pmap.c revision 1.50.4.1 1 /* $NetBSD: pmap.c,v 1.50.4.1 1999/11/15 00:39:45 fvdl Exp $ */
2
3 /*-
4 * Copyright (c) 1996, 1997 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jeremy Cooper.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * XXX These comments aren't quite accurate. Need to change.
41 * The sun3x uses the MC68851 Memory Management Unit, which is built
42 * into the CPU. The 68851 maps virtual to physical addresses using
43 * a multi-level table lookup, which is stored in the very memory that
44 * it maps. The number of levels of lookup is configurable from one
45 * to four. In this implementation, we use three, named 'A' through 'C'.
46 *
47 * The MMU translates virtual addresses into physical addresses by
48 * traversing these tables in a proccess called a 'table walk'. The most
49 * significant 7 bits of the Virtual Address ('VA') being translated are
50 * used as an index into the level A table, whose base in physical memory
51 * is stored in a special MMU register, the 'CPU Root Pointer' or CRP. The
52 * address found at that index in the A table is used as the base
53 * address for the next table, the B table. The next six bits of the VA are
54 * used as an index into the B table, which in turn gives the base address
55 * of the third and final C table.
56 *
57 * The next six bits of the VA are used as an index into the C table to
58 * locate a Page Table Entry (PTE). The PTE is a physical address in memory
59 * to which the remaining 13 bits of the VA are added, producing the
60 * mapped physical address.
61 *
62 * To map the entire memory space in this manner would require 2114296 bytes
63 * of page tables per process - quite expensive. Instead we will
64 * allocate a fixed but considerably smaller space for the page tables at
65 * the time the VM system is initialized. When the pmap code is asked by
66 * the kernel to map a VA to a PA, it allocates tables as needed from this
67 * pool. When there are no more tables in the pool, tables are stolen
68 * from the oldest mapped entries in the tree. This is only possible
69 * because all memory mappings are stored in the kernel memory map
70 * structures, independent of the pmap structures. A VA which references
71 * one of these invalidated maps will cause a page fault. The kernel
72 * will determine that the page fault was caused by a task using a valid
73 * VA, but for some reason (which does not concern it), that address was
74 * not mapped. It will ask the pmap code to re-map the entry and then
75 * it will resume executing the faulting task.
76 *
77 * In this manner the most efficient use of the page table space is
78 * achieved. Tasks which do not execute often will have their tables
79 * stolen and reused by tasks which execute more frequently. The best
80 * size for the page table pool will probably be determined by
81 * experimentation.
82 *
83 * You read all of the comments so far. Good for you.
84 * Now go play!
85 */
86
87 /*** A Note About the 68851 Address Translation Cache
88 * The MC68851 has a 64 entry cache, called the Address Translation Cache
89 * or 'ATC'. This cache stores the most recently used page descriptors
90 * accessed by the MMU when it does translations. Using a marker called a
91 * 'task alias' the MMU can store the descriptors from 8 different table
92 * spaces concurrently. The task alias is associated with the base
93 * address of the level A table of that address space. When an address
94 * space is currently active (the CRP currently points to its A table)
95 * the only cached descriptors that will be obeyed are ones which have a
96 * matching task alias of the current space associated with them.
97 *
98 * Since the cache is always consulted before any table lookups are done,
99 * it is important that it accurately reflect the state of the MMU tables.
100 * Whenever a change has been made to a table that has been loaded into
101 * the MMU, the code must be sure to flush any cached entries that are
102 * affected by the change. These instances are documented in the code at
103 * various points.
104 */
105 /*** A Note About the Note About the 68851 Address Translation Cache
106 * 4 months into this code I discovered that the sun3x does not have
107 * a MC68851 chip. Instead, it has a version of this MMU that is part of the
108 * the 68030 CPU.
109 * All though it behaves very similarly to the 68851, it only has 1 task
110 * alias and a 22 entry cache. So sadly (or happily), the first paragraph
111 * of the previous note does not apply to the sun3x pmap.
112 */
113
114 #include "opt_ddb.h"
115
116 #include <sys/param.h>
117 #include <sys/systm.h>
118 #include <sys/proc.h>
119 #include <sys/malloc.h>
120 #include <sys/user.h>
121 #include <sys/queue.h>
122 #include <sys/kcore.h>
123
124 #include <vm/vm.h>
125 #include <vm/vm_kern.h>
126 #include <vm/vm_page.h>
127
128 #include <uvm/uvm.h>
129
130 #define PAGER_SVA (uvm.pager_sva)
131 #define PAGER_EVA (uvm.pager_eva)
132
133 #include <machine/cpu.h>
134 #include <machine/kcore.h>
135 #include <machine/mon.h>
136 #include <machine/pmap.h>
137 #include <machine/pte.h>
138 #include <machine/vmparam.h>
139
140 #include <sun3/sun3/cache.h>
141 #include <sun3/sun3/machdep.h>
142
143 #include "pmap_pvt.h"
144
145 /* XXX - What headers declare these? */
146 extern struct pcb *curpcb;
147 extern int physmem;
148
149 extern void copypage __P((const void*, void*));
150 extern void zeropage __P((void*));
151
152 /* Defined in locore.s */
153 extern char kernel_text[];
154
155 /* Defined by the linker */
156 extern char etext[], edata[], end[];
157 extern char *esym; /* DDB */
158
159 /*************************** DEBUGGING DEFINITIONS ***********************
160 * Macros, preprocessor defines and variables used in debugging can make *
161 * code hard to read. Anything used exclusively for debugging purposes *
162 * is defined here to avoid having such mess scattered around the file. *
163 *************************************************************************/
164 #ifdef PMAP_DEBUG
165 /*
166 * To aid the debugging process, macros should be expanded into smaller steps
167 * that accomplish the same goal, yet provide convenient places for placing
168 * breakpoints. When this code is compiled with PMAP_DEBUG mode defined, the
169 * 'INLINE' keyword is defined to an empty string. This way, any function
170 * defined to be a 'static INLINE' will become 'outlined' and compiled as
171 * a separate function, which is much easier to debug.
172 */
173 #define INLINE /* nothing */
174
175 /*
176 * It is sometimes convenient to watch the activity of a particular table
177 * in the system. The following variables are used for that purpose.
178 */
179 a_tmgr_t *pmap_watch_atbl = 0;
180 b_tmgr_t *pmap_watch_btbl = 0;
181 c_tmgr_t *pmap_watch_ctbl = 0;
182
183 int pmap_debug = 0;
184 #define DPRINT(args) if (pmap_debug) printf args
185
186 #else /********** Stuff below is defined if NOT debugging **************/
187
188 #define INLINE inline
189 #define DPRINT(args) /* nada */
190
191 #endif /* PMAP_DEBUG */
192 /*********************** END OF DEBUGGING DEFINITIONS ********************/
193
194 /*** Management Structure - Memory Layout
195 * For every MMU table in the sun3x pmap system there must be a way to
196 * manage it; we must know which process is using it, what other tables
197 * depend on it, and whether or not it contains any locked pages. This
198 * is solved by the creation of 'table management' or 'tmgr'
199 * structures. One for each MMU table in the system.
200 *
201 * MAP OF MEMORY USED BY THE PMAP SYSTEM
202 *
203 * towards lower memory
204 * kernAbase -> +-------------------------------------------------------+
205 * | Kernel MMU A level table |
206 * kernBbase -> +-------------------------------------------------------+
207 * | Kernel MMU B level tables |
208 * kernCbase -> +-------------------------------------------------------+
209 * | |
210 * | Kernel MMU C level tables |
211 * | |
212 * mmuCbase -> +-------------------------------------------------------+
213 * | User MMU C level tables |
214 * mmuAbase -> +-------------------------------------------------------+
215 * | |
216 * | User MMU A level tables |
217 * | |
218 * mmuBbase -> +-------------------------------------------------------+
219 * | User MMU B level tables |
220 * tmgrAbase -> +-------------------------------------------------------+
221 * | TMGR A level table structures |
222 * tmgrBbase -> +-------------------------------------------------------+
223 * | TMGR B level table structures |
224 * tmgrCbase -> +-------------------------------------------------------+
225 * | TMGR C level table structures |
226 * pvbase -> +-------------------------------------------------------+
227 * | Physical to Virtual mapping table (list heads) |
228 * pvebase -> +-------------------------------------------------------+
229 * | Physical to Virtual mapping table (list elements) |
230 * | |
231 * +-------------------------------------------------------+
232 * towards higher memory
233 *
234 * For every A table in the MMU A area, there will be a corresponding
235 * a_tmgr structure in the TMGR A area. The same will be true for
236 * the B and C tables. This arrangement will make it easy to find the
237 * controling tmgr structure for any table in the system by use of
238 * (relatively) simple macros.
239 */
240
241 /*
242 * Global variables for storing the base addresses for the areas
243 * labeled above.
244 */
245 static vm_offset_t kernAphys;
246 static mmu_long_dte_t *kernAbase;
247 static mmu_short_dte_t *kernBbase;
248 static mmu_short_pte_t *kernCbase;
249 static mmu_short_pte_t *mmuCbase;
250 static mmu_short_dte_t *mmuBbase;
251 static mmu_long_dte_t *mmuAbase;
252 static a_tmgr_t *Atmgrbase;
253 static b_tmgr_t *Btmgrbase;
254 static c_tmgr_t *Ctmgrbase;
255 static pv_t *pvbase;
256 static pv_elem_t *pvebase;
257 struct pmap kernel_pmap;
258
259 /*
260 * This holds the CRP currently loaded into the MMU.
261 */
262 struct mmu_rootptr kernel_crp;
263
264 /*
265 * Just all around global variables.
266 */
267 static TAILQ_HEAD(a_pool_head_struct, a_tmgr_struct) a_pool;
268 static TAILQ_HEAD(b_pool_head_struct, b_tmgr_struct) b_pool;
269 static TAILQ_HEAD(c_pool_head_struct, c_tmgr_struct) c_pool;
270
271
272 /*
273 * Flags used to mark the safety/availability of certain operations or
274 * resources.
275 */
276 static boolean_t pv_initialized = FALSE, /* PV system has been initialized. */
277 bootstrap_alloc_enabled = FALSE; /*Safe to use pmap_bootstrap_alloc().*/
278 int tmp_vpages_inuse; /* Temporary virtual pages are in use */
279
280 /*
281 * XXX: For now, retain the traditional variables that were
282 * used in the old pmap/vm interface (without NONCONTIG).
283 */
284 /* Kernel virtual address space available: */
285 vm_offset_t virtual_avail, virtual_end;
286 /* Physical address space available: */
287 vm_offset_t avail_start, avail_end;
288
289 /* This keep track of the end of the contiguously mapped range. */
290 vm_offset_t virtual_contig_end;
291
292 /* Physical address used by pmap_next_page() */
293 vm_offset_t avail_next;
294
295 /* These are used by pmap_copy_page(), etc. */
296 vm_offset_t tmp_vpages[2];
297
298 /*
299 * The 3/80 is the only member of the sun3x family that has non-contiguous
300 * physical memory. Memory is divided into 4 banks which are physically
301 * locatable on the system board. Although the size of these banks varies
302 * with the size of memory they contain, their base addresses are
303 * permenently fixed. The following structure, which describes these
304 * banks, is initialized by pmap_bootstrap() after it reads from a similar
305 * structure provided by the ROM Monitor.
306 *
307 * For the other machines in the sun3x architecture which do have contiguous
308 * RAM, this list will have only one entry, which will describe the entire
309 * range of available memory.
310 */
311 struct pmap_physmem_struct avail_mem[SUN3X_NPHYS_RAM_SEGS];
312 u_int total_phys_mem;
313
314 /*************************************************************************/
315
316 /*
317 * XXX - Should "tune" these based on statistics.
318 *
319 * My first guess about the relative numbers of these needed is
320 * based on the fact that a "typical" process will have several
321 * pages mapped at low virtual addresses (text, data, bss), then
322 * some mapped shared libraries, and then some stack pages mapped
323 * near the high end of the VA space. Each process can use only
324 * one A table, and most will use only two B tables (maybe three)
325 * and probably about four C tables. Therefore, the first guess
326 * at the relative numbers of these needed is 1:2:4 -gwr
327 *
328 * The number of C tables needed is closely related to the amount
329 * of physical memory available plus a certain amount attributable
330 * to the use of double mappings. With a few simulation statistics
331 * we can find a reasonably good estimation of this unknown value.
332 * Armed with that and the above ratios, we have a good idea of what
333 * is needed at each level. -j
334 *
335 * Note: It is not physical memory memory size, but the total mapped
336 * virtual space required by the combined working sets of all the
337 * currently _runnable_ processes. (Sleeping ones don't count.)
338 * The amount of physical memory should be irrelevant. -gwr
339 */
340 #ifdef FIXED_NTABLES
341 #define NUM_A_TABLES 16
342 #define NUM_B_TABLES 32
343 #define NUM_C_TABLES 64
344 #else
345 unsigned int NUM_A_TABLES, NUM_B_TABLES, NUM_C_TABLES;
346 #endif /* FIXED_NTABLES */
347
348 /*
349 * This determines our total virtual mapping capacity.
350 * Yes, it is a FIXED value so we can pre-allocate.
351 */
352 #define NUM_USER_PTES (NUM_C_TABLES * MMU_C_TBL_SIZE)
353
354 /*
355 * The size of the Kernel Virtual Address Space (KVAS)
356 * for purposes of MMU table allocation is -KERNBASE
357 * (length from KERNBASE to 0xFFFFffff)
358 */
359 #define KVAS_SIZE (-KERNBASE)
360
361 /* Numbers of kernel MMU tables to support KVAS_SIZE. */
362 #define KERN_B_TABLES (KVAS_SIZE >> MMU_TIA_SHIFT)
363 #define KERN_C_TABLES (KVAS_SIZE >> MMU_TIB_SHIFT)
364 #define NUM_KERN_PTES (KVAS_SIZE >> MMU_TIC_SHIFT)
365
366 /*************************** MISCELANEOUS MACROS *************************/
367 #define PMAP_LOCK() ; /* Nothing, for now */
368 #define PMAP_UNLOCK() ; /* same. */
369 #define NULL 0
370
371 static INLINE void * mmu_ptov __P((vm_offset_t pa));
372 static INLINE vm_offset_t mmu_vtop __P((void * va));
373
374 #if 0
375 static INLINE a_tmgr_t * mmuA2tmgr __P((mmu_long_dte_t *));
376 #endif /* 0 */
377 static INLINE b_tmgr_t * mmuB2tmgr __P((mmu_short_dte_t *));
378 static INLINE c_tmgr_t * mmuC2tmgr __P((mmu_short_pte_t *));
379
380 static INLINE pv_t *pa2pv __P((vm_offset_t pa));
381 static INLINE int pteidx __P((mmu_short_pte_t *));
382 static INLINE pmap_t current_pmap __P((void));
383
384 /*
385 * We can always convert between virtual and physical addresses
386 * for anything in the range [KERNBASE ... avail_start] because
387 * that range is GUARANTEED to be mapped linearly.
388 * We rely heavily upon this feature!
389 */
390 static INLINE void *
391 mmu_ptov(pa)
392 vm_offset_t pa;
393 {
394 register vm_offset_t va;
395
396 va = (pa + KERNBASE);
397 #ifdef PMAP_DEBUG
398 if ((va < KERNBASE) || (va >= virtual_contig_end))
399 panic("mmu_ptov");
400 #endif
401 return ((void*)va);
402 }
403 static INLINE vm_offset_t
404 mmu_vtop(vva)
405 void *vva;
406 {
407 register vm_offset_t va;
408
409 va = (vm_offset_t)vva;
410 #ifdef PMAP_DEBUG
411 if ((va < KERNBASE) || (va >= virtual_contig_end))
412 panic("mmu_ptov");
413 #endif
414 return (va - KERNBASE);
415 }
416
417 /*
418 * These macros map MMU tables to their corresponding manager structures.
419 * They are needed quite often because many of the pointers in the pmap
420 * system reference MMU tables and not the structures that control them.
421 * There needs to be a way to find one when given the other and these
422 * macros do so by taking advantage of the memory layout described above.
423 * Here's a quick step through the first macro, mmuA2tmgr():
424 *
425 * 1) find the offset of the given MMU A table from the base of its table
426 * pool (table - mmuAbase).
427 * 2) convert this offset into a table index by dividing it by the
428 * size of one MMU 'A' table. (sizeof(mmu_long_dte_t) * MMU_A_TBL_SIZE)
429 * 3) use this index to select the corresponding 'A' table manager
430 * structure from the 'A' table manager pool (Atmgrbase[index]).
431 */
432 /* This function is not currently used. */
433 #if 0
434 static INLINE a_tmgr_t *
435 mmuA2tmgr(mmuAtbl)
436 mmu_long_dte_t *mmuAtbl;
437 {
438 register int idx;
439
440 /* Which table is this in? */
441 idx = (mmuAtbl - mmuAbase) / MMU_A_TBL_SIZE;
442 #ifdef PMAP_DEBUG
443 if ((idx < 0) || (idx >= NUM_A_TABLES))
444 panic("mmuA2tmgr");
445 #endif
446 return (&Atmgrbase[idx]);
447 }
448 #endif /* 0 */
449
450 static INLINE b_tmgr_t *
451 mmuB2tmgr(mmuBtbl)
452 mmu_short_dte_t *mmuBtbl;
453 {
454 register int idx;
455
456 /* Which table is this in? */
457 idx = (mmuBtbl - mmuBbase) / MMU_B_TBL_SIZE;
458 #ifdef PMAP_DEBUG
459 if ((idx < 0) || (idx >= NUM_B_TABLES))
460 panic("mmuB2tmgr");
461 #endif
462 return (&Btmgrbase[idx]);
463 }
464
465 /* mmuC2tmgr INTERNAL
466 **
467 * Given a pte known to belong to a C table, return the address of
468 * that table's management structure.
469 */
470 static INLINE c_tmgr_t *
471 mmuC2tmgr(mmuCtbl)
472 mmu_short_pte_t *mmuCtbl;
473 {
474 register int idx;
475
476 /* Which table is this in? */
477 idx = (mmuCtbl - mmuCbase) / MMU_C_TBL_SIZE;
478 #ifdef PMAP_DEBUG
479 if ((idx < 0) || (idx >= NUM_C_TABLES))
480 panic("mmuC2tmgr");
481 #endif
482 return (&Ctmgrbase[idx]);
483 }
484
485 /* This is now a function call below.
486 * #define pa2pv(pa) \
487 * (&pvbase[(unsigned long)\
488 * m68k_btop(pa)\
489 * ])
490 */
491
492 /* pa2pv INTERNAL
493 **
494 * Return the pv_list_head element which manages the given physical
495 * address.
496 */
497 static INLINE pv_t *
498 pa2pv(pa)
499 vm_offset_t pa;
500 {
501 register struct pmap_physmem_struct *bank;
502 register int idx;
503
504 bank = &avail_mem[0];
505 while (pa >= bank->pmem_end)
506 bank = bank->pmem_next;
507
508 pa -= bank->pmem_start;
509 idx = bank->pmem_pvbase + m68k_btop(pa);
510 #ifdef PMAP_DEBUG
511 if ((idx < 0) || (idx >= physmem))
512 panic("pa2pv");
513 #endif
514 return &pvbase[idx];
515 }
516
517 /* pteidx INTERNAL
518 **
519 * Return the index of the given PTE within the entire fixed table of
520 * PTEs.
521 */
522 static INLINE int
523 pteidx(pte)
524 mmu_short_pte_t *pte;
525 {
526 return (pte - kernCbase);
527 }
528
529 /*
530 * This just offers a place to put some debugging checks,
531 * and reduces the number of places "curproc" appears...
532 */
533 static INLINE pmap_t
534 current_pmap()
535 {
536 struct proc *p;
537 struct vmspace *vm;
538 vm_map_t map;
539 pmap_t pmap;
540
541 p = curproc; /* XXX */
542 if (p == NULL)
543 pmap = &kernel_pmap;
544 else {
545 vm = p->p_vmspace;
546 map = &vm->vm_map;
547 pmap = vm_map_pmap(map);
548 }
549
550 return (pmap);
551 }
552
553
554 /*************************** FUNCTION DEFINITIONS ************************
555 * These appear here merely for the compiler to enforce type checking on *
556 * all function calls. *
557 *************************************************************************/
558
559 /** External functions
560 ** - functions used within this module but written elsewhere.
561 ** both of these functions are in locore.s
562 ** XXX - These functions were later replaced with their more cryptic
563 ** hp300 counterparts. They may be removed now.
564 **/
565 #if 0 /* deprecated mmu */
566 void mmu_seturp __P((vm_offset_t));
567 void mmu_flush __P((int, vm_offset_t));
568 void mmu_flusha __P((void));
569 #endif /* 0 */
570
571 /** Internal functions
572 ** Most functions used only within this module are defined in
573 ** pmap_pvt.h (why not here if used only here?)
574 **/
575 static void pmap_page_upload __P((void));
576
577 /** Interface functions
578 ** - functions required by the Mach VM Pmap interface, with MACHINE_CONTIG
579 ** defined.
580 **/
581 int pmap_page_index __P((vm_offset_t));
582 void pmap_pinit __P((pmap_t));
583 void pmap_release __P((pmap_t));
584
585 /********************************** CODE ********************************
586 * Functions that are called from other parts of the kernel are labeled *
587 * as 'INTERFACE' functions. Functions that are only called from *
588 * within the pmap module are labeled as 'INTERNAL' functions. *
589 * Functions that are internal, but are not (currently) used at all are *
590 * labeled 'INTERNAL_X'. *
591 ************************************************************************/
592
593 /* pmap_bootstrap INTERNAL
594 **
595 * Initializes the pmap system. Called at boot time from
596 * locore2.c:_vm_init()
597 *
598 * Reminder: having a pmap_bootstrap_alloc() and also having the VM
599 * system implement pmap_steal_memory() is redundant.
600 * Don't release this code without removing one or the other!
601 */
602 void
603 pmap_bootstrap(nextva)
604 vm_offset_t nextva;
605 {
606 struct physmemory *membank;
607 struct pmap_physmem_struct *pmap_membank;
608 vm_offset_t va, pa, eva;
609 int b, c, i, j; /* running table counts */
610 int size, resvmem;
611
612 /*
613 * This function is called by __bootstrap after it has
614 * determined the type of machine and made the appropriate
615 * patches to the ROM vectors (XXX- I don't quite know what I meant
616 * by that.) It allocates and sets up enough of the pmap system
617 * to manage the kernel's address space.
618 */
619
620 /*
621 * Determine the range of kernel virtual and physical
622 * space available. Note that we ABSOLUTELY DEPEND on
623 * the fact that the first bank of memory (4MB) is
624 * mapped linearly to KERNBASE (which we guaranteed in
625 * the first instructions of locore.s).
626 * That is plenty for our bootstrap work.
627 */
628 virtual_avail = m68k_round_page(nextva);
629 virtual_contig_end = KERNBASE + 0x400000; /* +4MB */
630 virtual_end = VM_MAX_KERNEL_ADDRESS;
631 /* Don't need avail_start til later. */
632
633 /* We may now call pmap_bootstrap_alloc(). */
634 bootstrap_alloc_enabled = TRUE;
635
636 /*
637 * This is a somewhat unwrapped loop to deal with
638 * copying the PROM's 'phsymem' banks into the pmap's
639 * banks. The following is always assumed:
640 * 1. There is always at least one bank of memory.
641 * 2. There is always a last bank of memory, and its
642 * pmem_next member must be set to NULL.
643 */
644 membank = romVectorPtr->v_physmemory;
645 pmap_membank = avail_mem;
646 total_phys_mem = 0;
647
648 for (;;) { /* break on !membank */
649 pmap_membank->pmem_start = membank->address;
650 pmap_membank->pmem_end = membank->address + membank->size;
651 total_phys_mem += membank->size;
652 membank = membank->next;
653 if (!membank)
654 break;
655 /* This silly syntax arises because pmap_membank
656 * is really a pre-allocated array, but it is put into
657 * use as a linked list.
658 */
659 pmap_membank->pmem_next = pmap_membank + 1;
660 pmap_membank = pmap_membank->pmem_next;
661 }
662 /* This is the last element. */
663 pmap_membank->pmem_next = NULL;
664
665 /*
666 * Note: total_phys_mem, physmem represent
667 * actual physical memory, including that
668 * reserved for the PROM monitor.
669 */
670 physmem = btoc(total_phys_mem);
671
672 /*
673 * The last bank of memory should be reduced to prevent the
674 * physical pages needed by the PROM monitor from being used
675 * in the VM system.
676 */
677 resvmem = total_phys_mem - *(romVectorPtr->memoryAvail);
678 resvmem = m68k_round_page(resvmem);
679 pmap_membank->pmem_end -= resvmem;
680
681 /*
682 * Avail_end is set to the first byte of physical memory
683 * after the end of the last bank. We use this only to
684 * determine if a physical address is "managed" memory.
685 */
686 avail_end = pmap_membank->pmem_end;
687
688 /*
689 * First allocate enough kernel MMU tables to map all
690 * of kernel virtual space from KERNBASE to 0xFFFFFFFF.
691 * Note: All must be aligned on 256 byte boundaries.
692 * Start with the level-A table (one of those).
693 */
694 size = sizeof(mmu_long_dte_t) * MMU_A_TBL_SIZE;
695 kernAbase = pmap_bootstrap_alloc(size);
696 bzero(kernAbase, size);
697
698 /* Now the level-B kernel tables... */
699 size = sizeof(mmu_short_dte_t) * MMU_B_TBL_SIZE * KERN_B_TABLES;
700 kernBbase = pmap_bootstrap_alloc(size);
701 bzero(kernBbase, size);
702
703 /* Now the level-C kernel tables... */
704 size = sizeof(mmu_short_pte_t) * MMU_C_TBL_SIZE * KERN_C_TABLES;
705 kernCbase = pmap_bootstrap_alloc(size);
706 bzero(kernCbase, size);
707 /*
708 * Note: In order for the PV system to work correctly, the kernel
709 * and user-level C tables must be allocated contiguously.
710 * Nothing should be allocated between here and the allocation of
711 * mmuCbase below. XXX: Should do this as one allocation, and
712 * then compute a pointer for mmuCbase instead of this...
713 *
714 * Allocate user MMU tables.
715 * These must be contiguous with the preceeding.
716 */
717
718 #ifndef FIXED_NTABLES
719 /*
720 * The number of user-level C tables that should be allocated is
721 * related to the size of physical memory. In general, there should
722 * be enough tables to map four times the amount of available RAM.
723 * The extra amount is needed because some table space is wasted by
724 * fragmentation.
725 */
726 NUM_C_TABLES = (total_phys_mem * 4) / (MMU_C_TBL_SIZE * MMU_PAGE_SIZE);
727 NUM_B_TABLES = NUM_C_TABLES / 2;
728 NUM_A_TABLES = NUM_B_TABLES / 2;
729 #endif /* !FIXED_NTABLES */
730
731 size = sizeof(mmu_short_pte_t) * MMU_C_TBL_SIZE * NUM_C_TABLES;
732 mmuCbase = pmap_bootstrap_alloc(size);
733
734 size = sizeof(mmu_short_dte_t) * MMU_B_TBL_SIZE * NUM_B_TABLES;
735 mmuBbase = pmap_bootstrap_alloc(size);
736
737 size = sizeof(mmu_long_dte_t) * MMU_A_TBL_SIZE * NUM_A_TABLES;
738 mmuAbase = pmap_bootstrap_alloc(size);
739
740 /*
741 * Fill in the never-changing part of the kernel tables.
742 * For simplicity, the kernel's mappings will be editable as a
743 * flat array of page table entries at kernCbase. The
744 * higher level 'A' and 'B' tables must be initialized to point
745 * to this lower one.
746 */
747 b = c = 0;
748
749 /*
750 * Invalidate all mappings below KERNBASE in the A table.
751 * This area has already been zeroed out, but it is good
752 * practice to explicitly show that we are interpreting
753 * it as a list of A table descriptors.
754 */
755 for (i = 0; i < MMU_TIA(KERNBASE); i++) {
756 kernAbase[i].addr.raw = 0;
757 }
758
759 /*
760 * Set up the kernel A and B tables so that they will reference the
761 * correct spots in the contiguous table of PTEs allocated for the
762 * kernel's virtual memory space.
763 */
764 for (i = MMU_TIA(KERNBASE); i < MMU_A_TBL_SIZE; i++) {
765 kernAbase[i].attr.raw =
766 MMU_LONG_DTE_LU | MMU_LONG_DTE_SUPV | MMU_DT_SHORT;
767 kernAbase[i].addr.raw = mmu_vtop(&kernBbase[b]);
768
769 for (j=0; j < MMU_B_TBL_SIZE; j++) {
770 kernBbase[b + j].attr.raw = mmu_vtop(&kernCbase[c])
771 | MMU_DT_SHORT;
772 c += MMU_C_TBL_SIZE;
773 }
774 b += MMU_B_TBL_SIZE;
775 }
776
777 /* XXX - Doing kernel_pmap a little further down. */
778
779 pmap_alloc_usermmu(); /* Allocate user MMU tables. */
780 pmap_alloc_usertmgr(); /* Allocate user MMU table managers.*/
781 pmap_alloc_pv(); /* Allocate physical->virtual map. */
782
783 /*
784 * We are now done with pmap_bootstrap_alloc(). Round up
785 * `virtual_avail' to the nearest page, and set the flag
786 * to prevent use of pmap_bootstrap_alloc() hereafter.
787 */
788 pmap_bootstrap_aalign(NBPG);
789 bootstrap_alloc_enabled = FALSE;
790
791 /*
792 * Now that we are done with pmap_bootstrap_alloc(), we
793 * must save the virtual and physical addresses of the
794 * end of the linearly mapped range, which are stored in
795 * virtual_contig_end and avail_start, respectively.
796 * These variables will never change after this point.
797 */
798 virtual_contig_end = virtual_avail;
799 avail_start = virtual_avail - KERNBASE;
800
801 /*
802 * `avail_next' is a running pointer used by pmap_next_page() to
803 * keep track of the next available physical page to be handed
804 * to the VM system during its initialization, in which it
805 * asks for physical pages, one at a time.
806 */
807 avail_next = avail_start;
808
809 /*
810 * Now allocate some virtual addresses, but not the physical pages
811 * behind them. Note that virtual_avail is already page-aligned.
812 *
813 * tmp_vpages[] is an array of two virtual pages used for temporary
814 * kernel mappings in the pmap module to facilitate various physical
815 * address-oritented operations.
816 */
817 tmp_vpages[0] = virtual_avail;
818 virtual_avail += NBPG;
819 tmp_vpages[1] = virtual_avail;
820 virtual_avail += NBPG;
821
822 /** Initialize the PV system **/
823 pmap_init_pv();
824
825 /*
826 * Fill in the kernel_pmap structure and kernel_crp.
827 */
828 kernAphys = mmu_vtop(kernAbase);
829 kernel_pmap.pm_a_tmgr = NULL;
830 kernel_pmap.pm_a_phys = kernAphys;
831 kernel_pmap.pm_refcount = 1; /* always in use */
832
833 kernel_crp.rp_attr = MMU_LONG_DTE_LU | MMU_DT_LONG;
834 kernel_crp.rp_addr = kernAphys;
835
836 /*
837 * Now pmap_enter_kernel() may be used safely and will be
838 * the main interface used hereafter to modify the kernel's
839 * virtual address space. Note that since we are still running
840 * under the PROM's address table, none of these table modifications
841 * actually take effect until pmap_takeover_mmu() is called.
842 *
843 * Note: Our tables do NOT have the PROM linear mappings!
844 * Only the mappings created here exist in our tables, so
845 * remember to map anything we expect to use.
846 */
847 va = (vm_offset_t) KERNBASE;
848 pa = 0;
849
850 /*
851 * The first page of the kernel virtual address space is the msgbuf
852 * page. The page attributes (data, non-cached) are set here, while
853 * the address is assigned to this global pointer in cpu_startup().
854 * It is non-cached, mostly due to paranoia.
855 */
856 pmap_enter_kernel(va, pa|PMAP_NC, VM_PROT_ALL);
857 va += NBPG; pa += NBPG;
858
859 /* Next page is used as the temporary stack. */
860 pmap_enter_kernel(va, pa, VM_PROT_ALL);
861 va += NBPG; pa += NBPG;
862
863 /*
864 * Map all of the kernel's text segment as read-only and cacheable.
865 * (Cacheable is implied by default). Unfortunately, the last bytes
866 * of kernel text and the first bytes of kernel data will often be
867 * sharing the same page. Therefore, the last page of kernel text
868 * has to be mapped as read/write, to accomodate the data.
869 */
870 eva = m68k_trunc_page((vm_offset_t)etext);
871 for (; va < eva; va += NBPG, pa += NBPG)
872 pmap_enter_kernel(va, pa, VM_PROT_READ|VM_PROT_EXECUTE);
873
874 /*
875 * Map all of the kernel's data as read/write and cacheable.
876 * This includes: data, BSS, symbols, and everything in the
877 * contiguous memory used by pmap_bootstrap_alloc()
878 */
879 for (; pa < avail_start; va += NBPG, pa += NBPG)
880 pmap_enter_kernel(va, pa, VM_PROT_READ|VM_PROT_WRITE);
881
882 /*
883 * At this point we are almost ready to take over the MMU. But first
884 * we must save the PROM's address space in our map, as we call its
885 * routines and make references to its data later in the kernel.
886 */
887 pmap_bootstrap_copyprom();
888 pmap_takeover_mmu();
889 pmap_bootstrap_setprom();
890
891 /* Notify the VM system of our page size. */
892 PAGE_SIZE = NBPG;
893 uvm_setpagesize();
894
895 pmap_page_upload();
896 }
897
898
899 /* pmap_alloc_usermmu INTERNAL
900 **
901 * Called from pmap_bootstrap() to allocate MMU tables that will
902 * eventually be used for user mappings.
903 */
904 void
905 pmap_alloc_usermmu()
906 {
907 /* XXX: Moved into caller. */
908 }
909
910 /* pmap_alloc_pv INTERNAL
911 **
912 * Called from pmap_bootstrap() to allocate the physical
913 * to virtual mapping list. Each physical page of memory
914 * in the system has a corresponding element in this list.
915 */
916 void
917 pmap_alloc_pv()
918 {
919 int i;
920 unsigned int total_mem;
921
922 /*
923 * Allocate a pv_head structure for every page of physical
924 * memory that will be managed by the system. Since memory on
925 * the 3/80 is non-contiguous, we cannot arrive at a total page
926 * count by subtraction of the lowest available address from the
927 * highest, but rather we have to step through each memory
928 * bank and add the number of pages in each to the total.
929 *
930 * At this time we also initialize the offset of each bank's
931 * starting pv_head within the pv_head list so that the physical
932 * memory state routines (pmap_is_referenced(),
933 * pmap_is_modified(), et al.) can quickly find coresponding
934 * pv_heads in spite of the non-contiguity.
935 */
936 total_mem = 0;
937 for (i = 0; i < SUN3X_NPHYS_RAM_SEGS; i++) {
938 avail_mem[i].pmem_pvbase = m68k_btop(total_mem);
939 total_mem += avail_mem[i].pmem_end -
940 avail_mem[i].pmem_start;
941 if (avail_mem[i].pmem_next == NULL)
942 break;
943 }
944 pvbase = (pv_t *) pmap_bootstrap_alloc(sizeof(pv_t) *
945 m68k_btop(total_phys_mem));
946 }
947
948 /* pmap_alloc_usertmgr INTERNAL
949 **
950 * Called from pmap_bootstrap() to allocate the structures which
951 * facilitate management of user MMU tables. Each user MMU table
952 * in the system has one such structure associated with it.
953 */
954 void
955 pmap_alloc_usertmgr()
956 {
957 /* Allocate user MMU table managers */
958 /* It would be a lot simpler to just make these BSS, but */
959 /* we may want to change their size at boot time... -j */
960 Atmgrbase = (a_tmgr_t *) pmap_bootstrap_alloc(sizeof(a_tmgr_t)
961 * NUM_A_TABLES);
962 Btmgrbase = (b_tmgr_t *) pmap_bootstrap_alloc(sizeof(b_tmgr_t)
963 * NUM_B_TABLES);
964 Ctmgrbase = (c_tmgr_t *) pmap_bootstrap_alloc(sizeof(c_tmgr_t)
965 * NUM_C_TABLES);
966
967 /*
968 * Allocate PV list elements for the physical to virtual
969 * mapping system.
970 */
971 pvebase = (pv_elem_t *) pmap_bootstrap_alloc(
972 sizeof(pv_elem_t) * (NUM_USER_PTES + NUM_KERN_PTES));
973 }
974
975 /* pmap_bootstrap_copyprom() INTERNAL
976 **
977 * Copy the PROM mappings into our own tables. Note, we
978 * can use physical addresses until __bootstrap returns.
979 */
980 void
981 pmap_bootstrap_copyprom()
982 {
983 struct sunromvec *romp;
984 int *mon_ctbl;
985 mmu_short_pte_t *kpte;
986 int i, len;
987
988 romp = romVectorPtr;
989
990 /*
991 * Copy the mappings in SUN3X_MON_KDB_BASE...SUN3X_MONEND
992 * Note: mon_ctbl[0] maps SUN3X_MON_KDB_BASE
993 */
994 mon_ctbl = *romp->monptaddr;
995 i = m68k_btop(SUN3X_MON_KDB_BASE - KERNBASE);
996 kpte = &kernCbase[i];
997 len = m68k_btop(SUN3X_MONEND - SUN3X_MON_KDB_BASE);
998
999 for (i = 0; i < len; i++) {
1000 kpte[i].attr.raw = mon_ctbl[i];
1001 }
1002
1003 /*
1004 * Copy the mappings at MON_DVMA_BASE (to the end).
1005 * Note, in here, mon_ctbl[0] maps MON_DVMA_BASE.
1006 * Actually, we only want the last page, which the
1007 * PROM has set up for use by the "ie" driver.
1008 * (The i82686 needs its SCP there.)
1009 * If we copy all the mappings, pmap_enter_kernel
1010 * may complain about finding valid PTEs that are
1011 * not recorded in our PV lists...
1012 */
1013 mon_ctbl = *romp->shadowpteaddr;
1014 i = m68k_btop(SUN3X_MON_DVMA_BASE - KERNBASE);
1015 kpte = &kernCbase[i];
1016 len = m68k_btop(SUN3X_MON_DVMA_SIZE);
1017 for (i = (len-1); i < len; i++) {
1018 kpte[i].attr.raw = mon_ctbl[i];
1019 }
1020 }
1021
1022 /* pmap_takeover_mmu INTERNAL
1023 **
1024 * Called from pmap_bootstrap() after it has copied enough of the
1025 * PROM mappings into the kernel map so that we can use our own
1026 * MMU table.
1027 */
1028 void
1029 pmap_takeover_mmu()
1030 {
1031
1032 loadcrp(&kernel_crp);
1033 }
1034
1035 /* pmap_bootstrap_setprom() INTERNAL
1036 **
1037 * Set the PROM mappings so it can see kernel space.
1038 * Note that physical addresses are used here, which
1039 * we can get away with because this runs with the
1040 * low 1GB set for transparent translation.
1041 */
1042 void
1043 pmap_bootstrap_setprom()
1044 {
1045 mmu_long_dte_t *mon_dte;
1046 extern struct mmu_rootptr mon_crp;
1047 int i;
1048
1049 mon_dte = (mmu_long_dte_t *) mon_crp.rp_addr;
1050 for (i = MMU_TIA(KERNBASE); i < MMU_TIA(KERN_END); i++) {
1051 mon_dte[i].attr.raw = kernAbase[i].attr.raw;
1052 mon_dte[i].addr.raw = kernAbase[i].addr.raw;
1053 }
1054 }
1055
1056
1057 /* pmap_init INTERFACE
1058 **
1059 * Called at the end of vm_init() to set up the pmap system to go
1060 * into full time operation. All initialization of kernel_pmap
1061 * should be already done by now, so this should just do things
1062 * needed for user-level pmaps to work.
1063 */
1064 void
1065 pmap_init()
1066 {
1067 /** Initialize the manager pools **/
1068 TAILQ_INIT(&a_pool);
1069 TAILQ_INIT(&b_pool);
1070 TAILQ_INIT(&c_pool);
1071
1072 /**************************************************************
1073 * Initialize all tmgr structures and MMU tables they manage. *
1074 **************************************************************/
1075 /** Initialize A tables **/
1076 pmap_init_a_tables();
1077 /** Initialize B tables **/
1078 pmap_init_b_tables();
1079 /** Initialize C tables **/
1080 pmap_init_c_tables();
1081 }
1082
1083 /* pmap_init_a_tables() INTERNAL
1084 **
1085 * Initializes all A managers, their MMU A tables, and inserts
1086 * them into the A manager pool for use by the system.
1087 */
1088 void
1089 pmap_init_a_tables()
1090 {
1091 int i;
1092 a_tmgr_t *a_tbl;
1093
1094 for (i=0; i < NUM_A_TABLES; i++) {
1095 /* Select the next available A manager from the pool */
1096 a_tbl = &Atmgrbase[i];
1097
1098 /*
1099 * Clear its parent entry. Set its wired and valid
1100 * entry count to zero.
1101 */
1102 a_tbl->at_parent = NULL;
1103 a_tbl->at_wcnt = a_tbl->at_ecnt = 0;
1104
1105 /* Assign it the next available MMU A table from the pool */
1106 a_tbl->at_dtbl = &mmuAbase[i * MMU_A_TBL_SIZE];
1107
1108 /*
1109 * Initialize the MMU A table with the table in the `proc0',
1110 * or kernel, mapping. This ensures that every process has
1111 * the kernel mapped in the top part of its address space.
1112 */
1113 bcopy(kernAbase, a_tbl->at_dtbl, MMU_A_TBL_SIZE *
1114 sizeof(mmu_long_dte_t));
1115
1116 /*
1117 * Finally, insert the manager into the A pool,
1118 * making it ready to be used by the system.
1119 */
1120 TAILQ_INSERT_TAIL(&a_pool, a_tbl, at_link);
1121 }
1122 }
1123
1124 /* pmap_init_b_tables() INTERNAL
1125 **
1126 * Initializes all B table managers, their MMU B tables, and
1127 * inserts them into the B manager pool for use by the system.
1128 */
1129 void
1130 pmap_init_b_tables()
1131 {
1132 int i,j;
1133 b_tmgr_t *b_tbl;
1134
1135 for (i=0; i < NUM_B_TABLES; i++) {
1136 /* Select the next available B manager from the pool */
1137 b_tbl = &Btmgrbase[i];
1138
1139 b_tbl->bt_parent = NULL; /* clear its parent, */
1140 b_tbl->bt_pidx = 0; /* parent index, */
1141 b_tbl->bt_wcnt = 0; /* wired entry count, */
1142 b_tbl->bt_ecnt = 0; /* valid entry count. */
1143
1144 /* Assign it the next available MMU B table from the pool */
1145 b_tbl->bt_dtbl = &mmuBbase[i * MMU_B_TBL_SIZE];
1146
1147 /* Invalidate every descriptor in the table */
1148 for (j=0; j < MMU_B_TBL_SIZE; j++)
1149 b_tbl->bt_dtbl[j].attr.raw = MMU_DT_INVALID;
1150
1151 /* Insert the manager into the B pool */
1152 TAILQ_INSERT_TAIL(&b_pool, b_tbl, bt_link);
1153 }
1154 }
1155
1156 /* pmap_init_c_tables() INTERNAL
1157 **
1158 * Initializes all C table managers, their MMU C tables, and
1159 * inserts them into the C manager pool for use by the system.
1160 */
1161 void
1162 pmap_init_c_tables()
1163 {
1164 int i,j;
1165 c_tmgr_t *c_tbl;
1166
1167 for (i=0; i < NUM_C_TABLES; i++) {
1168 /* Select the next available C manager from the pool */
1169 c_tbl = &Ctmgrbase[i];
1170
1171 c_tbl->ct_parent = NULL; /* clear its parent, */
1172 c_tbl->ct_pidx = 0; /* parent index, */
1173 c_tbl->ct_wcnt = 0; /* wired entry count, */
1174 c_tbl->ct_ecnt = 0; /* valid entry count, */
1175 c_tbl->ct_pmap = NULL; /* parent pmap, */
1176 c_tbl->ct_va = 0; /* base of managed range */
1177
1178 /* Assign it the next available MMU C table from the pool */
1179 c_tbl->ct_dtbl = &mmuCbase[i * MMU_C_TBL_SIZE];
1180
1181 for (j=0; j < MMU_C_TBL_SIZE; j++)
1182 c_tbl->ct_dtbl[j].attr.raw = MMU_DT_INVALID;
1183
1184 TAILQ_INSERT_TAIL(&c_pool, c_tbl, ct_link);
1185 }
1186 }
1187
1188 /* pmap_init_pv() INTERNAL
1189 **
1190 * Initializes the Physical to Virtual mapping system.
1191 */
1192 void
1193 pmap_init_pv()
1194 {
1195 int i;
1196
1197 /* Initialize every PV head. */
1198 for (i = 0; i < m68k_btop(total_phys_mem); i++) {
1199 pvbase[i].pv_idx = PVE_EOL; /* Indicate no mappings */
1200 pvbase[i].pv_flags = 0; /* Zero out page flags */
1201 }
1202
1203 pv_initialized = TRUE;
1204 }
1205
1206 /* get_a_table INTERNAL
1207 **
1208 * Retrieve and return a level A table for use in a user map.
1209 */
1210 a_tmgr_t *
1211 get_a_table()
1212 {
1213 a_tmgr_t *tbl;
1214 pmap_t pmap;
1215
1216 /* Get the top A table in the pool */
1217 tbl = a_pool.tqh_first;
1218 if (tbl == NULL) {
1219 /*
1220 * XXX - Instead of panicing here and in other get_x_table
1221 * functions, we do have the option of sleeping on the head of
1222 * the table pool. Any function which updates the table pool
1223 * would then issue a wakeup() on the head, thus waking up any
1224 * processes waiting for a table.
1225 *
1226 * Actually, the place to sleep would be when some process
1227 * asks for a "wired" mapping that would run us short of
1228 * mapping resources. This design DEPENDS on always having
1229 * some mapping resources in the pool for stealing, so we
1230 * must make sure we NEVER let the pool become empty. -gwr
1231 */
1232 panic("get_a_table: out of A tables.");
1233 }
1234
1235 TAILQ_REMOVE(&a_pool, tbl, at_link);
1236 /*
1237 * If the table has a non-null parent pointer then it is in use.
1238 * Forcibly abduct it from its parent and clear its entries.
1239 * No re-entrancy worries here. This table would not be in the
1240 * table pool unless it was available for use.
1241 *
1242 * Note that the second argument to free_a_table() is FALSE. This
1243 * indicates that the table should not be relinked into the A table
1244 * pool. That is a job for the function that called us.
1245 */
1246 if (tbl->at_parent) {
1247 pmap = tbl->at_parent;
1248 free_a_table(tbl, FALSE);
1249 pmap->pm_a_tmgr = NULL;
1250 pmap->pm_a_phys = kernAphys;
1251 }
1252 #ifdef NON_REENTRANT
1253 /*
1254 * If the table isn't to be wired down, re-insert it at the
1255 * end of the pool.
1256 */
1257 if (!wired)
1258 /*
1259 * Quandary - XXX
1260 * Would it be better to let the calling function insert this
1261 * table into the queue? By inserting it here, we are allowing
1262 * it to be stolen immediately. The calling function is
1263 * probably not expecting to use a table that it is not
1264 * assured full control of.
1265 * Answer - In the intrest of re-entrancy, it is best to let
1266 * the calling function determine when a table is available
1267 * for use. Therefore this code block is not used.
1268 */
1269 TAILQ_INSERT_TAIL(&a_pool, tbl, at_link);
1270 #endif /* NON_REENTRANT */
1271 return tbl;
1272 }
1273
1274 /* get_b_table INTERNAL
1275 **
1276 * Return a level B table for use.
1277 */
1278 b_tmgr_t *
1279 get_b_table()
1280 {
1281 b_tmgr_t *tbl;
1282
1283 /* See 'get_a_table' for comments. */
1284 tbl = b_pool.tqh_first;
1285 if (tbl == NULL)
1286 panic("get_b_table: out of B tables.");
1287 TAILQ_REMOVE(&b_pool, tbl, bt_link);
1288 if (tbl->bt_parent) {
1289 tbl->bt_parent->at_dtbl[tbl->bt_pidx].attr.raw = MMU_DT_INVALID;
1290 tbl->bt_parent->at_ecnt--;
1291 free_b_table(tbl, FALSE);
1292 }
1293 #ifdef NON_REENTRANT
1294 if (!wired)
1295 /* XXX see quandary in get_b_table */
1296 /* XXX start lock */
1297 TAILQ_INSERT_TAIL(&b_pool, tbl, bt_link);
1298 /* XXX end lock */
1299 #endif /* NON_REENTRANT */
1300 return tbl;
1301 }
1302
1303 /* get_c_table INTERNAL
1304 **
1305 * Return a level C table for use.
1306 */
1307 c_tmgr_t *
1308 get_c_table()
1309 {
1310 c_tmgr_t *tbl;
1311
1312 /* See 'get_a_table' for comments */
1313 tbl = c_pool.tqh_first;
1314 if (tbl == NULL)
1315 panic("get_c_table: out of C tables.");
1316 TAILQ_REMOVE(&c_pool, tbl, ct_link);
1317 if (tbl->ct_parent) {
1318 tbl->ct_parent->bt_dtbl[tbl->ct_pidx].attr.raw = MMU_DT_INVALID;
1319 tbl->ct_parent->bt_ecnt--;
1320 free_c_table(tbl, FALSE);
1321 }
1322 #ifdef NON_REENTRANT
1323 if (!wired)
1324 /* XXX See quandary in get_a_table */
1325 /* XXX start lock */
1326 TAILQ_INSERT_TAIL(&c_pool, tbl, c_link);
1327 /* XXX end lock */
1328 #endif /* NON_REENTRANT */
1329
1330 return tbl;
1331 }
1332
1333 /*
1334 * The following 'free_table' and 'steal_table' functions are called to
1335 * detach tables from their current obligations (parents and children) and
1336 * prepare them for reuse in another mapping.
1337 *
1338 * Free_table is used when the calling function will handle the fate
1339 * of the parent table, such as returning it to the free pool when it has
1340 * no valid entries. Functions that do not want to handle this should
1341 * call steal_table, in which the parent table's descriptors and entry
1342 * count are automatically modified when this table is removed.
1343 */
1344
1345 /* free_a_table INTERNAL
1346 **
1347 * Unmaps the given A table and all child tables from their current
1348 * mappings. Returns the number of pages that were invalidated.
1349 * If 'relink' is true, the function will return the table to the head
1350 * of the available table pool.
1351 *
1352 * Cache note: The MC68851 will automatically flush all
1353 * descriptors derived from a given A table from its
1354 * Automatic Translation Cache (ATC) if we issue a
1355 * 'PFLUSHR' instruction with the base address of the
1356 * table. This function should do, and does so.
1357 * Note note: We are using an MC68030 - there is no
1358 * PFLUSHR.
1359 */
1360 int
1361 free_a_table(a_tbl, relink)
1362 a_tmgr_t *a_tbl;
1363 boolean_t relink;
1364 {
1365 int i, removed_cnt;
1366 mmu_long_dte_t *dte;
1367 mmu_short_dte_t *dtbl;
1368 b_tmgr_t *tmgr;
1369
1370 /*
1371 * Flush the ATC cache of all cached descriptors derived
1372 * from this table.
1373 * Sun3x does not use 68851's cached table feature
1374 * flush_atc_crp(mmu_vtop(a_tbl->dte));
1375 */
1376
1377 /*
1378 * Remove any pending cache flushes that were designated
1379 * for the pmap this A table belongs to.
1380 * a_tbl->parent->atc_flushq[0] = 0;
1381 * Not implemented in sun3x.
1382 */
1383
1384 /*
1385 * All A tables in the system should retain a map for the
1386 * kernel. If the table contains any valid descriptors
1387 * (other than those for the kernel area), invalidate them all,
1388 * stopping short of the kernel's entries.
1389 */
1390 removed_cnt = 0;
1391 if (a_tbl->at_ecnt) {
1392 dte = a_tbl->at_dtbl;
1393 for (i=0; i < MMU_TIA(KERNBASE); i++) {
1394 /*
1395 * If a table entry points to a valid B table, free
1396 * it and its children.
1397 */
1398 if (MMU_VALID_DT(dte[i])) {
1399 /*
1400 * The following block does several things,
1401 * from innermost expression to the
1402 * outermost:
1403 * 1) It extracts the base (cc 1996)
1404 * address of the B table pointed
1405 * to in the A table entry dte[i].
1406 * 2) It converts this base address into
1407 * the virtual address it can be
1408 * accessed with. (all MMU tables point
1409 * to physical addresses.)
1410 * 3) It finds the corresponding manager
1411 * structure which manages this MMU table.
1412 * 4) It frees the manager structure.
1413 * (This frees the MMU table and all
1414 * child tables. See 'free_b_table' for
1415 * details.)
1416 */
1417 dtbl = mmu_ptov(dte[i].addr.raw);
1418 tmgr = mmuB2tmgr(dtbl);
1419 removed_cnt += free_b_table(tmgr, TRUE);
1420 dte[i].attr.raw = MMU_DT_INVALID;
1421 }
1422 }
1423 a_tbl->at_ecnt = 0;
1424 }
1425 if (relink) {
1426 a_tbl->at_parent = NULL;
1427 TAILQ_REMOVE(&a_pool, a_tbl, at_link);
1428 TAILQ_INSERT_HEAD(&a_pool, a_tbl, at_link);
1429 }
1430 return removed_cnt;
1431 }
1432
1433 /* free_b_table INTERNAL
1434 **
1435 * Unmaps the given B table and all its children from their current
1436 * mappings. Returns the number of pages that were invalidated.
1437 * (For comments, see 'free_a_table()').
1438 */
1439 int
1440 free_b_table(b_tbl, relink)
1441 b_tmgr_t *b_tbl;
1442 boolean_t relink;
1443 {
1444 int i, removed_cnt;
1445 mmu_short_dte_t *dte;
1446 mmu_short_pte_t *dtbl;
1447 c_tmgr_t *tmgr;
1448
1449 removed_cnt = 0;
1450 if (b_tbl->bt_ecnt) {
1451 dte = b_tbl->bt_dtbl;
1452 for (i=0; i < MMU_B_TBL_SIZE; i++) {
1453 if (MMU_VALID_DT(dte[i])) {
1454 dtbl = mmu_ptov(MMU_DTE_PA(dte[i]));
1455 tmgr = mmuC2tmgr(dtbl);
1456 removed_cnt += free_c_table(tmgr, TRUE);
1457 dte[i].attr.raw = MMU_DT_INVALID;
1458 }
1459 }
1460 b_tbl->bt_ecnt = 0;
1461 }
1462
1463 if (relink) {
1464 b_tbl->bt_parent = NULL;
1465 TAILQ_REMOVE(&b_pool, b_tbl, bt_link);
1466 TAILQ_INSERT_HEAD(&b_pool, b_tbl, bt_link);
1467 }
1468 return removed_cnt;
1469 }
1470
1471 /* free_c_table INTERNAL
1472 **
1473 * Unmaps the given C table from use and returns it to the pool for
1474 * re-use. Returns the number of pages that were invalidated.
1475 *
1476 * This function preserves any physical page modification information
1477 * contained in the page descriptors within the C table by calling
1478 * 'pmap_remove_pte().'
1479 */
1480 int
1481 free_c_table(c_tbl, relink)
1482 c_tmgr_t *c_tbl;
1483 boolean_t relink;
1484 {
1485 int i, removed_cnt;
1486
1487 removed_cnt = 0;
1488 if (c_tbl->ct_ecnt) {
1489 for (i=0; i < MMU_C_TBL_SIZE; i++) {
1490 if (MMU_VALID_DT(c_tbl->ct_dtbl[i])) {
1491 pmap_remove_pte(&c_tbl->ct_dtbl[i]);
1492 removed_cnt++;
1493 }
1494 }
1495 c_tbl->ct_ecnt = 0;
1496 }
1497
1498 if (relink) {
1499 c_tbl->ct_parent = NULL;
1500 TAILQ_REMOVE(&c_pool, c_tbl, ct_link);
1501 TAILQ_INSERT_HEAD(&c_pool, c_tbl, ct_link);
1502 }
1503 return removed_cnt;
1504 }
1505
1506 #if 0
1507 /* free_c_table_novalid INTERNAL
1508 **
1509 * Frees the given C table manager without checking to see whether
1510 * or not it contains any valid page descriptors as it is assumed
1511 * that it does not.
1512 */
1513 void
1514 free_c_table_novalid(c_tbl)
1515 c_tmgr_t *c_tbl;
1516 {
1517 TAILQ_REMOVE(&c_pool, c_tbl, ct_link);
1518 TAILQ_INSERT_HEAD(&c_pool, c_tbl, ct_link);
1519 c_tbl->ct_parent->bt_dtbl[c_tbl->ct_pidx].attr.raw = MMU_DT_INVALID;
1520 c_tbl->ct_parent->bt_ecnt--;
1521 /*
1522 * XXX - Should call equiv. of 'free_b_table_novalid' here if
1523 * we just removed the last entry of the parent B table.
1524 * But I want to insure that this will not endanger pmap_enter()
1525 * with sudden removal of tables it is working with.
1526 *
1527 * We should probably add another field to each table, indicating
1528 * whether or not it is 'locked', ie. in the process of being
1529 * modified.
1530 */
1531 c_tbl->ct_parent = NULL;
1532 }
1533 #endif
1534
1535 /* pmap_remove_pte INTERNAL
1536 **
1537 * Unmap the given pte and preserve any page modification
1538 * information by transfering it to the pv head of the
1539 * physical page it maps to. This function does not update
1540 * any reference counts because it is assumed that the calling
1541 * function will do so.
1542 */
1543 void
1544 pmap_remove_pte(pte)
1545 mmu_short_pte_t *pte;
1546 {
1547 u_short pv_idx, targ_idx;
1548 int s;
1549 vm_offset_t pa;
1550 pv_t *pv;
1551
1552 pa = MMU_PTE_PA(*pte);
1553 if (is_managed(pa)) {
1554 pv = pa2pv(pa);
1555 targ_idx = pteidx(pte); /* Index of PTE being removed */
1556
1557 /*
1558 * If the PTE being removed is the first (or only) PTE in
1559 * the list of PTEs currently mapped to this page, remove the
1560 * PTE by changing the index found on the PV head. Otherwise
1561 * a linear search through the list will have to be executed
1562 * in order to find the PVE which points to the PTE being
1563 * removed, so that it may be modified to point to its new
1564 * neighbor.
1565 */
1566 s = splimp();
1567 pv_idx = pv->pv_idx; /* Index of first PTE in PV list */
1568 if (pv_idx == targ_idx) {
1569 pv->pv_idx = pvebase[targ_idx].pve_next;
1570 } else {
1571 /*
1572 * Find the PV element pointing to the target
1573 * element. Note: may have pv_idx==PVE_EOL
1574 */
1575 for (;;) {
1576 if (pv_idx == PVE_EOL) {
1577 #ifdef PMAP_DEBUG
1578 printf("pmap_remove_pte: PVE_EOL\n");
1579 Debugger();
1580 #endif
1581 goto pv_not_found;
1582 }
1583 if (pvebase[pv_idx].pve_next == targ_idx)
1584 break;
1585 pv_idx = pvebase[pv_idx].pve_next;
1586 }
1587 /*
1588 * At this point, pv_idx is the index of the PV
1589 * element just before the target element in the list.
1590 * Unlink the target.
1591 */
1592 pvebase[pv_idx].pve_next = pvebase[targ_idx].pve_next;
1593 pv_not_found:
1594 }
1595 /*
1596 * Save the mod/ref bits of the pte by simply
1597 * ORing the entire pte onto the pv_flags member
1598 * of the pv structure.
1599 * There is no need to use a separate bit pattern
1600 * for usage information on the pv head than that
1601 * which is used on the MMU ptes.
1602 */
1603 pv->pv_flags |= (u_short) pte->attr.raw;
1604 splx(s);
1605 }
1606
1607 pte->attr.raw = MMU_DT_INVALID;
1608 }
1609
1610 /* pmap_stroll INTERNAL
1611 **
1612 * Retrieve the addresses of all table managers involved in the mapping of
1613 * the given virtual address. If the table walk completed sucessfully,
1614 * return TRUE. If it was only partially sucessful, return FALSE.
1615 * The table walk performed by this function is important to many other
1616 * functions in this module.
1617 *
1618 * Note: This function ought to be easier to read.
1619 */
1620 boolean_t
1621 pmap_stroll(pmap, va, a_tbl, b_tbl, c_tbl, pte, a_idx, b_idx, pte_idx)
1622 pmap_t pmap;
1623 vm_offset_t va;
1624 a_tmgr_t **a_tbl;
1625 b_tmgr_t **b_tbl;
1626 c_tmgr_t **c_tbl;
1627 mmu_short_pte_t **pte;
1628 int *a_idx, *b_idx, *pte_idx;
1629 {
1630 mmu_long_dte_t *a_dte; /* A: long descriptor table */
1631 mmu_short_dte_t *b_dte; /* B: short descriptor table */
1632
1633 if (pmap == pmap_kernel())
1634 return FALSE;
1635
1636 /* Does the given pmap have its own A table? */
1637 *a_tbl = pmap->pm_a_tmgr;
1638 if (*a_tbl == NULL)
1639 return FALSE; /* No. Return unknown. */
1640 /* Does the A table have a valid B table
1641 * under the corresponding table entry?
1642 */
1643 *a_idx = MMU_TIA(va);
1644 a_dte = &((*a_tbl)->at_dtbl[*a_idx]);
1645 if (!MMU_VALID_DT(*a_dte))
1646 return FALSE; /* No. Return unknown. */
1647 /* Yes. Extract B table from the A table. */
1648 *b_tbl = mmuB2tmgr(mmu_ptov(a_dte->addr.raw));
1649 /* Does the B table have a valid C table
1650 * under the corresponding table entry?
1651 */
1652 *b_idx = MMU_TIB(va);
1653 b_dte = &((*b_tbl)->bt_dtbl[*b_idx]);
1654 if (!MMU_VALID_DT(*b_dte))
1655 return FALSE; /* No. Return unknown. */
1656 /* Yes. Extract C table from the B table. */
1657 *c_tbl = mmuC2tmgr(mmu_ptov(MMU_DTE_PA(*b_dte)));
1658 *pte_idx = MMU_TIC(va);
1659 *pte = &((*c_tbl)->ct_dtbl[*pte_idx]);
1660
1661 return TRUE;
1662 }
1663
1664 /* pmap_enter INTERFACE
1665 **
1666 * Called by the kernel to map a virtual address
1667 * to a physical address in the given process map.
1668 *
1669 * Note: this function should apply an exclusive lock
1670 * on the pmap system for its duration. (it certainly
1671 * would save my hair!!)
1672 * This function ought to be easier to read.
1673 */
1674 int
1675 pmap_enter(pmap, va, pa, prot, flags)
1676 pmap_t pmap;
1677 vm_offset_t va;
1678 vm_offset_t pa;
1679 vm_prot_t prot;
1680 int flags;
1681 {
1682 boolean_t insert, managed; /* Marks the need for PV insertion.*/
1683 u_short nidx; /* PV list index */
1684 int s; /* Used for splimp()/splx() */
1685 int flags; /* Mapping flags. eg. Cache inhibit */
1686 u_int a_idx, b_idx, pte_idx; /* table indices */
1687 a_tmgr_t *a_tbl; /* A: long descriptor table manager */
1688 b_tmgr_t *b_tbl; /* B: short descriptor table manager */
1689 c_tmgr_t *c_tbl; /* C: short page table manager */
1690 mmu_long_dte_t *a_dte; /* A: long descriptor table */
1691 mmu_short_dte_t *b_dte; /* B: short descriptor table */
1692 mmu_short_pte_t *c_pte; /* C: short page descriptor table */
1693 pv_t *pv; /* pv list head */
1694 boolean_t wired = (flags & PMAP_WIRED) != 0;
1695 enum {NONE, NEWA, NEWB, NEWC} llevel; /* used at end */
1696
1697 if (pmap == NULL)
1698 return (KERN_SUCCESS);
1699 if (pmap == pmap_kernel()) {
1700 pmap_enter_kernel(va, pa, prot);
1701 return (KERN_SUCCESS);
1702 }
1703
1704 flags = (pa & ~MMU_PAGE_MASK);
1705 pa &= MMU_PAGE_MASK;
1706
1707 /*
1708 * Determine if the physical address being mapped is on-board RAM.
1709 * Any other area of the address space is likely to belong to a
1710 * device and hence it would be disasterous to cache its contents.
1711 */
1712 if ((managed = is_managed(pa)) == FALSE)
1713 flags |= PMAP_NC;
1714
1715 /*
1716 * For user mappings we walk along the MMU tables of the given
1717 * pmap, reaching a PTE which describes the virtual page being
1718 * mapped or changed. If any level of the walk ends in an invalid
1719 * entry, a table must be allocated and the entry must be updated
1720 * to point to it.
1721 * There is a bit of confusion as to whether this code must be
1722 * re-entrant. For now we will assume it is. To support
1723 * re-entrancy we must unlink tables from the table pool before
1724 * we assume we may use them. Tables are re-linked into the pool
1725 * when we are finished with them at the end of the function.
1726 * But I don't feel like doing that until we have proof that this
1727 * needs to be re-entrant.
1728 * 'llevel' records which tables need to be relinked.
1729 */
1730 llevel = NONE;
1731
1732 /*
1733 * Step 1 - Retrieve the A table from the pmap. If it has no
1734 * A table, allocate a new one from the available pool.
1735 */
1736
1737 a_tbl = pmap->pm_a_tmgr;
1738 if (a_tbl == NULL) {
1739 /*
1740 * This pmap does not currently have an A table. Allocate
1741 * a new one.
1742 */
1743 a_tbl = get_a_table();
1744 a_tbl->at_parent = pmap;
1745
1746 /*
1747 * Assign this new A table to the pmap, and calculate its
1748 * physical address so that loadcrp() can be used to make
1749 * the table active.
1750 */
1751 pmap->pm_a_tmgr = a_tbl;
1752 pmap->pm_a_phys = mmu_vtop(a_tbl->at_dtbl);
1753
1754 /*
1755 * If the process receiving a new A table is the current
1756 * process, we are responsible for setting the MMU so that
1757 * it becomes the current address space. This only adds
1758 * new mappings, so no need to flush anything.
1759 */
1760 if (pmap == current_pmap()) {
1761 kernel_crp.rp_addr = pmap->pm_a_phys;
1762 loadcrp(&kernel_crp);
1763 }
1764
1765 if (!wired)
1766 llevel = NEWA;
1767 } else {
1768 /*
1769 * Use the A table already allocated for this pmap.
1770 * Unlink it from the A table pool if necessary.
1771 */
1772 if (wired && !a_tbl->at_wcnt)
1773 TAILQ_REMOVE(&a_pool, a_tbl, at_link);
1774 }
1775
1776 /*
1777 * Step 2 - Walk into the B table. If there is no valid B table,
1778 * allocate one.
1779 */
1780
1781 a_idx = MMU_TIA(va); /* Calculate the TIA of the VA. */
1782 a_dte = &a_tbl->at_dtbl[a_idx]; /* Retrieve descriptor from table */
1783 if (MMU_VALID_DT(*a_dte)) { /* Is the descriptor valid? */
1784 /* The descriptor is valid. Use the B table it points to. */
1785 /*************************************
1786 * a_idx *
1787 * v *
1788 * a_tbl -> +-+-+-+-+-+-+-+-+-+-+-+- *
1789 * | | | | | | | | | | | | *
1790 * +-+-+-+-+-+-+-+-+-+-+-+- *
1791 * | *
1792 * \- b_tbl -> +-+- *
1793 * | | *
1794 * +-+- *
1795 *************************************/
1796 b_dte = mmu_ptov(a_dte->addr.raw);
1797 b_tbl = mmuB2tmgr(b_dte);
1798
1799 /*
1800 * If the requested mapping must be wired, but this table
1801 * being used to map it is not, the table must be removed
1802 * from the available pool and its wired entry count
1803 * incremented.
1804 */
1805 if (wired && !b_tbl->bt_wcnt) {
1806 TAILQ_REMOVE(&b_pool, b_tbl, bt_link);
1807 a_tbl->at_wcnt++;
1808 }
1809 } else {
1810 /* The descriptor is invalid. Allocate a new B table. */
1811 b_tbl = get_b_table();
1812
1813 /* Point the parent A table descriptor to this new B table. */
1814 a_dte->addr.raw = mmu_vtop(b_tbl->bt_dtbl);
1815 a_dte->attr.raw = MMU_LONG_DTE_LU | MMU_DT_SHORT;
1816 a_tbl->at_ecnt++; /* Update parent's valid entry count */
1817
1818 /* Create the necessary back references to the parent table */
1819 b_tbl->bt_parent = a_tbl;
1820 b_tbl->bt_pidx = a_idx;
1821
1822 /*
1823 * If this table is to be wired, make sure the parent A table
1824 * wired count is updated to reflect that it has another wired
1825 * entry.
1826 */
1827 if (wired)
1828 a_tbl->at_wcnt++;
1829 else if (llevel == NONE)
1830 llevel = NEWB;
1831 }
1832
1833 /*
1834 * Step 3 - Walk into the C table, if there is no valid C table,
1835 * allocate one.
1836 */
1837
1838 b_idx = MMU_TIB(va); /* Calculate the TIB of the VA */
1839 b_dte = &b_tbl->bt_dtbl[b_idx]; /* Retrieve descriptor from table */
1840 if (MMU_VALID_DT(*b_dte)) { /* Is the descriptor valid? */
1841 /* The descriptor is valid. Use the C table it points to. */
1842 /**************************************
1843 * c_idx *
1844 * | v *
1845 * \- b_tbl -> +-+-+-+-+-+-+-+-+-+-+- *
1846 * | | | | | | | | | | | *
1847 * +-+-+-+-+-+-+-+-+-+-+- *
1848 * | *
1849 * \- c_tbl -> +-+-- *
1850 * | | | *
1851 * +-+-- *
1852 **************************************/
1853 c_pte = mmu_ptov(MMU_PTE_PA(*b_dte));
1854 c_tbl = mmuC2tmgr(c_pte);
1855
1856 /* If mapping is wired and table is not */
1857 if (wired && !c_tbl->ct_wcnt) {
1858 TAILQ_REMOVE(&c_pool, c_tbl, ct_link);
1859 b_tbl->bt_wcnt++;
1860 }
1861 } else {
1862 /* The descriptor is invalid. Allocate a new C table. */
1863 c_tbl = get_c_table();
1864
1865 /* Point the parent B table descriptor to this new C table. */
1866 b_dte->attr.raw = mmu_vtop(c_tbl->ct_dtbl);
1867 b_dte->attr.raw |= MMU_DT_SHORT;
1868 b_tbl->bt_ecnt++; /* Update parent's valid entry count */
1869
1870 /* Create the necessary back references to the parent table */
1871 c_tbl->ct_parent = b_tbl;
1872 c_tbl->ct_pidx = b_idx;
1873 /*
1874 * Store the pmap and base virtual managed address for faster
1875 * retrieval in the PV functions.
1876 */
1877 c_tbl->ct_pmap = pmap;
1878 c_tbl->ct_va = (va & (MMU_TIA_MASK|MMU_TIB_MASK));
1879
1880 /*
1881 * If this table is to be wired, make sure the parent B table
1882 * wired count is updated to reflect that it has another wired
1883 * entry.
1884 */
1885 if (wired)
1886 b_tbl->bt_wcnt++;
1887 else if (llevel == NONE)
1888 llevel = NEWC;
1889 }
1890
1891 /*
1892 * Step 4 - Deposit a page descriptor (PTE) into the appropriate
1893 * slot of the C table, describing the PA to which the VA is mapped.
1894 */
1895
1896 pte_idx = MMU_TIC(va);
1897 c_pte = &c_tbl->ct_dtbl[pte_idx];
1898 if (MMU_VALID_DT(*c_pte)) { /* Is the entry currently valid? */
1899 /*
1900 * The PTE is currently valid. This particular call
1901 * is just a synonym for one (or more) of the following
1902 * operations:
1903 * change protection of a page
1904 * change wiring status of a page
1905 * remove the mapping of a page
1906 *
1907 * XXX - Semi critical: This code should unwire the PTE
1908 * and, possibly, associated parent tables if this is a
1909 * change wiring operation. Currently it does not.
1910 *
1911 * This may be ok if pmap_unwire() is the only
1912 * interface used to UNWIRE a page.
1913 */
1914
1915 /* First check if this is a wiring operation. */
1916 if (wired && (c_pte->attr.raw & MMU_SHORT_PTE_WIRED)) {
1917 /*
1918 * The PTE is already wired. To prevent it from being
1919 * counted as a new wiring operation, reset the 'wired'
1920 * variable.
1921 */
1922 wired = FALSE;
1923 }
1924
1925 /* Is the new address the same as the old? */
1926 if (MMU_PTE_PA(*c_pte) == pa) {
1927 /*
1928 * Yes, mark that it does not need to be reinserted
1929 * into the PV list.
1930 */
1931 insert = FALSE;
1932
1933 /*
1934 * Clear all but the modified, referenced and wired
1935 * bits on the PTE.
1936 */
1937 c_pte->attr.raw &= (MMU_SHORT_PTE_M
1938 | MMU_SHORT_PTE_USED | MMU_SHORT_PTE_WIRED);
1939 } else {
1940 /* No, remove the old entry */
1941 pmap_remove_pte(c_pte);
1942 insert = TRUE;
1943 }
1944
1945 /*
1946 * TLB flush is only necessary if modifying current map.
1947 * However, in pmap_enter(), the pmap almost always IS
1948 * the current pmap, so don't even bother to check.
1949 */
1950 TBIS(va);
1951 } else {
1952 /*
1953 * The PTE is invalid. Increment the valid entry count in
1954 * the C table manager to reflect the addition of a new entry.
1955 */
1956 c_tbl->ct_ecnt++;
1957
1958 /* XXX - temporarily make sure the PTE is cleared. */
1959 c_pte->attr.raw = 0;
1960
1961 /* It will also need to be inserted into the PV list. */
1962 insert = TRUE;
1963 }
1964
1965 /*
1966 * If page is changing from unwired to wired status, set an unused bit
1967 * within the PTE to indicate that it is wired. Also increment the
1968 * wired entry count in the C table manager.
1969 */
1970 if (wired) {
1971 c_pte->attr.raw |= MMU_SHORT_PTE_WIRED;
1972 c_tbl->ct_wcnt++;
1973 }
1974
1975 /*
1976 * Map the page, being careful to preserve modify/reference/wired
1977 * bits. At this point it is assumed that the PTE either has no bits
1978 * set, or if there are set bits, they are only modified, reference or
1979 * wired bits. If not, the following statement will cause erratic
1980 * behavior.
1981 */
1982 #ifdef PMAP_DEBUG
1983 if (c_pte->attr.raw & ~(MMU_SHORT_PTE_M |
1984 MMU_SHORT_PTE_USED | MMU_SHORT_PTE_WIRED)) {
1985 printf("pmap_enter: junk left in PTE at %p\n", c_pte);
1986 Debugger();
1987 }
1988 #endif
1989 c_pte->attr.raw |= ((u_long) pa | MMU_DT_PAGE);
1990
1991 /*
1992 * If the mapping should be read-only, set the write protect
1993 * bit in the PTE.
1994 */
1995 if (!(prot & VM_PROT_WRITE))
1996 c_pte->attr.raw |= MMU_SHORT_PTE_WP;
1997
1998 /*
1999 * If the mapping should be cache inhibited (indicated by the flag
2000 * bits found on the lower order of the physical address.)
2001 * mark the PTE as a cache inhibited page.
2002 */
2003 if (flags & PMAP_NC)
2004 c_pte->attr.raw |= MMU_SHORT_PTE_CI;
2005
2006 /*
2007 * If the physical address being mapped is managed by the PV
2008 * system then link the pte into the list of pages mapped to that
2009 * address.
2010 */
2011 if (insert && managed) {
2012 pv = pa2pv(pa);
2013 nidx = pteidx(c_pte);
2014
2015 s = splimp();
2016 pvebase[nidx].pve_next = pv->pv_idx;
2017 pv->pv_idx = nidx;
2018 splx(s);
2019 }
2020
2021 /* Move any allocated tables back into the active pool. */
2022
2023 switch (llevel) {
2024 case NEWA:
2025 TAILQ_INSERT_TAIL(&a_pool, a_tbl, at_link);
2026 /* FALLTHROUGH */
2027 case NEWB:
2028 TAILQ_INSERT_TAIL(&b_pool, b_tbl, bt_link);
2029 /* FALLTHROUGH */
2030 case NEWC:
2031 TAILQ_INSERT_TAIL(&c_pool, c_tbl, ct_link);
2032 /* FALLTHROUGH */
2033 default:
2034 break;
2035 }
2036
2037 return (KERN_SUCCESS);
2038 }
2039
2040 /* pmap_enter_kernel INTERNAL
2041 **
2042 * Map the given virtual address to the given physical address within the
2043 * kernel address space. This function exists because the kernel map does
2044 * not do dynamic table allocation. It consists of a contiguous array of ptes
2045 * and can be edited directly without the need to walk through any tables.
2046 *
2047 * XXX: "Danger, Will Robinson!"
2048 * Note that the kernel should never take a fault on any page
2049 * between [ KERNBASE .. virtual_avail ] and this is checked in
2050 * trap.c for kernel-mode MMU faults. This means that mappings
2051 * created in that range must be implicily wired. -gwr
2052 */
2053 void
2054 pmap_enter_kernel(va, pa, prot)
2055 vm_offset_t va;
2056 vm_offset_t pa;
2057 vm_prot_t prot;
2058 {
2059 boolean_t was_valid, insert;
2060 u_short pte_idx;
2061 int s, flags;
2062 mmu_short_pte_t *pte;
2063 pv_t *pv;
2064 vm_offset_t old_pa;
2065
2066 flags = (pa & ~MMU_PAGE_MASK);
2067 pa &= MMU_PAGE_MASK;
2068
2069 if (is_managed(pa))
2070 insert = TRUE;
2071 else
2072 insert = FALSE;
2073
2074 /*
2075 * Calculate the index of the PTE being modified.
2076 */
2077 pte_idx = (u_long) m68k_btop(va - KERNBASE);
2078
2079 /* This array is traditionally named "Sysmap" */
2080 pte = &kernCbase[pte_idx];
2081
2082 s = splimp();
2083 if (MMU_VALID_DT(*pte)) {
2084 was_valid = TRUE;
2085 /*
2086 * If the PTE already maps a different
2087 * physical address, umap and pv_unlink.
2088 */
2089 old_pa = MMU_PTE_PA(*pte);
2090 if (pa != old_pa)
2091 pmap_remove_pte(pte);
2092 else {
2093 /*
2094 * Old PA and new PA are the same. No need to
2095 * relink the mapping within the PV list.
2096 */
2097 insert = FALSE;
2098
2099 /*
2100 * Save any mod/ref bits on the PTE.
2101 */
2102 pte->attr.raw &= (MMU_SHORT_PTE_USED|MMU_SHORT_PTE_M);
2103 }
2104 } else {
2105 pte->attr.raw = MMU_DT_INVALID;
2106 was_valid = FALSE;
2107 }
2108
2109 /*
2110 * Map the page. Being careful to preserve modified/referenced bits
2111 * on the PTE.
2112 */
2113 pte->attr.raw |= (pa | MMU_DT_PAGE);
2114
2115 if (!(prot & VM_PROT_WRITE)) /* If access should be read-only */
2116 pte->attr.raw |= MMU_SHORT_PTE_WP;
2117 if (flags & PMAP_NC)
2118 pte->attr.raw |= MMU_SHORT_PTE_CI;
2119 if (was_valid)
2120 TBIS(va);
2121
2122 /*
2123 * Insert the PTE into the PV system, if need be.
2124 */
2125 if (insert) {
2126 pv = pa2pv(pa);
2127 pvebase[pte_idx].pve_next = pv->pv_idx;
2128 pv->pv_idx = pte_idx;
2129 }
2130 splx(s);
2131
2132 }
2133
2134 void
2135 pmap_kenter_pa(va, pa, prot)
2136 vaddr_t va;
2137 paddr_t pa;
2138 vm_prot_t prot;
2139 {
2140 pmap_enter(pmap_kernel(), va, pa, prot, PMAP_WIRED);
2141 }
2142
2143 void
2144 pmap_kenter_pgs(va, pgs, npgs)
2145 vaddr_t va;
2146 struct vm_page **pgs;
2147 int npgs;
2148 {
2149 int i;
2150
2151 for (i = 0; i < npgs; i++, va += PAGE_SIZE) {
2152 pmap_enter(pmap_kernel(), va, VM_PAGE_TO_PHYS(pgs[i]),
2153 VM_PROT_READ|VM_PROT_WRITE, PMAP_WIRED);
2154 }
2155 }
2156
2157 void
2158 pmap_kremove(va, len)
2159 vaddr_t va;
2160 vsize_t len;
2161 {
2162 for (len >>= PAGE_SHIFT; len > 0; len--, va += PAGE_SIZE) {
2163 pmap_remove(pmap_kernel(), va, va + PAGE_SIZE);
2164 }
2165 }
2166
2167 /* pmap_map INTERNAL
2168 **
2169 * Map a contiguous range of physical memory into a contiguous range of
2170 * the kernel virtual address space.
2171 *
2172 * Used for device mappings and early mapping of the kernel text/data/bss.
2173 * Returns the first virtual address beyond the end of the range.
2174 */
2175 vm_offset_t
2176 pmap_map(va, pa, endpa, prot)
2177 vm_offset_t va;
2178 vm_offset_t pa;
2179 vm_offset_t endpa;
2180 int prot;
2181 {
2182 int sz;
2183
2184 sz = endpa - pa;
2185 do {
2186 pmap_enter_kernel(va, pa, prot);
2187 va += NBPG;
2188 pa += NBPG;
2189 sz -= NBPG;
2190 } while (sz > 0);
2191 return(va);
2192 }
2193
2194 /* pmap_protect INTERFACE
2195 **
2196 * Apply the given protection to the given virtual address range within
2197 * the given map.
2198 *
2199 * It is ok for the protection applied to be stronger than what is
2200 * specified. We use this to our advantage when the given map has no
2201 * mapping for the virtual address. By skipping a page when this
2202 * is discovered, we are effectively applying a protection of VM_PROT_NONE,
2203 * and therefore do not need to map the page just to apply a protection
2204 * code. Only pmap_enter() needs to create new mappings if they do not exist.
2205 *
2206 * XXX - This function could be speeded up by using pmap_stroll() for inital
2207 * setup, and then manual scrolling in the for() loop.
2208 */
2209 void
2210 pmap_protect(pmap, startva, endva, prot)
2211 pmap_t pmap;
2212 vm_offset_t startva, endva;
2213 vm_prot_t prot;
2214 {
2215 boolean_t iscurpmap;
2216 int a_idx, b_idx, c_idx;
2217 a_tmgr_t *a_tbl;
2218 b_tmgr_t *b_tbl;
2219 c_tmgr_t *c_tbl;
2220 mmu_short_pte_t *pte;
2221
2222 if (pmap == NULL)
2223 return;
2224 if (pmap == pmap_kernel()) {
2225 pmap_protect_kernel(startva, endva, prot);
2226 return;
2227 }
2228
2229 /*
2230 * In this particular pmap implementation, there are only three
2231 * types of memory protection: 'all' (read/write/execute),
2232 * 'read-only' (read/execute) and 'none' (no mapping.)
2233 * It is not possible for us to treat 'executable' as a separate
2234 * protection type. Therefore, protection requests that seek to
2235 * remove execute permission while retaining read or write, and those
2236 * that make little sense (write-only for example) are ignored.
2237 */
2238 switch (prot) {
2239 case VM_PROT_NONE:
2240 /*
2241 * A request to apply the protection code of
2242 * 'VM_PROT_NONE' is a synonym for pmap_remove().
2243 */
2244 pmap_remove(pmap, startva, endva);
2245 return;
2246 case VM_PROT_EXECUTE:
2247 case VM_PROT_READ:
2248 case VM_PROT_READ|VM_PROT_EXECUTE:
2249 /* continue */
2250 break;
2251 case VM_PROT_WRITE:
2252 case VM_PROT_WRITE|VM_PROT_READ:
2253 case VM_PROT_WRITE|VM_PROT_EXECUTE:
2254 case VM_PROT_ALL:
2255 /* None of these should happen in a sane system. */
2256 return;
2257 }
2258
2259 /*
2260 * If the pmap has no A table, it has no mappings and therefore
2261 * there is nothing to protect.
2262 */
2263 if ((a_tbl = pmap->pm_a_tmgr) == NULL)
2264 return;
2265
2266 a_idx = MMU_TIA(startva);
2267 b_idx = MMU_TIB(startva);
2268 c_idx = MMU_TIC(startva);
2269 b_tbl = (b_tmgr_t *) c_tbl = NULL;
2270
2271 iscurpmap = (pmap == current_pmap());
2272 while (startva < endva) {
2273 if (b_tbl || MMU_VALID_DT(a_tbl->at_dtbl[a_idx])) {
2274 if (b_tbl == NULL) {
2275 b_tbl = (b_tmgr_t *) a_tbl->at_dtbl[a_idx].addr.raw;
2276 b_tbl = mmu_ptov((vm_offset_t) b_tbl);
2277 b_tbl = mmuB2tmgr((mmu_short_dte_t *) b_tbl);
2278 }
2279 if (c_tbl || MMU_VALID_DT(b_tbl->bt_dtbl[b_idx])) {
2280 if (c_tbl == NULL) {
2281 c_tbl = (c_tmgr_t *) MMU_DTE_PA(b_tbl->bt_dtbl[b_idx]);
2282 c_tbl = mmu_ptov((vm_offset_t) c_tbl);
2283 c_tbl = mmuC2tmgr((mmu_short_pte_t *) c_tbl);
2284 }
2285 if (MMU_VALID_DT(c_tbl->ct_dtbl[c_idx])) {
2286 pte = &c_tbl->ct_dtbl[c_idx];
2287 /* make the mapping read-only */
2288 pte->attr.raw |= MMU_SHORT_PTE_WP;
2289 /*
2290 * If we just modified the current address space,
2291 * flush any translations for the modified page from
2292 * the translation cache and any data from it in the
2293 * data cache.
2294 */
2295 if (iscurpmap)
2296 TBIS(startva);
2297 }
2298 startva += NBPG;
2299
2300 if (++c_idx >= MMU_C_TBL_SIZE) { /* exceeded C table? */
2301 c_tbl = NULL;
2302 c_idx = 0;
2303 if (++b_idx >= MMU_B_TBL_SIZE) { /* exceeded B table? */
2304 b_tbl = NULL;
2305 b_idx = 0;
2306 }
2307 }
2308 } else { /* C table wasn't valid */
2309 c_tbl = NULL;
2310 c_idx = 0;
2311 startva += MMU_TIB_RANGE;
2312 if (++b_idx >= MMU_B_TBL_SIZE) { /* exceeded B table? */
2313 b_tbl = NULL;
2314 b_idx = 0;
2315 }
2316 } /* C table */
2317 } else { /* B table wasn't valid */
2318 b_tbl = NULL;
2319 b_idx = 0;
2320 startva += MMU_TIA_RANGE;
2321 a_idx++;
2322 } /* B table */
2323 }
2324 }
2325
2326 /* pmap_protect_kernel INTERNAL
2327 **
2328 * Apply the given protection code to a kernel address range.
2329 */
2330 void
2331 pmap_protect_kernel(startva, endva, prot)
2332 vm_offset_t startva, endva;
2333 vm_prot_t prot;
2334 {
2335 vm_offset_t va;
2336 mmu_short_pte_t *pte;
2337
2338 pte = &kernCbase[(unsigned long) m68k_btop(startva - KERNBASE)];
2339 for (va = startva; va < endva; va += NBPG, pte++) {
2340 if (MMU_VALID_DT(*pte)) {
2341 switch (prot) {
2342 case VM_PROT_ALL:
2343 break;
2344 case VM_PROT_EXECUTE:
2345 case VM_PROT_READ:
2346 case VM_PROT_READ|VM_PROT_EXECUTE:
2347 pte->attr.raw |= MMU_SHORT_PTE_WP;
2348 break;
2349 case VM_PROT_NONE:
2350 /* this is an alias for 'pmap_remove_kernel' */
2351 pmap_remove_pte(pte);
2352 break;
2353 default:
2354 break;
2355 }
2356 /*
2357 * since this is the kernel, immediately flush any cached
2358 * descriptors for this address.
2359 */
2360 TBIS(va);
2361 }
2362 }
2363 }
2364
2365 /* pmap_unwire INTERFACE
2366 **
2367 * Clear the wired attribute of the specified page.
2368 *
2369 * This function is called from vm_fault.c to unwire
2370 * a mapping.
2371 */
2372 void
2373 pmap_unwire(pmap, va)
2374 pmap_t pmap;
2375 vm_offset_t va;
2376 {
2377 int a_idx, b_idx, c_idx;
2378 a_tmgr_t *a_tbl;
2379 b_tmgr_t *b_tbl;
2380 c_tmgr_t *c_tbl;
2381 mmu_short_pte_t *pte;
2382
2383 /* Kernel mappings always remain wired. */
2384 if (pmap == pmap_kernel())
2385 return;
2386
2387 /*
2388 * Walk through the tables. If the walk terminates without
2389 * a valid PTE then the address wasn't wired in the first place.
2390 * Return immediately.
2391 */
2392 if (pmap_stroll(pmap, va, &a_tbl, &b_tbl, &c_tbl, &pte, &a_idx,
2393 &b_idx, &c_idx) == FALSE)
2394 return;
2395
2396
2397 /* Is the PTE wired? If not, return. */
2398 if (!(pte->attr.raw & MMU_SHORT_PTE_WIRED))
2399 return;
2400
2401 /* Remove the wiring bit. */
2402 pte->attr.raw &= ~(MMU_SHORT_PTE_WIRED);
2403
2404 /*
2405 * Decrement the wired entry count in the C table.
2406 * If it reaches zero the following things happen:
2407 * 1. The table no longer has any wired entries and is considered
2408 * unwired.
2409 * 2. It is placed on the available queue.
2410 * 3. The parent table's wired entry count is decremented.
2411 * 4. If it reaches zero, this process repeats at step 1 and
2412 * stops at after reaching the A table.
2413 */
2414 if (--c_tbl->ct_wcnt == 0) {
2415 TAILQ_INSERT_TAIL(&c_pool, c_tbl, ct_link);
2416 if (--b_tbl->bt_wcnt == 0) {
2417 TAILQ_INSERT_TAIL(&b_pool, b_tbl, bt_link);
2418 if (--a_tbl->at_wcnt == 0) {
2419 TAILQ_INSERT_TAIL(&a_pool, a_tbl, at_link);
2420 }
2421 }
2422 }
2423 }
2424
2425 /* pmap_copy INTERFACE
2426 **
2427 * Copy the mappings of a range of addresses in one pmap, into
2428 * the destination address of another.
2429 *
2430 * This routine is advisory. Should we one day decide that MMU tables
2431 * may be shared by more than one pmap, this function should be used to
2432 * link them together. Until that day however, we do nothing.
2433 */
2434 void
2435 pmap_copy(pmap_a, pmap_b, dst, len, src)
2436 pmap_t pmap_a, pmap_b;
2437 vm_offset_t dst;
2438 vm_size_t len;
2439 vm_offset_t src;
2440 {
2441 /* not implemented. */
2442 }
2443
2444 /* pmap_copy_page INTERFACE
2445 **
2446 * Copy the contents of one physical page into another.
2447 *
2448 * This function makes use of two virtual pages allocated in pmap_bootstrap()
2449 * to map the two specified physical pages into the kernel address space.
2450 *
2451 * Note: We could use the transparent translation registers to make the
2452 * mappings. If we do so, be sure to disable interrupts before using them.
2453 */
2454 void
2455 pmap_copy_page(srcpa, dstpa)
2456 vm_offset_t srcpa, dstpa;
2457 {
2458 vm_offset_t srcva, dstva;
2459 int s;
2460
2461 srcva = tmp_vpages[0];
2462 dstva = tmp_vpages[1];
2463
2464 s = splimp();
2465 if (tmp_vpages_inuse++)
2466 panic("pmap_copy_page: temporary vpages are in use.");
2467
2468 /* Map pages as non-cacheable to avoid cache polution? */
2469 pmap_enter_kernel(srcva, srcpa, VM_PROT_READ);
2470 pmap_enter_kernel(dstva, dstpa, VM_PROT_READ|VM_PROT_WRITE);
2471
2472 /* Hand-optimized version of bcopy(src, dst, NBPG) */
2473 copypage((char *) srcva, (char *) dstva);
2474
2475 pmap_remove_kernel(srcva, srcva + NBPG);
2476 pmap_remove_kernel(dstva, dstva + NBPG);
2477
2478 --tmp_vpages_inuse;
2479 splx(s);
2480 }
2481
2482 /* pmap_zero_page INTERFACE
2483 **
2484 * Zero the contents of the specified physical page.
2485 *
2486 * Uses one of the virtual pages allocated in pmap_boostrap()
2487 * to map the specified page into the kernel address space.
2488 */
2489 void
2490 pmap_zero_page(dstpa)
2491 vm_offset_t dstpa;
2492 {
2493 vm_offset_t dstva;
2494 int s;
2495
2496 dstva = tmp_vpages[1];
2497 s = splimp();
2498 if (tmp_vpages_inuse++)
2499 panic("pmap_zero_page: temporary vpages are in use.");
2500
2501 /* The comments in pmap_copy_page() above apply here also. */
2502 pmap_enter_kernel(dstva, dstpa, VM_PROT_READ|VM_PROT_WRITE);
2503
2504 /* Hand-optimized version of bzero(ptr, NBPG) */
2505 zeropage((char *) dstva);
2506
2507 pmap_remove_kernel(dstva, dstva + NBPG);
2508
2509 --tmp_vpages_inuse;
2510 splx(s);
2511 }
2512
2513 /* pmap_collect INTERFACE
2514 **
2515 * Called from the VM system when we are about to swap out
2516 * the process using this pmap. This should give up any
2517 * resources held here, including all its MMU tables.
2518 */
2519 void
2520 pmap_collect(pmap)
2521 pmap_t pmap;
2522 {
2523 /* XXX - todo... */
2524 }
2525
2526 /* pmap_create INTERFACE
2527 **
2528 * Create and return a pmap structure.
2529 */
2530 pmap_t
2531 pmap_create()
2532 {
2533 pmap_t pmap;
2534
2535 pmap = (pmap_t) malloc(sizeof(struct pmap), M_VMPMAP, M_WAITOK);
2536 pmap_pinit(pmap);
2537 return pmap;
2538 }
2539
2540 /* pmap_pinit INTERNAL
2541 **
2542 * Initialize a pmap structure.
2543 */
2544 void
2545 pmap_pinit(pmap)
2546 pmap_t pmap;
2547 {
2548 bzero(pmap, sizeof(struct pmap));
2549 pmap->pm_a_tmgr = NULL;
2550 pmap->pm_a_phys = kernAphys;
2551 }
2552
2553 /* pmap_release INTERFACE
2554 **
2555 * Release any resources held by the given pmap.
2556 *
2557 * This is the reverse analog to pmap_pinit. It does not
2558 * necessarily mean for the pmap structure to be deallocated,
2559 * as in pmap_destroy.
2560 */
2561 void
2562 pmap_release(pmap)
2563 pmap_t pmap;
2564 {
2565 /*
2566 * As long as the pmap contains no mappings,
2567 * which always should be the case whenever
2568 * this function is called, there really should
2569 * be nothing to do.
2570 */
2571 #ifdef PMAP_DEBUG
2572 if (pmap == NULL)
2573 return;
2574 if (pmap == pmap_kernel())
2575 panic("pmap_release: kernel pmap");
2576 #endif
2577 /*
2578 * XXX - If this pmap has an A table, give it back.
2579 * The pmap SHOULD be empty by now, and pmap_remove
2580 * should have already given back the A table...
2581 * However, I see: pmap->pm_a_tmgr->at_ecnt == 1
2582 * at this point, which means some mapping was not
2583 * removed when it should have been. -gwr
2584 */
2585 if (pmap->pm_a_tmgr != NULL) {
2586 /* First make sure we are not using it! */
2587 if (kernel_crp.rp_addr == pmap->pm_a_phys) {
2588 kernel_crp.rp_addr = kernAphys;
2589 loadcrp(&kernel_crp);
2590 }
2591 #ifdef PMAP_DEBUG /* XXX - todo! */
2592 /* XXX - Now complain... */
2593 printf("pmap_release: still have table\n");
2594 Debugger();
2595 #endif
2596 free_a_table(pmap->pm_a_tmgr, TRUE);
2597 pmap->pm_a_tmgr = NULL;
2598 pmap->pm_a_phys = kernAphys;
2599 }
2600 }
2601
2602 /* pmap_reference INTERFACE
2603 **
2604 * Increment the reference count of a pmap.
2605 */
2606 void
2607 pmap_reference(pmap)
2608 pmap_t pmap;
2609 {
2610 if (pmap == NULL)
2611 return;
2612
2613 /* pmap_lock(pmap); */
2614 pmap->pm_refcount++;
2615 /* pmap_unlock(pmap); */
2616 }
2617
2618 /* pmap_dereference INTERNAL
2619 **
2620 * Decrease the reference count on the given pmap
2621 * by one and return the current count.
2622 */
2623 int
2624 pmap_dereference(pmap)
2625 pmap_t pmap;
2626 {
2627 int rtn;
2628
2629 if (pmap == NULL)
2630 return 0;
2631
2632 /* pmap_lock(pmap); */
2633 rtn = --pmap->pm_refcount;
2634 /* pmap_unlock(pmap); */
2635
2636 return rtn;
2637 }
2638
2639 /* pmap_destroy INTERFACE
2640 **
2641 * Decrement a pmap's reference count and delete
2642 * the pmap if it becomes zero. Will be called
2643 * only after all mappings have been removed.
2644 */
2645 void
2646 pmap_destroy(pmap)
2647 pmap_t pmap;
2648 {
2649 if (pmap == NULL)
2650 return;
2651 if (pmap == &kernel_pmap)
2652 panic("pmap_destroy: kernel_pmap!");
2653 if (pmap_dereference(pmap) == 0) {
2654 pmap_release(pmap);
2655 free(pmap, M_VMPMAP);
2656 }
2657 }
2658
2659 /* pmap_is_referenced INTERFACE
2660 **
2661 * Determine if the given physical page has been
2662 * referenced (read from [or written to.])
2663 */
2664 boolean_t
2665 pmap_is_referenced(pg)
2666 struct vm_page *pg;
2667 {
2668 paddr_t pa = VM_PAGE_TO_PHYS(pg);
2669 pv_t *pv;
2670 int idx, s;
2671
2672 if (!pv_initialized)
2673 return FALSE;
2674 /* XXX - this may be unecessary. */
2675 if (!is_managed(pa))
2676 return FALSE;
2677
2678 pv = pa2pv(pa);
2679 /*
2680 * Check the flags on the pv head. If they are set,
2681 * return immediately. Otherwise a search must be done.
2682 */
2683 if (pv->pv_flags & PV_FLAGS_USED)
2684 return TRUE;
2685
2686 s = splimp();
2687 /*
2688 * Search through all pv elements pointing
2689 * to this page and query their reference bits
2690 */
2691 for (idx = pv->pv_idx;
2692 idx != PVE_EOL;
2693 idx = pvebase[idx].pve_next) {
2694
2695 if (MMU_PTE_USED(kernCbase[idx])) {
2696 splx(s);
2697 return TRUE;
2698 }
2699 }
2700 splx(s);
2701
2702 return FALSE;
2703 }
2704
2705 /* pmap_is_modified INTERFACE
2706 **
2707 * Determine if the given physical page has been
2708 * modified (written to.)
2709 */
2710 boolean_t
2711 pmap_is_modified(pg)
2712 struct vm_page *pg;
2713 {
2714 paddr_t pa = VM_PAGE_TO_PHYS(pg);
2715 pv_t *pv;
2716 int idx, s;
2717
2718 if (!pv_initialized)
2719 return FALSE;
2720 /* XXX - this may be unecessary. */
2721 if (!is_managed(pa))
2722 return FALSE;
2723
2724 /* see comments in pmap_is_referenced() */
2725 pv = pa2pv(pa);
2726 if (pv->pv_flags & PV_FLAGS_MDFY)
2727 return TRUE;
2728
2729 s = splimp();
2730 for (idx = pv->pv_idx;
2731 idx != PVE_EOL;
2732 idx = pvebase[idx].pve_next) {
2733
2734 if (MMU_PTE_MODIFIED(kernCbase[idx])) {
2735 splx(s);
2736 return TRUE;
2737 }
2738 }
2739 splx(s);
2740
2741 return FALSE;
2742 }
2743
2744 /* pmap_page_protect INTERFACE
2745 **
2746 * Applies the given protection to all mappings to the given
2747 * physical page.
2748 */
2749 void
2750 pmap_page_protect(pg, prot)
2751 struct vm_page *pg;
2752 vm_prot_t prot;
2753 {
2754 paddr_t pa = VM_PAGE_TO_PHYS(pg);
2755 pv_t *pv;
2756 int idx, s;
2757 vm_offset_t va;
2758 struct mmu_short_pte_struct *pte;
2759 c_tmgr_t *c_tbl;
2760 pmap_t pmap, curpmap;
2761
2762 if (!is_managed(pa))
2763 return;
2764
2765 curpmap = current_pmap();
2766 pv = pa2pv(pa);
2767 s = splimp();
2768
2769 for (idx = pv->pv_idx;
2770 idx != PVE_EOL;
2771 idx = pvebase[idx].pve_next) {
2772
2773 pte = &kernCbase[idx];
2774 switch (prot) {
2775 case VM_PROT_ALL:
2776 /* do nothing */
2777 break;
2778 case VM_PROT_EXECUTE:
2779 case VM_PROT_READ:
2780 case VM_PROT_READ|VM_PROT_EXECUTE:
2781 /*
2782 * Determine the virtual address mapped by
2783 * the PTE and flush ATC entries if necessary.
2784 */
2785 va = pmap_get_pteinfo(idx, &pmap, &c_tbl);
2786 /* XXX don't write protect pager mappings */
2787 if (va >= PAGER_SVA && va < PAGER_EVA) {
2788 #ifdef PMAP_DEBUG
2789 /* XXX - Does this actually happen? */
2790 printf("pmap_page_protect: in pager!\n");
2791 Debugger();
2792 #endif
2793 } else
2794 pte->attr.raw |= MMU_SHORT_PTE_WP;
2795 if (pmap == curpmap || pmap == pmap_kernel())
2796 TBIS(va);
2797 break;
2798 case VM_PROT_NONE:
2799 /* Save the mod/ref bits. */
2800 pv->pv_flags |= pte->attr.raw;
2801 /* Invalidate the PTE. */
2802 pte->attr.raw = MMU_DT_INVALID;
2803
2804 /*
2805 * Update table counts. And flush ATC entries
2806 * if necessary.
2807 */
2808 va = pmap_get_pteinfo(idx, &pmap, &c_tbl);
2809
2810 /*
2811 * If the PTE belongs to the kernel map,
2812 * be sure to flush the page it maps.
2813 */
2814 if (pmap == pmap_kernel()) {
2815 TBIS(va);
2816 } else {
2817 /*
2818 * The PTE belongs to a user map.
2819 * update the entry count in the C
2820 * table to which it belongs and flush
2821 * the ATC if the mapping belongs to
2822 * the current pmap.
2823 */
2824 c_tbl->ct_ecnt--;
2825 if (pmap == curpmap)
2826 TBIS(va);
2827 }
2828 break;
2829 default:
2830 break;
2831 }
2832 }
2833
2834 /*
2835 * If the protection code indicates that all mappings to the page
2836 * be removed, truncate the PV list to zero entries.
2837 */
2838 if (prot == VM_PROT_NONE)
2839 pv->pv_idx = PVE_EOL;
2840 splx(s);
2841 }
2842
2843 /* pmap_get_pteinfo INTERNAL
2844 **
2845 * Called internally to find the pmap and virtual address within that
2846 * map to which the pte at the given index maps. Also includes the PTE's C
2847 * table manager.
2848 *
2849 * Returns the pmap in the argument provided, and the virtual address
2850 * by return value.
2851 */
2852 vm_offset_t
2853 pmap_get_pteinfo(idx, pmap, tbl)
2854 u_int idx;
2855 pmap_t *pmap;
2856 c_tmgr_t **tbl;
2857 {
2858 vm_offset_t va = 0;
2859
2860 /*
2861 * Determine if the PTE is a kernel PTE or a user PTE.
2862 */
2863 if (idx >= NUM_KERN_PTES) {
2864 /*
2865 * The PTE belongs to a user mapping.
2866 */
2867 /* XXX: Would like an inline for this to validate idx... */
2868 *tbl = &Ctmgrbase[(idx - NUM_KERN_PTES) / MMU_C_TBL_SIZE];
2869
2870 *pmap = (*tbl)->ct_pmap;
2871 /*
2872 * To find the va to which the PTE maps, we first take
2873 * the table's base virtual address mapping which is stored
2874 * in ct_va. We then increment this address by a page for
2875 * every slot skipped until we reach the PTE.
2876 */
2877 va = (*tbl)->ct_va;
2878 va += m68k_ptob(idx % MMU_C_TBL_SIZE);
2879 } else {
2880 /*
2881 * The PTE belongs to the kernel map.
2882 */
2883 *pmap = pmap_kernel();
2884
2885 va = m68k_ptob(idx);
2886 va += KERNBASE;
2887 }
2888
2889 return va;
2890 }
2891
2892 /* pmap_clear_modify INTERFACE
2893 **
2894 * Clear the modification bit on the page at the specified
2895 * physical address.
2896 *
2897 */
2898 boolean_t
2899 pmap_clear_modify(pg)
2900 struct vm_page *pg;
2901 {
2902 paddr_t pa = VM_PAGE_TO_PHYS(pg);
2903 boolean_t rv;
2904
2905 if (!is_managed(pa))
2906 return FALSE;
2907 rv = pmap_is_modified(pg);
2908 pmap_clear_pv(pa, PV_FLAGS_MDFY);
2909 return rv;
2910 }
2911
2912 /* pmap_clear_reference INTERFACE
2913 **
2914 * Clear the referenced bit on the page at the specified
2915 * physical address.
2916 */
2917 boolean_t
2918 pmap_clear_reference(pg)
2919 struct vm_page *pg;
2920 {
2921 paddr_t pa = VM_PAGE_TO_PHYS(pg);
2922 boolean_t rv;
2923
2924 if (!is_managed(pa))
2925 return FALSE;
2926 rv = pmap_is_referenced(pg);
2927 pmap_clear_pv(pa, PV_FLAGS_USED);
2928 return rv;
2929 }
2930
2931 /* pmap_clear_pv INTERNAL
2932 **
2933 * Clears the specified flag from the specified physical address.
2934 * (Used by pmap_clear_modify() and pmap_clear_reference().)
2935 *
2936 * Flag is one of:
2937 * PV_FLAGS_MDFY - Page modified bit.
2938 * PV_FLAGS_USED - Page used (referenced) bit.
2939 *
2940 * This routine must not only clear the flag on the pv list
2941 * head. It must also clear the bit on every pte in the pv
2942 * list associated with the address.
2943 */
2944 void
2945 pmap_clear_pv(pa, flag)
2946 vm_offset_t pa;
2947 int flag;
2948 {
2949 pv_t *pv;
2950 int idx, s;
2951 vm_offset_t va;
2952 pmap_t pmap;
2953 mmu_short_pte_t *pte;
2954 c_tmgr_t *c_tbl;
2955
2956 pv = pa2pv(pa);
2957
2958 s = splimp();
2959 pv->pv_flags &= ~(flag);
2960
2961 for (idx = pv->pv_idx;
2962 idx != PVE_EOL;
2963 idx = pvebase[idx].pve_next) {
2964
2965 pte = &kernCbase[idx];
2966 pte->attr.raw &= ~(flag);
2967 /*
2968 * The MC68030 MMU will not set the modified or
2969 * referenced bits on any MMU tables for which it has
2970 * a cached descriptor with its modify bit set. To insure
2971 * that it will modify these bits on the PTE during the next
2972 * time it is written to or read from, we must flush it from
2973 * the ATC.
2974 *
2975 * Ordinarily it is only necessary to flush the descriptor
2976 * if it is used in the current address space. But since I
2977 * am not sure that there will always be a notion of
2978 * 'the current address space' when this function is called,
2979 * I will skip the test and always flush the address. It
2980 * does no harm.
2981 */
2982 va = pmap_get_pteinfo(idx, &pmap, &c_tbl);
2983 TBIS(va);
2984 }
2985 splx(s);
2986 }
2987
2988 /* pmap_extract INTERFACE
2989 **
2990 * Return the physical address mapped by the virtual address
2991 * in the specified pmap.
2992 *
2993 * Note: this function should also apply an exclusive lock
2994 * on the pmap system during its duration.
2995 */
2996 boolean_t
2997 pmap_extract(pmap, va, pap)
2998 pmap_t pmap;
2999 vaddr_t va;
3000 paddr_t *pap;
3001 {
3002 int a_idx, b_idx, pte_idx;
3003 a_tmgr_t *a_tbl;
3004 b_tmgr_t *b_tbl;
3005 c_tmgr_t *c_tbl;
3006 mmu_short_pte_t *c_pte;
3007
3008 if (pmap == pmap_kernel())
3009 return pmap_extract_kernel(va, pap);
3010 if (pmap == NULL)
3011 return FALSE;
3012
3013 if (pmap_stroll(pmap, va, &a_tbl, &b_tbl, &c_tbl,
3014 &c_pte, &a_idx, &b_idx, &pte_idx) == FALSE)
3015 return FALSE;
3016
3017 if (!MMU_VALID_DT(*c_pte))
3018 return FALSE;
3019
3020 if (pap != NULL)
3021 *pap = MMU_PTE_PA(*c_pte);
3022 return (TRUE);
3023 }
3024
3025 /* pmap_extract_kernel INTERNAL
3026 **
3027 * Extract a translation from the kernel address space.
3028 */
3029 boolean_t
3030 pmap_extract_kernel(va, pap)
3031 vaddr_t va;
3032 paddr_t *pap;
3033 {
3034 mmu_short_pte_t *pte;
3035
3036 pte = &kernCbase[(u_int) m68k_btop(va - KERNBASE)];
3037 if (!MMU_VALID_DT(*pte))
3038 return (FALSE);
3039 if (pap != NULL)
3040 *pap = MMU_PTE_PA(*pte);
3041 return (TRUE);
3042 }
3043
3044 /* pmap_remove_kernel INTERNAL
3045 **
3046 * Remove the mapping of a range of virtual addresses from the kernel map.
3047 * The arguments are already page-aligned.
3048 */
3049 void
3050 pmap_remove_kernel(sva, eva)
3051 vm_offset_t sva;
3052 vm_offset_t eva;
3053 {
3054 int idx, eidx;
3055
3056 #ifdef PMAP_DEBUG
3057 if ((sva & PGOFSET) || (eva & PGOFSET))
3058 panic("pmap_remove_kernel: alignment");
3059 #endif
3060
3061 idx = m68k_btop(sva - KERNBASE);
3062 eidx = m68k_btop(eva - KERNBASE);
3063
3064 while (idx < eidx) {
3065 pmap_remove_pte(&kernCbase[idx++]);
3066 TBIS(sva);
3067 sva += NBPG;
3068 }
3069 }
3070
3071 /* pmap_remove INTERFACE
3072 **
3073 * Remove the mapping of a range of virtual addresses from the given pmap.
3074 *
3075 * If the range contains any wired entries, this function will probably create
3076 * disaster.
3077 */
3078 void
3079 pmap_remove(pmap, start, end)
3080 pmap_t pmap;
3081 vm_offset_t start;
3082 vm_offset_t end;
3083 {
3084
3085 if (pmap == pmap_kernel()) {
3086 pmap_remove_kernel(start, end);
3087 return;
3088 }
3089
3090 /*
3091 * XXX - Temporary(?) statement to prevent panic caused
3092 * by vm_alloc_with_pager() handing us a software map (ie NULL)
3093 * to remove because it couldn't get backing store.
3094 * (I guess.)
3095 */
3096 if (pmap == NULL)
3097 return;
3098
3099 /*
3100 * If the pmap doesn't have an A table of its own, it has no mappings
3101 * that can be removed.
3102 */
3103 if (pmap->pm_a_tmgr == NULL)
3104 return;
3105
3106 /*
3107 * Remove the specified range from the pmap. If the function
3108 * returns true, the operation removed all the valid mappings
3109 * in the pmap and freed its A table. If this happened to the
3110 * currently loaded pmap, the MMU root pointer must be reloaded
3111 * with the default 'kernel' map.
3112 */
3113 if (pmap_remove_a(pmap->pm_a_tmgr, start, end)) {
3114 if (kernel_crp.rp_addr == pmap->pm_a_phys) {
3115 kernel_crp.rp_addr = kernAphys;
3116 loadcrp(&kernel_crp);
3117 /* will do TLB flush below */
3118 }
3119 pmap->pm_a_tmgr = NULL;
3120 pmap->pm_a_phys = kernAphys;
3121 }
3122
3123 /*
3124 * If we just modified the current address space,
3125 * make sure to flush the MMU cache.
3126 *
3127 * XXX - this could be an unecessarily large flush.
3128 * XXX - Could decide, based on the size of the VA range
3129 * to be removed, whether to flush "by pages" or "all".
3130 */
3131 if (pmap == current_pmap())
3132 TBIAU();
3133 }
3134
3135 /* pmap_remove_a INTERNAL
3136 **
3137 * This is function number one in a set of three that removes a range
3138 * of memory in the most efficient manner by removing the highest possible
3139 * tables from the memory space. This particular function attempts to remove
3140 * as many B tables as it can, delegating the remaining fragmented ranges to
3141 * pmap_remove_b().
3142 *
3143 * If the removal operation results in an empty A table, the function returns
3144 * TRUE.
3145 *
3146 * It's ugly but will do for now.
3147 */
3148 boolean_t
3149 pmap_remove_a(a_tbl, start, end)
3150 a_tmgr_t *a_tbl;
3151 vm_offset_t start;
3152 vm_offset_t end;
3153 {
3154 boolean_t empty;
3155 int idx;
3156 vm_offset_t nstart, nend;
3157 b_tmgr_t *b_tbl;
3158 mmu_long_dte_t *a_dte;
3159 mmu_short_dte_t *b_dte;
3160
3161 /*
3162 * The following code works with what I call a 'granularity
3163 * reduction algorithim'. A range of addresses will always have
3164 * the following properties, which are classified according to
3165 * how the range relates to the size of the current granularity
3166 * - an A table entry:
3167 *
3168 * 1 2 3 4
3169 * -+---+---+---+---+---+---+---+-
3170 * -+---+---+---+---+---+---+---+-
3171 *
3172 * A range will always start on a granularity boundary, illustrated
3173 * by '+' signs in the table above, or it will start at some point
3174 * inbetween a granularity boundary, as illustrated by point 1.
3175 * The first step in removing a range of addresses is to remove the
3176 * range between 1 and 2, the nearest granularity boundary. This
3177 * job is handled by the section of code governed by the
3178 * 'if (start < nstart)' statement.
3179 *
3180 * A range will always encompass zero or more intergral granules,
3181 * illustrated by points 2 and 3. Integral granules are easy to
3182 * remove. The removal of these granules is the second step, and
3183 * is handled by the code block 'if (nstart < nend)'.
3184 *
3185 * Lastly, a range will always end on a granularity boundary,
3186 * ill. by point 3, or it will fall just beyond one, ill. by point
3187 * 4. The last step involves removing this range and is handled by
3188 * the code block 'if (nend < end)'.
3189 */
3190 nstart = MMU_ROUND_UP_A(start);
3191 nend = MMU_ROUND_A(end);
3192
3193 if (start < nstart) {
3194 /*
3195 * This block is executed if the range starts between
3196 * a granularity boundary.
3197 *
3198 * First find the DTE which is responsible for mapping
3199 * the start of the range.
3200 */
3201 idx = MMU_TIA(start);
3202 a_dte = &a_tbl->at_dtbl[idx];
3203
3204 /*
3205 * If the DTE is valid then delegate the removal of the sub
3206 * range to pmap_remove_b(), which can remove addresses at
3207 * a finer granularity.
3208 */
3209 if (MMU_VALID_DT(*a_dte)) {
3210 b_dte = mmu_ptov(a_dte->addr.raw);
3211 b_tbl = mmuB2tmgr(b_dte);
3212
3213 /*
3214 * The sub range to be removed starts at the start
3215 * of the full range we were asked to remove, and ends
3216 * at the greater of:
3217 * 1. The end of the full range, -or-
3218 * 2. The end of the full range, rounded down to the
3219 * nearest granularity boundary.
3220 */
3221 if (end < nstart)
3222 empty = pmap_remove_b(b_tbl, start, end);
3223 else
3224 empty = pmap_remove_b(b_tbl, start, nstart);
3225
3226 /*
3227 * If the removal resulted in an empty B table,
3228 * invalidate the DTE that points to it and decrement
3229 * the valid entry count of the A table.
3230 */
3231 if (empty) {
3232 a_dte->attr.raw = MMU_DT_INVALID;
3233 a_tbl->at_ecnt--;
3234 }
3235 }
3236 /*
3237 * If the DTE is invalid, the address range is already non-
3238 * existant and can simply be skipped.
3239 */
3240 }
3241 if (nstart < nend) {
3242 /*
3243 * This block is executed if the range spans a whole number
3244 * multiple of granules (A table entries.)
3245 *
3246 * First find the DTE which is responsible for mapping
3247 * the start of the first granule involved.
3248 */
3249 idx = MMU_TIA(nstart);
3250 a_dte = &a_tbl->at_dtbl[idx];
3251
3252 /*
3253 * Remove entire sub-granules (B tables) one at a time,
3254 * until reaching the end of the range.
3255 */
3256 for (; nstart < nend; a_dte++, nstart += MMU_TIA_RANGE)
3257 if (MMU_VALID_DT(*a_dte)) {
3258 /*
3259 * Find the B table manager for the
3260 * entry and free it.
3261 */
3262 b_dte = mmu_ptov(a_dte->addr.raw);
3263 b_tbl = mmuB2tmgr(b_dte);
3264 free_b_table(b_tbl, TRUE);
3265
3266 /*
3267 * Invalidate the DTE that points to the
3268 * B table and decrement the valid entry
3269 * count of the A table.
3270 */
3271 a_dte->attr.raw = MMU_DT_INVALID;
3272 a_tbl->at_ecnt--;
3273 }
3274 }
3275 if (nend < end) {
3276 /*
3277 * This block is executed if the range ends beyond a
3278 * granularity boundary.
3279 *
3280 * First find the DTE which is responsible for mapping
3281 * the start of the nearest (rounded down) granularity
3282 * boundary.
3283 */
3284 idx = MMU_TIA(nend);
3285 a_dte = &a_tbl->at_dtbl[idx];
3286
3287 /*
3288 * If the DTE is valid then delegate the removal of the sub
3289 * range to pmap_remove_b(), which can remove addresses at
3290 * a finer granularity.
3291 */
3292 if (MMU_VALID_DT(*a_dte)) {
3293 /*
3294 * Find the B table manager for the entry
3295 * and hand it to pmap_remove_b() along with
3296 * the sub range.
3297 */
3298 b_dte = mmu_ptov(a_dte->addr.raw);
3299 b_tbl = mmuB2tmgr(b_dte);
3300
3301 empty = pmap_remove_b(b_tbl, nend, end);
3302
3303 /*
3304 * If the removal resulted in an empty B table,
3305 * invalidate the DTE that points to it and decrement
3306 * the valid entry count of the A table.
3307 */
3308 if (empty) {
3309 a_dte->attr.raw = MMU_DT_INVALID;
3310 a_tbl->at_ecnt--;
3311 }
3312 }
3313 }
3314
3315 /*
3316 * If there are no more entries in the A table, release it
3317 * back to the available pool and return TRUE.
3318 */
3319 if (a_tbl->at_ecnt == 0) {
3320 a_tbl->at_parent = NULL;
3321 TAILQ_REMOVE(&a_pool, a_tbl, at_link);
3322 TAILQ_INSERT_HEAD(&a_pool, a_tbl, at_link);
3323 empty = TRUE;
3324 } else {
3325 empty = FALSE;
3326 }
3327
3328 return empty;
3329 }
3330
3331 /* pmap_remove_b INTERNAL
3332 **
3333 * Remove a range of addresses from an address space, trying to remove entire
3334 * C tables if possible.
3335 *
3336 * If the operation results in an empty B table, the function returns TRUE.
3337 */
3338 boolean_t
3339 pmap_remove_b(b_tbl, start, end)
3340 b_tmgr_t *b_tbl;
3341 vm_offset_t start;
3342 vm_offset_t end;
3343 {
3344 boolean_t empty;
3345 int idx;
3346 vm_offset_t nstart, nend, rstart;
3347 c_tmgr_t *c_tbl;
3348 mmu_short_dte_t *b_dte;
3349 mmu_short_pte_t *c_dte;
3350
3351
3352 nstart = MMU_ROUND_UP_B(start);
3353 nend = MMU_ROUND_B(end);
3354
3355 if (start < nstart) {
3356 idx = MMU_TIB(start);
3357 b_dte = &b_tbl->bt_dtbl[idx];
3358 if (MMU_VALID_DT(*b_dte)) {
3359 c_dte = mmu_ptov(MMU_DTE_PA(*b_dte));
3360 c_tbl = mmuC2tmgr(c_dte);
3361 if (end < nstart)
3362 empty = pmap_remove_c(c_tbl, start, end);
3363 else
3364 empty = pmap_remove_c(c_tbl, start, nstart);
3365 if (empty) {
3366 b_dte->attr.raw = MMU_DT_INVALID;
3367 b_tbl->bt_ecnt--;
3368 }
3369 }
3370 }
3371 if (nstart < nend) {
3372 idx = MMU_TIB(nstart);
3373 b_dte = &b_tbl->bt_dtbl[idx];
3374 rstart = nstart;
3375 while (rstart < nend) {
3376 if (MMU_VALID_DT(*b_dte)) {
3377 c_dte = mmu_ptov(MMU_DTE_PA(*b_dte));
3378 c_tbl = mmuC2tmgr(c_dte);
3379 free_c_table(c_tbl, TRUE);
3380 b_dte->attr.raw = MMU_DT_INVALID;
3381 b_tbl->bt_ecnt--;
3382 }
3383 b_dte++;
3384 rstart += MMU_TIB_RANGE;
3385 }
3386 }
3387 if (nend < end) {
3388 idx = MMU_TIB(nend);
3389 b_dte = &b_tbl->bt_dtbl[idx];
3390 if (MMU_VALID_DT(*b_dte)) {
3391 c_dte = mmu_ptov(MMU_DTE_PA(*b_dte));
3392 c_tbl = mmuC2tmgr(c_dte);
3393 empty = pmap_remove_c(c_tbl, nend, end);
3394 if (empty) {
3395 b_dte->attr.raw = MMU_DT_INVALID;
3396 b_tbl->bt_ecnt--;
3397 }
3398 }
3399 }
3400
3401 if (b_tbl->bt_ecnt == 0) {
3402 b_tbl->bt_parent = NULL;
3403 TAILQ_REMOVE(&b_pool, b_tbl, bt_link);
3404 TAILQ_INSERT_HEAD(&b_pool, b_tbl, bt_link);
3405 empty = TRUE;
3406 } else {
3407 empty = FALSE;
3408 }
3409
3410 return empty;
3411 }
3412
3413 /* pmap_remove_c INTERNAL
3414 **
3415 * Remove a range of addresses from the given C table.
3416 */
3417 boolean_t
3418 pmap_remove_c(c_tbl, start, end)
3419 c_tmgr_t *c_tbl;
3420 vm_offset_t start;
3421 vm_offset_t end;
3422 {
3423 boolean_t empty;
3424 int idx;
3425 mmu_short_pte_t *c_pte;
3426
3427 idx = MMU_TIC(start);
3428 c_pte = &c_tbl->ct_dtbl[idx];
3429 for (;start < end; start += MMU_PAGE_SIZE, c_pte++) {
3430 if (MMU_VALID_DT(*c_pte)) {
3431 pmap_remove_pte(c_pte);
3432 c_tbl->ct_ecnt--;
3433 }
3434 }
3435
3436 if (c_tbl->ct_ecnt == 0) {
3437 c_tbl->ct_parent = NULL;
3438 TAILQ_REMOVE(&c_pool, c_tbl, ct_link);
3439 TAILQ_INSERT_HEAD(&c_pool, c_tbl, ct_link);
3440 empty = TRUE;
3441 } else {
3442 empty = FALSE;
3443 }
3444
3445 return empty;
3446 }
3447
3448 /* is_managed INTERNAL
3449 **
3450 * Determine if the given physical address is managed by the PV system.
3451 * Note that this logic assumes that no one will ask for the status of
3452 * addresses which lie in-between the memory banks on the 3/80. If they
3453 * do so, it will falsely report that it is managed.
3454 *
3455 * Note: A "managed" address is one that was reported to the VM system as
3456 * a "usable page" during system startup. As such, the VM system expects the
3457 * pmap module to keep an accurate track of the useage of those pages.
3458 * Any page not given to the VM system at startup does not exist (as far as
3459 * the VM system is concerned) and is therefore "unmanaged." Examples are
3460 * those pages which belong to the ROM monitor and the memory allocated before
3461 * the VM system was started.
3462 */
3463 boolean_t
3464 is_managed(pa)
3465 vm_offset_t pa;
3466 {
3467 if (pa >= avail_start && pa < avail_end)
3468 return TRUE;
3469 else
3470 return FALSE;
3471 }
3472
3473 /* pmap_bootstrap_alloc INTERNAL
3474 **
3475 * Used internally for memory allocation at startup when malloc is not
3476 * available. This code will fail once it crosses the first memory
3477 * bank boundary on the 3/80. Hopefully by then however, the VM system
3478 * will be in charge of allocation.
3479 */
3480 void *
3481 pmap_bootstrap_alloc(size)
3482 int size;
3483 {
3484 void *rtn;
3485
3486 #ifdef PMAP_DEBUG
3487 if (bootstrap_alloc_enabled == FALSE) {
3488 mon_printf("pmap_bootstrap_alloc: disabled\n");
3489 sunmon_abort();
3490 }
3491 #endif
3492
3493 rtn = (void *) virtual_avail;
3494 virtual_avail += size;
3495
3496 #ifdef PMAP_DEBUG
3497 if (virtual_avail > virtual_contig_end) {
3498 mon_printf("pmap_bootstrap_alloc: out of mem\n");
3499 sunmon_abort();
3500 }
3501 #endif
3502
3503 return rtn;
3504 }
3505
3506 /* pmap_bootstap_aalign INTERNAL
3507 **
3508 * Used to insure that the next call to pmap_bootstrap_alloc() will
3509 * return a chunk of memory aligned to the specified size.
3510 *
3511 * Note: This function will only support alignment sizes that are powers
3512 * of two.
3513 */
3514 void
3515 pmap_bootstrap_aalign(size)
3516 int size;
3517 {
3518 int off;
3519
3520 off = virtual_avail & (size - 1);
3521 if (off) {
3522 (void) pmap_bootstrap_alloc(size - off);
3523 }
3524 }
3525
3526 /* pmap_pa_exists
3527 **
3528 * Used by the /dev/mem driver to see if a given PA is memory
3529 * that can be mapped. (The PA is not in a hole.)
3530 */
3531 int
3532 pmap_pa_exists(pa)
3533 vm_offset_t pa;
3534 {
3535 register int i;
3536
3537 for (i = 0; i < SUN3X_NPHYS_RAM_SEGS; i++) {
3538 if ((pa >= avail_mem[i].pmem_start) &&
3539 (pa < avail_mem[i].pmem_end))
3540 return (1);
3541 if (avail_mem[i].pmem_next == NULL)
3542 break;
3543 }
3544 return (0);
3545 }
3546
3547 /* Called only from locore.s and pmap.c */
3548 void _pmap_switch __P((pmap_t pmap));
3549
3550 /*
3551 * _pmap_switch INTERNAL
3552 *
3553 * This is called by locore.s:cpu_switch() when it is
3554 * switching to a new process. Load new translations.
3555 * Note: done in-line by locore.s unless PMAP_DEBUG
3556 *
3557 * Note that we do NOT allocate a context here, but
3558 * share the "kernel only" context until we really
3559 * need our own context for user-space mappings in
3560 * pmap_enter_user(). [ s/context/mmu A table/ ]
3561 */
3562 void
3563 _pmap_switch(pmap)
3564 pmap_t pmap;
3565 {
3566 u_long rootpa;
3567
3568 /*
3569 * Only do reload/flush if we have to.
3570 * Note that if the old and new process
3571 * were BOTH using the "null" context,
3572 * then this will NOT flush the TLB.
3573 */
3574 rootpa = pmap->pm_a_phys;
3575 if (kernel_crp.rp_addr != rootpa) {
3576 DPRINT(("pmap_activate(%p)\n", pmap));
3577 kernel_crp.rp_addr = rootpa;
3578 loadcrp(&kernel_crp);
3579 TBIAU();
3580 }
3581 }
3582
3583 /*
3584 * Exported version of pmap_activate(). This is called from the
3585 * machine-independent VM code when a process is given a new pmap.
3586 * If (p == curproc) do like cpu_switch would do; otherwise just
3587 * take this as notification that the process has a new pmap.
3588 */
3589 void
3590 pmap_activate(p)
3591 struct proc *p;
3592 {
3593 pmap_t pmap = p->p_vmspace->vm_map.pmap;
3594 int s;
3595
3596 if (p == curproc) {
3597 s = splimp();
3598 _pmap_switch(pmap);
3599 splx(s);
3600 }
3601 }
3602
3603 /*
3604 * pmap_deactivate INTERFACE
3605 **
3606 * This is called to deactivate the specified process's address space.
3607 * XXX The semantics of this function are currently not well-defined.
3608 */
3609 void
3610 pmap_deactivate(p)
3611 struct proc *p;
3612 {
3613 /* not implemented. */
3614 }
3615
3616 /* pmap_update
3617 **
3618 * Apply any delayed changes scheduled for all pmaps immediately.
3619 *
3620 * No delayed operations are currently done in this pmap.
3621 */
3622 void
3623 pmap_update()
3624 {
3625 /* not implemented. */
3626 }
3627
3628 /*
3629 * Fill in the sun3x-specific part of the kernel core header
3630 * for dumpsys(). (See machdep.c for the rest.)
3631 */
3632 void
3633 pmap_kcore_hdr(sh)
3634 struct sun3x_kcore_hdr *sh;
3635 {
3636 u_long spa, len;
3637 int i;
3638
3639 sh->pg_frame = MMU_SHORT_PTE_BASEADDR;
3640 sh->pg_valid = MMU_DT_PAGE;
3641 sh->contig_end = virtual_contig_end;
3642 sh->kernCbase = (u_long) kernCbase;
3643 for (i = 0; i < SUN3X_NPHYS_RAM_SEGS; i++) {
3644 spa = avail_mem[i].pmem_start;
3645 spa = m68k_trunc_page(spa);
3646 len = avail_mem[i].pmem_end - spa;
3647 len = m68k_round_page(len);
3648 sh->ram_segs[i].start = spa;
3649 sh->ram_segs[i].size = len;
3650 }
3651 }
3652
3653
3654 /* pmap_virtual_space INTERFACE
3655 **
3656 * Return the current available range of virtual addresses in the
3657 * arguuments provided. Only really called once.
3658 */
3659 void
3660 pmap_virtual_space(vstart, vend)
3661 vm_offset_t *vstart, *vend;
3662 {
3663 *vstart = virtual_avail;
3664 *vend = virtual_end;
3665 }
3666
3667 /*
3668 * Provide memory to the VM system.
3669 *
3670 * Assume avail_start is always in the
3671 * first segment as pmap_bootstrap does.
3672 */
3673 static void
3674 pmap_page_upload()
3675 {
3676 vm_offset_t a, b; /* memory range */
3677 int i;
3678
3679 /* Supply the memory in segments. */
3680 for (i = 0; i < SUN3X_NPHYS_RAM_SEGS; i++) {
3681 a = atop(avail_mem[i].pmem_start);
3682 b = atop(avail_mem[i].pmem_end);
3683 if (i == 0)
3684 a = atop(avail_start);
3685
3686 uvm_page_physload(a, b, a, b, VM_FREELIST_DEFAULT);
3687
3688 if (avail_mem[i].pmem_next == NULL)
3689 break;
3690 }
3691 }
3692
3693 /* pmap_page_index INTERFACE
3694 **
3695 * Return the index of the given physical page in a list of useable
3696 * physical pages in the system. Holes in physical memory may be counted
3697 * if so desired. As long as pmap_free_pages() and pmap_page_index()
3698 * agree as to whether holes in memory do or do not count as valid pages,
3699 * it really doesn't matter. However, if you like to save a little
3700 * memory, don't count holes as valid pages. This is even more true when
3701 * the holes are large.
3702 *
3703 * We will not count holes as valid pages. We can generate page indices
3704 * that conform to this by using the memory bank structures initialized
3705 * in pmap_alloc_pv().
3706 */
3707 int
3708 pmap_page_index(pa)
3709 vm_offset_t pa;
3710 {
3711 struct pmap_physmem_struct *bank = avail_mem;
3712 vm_offset_t off;
3713
3714 /* Search for the memory bank with this page. */
3715 /* XXX - What if it is not physical memory? */
3716 while (pa > bank->pmem_end)
3717 bank = bank->pmem_next;
3718 off = pa - bank->pmem_start;
3719
3720 return (bank->pmem_pvbase + m68k_btop(off));
3721 }
3722
3723 /* pmap_count INTERFACE
3724 **
3725 * Return the number of resident (valid) pages in the given pmap.
3726 *
3727 * Note: If this function is handed the kernel map, it will report
3728 * that it has no mappings. Hopefully the VM system won't ask for kernel
3729 * map statistics.
3730 */
3731 segsz_t
3732 pmap_count(pmap, type)
3733 pmap_t pmap;
3734 int type;
3735 {
3736 u_int count;
3737 int a_idx, b_idx;
3738 a_tmgr_t *a_tbl;
3739 b_tmgr_t *b_tbl;
3740 c_tmgr_t *c_tbl;
3741
3742 /*
3743 * If the pmap does not have its own A table manager, it has no
3744 * valid entires.
3745 */
3746 if (pmap->pm_a_tmgr == NULL)
3747 return 0;
3748
3749 a_tbl = pmap->pm_a_tmgr;
3750
3751 count = 0;
3752 for (a_idx = 0; a_idx < MMU_TIA(KERNBASE); a_idx++) {
3753 if (MMU_VALID_DT(a_tbl->at_dtbl[a_idx])) {
3754 b_tbl = mmuB2tmgr(mmu_ptov(a_tbl->at_dtbl[a_idx].addr.raw));
3755 for (b_idx = 0; b_idx < MMU_B_TBL_SIZE; b_idx++) {
3756 if (MMU_VALID_DT(b_tbl->bt_dtbl[b_idx])) {
3757 c_tbl = mmuC2tmgr(
3758 mmu_ptov(MMU_DTE_PA(b_tbl->bt_dtbl[b_idx])));
3759 if (type == 0)
3760 /*
3761 * A resident entry count has been requested.
3762 */
3763 count += c_tbl->ct_ecnt;
3764 else
3765 /*
3766 * A wired entry count has been requested.
3767 */
3768 count += c_tbl->ct_wcnt;
3769 }
3770 }
3771 }
3772 }
3773
3774 return count;
3775 }
3776
3777 /************************ SUN3 COMPATIBILITY ROUTINES ********************
3778 * The following routines are only used by DDB for tricky kernel text *
3779 * text operations in db_memrw.c. They are provided for sun3 *
3780 * compatibility. *
3781 *************************************************************************/
3782 /* get_pte INTERNAL
3783 **
3784 * Return the page descriptor the describes the kernel mapping
3785 * of the given virtual address.
3786 */
3787 extern u_long ptest_addr __P((u_long)); /* XXX: locore.s */
3788 u_int
3789 get_pte(va)
3790 vm_offset_t va;
3791 {
3792 u_long pte_pa;
3793 mmu_short_pte_t *pte;
3794
3795 /* Get the physical address of the PTE */
3796 pte_pa = ptest_addr(va & ~PGOFSET);
3797
3798 /* Convert to a virtual address... */
3799 pte = (mmu_short_pte_t *) (KERNBASE + pte_pa);
3800
3801 /* Make sure it is in our level-C tables... */
3802 if ((pte < kernCbase) ||
3803 (pte >= &mmuCbase[NUM_USER_PTES]))
3804 return 0;
3805
3806 /* ... and just return its contents. */
3807 return (pte->attr.raw);
3808 }
3809
3810
3811 /* set_pte INTERNAL
3812 **
3813 * Set the page descriptor that describes the kernel mapping
3814 * of the given virtual address.
3815 */
3816 void
3817 set_pte(va, pte)
3818 vm_offset_t va;
3819 u_int pte;
3820 {
3821 u_long idx;
3822
3823 if (va < KERNBASE)
3824 return;
3825
3826 idx = (unsigned long) m68k_btop(va - KERNBASE);
3827 kernCbase[idx].attr.raw = pte;
3828 TBIS(va);
3829 }
3830
3831 /*
3832 * Routine: pmap_procwr
3833 *
3834 * Function:
3835 * Synchronize caches corresponding to [addr, addr+len) in p.
3836 */
3837 void
3838 pmap_procwr(p, va, len)
3839 struct proc *p;
3840 vaddr_t va;
3841 size_t len;
3842 {
3843 (void)cachectl1(0x80000004, va, len, p);
3844 }
3845
3846
3847 #ifdef PMAP_DEBUG
3848 /************************** DEBUGGING ROUTINES **************************
3849 * The following routines are meant to be an aid to debugging the pmap *
3850 * system. They are callable from the DDB command line and should be *
3851 * prepared to be handed unstable or incomplete states of the system. *
3852 ************************************************************************/
3853
3854 /* pv_list
3855 **
3856 * List all pages found on the pv list for the given physical page.
3857 * To avoid endless loops, the listing will stop at the end of the list
3858 * or after 'n' entries - whichever comes first.
3859 */
3860 void
3861 pv_list(pa, n)
3862 vm_offset_t pa;
3863 int n;
3864 {
3865 int idx;
3866 vm_offset_t va;
3867 pv_t *pv;
3868 c_tmgr_t *c_tbl;
3869 pmap_t pmap;
3870
3871 pv = pa2pv(pa);
3872 idx = pv->pv_idx;
3873
3874 for (;idx != PVE_EOL && n > 0;
3875 idx=pvebase[idx].pve_next, n--) {
3876
3877 va = pmap_get_pteinfo(idx, &pmap, &c_tbl);
3878 printf("idx %d, pmap 0x%x, va 0x%x, c_tbl %x\n",
3879 idx, (u_int) pmap, (u_int) va, (u_int) c_tbl);
3880 }
3881 }
3882 #endif /* PMAP_DEBUG */
3883
3884 #ifdef NOT_YET
3885 /* and maybe not ever */
3886 /************************** LOW-LEVEL ROUTINES **************************
3887 * These routines will eventualy be re-written into assembly and placed *
3888 * in locore.s. They are here now as stubs so that the pmap module can *
3889 * be linked as a standalone user program for testing. *
3890 ************************************************************************/
3891 /* flush_atc_crp INTERNAL
3892 **
3893 * Flush all page descriptors derived from the given CPU Root Pointer
3894 * (CRP), or 'A' table as it is known here, from the 68851's automatic
3895 * cache.
3896 */
3897 void
3898 flush_atc_crp(a_tbl)
3899 {
3900 mmu_long_rp_t rp;
3901
3902 /* Create a temporary root table pointer that points to the
3903 * given A table.
3904 */
3905 rp.attr.raw = ~MMU_LONG_RP_LU;
3906 rp.addr.raw = (unsigned int) a_tbl;
3907
3908 mmu_pflushr(&rp);
3909 /* mmu_pflushr:
3910 * movel sp(4)@,a0
3911 * pflushr a0@
3912 * rts
3913 */
3914 }
3915 #endif /* NOT_YET */
3916