Home | History | Annotate | Line # | Download | only in sun3x
pmap.c revision 1.50.2.8
      1 /*	$NetBSD: pmap.c,v 1.50.2.8 2001/04/23 09:42:12 bouyer Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1996, 1997 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jeremy Cooper.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  * 3. All advertising materials mentioning features or use of this software
     19  *    must display the following acknowledgement:
     20  *        This product includes software developed by the NetBSD
     21  *        Foundation, Inc. and its contributors.
     22  * 4. Neither the name of The NetBSD Foundation nor the names of its
     23  *    contributors may be used to endorse or promote products derived
     24  *    from this software without specific prior written permission.
     25  *
     26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36  * POSSIBILITY OF SUCH DAMAGE.
     37  */
     38 
     39 /*
     40  * XXX These comments aren't quite accurate.  Need to change.
     41  * The sun3x uses the MC68851 Memory Management Unit, which is built
     42  * into the CPU.  The 68851 maps virtual to physical addresses using
     43  * a multi-level table lookup, which is stored in the very memory that
     44  * it maps.  The number of levels of lookup is configurable from one
     45  * to four.  In this implementation, we use three, named 'A' through 'C'.
     46  *
     47  * The MMU translates virtual addresses into physical addresses by
     48  * traversing these tables in a proccess called a 'table walk'.  The most
     49  * significant 7 bits of the Virtual Address ('VA') being translated are
     50  * used as an index into the level A table, whose base in physical memory
     51  * is stored in a special MMU register, the 'CPU Root Pointer' or CRP.  The
     52  * address found at that index in the A table is used as the base
     53  * address for the next table, the B table.  The next six bits of the VA are
     54  * used as an index into the B table, which in turn gives the base address
     55  * of the third and final C table.
     56  *
     57  * The next six bits of the VA are used as an index into the C table to
     58  * locate a Page Table Entry (PTE).  The PTE is a physical address in memory
     59  * to which the remaining 13 bits of the VA are added, producing the
     60  * mapped physical address.
     61  *
     62  * To map the entire memory space in this manner would require 2114296 bytes
     63  * of page tables per process - quite expensive.  Instead we will
     64  * allocate a fixed but considerably smaller space for the page tables at
     65  * the time the VM system is initialized.  When the pmap code is asked by
     66  * the kernel to map a VA to a PA, it allocates tables as needed from this
     67  * pool.  When there are no more tables in the pool, tables are stolen
     68  * from the oldest mapped entries in the tree.  This is only possible
     69  * because all memory mappings are stored in the kernel memory map
     70  * structures, independent of the pmap structures.  A VA which references
     71  * one of these invalidated maps will cause a page fault.  The kernel
     72  * will determine that the page fault was caused by a task using a valid
     73  * VA, but for some reason (which does not concern it), that address was
     74  * not mapped.  It will ask the pmap code to re-map the entry and then
     75  * it will resume executing the faulting task.
     76  *
     77  * In this manner the most efficient use of the page table space is
     78  * achieved.  Tasks which do not execute often will have their tables
     79  * stolen and reused by tasks which execute more frequently.  The best
     80  * size for the page table pool will probably be determined by
     81  * experimentation.
     82  *
     83  * You read all of the comments so far.  Good for you.
     84  * Now go play!
     85  */
     86 
     87 /*** A Note About the 68851 Address Translation Cache
     88  * The MC68851 has a 64 entry cache, called the Address Translation Cache
     89  * or 'ATC'.  This cache stores the most recently used page descriptors
     90  * accessed by the MMU when it does translations.  Using a marker called a
     91  * 'task alias' the MMU can store the descriptors from 8 different table
     92  * spaces concurrently.  The task alias is associated with the base
     93  * address of the level A table of that address space.  When an address
     94  * space is currently active (the CRP currently points to its A table)
     95  * the only cached descriptors that will be obeyed are ones which have a
     96  * matching task alias of the current space associated with them.
     97  *
     98  * Since the cache is always consulted before any table lookups are done,
     99  * it is important that it accurately reflect the state of the MMU tables.
    100  * Whenever a change has been made to a table that has been loaded into
    101  * the MMU, the code must be sure to flush any cached entries that are
    102  * affected by the change.  These instances are documented in the code at
    103  * various points.
    104  */
    105 /*** A Note About the Note About the 68851 Address Translation Cache
    106  * 4 months into this code I discovered that the sun3x does not have
    107  * a MC68851 chip. Instead, it has a version of this MMU that is part of the
    108  * the 68030 CPU.
    109  * All though it behaves very similarly to the 68851, it only has 1 task
    110  * alias and a 22 entry cache.  So sadly (or happily), the first paragraph
    111  * of the previous note does not apply to the sun3x pmap.
    112  */
    113 
    114 #include "opt_ddb.h"
    115 
    116 #include <sys/param.h>
    117 #include <sys/systm.h>
    118 #include <sys/proc.h>
    119 #include <sys/malloc.h>
    120 #include <sys/pool.h>
    121 #include <sys/user.h>
    122 #include <sys/queue.h>
    123 #include <sys/kcore.h>
    124 
    125 #include <uvm/uvm.h>
    126 
    127 #define PAGER_SVA (uvm.pager_sva)
    128 #define PAGER_EVA (uvm.pager_eva)
    129 
    130 #include <machine/cpu.h>
    131 #include <machine/kcore.h>
    132 #include <machine/mon.h>
    133 #include <machine/pmap.h>
    134 #include <machine/pte.h>
    135 #include <machine/vmparam.h>
    136 
    137 #include <sun3/sun3/cache.h>
    138 #include <sun3/sun3/machdep.h>
    139 
    140 #include "pmap_pvt.h"
    141 
    142 /* XXX - What headers declare these? */
    143 extern struct pcb *curpcb;
    144 extern int physmem;
    145 
    146 /* Defined in locore.s */
    147 extern char kernel_text[];
    148 
    149 /* Defined by the linker */
    150 extern char etext[], edata[], end[];
    151 extern char *esym;	/* DDB */
    152 
    153 /*************************** DEBUGGING DEFINITIONS ***********************
    154  * Macros, preprocessor defines and variables used in debugging can make *
    155  * code hard to read.  Anything used exclusively for debugging purposes  *
    156  * is defined here to avoid having such mess scattered around the file.  *
    157  *************************************************************************/
    158 #ifdef	PMAP_DEBUG
    159 /*
    160  * To aid the debugging process, macros should be expanded into smaller steps
    161  * that accomplish the same goal, yet provide convenient places for placing
    162  * breakpoints.  When this code is compiled with PMAP_DEBUG mode defined, the
    163  * 'INLINE' keyword is defined to an empty string.  This way, any function
    164  * defined to be a 'static INLINE' will become 'outlined' and compiled as
    165  * a separate function, which is much easier to debug.
    166  */
    167 #define	INLINE	/* nothing */
    168 
    169 /*
    170  * It is sometimes convenient to watch the activity of a particular table
    171  * in the system.  The following variables are used for that purpose.
    172  */
    173 a_tmgr_t *pmap_watch_atbl = 0;
    174 b_tmgr_t *pmap_watch_btbl = 0;
    175 c_tmgr_t *pmap_watch_ctbl = 0;
    176 
    177 int pmap_debug = 0;
    178 #define DPRINT(args) if (pmap_debug) printf args
    179 
    180 #else	/********** Stuff below is defined if NOT debugging **************/
    181 
    182 #define	INLINE	inline
    183 #define DPRINT(args)  /* nada */
    184 
    185 #endif	/* PMAP_DEBUG */
    186 /*********************** END OF DEBUGGING DEFINITIONS ********************/
    187 
    188 /*** Management Structure - Memory Layout
    189  * For every MMU table in the sun3x pmap system there must be a way to
    190  * manage it; we must know which process is using it, what other tables
    191  * depend on it, and whether or not it contains any locked pages.  This
    192  * is solved by the creation of 'table management'  or 'tmgr'
    193  * structures.  One for each MMU table in the system.
    194  *
    195  *                        MAP OF MEMORY USED BY THE PMAP SYSTEM
    196  *
    197  *      towards lower memory
    198  * kernAbase -> +-------------------------------------------------------+
    199  *              | Kernel     MMU A level table                          |
    200  * kernBbase -> +-------------------------------------------------------+
    201  *              | Kernel     MMU B level tables                         |
    202  * kernCbase -> +-------------------------------------------------------+
    203  *              |                                                       |
    204  *              | Kernel     MMU C level tables                         |
    205  *              |                                                       |
    206  * mmuCbase  -> +-------------------------------------------------------+
    207  *              | User       MMU C level tables                         |
    208  * mmuAbase  -> +-------------------------------------------------------+
    209  *              |                                                       |
    210  *              | User       MMU A level tables                         |
    211  *              |                                                       |
    212  * mmuBbase  -> +-------------------------------------------------------+
    213  *              | User       MMU B level tables                         |
    214  * tmgrAbase -> +-------------------------------------------------------+
    215  *              |  TMGR A level table structures                        |
    216  * tmgrBbase -> +-------------------------------------------------------+
    217  *              |  TMGR B level table structures                        |
    218  * tmgrCbase -> +-------------------------------------------------------+
    219  *              |  TMGR C level table structures                        |
    220  * pvbase    -> +-------------------------------------------------------+
    221  *              |  Physical to Virtual mapping table (list heads)       |
    222  * pvebase   -> +-------------------------------------------------------+
    223  *              |  Physical to Virtual mapping table (list elements)    |
    224  *              |                                                       |
    225  *              +-------------------------------------------------------+
    226  *      towards higher memory
    227  *
    228  * For every A table in the MMU A area, there will be a corresponding
    229  * a_tmgr structure in the TMGR A area.  The same will be true for
    230  * the B and C tables.  This arrangement will make it easy to find the
    231  * controling tmgr structure for any table in the system by use of
    232  * (relatively) simple macros.
    233  */
    234 
    235 /*
    236  * Global variables for storing the base addresses for the areas
    237  * labeled above.
    238  */
    239 static vm_offset_t  	kernAphys;
    240 static mmu_long_dte_t	*kernAbase;
    241 static mmu_short_dte_t	*kernBbase;
    242 static mmu_short_pte_t	*kernCbase;
    243 static mmu_short_pte_t	*mmuCbase;
    244 static mmu_short_dte_t	*mmuBbase;
    245 static mmu_long_dte_t	*mmuAbase;
    246 static a_tmgr_t		*Atmgrbase;
    247 static b_tmgr_t		*Btmgrbase;
    248 static c_tmgr_t		*Ctmgrbase;
    249 static pv_t 		*pvbase;
    250 static pv_elem_t	*pvebase;
    251 struct pmap 		kernel_pmap;
    252 
    253 /*
    254  * This holds the CRP currently loaded into the MMU.
    255  */
    256 struct mmu_rootptr kernel_crp;
    257 
    258 /*
    259  * Just all around global variables.
    260  */
    261 static TAILQ_HEAD(a_pool_head_struct, a_tmgr_struct) a_pool;
    262 static TAILQ_HEAD(b_pool_head_struct, b_tmgr_struct) b_pool;
    263 static TAILQ_HEAD(c_pool_head_struct, c_tmgr_struct) c_pool;
    264 
    265 
    266 /*
    267  * Flags used to mark the safety/availability of certain operations or
    268  * resources.
    269  */
    270 static boolean_t pv_initialized = FALSE, /* PV system has been initialized. */
    271        bootstrap_alloc_enabled = FALSE; /*Safe to use pmap_bootstrap_alloc().*/
    272 int tmp_vpages_inuse;	/* Temporary virtual pages are in use */
    273 
    274 /*
    275  * XXX:  For now, retain the traditional variables that were
    276  * used in the old pmap/vm interface (without NONCONTIG).
    277  */
    278 /* Kernel virtual address space available: */
    279 vm_offset_t	virtual_avail, virtual_end;
    280 /* Physical address space available: */
    281 vm_offset_t	avail_start, avail_end;
    282 
    283 /* This keep track of the end of the contiguously mapped range. */
    284 vm_offset_t virtual_contig_end;
    285 
    286 /* Physical address used by pmap_next_page() */
    287 vm_offset_t avail_next;
    288 
    289 /* These are used by pmap_copy_page(), etc. */
    290 vm_offset_t tmp_vpages[2];
    291 
    292 /* memory pool for pmap structures */
    293 struct pool	pmap_pmap_pool;
    294 
    295 /*
    296  * The 3/80 is the only member of the sun3x family that has non-contiguous
    297  * physical memory.  Memory is divided into 4 banks which are physically
    298  * locatable on the system board.  Although the size of these banks varies
    299  * with the size of memory they contain, their base addresses are
    300  * permenently fixed.  The following structure, which describes these
    301  * banks, is initialized by pmap_bootstrap() after it reads from a similar
    302  * structure provided by the ROM Monitor.
    303  *
    304  * For the other machines in the sun3x architecture which do have contiguous
    305  * RAM, this list will have only one entry, which will describe the entire
    306  * range of available memory.
    307  */
    308 struct pmap_physmem_struct avail_mem[SUN3X_NPHYS_RAM_SEGS];
    309 u_int total_phys_mem;
    310 
    311 /*************************************************************************/
    312 
    313 /*
    314  * XXX - Should "tune" these based on statistics.
    315  *
    316  * My first guess about the relative numbers of these needed is
    317  * based on the fact that a "typical" process will have several
    318  * pages mapped at low virtual addresses (text, data, bss), then
    319  * some mapped shared libraries, and then some stack pages mapped
    320  * near the high end of the VA space.  Each process can use only
    321  * one A table, and most will use only two B tables (maybe three)
    322  * and probably about four C tables.  Therefore, the first guess
    323  * at the relative numbers of these needed is 1:2:4 -gwr
    324  *
    325  * The number of C tables needed is closely related to the amount
    326  * of physical memory available plus a certain amount attributable
    327  * to the use of double mappings.  With a few simulation statistics
    328  * we can find a reasonably good estimation of this unknown value.
    329  * Armed with that and the above ratios, we have a good idea of what
    330  * is needed at each level. -j
    331  *
    332  * Note: It is not physical memory memory size, but the total mapped
    333  * virtual space required by the combined working sets of all the
    334  * currently _runnable_ processes.  (Sleeping ones don't count.)
    335  * The amount of physical memory should be irrelevant. -gwr
    336  */
    337 #ifdef	FIXED_NTABLES
    338 #define NUM_A_TABLES	16
    339 #define NUM_B_TABLES	32
    340 #define NUM_C_TABLES	64
    341 #else
    342 unsigned int	NUM_A_TABLES, NUM_B_TABLES, NUM_C_TABLES;
    343 #endif	/* FIXED_NTABLES */
    344 
    345 /*
    346  * This determines our total virtual mapping capacity.
    347  * Yes, it is a FIXED value so we can pre-allocate.
    348  */
    349 #define NUM_USER_PTES	(NUM_C_TABLES * MMU_C_TBL_SIZE)
    350 
    351 /*
    352  * The size of the Kernel Virtual Address Space (KVAS)
    353  * for purposes of MMU table allocation is -KERNBASE
    354  * (length from KERNBASE to 0xFFFFffff)
    355  */
    356 #define	KVAS_SIZE		(-KERNBASE)
    357 
    358 /* Numbers of kernel MMU tables to support KVAS_SIZE. */
    359 #define KERN_B_TABLES	(KVAS_SIZE >> MMU_TIA_SHIFT)
    360 #define KERN_C_TABLES	(KVAS_SIZE >> MMU_TIB_SHIFT)
    361 #define	NUM_KERN_PTES	(KVAS_SIZE >> MMU_TIC_SHIFT)
    362 
    363 /*************************** MISCELANEOUS MACROS *************************/
    364 #define pmap_lock(pmap) simple_lock(&pmap->pm_lock)
    365 #define pmap_unlock(pmap) simple_unlock(&pmap->pm_lock)
    366 #define pmap_add_ref(pmap) ++pmap->pm_refcount
    367 #define pmap_del_ref(pmap) --pmap->pm_refcount
    368 #define pmap_refcount(pmap) pmap->pm_refcount
    369 
    370 static INLINE void *      mmu_ptov __P((vm_offset_t pa));
    371 static INLINE vm_offset_t mmu_vtop __P((void * va));
    372 
    373 #if	0
    374 static INLINE a_tmgr_t * mmuA2tmgr __P((mmu_long_dte_t *));
    375 #endif /* 0 */
    376 static INLINE b_tmgr_t * mmuB2tmgr __P((mmu_short_dte_t *));
    377 static INLINE c_tmgr_t * mmuC2tmgr __P((mmu_short_pte_t *));
    378 
    379 static INLINE pv_t *pa2pv __P((vm_offset_t pa));
    380 static INLINE int   pteidx __P((mmu_short_pte_t *));
    381 static INLINE pmap_t current_pmap __P((void));
    382 
    383 /*
    384  * We can always convert between virtual and physical addresses
    385  * for anything in the range [KERNBASE ... avail_start] because
    386  * that range is GUARANTEED to be mapped linearly.
    387  * We rely heavily upon this feature!
    388  */
    389 static INLINE void *
    390 mmu_ptov(pa)
    391 	vm_offset_t pa;
    392 {
    393 	register vm_offset_t va;
    394 
    395 	va = (pa + KERNBASE);
    396 #ifdef	PMAP_DEBUG
    397 	if ((va < KERNBASE) || (va >= virtual_contig_end))
    398 		panic("mmu_ptov");
    399 #endif
    400 	return ((void*)va);
    401 }
    402 static INLINE vm_offset_t
    403 mmu_vtop(vva)
    404 	void *vva;
    405 {
    406 	register vm_offset_t va;
    407 
    408 	va = (vm_offset_t)vva;
    409 #ifdef	PMAP_DEBUG
    410 	if ((va < KERNBASE) || (va >= virtual_contig_end))
    411 		panic("mmu_ptov");
    412 #endif
    413 	return (va - KERNBASE);
    414 }
    415 
    416 /*
    417  * These macros map MMU tables to their corresponding manager structures.
    418  * They are needed quite often because many of the pointers in the pmap
    419  * system reference MMU tables and not the structures that control them.
    420  * There needs to be a way to find one when given the other and these
    421  * macros do so by taking advantage of the memory layout described above.
    422  * Here's a quick step through the first macro, mmuA2tmgr():
    423  *
    424  * 1) find the offset of the given MMU A table from the base of its table
    425  *    pool (table - mmuAbase).
    426  * 2) convert this offset into a table index by dividing it by the
    427  *    size of one MMU 'A' table. (sizeof(mmu_long_dte_t) * MMU_A_TBL_SIZE)
    428  * 3) use this index to select the corresponding 'A' table manager
    429  *    structure from the 'A' table manager pool (Atmgrbase[index]).
    430  */
    431 /*  This function is not currently used. */
    432 #if	0
    433 static INLINE a_tmgr_t *
    434 mmuA2tmgr(mmuAtbl)
    435 	mmu_long_dte_t *mmuAtbl;
    436 {
    437 	register int idx;
    438 
    439 	/* Which table is this in? */
    440 	idx = (mmuAtbl - mmuAbase) / MMU_A_TBL_SIZE;
    441 #ifdef	PMAP_DEBUG
    442 	if ((idx < 0) || (idx >= NUM_A_TABLES))
    443 		panic("mmuA2tmgr");
    444 #endif
    445 	return (&Atmgrbase[idx]);
    446 }
    447 #endif	/* 0 */
    448 
    449 static INLINE b_tmgr_t *
    450 mmuB2tmgr(mmuBtbl)
    451 	mmu_short_dte_t *mmuBtbl;
    452 {
    453 	register int idx;
    454 
    455 	/* Which table is this in? */
    456 	idx = (mmuBtbl - mmuBbase) / MMU_B_TBL_SIZE;
    457 #ifdef	PMAP_DEBUG
    458 	if ((idx < 0) || (idx >= NUM_B_TABLES))
    459 		panic("mmuB2tmgr");
    460 #endif
    461 	return (&Btmgrbase[idx]);
    462 }
    463 
    464 /* mmuC2tmgr			INTERNAL
    465  **
    466  * Given a pte known to belong to a C table, return the address of
    467  * that table's management structure.
    468  */
    469 static INLINE c_tmgr_t *
    470 mmuC2tmgr(mmuCtbl)
    471 	mmu_short_pte_t *mmuCtbl;
    472 {
    473 	register int idx;
    474 
    475 	/* Which table is this in? */
    476 	idx = (mmuCtbl - mmuCbase) / MMU_C_TBL_SIZE;
    477 #ifdef	PMAP_DEBUG
    478 	if ((idx < 0) || (idx >= NUM_C_TABLES))
    479 		panic("mmuC2tmgr");
    480 #endif
    481 	return (&Ctmgrbase[idx]);
    482 }
    483 
    484 /* This is now a function call below.
    485  * #define pa2pv(pa) \
    486  *	(&pvbase[(unsigned long)\
    487  *		m68k_btop(pa)\
    488  *	])
    489  */
    490 
    491 /* pa2pv			INTERNAL
    492  **
    493  * Return the pv_list_head element which manages the given physical
    494  * address.
    495  */
    496 static INLINE pv_t *
    497 pa2pv(pa)
    498 	vm_offset_t pa;
    499 {
    500 	register struct pmap_physmem_struct *bank;
    501 	register int idx;
    502 
    503 	bank = &avail_mem[0];
    504 	while (pa >= bank->pmem_end)
    505 		bank = bank->pmem_next;
    506 
    507 	pa -= bank->pmem_start;
    508 	idx = bank->pmem_pvbase + m68k_btop(pa);
    509 #ifdef	PMAP_DEBUG
    510 	if ((idx < 0) || (idx >= physmem))
    511 		panic("pa2pv");
    512 #endif
    513 	return &pvbase[idx];
    514 }
    515 
    516 /* pteidx			INTERNAL
    517  **
    518  * Return the index of the given PTE within the entire fixed table of
    519  * PTEs.
    520  */
    521 static INLINE int
    522 pteidx(pte)
    523 	mmu_short_pte_t *pte;
    524 {
    525 	return (pte - kernCbase);
    526 }
    527 
    528 /*
    529  * This just offers a place to put some debugging checks,
    530  * and reduces the number of places "curproc" appears...
    531  */
    532 static INLINE pmap_t
    533 current_pmap()
    534 {
    535 	struct proc *p;
    536 	struct vmspace *vm;
    537 	vm_map_t	map;
    538 	pmap_t	pmap;
    539 
    540 	p = curproc;	/* XXX */
    541 	if (p == NULL)
    542 		pmap = &kernel_pmap;
    543 	else {
    544 		vm = p->p_vmspace;
    545 		map = &vm->vm_map;
    546 		pmap = vm_map_pmap(map);
    547 	}
    548 
    549 	return (pmap);
    550 }
    551 
    552 
    553 /*************************** FUNCTION DEFINITIONS ************************
    554  * These appear here merely for the compiler to enforce type checking on *
    555  * all function calls.                                                   *
    556  *************************************************************************/
    557 
    558 /** External functions
    559  ** - functions used within this module but written elsewhere.
    560  **   both of these functions are in locore.s
    561  ** XXX - These functions were later replaced with their more cryptic
    562  **       hp300 counterparts.  They may be removed now.
    563  **/
    564 #if	0	/* deprecated mmu */
    565 void   mmu_seturp __P((vm_offset_t));
    566 void   mmu_flush __P((int, vm_offset_t));
    567 void   mmu_flusha __P((void));
    568 #endif	/* 0 */
    569 
    570 /** Internal functions
    571  ** Most functions used only within this module are defined in
    572  **   pmap_pvt.h (why not here if used only here?)
    573  **/
    574 static void pmap_page_upload __P((void));
    575 
    576 /** Interface functions
    577  ** - functions required by the Mach VM Pmap interface, with MACHINE_CONTIG
    578  **   defined.
    579  **/
    580 int    pmap_page_index __P((vm_offset_t));
    581 void pmap_pinit __P((pmap_t));
    582 void pmap_release __P((pmap_t));
    583 
    584 /********************************** CODE ********************************
    585  * Functions that are called from other parts of the kernel are labeled *
    586  * as 'INTERFACE' functions.  Functions that are only called from       *
    587  * within the pmap module are labeled as 'INTERNAL' functions.          *
    588  * Functions that are internal, but are not (currently) used at all are *
    589  * labeled 'INTERNAL_X'.                                                *
    590  ************************************************************************/
    591 
    592 /* pmap_bootstrap			INTERNAL
    593  **
    594  * Initializes the pmap system.  Called at boot time from
    595  * locore2.c:_vm_init()
    596  *
    597  * Reminder: having a pmap_bootstrap_alloc() and also having the VM
    598  *           system implement pmap_steal_memory() is redundant.
    599  *           Don't release this code without removing one or the other!
    600  */
    601 void
    602 pmap_bootstrap(nextva)
    603 	vm_offset_t nextva;
    604 {
    605 	struct physmemory *membank;
    606 	struct pmap_physmem_struct *pmap_membank;
    607 	vm_offset_t va, pa, eva;
    608 	int b, c, i, j;	/* running table counts */
    609 	int size, resvmem;
    610 
    611 	/*
    612 	 * This function is called by __bootstrap after it has
    613 	 * determined the type of machine and made the appropriate
    614 	 * patches to the ROM vectors (XXX- I don't quite know what I meant
    615 	 * by that.)  It allocates and sets up enough of the pmap system
    616 	 * to manage the kernel's address space.
    617 	 */
    618 
    619 	/*
    620 	 * Determine the range of kernel virtual and physical
    621 	 * space available. Note that we ABSOLUTELY DEPEND on
    622 	 * the fact that the first bank of memory (4MB) is
    623 	 * mapped linearly to KERNBASE (which we guaranteed in
    624 	 * the first instructions of locore.s).
    625 	 * That is plenty for our bootstrap work.
    626 	 */
    627 	virtual_avail = m68k_round_page(nextva);
    628 	virtual_contig_end = KERNBASE + 0x400000; /* +4MB */
    629 	virtual_end = VM_MAX_KERNEL_ADDRESS;
    630 	/* Don't need avail_start til later. */
    631 
    632 	/* We may now call pmap_bootstrap_alloc(). */
    633 	bootstrap_alloc_enabled = TRUE;
    634 
    635 	/*
    636 	 * This is a somewhat unwrapped loop to deal with
    637 	 * copying the PROM's 'phsymem' banks into the pmap's
    638 	 * banks.  The following is always assumed:
    639 	 * 1. There is always at least one bank of memory.
    640 	 * 2. There is always a last bank of memory, and its
    641 	 *    pmem_next member must be set to NULL.
    642 	 */
    643 	membank = romVectorPtr->v_physmemory;
    644 	pmap_membank = avail_mem;
    645 	total_phys_mem = 0;
    646 
    647 	for (;;) { /* break on !membank */
    648 		pmap_membank->pmem_start = membank->address;
    649 		pmap_membank->pmem_end = membank->address + membank->size;
    650 		total_phys_mem += membank->size;
    651 		membank = membank->next;
    652 		if (!membank)
    653 			break;
    654 		/* This silly syntax arises because pmap_membank
    655 		 * is really a pre-allocated array, but it is put into
    656 		 * use as a linked list.
    657 		 */
    658 		pmap_membank->pmem_next = pmap_membank + 1;
    659 		pmap_membank = pmap_membank->pmem_next;
    660 	}
    661 	/* This is the last element. */
    662 	pmap_membank->pmem_next = NULL;
    663 
    664 	/*
    665 	 * Note: total_phys_mem, physmem represent
    666 	 * actual physical memory, including that
    667 	 * reserved for the PROM monitor.
    668 	 */
    669 	physmem = btoc(total_phys_mem);
    670 
    671 	/*
    672 	 * Avail_end is set to the first byte of physical memory
    673 	 * after the end of the last bank.  We use this only to
    674 	 * determine if a physical address is "managed" memory.
    675 	 * This address range should be reduced to prevent the
    676 	 * physical pages needed by the PROM monitor from being used
    677 	 * in the VM system.
    678 	 */
    679 	resvmem = total_phys_mem - *(romVectorPtr->memoryAvail);
    680 	resvmem = m68k_round_page(resvmem);
    681 	avail_end = pmap_membank->pmem_end - resvmem;
    682 
    683 	/*
    684 	 * First allocate enough kernel MMU tables to map all
    685 	 * of kernel virtual space from KERNBASE to 0xFFFFFFFF.
    686 	 * Note: All must be aligned on 256 byte boundaries.
    687 	 * Start with the level-A table (one of those).
    688 	 */
    689 	size = sizeof(mmu_long_dte_t)  * MMU_A_TBL_SIZE;
    690 	kernAbase = pmap_bootstrap_alloc(size);
    691 	bzero(kernAbase, size);
    692 
    693 	/* Now the level-B kernel tables... */
    694 	size = sizeof(mmu_short_dte_t) * MMU_B_TBL_SIZE * KERN_B_TABLES;
    695 	kernBbase = pmap_bootstrap_alloc(size);
    696 	bzero(kernBbase, size);
    697 
    698 	/* Now the level-C kernel tables... */
    699 	size = sizeof(mmu_short_pte_t) * MMU_C_TBL_SIZE * KERN_C_TABLES;
    700 	kernCbase = pmap_bootstrap_alloc(size);
    701 	bzero(kernCbase, size);
    702 	/*
    703 	 * Note: In order for the PV system to work correctly, the kernel
    704 	 * and user-level C tables must be allocated contiguously.
    705 	 * Nothing should be allocated between here and the allocation of
    706 	 * mmuCbase below.  XXX: Should do this as one allocation, and
    707 	 * then compute a pointer for mmuCbase instead of this...
    708 	 *
    709 	 * Allocate user MMU tables.
    710 	 * These must be contiguous with the preceeding.
    711 	 */
    712 
    713 #ifndef	FIXED_NTABLES
    714 	/*
    715 	 * The number of user-level C tables that should be allocated is
    716 	 * related to the size of physical memory.  In general, there should
    717 	 * be enough tables to map four times the amount of available RAM.
    718 	 * The extra amount is needed because some table space is wasted by
    719 	 * fragmentation.
    720 	 */
    721 	NUM_C_TABLES = (total_phys_mem * 4) / (MMU_C_TBL_SIZE * MMU_PAGE_SIZE);
    722 	NUM_B_TABLES = NUM_C_TABLES / 2;
    723 	NUM_A_TABLES = NUM_B_TABLES / 2;
    724 #endif	/* !FIXED_NTABLES */
    725 
    726 	size = sizeof(mmu_short_pte_t) * MMU_C_TBL_SIZE	* NUM_C_TABLES;
    727 	mmuCbase = pmap_bootstrap_alloc(size);
    728 
    729 	size = sizeof(mmu_short_dte_t) * MMU_B_TBL_SIZE	* NUM_B_TABLES;
    730 	mmuBbase = pmap_bootstrap_alloc(size);
    731 
    732 	size = sizeof(mmu_long_dte_t)  * MMU_A_TBL_SIZE * NUM_A_TABLES;
    733 	mmuAbase = pmap_bootstrap_alloc(size);
    734 
    735 	/*
    736 	 * Fill in the never-changing part of the kernel tables.
    737 	 * For simplicity, the kernel's mappings will be editable as a
    738 	 * flat array of page table entries at kernCbase.  The
    739 	 * higher level 'A' and 'B' tables must be initialized to point
    740 	 * to this lower one.
    741 	 */
    742 	b = c = 0;
    743 
    744 	/*
    745 	 * Invalidate all mappings below KERNBASE in the A table.
    746 	 * This area has already been zeroed out, but it is good
    747 	 * practice to explicitly show that we are interpreting
    748 	 * it as a list of A table descriptors.
    749 	 */
    750 	for (i = 0; i < MMU_TIA(KERNBASE); i++) {
    751 		kernAbase[i].addr.raw = 0;
    752 	}
    753 
    754 	/*
    755 	 * Set up the kernel A and B tables so that they will reference the
    756 	 * correct spots in the contiguous table of PTEs allocated for the
    757 	 * kernel's virtual memory space.
    758 	 */
    759 	for (i = MMU_TIA(KERNBASE); i < MMU_A_TBL_SIZE; i++) {
    760 		kernAbase[i].attr.raw =
    761 			MMU_LONG_DTE_LU | MMU_LONG_DTE_SUPV | MMU_DT_SHORT;
    762 		kernAbase[i].addr.raw = mmu_vtop(&kernBbase[b]);
    763 
    764 		for (j=0; j < MMU_B_TBL_SIZE; j++) {
    765 			kernBbase[b + j].attr.raw = mmu_vtop(&kernCbase[c])
    766 				| MMU_DT_SHORT;
    767 			c += MMU_C_TBL_SIZE;
    768 		}
    769 		b += MMU_B_TBL_SIZE;
    770 	}
    771 
    772 	/* XXX - Doing kernel_pmap a little further down. */
    773 
    774 	pmap_alloc_usermmu();	/* Allocate user MMU tables.        */
    775 	pmap_alloc_usertmgr();	/* Allocate user MMU table managers.*/
    776 	pmap_alloc_pv();	/* Allocate physical->virtual map.  */
    777 
    778 	/*
    779 	 * We are now done with pmap_bootstrap_alloc().  Round up
    780 	 * `virtual_avail' to the nearest page, and set the flag
    781 	 * to prevent use of pmap_bootstrap_alloc() hereafter.
    782 	 */
    783 	pmap_bootstrap_aalign(NBPG);
    784 	bootstrap_alloc_enabled = FALSE;
    785 
    786 	/*
    787 	 * Now that we are done with pmap_bootstrap_alloc(), we
    788 	 * must save the virtual and physical addresses of the
    789 	 * end of the linearly mapped range, which are stored in
    790 	 * virtual_contig_end and avail_start, respectively.
    791 	 * These variables will never change after this point.
    792 	 */
    793 	virtual_contig_end = virtual_avail;
    794 	avail_start = virtual_avail - KERNBASE;
    795 
    796 	/*
    797 	 * `avail_next' is a running pointer used by pmap_next_page() to
    798 	 * keep track of the next available physical page to be handed
    799 	 * to the VM system during its initialization, in which it
    800 	 * asks for physical pages, one at a time.
    801 	 */
    802 	avail_next = avail_start;
    803 
    804 	/*
    805 	 * Now allocate some virtual addresses, but not the physical pages
    806 	 * behind them.  Note that virtual_avail is already page-aligned.
    807 	 *
    808 	 * tmp_vpages[] is an array of two virtual pages used for temporary
    809 	 * kernel mappings in the pmap module to facilitate various physical
    810 	 * address-oritented operations.
    811 	 */
    812 	tmp_vpages[0] = virtual_avail;
    813 	virtual_avail += NBPG;
    814 	tmp_vpages[1] = virtual_avail;
    815 	virtual_avail += NBPG;
    816 
    817 	/** Initialize the PV system **/
    818 	pmap_init_pv();
    819 
    820 	/*
    821 	 * Fill in the kernel_pmap structure and kernel_crp.
    822 	 */
    823 	kernAphys = mmu_vtop(kernAbase);
    824 	kernel_pmap.pm_a_tmgr = NULL;
    825 	kernel_pmap.pm_a_phys = kernAphys;
    826 	kernel_pmap.pm_refcount = 1; /* always in use */
    827 	simple_lock_init(&kernel_pmap.pm_lock);
    828 
    829 	kernel_crp.rp_attr = MMU_LONG_DTE_LU | MMU_DT_LONG;
    830 	kernel_crp.rp_addr = kernAphys;
    831 
    832 	/*
    833 	 * Now pmap_enter_kernel() may be used safely and will be
    834 	 * the main interface used hereafter to modify the kernel's
    835 	 * virtual address space.  Note that since we are still running
    836 	 * under the PROM's address table, none of these table modifications
    837 	 * actually take effect until pmap_takeover_mmu() is called.
    838 	 *
    839 	 * Note: Our tables do NOT have the PROM linear mappings!
    840 	 * Only the mappings created here exist in our tables, so
    841 	 * remember to map anything we expect to use.
    842 	 */
    843 	va = (vm_offset_t) KERNBASE;
    844 	pa = 0;
    845 
    846 	/*
    847 	 * The first page of the kernel virtual address space is the msgbuf
    848 	 * page.  The page attributes (data, non-cached) are set here, while
    849 	 * the address is assigned to this global pointer in cpu_startup().
    850 	 * It is non-cached, mostly due to paranoia.
    851 	 */
    852 	pmap_enter_kernel(va, pa|PMAP_NC, VM_PROT_ALL);
    853 	va += NBPG; pa += NBPG;
    854 
    855 	/* Next page is used as the temporary stack. */
    856 	pmap_enter_kernel(va, pa, VM_PROT_ALL);
    857 	va += NBPG; pa += NBPG;
    858 
    859 	/*
    860 	 * Map all of the kernel's text segment as read-only and cacheable.
    861 	 * (Cacheable is implied by default).  Unfortunately, the last bytes
    862 	 * of kernel text and the first bytes of kernel data will often be
    863 	 * sharing the same page.  Therefore, the last page of kernel text
    864 	 * has to be mapped as read/write, to accomodate the data.
    865 	 */
    866 	eva = m68k_trunc_page((vm_offset_t)etext);
    867 	for (; va < eva; va += NBPG, pa += NBPG)
    868 		pmap_enter_kernel(va, pa, VM_PROT_READ|VM_PROT_EXECUTE);
    869 
    870 	/*
    871 	 * Map all of the kernel's data as read/write and cacheable.
    872 	 * This includes: data, BSS, symbols, and everything in the
    873 	 * contiguous memory used by pmap_bootstrap_alloc()
    874 	 */
    875 	for (; pa < avail_start; va += NBPG, pa += NBPG)
    876 		pmap_enter_kernel(va, pa, VM_PROT_READ|VM_PROT_WRITE);
    877 
    878 	/*
    879 	 * At this point we are almost ready to take over the MMU.  But first
    880 	 * we must save the PROM's address space in our map, as we call its
    881 	 * routines and make references to its data later in the kernel.
    882 	 */
    883 	pmap_bootstrap_copyprom();
    884 	pmap_takeover_mmu();
    885 	pmap_bootstrap_setprom();
    886 
    887 	/* Notify the VM system of our page size. */
    888 	uvmexp.pagesize = NBPG;
    889 	uvm_setpagesize();
    890 
    891 	pmap_page_upload();
    892 }
    893 
    894 
    895 /* pmap_alloc_usermmu			INTERNAL
    896  **
    897  * Called from pmap_bootstrap() to allocate MMU tables that will
    898  * eventually be used for user mappings.
    899  */
    900 void
    901 pmap_alloc_usermmu()
    902 {
    903 	/* XXX: Moved into caller. */
    904 }
    905 
    906 /* pmap_alloc_pv			INTERNAL
    907  **
    908  * Called from pmap_bootstrap() to allocate the physical
    909  * to virtual mapping list.  Each physical page of memory
    910  * in the system has a corresponding element in this list.
    911  */
    912 void
    913 pmap_alloc_pv()
    914 {
    915 	int	i;
    916 	unsigned int	total_mem;
    917 
    918 	/*
    919 	 * Allocate a pv_head structure for every page of physical
    920 	 * memory that will be managed by the system.  Since memory on
    921 	 * the 3/80 is non-contiguous, we cannot arrive at a total page
    922 	 * count by subtraction of the lowest available address from the
    923 	 * highest, but rather we have to step through each memory
    924 	 * bank and add the number of pages in each to the total.
    925 	 *
    926 	 * At this time we also initialize the offset of each bank's
    927 	 * starting pv_head within the pv_head list so that the physical
    928 	 * memory state routines (pmap_is_referenced(),
    929 	 * pmap_is_modified(), et al.) can quickly find coresponding
    930 	 * pv_heads in spite of the non-contiguity.
    931 	 */
    932 	total_mem = 0;
    933 	for (i = 0; i < SUN3X_NPHYS_RAM_SEGS; i++) {
    934 		avail_mem[i].pmem_pvbase = m68k_btop(total_mem);
    935 		total_mem += avail_mem[i].pmem_end -
    936 			avail_mem[i].pmem_start;
    937 		if (avail_mem[i].pmem_next == NULL)
    938 			break;
    939 	}
    940 	pvbase = (pv_t *) pmap_bootstrap_alloc(sizeof(pv_t) *
    941 		m68k_btop(total_phys_mem));
    942 }
    943 
    944 /* pmap_alloc_usertmgr			INTERNAL
    945  **
    946  * Called from pmap_bootstrap() to allocate the structures which
    947  * facilitate management of user MMU tables.  Each user MMU table
    948  * in the system has one such structure associated with it.
    949  */
    950 void
    951 pmap_alloc_usertmgr()
    952 {
    953 	/* Allocate user MMU table managers */
    954 	/* It would be a lot simpler to just make these BSS, but */
    955 	/* we may want to change their size at boot time... -j */
    956 	Atmgrbase = (a_tmgr_t *) pmap_bootstrap_alloc(sizeof(a_tmgr_t)
    957 		* NUM_A_TABLES);
    958 	Btmgrbase = (b_tmgr_t *) pmap_bootstrap_alloc(sizeof(b_tmgr_t)
    959 		* NUM_B_TABLES);
    960 	Ctmgrbase = (c_tmgr_t *) pmap_bootstrap_alloc(sizeof(c_tmgr_t)
    961 		* NUM_C_TABLES);
    962 
    963 	/*
    964 	 * Allocate PV list elements for the physical to virtual
    965 	 * mapping system.
    966 	 */
    967 	pvebase = (pv_elem_t *) pmap_bootstrap_alloc(
    968 		sizeof(pv_elem_t) * (NUM_USER_PTES + NUM_KERN_PTES));
    969 }
    970 
    971 /* pmap_bootstrap_copyprom()			INTERNAL
    972  **
    973  * Copy the PROM mappings into our own tables.  Note, we
    974  * can use physical addresses until __bootstrap returns.
    975  */
    976 void
    977 pmap_bootstrap_copyprom()
    978 {
    979 	struct sunromvec *romp;
    980 	int *mon_ctbl;
    981 	mmu_short_pte_t *kpte;
    982 	int i, len;
    983 
    984 	romp = romVectorPtr;
    985 
    986 	/*
    987 	 * Copy the mappings in SUN3X_MON_KDB_BASE...SUN3X_MONEND
    988 	 * Note: mon_ctbl[0] maps SUN3X_MON_KDB_BASE
    989 	 */
    990 	mon_ctbl = *romp->monptaddr;
    991 	i = m68k_btop(SUN3X_MON_KDB_BASE - KERNBASE);
    992 	kpte = &kernCbase[i];
    993 	len = m68k_btop(SUN3X_MONEND - SUN3X_MON_KDB_BASE);
    994 
    995 	for (i = 0; i < len; i++) {
    996 		kpte[i].attr.raw = mon_ctbl[i];
    997 	}
    998 
    999 	/*
   1000 	 * Copy the mappings at MON_DVMA_BASE (to the end).
   1001 	 * Note, in here, mon_ctbl[0] maps MON_DVMA_BASE.
   1002 	 * Actually, we only want the last page, which the
   1003 	 * PROM has set up for use by the "ie" driver.
   1004 	 * (The i82686 needs its SCP there.)
   1005 	 * If we copy all the mappings, pmap_enter_kernel
   1006 	 * may complain about finding valid PTEs that are
   1007 	 * not recorded in our PV lists...
   1008 	 */
   1009 	mon_ctbl = *romp->shadowpteaddr;
   1010 	i = m68k_btop(SUN3X_MON_DVMA_BASE - KERNBASE);
   1011 	kpte = &kernCbase[i];
   1012 	len = m68k_btop(SUN3X_MON_DVMA_SIZE);
   1013 	for (i = (len-1); i < len; i++) {
   1014 		kpte[i].attr.raw = mon_ctbl[i];
   1015 	}
   1016 }
   1017 
   1018 /* pmap_takeover_mmu			INTERNAL
   1019  **
   1020  * Called from pmap_bootstrap() after it has copied enough of the
   1021  * PROM mappings into the kernel map so that we can use our own
   1022  * MMU table.
   1023  */
   1024 void
   1025 pmap_takeover_mmu()
   1026 {
   1027 
   1028 	loadcrp(&kernel_crp);
   1029 }
   1030 
   1031 /* pmap_bootstrap_setprom()			INTERNAL
   1032  **
   1033  * Set the PROM mappings so it can see kernel space.
   1034  * Note that physical addresses are used here, which
   1035  * we can get away with because this runs with the
   1036  * low 1GB set for transparent translation.
   1037  */
   1038 void
   1039 pmap_bootstrap_setprom()
   1040 {
   1041 	mmu_long_dte_t *mon_dte;
   1042 	extern struct mmu_rootptr mon_crp;
   1043 	int i;
   1044 
   1045 	mon_dte = (mmu_long_dte_t *) mon_crp.rp_addr;
   1046 	for (i = MMU_TIA(KERNBASE); i < MMU_TIA(KERN_END); i++) {
   1047 		mon_dte[i].attr.raw = kernAbase[i].attr.raw;
   1048 		mon_dte[i].addr.raw = kernAbase[i].addr.raw;
   1049 	}
   1050 }
   1051 
   1052 
   1053 /* pmap_init			INTERFACE
   1054  **
   1055  * Called at the end of vm_init() to set up the pmap system to go
   1056  * into full time operation.  All initialization of kernel_pmap
   1057  * should be already done by now, so this should just do things
   1058  * needed for user-level pmaps to work.
   1059  */
   1060 void
   1061 pmap_init()
   1062 {
   1063 	/** Initialize the manager pools **/
   1064 	TAILQ_INIT(&a_pool);
   1065 	TAILQ_INIT(&b_pool);
   1066 	TAILQ_INIT(&c_pool);
   1067 
   1068 	/**************************************************************
   1069 	 * Initialize all tmgr structures and MMU tables they manage. *
   1070 	 **************************************************************/
   1071 	/** Initialize A tables **/
   1072 	pmap_init_a_tables();
   1073 	/** Initialize B tables **/
   1074 	pmap_init_b_tables();
   1075 	/** Initialize C tables **/
   1076 	pmap_init_c_tables();
   1077 
   1078 	/** Initialize the pmap pools **/
   1079 	pool_init(&pmap_pmap_pool, sizeof(struct pmap), 0, 0, 0, "pmappl",
   1080 	    0, pool_page_alloc_nointr, pool_page_free_nointr, M_VMPMAP);
   1081 }
   1082 
   1083 /* pmap_init_a_tables()			INTERNAL
   1084  **
   1085  * Initializes all A managers, their MMU A tables, and inserts
   1086  * them into the A manager pool for use by the system.
   1087  */
   1088 void
   1089 pmap_init_a_tables()
   1090 {
   1091 	int i;
   1092 	a_tmgr_t *a_tbl;
   1093 
   1094 	for (i=0; i < NUM_A_TABLES; i++) {
   1095 		/* Select the next available A manager from the pool */
   1096 		a_tbl = &Atmgrbase[i];
   1097 
   1098 		/*
   1099 		 * Clear its parent entry.  Set its wired and valid
   1100 		 * entry count to zero.
   1101 		 */
   1102 		a_tbl->at_parent = NULL;
   1103 		a_tbl->at_wcnt = a_tbl->at_ecnt = 0;
   1104 
   1105 		/* Assign it the next available MMU A table from the pool */
   1106 		a_tbl->at_dtbl = &mmuAbase[i * MMU_A_TBL_SIZE];
   1107 
   1108 		/*
   1109 		 * Initialize the MMU A table with the table in the `proc0',
   1110 		 * or kernel, mapping.  This ensures that every process has
   1111 		 * the kernel mapped in the top part of its address space.
   1112 		 */
   1113 		bcopy(kernAbase, a_tbl->at_dtbl, MMU_A_TBL_SIZE *
   1114 			sizeof(mmu_long_dte_t));
   1115 
   1116 		/*
   1117 		 * Finally, insert the manager into the A pool,
   1118 		 * making it ready to be used by the system.
   1119 		 */
   1120 		TAILQ_INSERT_TAIL(&a_pool, a_tbl, at_link);
   1121     }
   1122 }
   1123 
   1124 /* pmap_init_b_tables()			INTERNAL
   1125  **
   1126  * Initializes all B table managers, their MMU B tables, and
   1127  * inserts them into the B manager pool for use by the system.
   1128  */
   1129 void
   1130 pmap_init_b_tables()
   1131 {
   1132 	int i,j;
   1133 	b_tmgr_t *b_tbl;
   1134 
   1135 	for (i=0; i < NUM_B_TABLES; i++) {
   1136 		/* Select the next available B manager from the pool */
   1137 		b_tbl = &Btmgrbase[i];
   1138 
   1139 		b_tbl->bt_parent = NULL;	/* clear its parent,  */
   1140 		b_tbl->bt_pidx = 0;		/* parent index,      */
   1141 		b_tbl->bt_wcnt = 0;		/* wired entry count, */
   1142 		b_tbl->bt_ecnt = 0;		/* valid entry count. */
   1143 
   1144 		/* Assign it the next available MMU B table from the pool */
   1145 		b_tbl->bt_dtbl = &mmuBbase[i * MMU_B_TBL_SIZE];
   1146 
   1147 		/* Invalidate every descriptor in the table */
   1148 		for (j=0; j < MMU_B_TBL_SIZE; j++)
   1149 			b_tbl->bt_dtbl[j].attr.raw = MMU_DT_INVALID;
   1150 
   1151 		/* Insert the manager into the B pool */
   1152 		TAILQ_INSERT_TAIL(&b_pool, b_tbl, bt_link);
   1153 	}
   1154 }
   1155 
   1156 /* pmap_init_c_tables()			INTERNAL
   1157  **
   1158  * Initializes all C table managers, their MMU C tables, and
   1159  * inserts them into the C manager pool for use by the system.
   1160  */
   1161 void
   1162 pmap_init_c_tables()
   1163 {
   1164 	int i,j;
   1165 	c_tmgr_t *c_tbl;
   1166 
   1167 	for (i=0; i < NUM_C_TABLES; i++) {
   1168 		/* Select the next available C manager from the pool */
   1169 		c_tbl = &Ctmgrbase[i];
   1170 
   1171 		c_tbl->ct_parent = NULL;	/* clear its parent,  */
   1172 		c_tbl->ct_pidx = 0;		/* parent index,      */
   1173 		c_tbl->ct_wcnt = 0;		/* wired entry count, */
   1174 		c_tbl->ct_ecnt = 0;		/* valid entry count, */
   1175 		c_tbl->ct_pmap = NULL;		/* parent pmap,       */
   1176 		c_tbl->ct_va = 0;		/* base of managed range */
   1177 
   1178 		/* Assign it the next available MMU C table from the pool */
   1179 		c_tbl->ct_dtbl = &mmuCbase[i * MMU_C_TBL_SIZE];
   1180 
   1181 		for (j=0; j < MMU_C_TBL_SIZE; j++)
   1182 			c_tbl->ct_dtbl[j].attr.raw = MMU_DT_INVALID;
   1183 
   1184 		TAILQ_INSERT_TAIL(&c_pool, c_tbl, ct_link);
   1185 	}
   1186 }
   1187 
   1188 /* pmap_init_pv()			INTERNAL
   1189  **
   1190  * Initializes the Physical to Virtual mapping system.
   1191  */
   1192 void
   1193 pmap_init_pv()
   1194 {
   1195 	int	i;
   1196 
   1197 	/* Initialize every PV head. */
   1198 	for (i = 0; i < m68k_btop(total_phys_mem); i++) {
   1199 		pvbase[i].pv_idx = PVE_EOL;	/* Indicate no mappings */
   1200 		pvbase[i].pv_flags = 0;		/* Zero out page flags  */
   1201 	}
   1202 
   1203 	pv_initialized = TRUE;
   1204 }
   1205 
   1206 /* get_a_table			INTERNAL
   1207  **
   1208  * Retrieve and return a level A table for use in a user map.
   1209  */
   1210 a_tmgr_t *
   1211 get_a_table()
   1212 {
   1213 	a_tmgr_t *tbl;
   1214 	pmap_t pmap;
   1215 
   1216 	/* Get the top A table in the pool */
   1217 	tbl = a_pool.tqh_first;
   1218 	if (tbl == NULL) {
   1219 		/*
   1220 		 * XXX - Instead of panicing here and in other get_x_table
   1221 		 * functions, we do have the option of sleeping on the head of
   1222 		 * the table pool.  Any function which updates the table pool
   1223 		 * would then issue a wakeup() on the head, thus waking up any
   1224 		 * processes waiting for a table.
   1225 		 *
   1226 		 * Actually, the place to sleep would be when some process
   1227 		 * asks for a "wired" mapping that would run us short of
   1228 		 * mapping resources.  This design DEPENDS on always having
   1229 		 * some mapping resources in the pool for stealing, so we
   1230 		 * must make sure we NEVER let the pool become empty. -gwr
   1231 		 */
   1232 		panic("get_a_table: out of A tables.");
   1233 	}
   1234 
   1235 	TAILQ_REMOVE(&a_pool, tbl, at_link);
   1236 	/*
   1237 	 * If the table has a non-null parent pointer then it is in use.
   1238 	 * Forcibly abduct it from its parent and clear its entries.
   1239 	 * No re-entrancy worries here.  This table would not be in the
   1240 	 * table pool unless it was available for use.
   1241 	 *
   1242 	 * Note that the second argument to free_a_table() is FALSE.  This
   1243 	 * indicates that the table should not be relinked into the A table
   1244 	 * pool.  That is a job for the function that called us.
   1245 	 */
   1246 	if (tbl->at_parent) {
   1247 		pmap = tbl->at_parent;
   1248 		free_a_table(tbl, FALSE);
   1249 		pmap->pm_a_tmgr = NULL;
   1250 		pmap->pm_a_phys = kernAphys;
   1251 	}
   1252 #ifdef  NON_REENTRANT
   1253 	/*
   1254 	 * If the table isn't to be wired down, re-insert it at the
   1255 	 * end of the pool.
   1256 	 */
   1257 	if (!wired)
   1258 		/*
   1259 		 * Quandary - XXX
   1260 		 * Would it be better to let the calling function insert this
   1261 		 * table into the queue?  By inserting it here, we are allowing
   1262 		 * it to be stolen immediately.  The calling function is
   1263 		 * probably not expecting to use a table that it is not
   1264 		 * assured full control of.
   1265 		 * Answer - In the intrest of re-entrancy, it is best to let
   1266 		 * the calling function determine when a table is available
   1267 		 * for use.  Therefore this code block is not used.
   1268 		 */
   1269 		TAILQ_INSERT_TAIL(&a_pool, tbl, at_link);
   1270 #endif	/* NON_REENTRANT */
   1271 	return tbl;
   1272 }
   1273 
   1274 /* get_b_table			INTERNAL
   1275  **
   1276  * Return a level B table for use.
   1277  */
   1278 b_tmgr_t *
   1279 get_b_table()
   1280 {
   1281 	b_tmgr_t *tbl;
   1282 
   1283 	/* See 'get_a_table' for comments. */
   1284 	tbl = b_pool.tqh_first;
   1285 	if (tbl == NULL)
   1286 		panic("get_b_table: out of B tables.");
   1287 	TAILQ_REMOVE(&b_pool, tbl, bt_link);
   1288 	if (tbl->bt_parent) {
   1289 		tbl->bt_parent->at_dtbl[tbl->bt_pidx].attr.raw = MMU_DT_INVALID;
   1290 		tbl->bt_parent->at_ecnt--;
   1291 		free_b_table(tbl, FALSE);
   1292 	}
   1293 #ifdef	NON_REENTRANT
   1294 	if (!wired)
   1295 		/* XXX see quandary in get_b_table */
   1296 		/* XXX start lock */
   1297 		TAILQ_INSERT_TAIL(&b_pool, tbl, bt_link);
   1298 		/* XXX end lock */
   1299 #endif	/* NON_REENTRANT */
   1300 	return tbl;
   1301 }
   1302 
   1303 /* get_c_table			INTERNAL
   1304  **
   1305  * Return a level C table for use.
   1306  */
   1307 c_tmgr_t *
   1308 get_c_table()
   1309 {
   1310 	c_tmgr_t *tbl;
   1311 
   1312 	/* See 'get_a_table' for comments */
   1313 	tbl = c_pool.tqh_first;
   1314 	if (tbl == NULL)
   1315 		panic("get_c_table: out of C tables.");
   1316 	TAILQ_REMOVE(&c_pool, tbl, ct_link);
   1317 	if (tbl->ct_parent) {
   1318 		tbl->ct_parent->bt_dtbl[tbl->ct_pidx].attr.raw = MMU_DT_INVALID;
   1319 		tbl->ct_parent->bt_ecnt--;
   1320 		free_c_table(tbl, FALSE);
   1321 	}
   1322 #ifdef	NON_REENTRANT
   1323 	if (!wired)
   1324 		/* XXX See quandary in get_a_table */
   1325 		/* XXX start lock */
   1326 		TAILQ_INSERT_TAIL(&c_pool, tbl, c_link);
   1327 		/* XXX end lock */
   1328 #endif	/* NON_REENTRANT */
   1329 
   1330 	return tbl;
   1331 }
   1332 
   1333 /*
   1334  * The following 'free_table' and 'steal_table' functions are called to
   1335  * detach tables from their current obligations (parents and children) and
   1336  * prepare them for reuse in another mapping.
   1337  *
   1338  * Free_table is used when the calling function will handle the fate
   1339  * of the parent table, such as returning it to the free pool when it has
   1340  * no valid entries.  Functions that do not want to handle this should
   1341  * call steal_table, in which the parent table's descriptors and entry
   1342  * count are automatically modified when this table is removed.
   1343  */
   1344 
   1345 /* free_a_table			INTERNAL
   1346  **
   1347  * Unmaps the given A table and all child tables from their current
   1348  * mappings.  Returns the number of pages that were invalidated.
   1349  * If 'relink' is true, the function will return the table to the head
   1350  * of the available table pool.
   1351  *
   1352  * Cache note: The MC68851 will automatically flush all
   1353  * descriptors derived from a given A table from its
   1354  * Automatic Translation Cache (ATC) if we issue a
   1355  * 'PFLUSHR' instruction with the base address of the
   1356  * table.  This function should do, and does so.
   1357  * Note note: We are using an MC68030 - there is no
   1358  * PFLUSHR.
   1359  */
   1360 int
   1361 free_a_table(a_tbl, relink)
   1362 	a_tmgr_t *a_tbl;
   1363 	boolean_t relink;
   1364 {
   1365 	int i, removed_cnt;
   1366 	mmu_long_dte_t	*dte;
   1367 	mmu_short_dte_t *dtbl;
   1368 	b_tmgr_t	*tmgr;
   1369 
   1370 	/*
   1371 	 * Flush the ATC cache of all cached descriptors derived
   1372 	 * from this table.
   1373 	 * Sun3x does not use 68851's cached table feature
   1374 	 * flush_atc_crp(mmu_vtop(a_tbl->dte));
   1375 	 */
   1376 
   1377 	/*
   1378 	 * Remove any pending cache flushes that were designated
   1379 	 * for the pmap this A table belongs to.
   1380 	 * a_tbl->parent->atc_flushq[0] = 0;
   1381 	 * Not implemented in sun3x.
   1382 	 */
   1383 
   1384 	/*
   1385 	 * All A tables in the system should retain a map for the
   1386 	 * kernel. If the table contains any valid descriptors
   1387 	 * (other than those for the kernel area), invalidate them all,
   1388 	 * stopping short of the kernel's entries.
   1389 	 */
   1390 	removed_cnt = 0;
   1391 	if (a_tbl->at_ecnt) {
   1392 		dte = a_tbl->at_dtbl;
   1393 		for (i=0; i < MMU_TIA(KERNBASE); i++) {
   1394 			/*
   1395 			 * If a table entry points to a valid B table, free
   1396 			 * it and its children.
   1397 			 */
   1398 			if (MMU_VALID_DT(dte[i])) {
   1399 				/*
   1400 				 * The following block does several things,
   1401 				 * from innermost expression to the
   1402 				 * outermost:
   1403 				 * 1) It extracts the base (cc 1996)
   1404 				 *    address of the B table pointed
   1405 				 *    to in the A table entry dte[i].
   1406 				 * 2) It converts this base address into
   1407 				 *    the virtual address it can be
   1408 				 *    accessed with. (all MMU tables point
   1409 				 *    to physical addresses.)
   1410 				 * 3) It finds the corresponding manager
   1411 				 *    structure which manages this MMU table.
   1412 				 * 4) It frees the manager structure.
   1413 				 *    (This frees the MMU table and all
   1414 				 *    child tables. See 'free_b_table' for
   1415 				 *    details.)
   1416 				 */
   1417 				dtbl = mmu_ptov(dte[i].addr.raw);
   1418 				tmgr = mmuB2tmgr(dtbl);
   1419 				removed_cnt += free_b_table(tmgr, TRUE);
   1420 				dte[i].attr.raw = MMU_DT_INVALID;
   1421 			}
   1422 		}
   1423 		a_tbl->at_ecnt = 0;
   1424 	}
   1425 	if (relink) {
   1426 		a_tbl->at_parent = NULL;
   1427 		TAILQ_REMOVE(&a_pool, a_tbl, at_link);
   1428 		TAILQ_INSERT_HEAD(&a_pool, a_tbl, at_link);
   1429 	}
   1430 	return removed_cnt;
   1431 }
   1432 
   1433 /* free_b_table			INTERNAL
   1434  **
   1435  * Unmaps the given B table and all its children from their current
   1436  * mappings.  Returns the number of pages that were invalidated.
   1437  * (For comments, see 'free_a_table()').
   1438  */
   1439 int
   1440 free_b_table(b_tbl, relink)
   1441 	b_tmgr_t *b_tbl;
   1442 	boolean_t relink;
   1443 {
   1444 	int i, removed_cnt;
   1445 	mmu_short_dte_t *dte;
   1446 	mmu_short_pte_t	*dtbl;
   1447 	c_tmgr_t	*tmgr;
   1448 
   1449 	removed_cnt = 0;
   1450 	if (b_tbl->bt_ecnt) {
   1451 		dte = b_tbl->bt_dtbl;
   1452 		for (i=0; i < MMU_B_TBL_SIZE; i++) {
   1453 			if (MMU_VALID_DT(dte[i])) {
   1454 				dtbl = mmu_ptov(MMU_DTE_PA(dte[i]));
   1455 				tmgr = mmuC2tmgr(dtbl);
   1456 				removed_cnt += free_c_table(tmgr, TRUE);
   1457 				dte[i].attr.raw = MMU_DT_INVALID;
   1458 			}
   1459 		}
   1460 		b_tbl->bt_ecnt = 0;
   1461 	}
   1462 
   1463 	if (relink) {
   1464 		b_tbl->bt_parent = NULL;
   1465 		TAILQ_REMOVE(&b_pool, b_tbl, bt_link);
   1466 		TAILQ_INSERT_HEAD(&b_pool, b_tbl, bt_link);
   1467 	}
   1468 	return removed_cnt;
   1469 }
   1470 
   1471 /* free_c_table			INTERNAL
   1472  **
   1473  * Unmaps the given C table from use and returns it to the pool for
   1474  * re-use.  Returns the number of pages that were invalidated.
   1475  *
   1476  * This function preserves any physical page modification information
   1477  * contained in the page descriptors within the C table by calling
   1478  * 'pmap_remove_pte().'
   1479  */
   1480 int
   1481 free_c_table(c_tbl, relink)
   1482 	c_tmgr_t *c_tbl;
   1483 	boolean_t relink;
   1484 {
   1485 	int i, removed_cnt;
   1486 
   1487 	removed_cnt = 0;
   1488 	if (c_tbl->ct_ecnt) {
   1489 		for (i=0; i < MMU_C_TBL_SIZE; i++) {
   1490 			if (MMU_VALID_DT(c_tbl->ct_dtbl[i])) {
   1491 				pmap_remove_pte(&c_tbl->ct_dtbl[i]);
   1492 				removed_cnt++;
   1493 			}
   1494 		}
   1495 		c_tbl->ct_ecnt = 0;
   1496 	}
   1497 
   1498 	if (relink) {
   1499 		c_tbl->ct_parent = NULL;
   1500 		TAILQ_REMOVE(&c_pool, c_tbl, ct_link);
   1501 		TAILQ_INSERT_HEAD(&c_pool, c_tbl, ct_link);
   1502 	}
   1503 	return removed_cnt;
   1504 }
   1505 
   1506 #if 0
   1507 /* free_c_table_novalid			INTERNAL
   1508  **
   1509  * Frees the given C table manager without checking to see whether
   1510  * or not it contains any valid page descriptors as it is assumed
   1511  * that it does not.
   1512  */
   1513 void
   1514 free_c_table_novalid(c_tbl)
   1515 	c_tmgr_t *c_tbl;
   1516 {
   1517 	TAILQ_REMOVE(&c_pool, c_tbl, ct_link);
   1518 	TAILQ_INSERT_HEAD(&c_pool, c_tbl, ct_link);
   1519 	c_tbl->ct_parent->bt_dtbl[c_tbl->ct_pidx].attr.raw = MMU_DT_INVALID;
   1520 	c_tbl->ct_parent->bt_ecnt--;
   1521 	/*
   1522 	 * XXX - Should call equiv. of 'free_b_table_novalid' here if
   1523 	 * we just removed the last entry of the parent B table.
   1524 	 * But I want to insure that this will not endanger pmap_enter()
   1525 	 * with sudden removal of tables it is working with.
   1526 	 *
   1527 	 * We should probably add another field to each table, indicating
   1528 	 * whether or not it is 'locked', ie. in the process of being
   1529 	 * modified.
   1530 	 */
   1531 	c_tbl->ct_parent = NULL;
   1532 }
   1533 #endif
   1534 
   1535 /* pmap_remove_pte			INTERNAL
   1536  **
   1537  * Unmap the given pte and preserve any page modification
   1538  * information by transfering it to the pv head of the
   1539  * physical page it maps to.  This function does not update
   1540  * any reference counts because it is assumed that the calling
   1541  * function will do so.
   1542  */
   1543 void
   1544 pmap_remove_pte(pte)
   1545 	mmu_short_pte_t *pte;
   1546 {
   1547 	u_short     pv_idx, targ_idx;
   1548 	int         s;
   1549 	vm_offset_t pa;
   1550 	pv_t       *pv;
   1551 
   1552 	pa = MMU_PTE_PA(*pte);
   1553 	if (is_managed(pa)) {
   1554 		pv = pa2pv(pa);
   1555 		targ_idx = pteidx(pte);	/* Index of PTE being removed    */
   1556 
   1557 		/*
   1558 		 * If the PTE being removed is the first (or only) PTE in
   1559 		 * the list of PTEs currently mapped to this page, remove the
   1560 		 * PTE by changing the index found on the PV head.  Otherwise
   1561 		 * a linear search through the list will have to be executed
   1562 		 * in order to find the PVE which points to the PTE being
   1563 		 * removed, so that it may be modified to point to its new
   1564 		 * neighbor.
   1565 		 */
   1566 		s = splvm();
   1567 		pv_idx = pv->pv_idx;	/* Index of first PTE in PV list */
   1568 		if (pv_idx == targ_idx) {
   1569 			pv->pv_idx = pvebase[targ_idx].pve_next;
   1570 		} else {
   1571 			/*
   1572 			 * Find the PV element pointing to the target
   1573 			 * element.  Note: may have pv_idx==PVE_EOL
   1574 			 */
   1575 			for (;;) {
   1576 				if (pv_idx == PVE_EOL) {
   1577 #ifdef	PMAP_DEBUG
   1578 					printf("pmap_remove_pte: PVE_EOL\n");
   1579 					Debugger();
   1580 #endif
   1581 					goto pv_not_found;
   1582 				}
   1583 				if (pvebase[pv_idx].pve_next == targ_idx)
   1584 					break;
   1585 				pv_idx = pvebase[pv_idx].pve_next;
   1586 			}
   1587 			/*
   1588 			 * At this point, pv_idx is the index of the PV
   1589 			 * element just before the target element in the list.
   1590 			 * Unlink the target.
   1591 			 */
   1592 			pvebase[pv_idx].pve_next = pvebase[targ_idx].pve_next;
   1593 		pv_not_found:
   1594 		}
   1595 		/*
   1596 		 * Save the mod/ref bits of the pte by simply
   1597 		 * ORing the entire pte onto the pv_flags member
   1598 		 * of the pv structure.
   1599 		 * There is no need to use a separate bit pattern
   1600 		 * for usage information on the pv head than that
   1601 		 * which is used on the MMU ptes.
   1602 		 */
   1603 		pv->pv_flags |= (u_short) pte->attr.raw;
   1604 		splx(s);
   1605 	}
   1606 
   1607 	pte->attr.raw = MMU_DT_INVALID;
   1608 }
   1609 
   1610 /* pmap_stroll			INTERNAL
   1611  **
   1612  * Retrieve the addresses of all table managers involved in the mapping of
   1613  * the given virtual address.  If the table walk completed sucessfully,
   1614  * return TRUE.  If it was only partially sucessful, return FALSE.
   1615  * The table walk performed by this function is important to many other
   1616  * functions in this module.
   1617  *
   1618  * Note: This function ought to be easier to read.
   1619  */
   1620 boolean_t
   1621 pmap_stroll(pmap, va, a_tbl, b_tbl, c_tbl, pte, a_idx, b_idx, pte_idx)
   1622 	pmap_t pmap;
   1623 	vm_offset_t va;
   1624 	a_tmgr_t **a_tbl;
   1625 	b_tmgr_t **b_tbl;
   1626 	c_tmgr_t **c_tbl;
   1627 	mmu_short_pte_t **pte;
   1628 	int *a_idx, *b_idx, *pte_idx;
   1629 {
   1630 	mmu_long_dte_t *a_dte;   /* A: long descriptor table          */
   1631 	mmu_short_dte_t *b_dte;  /* B: short descriptor table         */
   1632 
   1633 	if (pmap == pmap_kernel())
   1634 		return FALSE;
   1635 
   1636 	/* Does the given pmap have its own A table? */
   1637 	*a_tbl = pmap->pm_a_tmgr;
   1638 	if (*a_tbl == NULL)
   1639 		return FALSE; /* No.  Return unknown. */
   1640 	/* Does the A table have a valid B table
   1641 	 * under the corresponding table entry?
   1642 	 */
   1643 	*a_idx = MMU_TIA(va);
   1644 	a_dte = &((*a_tbl)->at_dtbl[*a_idx]);
   1645 	if (!MMU_VALID_DT(*a_dte))
   1646 		return FALSE; /* No. Return unknown. */
   1647 	/* Yes. Extract B table from the A table. */
   1648 	*b_tbl = mmuB2tmgr(mmu_ptov(a_dte->addr.raw));
   1649 	/* Does the B table have a valid C table
   1650 	 * under the corresponding table entry?
   1651 	 */
   1652 	*b_idx = MMU_TIB(va);
   1653 	b_dte = &((*b_tbl)->bt_dtbl[*b_idx]);
   1654 	if (!MMU_VALID_DT(*b_dte))
   1655 		return FALSE; /* No. Return unknown. */
   1656 	/* Yes. Extract C table from the B table. */
   1657 	*c_tbl = mmuC2tmgr(mmu_ptov(MMU_DTE_PA(*b_dte)));
   1658 	*pte_idx = MMU_TIC(va);
   1659 	*pte = &((*c_tbl)->ct_dtbl[*pte_idx]);
   1660 
   1661 	return	TRUE;
   1662 }
   1663 
   1664 /* pmap_enter			INTERFACE
   1665  **
   1666  * Called by the kernel to map a virtual address
   1667  * to a physical address in the given process map.
   1668  *
   1669  * Note: this function should apply an exclusive lock
   1670  * on the pmap system for its duration.  (it certainly
   1671  * would save my hair!!)
   1672  * This function ought to be easier to read.
   1673  */
   1674 int
   1675 pmap_enter(pmap, va, pa, prot, flags)
   1676 	pmap_t	pmap;
   1677 	vm_offset_t va;
   1678 	vm_offset_t pa;
   1679 	vm_prot_t prot;
   1680 	int flags;
   1681 {
   1682 	boolean_t insert, managed; /* Marks the need for PV insertion.*/
   1683 	u_short nidx;            /* PV list index                     */
   1684 	int s;                   /* Used for splvm()/splx()           */
   1685 	int mapflags;            /* Flags for the mapping (see NOTE1) */
   1686 	u_int a_idx, b_idx, pte_idx; /* table indices                 */
   1687 	a_tmgr_t *a_tbl;         /* A: long descriptor table manager  */
   1688 	b_tmgr_t *b_tbl;         /* B: short descriptor table manager */
   1689 	c_tmgr_t *c_tbl;         /* C: short page table manager       */
   1690 	mmu_long_dte_t *a_dte;   /* A: long descriptor table          */
   1691 	mmu_short_dte_t *b_dte;  /* B: short descriptor table         */
   1692 	mmu_short_pte_t *c_pte;  /* C: short page descriptor table    */
   1693 	pv_t      *pv;           /* pv list head                      */
   1694 	boolean_t wired;         /* is the mapping to be wired?       */
   1695 	enum {NONE, NEWA, NEWB, NEWC} llevel; /* used at end   */
   1696 
   1697 	if (pmap == NULL)
   1698 		return 0;
   1699 	if (pmap == pmap_kernel()) {
   1700 		pmap_enter_kernel(va, pa, prot);
   1701 		return 0;
   1702 	}
   1703 
   1704 	/*
   1705 	 * Determine if the mapping should be wired.
   1706 	 */
   1707 	wired = ((flags & PMAP_WIRED) != 0);
   1708 
   1709 	/*
   1710 	 * NOTE1:
   1711 	 *
   1712 	 * On November 13, 1999, someone changed the pmap_enter() API such
   1713 	 * that it now accepts a 'flags' argument.  This new argument
   1714 	 * contains bit-flags for the architecture-independent (UVM) system to
   1715 	 * use in signalling certain mapping requirements to the architecture-
   1716 	 * dependent (pmap) system.  The argument it replaces, 'wired', is now
   1717 	 * one of the flags within it.
   1718 	 *
   1719 	 * In addition to flags signaled by the architecture-independent
   1720 	 * system, parts of the architecture-dependent section of the sun3x
   1721 	 * kernel pass their own flags in the lower, unused bits of the
   1722 	 * physical address supplied to this function.  These flags are
   1723 	 * extracted and stored in the temporary variable 'mapflags'.
   1724 	 *
   1725 	 * Extract sun3x specific flags from the physical address.
   1726 	 */
   1727 	mapflags  = (pa & ~MMU_PAGE_MASK);
   1728 	pa       &= MMU_PAGE_MASK;
   1729 
   1730 	/*
   1731 	 * Determine if the physical address being mapped is on-board RAM.
   1732 	 * Any other area of the address space is likely to belong to a
   1733 	 * device and hence it would be disasterous to cache its contents.
   1734 	 */
   1735 	if ((managed = is_managed(pa)) == FALSE)
   1736 		mapflags |= PMAP_NC;
   1737 
   1738 	/*
   1739 	 * For user mappings we walk along the MMU tables of the given
   1740 	 * pmap, reaching a PTE which describes the virtual page being
   1741 	 * mapped or changed.  If any level of the walk ends in an invalid
   1742 	 * entry, a table must be allocated and the entry must be updated
   1743 	 * to point to it.
   1744 	 * There is a bit of confusion as to whether this code must be
   1745 	 * re-entrant.  For now we will assume it is.  To support
   1746 	 * re-entrancy we must unlink tables from the table pool before
   1747 	 * we assume we may use them.  Tables are re-linked into the pool
   1748 	 * when we are finished with them at the end of the function.
   1749 	 * But I don't feel like doing that until we have proof that this
   1750 	 * needs to be re-entrant.
   1751 	 * 'llevel' records which tables need to be relinked.
   1752 	 */
   1753 	llevel = NONE;
   1754 
   1755 	/*
   1756 	 * Step 1 - Retrieve the A table from the pmap.  If it has no
   1757 	 * A table, allocate a new one from the available pool.
   1758 	 */
   1759 
   1760 	a_tbl = pmap->pm_a_tmgr;
   1761 	if (a_tbl == NULL) {
   1762 		/*
   1763 		 * This pmap does not currently have an A table.  Allocate
   1764 		 * a new one.
   1765 		 */
   1766 		a_tbl = get_a_table();
   1767 		a_tbl->at_parent = pmap;
   1768 
   1769 		/*
   1770 		 * Assign this new A table to the pmap, and calculate its
   1771 		 * physical address so that loadcrp() can be used to make
   1772 		 * the table active.
   1773 		 */
   1774 		pmap->pm_a_tmgr = a_tbl;
   1775 		pmap->pm_a_phys = mmu_vtop(a_tbl->at_dtbl);
   1776 
   1777 		/*
   1778 		 * If the process receiving a new A table is the current
   1779 		 * process, we are responsible for setting the MMU so that
   1780 		 * it becomes the current address space.  This only adds
   1781 		 * new mappings, so no need to flush anything.
   1782 		 */
   1783 		if (pmap == current_pmap()) {
   1784 			kernel_crp.rp_addr = pmap->pm_a_phys;
   1785 			loadcrp(&kernel_crp);
   1786 		}
   1787 
   1788 		if (!wired)
   1789 			llevel = NEWA;
   1790 	} else {
   1791 		/*
   1792 		 * Use the A table already allocated for this pmap.
   1793 		 * Unlink it from the A table pool if necessary.
   1794 		 */
   1795 		if (wired && !a_tbl->at_wcnt)
   1796 			TAILQ_REMOVE(&a_pool, a_tbl, at_link);
   1797 	}
   1798 
   1799 	/*
   1800 	 * Step 2 - Walk into the B table.  If there is no valid B table,
   1801 	 * allocate one.
   1802 	 */
   1803 
   1804 	a_idx = MMU_TIA(va);            /* Calculate the TIA of the VA. */
   1805 	a_dte = &a_tbl->at_dtbl[a_idx]; /* Retrieve descriptor from table */
   1806 	if (MMU_VALID_DT(*a_dte)) {     /* Is the descriptor valid? */
   1807 		/* The descriptor is valid.  Use the B table it points to. */
   1808 		/*************************************
   1809 		 *               a_idx               *
   1810 		 *                 v                 *
   1811 		 * a_tbl -> +-+-+-+-+-+-+-+-+-+-+-+- *
   1812 		 *          | | | | | | | | | | | |  *
   1813 		 *          +-+-+-+-+-+-+-+-+-+-+-+- *
   1814 		 *                 |                 *
   1815 		 *                 \- b_tbl -> +-+-  *
   1816 		 *                             | |   *
   1817 		 *                             +-+-  *
   1818 		 *************************************/
   1819 		b_dte = mmu_ptov(a_dte->addr.raw);
   1820 		b_tbl = mmuB2tmgr(b_dte);
   1821 
   1822 		/*
   1823 		 * If the requested mapping must be wired, but this table
   1824 		 * being used to map it is not, the table must be removed
   1825 		 * from the available pool and its wired entry count
   1826 		 * incremented.
   1827 		 */
   1828 		if (wired && !b_tbl->bt_wcnt) {
   1829 			TAILQ_REMOVE(&b_pool, b_tbl, bt_link);
   1830 			a_tbl->at_wcnt++;
   1831 		}
   1832 	} else {
   1833 		/* The descriptor is invalid.  Allocate a new B table. */
   1834 		b_tbl = get_b_table();
   1835 
   1836 		/* Point the parent A table descriptor to this new B table. */
   1837 		a_dte->addr.raw = mmu_vtop(b_tbl->bt_dtbl);
   1838 		a_dte->attr.raw = MMU_LONG_DTE_LU | MMU_DT_SHORT;
   1839 		a_tbl->at_ecnt++; /* Update parent's valid entry count */
   1840 
   1841 		/* Create the necessary back references to the parent table */
   1842 		b_tbl->bt_parent = a_tbl;
   1843 		b_tbl->bt_pidx = a_idx;
   1844 
   1845 		/*
   1846 		 * If this table is to be wired, make sure the parent A table
   1847 		 * wired count is updated to reflect that it has another wired
   1848 		 * entry.
   1849 		 */
   1850 		if (wired)
   1851 			a_tbl->at_wcnt++;
   1852 		else if (llevel == NONE)
   1853 			llevel = NEWB;
   1854 	}
   1855 
   1856 	/*
   1857 	 * Step 3 - Walk into the C table, if there is no valid C table,
   1858 	 * allocate one.
   1859 	 */
   1860 
   1861 	b_idx = MMU_TIB(va);            /* Calculate the TIB of the VA */
   1862 	b_dte = &b_tbl->bt_dtbl[b_idx]; /* Retrieve descriptor from table */
   1863 	if (MMU_VALID_DT(*b_dte)) {     /* Is the descriptor valid? */
   1864 		/* The descriptor is valid.  Use the C table it points to. */
   1865 		/**************************************
   1866 		 *               c_idx                *
   1867 		 * |                v                 *
   1868 		 * \- b_tbl -> +-+-+-+-+-+-+-+-+-+-+- *
   1869 		 *             | | | | | | | | | | |  *
   1870 		 *             +-+-+-+-+-+-+-+-+-+-+- *
   1871 		 *                  |                 *
   1872 		 *                  \- c_tbl -> +-+-- *
   1873 		 *                              | | | *
   1874 		 *                              +-+-- *
   1875 		 **************************************/
   1876 		c_pte = mmu_ptov(MMU_PTE_PA(*b_dte));
   1877 		c_tbl = mmuC2tmgr(c_pte);
   1878 
   1879 		/* If mapping is wired and table is not */
   1880 		if (wired && !c_tbl->ct_wcnt) {
   1881 			TAILQ_REMOVE(&c_pool, c_tbl, ct_link);
   1882 			b_tbl->bt_wcnt++;
   1883 		}
   1884 	} else {
   1885 		/* The descriptor is invalid.  Allocate a new C table. */
   1886 		c_tbl = get_c_table();
   1887 
   1888 		/* Point the parent B table descriptor to this new C table. */
   1889 		b_dte->attr.raw = mmu_vtop(c_tbl->ct_dtbl);
   1890 		b_dte->attr.raw |= MMU_DT_SHORT;
   1891 		b_tbl->bt_ecnt++; /* Update parent's valid entry count */
   1892 
   1893 		/* Create the necessary back references to the parent table */
   1894 		c_tbl->ct_parent = b_tbl;
   1895 		c_tbl->ct_pidx = b_idx;
   1896 		/*
   1897 		 * Store the pmap and base virtual managed address for faster
   1898 		 * retrieval in the PV functions.
   1899 		 */
   1900 		c_tbl->ct_pmap = pmap;
   1901 		c_tbl->ct_va = (va & (MMU_TIA_MASK|MMU_TIB_MASK));
   1902 
   1903 		/*
   1904 		 * If this table is to be wired, make sure the parent B table
   1905 		 * wired count is updated to reflect that it has another wired
   1906 		 * entry.
   1907 		 */
   1908 		if (wired)
   1909 			b_tbl->bt_wcnt++;
   1910 		else if (llevel == NONE)
   1911 			llevel = NEWC;
   1912 	}
   1913 
   1914 	/*
   1915 	 * Step 4 - Deposit a page descriptor (PTE) into the appropriate
   1916 	 * slot of the C table, describing the PA to which the VA is mapped.
   1917 	 */
   1918 
   1919 	pte_idx = MMU_TIC(va);
   1920 	c_pte = &c_tbl->ct_dtbl[pte_idx];
   1921 	if (MMU_VALID_DT(*c_pte)) { /* Is the entry currently valid? */
   1922 		/*
   1923 		 * The PTE is currently valid.  This particular call
   1924 		 * is just a synonym for one (or more) of the following
   1925 		 * operations:
   1926 		 *     change protection of a page
   1927 		 *     change wiring status of a page
   1928 		 *     remove the mapping of a page
   1929 		 *
   1930 		 * XXX - Semi critical: This code should unwire the PTE
   1931 		 * and, possibly, associated parent tables if this is a
   1932 		 * change wiring operation.  Currently it does not.
   1933 		 *
   1934 		 * This may be ok if pmap_unwire() is the only
   1935 		 * interface used to UNWIRE a page.
   1936 		 */
   1937 
   1938 		/* First check if this is a wiring operation. */
   1939 		if (wired && (c_pte->attr.raw & MMU_SHORT_PTE_WIRED)) {
   1940 			/*
   1941 			 * The PTE is already wired.  To prevent it from being
   1942 			 * counted as a new wiring operation, reset the 'wired'
   1943 			 * variable.
   1944 			 */
   1945 			wired = FALSE;
   1946 		}
   1947 
   1948 		/* Is the new address the same as the old? */
   1949 		if (MMU_PTE_PA(*c_pte) == pa) {
   1950 			/*
   1951 			 * Yes, mark that it does not need to be reinserted
   1952 			 * into the PV list.
   1953 			 */
   1954 			insert = FALSE;
   1955 
   1956 			/*
   1957 			 * Clear all but the modified, referenced and wired
   1958 			 * bits on the PTE.
   1959 			 */
   1960 			c_pte->attr.raw &= (MMU_SHORT_PTE_M
   1961 				| MMU_SHORT_PTE_USED | MMU_SHORT_PTE_WIRED);
   1962 		} else {
   1963 			/* No, remove the old entry */
   1964 			pmap_remove_pte(c_pte);
   1965 			insert = TRUE;
   1966 		}
   1967 
   1968 		/*
   1969 		 * TLB flush is only necessary if modifying current map.
   1970 		 * However, in pmap_enter(), the pmap almost always IS
   1971 		 * the current pmap, so don't even bother to check.
   1972 		 */
   1973 		TBIS(va);
   1974 	} else {
   1975 		/*
   1976 		 * The PTE is invalid.  Increment the valid entry count in
   1977 		 * the C table manager to reflect the addition of a new entry.
   1978 		 */
   1979 		c_tbl->ct_ecnt++;
   1980 
   1981 		/* XXX - temporarily make sure the PTE is cleared. */
   1982 		c_pte->attr.raw = 0;
   1983 
   1984 		/* It will also need to be inserted into the PV list. */
   1985 		insert = TRUE;
   1986 	}
   1987 
   1988 	/*
   1989 	 * If page is changing from unwired to wired status, set an unused bit
   1990 	 * within the PTE to indicate that it is wired.  Also increment the
   1991 	 * wired entry count in the C table manager.
   1992 	 */
   1993 	if (wired) {
   1994 		c_pte->attr.raw |= MMU_SHORT_PTE_WIRED;
   1995 		c_tbl->ct_wcnt++;
   1996 	}
   1997 
   1998 	/*
   1999 	 * Map the page, being careful to preserve modify/reference/wired
   2000 	 * bits.  At this point it is assumed that the PTE either has no bits
   2001 	 * set, or if there are set bits, they are only modified, reference or
   2002 	 * wired bits.  If not, the following statement will cause erratic
   2003 	 * behavior.
   2004 	 */
   2005 #ifdef	PMAP_DEBUG
   2006 	if (c_pte->attr.raw & ~(MMU_SHORT_PTE_M |
   2007 		MMU_SHORT_PTE_USED | MMU_SHORT_PTE_WIRED)) {
   2008 		printf("pmap_enter: junk left in PTE at %p\n", c_pte);
   2009 		Debugger();
   2010 	}
   2011 #endif
   2012 	c_pte->attr.raw |= ((u_long) pa | MMU_DT_PAGE);
   2013 
   2014 	/*
   2015 	 * If the mapping should be read-only, set the write protect
   2016 	 * bit in the PTE.
   2017 	 */
   2018 	if (!(prot & VM_PROT_WRITE))
   2019 		c_pte->attr.raw |= MMU_SHORT_PTE_WP;
   2020 
   2021 	/*
   2022 	 * If the mapping should be cache inhibited (indicated by the flag
   2023 	 * bits found on the lower order of the physical address.)
   2024 	 * mark the PTE as a cache inhibited page.
   2025 	 */
   2026 	if (mapflags & PMAP_NC)
   2027 		c_pte->attr.raw |= MMU_SHORT_PTE_CI;
   2028 
   2029 	/*
   2030 	 * If the physical address being mapped is managed by the PV
   2031 	 * system then link the pte into the list of pages mapped to that
   2032 	 * address.
   2033 	 */
   2034 	if (insert && managed) {
   2035 		pv = pa2pv(pa);
   2036 		nidx = pteidx(c_pte);
   2037 
   2038 		s = splvm();
   2039 		pvebase[nidx].pve_next = pv->pv_idx;
   2040 		pv->pv_idx = nidx;
   2041 		splx(s);
   2042 	}
   2043 
   2044 	/* Move any allocated tables back into the active pool. */
   2045 
   2046 	switch (llevel) {
   2047 		case NEWA:
   2048 			TAILQ_INSERT_TAIL(&a_pool, a_tbl, at_link);
   2049 			/* FALLTHROUGH */
   2050 		case NEWB:
   2051 			TAILQ_INSERT_TAIL(&b_pool, b_tbl, bt_link);
   2052 			/* FALLTHROUGH */
   2053 		case NEWC:
   2054 			TAILQ_INSERT_TAIL(&c_pool, c_tbl, ct_link);
   2055 			/* FALLTHROUGH */
   2056 		default:
   2057 			break;
   2058 	}
   2059 
   2060 	return 0;
   2061 }
   2062 
   2063 /* pmap_enter_kernel			INTERNAL
   2064  **
   2065  * Map the given virtual address to the given physical address within the
   2066  * kernel address space.  This function exists because the kernel map does
   2067  * not do dynamic table allocation.  It consists of a contiguous array of ptes
   2068  * and can be edited directly without the need to walk through any tables.
   2069  *
   2070  * XXX: "Danger, Will Robinson!"
   2071  * Note that the kernel should never take a fault on any page
   2072  * between [ KERNBASE .. virtual_avail ] and this is checked in
   2073  * trap.c for kernel-mode MMU faults.  This means that mappings
   2074  * created in that range must be implicily wired. -gwr
   2075  */
   2076 void
   2077 pmap_enter_kernel(va, pa, prot)
   2078 	vm_offset_t va;
   2079 	vm_offset_t pa;
   2080 	vm_prot_t   prot;
   2081 {
   2082 	boolean_t       was_valid, insert;
   2083 	u_short         pte_idx;
   2084 	int             s, flags;
   2085 	mmu_short_pte_t *pte;
   2086 	pv_t            *pv;
   2087 	vm_offset_t     old_pa;
   2088 
   2089 	flags = (pa & ~MMU_PAGE_MASK);
   2090 	pa &= MMU_PAGE_MASK;
   2091 
   2092 	if (is_managed(pa))
   2093 		insert = TRUE;
   2094 	else
   2095 		insert = FALSE;
   2096 
   2097 	/*
   2098 	 * Calculate the index of the PTE being modified.
   2099 	 */
   2100 	pte_idx = (u_long) m68k_btop(va - KERNBASE);
   2101 
   2102 	/* This array is traditionally named "Sysmap" */
   2103 	pte = &kernCbase[pte_idx];
   2104 
   2105 	s = splvm();
   2106 	if (MMU_VALID_DT(*pte)) {
   2107 		was_valid = TRUE;
   2108 		/*
   2109 		 * If the PTE already maps a different
   2110 		 * physical address, umap and pv_unlink.
   2111 		 */
   2112 		old_pa = MMU_PTE_PA(*pte);
   2113 		if (pa != old_pa)
   2114 			pmap_remove_pte(pte);
   2115 		else {
   2116 		    /*
   2117 		     * Old PA and new PA are the same.  No need to
   2118 		     * relink the mapping within the PV list.
   2119 		     */
   2120 		     insert = FALSE;
   2121 
   2122 		    /*
   2123 		     * Save any mod/ref bits on the PTE.
   2124 		     */
   2125 		    pte->attr.raw &= (MMU_SHORT_PTE_USED|MMU_SHORT_PTE_M);
   2126 		}
   2127 	} else {
   2128 		pte->attr.raw = MMU_DT_INVALID;
   2129 		was_valid = FALSE;
   2130 	}
   2131 
   2132 	/*
   2133 	 * Map the page.  Being careful to preserve modified/referenced bits
   2134 	 * on the PTE.
   2135 	 */
   2136 	pte->attr.raw |= (pa | MMU_DT_PAGE);
   2137 
   2138 	if (!(prot & VM_PROT_WRITE)) /* If access should be read-only */
   2139 		pte->attr.raw |= MMU_SHORT_PTE_WP;
   2140 	if (flags & PMAP_NC)
   2141 		pte->attr.raw |= MMU_SHORT_PTE_CI;
   2142 	if (was_valid)
   2143 		TBIS(va);
   2144 
   2145 	/*
   2146 	 * Insert the PTE into the PV system, if need be.
   2147 	 */
   2148 	if (insert) {
   2149 		pv = pa2pv(pa);
   2150 		pvebase[pte_idx].pve_next = pv->pv_idx;
   2151 		pv->pv_idx = pte_idx;
   2152 	}
   2153 	splx(s);
   2154 
   2155 }
   2156 
   2157 void
   2158 pmap_kenter_pa(va, pa, prot)
   2159 	vaddr_t va;
   2160 	paddr_t pa;
   2161 	vm_prot_t prot;
   2162 {
   2163 	pmap_enter(pmap_kernel(), va, pa, prot, PMAP_WIRED);
   2164 }
   2165 
   2166 void
   2167 pmap_kremove(va, len)
   2168 	vaddr_t va;
   2169 	vsize_t len;
   2170 {
   2171 	for (len >>= PAGE_SHIFT; len > 0; len--, va += PAGE_SIZE) {
   2172 		pmap_remove(pmap_kernel(), va, va + PAGE_SIZE);
   2173 	}
   2174 }
   2175 
   2176 /* pmap_map			INTERNAL
   2177  **
   2178  * Map a contiguous range of physical memory into a contiguous range of
   2179  * the kernel virtual address space.
   2180  *
   2181  * Used for device mappings and early mapping of the kernel text/data/bss.
   2182  * Returns the first virtual address beyond the end of the range.
   2183  */
   2184 vm_offset_t
   2185 pmap_map(va, pa, endpa, prot)
   2186 	vm_offset_t	va;
   2187 	vm_offset_t	pa;
   2188 	vm_offset_t	endpa;
   2189 	int		prot;
   2190 {
   2191 	int sz;
   2192 
   2193 	sz = endpa - pa;
   2194 	do {
   2195 		pmap_enter_kernel(va, pa, prot);
   2196 		va += NBPG;
   2197 		pa += NBPG;
   2198 		sz -= NBPG;
   2199 	} while (sz > 0);
   2200 	return(va);
   2201 }
   2202 
   2203 /* pmap_protect			INTERFACE
   2204  **
   2205  * Apply the given protection to the given virtual address range within
   2206  * the given map.
   2207  *
   2208  * It is ok for the protection applied to be stronger than what is
   2209  * specified.  We use this to our advantage when the given map has no
   2210  * mapping for the virtual address.  By skipping a page when this
   2211  * is discovered, we are effectively applying a protection of VM_PROT_NONE,
   2212  * and therefore do not need to map the page just to apply a protection
   2213  * code.  Only pmap_enter() needs to create new mappings if they do not exist.
   2214  *
   2215  * XXX - This function could be speeded up by using pmap_stroll() for inital
   2216  *       setup, and then manual scrolling in the for() loop.
   2217  */
   2218 void
   2219 pmap_protect(pmap, startva, endva, prot)
   2220 	pmap_t pmap;
   2221 	vm_offset_t startva, endva;
   2222 	vm_prot_t prot;
   2223 {
   2224 	boolean_t iscurpmap;
   2225 	int a_idx, b_idx, c_idx;
   2226 	a_tmgr_t *a_tbl;
   2227 	b_tmgr_t *b_tbl;
   2228 	c_tmgr_t *c_tbl;
   2229 	mmu_short_pte_t *pte;
   2230 
   2231 	if (pmap == NULL)
   2232 		return;
   2233 	if (pmap == pmap_kernel()) {
   2234 		pmap_protect_kernel(startva, endva, prot);
   2235 		return;
   2236 	}
   2237 
   2238 	/*
   2239 	 * In this particular pmap implementation, there are only three
   2240 	 * types of memory protection: 'all' (read/write/execute),
   2241 	 * 'read-only' (read/execute) and 'none' (no mapping.)
   2242 	 * It is not possible for us to treat 'executable' as a separate
   2243 	 * protection type.  Therefore, protection requests that seek to
   2244 	 * remove execute permission while retaining read or write, and those
   2245 	 * that make little sense (write-only for example) are ignored.
   2246 	 */
   2247 	switch (prot) {
   2248 		case VM_PROT_NONE:
   2249 			/*
   2250 			 * A request to apply the protection code of
   2251 			 * 'VM_PROT_NONE' is a synonym for pmap_remove().
   2252 			 */
   2253 			pmap_remove(pmap, startva, endva);
   2254 			return;
   2255 		case	VM_PROT_EXECUTE:
   2256 		case	VM_PROT_READ:
   2257 		case	VM_PROT_READ|VM_PROT_EXECUTE:
   2258 			/* continue */
   2259 			break;
   2260 		case	VM_PROT_WRITE:
   2261 		case	VM_PROT_WRITE|VM_PROT_READ:
   2262 		case	VM_PROT_WRITE|VM_PROT_EXECUTE:
   2263 		case	VM_PROT_ALL:
   2264 			/* None of these should happen in a sane system. */
   2265 			return;
   2266 	}
   2267 
   2268 	/*
   2269 	 * If the pmap has no A table, it has no mappings and therefore
   2270 	 * there is nothing to protect.
   2271 	 */
   2272 	if ((a_tbl = pmap->pm_a_tmgr) == NULL)
   2273 		return;
   2274 
   2275 	a_idx = MMU_TIA(startva);
   2276 	b_idx = MMU_TIB(startva);
   2277 	c_idx = MMU_TIC(startva);
   2278 	b_tbl = (b_tmgr_t *) c_tbl = NULL;
   2279 
   2280 	iscurpmap = (pmap == current_pmap());
   2281 	while (startva < endva) {
   2282 		if (b_tbl || MMU_VALID_DT(a_tbl->at_dtbl[a_idx])) {
   2283 		  if (b_tbl == NULL) {
   2284 		    b_tbl = (b_tmgr_t *) a_tbl->at_dtbl[a_idx].addr.raw;
   2285 		    b_tbl = mmu_ptov((vm_offset_t) b_tbl);
   2286 		    b_tbl = mmuB2tmgr((mmu_short_dte_t *) b_tbl);
   2287 		  }
   2288 		  if (c_tbl || MMU_VALID_DT(b_tbl->bt_dtbl[b_idx])) {
   2289 		    if (c_tbl == NULL) {
   2290 		      c_tbl = (c_tmgr_t *) MMU_DTE_PA(b_tbl->bt_dtbl[b_idx]);
   2291 		      c_tbl = mmu_ptov((vm_offset_t) c_tbl);
   2292 		      c_tbl = mmuC2tmgr((mmu_short_pte_t *) c_tbl);
   2293 		    }
   2294 		    if (MMU_VALID_DT(c_tbl->ct_dtbl[c_idx])) {
   2295 		      pte = &c_tbl->ct_dtbl[c_idx];
   2296 		      /* make the mapping read-only */
   2297 		      pte->attr.raw |= MMU_SHORT_PTE_WP;
   2298 		      /*
   2299 		       * If we just modified the current address space,
   2300 		       * flush any translations for the modified page from
   2301 		       * the translation cache and any data from it in the
   2302 		       * data cache.
   2303 		       */
   2304 		      if (iscurpmap)
   2305 		          TBIS(startva);
   2306 		    }
   2307 		    startva += NBPG;
   2308 
   2309 		    if (++c_idx >= MMU_C_TBL_SIZE) { /* exceeded C table? */
   2310 		      c_tbl = NULL;
   2311 		      c_idx = 0;
   2312 		      if (++b_idx >= MMU_B_TBL_SIZE) { /* exceeded B table? */
   2313 		        b_tbl = NULL;
   2314 		        b_idx = 0;
   2315 		      }
   2316 		    }
   2317 		  } else { /* C table wasn't valid */
   2318 		    c_tbl = NULL;
   2319 		    c_idx = 0;
   2320 		    startva += MMU_TIB_RANGE;
   2321 		    if (++b_idx >= MMU_B_TBL_SIZE) { /* exceeded B table? */
   2322 		      b_tbl = NULL;
   2323 		      b_idx = 0;
   2324 		    }
   2325 		  } /* C table */
   2326 		} else { /* B table wasn't valid */
   2327 		  b_tbl = NULL;
   2328 		  b_idx = 0;
   2329 		  startva += MMU_TIA_RANGE;
   2330 		  a_idx++;
   2331 		} /* B table */
   2332 	}
   2333 }
   2334 
   2335 /* pmap_protect_kernel			INTERNAL
   2336  **
   2337  * Apply the given protection code to a kernel address range.
   2338  */
   2339 void
   2340 pmap_protect_kernel(startva, endva, prot)
   2341 	vm_offset_t startva, endva;
   2342 	vm_prot_t prot;
   2343 {
   2344 	vm_offset_t va;
   2345 	mmu_short_pte_t *pte;
   2346 
   2347 	pte = &kernCbase[(unsigned long) m68k_btop(startva - KERNBASE)];
   2348 	for (va = startva; va < endva; va += NBPG, pte++) {
   2349 		if (MMU_VALID_DT(*pte)) {
   2350 		    switch (prot) {
   2351 		        case VM_PROT_ALL:
   2352 		            break;
   2353 		        case VM_PROT_EXECUTE:
   2354 		        case VM_PROT_READ:
   2355 		        case VM_PROT_READ|VM_PROT_EXECUTE:
   2356 		            pte->attr.raw |= MMU_SHORT_PTE_WP;
   2357 		            break;
   2358 		        case VM_PROT_NONE:
   2359 		            /* this is an alias for 'pmap_remove_kernel' */
   2360 		            pmap_remove_pte(pte);
   2361 		            break;
   2362 		        default:
   2363 		            break;
   2364 		    }
   2365 		    /*
   2366 		     * since this is the kernel, immediately flush any cached
   2367 		     * descriptors for this address.
   2368 		     */
   2369 		    TBIS(va);
   2370 		}
   2371 	}
   2372 }
   2373 
   2374 /* pmap_unwire				INTERFACE
   2375  **
   2376  * Clear the wired attribute of the specified page.
   2377  *
   2378  * This function is called from vm_fault.c to unwire
   2379  * a mapping.
   2380  */
   2381 void
   2382 pmap_unwire(pmap, va)
   2383 	pmap_t pmap;
   2384 	vm_offset_t va;
   2385 {
   2386 	int a_idx, b_idx, c_idx;
   2387 	a_tmgr_t *a_tbl;
   2388 	b_tmgr_t *b_tbl;
   2389 	c_tmgr_t *c_tbl;
   2390 	mmu_short_pte_t *pte;
   2391 
   2392 	/* Kernel mappings always remain wired. */
   2393 	if (pmap == pmap_kernel())
   2394 		return;
   2395 
   2396 	/*
   2397 	 * Walk through the tables.  If the walk terminates without
   2398 	 * a valid PTE then the address wasn't wired in the first place.
   2399 	 * Return immediately.
   2400 	 */
   2401 	if (pmap_stroll(pmap, va, &a_tbl, &b_tbl, &c_tbl, &pte, &a_idx,
   2402 		&b_idx, &c_idx) == FALSE)
   2403 		return;
   2404 
   2405 
   2406 	/* Is the PTE wired?  If not, return. */
   2407 	if (!(pte->attr.raw & MMU_SHORT_PTE_WIRED))
   2408 		return;
   2409 
   2410 	/* Remove the wiring bit. */
   2411 	pte->attr.raw &= ~(MMU_SHORT_PTE_WIRED);
   2412 
   2413 	/*
   2414 	 * Decrement the wired entry count in the C table.
   2415 	 * If it reaches zero the following things happen:
   2416 	 * 1. The table no longer has any wired entries and is considered
   2417 	 *    unwired.
   2418 	 * 2. It is placed on the available queue.
   2419 	 * 3. The parent table's wired entry count is decremented.
   2420 	 * 4. If it reaches zero, this process repeats at step 1 and
   2421 	 *    stops at after reaching the A table.
   2422 	 */
   2423 	if (--c_tbl->ct_wcnt == 0) {
   2424 		TAILQ_INSERT_TAIL(&c_pool, c_tbl, ct_link);
   2425 		if (--b_tbl->bt_wcnt == 0) {
   2426 			TAILQ_INSERT_TAIL(&b_pool, b_tbl, bt_link);
   2427 			if (--a_tbl->at_wcnt == 0) {
   2428 				TAILQ_INSERT_TAIL(&a_pool, a_tbl, at_link);
   2429 			}
   2430 		}
   2431 	}
   2432 }
   2433 
   2434 /* pmap_copy				INTERFACE
   2435  **
   2436  * Copy the mappings of a range of addresses in one pmap, into
   2437  * the destination address of another.
   2438  *
   2439  * This routine is advisory.  Should we one day decide that MMU tables
   2440  * may be shared by more than one pmap, this function should be used to
   2441  * link them together.  Until that day however, we do nothing.
   2442  */
   2443 void
   2444 pmap_copy(pmap_a, pmap_b, dst, len, src)
   2445 	pmap_t pmap_a, pmap_b;
   2446 	vm_offset_t dst;
   2447 	vm_size_t   len;
   2448 	vm_offset_t src;
   2449 {
   2450 	/* not implemented. */
   2451 }
   2452 
   2453 /* pmap_copy_page			INTERFACE
   2454  **
   2455  * Copy the contents of one physical page into another.
   2456  *
   2457  * This function makes use of two virtual pages allocated in pmap_bootstrap()
   2458  * to map the two specified physical pages into the kernel address space.
   2459  *
   2460  * Note: We could use the transparent translation registers to make the
   2461  * mappings.  If we do so, be sure to disable interrupts before using them.
   2462  */
   2463 void
   2464 pmap_copy_page(srcpa, dstpa)
   2465 	vm_offset_t srcpa, dstpa;
   2466 {
   2467 	vm_offset_t srcva, dstva;
   2468 	int s;
   2469 
   2470 	srcva = tmp_vpages[0];
   2471 	dstva = tmp_vpages[1];
   2472 
   2473 	s = splvm();
   2474 	if (tmp_vpages_inuse++)
   2475 		panic("pmap_copy_page: temporary vpages are in use.");
   2476 
   2477 	/* Map pages as non-cacheable to avoid cache polution? */
   2478 	pmap_enter_kernel(srcva, srcpa, VM_PROT_READ);
   2479 	pmap_enter_kernel(dstva, dstpa, VM_PROT_READ|VM_PROT_WRITE);
   2480 
   2481 	/* Hand-optimized version of bcopy(src, dst, NBPG) */
   2482 	copypage((char *) srcva, (char *) dstva);
   2483 
   2484 	pmap_remove_kernel(srcva, srcva + NBPG);
   2485 	pmap_remove_kernel(dstva, dstva + NBPG);
   2486 
   2487 	--tmp_vpages_inuse;
   2488 	splx(s);
   2489 }
   2490 
   2491 /* pmap_zero_page			INTERFACE
   2492  **
   2493  * Zero the contents of the specified physical page.
   2494  *
   2495  * Uses one of the virtual pages allocated in pmap_boostrap()
   2496  * to map the specified page into the kernel address space.
   2497  */
   2498 void
   2499 pmap_zero_page(dstpa)
   2500 	vm_offset_t dstpa;
   2501 {
   2502 	vm_offset_t dstva;
   2503 	int s;
   2504 
   2505 	dstva = tmp_vpages[1];
   2506 	s = splvm();
   2507 	if (tmp_vpages_inuse++)
   2508 		panic("pmap_zero_page: temporary vpages are in use.");
   2509 
   2510 	/* The comments in pmap_copy_page() above apply here also. */
   2511 	pmap_enter_kernel(dstva, dstpa, VM_PROT_READ|VM_PROT_WRITE);
   2512 
   2513 	/* Hand-optimized version of bzero(ptr, NBPG) */
   2514 	zeropage((char *) dstva);
   2515 
   2516 	pmap_remove_kernel(dstva, dstva + NBPG);
   2517 
   2518 	--tmp_vpages_inuse;
   2519 	splx(s);
   2520 }
   2521 
   2522 /* pmap_collect			INTERFACE
   2523  **
   2524  * Called from the VM system when we are about to swap out
   2525  * the process using this pmap.  This should give up any
   2526  * resources held here, including all its MMU tables.
   2527  */
   2528 void
   2529 pmap_collect(pmap)
   2530 	pmap_t pmap;
   2531 {
   2532 	/* XXX - todo... */
   2533 }
   2534 
   2535 /* pmap_create			INTERFACE
   2536  **
   2537  * Create and return a pmap structure.
   2538  */
   2539 pmap_t
   2540 pmap_create()
   2541 {
   2542 	pmap_t	pmap;
   2543 
   2544 	pmap = pool_get(&pmap_pmap_pool, PR_WAITOK);
   2545 	pmap_pinit(pmap);
   2546 	return pmap;
   2547 }
   2548 
   2549 /* pmap_pinit			INTERNAL
   2550  **
   2551  * Initialize a pmap structure.
   2552  */
   2553 void
   2554 pmap_pinit(pmap)
   2555 	pmap_t pmap;
   2556 {
   2557 	bzero(pmap, sizeof(struct pmap));
   2558 	pmap->pm_a_tmgr = NULL;
   2559 	pmap->pm_a_phys = kernAphys;
   2560 	pmap->pm_refcount = 1;
   2561 	simple_lock_init(&pmap->pm_lock);
   2562 }
   2563 
   2564 /* pmap_release				INTERFACE
   2565  **
   2566  * Release any resources held by the given pmap.
   2567  *
   2568  * This is the reverse analog to pmap_pinit.  It does not
   2569  * necessarily mean for the pmap structure to be deallocated,
   2570  * as in pmap_destroy.
   2571  */
   2572 void
   2573 pmap_release(pmap)
   2574 	pmap_t pmap;
   2575 {
   2576 	/*
   2577 	 * As long as the pmap contains no mappings,
   2578 	 * which always should be the case whenever
   2579 	 * this function is called, there really should
   2580 	 * be nothing to do.
   2581 	 */
   2582 #ifdef	PMAP_DEBUG
   2583 	if (pmap == NULL)
   2584 		return;
   2585 	if (pmap == pmap_kernel())
   2586 		panic("pmap_release: kernel pmap");
   2587 #endif
   2588 	/*
   2589 	 * XXX - If this pmap has an A table, give it back.
   2590 	 * The pmap SHOULD be empty by now, and pmap_remove
   2591 	 * should have already given back the A table...
   2592 	 * However, I see:  pmap->pm_a_tmgr->at_ecnt == 1
   2593 	 * at this point, which means some mapping was not
   2594 	 * removed when it should have been. -gwr
   2595 	 */
   2596 	if (pmap->pm_a_tmgr != NULL) {
   2597 		/* First make sure we are not using it! */
   2598 		if (kernel_crp.rp_addr == pmap->pm_a_phys) {
   2599 			kernel_crp.rp_addr = kernAphys;
   2600 			loadcrp(&kernel_crp);
   2601 		}
   2602 #ifdef	PMAP_DEBUG /* XXX - todo! */
   2603 		/* XXX - Now complain... */
   2604 		printf("pmap_release: still have table\n");
   2605 		Debugger();
   2606 #endif
   2607 		free_a_table(pmap->pm_a_tmgr, TRUE);
   2608 		pmap->pm_a_tmgr = NULL;
   2609 		pmap->pm_a_phys = kernAphys;
   2610 	}
   2611 }
   2612 
   2613 /* pmap_reference			INTERFACE
   2614  **
   2615  * Increment the reference count of a pmap.
   2616  */
   2617 void
   2618 pmap_reference(pmap)
   2619 	pmap_t pmap;
   2620 {
   2621 	if (pmap == NULL)
   2622 		return;
   2623 
   2624 	pmap_lock(pmap);
   2625 	pmap_add_ref(pmap);
   2626 	pmap_unlock(pmap);
   2627 }
   2628 
   2629 /* pmap_dereference			INTERNAL
   2630  **
   2631  * Decrease the reference count on the given pmap
   2632  * by one and return the current count.
   2633  */
   2634 int
   2635 pmap_dereference(pmap)
   2636 	pmap_t pmap;
   2637 {
   2638 	int rtn;
   2639 
   2640 	if (pmap == NULL)
   2641 		return 0;
   2642 
   2643 	pmap_lock(pmap);
   2644 	rtn = pmap_del_ref(pmap);
   2645 	pmap_unlock(pmap);
   2646 
   2647 	return rtn;
   2648 }
   2649 
   2650 /* pmap_destroy			INTERFACE
   2651  **
   2652  * Decrement a pmap's reference count and delete
   2653  * the pmap if it becomes zero.  Will be called
   2654  * only after all mappings have been removed.
   2655  */
   2656 void
   2657 pmap_destroy(pmap)
   2658 	pmap_t pmap;
   2659 {
   2660 	if (pmap == NULL)
   2661 		return;
   2662 	if (pmap == &kernel_pmap)
   2663 		panic("pmap_destroy: kernel_pmap!");
   2664 	if (pmap_dereference(pmap) == 0) {
   2665 		pmap_release(pmap);
   2666 		pool_put(&pmap_pmap_pool, pmap);
   2667 	}
   2668 }
   2669 
   2670 /* pmap_is_referenced			INTERFACE
   2671  **
   2672  * Determine if the given physical page has been
   2673  * referenced (read from [or written to.])
   2674  */
   2675 boolean_t
   2676 pmap_is_referenced(pg)
   2677 	struct vm_page *pg;
   2678 {
   2679 	paddr_t   pa = VM_PAGE_TO_PHYS(pg);
   2680 	pv_t      *pv;
   2681 	int       idx, s;
   2682 
   2683 	if (!pv_initialized)
   2684 		return FALSE;
   2685 	/* XXX - this may be unecessary. */
   2686 	if (!is_managed(pa))
   2687 		return FALSE;
   2688 
   2689 	pv = pa2pv(pa);
   2690 	/*
   2691 	 * Check the flags on the pv head.  If they are set,
   2692 	 * return immediately.  Otherwise a search must be done.
   2693 	 */
   2694 	if (pv->pv_flags & PV_FLAGS_USED)
   2695 		return TRUE;
   2696 
   2697 	s = splvm();
   2698 	/*
   2699 	 * Search through all pv elements pointing
   2700 	 * to this page and query their reference bits
   2701 	 */
   2702 	for (idx = pv->pv_idx;
   2703 		 idx != PVE_EOL;
   2704 		 idx = pvebase[idx].pve_next) {
   2705 
   2706 		if (MMU_PTE_USED(kernCbase[idx])) {
   2707 			splx(s);
   2708 			return TRUE;
   2709 		}
   2710 	}
   2711 	splx(s);
   2712 
   2713 	return FALSE;
   2714 }
   2715 
   2716 /* pmap_is_modified			INTERFACE
   2717  **
   2718  * Determine if the given physical page has been
   2719  * modified (written to.)
   2720  */
   2721 boolean_t
   2722 pmap_is_modified(pg)
   2723 	struct vm_page *pg;
   2724 {
   2725 	paddr_t   pa = VM_PAGE_TO_PHYS(pg);
   2726 	pv_t      *pv;
   2727 	int       idx, s;
   2728 
   2729 	if (!pv_initialized)
   2730 		return FALSE;
   2731 	/* XXX - this may be unecessary. */
   2732 	if (!is_managed(pa))
   2733 		return FALSE;
   2734 
   2735 	/* see comments in pmap_is_referenced() */
   2736 	pv = pa2pv(pa);
   2737 	if (pv->pv_flags & PV_FLAGS_MDFY)
   2738 		return TRUE;
   2739 
   2740 	s = splvm();
   2741 	for (idx = pv->pv_idx;
   2742 		 idx != PVE_EOL;
   2743 		 idx = pvebase[idx].pve_next) {
   2744 
   2745 		if (MMU_PTE_MODIFIED(kernCbase[idx])) {
   2746 			splx(s);
   2747 			return TRUE;
   2748 		}
   2749 	}
   2750 	splx(s);
   2751 
   2752 	return FALSE;
   2753 }
   2754 
   2755 /* pmap_page_protect			INTERFACE
   2756  **
   2757  * Applies the given protection to all mappings to the given
   2758  * physical page.
   2759  */
   2760 void
   2761 pmap_page_protect(pg, prot)
   2762 	struct vm_page *pg;
   2763 	vm_prot_t prot;
   2764 {
   2765 	paddr_t   pa = VM_PAGE_TO_PHYS(pg);
   2766 	pv_t      *pv;
   2767 	int       idx, s;
   2768 	vm_offset_t va;
   2769 	struct mmu_short_pte_struct *pte;
   2770 	c_tmgr_t  *c_tbl;
   2771 	pmap_t    pmap, curpmap;
   2772 
   2773 	if (!is_managed(pa))
   2774 		return;
   2775 
   2776 	curpmap = current_pmap();
   2777 	pv = pa2pv(pa);
   2778 	s = splvm();
   2779 
   2780 	for (idx = pv->pv_idx;
   2781 		 idx != PVE_EOL;
   2782 		 idx = pvebase[idx].pve_next) {
   2783 
   2784 		pte = &kernCbase[idx];
   2785 		switch (prot) {
   2786 			case VM_PROT_ALL:
   2787 				/* do nothing */
   2788 				break;
   2789 			case VM_PROT_EXECUTE:
   2790 			case VM_PROT_READ:
   2791 			case VM_PROT_READ|VM_PROT_EXECUTE:
   2792 				/*
   2793 				 * Determine the virtual address mapped by
   2794 				 * the PTE and flush ATC entries if necessary.
   2795 				 */
   2796 				va = pmap_get_pteinfo(idx, &pmap, &c_tbl);
   2797 				/* XXX don't write protect pager mappings */
   2798 				if (va >= PAGER_SVA && va < PAGER_EVA) {
   2799 #ifdef	PMAP_DEBUG
   2800 					/* XXX - Does this actually happen? */
   2801 					printf("pmap_page_protect: in pager!\n");
   2802 					Debugger();
   2803 #endif
   2804 				} else
   2805 					pte->attr.raw |= MMU_SHORT_PTE_WP;
   2806 				if (pmap == curpmap || pmap == pmap_kernel())
   2807 					TBIS(va);
   2808 				break;
   2809 			case VM_PROT_NONE:
   2810 				/* Save the mod/ref bits. */
   2811 				pv->pv_flags |= pte->attr.raw;
   2812 				/* Invalidate the PTE. */
   2813 				pte->attr.raw = MMU_DT_INVALID;
   2814 
   2815 				/*
   2816 				 * Update table counts.  And flush ATC entries
   2817 				 * if necessary.
   2818 				 */
   2819 				va = pmap_get_pteinfo(idx, &pmap, &c_tbl);
   2820 
   2821 				/*
   2822 				 * If the PTE belongs to the kernel map,
   2823 				 * be sure to flush the page it maps.
   2824 				 */
   2825 				if (pmap == pmap_kernel()) {
   2826 					TBIS(va);
   2827 				} else {
   2828 					/*
   2829 					 * The PTE belongs to a user map.
   2830 					 * update the entry count in the C
   2831 					 * table to which it belongs and flush
   2832 					 * the ATC if the mapping belongs to
   2833 					 * the current pmap.
   2834 					 */
   2835 					c_tbl->ct_ecnt--;
   2836 					if (pmap == curpmap)
   2837 						TBIS(va);
   2838 				}
   2839 				break;
   2840 			default:
   2841 				break;
   2842 		}
   2843 	}
   2844 
   2845 	/*
   2846 	 * If the protection code indicates that all mappings to the page
   2847 	 * be removed, truncate the PV list to zero entries.
   2848 	 */
   2849 	if (prot == VM_PROT_NONE)
   2850 		pv->pv_idx = PVE_EOL;
   2851 	splx(s);
   2852 }
   2853 
   2854 /* pmap_get_pteinfo		INTERNAL
   2855  **
   2856  * Called internally to find the pmap and virtual address within that
   2857  * map to which the pte at the given index maps.  Also includes the PTE's C
   2858  * table manager.
   2859  *
   2860  * Returns the pmap in the argument provided, and the virtual address
   2861  * by return value.
   2862  */
   2863 vm_offset_t
   2864 pmap_get_pteinfo(idx, pmap, tbl)
   2865 	u_int idx;
   2866 	pmap_t *pmap;
   2867 	c_tmgr_t **tbl;
   2868 {
   2869 	vm_offset_t     va = 0;
   2870 
   2871 	/*
   2872 	 * Determine if the PTE is a kernel PTE or a user PTE.
   2873 	 */
   2874 	if (idx >= NUM_KERN_PTES) {
   2875 		/*
   2876 		 * The PTE belongs to a user mapping.
   2877 		 */
   2878 		/* XXX: Would like an inline for this to validate idx... */
   2879 		*tbl = &Ctmgrbase[(idx - NUM_KERN_PTES) / MMU_C_TBL_SIZE];
   2880 
   2881 		*pmap = (*tbl)->ct_pmap;
   2882 		/*
   2883 		 * To find the va to which the PTE maps, we first take
   2884 		 * the table's base virtual address mapping which is stored
   2885 		 * in ct_va.  We then increment this address by a page for
   2886 		 * every slot skipped until we reach the PTE.
   2887 		 */
   2888 		va =    (*tbl)->ct_va;
   2889 		va += m68k_ptob(idx % MMU_C_TBL_SIZE);
   2890 	} else {
   2891 		/*
   2892 		 * The PTE belongs to the kernel map.
   2893 		 */
   2894 		*pmap = pmap_kernel();
   2895 
   2896 		va = m68k_ptob(idx);
   2897 		va += KERNBASE;
   2898 	}
   2899 
   2900 	return va;
   2901 }
   2902 
   2903 /* pmap_clear_modify			INTERFACE
   2904  **
   2905  * Clear the modification bit on the page at the specified
   2906  * physical address.
   2907  *
   2908  */
   2909 boolean_t
   2910 pmap_clear_modify(pg)
   2911 	struct vm_page *pg;
   2912 {
   2913 	paddr_t pa = VM_PAGE_TO_PHYS(pg);
   2914 	boolean_t rv;
   2915 
   2916 	if (!is_managed(pa))
   2917 		return FALSE;
   2918 	rv = pmap_is_modified(pg);
   2919 	pmap_clear_pv(pa, PV_FLAGS_MDFY);
   2920 	return rv;
   2921 }
   2922 
   2923 /* pmap_clear_reference			INTERFACE
   2924  **
   2925  * Clear the referenced bit on the page at the specified
   2926  * physical address.
   2927  */
   2928 boolean_t
   2929 pmap_clear_reference(pg)
   2930 	struct vm_page *pg;
   2931 {
   2932 	paddr_t pa = VM_PAGE_TO_PHYS(pg);
   2933 	boolean_t rv;
   2934 
   2935 	if (!is_managed(pa))
   2936 		return FALSE;
   2937 	rv = pmap_is_referenced(pg);
   2938 	pmap_clear_pv(pa, PV_FLAGS_USED);
   2939 	return rv;
   2940 }
   2941 
   2942 /* pmap_clear_pv			INTERNAL
   2943  **
   2944  * Clears the specified flag from the specified physical address.
   2945  * (Used by pmap_clear_modify() and pmap_clear_reference().)
   2946  *
   2947  * Flag is one of:
   2948  *   PV_FLAGS_MDFY - Page modified bit.
   2949  *   PV_FLAGS_USED - Page used (referenced) bit.
   2950  *
   2951  * This routine must not only clear the flag on the pv list
   2952  * head.  It must also clear the bit on every pte in the pv
   2953  * list associated with the address.
   2954  */
   2955 void
   2956 pmap_clear_pv(pa, flag)
   2957 	vm_offset_t pa;
   2958 	int flag;
   2959 {
   2960 	pv_t      *pv;
   2961 	int       idx, s;
   2962 	vm_offset_t     va;
   2963 	pmap_t          pmap;
   2964 	mmu_short_pte_t *pte;
   2965 	c_tmgr_t        *c_tbl;
   2966 
   2967 	pv = pa2pv(pa);
   2968 
   2969 	s = splvm();
   2970 	pv->pv_flags &= ~(flag);
   2971 
   2972 	for (idx = pv->pv_idx;
   2973 		 idx != PVE_EOL;
   2974 		 idx = pvebase[idx].pve_next) {
   2975 
   2976 		pte = &kernCbase[idx];
   2977 		pte->attr.raw &= ~(flag);
   2978 		/*
   2979 		 * The MC68030 MMU will not set the modified or
   2980 		 * referenced bits on any MMU tables for which it has
   2981 		 * a cached descriptor with its modify bit set.  To insure
   2982 		 * that it will modify these bits on the PTE during the next
   2983 		 * time it is written to or read from, we must flush it from
   2984 		 * the ATC.
   2985 		 *
   2986 		 * Ordinarily it is only necessary to flush the descriptor
   2987 		 * if it is used in the current address space.  But since I
   2988 		 * am not sure that there will always be a notion of
   2989 		 * 'the current address space' when this function is called,
   2990 		 * I will skip the test and always flush the address.  It
   2991 		 * does no harm.
   2992 		 */
   2993 		va = pmap_get_pteinfo(idx, &pmap, &c_tbl);
   2994 		TBIS(va);
   2995 	}
   2996 	splx(s);
   2997 }
   2998 
   2999 /* pmap_extract			INTERFACE
   3000  **
   3001  * Return the physical address mapped by the virtual address
   3002  * in the specified pmap.
   3003  *
   3004  * Note: this function should also apply an exclusive lock
   3005  * on the pmap system during its duration.
   3006  */
   3007 boolean_t
   3008 pmap_extract(pmap, va, pap)
   3009 	pmap_t pmap;
   3010 	vaddr_t va;
   3011 	paddr_t *pap;
   3012 {
   3013 	int a_idx, b_idx, pte_idx;
   3014 	a_tmgr_t	*a_tbl;
   3015 	b_tmgr_t	*b_tbl;
   3016 	c_tmgr_t	*c_tbl;
   3017 	mmu_short_pte_t	*c_pte;
   3018 
   3019 	if (pmap == pmap_kernel())
   3020 		return pmap_extract_kernel(va, pap);
   3021 	if (pmap == NULL)
   3022 		return FALSE;
   3023 
   3024 	if (pmap_stroll(pmap, va, &a_tbl, &b_tbl, &c_tbl,
   3025 		&c_pte, &a_idx, &b_idx, &pte_idx) == FALSE)
   3026 		return FALSE;
   3027 
   3028 	if (!MMU_VALID_DT(*c_pte))
   3029 		return FALSE;
   3030 
   3031 	if (pap != NULL)
   3032 		*pap = MMU_PTE_PA(*c_pte);
   3033 	return (TRUE);
   3034 }
   3035 
   3036 /* pmap_extract_kernel		INTERNAL
   3037  **
   3038  * Extract a translation from the kernel address space.
   3039  */
   3040 boolean_t
   3041 pmap_extract_kernel(va, pap)
   3042 	vaddr_t va;
   3043 	paddr_t *pap;
   3044 {
   3045 	mmu_short_pte_t *pte;
   3046 
   3047 	pte = &kernCbase[(u_int) m68k_btop(va - KERNBASE)];
   3048 	if (!MMU_VALID_DT(*pte))
   3049 		return (FALSE);
   3050 	if (pap != NULL)
   3051 		*pap = MMU_PTE_PA(*pte);
   3052 	return (TRUE);
   3053 }
   3054 
   3055 /* pmap_remove_kernel		INTERNAL
   3056  **
   3057  * Remove the mapping of a range of virtual addresses from the kernel map.
   3058  * The arguments are already page-aligned.
   3059  */
   3060 void
   3061 pmap_remove_kernel(sva, eva)
   3062 	vm_offset_t sva;
   3063 	vm_offset_t eva;
   3064 {
   3065 	int idx, eidx;
   3066 
   3067 #ifdef	PMAP_DEBUG
   3068 	if ((sva & PGOFSET) || (eva & PGOFSET))
   3069 		panic("pmap_remove_kernel: alignment");
   3070 #endif
   3071 
   3072 	idx  = m68k_btop(sva - KERNBASE);
   3073 	eidx = m68k_btop(eva - KERNBASE);
   3074 
   3075 	while (idx < eidx) {
   3076 		pmap_remove_pte(&kernCbase[idx++]);
   3077 		TBIS(sva);
   3078 		sva += NBPG;
   3079 	}
   3080 }
   3081 
   3082 /* pmap_remove			INTERFACE
   3083  **
   3084  * Remove the mapping of a range of virtual addresses from the given pmap.
   3085  *
   3086  * If the range contains any wired entries, this function will probably create
   3087  * disaster.
   3088  */
   3089 void
   3090 pmap_remove(pmap, start, end)
   3091 	pmap_t pmap;
   3092 	vm_offset_t start;
   3093 	vm_offset_t end;
   3094 {
   3095 
   3096 	if (pmap == pmap_kernel()) {
   3097 		pmap_remove_kernel(start, end);
   3098 		return;
   3099 	}
   3100 
   3101 	/*
   3102 	 * XXX - Temporary(?) statement to prevent panic caused
   3103 	 * by vm_alloc_with_pager() handing us a software map (ie NULL)
   3104 	 * to remove because it couldn't get backing store.
   3105 	 * (I guess.)
   3106 	 */
   3107 	if (pmap == NULL)
   3108 		return;
   3109 
   3110 	/*
   3111 	 * If the pmap doesn't have an A table of its own, it has no mappings
   3112 	 * that can be removed.
   3113 	 */
   3114 	if (pmap->pm_a_tmgr == NULL)
   3115 		return;
   3116 
   3117 	/*
   3118 	 * Remove the specified range from the pmap.  If the function
   3119 	 * returns true, the operation removed all the valid mappings
   3120 	 * in the pmap and freed its A table.  If this happened to the
   3121 	 * currently loaded pmap, the MMU root pointer must be reloaded
   3122 	 * with the default 'kernel' map.
   3123 	 */
   3124 	if (pmap_remove_a(pmap->pm_a_tmgr, start, end)) {
   3125 		if (kernel_crp.rp_addr == pmap->pm_a_phys) {
   3126 			kernel_crp.rp_addr = kernAphys;
   3127 			loadcrp(&kernel_crp);
   3128 			/* will do TLB flush below */
   3129 		}
   3130 		pmap->pm_a_tmgr = NULL;
   3131 		pmap->pm_a_phys = kernAphys;
   3132 	}
   3133 
   3134 	/*
   3135 	 * If we just modified the current address space,
   3136 	 * make sure to flush the MMU cache.
   3137 	 *
   3138 	 * XXX - this could be an unecessarily large flush.
   3139 	 * XXX - Could decide, based on the size of the VA range
   3140 	 * to be removed, whether to flush "by pages" or "all".
   3141 	 */
   3142 	if (pmap == current_pmap())
   3143 		TBIAU();
   3144 }
   3145 
   3146 /* pmap_remove_a			INTERNAL
   3147  **
   3148  * This is function number one in a set of three that removes a range
   3149  * of memory in the most efficient manner by removing the highest possible
   3150  * tables from the memory space.  This particular function attempts to remove
   3151  * as many B tables as it can, delegating the remaining fragmented ranges to
   3152  * pmap_remove_b().
   3153  *
   3154  * If the removal operation results in an empty A table, the function returns
   3155  * TRUE.
   3156  *
   3157  * It's ugly but will do for now.
   3158  */
   3159 boolean_t
   3160 pmap_remove_a(a_tbl, start, end)
   3161 	a_tmgr_t *a_tbl;
   3162 	vm_offset_t start;
   3163 	vm_offset_t end;
   3164 {
   3165 	boolean_t empty;
   3166 	int idx;
   3167 	vm_offset_t nstart, nend;
   3168 	b_tmgr_t *b_tbl;
   3169 	mmu_long_dte_t  *a_dte;
   3170 	mmu_short_dte_t *b_dte;
   3171 
   3172 	/*
   3173 	 * The following code works with what I call a 'granularity
   3174 	 * reduction algorithim'.  A range of addresses will always have
   3175 	 * the following properties, which are classified according to
   3176 	 * how the range relates to the size of the current granularity
   3177 	 * - an A table entry:
   3178 	 *
   3179 	 *            1 2       3 4
   3180 	 * -+---+---+---+---+---+---+---+-
   3181 	 * -+---+---+---+---+---+---+---+-
   3182 	 *
   3183 	 * A range will always start on a granularity boundary, illustrated
   3184 	 * by '+' signs in the table above, or it will start at some point
   3185 	 * inbetween a granularity boundary, as illustrated by point 1.
   3186 	 * The first step in removing a range of addresses is to remove the
   3187 	 * range between 1 and 2, the nearest granularity boundary.  This
   3188 	 * job is handled by the section of code governed by the
   3189 	 * 'if (start < nstart)' statement.
   3190 	 *
   3191 	 * A range will always encompass zero or more intergral granules,
   3192 	 * illustrated by points 2 and 3.  Integral granules are easy to
   3193 	 * remove.  The removal of these granules is the second step, and
   3194 	 * is handled by the code block 'if (nstart < nend)'.
   3195 	 *
   3196 	 * Lastly, a range will always end on a granularity boundary,
   3197 	 * ill. by point 3, or it will fall just beyond one, ill. by point
   3198 	 * 4.  The last step involves removing this range and is handled by
   3199 	 * the code block 'if (nend < end)'.
   3200 	 */
   3201 	nstart = MMU_ROUND_UP_A(start);
   3202 	nend = MMU_ROUND_A(end);
   3203 
   3204 	if (start < nstart) {
   3205 		/*
   3206 		 * This block is executed if the range starts between
   3207 		 * a granularity boundary.
   3208 		 *
   3209 		 * First find the DTE which is responsible for mapping
   3210 		 * the start of the range.
   3211 		 */
   3212 		idx = MMU_TIA(start);
   3213 		a_dte = &a_tbl->at_dtbl[idx];
   3214 
   3215 		/*
   3216 		 * If the DTE is valid then delegate the removal of the sub
   3217 		 * range to pmap_remove_b(), which can remove addresses at
   3218 		 * a finer granularity.
   3219 		 */
   3220 		if (MMU_VALID_DT(*a_dte)) {
   3221 			b_dte = mmu_ptov(a_dte->addr.raw);
   3222 			b_tbl = mmuB2tmgr(b_dte);
   3223 
   3224 			/*
   3225 			 * The sub range to be removed starts at the start
   3226 			 * of the full range we were asked to remove, and ends
   3227 			 * at the greater of:
   3228 			 * 1. The end of the full range, -or-
   3229 			 * 2. The end of the full range, rounded down to the
   3230 			 *    nearest granularity boundary.
   3231 			 */
   3232 			if (end < nstart)
   3233 				empty = pmap_remove_b(b_tbl, start, end);
   3234 			else
   3235 				empty = pmap_remove_b(b_tbl, start, nstart);
   3236 
   3237 			/*
   3238 			 * If the removal resulted in an empty B table,
   3239 			 * invalidate the DTE that points to it and decrement
   3240 			 * the valid entry count of the A table.
   3241 			 */
   3242 			if (empty) {
   3243 				a_dte->attr.raw = MMU_DT_INVALID;
   3244 				a_tbl->at_ecnt--;
   3245 			}
   3246 		}
   3247 		/*
   3248 		 * If the DTE is invalid, the address range is already non-
   3249 		 * existant and can simply be skipped.
   3250 		 */
   3251 	}
   3252 	if (nstart < nend) {
   3253 		/*
   3254 		 * This block is executed if the range spans a whole number
   3255 		 * multiple of granules (A table entries.)
   3256 		 *
   3257 		 * First find the DTE which is responsible for mapping
   3258 		 * the start of the first granule involved.
   3259 		 */
   3260 		idx = MMU_TIA(nstart);
   3261 		a_dte = &a_tbl->at_dtbl[idx];
   3262 
   3263 		/*
   3264 		 * Remove entire sub-granules (B tables) one at a time,
   3265 		 * until reaching the end of the range.
   3266 		 */
   3267 		for (; nstart < nend; a_dte++, nstart += MMU_TIA_RANGE)
   3268 			if (MMU_VALID_DT(*a_dte)) {
   3269 				/*
   3270 				 * Find the B table manager for the
   3271 				 * entry and free it.
   3272 				 */
   3273 				b_dte = mmu_ptov(a_dte->addr.raw);
   3274 				b_tbl = mmuB2tmgr(b_dte);
   3275 				free_b_table(b_tbl, TRUE);
   3276 
   3277 				/*
   3278 				 * Invalidate the DTE that points to the
   3279 				 * B table and decrement the valid entry
   3280 				 * count of the A table.
   3281 				 */
   3282 				a_dte->attr.raw = MMU_DT_INVALID;
   3283 				a_tbl->at_ecnt--;
   3284 			}
   3285 	}
   3286 	if (nend < end) {
   3287 		/*
   3288 		 * This block is executed if the range ends beyond a
   3289 		 * granularity boundary.
   3290 		 *
   3291 		 * First find the DTE which is responsible for mapping
   3292 		 * the start of the nearest (rounded down) granularity
   3293 		 * boundary.
   3294 		 */
   3295 		idx = MMU_TIA(nend);
   3296 		a_dte = &a_tbl->at_dtbl[idx];
   3297 
   3298 		/*
   3299 		 * If the DTE is valid then delegate the removal of the sub
   3300 		 * range to pmap_remove_b(), which can remove addresses at
   3301 		 * a finer granularity.
   3302 		 */
   3303 		if (MMU_VALID_DT(*a_dte)) {
   3304 			/*
   3305 			 * Find the B table manager for the entry
   3306 			 * and hand it to pmap_remove_b() along with
   3307 			 * the sub range.
   3308 			 */
   3309 			b_dte = mmu_ptov(a_dte->addr.raw);
   3310 			b_tbl = mmuB2tmgr(b_dte);
   3311 
   3312 			empty = pmap_remove_b(b_tbl, nend, end);
   3313 
   3314 			/*
   3315 			 * If the removal resulted in an empty B table,
   3316 			 * invalidate the DTE that points to it and decrement
   3317 			 * the valid entry count of the A table.
   3318 			 */
   3319 			if (empty) {
   3320 				a_dte->attr.raw = MMU_DT_INVALID;
   3321 				a_tbl->at_ecnt--;
   3322 			}
   3323 		}
   3324 	}
   3325 
   3326 	/*
   3327 	 * If there are no more entries in the A table, release it
   3328 	 * back to the available pool and return TRUE.
   3329 	 */
   3330 	if (a_tbl->at_ecnt == 0) {
   3331 		a_tbl->at_parent = NULL;
   3332 		TAILQ_REMOVE(&a_pool, a_tbl, at_link);
   3333 		TAILQ_INSERT_HEAD(&a_pool, a_tbl, at_link);
   3334 		empty = TRUE;
   3335 	} else {
   3336 		empty = FALSE;
   3337 	}
   3338 
   3339 	return empty;
   3340 }
   3341 
   3342 /* pmap_remove_b			INTERNAL
   3343  **
   3344  * Remove a range of addresses from an address space, trying to remove entire
   3345  * C tables if possible.
   3346  *
   3347  * If the operation results in an empty B table, the function returns TRUE.
   3348  */
   3349 boolean_t
   3350 pmap_remove_b(b_tbl, start, end)
   3351 	b_tmgr_t *b_tbl;
   3352 	vm_offset_t start;
   3353 	vm_offset_t end;
   3354 {
   3355 	boolean_t empty;
   3356 	int idx;
   3357 	vm_offset_t nstart, nend, rstart;
   3358 	c_tmgr_t *c_tbl;
   3359 	mmu_short_dte_t  *b_dte;
   3360 	mmu_short_pte_t  *c_dte;
   3361 
   3362 
   3363 	nstart = MMU_ROUND_UP_B(start);
   3364 	nend = MMU_ROUND_B(end);
   3365 
   3366 	if (start < nstart) {
   3367 		idx = MMU_TIB(start);
   3368 		b_dte = &b_tbl->bt_dtbl[idx];
   3369 		if (MMU_VALID_DT(*b_dte)) {
   3370 			c_dte = mmu_ptov(MMU_DTE_PA(*b_dte));
   3371 			c_tbl = mmuC2tmgr(c_dte);
   3372 			if (end < nstart)
   3373 				empty = pmap_remove_c(c_tbl, start, end);
   3374 			else
   3375 				empty = pmap_remove_c(c_tbl, start, nstart);
   3376 			if (empty) {
   3377 				b_dte->attr.raw = MMU_DT_INVALID;
   3378 				b_tbl->bt_ecnt--;
   3379 			}
   3380 		}
   3381 	}
   3382 	if (nstart < nend) {
   3383 		idx = MMU_TIB(nstart);
   3384 		b_dte = &b_tbl->bt_dtbl[idx];
   3385 		rstart = nstart;
   3386 		while (rstart < nend) {
   3387 			if (MMU_VALID_DT(*b_dte)) {
   3388 				c_dte = mmu_ptov(MMU_DTE_PA(*b_dte));
   3389 				c_tbl = mmuC2tmgr(c_dte);
   3390 				free_c_table(c_tbl, TRUE);
   3391 				b_dte->attr.raw = MMU_DT_INVALID;
   3392 				b_tbl->bt_ecnt--;
   3393 			}
   3394 			b_dte++;
   3395 			rstart += MMU_TIB_RANGE;
   3396 		}
   3397 	}
   3398 	if (nend < end) {
   3399 		idx = MMU_TIB(nend);
   3400 		b_dte = &b_tbl->bt_dtbl[idx];
   3401 		if (MMU_VALID_DT(*b_dte)) {
   3402 			c_dte = mmu_ptov(MMU_DTE_PA(*b_dte));
   3403 			c_tbl = mmuC2tmgr(c_dte);
   3404 			empty = pmap_remove_c(c_tbl, nend, end);
   3405 			if (empty) {
   3406 				b_dte->attr.raw = MMU_DT_INVALID;
   3407 				b_tbl->bt_ecnt--;
   3408 			}
   3409 		}
   3410 	}
   3411 
   3412 	if (b_tbl->bt_ecnt == 0) {
   3413 		b_tbl->bt_parent = NULL;
   3414 		TAILQ_REMOVE(&b_pool, b_tbl, bt_link);
   3415 		TAILQ_INSERT_HEAD(&b_pool, b_tbl, bt_link);
   3416 		empty = TRUE;
   3417 	} else {
   3418 		empty = FALSE;
   3419 	}
   3420 
   3421 	return empty;
   3422 }
   3423 
   3424 /* pmap_remove_c			INTERNAL
   3425  **
   3426  * Remove a range of addresses from the given C table.
   3427  */
   3428 boolean_t
   3429 pmap_remove_c(c_tbl, start, end)
   3430 	c_tmgr_t *c_tbl;
   3431 	vm_offset_t start;
   3432 	vm_offset_t end;
   3433 {
   3434 	boolean_t empty;
   3435 	int idx;
   3436 	mmu_short_pte_t *c_pte;
   3437 
   3438 	idx = MMU_TIC(start);
   3439 	c_pte = &c_tbl->ct_dtbl[idx];
   3440 	for (;start < end; start += MMU_PAGE_SIZE, c_pte++) {
   3441 		if (MMU_VALID_DT(*c_pte)) {
   3442 			pmap_remove_pte(c_pte);
   3443 			c_tbl->ct_ecnt--;
   3444 		}
   3445 	}
   3446 
   3447 	if (c_tbl->ct_ecnt == 0) {
   3448 		c_tbl->ct_parent = NULL;
   3449 		TAILQ_REMOVE(&c_pool, c_tbl, ct_link);
   3450 		TAILQ_INSERT_HEAD(&c_pool, c_tbl, ct_link);
   3451 		empty = TRUE;
   3452 	} else {
   3453 		empty = FALSE;
   3454 	}
   3455 
   3456 	return empty;
   3457 }
   3458 
   3459 /* is_managed				INTERNAL
   3460  **
   3461  * Determine if the given physical address is managed by the PV system.
   3462  * Note that this logic assumes that no one will ask for the status of
   3463  * addresses which lie in-between the memory banks on the 3/80.  If they
   3464  * do so, it will falsely report that it is managed.
   3465  *
   3466  * Note: A "managed" address is one that was reported to the VM system as
   3467  * a "usable page" during system startup.  As such, the VM system expects the
   3468  * pmap module to keep an accurate track of the useage of those pages.
   3469  * Any page not given to the VM system at startup does not exist (as far as
   3470  * the VM system is concerned) and is therefore "unmanaged."  Examples are
   3471  * those pages which belong to the ROM monitor and the memory allocated before
   3472  * the VM system was started.
   3473  */
   3474 boolean_t
   3475 is_managed(pa)
   3476 	vm_offset_t pa;
   3477 {
   3478 	if (pa >= avail_start && pa < avail_end)
   3479 		return TRUE;
   3480 	else
   3481 		return FALSE;
   3482 }
   3483 
   3484 /* pmap_bootstrap_alloc			INTERNAL
   3485  **
   3486  * Used internally for memory allocation at startup when malloc is not
   3487  * available.  This code will fail once it crosses the first memory
   3488  * bank boundary on the 3/80.  Hopefully by then however, the VM system
   3489  * will be in charge of allocation.
   3490  */
   3491 void *
   3492 pmap_bootstrap_alloc(size)
   3493 	int size;
   3494 {
   3495 	void *rtn;
   3496 
   3497 #ifdef	PMAP_DEBUG
   3498 	if (bootstrap_alloc_enabled == FALSE) {
   3499 		mon_printf("pmap_bootstrap_alloc: disabled\n");
   3500 		sunmon_abort();
   3501 	}
   3502 #endif
   3503 
   3504 	rtn = (void *) virtual_avail;
   3505 	virtual_avail += size;
   3506 
   3507 #ifdef	PMAP_DEBUG
   3508 	if (virtual_avail > virtual_contig_end) {
   3509 		mon_printf("pmap_bootstrap_alloc: out of mem\n");
   3510 		sunmon_abort();
   3511 	}
   3512 #endif
   3513 
   3514 	return rtn;
   3515 }
   3516 
   3517 /* pmap_bootstap_aalign			INTERNAL
   3518  **
   3519  * Used to insure that the next call to pmap_bootstrap_alloc() will
   3520  * return a chunk of memory aligned to the specified size.
   3521  *
   3522  * Note: This function will only support alignment sizes that are powers
   3523  * of two.
   3524  */
   3525 void
   3526 pmap_bootstrap_aalign(size)
   3527 	int size;
   3528 {
   3529 	int off;
   3530 
   3531 	off = virtual_avail & (size - 1);
   3532 	if (off) {
   3533 		(void) pmap_bootstrap_alloc(size - off);
   3534 	}
   3535 }
   3536 
   3537 /* pmap_pa_exists
   3538  **
   3539  * Used by the /dev/mem driver to see if a given PA is memory
   3540  * that can be mapped.  (The PA is not in a hole.)
   3541  */
   3542 int
   3543 pmap_pa_exists(pa)
   3544 	vm_offset_t pa;
   3545 {
   3546 	register int i;
   3547 
   3548 	for (i = 0; i < SUN3X_NPHYS_RAM_SEGS; i++) {
   3549 		if ((pa >= avail_mem[i].pmem_start) &&
   3550 			(pa <  avail_mem[i].pmem_end))
   3551 			return (1);
   3552 		if (avail_mem[i].pmem_next == NULL)
   3553 			break;
   3554 	}
   3555 	return (0);
   3556 }
   3557 
   3558 /* Called only from locore.s and pmap.c */
   3559 void	_pmap_switch __P((pmap_t pmap));
   3560 
   3561 /*
   3562  * _pmap_switch			INTERNAL
   3563  *
   3564  * This is called by locore.s:cpu_switch() when it is
   3565  * switching to a new process.  Load new translations.
   3566  * Note: done in-line by locore.s unless PMAP_DEBUG
   3567  *
   3568  * Note that we do NOT allocate a context here, but
   3569  * share the "kernel only" context until we really
   3570  * need our own context for user-space mappings in
   3571  * pmap_enter_user().  [ s/context/mmu A table/ ]
   3572  */
   3573 void
   3574 _pmap_switch(pmap)
   3575 	pmap_t pmap;
   3576 {
   3577 	u_long rootpa;
   3578 
   3579 	/*
   3580 	 * Only do reload/flush if we have to.
   3581 	 * Note that if the old and new process
   3582 	 * were BOTH using the "null" context,
   3583 	 * then this will NOT flush the TLB.
   3584 	 */
   3585 	rootpa = pmap->pm_a_phys;
   3586 	if (kernel_crp.rp_addr != rootpa) {
   3587 		DPRINT(("pmap_activate(%p)\n", pmap));
   3588 		kernel_crp.rp_addr = rootpa;
   3589 		loadcrp(&kernel_crp);
   3590 		TBIAU();
   3591 	}
   3592 }
   3593 
   3594 /*
   3595  * Exported version of pmap_activate().  This is called from the
   3596  * machine-independent VM code when a process is given a new pmap.
   3597  * If (p == curproc) do like cpu_switch would do; otherwise just
   3598  * take this as notification that the process has a new pmap.
   3599  */
   3600 void
   3601 pmap_activate(p)
   3602 	struct proc *p;
   3603 {
   3604 	pmap_t pmap = p->p_vmspace->vm_map.pmap;
   3605 	int s;
   3606 
   3607 	if (p == curproc) {
   3608 		s = splvm();
   3609 		_pmap_switch(pmap);
   3610 		splx(s);
   3611 	}
   3612 }
   3613 
   3614 /*
   3615  * pmap_deactivate			INTERFACE
   3616  **
   3617  * This is called to deactivate the specified process's address space.
   3618  * XXX The semantics of this function are currently not well-defined.
   3619  */
   3620 void
   3621 pmap_deactivate(p)
   3622 struct proc *p;
   3623 {
   3624 	/* not implemented. */
   3625 }
   3626 
   3627 /*
   3628  * Fill in the sun3x-specific part of the kernel core header
   3629  * for dumpsys().  (See machdep.c for the rest.)
   3630  */
   3631 void
   3632 pmap_kcore_hdr(sh)
   3633 	struct sun3x_kcore_hdr *sh;
   3634 {
   3635 	u_long spa, len;
   3636 	int i;
   3637 
   3638 	sh->pg_frame = MMU_SHORT_PTE_BASEADDR;
   3639 	sh->pg_valid = MMU_DT_PAGE;
   3640 	sh->contig_end = virtual_contig_end;
   3641 	sh->kernCbase = (u_long) kernCbase;
   3642 	for (i = 0; i < SUN3X_NPHYS_RAM_SEGS; i++) {
   3643 		spa = avail_mem[i].pmem_start;
   3644 		spa = m68k_trunc_page(spa);
   3645 		len = avail_mem[i].pmem_end - spa;
   3646 		len = m68k_round_page(len);
   3647 		sh->ram_segs[i].start = spa;
   3648 		sh->ram_segs[i].size  = len;
   3649 	}
   3650 }
   3651 
   3652 
   3653 /* pmap_virtual_space			INTERFACE
   3654  **
   3655  * Return the current available range of virtual addresses in the
   3656  * arguuments provided.  Only really called once.
   3657  */
   3658 void
   3659 pmap_virtual_space(vstart, vend)
   3660 	vm_offset_t *vstart, *vend;
   3661 {
   3662 	*vstart = virtual_avail;
   3663 	*vend = virtual_end;
   3664 }
   3665 
   3666 /*
   3667  * Provide memory to the VM system.
   3668  *
   3669  * Assume avail_start is always in the
   3670  * first segment as pmap_bootstrap does.
   3671  */
   3672 static void
   3673 pmap_page_upload()
   3674 {
   3675 	vm_offset_t	a, b;	/* memory range */
   3676 	int i;
   3677 
   3678 	/* Supply the memory in segments. */
   3679 	for (i = 0; i < SUN3X_NPHYS_RAM_SEGS; i++) {
   3680 		a = atop(avail_mem[i].pmem_start);
   3681 		b = atop(avail_mem[i].pmem_end);
   3682 		if (i == 0)
   3683 			a = atop(avail_start);
   3684 		if (avail_mem[i].pmem_end > avail_end)
   3685 			b = atop(avail_end);
   3686 
   3687 		uvm_page_physload(a, b, a, b, VM_FREELIST_DEFAULT);
   3688 
   3689 		if (avail_mem[i].pmem_next == NULL)
   3690 			break;
   3691 	}
   3692 }
   3693 
   3694 /* pmap_page_index			INTERFACE
   3695  **
   3696  * Return the index of the given physical page in a list of useable
   3697  * physical pages in the system.  Holes in physical memory may be counted
   3698  * if so desired.  As long as pmap_free_pages() and pmap_page_index()
   3699  * agree as to whether holes in memory do or do not count as valid pages,
   3700  * it really doesn't matter.  However, if you like to save a little
   3701  * memory, don't count holes as valid pages.  This is even more true when
   3702  * the holes are large.
   3703  *
   3704  * We will not count holes as valid pages.  We can generate page indices
   3705  * that conform to this by using the memory bank structures initialized
   3706  * in pmap_alloc_pv().
   3707  */
   3708 int
   3709 pmap_page_index(pa)
   3710 	vm_offset_t pa;
   3711 {
   3712 	struct pmap_physmem_struct *bank = avail_mem;
   3713 	vm_offset_t off;
   3714 
   3715 	/* Search for the memory bank with this page. */
   3716 	/* XXX - What if it is not physical memory? */
   3717 	while (pa > bank->pmem_end)
   3718 		bank = bank->pmem_next;
   3719 	off = pa - bank->pmem_start;
   3720 
   3721 	return (bank->pmem_pvbase + m68k_btop(off));
   3722 }
   3723 
   3724 /* pmap_count			INTERFACE
   3725  **
   3726  * Return the number of resident (valid) pages in the given pmap.
   3727  *
   3728  * Note:  If this function is handed the kernel map, it will report
   3729  * that it has no mappings.  Hopefully the VM system won't ask for kernel
   3730  * map statistics.
   3731  */
   3732 segsz_t
   3733 pmap_count(pmap, type)
   3734 	pmap_t pmap;
   3735 	int    type;
   3736 {
   3737 	u_int     count;
   3738 	int       a_idx, b_idx;
   3739 	a_tmgr_t *a_tbl;
   3740 	b_tmgr_t *b_tbl;
   3741 	c_tmgr_t *c_tbl;
   3742 
   3743 	/*
   3744 	 * If the pmap does not have its own A table manager, it has no
   3745 	 * valid entires.
   3746 	 */
   3747 	if (pmap->pm_a_tmgr == NULL)
   3748 		return 0;
   3749 
   3750 	a_tbl = pmap->pm_a_tmgr;
   3751 
   3752 	count = 0;
   3753 	for (a_idx = 0; a_idx < MMU_TIA(KERNBASE); a_idx++) {
   3754 	    if (MMU_VALID_DT(a_tbl->at_dtbl[a_idx])) {
   3755 	        b_tbl = mmuB2tmgr(mmu_ptov(a_tbl->at_dtbl[a_idx].addr.raw));
   3756 	        for (b_idx = 0; b_idx < MMU_B_TBL_SIZE; b_idx++) {
   3757 	            if (MMU_VALID_DT(b_tbl->bt_dtbl[b_idx])) {
   3758 	                c_tbl = mmuC2tmgr(
   3759 	                    mmu_ptov(MMU_DTE_PA(b_tbl->bt_dtbl[b_idx])));
   3760 	                if (type == 0)
   3761 	                    /*
   3762 	                     * A resident entry count has been requested.
   3763 	                     */
   3764 	                    count += c_tbl->ct_ecnt;
   3765 	                else
   3766 	                    /*
   3767 	                     * A wired entry count has been requested.
   3768 	                     */
   3769 	                    count += c_tbl->ct_wcnt;
   3770 	            }
   3771 	        }
   3772 	    }
   3773 	}
   3774 
   3775 	return count;
   3776 }
   3777 
   3778 /************************ SUN3 COMPATIBILITY ROUTINES ********************
   3779  * The following routines are only used by DDB for tricky kernel text    *
   3780  * text operations in db_memrw.c.  They are provided for sun3            *
   3781  * compatibility.                                                        *
   3782  *************************************************************************/
   3783 /* get_pte			INTERNAL
   3784  **
   3785  * Return the page descriptor the describes the kernel mapping
   3786  * of the given virtual address.
   3787  */
   3788 extern u_long ptest_addr __P((u_long));	/* XXX: locore.s */
   3789 u_int
   3790 get_pte(va)
   3791 	vm_offset_t va;
   3792 {
   3793 	u_long pte_pa;
   3794 	mmu_short_pte_t *pte;
   3795 
   3796 	/* Get the physical address of the PTE */
   3797 	pte_pa = ptest_addr(va & ~PGOFSET);
   3798 
   3799 	/* Convert to a virtual address... */
   3800 	pte = (mmu_short_pte_t *) (KERNBASE + pte_pa);
   3801 
   3802 	/* Make sure it is in our level-C tables... */
   3803 	if ((pte < kernCbase) ||
   3804 		(pte >= &mmuCbase[NUM_USER_PTES]))
   3805 		return 0;
   3806 
   3807 	/* ... and just return its contents. */
   3808 	return (pte->attr.raw);
   3809 }
   3810 
   3811 
   3812 /* set_pte			INTERNAL
   3813  **
   3814  * Set the page descriptor that describes the kernel mapping
   3815  * of the given virtual address.
   3816  */
   3817 void
   3818 set_pte(va, pte)
   3819 	vm_offset_t va;
   3820 	u_int pte;
   3821 {
   3822 	u_long idx;
   3823 
   3824 	if (va < KERNBASE)
   3825 		return;
   3826 
   3827 	idx = (unsigned long) m68k_btop(va - KERNBASE);
   3828 	kernCbase[idx].attr.raw = pte;
   3829 	TBIS(va);
   3830 }
   3831 
   3832 /*
   3833  *	Routine:        pmap_procwr
   3834  *
   3835  *	Function:
   3836  *		Synchronize caches corresponding to [addr, addr+len) in p.
   3837  */
   3838 void
   3839 pmap_procwr(p, va, len)
   3840 	struct proc	*p;
   3841 	vaddr_t		va;
   3842 	size_t		len;
   3843 {
   3844 	(void)cachectl1(0x80000004, va, len, p);
   3845 }
   3846 
   3847 
   3848 #ifdef	PMAP_DEBUG
   3849 /************************** DEBUGGING ROUTINES **************************
   3850  * The following routines are meant to be an aid to debugging the pmap  *
   3851  * system.  They are callable from the DDB command line and should be   *
   3852  * prepared to be handed unstable or incomplete states of the system.   *
   3853  ************************************************************************/
   3854 
   3855 /* pv_list
   3856  **
   3857  * List all pages found on the pv list for the given physical page.
   3858  * To avoid endless loops, the listing will stop at the end of the list
   3859  * or after 'n' entries - whichever comes first.
   3860  */
   3861 void
   3862 pv_list(pa, n)
   3863 	vm_offset_t pa;
   3864 	int n;
   3865 {
   3866 	int  idx;
   3867 	vm_offset_t va;
   3868 	pv_t *pv;
   3869 	c_tmgr_t *c_tbl;
   3870 	pmap_t pmap;
   3871 
   3872 	pv = pa2pv(pa);
   3873 	idx = pv->pv_idx;
   3874 
   3875 	for (;idx != PVE_EOL && n > 0;
   3876 		 idx=pvebase[idx].pve_next, n--) {
   3877 
   3878 		va = pmap_get_pteinfo(idx, &pmap, &c_tbl);
   3879 		printf("idx %d, pmap 0x%x, va 0x%x, c_tbl %x\n",
   3880 			idx, (u_int) pmap, (u_int) va, (u_int) c_tbl);
   3881 	}
   3882 }
   3883 #endif	/* PMAP_DEBUG */
   3884 
   3885 #ifdef NOT_YET
   3886 /* and maybe not ever */
   3887 /************************** LOW-LEVEL ROUTINES **************************
   3888  * These routines will eventualy be re-written into assembly and placed *
   3889  * in locore.s.  They are here now as stubs so that the pmap module can *
   3890  * be linked as a standalone user program for testing.                  *
   3891  ************************************************************************/
   3892 /* flush_atc_crp			INTERNAL
   3893  **
   3894  * Flush all page descriptors derived from the given CPU Root Pointer
   3895  * (CRP), or 'A' table as it is known here, from the 68851's automatic
   3896  * cache.
   3897  */
   3898 void
   3899 flush_atc_crp(a_tbl)
   3900 {
   3901 	mmu_long_rp_t rp;
   3902 
   3903 	/* Create a temporary root table pointer that points to the
   3904 	 * given A table.
   3905 	 */
   3906 	rp.attr.raw = ~MMU_LONG_RP_LU;
   3907 	rp.addr.raw = (unsigned int) a_tbl;
   3908 
   3909 	mmu_pflushr(&rp);
   3910 	/* mmu_pflushr:
   3911 	 * 	movel   sp(4)@,a0
   3912 	 * 	pflushr a0@
   3913 	 *	rts
   3914 	 */
   3915 }
   3916 #endif /* NOT_YET */
   3917