND_B(end);
3352
3353 if (start < nstart) {
3354 idx = MMU_TIB(start);
3355 b_dte = &b_tbl->bt_dtbl[idx];
3356 if (MMU_VALID_DT(*b_dte)) {
3357 c_dte = mmu_ptov(MMU_DTE_PA(*b_dte));
3358 c_tbl = mmuC2tmgr(c_dte);
3359 if (end < nstart)
3360 empty = pmap_remove_c(c_tbl, start, end);
3361 else
3362 empty = pmap_remove_c(c_tbl, start, nstart);
3363 if (empty) {
3364 b_dte->attr.raw = MMU_DT_INVALID;
3365 b_tbl->bt_ecnt--;
3366 }
3367 }
3368 }
3369 if (nstart < nend) {
3370 idx = MMU_TIB(nstart);
3371 b_dte = &b_tbl->bt_dtbl[idx];
3372 rstart = nstart;
3373 while (rstart < nend) {
3374 if (MMU_VALID_DT(*b_dte)) {
3375 c_dte = mmu_ptov(MMU_DTE_PA(*b_dte));
3376 c_tbl = mmuC2tmgr(c_dte);
3377 free_c_table(c_tbl, TRUE);
3378 b_dte->attr.raw = MMU_DT_INVALID;
3379 b_tbl->bt_ecnt--;
3380 }
3381 b_dte++;
3382 rstart += MMU_TIB_RANGE;
3383 }
3384 }
3385 if (nend < end) {
3386 idx = MMU_TIB(nend);
3387 b_dte = &b_tbl->bt_dtbl[idx];
3388 if (MMU_VALID_DT(*b_dte)) {
3389 c_dte = mmu_ptov(MMU_DTE_PA(*b_dte));
3390 c_tbl = mmuC2tmgr(c_dte);
3391 empty = pmap_remove_c(c_tbl, nend, end);
3392 if (empty) {
3393 b_dte->attr.raw = MMU_DT_INVALID;
3394 b_tbl->bt_ecnt--;
3395 }
3396 }
3397 }
3398
3399 if (b_tbl->bt_ecnt == 0) {
3400 b_tbl->bt_parent = NULL;
3401 TAILQ_REMOVE(&b_pool, b_tbl, bt_link);
3402 TAILQ_INSERT_HEAD(&b_pool, b_tbl, bt_link);
3403 empty = TRUE;
3404 } else {
3405 empty = FALSE;
3406 }
3407
3408 return empty;
3409 }
3410
3411 /* pmap_remove_c INTERNAL
3412 **
3413 * Remove a range of addresses from the given C table.
3414 */
3415 boolean_t
3416 pmap_remove_c(c_tbl, start, end)
3417 c_tmgr_t *c_tbl;
3418 vm_offset_t start;
3419 vm_offset_t end;
3420 {
3421 boolean_t empty;
3422 int idx;
3423 mmu_short_pte_t *c_pte;
3424
3425 idx = MMU_TIC(start);
3426 c_pte = &c_tbl->ct_dtbl[idx];
3427 for (;start < end; start += MMU_PAGE_SIZE, c_pte++) {
3428 if (MMU_VALID_DT(*c_pte)) {
3429 pmap_remove_pte(c_pte);
3430 c_tbl->ct_ecnt--;
3431 }
3432 }
3433
3434 if (c_tbl->ct_ecnt == 0) {
3435 c_tbl->ct_parent = NULL;
3436 TAILQ_REMOVE(&c_pool, c_tbl, ct_link);
3437 TAILQ_INSERT_HEAD(&c_pool, c_tbl, ct_link);
3438 empty = TRUE;
3439 } else {
3440 empty = FALSE;
3441 }
3442
3443 return empty;
3444 }
3445
3446 /* is_managed INTERNAL
3447 **
3448 * Determine if the given physical address is managed by the PV system.
3449 * Note that this logic assumes that no one will ask for the status of
3450 * addresses which lie in-between the memory banks on the 3/80. If they
3451 * do so, it will falsely report that it is managed.
3452 *
3453 * Note: A "managed" address is one that was reported to the VM system as
3454 * a "usable page" during system startup. As such, the VM system expects the
3455 * pmap module to keep an accurate track of the useage of those pages.
3456 * Any page not given to the VM system at startup does not exist (as far as
3457 * the VM system is concerned) and is therefore "unmanaged." Examples are
3458 * those pages which belong to the ROM monitor and the memory allocated before
3459 * the VM system was started.
3460 */
3461 boolean_t
3462 is_managed(pa)
3463 vm_offset_t pa;
3464 {
3465 if (pa >= avail_start && pa < avail_end)
3466 return TRUE;
3467 else
3468 return FALSE;
3469 }
3470
3471 /* pmap_bootstrap_alloc INTERNAL
3472 **
3473 * Used internally for memory allocation at startup when malloc is not
3474 * available. This code will fail once it crosses the first memory
3475 * bank boundary on the 3/80. Hopefully by then however, the VM system
3476 * will be in charge of allocation.
3477 */
3478 void *
3479 pmap_bootstrap_alloc(size)
3480 int size;
3481 {
3482 void *rtn;
3483
3484 #ifdef PMAP_DEBUG
3485 if (bootstrap_alloc_enabled == FALSE) {
3486 mon_printf("pmap_bootstrap_alloc: disabled\n");
3487 sunmon_abort();
3488 }
3489 #endif
3490
3491 rtn = (void *) virtual_avail;
3492 virtual_avail += size;
3493
3494 #ifdef PMAP_DEBUG
3495 if (virtual_avail > virtual_contig_end) {
3496 mon_printf("pmap_bootstrap_alloc: out of mem\n");
3497 sunmon_abort();
3498 }
3499 #endif
3500
3501 return rtn;
3502 }
3503
3504 /* pmap_bootstap_aalign INTERNAL
3505 **
3506 * Used to insure that the next call to pmap_bootstrap_alloc() will
3507 * return a chunk of memory aligned to the specified size.
3508 *
3509 * Note: This function will only support alignment sizes that are powers
3510 * of two.
3511 */
3512 void
3513 pmap_bootstrap_aalign(size)
3514 int size;
3515 {
3516 int off;
3517
3518 off = virtual_avail & (size - 1);
3519 if (off) {
3520 (void) pmap_bootstrap_alloc(size - off);
3521 }
3522 }
3523
3524 /* pmap_pa_exists
3525 **
3526 * Used by the /dev/mem driver to see if a given PA is memory
3527 * that can be mapped. (The PA is not in a hole.)
3528 */
3529 int
3530 pmap_pa_exists(pa)
3531 vm_offset_t pa;
3532 {
3533 register int i;
3534
3535 for (i = 0; i < SUN3X_NPHYS_RAM_SEGS; i++) {
3536 if ((pa >= avail_mem[i].pmem_start) &&
3537 (pa < avail_mem[i].pmem_end))
3538 return (1);
3539 if (avail_mem[i].pmem_next == NULL)
3540 break;
3541 }
3542 return (0);
3543 }
3544
3545 /* Called only from locore.s and pmap.c */
3546 void _pmap_switch __P((pmap_t pmap));
3547
3548 /*
3549 * _pmap_switch INTERNAL
3550 *
3551 * This is called by locore.s:cpu_switch() when it is
3552 * switching to a new process. Load new translations.
3553 * Note: done in-line by locore.s unless PMAP_DEBUG
3554 *
3555 * Note that we do NOT allocate a context here, but
3556 * share the "kernel only" context until we really
3557 * need our own context for user-space mappings in
3558 * pmap_enter_user(). [ s/context/mmu A table/ ]
3559 */
3560 void
3561 _pmap_switch(pmap)
3562 pmap_t pmap;
3563 {
3564 u_long rootpa;
3565
3566 /*
3567 * Only do reload/flush if we have to.
3568 * Note that if the old and new process
3569 * were BOTH using the "null" context,
3570 * then this will NOT flush the TLB.
3571 */
3572 rootpa = pmap->pm_a_phys;
3573 if (kernel_crp.rp_addr != rootpa) {
3574 DPRINT(("pmap_activate(%p)\n", pmap));
3575 kernel_crp.rp_addr = rootpa;
3576 loadcrp(&kernel_crp);
3577 TBIAU();
3578 }
3579 }
3580
3581 /*
3582 * Exported version of pmap_activate(). This is called from the
3583 * machine-independent VM code when a process is given a new pmap.
3584 * If (p == curproc) do like cpu_switch would do; otherwise just
3585 * take this as notification that the process has a new pmap.
3586 */
3587 void
3588 pmap_activate(p)
3589 struct proc *p;
3590 {
3591 pmap_t pmap = p->p_vmspace->vm_map.pmap;
3592 int s;
3593
3594 if (p == curproc) {
3595 s = splimp();
3596 _pmap_switch(pmap);
3597 splx(s);
3598 }
3599 }
3600
3601 /*
3602 * pmap_deactivate INTERFACE
3603 **
3604 * This is called to deactivate the specified process's address space.
3605 * XXX The semantics of this function are currently not well-defined.
3606 */
3607 void
3608 pmap_deactivate(p)
3609 struct proc *p;
3610 {
3611 /* not implemented. */
3612 }
3613
3614 /* pmap_update
3615 **
3616 * Apply any delayed changes scheduled for all pmaps immediately.
3617 *
3618 * No delayed operations are currently done in this pmap.
3619 */
3620 void
3621 pmap_update()
3622 {
3623 /* not implemented. */
3624 }
3625
3626 /*
3627 * Fill in the sun3x-specific part of the kernel core header
3628 * for dumpsys(). (See machdep.c for the rest.)
3629 */
3630 void
3631 pmap_kcore_hdr(sh)
3632 struct sun3x_kcore_hdr *sh;
3633 {
3634 u_long spa, len;
3635 int i;
3636
3637 sh->pg_frame = MMU_SHORT_PTE_BASEADDR;
3638 sh->pg_valid = MMU_DT_PAGE;
3639 sh->contig_end = virtual_contig_end;
3640 sh->kernCbase = (u_long) kernCbase;
3641 for (i = 0; i < SUN3X_NPHYS_RAM_SEGS; i++) {
3642 spa = avail_mem[i].pmem_start;
3643 spa = m68k_trunc_page(spa);
3644 len = avail_mem[i].pmem_end - spa;
3645 len = m68k_round_page(len);
3646 sh->ram_segs[i].start = spa;
3647 sh->ram_segs[i].size = len;
3648 }
3649 }
3650
3651
3652 /* pmap_virtual_space INTERFACE
3653 **
3654 * Return the current available range of virtual addresses in the
3655 * arguuments provided. Only really called once.
3656 */
3657 void
3658 pmap_virtual_space(vstart, vend)
3659 vm_offset_t *vstart, *vend;
3660 {
3661 *vstart = virtual_avail;
3662 *vend = virtual_end;
3663 }
3664
3665 /*
3666 * Provide memory to the VM system.
3667 *
3668 * Assume avail_start is always in the
3669 * first segment as pmap_bootstrap does.
3670 */
3671 static void
3672 pmap_page_upload()
3673 {
3674 vm_offset_t a, b; /* memory range */
3675 int i;
3676
3677 /* Supply the memory in segments. */
3678 for (i = 0; i < SUN3X_NPHYS_RAM_SEGS; i++) {
3679 a = atop(avail_mem[i].pmem_start);
3680 b = atop(avail_mem[i].pmem_end);
3681 if (i == 0)
3682 a = atop(avail_start);
3683
3684 uvm_page_physload(a, b, a, b, VM_FREELIST_DEFAULT);
3685
3686 if (avail_mem[i].pmem_next == NULL)
3687 break;
3688 }
3689 }
3690
3691 /* pmap_page_index INTERFACE
3692 **
3693 * Return the index of the given physical page in a list of useable
3694 * physical pages in the system. Holes in physical memory may be counted
3695 * if so desired. As long as pmap_free_pages() and pmap_page_index()
3696 * agree as to whether holes in memory do or do not count as valid pages,
3697 * it really doesn't matter. However, if you like to save a little
3698 * memory, don't count holes as valid pages. This is even more true when
3699 * the holes are large.
3700 *
3701 * We will not count holes as valid pages. We can generate page indices
3702 * that conform to this by using the memory bank structures initialized
3703 * in pmap_alloc_pv().
3704 */
3705 int
3706 pmap_page_index(pa)
3707 vm_offset_t pa;
3708 {
3709 struct pmap_physmem_struct *bank = avail_mem;
3710 vm_offset_t off;
3711
3712 /* Search for the memory bank with this page. */
3713 /* XXX - What if it is not physical memory? */
3714 while (pa > bank->pmem_end)
3715 bank = bank->pmem_next;
3716 off = pa - bank->pmem_start;
3717
3718 return (bank->pmem_pvbase + m68k_btop(off));
3719 }
3720
3721 /* pmap_count INTERFACE
3722 **
3723 * Return the number of resident (valid) pages in the given pmap.
3724 *
3725 * Note: If this function is handed the kernel map, it will report
3726 * that it has no mappings. Hopefully the VM system won't ask for kernel
3727 * map statistics.
3728 */
3729 segsz_t
3730 pmap_count(pmap, type)
3731 pmap_t pmap;
3732 int type;
3733 {
3734 u_int count;
3735 int a_idx, b_idx;
3736 a_tmgr_t *a_tbl;
3737 b_tmgr_t *b_tbl;
3738 c_tmgr_t *c_tbl;
3739
3740 /*
3741 * If the pmap does not have its own A table manager, it has no
3742 * valid entires.
3743 */
3744 if (pmap->pm_a_tmgr == NULL)
3745 return 0;
3746
3747 a_tbl = pmap->pm_a_tmgr;
3748
3749 count = 0;
3750 for (a_idx = 0; a_idx < MMU_TIA(KERNBASE); a_idx++) {
3751 if (MMU_VALID_DT(a_tbl->at_dtbl[a_idx])) {
3752 b_tbl = mmuB2tmgr(mmu_ptov(a_tbl->at_dtbl[a_idx].addr.raw));
3753 for (b_idx = 0; b_idx < MMU_B_TBL_SIZE; b_idx++) {
3754 if (MMU_VALID_DT(b_tbl->bt_dtbl[b_idx])) {
3755 c_tbl = mmuC2tmgr(
3756 mmu_ptov(MMU_DTE_PA(b_tbl->bt_dtbl[b_idx])));
3757 if (type == 0)
3758 /*
3759 * A resident entry count has been requested.
3760 */
3761 count += c_tbl->ct_ecnt;
3762 else
3763 /*
3764 * A wired entry count has been requested.
3765 */
3766 count += c_tbl->ct_wcnt;
3767 }
3768 }
3769 }
3770 }
3771
3772 return count;
3773 }
3774
3775 /************************ SUN3 COMPATIBILITY ROUTINES ********************
3776 * The following routines are only used by DDB for tricky kernel text *
3777 * text operations in db_memrw.c. They are provided for sun3 *
3778 * compatibility. *
3779 *************************************************************************/
3780 /* get_pte INTERNAL
3781 **
3782 * Return the page descriptor the describes the kernel mapping
3783 * of the given virtual address.
3784 */
3785 extern u_long ptest_addr __P((u_long)); /* XXX: locore.s */
3786 u_int
3787 get_pte(va)
3788 vm_offset_t va;
3789 {
3790 u_long pte_pa;
3791 mmu_short_pte_t *pte;
3792
3793 /* Get the physical address of the PTE */
3794 pte_pa = ptest_addr(va & ~PGOFSET);
3795
3796 /* Convert to a virtual address... */
3797 pte = (mmu_short_pte_t *) (KERNBASE + pte_pa);
3798
3799 /* Make sure it is in our level-C tables... */
3800 if ((pte < kernCbase) ||
3801 (pte >= &mmuCbase[NUM_USER_PTES]))
3802 return 0;
3803
3804 /* ... and just return its contents. */
3805 return (pte->attr.raw);
3806 }
3807
3808
3809 /* set_pte INTERNAL
3810 **
3811 * Set the page descriptor that describes the kernel mapping
3812 * of the given virtual address.
3813 */
3814 void
3815 set_pte(va, pte)
3816 vm_offset_t va;
3817 u_int pte;
3818 {
3819 u_long idx;
3820
3821 if (va < KERNBASE)
3822 return;
3823
3824 idx = (unsigned long) m68k_btop(va - KERNBASE);
3825 kernCbase[idx].attr.raw = pte;
3826 TBIS(va);
3827 }
3828
3829 /*
3830 * Routine: pmap_procwr
3831 *
3832 * Function:
3833 * Synchronize caches corresponding to [addr, addr+len) in p.
3834 */
3835 void
3836 pmap_procwr(p, va, len)
3837 struct proc *p;
3838 vaddr_t va;
3839 size_t len;
3840 {
3841 (void)cachectl1(0x80000004, va, len, p);
3842 }
3843
3844
3845 #ifdef PMAP_DEBUG
3846 /************************** DEBUGGING ROUTINES **************************
3847 * The following routines are meant to be an aid to debugging the pmap *
3848 * system. They are callable from the DDB command line and should be *
3849 * prepared to be handed unstable or incomplete states of the system. *
3850 ************************************************************************/
3851
3852 /* pv_list
3853 **
3854 * List all pages found on the pv list for the given physical page.
3855 * To avoid endless loops, the listing will stop at the end of the list
3856 * or after 'n' entries - whichever comes first.
3857 */
3858 void
3859 pv_list(pa, n)
3860 vm_offset_t pa;
3861 int n;
3862 {
3863 int idx;
3864 vm_offset_t va;
3865 pv_t *pv;
3866 c_tmgr_t *c_tbl;
3867 pmap_t pmap;
3868
3869 pv = pa2pv(pa);
3870 idx = pv->pv_idx;
3871
3872 for (;idx != PVE_EOL && n > 0;
3873 idx=pvebase[idx].pve_next, n--) {
3874
3875 va = pmap_get_pteinfo(idx, &pmap, &c_tbl);
3876 printf("idx %d, pmap 0x%x, va 0x%x, c_tbl %x\n",
3877 idx, (u_int) pmap, (u_int) va, (u_int) c_tbl);
3878 }
3879 }
3880 #endif /* PMAP_DEBUG */
3881
3882 #ifdef NOT_YET
3883 /* and maybe not ever */
3884 /************************** LOW-LEVEL ROUTINES **************************
3885 * These routines will eventualy be re-written into assembly and placed *
3886 * in locore.s. They are here now as stubs so that the pmap module can *
3887 * be linked as a standalone user program for testing. *
3888 ************************************************************************/
3889 /* flush_atc_crp INTERNAL
3890 **
3891 * Flush all page descriptors derived from the given CPU Root Pointer
3892 * (CRP), or 'A' table as it is known here, from the 68851's automatic
3893 * cache.
3894 */
3895 void
3896 flush_atc_crp(a_tbl)
3897 {
3898 mmu_long_rp_t rp;
3899
3900 /* Create a temporary root table pointer that points to the
3901 * given A table.
3902 */
3903 rp.attr.raw = ~MMU_LONG_RP_LU;
3904 rp.addr.raw = (unsigned int) a_tbl;
3905
3906 mmu_pflushr(&rp);
3907 /* mmu_pflushr:
3908 * movel sp(4)@,a0
3909 * pflushr a0@
3910 * rts
3911 */
3912 }
3913 #endif /* NOT_YET */
3914