Home | History | Annotate | Line # | Download | only in sun3x
pmap.c revision 1.55
      1 /*	$NetBSD: pmap.c,v 1.55 2000/10/21 14:10:25 tsutsui Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1996, 1997 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jeremy Cooper.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  * 3. All advertising materials mentioning features or use of this software
     19  *    must display the following acknowledgement:
     20  *        This product includes software developed by the NetBSD
     21  *        Foundation, Inc. and its contributors.
     22  * 4. Neither the name of The NetBSD Foundation nor the names of its
     23  *    contributors may be used to endorse or promote products derived
     24  *    from this software without specific prior written permission.
     25  *
     26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36  * POSSIBILITY OF SUCH DAMAGE.
     37  */
     38 
     39 /*
     40  * XXX These comments aren't quite accurate.  Need to change.
     41  * The sun3x uses the MC68851 Memory Management Unit, which is built
     42  * into the CPU.  The 68851 maps virtual to physical addresses using
     43  * a multi-level table lookup, which is stored in the very memory that
     44  * it maps.  The number of levels of lookup is configurable from one
     45  * to four.  In this implementation, we use three, named 'A' through 'C'.
     46  *
     47  * The MMU translates virtual addresses into physical addresses by
     48  * traversing these tables in a proccess called a 'table walk'.  The most
     49  * significant 7 bits of the Virtual Address ('VA') being translated are
     50  * used as an index into the level A table, whose base in physical memory
     51  * is stored in a special MMU register, the 'CPU Root Pointer' or CRP.  The
     52  * address found at that index in the A table is used as the base
     53  * address for the next table, the B table.  The next six bits of the VA are
     54  * used as an index into the B table, which in turn gives the base address
     55  * of the third and final C table.
     56  *
     57  * The next six bits of the VA are used as an index into the C table to
     58  * locate a Page Table Entry (PTE).  The PTE is a physical address in memory
     59  * to which the remaining 13 bits of the VA are added, producing the
     60  * mapped physical address.
     61  *
     62  * To map the entire memory space in this manner would require 2114296 bytes
     63  * of page tables per process - quite expensive.  Instead we will
     64  * allocate a fixed but considerably smaller space for the page tables at
     65  * the time the VM system is initialized.  When the pmap code is asked by
     66  * the kernel to map a VA to a PA, it allocates tables as needed from this
     67  * pool.  When there are no more tables in the pool, tables are stolen
     68  * from the oldest mapped entries in the tree.  This is only possible
     69  * because all memory mappings are stored in the kernel memory map
     70  * structures, independent of the pmap structures.  A VA which references
     71  * one of these invalidated maps will cause a page fault.  The kernel
     72  * will determine that the page fault was caused by a task using a valid
     73  * VA, but for some reason (which does not concern it), that address was
     74  * not mapped.  It will ask the pmap code to re-map the entry and then
     75  * it will resume executing the faulting task.
     76  *
     77  * In this manner the most efficient use of the page table space is
     78  * achieved.  Tasks which do not execute often will have their tables
     79  * stolen and reused by tasks which execute more frequently.  The best
     80  * size for the page table pool will probably be determined by
     81  * experimentation.
     82  *
     83  * You read all of the comments so far.  Good for you.
     84  * Now go play!
     85  */
     86 
     87 /*** A Note About the 68851 Address Translation Cache
     88  * The MC68851 has a 64 entry cache, called the Address Translation Cache
     89  * or 'ATC'.  This cache stores the most recently used page descriptors
     90  * accessed by the MMU when it does translations.  Using a marker called a
     91  * 'task alias' the MMU can store the descriptors from 8 different table
     92  * spaces concurrently.  The task alias is associated with the base
     93  * address of the level A table of that address space.  When an address
     94  * space is currently active (the CRP currently points to its A table)
     95  * the only cached descriptors that will be obeyed are ones which have a
     96  * matching task alias of the current space associated with them.
     97  *
     98  * Since the cache is always consulted before any table lookups are done,
     99  * it is important that it accurately reflect the state of the MMU tables.
    100  * Whenever a change has been made to a table that has been loaded into
    101  * the MMU, the code must be sure to flush any cached entries that are
    102  * affected by the change.  These instances are documented in the code at
    103  * various points.
    104  */
    105 /*** A Note About the Note About the 68851 Address Translation Cache
    106  * 4 months into this code I discovered that the sun3x does not have
    107  * a MC68851 chip. Instead, it has a version of this MMU that is part of the
    108  * the 68030 CPU.
    109  * All though it behaves very similarly to the 68851, it only has 1 task
    110  * alias and a 22 entry cache.  So sadly (or happily), the first paragraph
    111  * of the previous note does not apply to the sun3x pmap.
    112  */
    113 
    114 #include "opt_ddb.h"
    115 
    116 #include <sys/param.h>
    117 #include <sys/systm.h>
    118 #include <sys/proc.h>
    119 #include <sys/malloc.h>
    120 #include <sys/user.h>
    121 #include <sys/queue.h>
    122 #include <sys/kcore.h>
    123 
    124 #include <uvm/uvm.h>
    125 
    126 #define PAGER_SVA (uvm.pager_sva)
    127 #define PAGER_EVA (uvm.pager_eva)
    128 
    129 #include <machine/cpu.h>
    130 #include <machine/kcore.h>
    131 #include <machine/mon.h>
    132 #include <machine/pmap.h>
    133 #include <machine/pte.h>
    134 #include <machine/vmparam.h>
    135 
    136 #include <sun3/sun3/cache.h>
    137 #include <sun3/sun3/machdep.h>
    138 
    139 #include "pmap_pvt.h"
    140 
    141 /* XXX - What headers declare these? */
    142 extern struct pcb *curpcb;
    143 extern int physmem;
    144 
    145 extern void copypage __P((const void*, void*));
    146 extern void zeropage __P((void*));
    147 
    148 /* Defined in locore.s */
    149 extern char kernel_text[];
    150 
    151 /* Defined by the linker */
    152 extern char etext[], edata[], end[];
    153 extern char *esym;	/* DDB */
    154 
    155 /*************************** DEBUGGING DEFINITIONS ***********************
    156  * Macros, preprocessor defines and variables used in debugging can make *
    157  * code hard to read.  Anything used exclusively for debugging purposes  *
    158  * is defined here to avoid having such mess scattered around the file.  *
    159  *************************************************************************/
    160 #ifdef	PMAP_DEBUG
    161 /*
    162  * To aid the debugging process, macros should be expanded into smaller steps
    163  * that accomplish the same goal, yet provide convenient places for placing
    164  * breakpoints.  When this code is compiled with PMAP_DEBUG mode defined, the
    165  * 'INLINE' keyword is defined to an empty string.  This way, any function
    166  * defined to be a 'static INLINE' will become 'outlined' and compiled as
    167  * a separate function, which is much easier to debug.
    168  */
    169 #define	INLINE	/* nothing */
    170 
    171 /*
    172  * It is sometimes convenient to watch the activity of a particular table
    173  * in the system.  The following variables are used for that purpose.
    174  */
    175 a_tmgr_t *pmap_watch_atbl = 0;
    176 b_tmgr_t *pmap_watch_btbl = 0;
    177 c_tmgr_t *pmap_watch_ctbl = 0;
    178 
    179 int pmap_debug = 0;
    180 #define DPRINT(args) if (pmap_debug) printf args
    181 
    182 #else	/********** Stuff below is defined if NOT debugging **************/
    183 
    184 #define	INLINE	inline
    185 #define DPRINT(args)  /* nada */
    186 
    187 #endif	/* PMAP_DEBUG */
    188 /*********************** END OF DEBUGGING DEFINITIONS ********************/
    189 
    190 /*** Management Structure - Memory Layout
    191  * For every MMU table in the sun3x pmap system there must be a way to
    192  * manage it; we must know which process is using it, what other tables
    193  * depend on it, and whether or not it contains any locked pages.  This
    194  * is solved by the creation of 'table management'  or 'tmgr'
    195  * structures.  One for each MMU table in the system.
    196  *
    197  *                        MAP OF MEMORY USED BY THE PMAP SYSTEM
    198  *
    199  *      towards lower memory
    200  * kernAbase -> +-------------------------------------------------------+
    201  *              | Kernel     MMU A level table                          |
    202  * kernBbase -> +-------------------------------------------------------+
    203  *              | Kernel     MMU B level tables                         |
    204  * kernCbase -> +-------------------------------------------------------+
    205  *              |                                                       |
    206  *              | Kernel     MMU C level tables                         |
    207  *              |                                                       |
    208  * mmuCbase  -> +-------------------------------------------------------+
    209  *              | User       MMU C level tables                         |
    210  * mmuAbase  -> +-------------------------------------------------------+
    211  *              |                                                       |
    212  *              | User       MMU A level tables                         |
    213  *              |                                                       |
    214  * mmuBbase  -> +-------------------------------------------------------+
    215  *              | User       MMU B level tables                         |
    216  * tmgrAbase -> +-------------------------------------------------------+
    217  *              |  TMGR A level table structures                        |
    218  * tmgrBbase -> +-------------------------------------------------------+
    219  *              |  TMGR B level table structures                        |
    220  * tmgrCbase -> +-------------------------------------------------------+
    221  *              |  TMGR C level table structures                        |
    222  * pvbase    -> +-------------------------------------------------------+
    223  *              |  Physical to Virtual mapping table (list heads)       |
    224  * pvebase   -> +-------------------------------------------------------+
    225  *              |  Physical to Virtual mapping table (list elements)    |
    226  *              |                                                       |
    227  *              +-------------------------------------------------------+
    228  *      towards higher memory
    229  *
    230  * For every A table in the MMU A area, there will be a corresponding
    231  * a_tmgr structure in the TMGR A area.  The same will be true for
    232  * the B and C tables.  This arrangement will make it easy to find the
    233  * controling tmgr structure for any table in the system by use of
    234  * (relatively) simple macros.
    235  */
    236 
    237 /*
    238  * Global variables for storing the base addresses for the areas
    239  * labeled above.
    240  */
    241 static vm_offset_t  	kernAphys;
    242 static mmu_long_dte_t	*kernAbase;
    243 static mmu_short_dte_t	*kernBbase;
    244 static mmu_short_pte_t	*kernCbase;
    245 static mmu_short_pte_t	*mmuCbase;
    246 static mmu_short_dte_t	*mmuBbase;
    247 static mmu_long_dte_t	*mmuAbase;
    248 static a_tmgr_t		*Atmgrbase;
    249 static b_tmgr_t		*Btmgrbase;
    250 static c_tmgr_t		*Ctmgrbase;
    251 static pv_t 		*pvbase;
    252 static pv_elem_t	*pvebase;
    253 struct pmap 		kernel_pmap;
    254 
    255 /*
    256  * This holds the CRP currently loaded into the MMU.
    257  */
    258 struct mmu_rootptr kernel_crp;
    259 
    260 /*
    261  * Just all around global variables.
    262  */
    263 static TAILQ_HEAD(a_pool_head_struct, a_tmgr_struct) a_pool;
    264 static TAILQ_HEAD(b_pool_head_struct, b_tmgr_struct) b_pool;
    265 static TAILQ_HEAD(c_pool_head_struct, c_tmgr_struct) c_pool;
    266 
    267 
    268 /*
    269  * Flags used to mark the safety/availability of certain operations or
    270  * resources.
    271  */
    272 static boolean_t pv_initialized = FALSE, /* PV system has been initialized. */
    273        bootstrap_alloc_enabled = FALSE; /*Safe to use pmap_bootstrap_alloc().*/
    274 int tmp_vpages_inuse;	/* Temporary virtual pages are in use */
    275 
    276 /*
    277  * XXX:  For now, retain the traditional variables that were
    278  * used in the old pmap/vm interface (without NONCONTIG).
    279  */
    280 /* Kernel virtual address space available: */
    281 vm_offset_t	virtual_avail, virtual_end;
    282 /* Physical address space available: */
    283 vm_offset_t	avail_start, avail_end;
    284 
    285 /* This keep track of the end of the contiguously mapped range. */
    286 vm_offset_t virtual_contig_end;
    287 
    288 /* Physical address used by pmap_next_page() */
    289 vm_offset_t avail_next;
    290 
    291 /* These are used by pmap_copy_page(), etc. */
    292 vm_offset_t tmp_vpages[2];
    293 
    294 /*
    295  * The 3/80 is the only member of the sun3x family that has non-contiguous
    296  * physical memory.  Memory is divided into 4 banks which are physically
    297  * locatable on the system board.  Although the size of these banks varies
    298  * with the size of memory they contain, their base addresses are
    299  * permenently fixed.  The following structure, which describes these
    300  * banks, is initialized by pmap_bootstrap() after it reads from a similar
    301  * structure provided by the ROM Monitor.
    302  *
    303  * For the other machines in the sun3x architecture which do have contiguous
    304  * RAM, this list will have only one entry, which will describe the entire
    305  * range of available memory.
    306  */
    307 struct pmap_physmem_struct avail_mem[SUN3X_NPHYS_RAM_SEGS];
    308 u_int total_phys_mem;
    309 
    310 /*************************************************************************/
    311 
    312 /*
    313  * XXX - Should "tune" these based on statistics.
    314  *
    315  * My first guess about the relative numbers of these needed is
    316  * based on the fact that a "typical" process will have several
    317  * pages mapped at low virtual addresses (text, data, bss), then
    318  * some mapped shared libraries, and then some stack pages mapped
    319  * near the high end of the VA space.  Each process can use only
    320  * one A table, and most will use only two B tables (maybe three)
    321  * and probably about four C tables.  Therefore, the first guess
    322  * at the relative numbers of these needed is 1:2:4 -gwr
    323  *
    324  * The number of C tables needed is closely related to the amount
    325  * of physical memory available plus a certain amount attributable
    326  * to the use of double mappings.  With a few simulation statistics
    327  * we can find a reasonably good estimation of this unknown value.
    328  * Armed with that and the above ratios, we have a good idea of what
    329  * is needed at each level. -j
    330  *
    331  * Note: It is not physical memory memory size, but the total mapped
    332  * virtual space required by the combined working sets of all the
    333  * currently _runnable_ processes.  (Sleeping ones don't count.)
    334  * The amount of physical memory should be irrelevant. -gwr
    335  */
    336 #ifdef	FIXED_NTABLES
    337 #define NUM_A_TABLES	16
    338 #define NUM_B_TABLES	32
    339 #define NUM_C_TABLES	64
    340 #else
    341 unsigned int	NUM_A_TABLES, NUM_B_TABLES, NUM_C_TABLES;
    342 #endif	/* FIXED_NTABLES */
    343 
    344 /*
    345  * This determines our total virtual mapping capacity.
    346  * Yes, it is a FIXED value so we can pre-allocate.
    347  */
    348 #define NUM_USER_PTES	(NUM_C_TABLES * MMU_C_TBL_SIZE)
    349 
    350 /*
    351  * The size of the Kernel Virtual Address Space (KVAS)
    352  * for purposes of MMU table allocation is -KERNBASE
    353  * (length from KERNBASE to 0xFFFFffff)
    354  */
    355 #define	KVAS_SIZE		(-KERNBASE)
    356 
    357 /* Numbers of kernel MMU tables to support KVAS_SIZE. */
    358 #define KERN_B_TABLES	(KVAS_SIZE >> MMU_TIA_SHIFT)
    359 #define KERN_C_TABLES	(KVAS_SIZE >> MMU_TIB_SHIFT)
    360 #define	NUM_KERN_PTES	(KVAS_SIZE >> MMU_TIC_SHIFT)
    361 
    362 /*************************** MISCELANEOUS MACROS *************************/
    363 #define pmap_lock(pmap) simple_lock(&pmap->pm_lock)
    364 #define pmap_unlock(pmap) simple_unlock(&pmap->pm_lock)
    365 #define pmap_add_ref(pmap) ++pmap->pm_refcount
    366 #define pmap_del_ref(pmap) --pmap->pm_refcount
    367 #define pmap_refcount(pmap) pmap->pm_refcount
    368 
    369 static INLINE void *      mmu_ptov __P((vm_offset_t pa));
    370 static INLINE vm_offset_t mmu_vtop __P((void * va));
    371 
    372 #if	0
    373 static INLINE a_tmgr_t * mmuA2tmgr __P((mmu_long_dte_t *));
    374 #endif /* 0 */
    375 static INLINE b_tmgr_t * mmuB2tmgr __P((mmu_short_dte_t *));
    376 static INLINE c_tmgr_t * mmuC2tmgr __P((mmu_short_pte_t *));
    377 
    378 static INLINE pv_t *pa2pv __P((vm_offset_t pa));
    379 static INLINE int   pteidx __P((mmu_short_pte_t *));
    380 static INLINE pmap_t current_pmap __P((void));
    381 
    382 /*
    383  * We can always convert between virtual and physical addresses
    384  * for anything in the range [KERNBASE ... avail_start] because
    385  * that range is GUARANTEED to be mapped linearly.
    386  * We rely heavily upon this feature!
    387  */
    388 static INLINE void *
    389 mmu_ptov(pa)
    390 	vm_offset_t pa;
    391 {
    392 	register vm_offset_t va;
    393 
    394 	va = (pa + KERNBASE);
    395 #ifdef	PMAP_DEBUG
    396 	if ((va < KERNBASE) || (va >= virtual_contig_end))
    397 		panic("mmu_ptov");
    398 #endif
    399 	return ((void*)va);
    400 }
    401 static INLINE vm_offset_t
    402 mmu_vtop(vva)
    403 	void *vva;
    404 {
    405 	register vm_offset_t va;
    406 
    407 	va = (vm_offset_t)vva;
    408 #ifdef	PMAP_DEBUG
    409 	if ((va < KERNBASE) || (va >= virtual_contig_end))
    410 		panic("mmu_ptov");
    411 #endif
    412 	return (va - KERNBASE);
    413 }
    414 
    415 /*
    416  * These macros map MMU tables to their corresponding manager structures.
    417  * They are needed quite often because many of the pointers in the pmap
    418  * system reference MMU tables and not the structures that control them.
    419  * There needs to be a way to find one when given the other and these
    420  * macros do so by taking advantage of the memory layout described above.
    421  * Here's a quick step through the first macro, mmuA2tmgr():
    422  *
    423  * 1) find the offset of the given MMU A table from the base of its table
    424  *    pool (table - mmuAbase).
    425  * 2) convert this offset into a table index by dividing it by the
    426  *    size of one MMU 'A' table. (sizeof(mmu_long_dte_t) * MMU_A_TBL_SIZE)
    427  * 3) use this index to select the corresponding 'A' table manager
    428  *    structure from the 'A' table manager pool (Atmgrbase[index]).
    429  */
    430 /*  This function is not currently used. */
    431 #if	0
    432 static INLINE a_tmgr_t *
    433 mmuA2tmgr(mmuAtbl)
    434 	mmu_long_dte_t *mmuAtbl;
    435 {
    436 	register int idx;
    437 
    438 	/* Which table is this in? */
    439 	idx = (mmuAtbl - mmuAbase) / MMU_A_TBL_SIZE;
    440 #ifdef	PMAP_DEBUG
    441 	if ((idx < 0) || (idx >= NUM_A_TABLES))
    442 		panic("mmuA2tmgr");
    443 #endif
    444 	return (&Atmgrbase[idx]);
    445 }
    446 #endif	/* 0 */
    447 
    448 static INLINE b_tmgr_t *
    449 mmuB2tmgr(mmuBtbl)
    450 	mmu_short_dte_t *mmuBtbl;
    451 {
    452 	register int idx;
    453 
    454 	/* Which table is this in? */
    455 	idx = (mmuBtbl - mmuBbase) / MMU_B_TBL_SIZE;
    456 #ifdef	PMAP_DEBUG
    457 	if ((idx < 0) || (idx >= NUM_B_TABLES))
    458 		panic("mmuB2tmgr");
    459 #endif
    460 	return (&Btmgrbase[idx]);
    461 }
    462 
    463 /* mmuC2tmgr			INTERNAL
    464  **
    465  * Given a pte known to belong to a C table, return the address of
    466  * that table's management structure.
    467  */
    468 static INLINE c_tmgr_t *
    469 mmuC2tmgr(mmuCtbl)
    470 	mmu_short_pte_t *mmuCtbl;
    471 {
    472 	register int idx;
    473 
    474 	/* Which table is this in? */
    475 	idx = (mmuCtbl - mmuCbase) / MMU_C_TBL_SIZE;
    476 #ifdef	PMAP_DEBUG
    477 	if ((idx < 0) || (idx >= NUM_C_TABLES))
    478 		panic("mmuC2tmgr");
    479 #endif
    480 	return (&Ctmgrbase[idx]);
    481 }
    482 
    483 /* This is now a function call below.
    484  * #define pa2pv(pa) \
    485  *	(&pvbase[(unsigned long)\
    486  *		m68k_btop(pa)\
    487  *	])
    488  */
    489 
    490 /* pa2pv			INTERNAL
    491  **
    492  * Return the pv_list_head element which manages the given physical
    493  * address.
    494  */
    495 static INLINE pv_t *
    496 pa2pv(pa)
    497 	vm_offset_t pa;
    498 {
    499 	register struct pmap_physmem_struct *bank;
    500 	register int idx;
    501 
    502 	bank = &avail_mem[0];
    503 	while (pa >= bank->pmem_end)
    504 		bank = bank->pmem_next;
    505 
    506 	pa -= bank->pmem_start;
    507 	idx = bank->pmem_pvbase + m68k_btop(pa);
    508 #ifdef	PMAP_DEBUG
    509 	if ((idx < 0) || (idx >= physmem))
    510 		panic("pa2pv");
    511 #endif
    512 	return &pvbase[idx];
    513 }
    514 
    515 /* pteidx			INTERNAL
    516  **
    517  * Return the index of the given PTE within the entire fixed table of
    518  * PTEs.
    519  */
    520 static INLINE int
    521 pteidx(pte)
    522 	mmu_short_pte_t *pte;
    523 {
    524 	return (pte - kernCbase);
    525 }
    526 
    527 /*
    528  * This just offers a place to put some debugging checks,
    529  * and reduces the number of places "curproc" appears...
    530  */
    531 static INLINE pmap_t
    532 current_pmap()
    533 {
    534 	struct proc *p;
    535 	struct vmspace *vm;
    536 	vm_map_t	map;
    537 	pmap_t	pmap;
    538 
    539 	p = curproc;	/* XXX */
    540 	if (p == NULL)
    541 		pmap = &kernel_pmap;
    542 	else {
    543 		vm = p->p_vmspace;
    544 		map = &vm->vm_map;
    545 		pmap = vm_map_pmap(map);
    546 	}
    547 
    548 	return (pmap);
    549 }
    550 
    551 
    552 /*************************** FUNCTION DEFINITIONS ************************
    553  * These appear here merely for the compiler to enforce type checking on *
    554  * all function calls.                                                   *
    555  *************************************************************************/
    556 
    557 /** External functions
    558  ** - functions used within this module but written elsewhere.
    559  **   both of these functions are in locore.s
    560  ** XXX - These functions were later replaced with their more cryptic
    561  **       hp300 counterparts.  They may be removed now.
    562  **/
    563 #if	0	/* deprecated mmu */
    564 void   mmu_seturp __P((vm_offset_t));
    565 void   mmu_flush __P((int, vm_offset_t));
    566 void   mmu_flusha __P((void));
    567 #endif	/* 0 */
    568 
    569 /** Internal functions
    570  ** Most functions used only within this module are defined in
    571  **   pmap_pvt.h (why not here if used only here?)
    572  **/
    573 static void pmap_page_upload __P((void));
    574 
    575 /** Interface functions
    576  ** - functions required by the Mach VM Pmap interface, with MACHINE_CONTIG
    577  **   defined.
    578  **/
    579 int    pmap_page_index __P((vm_offset_t));
    580 void pmap_pinit __P((pmap_t));
    581 void pmap_release __P((pmap_t));
    582 
    583 /********************************** CODE ********************************
    584  * Functions that are called from other parts of the kernel are labeled *
    585  * as 'INTERFACE' functions.  Functions that are only called from       *
    586  * within the pmap module are labeled as 'INTERNAL' functions.          *
    587  * Functions that are internal, but are not (currently) used at all are *
    588  * labeled 'INTERNAL_X'.                                                *
    589  ************************************************************************/
    590 
    591 /* pmap_bootstrap			INTERNAL
    592  **
    593  * Initializes the pmap system.  Called at boot time from
    594  * locore2.c:_vm_init()
    595  *
    596  * Reminder: having a pmap_bootstrap_alloc() and also having the VM
    597  *           system implement pmap_steal_memory() is redundant.
    598  *           Don't release this code without removing one or the other!
    599  */
    600 void
    601 pmap_bootstrap(nextva)
    602 	vm_offset_t nextva;
    603 {
    604 	struct physmemory *membank;
    605 	struct pmap_physmem_struct *pmap_membank;
    606 	vm_offset_t va, pa, eva;
    607 	int b, c, i, j;	/* running table counts */
    608 	int size, resvmem;
    609 
    610 	/*
    611 	 * This function is called by __bootstrap after it has
    612 	 * determined the type of machine and made the appropriate
    613 	 * patches to the ROM vectors (XXX- I don't quite know what I meant
    614 	 * by that.)  It allocates and sets up enough of the pmap system
    615 	 * to manage the kernel's address space.
    616 	 */
    617 
    618 	/*
    619 	 * Determine the range of kernel virtual and physical
    620 	 * space available. Note that we ABSOLUTELY DEPEND on
    621 	 * the fact that the first bank of memory (4MB) is
    622 	 * mapped linearly to KERNBASE (which we guaranteed in
    623 	 * the first instructions of locore.s).
    624 	 * That is plenty for our bootstrap work.
    625 	 */
    626 	virtual_avail = m68k_round_page(nextva);
    627 	virtual_contig_end = KERNBASE + 0x400000; /* +4MB */
    628 	virtual_end = VM_MAX_KERNEL_ADDRESS;
    629 	/* Don't need avail_start til later. */
    630 
    631 	/* We may now call pmap_bootstrap_alloc(). */
    632 	bootstrap_alloc_enabled = TRUE;
    633 
    634 	/*
    635 	 * This is a somewhat unwrapped loop to deal with
    636 	 * copying the PROM's 'phsymem' banks into the pmap's
    637 	 * banks.  The following is always assumed:
    638 	 * 1. There is always at least one bank of memory.
    639 	 * 2. There is always a last bank of memory, and its
    640 	 *    pmem_next member must be set to NULL.
    641 	 */
    642 	membank = romVectorPtr->v_physmemory;
    643 	pmap_membank = avail_mem;
    644 	total_phys_mem = 0;
    645 
    646 	for (;;) { /* break on !membank */
    647 		pmap_membank->pmem_start = membank->address;
    648 		pmap_membank->pmem_end = membank->address + membank->size;
    649 		total_phys_mem += membank->size;
    650 		membank = membank->next;
    651 		if (!membank)
    652 			break;
    653 		/* This silly syntax arises because pmap_membank
    654 		 * is really a pre-allocated array, but it is put into
    655 		 * use as a linked list.
    656 		 */
    657 		pmap_membank->pmem_next = pmap_membank + 1;
    658 		pmap_membank = pmap_membank->pmem_next;
    659 	}
    660 	/* This is the last element. */
    661 	pmap_membank->pmem_next = NULL;
    662 
    663 	/*
    664 	 * Note: total_phys_mem, physmem represent
    665 	 * actual physical memory, including that
    666 	 * reserved for the PROM monitor.
    667 	 */
    668 	physmem = btoc(total_phys_mem);
    669 
    670 	/*
    671 	 * The last bank of memory should be reduced to prevent the
    672 	 * physical pages needed by the PROM monitor from being used
    673 	 * in the VM system.
    674 	 */
    675 	resvmem = total_phys_mem - *(romVectorPtr->memoryAvail);
    676 	resvmem = m68k_round_page(resvmem);
    677 	pmap_membank->pmem_end -= resvmem;
    678 
    679 	/*
    680 	 * Avail_end is set to the first byte of physical memory
    681 	 * after the end of the last bank.  We use this only to
    682 	 * determine if a physical address is "managed" memory.
    683 	 */
    684 	avail_end = pmap_membank->pmem_end;
    685 
    686 	/*
    687 	 * First allocate enough kernel MMU tables to map all
    688 	 * of kernel virtual space from KERNBASE to 0xFFFFFFFF.
    689 	 * Note: All must be aligned on 256 byte boundaries.
    690 	 * Start with the level-A table (one of those).
    691 	 */
    692 	size = sizeof(mmu_long_dte_t)  * MMU_A_TBL_SIZE;
    693 	kernAbase = pmap_bootstrap_alloc(size);
    694 	bzero(kernAbase, size);
    695 
    696 	/* Now the level-B kernel tables... */
    697 	size = sizeof(mmu_short_dte_t) * MMU_B_TBL_SIZE * KERN_B_TABLES;
    698 	kernBbase = pmap_bootstrap_alloc(size);
    699 	bzero(kernBbase, size);
    700 
    701 	/* Now the level-C kernel tables... */
    702 	size = sizeof(mmu_short_pte_t) * MMU_C_TBL_SIZE * KERN_C_TABLES;
    703 	kernCbase = pmap_bootstrap_alloc(size);
    704 	bzero(kernCbase, size);
    705 	/*
    706 	 * Note: In order for the PV system to work correctly, the kernel
    707 	 * and user-level C tables must be allocated contiguously.
    708 	 * Nothing should be allocated between here and the allocation of
    709 	 * mmuCbase below.  XXX: Should do this as one allocation, and
    710 	 * then compute a pointer for mmuCbase instead of this...
    711 	 *
    712 	 * Allocate user MMU tables.
    713 	 * These must be contiguous with the preceeding.
    714 	 */
    715 
    716 #ifndef	FIXED_NTABLES
    717 	/*
    718 	 * The number of user-level C tables that should be allocated is
    719 	 * related to the size of physical memory.  In general, there should
    720 	 * be enough tables to map four times the amount of available RAM.
    721 	 * The extra amount is needed because some table space is wasted by
    722 	 * fragmentation.
    723 	 */
    724 	NUM_C_TABLES = (total_phys_mem * 4) / (MMU_C_TBL_SIZE * MMU_PAGE_SIZE);
    725 	NUM_B_TABLES = NUM_C_TABLES / 2;
    726 	NUM_A_TABLES = NUM_B_TABLES / 2;
    727 #endif	/* !FIXED_NTABLES */
    728 
    729 	size = sizeof(mmu_short_pte_t) * MMU_C_TBL_SIZE	* NUM_C_TABLES;
    730 	mmuCbase = pmap_bootstrap_alloc(size);
    731 
    732 	size = sizeof(mmu_short_dte_t) * MMU_B_TBL_SIZE	* NUM_B_TABLES;
    733 	mmuBbase = pmap_bootstrap_alloc(size);
    734 
    735 	size = sizeof(mmu_long_dte_t)  * MMU_A_TBL_SIZE * NUM_A_TABLES;
    736 	mmuAbase = pmap_bootstrap_alloc(size);
    737 
    738 	/*
    739 	 * Fill in the never-changing part of the kernel tables.
    740 	 * For simplicity, the kernel's mappings will be editable as a
    741 	 * flat array of page table entries at kernCbase.  The
    742 	 * higher level 'A' and 'B' tables must be initialized to point
    743 	 * to this lower one.
    744 	 */
    745 	b = c = 0;
    746 
    747 	/*
    748 	 * Invalidate all mappings below KERNBASE in the A table.
    749 	 * This area has already been zeroed out, but it is good
    750 	 * practice to explicitly show that we are interpreting
    751 	 * it as a list of A table descriptors.
    752 	 */
    753 	for (i = 0; i < MMU_TIA(KERNBASE); i++) {
    754 		kernAbase[i].addr.raw = 0;
    755 	}
    756 
    757 	/*
    758 	 * Set up the kernel A and B tables so that they will reference the
    759 	 * correct spots in the contiguous table of PTEs allocated for the
    760 	 * kernel's virtual memory space.
    761 	 */
    762 	for (i = MMU_TIA(KERNBASE); i < MMU_A_TBL_SIZE; i++) {
    763 		kernAbase[i].attr.raw =
    764 			MMU_LONG_DTE_LU | MMU_LONG_DTE_SUPV | MMU_DT_SHORT;
    765 		kernAbase[i].addr.raw = mmu_vtop(&kernBbase[b]);
    766 
    767 		for (j=0; j < MMU_B_TBL_SIZE; j++) {
    768 			kernBbase[b + j].attr.raw = mmu_vtop(&kernCbase[c])
    769 				| MMU_DT_SHORT;
    770 			c += MMU_C_TBL_SIZE;
    771 		}
    772 		b += MMU_B_TBL_SIZE;
    773 	}
    774 
    775 	/* XXX - Doing kernel_pmap a little further down. */
    776 
    777 	pmap_alloc_usermmu();	/* Allocate user MMU tables.        */
    778 	pmap_alloc_usertmgr();	/* Allocate user MMU table managers.*/
    779 	pmap_alloc_pv();	/* Allocate physical->virtual map.  */
    780 
    781 	/*
    782 	 * We are now done with pmap_bootstrap_alloc().  Round up
    783 	 * `virtual_avail' to the nearest page, and set the flag
    784 	 * to prevent use of pmap_bootstrap_alloc() hereafter.
    785 	 */
    786 	pmap_bootstrap_aalign(NBPG);
    787 	bootstrap_alloc_enabled = FALSE;
    788 
    789 	/*
    790 	 * Now that we are done with pmap_bootstrap_alloc(), we
    791 	 * must save the virtual and physical addresses of the
    792 	 * end of the linearly mapped range, which are stored in
    793 	 * virtual_contig_end and avail_start, respectively.
    794 	 * These variables will never change after this point.
    795 	 */
    796 	virtual_contig_end = virtual_avail;
    797 	avail_start = virtual_avail - KERNBASE;
    798 
    799 	/*
    800 	 * `avail_next' is a running pointer used by pmap_next_page() to
    801 	 * keep track of the next available physical page to be handed
    802 	 * to the VM system during its initialization, in which it
    803 	 * asks for physical pages, one at a time.
    804 	 */
    805 	avail_next = avail_start;
    806 
    807 	/*
    808 	 * Now allocate some virtual addresses, but not the physical pages
    809 	 * behind them.  Note that virtual_avail is already page-aligned.
    810 	 *
    811 	 * tmp_vpages[] is an array of two virtual pages used for temporary
    812 	 * kernel mappings in the pmap module to facilitate various physical
    813 	 * address-oritented operations.
    814 	 */
    815 	tmp_vpages[0] = virtual_avail;
    816 	virtual_avail += NBPG;
    817 	tmp_vpages[1] = virtual_avail;
    818 	virtual_avail += NBPG;
    819 
    820 	/** Initialize the PV system **/
    821 	pmap_init_pv();
    822 
    823 	/*
    824 	 * Fill in the kernel_pmap structure and kernel_crp.
    825 	 */
    826 	kernAphys = mmu_vtop(kernAbase);
    827 	kernel_pmap.pm_a_tmgr = NULL;
    828 	kernel_pmap.pm_a_phys = kernAphys;
    829 	kernel_pmap.pm_refcount = 1; /* always in use */
    830 	simple_lock_init(&kernel_pmap.pm_lock);
    831 
    832 	kernel_crp.rp_attr = MMU_LONG_DTE_LU | MMU_DT_LONG;
    833 	kernel_crp.rp_addr = kernAphys;
    834 
    835 	/*
    836 	 * Now pmap_enter_kernel() may be used safely and will be
    837 	 * the main interface used hereafter to modify the kernel's
    838 	 * virtual address space.  Note that since we are still running
    839 	 * under the PROM's address table, none of these table modifications
    840 	 * actually take effect until pmap_takeover_mmu() is called.
    841 	 *
    842 	 * Note: Our tables do NOT have the PROM linear mappings!
    843 	 * Only the mappings created here exist in our tables, so
    844 	 * remember to map anything we expect to use.
    845 	 */
    846 	va = (vm_offset_t) KERNBASE;
    847 	pa = 0;
    848 
    849 	/*
    850 	 * The first page of the kernel virtual address space is the msgbuf
    851 	 * page.  The page attributes (data, non-cached) are set here, while
    852 	 * the address is assigned to this global pointer in cpu_startup().
    853 	 * It is non-cached, mostly due to paranoia.
    854 	 */
    855 	pmap_enter_kernel(va, pa|PMAP_NC, VM_PROT_ALL);
    856 	va += NBPG; pa += NBPG;
    857 
    858 	/* Next page is used as the temporary stack. */
    859 	pmap_enter_kernel(va, pa, VM_PROT_ALL);
    860 	va += NBPG; pa += NBPG;
    861 
    862 	/*
    863 	 * Map all of the kernel's text segment as read-only and cacheable.
    864 	 * (Cacheable is implied by default).  Unfortunately, the last bytes
    865 	 * of kernel text and the first bytes of kernel data will often be
    866 	 * sharing the same page.  Therefore, the last page of kernel text
    867 	 * has to be mapped as read/write, to accomodate the data.
    868 	 */
    869 	eva = m68k_trunc_page((vm_offset_t)etext);
    870 	for (; va < eva; va += NBPG, pa += NBPG)
    871 		pmap_enter_kernel(va, pa, VM_PROT_READ|VM_PROT_EXECUTE);
    872 
    873 	/*
    874 	 * Map all of the kernel's data as read/write and cacheable.
    875 	 * This includes: data, BSS, symbols, and everything in the
    876 	 * contiguous memory used by pmap_bootstrap_alloc()
    877 	 */
    878 	for (; pa < avail_start; va += NBPG, pa += NBPG)
    879 		pmap_enter_kernel(va, pa, VM_PROT_READ|VM_PROT_WRITE);
    880 
    881 	/*
    882 	 * At this point we are almost ready to take over the MMU.  But first
    883 	 * we must save the PROM's address space in our map, as we call its
    884 	 * routines and make references to its data later in the kernel.
    885 	 */
    886 	pmap_bootstrap_copyprom();
    887 	pmap_takeover_mmu();
    888 	pmap_bootstrap_setprom();
    889 
    890 	/* Notify the VM system of our page size. */
    891 	PAGE_SIZE = NBPG;
    892 	uvm_setpagesize();
    893 
    894 	pmap_page_upload();
    895 }
    896 
    897 
    898 /* pmap_alloc_usermmu			INTERNAL
    899  **
    900  * Called from pmap_bootstrap() to allocate MMU tables that will
    901  * eventually be used for user mappings.
    902  */
    903 void
    904 pmap_alloc_usermmu()
    905 {
    906 	/* XXX: Moved into caller. */
    907 }
    908 
    909 /* pmap_alloc_pv			INTERNAL
    910  **
    911  * Called from pmap_bootstrap() to allocate the physical
    912  * to virtual mapping list.  Each physical page of memory
    913  * in the system has a corresponding element in this list.
    914  */
    915 void
    916 pmap_alloc_pv()
    917 {
    918 	int	i;
    919 	unsigned int	total_mem;
    920 
    921 	/*
    922 	 * Allocate a pv_head structure for every page of physical
    923 	 * memory that will be managed by the system.  Since memory on
    924 	 * the 3/80 is non-contiguous, we cannot arrive at a total page
    925 	 * count by subtraction of the lowest available address from the
    926 	 * highest, but rather we have to step through each memory
    927 	 * bank and add the number of pages in each to the total.
    928 	 *
    929 	 * At this time we also initialize the offset of each bank's
    930 	 * starting pv_head within the pv_head list so that the physical
    931 	 * memory state routines (pmap_is_referenced(),
    932 	 * pmap_is_modified(), et al.) can quickly find coresponding
    933 	 * pv_heads in spite of the non-contiguity.
    934 	 */
    935 	total_mem = 0;
    936 	for (i = 0; i < SUN3X_NPHYS_RAM_SEGS; i++) {
    937 		avail_mem[i].pmem_pvbase = m68k_btop(total_mem);
    938 		total_mem += avail_mem[i].pmem_end -
    939 			avail_mem[i].pmem_start;
    940 		if (avail_mem[i].pmem_next == NULL)
    941 			break;
    942 	}
    943 	pvbase = (pv_t *) pmap_bootstrap_alloc(sizeof(pv_t) *
    944 		m68k_btop(total_phys_mem));
    945 }
    946 
    947 /* pmap_alloc_usertmgr			INTERNAL
    948  **
    949  * Called from pmap_bootstrap() to allocate the structures which
    950  * facilitate management of user MMU tables.  Each user MMU table
    951  * in the system has one such structure associated with it.
    952  */
    953 void
    954 pmap_alloc_usertmgr()
    955 {
    956 	/* Allocate user MMU table managers */
    957 	/* It would be a lot simpler to just make these BSS, but */
    958 	/* we may want to change their size at boot time... -j */
    959 	Atmgrbase = (a_tmgr_t *) pmap_bootstrap_alloc(sizeof(a_tmgr_t)
    960 		* NUM_A_TABLES);
    961 	Btmgrbase = (b_tmgr_t *) pmap_bootstrap_alloc(sizeof(b_tmgr_t)
    962 		* NUM_B_TABLES);
    963 	Ctmgrbase = (c_tmgr_t *) pmap_bootstrap_alloc(sizeof(c_tmgr_t)
    964 		* NUM_C_TABLES);
    965 
    966 	/*
    967 	 * Allocate PV list elements for the physical to virtual
    968 	 * mapping system.
    969 	 */
    970 	pvebase = (pv_elem_t *) pmap_bootstrap_alloc(
    971 		sizeof(pv_elem_t) * (NUM_USER_PTES + NUM_KERN_PTES));
    972 }
    973 
    974 /* pmap_bootstrap_copyprom()			INTERNAL
    975  **
    976  * Copy the PROM mappings into our own tables.  Note, we
    977  * can use physical addresses until __bootstrap returns.
    978  */
    979 void
    980 pmap_bootstrap_copyprom()
    981 {
    982 	struct sunromvec *romp;
    983 	int *mon_ctbl;
    984 	mmu_short_pte_t *kpte;
    985 	int i, len;
    986 
    987 	romp = romVectorPtr;
    988 
    989 	/*
    990 	 * Copy the mappings in SUN3X_MON_KDB_BASE...SUN3X_MONEND
    991 	 * Note: mon_ctbl[0] maps SUN3X_MON_KDB_BASE
    992 	 */
    993 	mon_ctbl = *romp->monptaddr;
    994 	i = m68k_btop(SUN3X_MON_KDB_BASE - KERNBASE);
    995 	kpte = &kernCbase[i];
    996 	len = m68k_btop(SUN3X_MONEND - SUN3X_MON_KDB_BASE);
    997 
    998 	for (i = 0; i < len; i++) {
    999 		kpte[i].attr.raw = mon_ctbl[i];
   1000 	}
   1001 
   1002 	/*
   1003 	 * Copy the mappings at MON_DVMA_BASE (to the end).
   1004 	 * Note, in here, mon_ctbl[0] maps MON_DVMA_BASE.
   1005 	 * Actually, we only want the last page, which the
   1006 	 * PROM has set up for use by the "ie" driver.
   1007 	 * (The i82686 needs its SCP there.)
   1008 	 * If we copy all the mappings, pmap_enter_kernel
   1009 	 * may complain about finding valid PTEs that are
   1010 	 * not recorded in our PV lists...
   1011 	 */
   1012 	mon_ctbl = *romp->shadowpteaddr;
   1013 	i = m68k_btop(SUN3X_MON_DVMA_BASE - KERNBASE);
   1014 	kpte = &kernCbase[i];
   1015 	len = m68k_btop(SUN3X_MON_DVMA_SIZE);
   1016 	for (i = (len-1); i < len; i++) {
   1017 		kpte[i].attr.raw = mon_ctbl[i];
   1018 	}
   1019 }
   1020 
   1021 /* pmap_takeover_mmu			INTERNAL
   1022  **
   1023  * Called from pmap_bootstrap() after it has copied enough of the
   1024  * PROM mappings into the kernel map so that we can use our own
   1025  * MMU table.
   1026  */
   1027 void
   1028 pmap_takeover_mmu()
   1029 {
   1030 
   1031 	loadcrp(&kernel_crp);
   1032 }
   1033 
   1034 /* pmap_bootstrap_setprom()			INTERNAL
   1035  **
   1036  * Set the PROM mappings so it can see kernel space.
   1037  * Note that physical addresses are used here, which
   1038  * we can get away with because this runs with the
   1039  * low 1GB set for transparent translation.
   1040  */
   1041 void
   1042 pmap_bootstrap_setprom()
   1043 {
   1044 	mmu_long_dte_t *mon_dte;
   1045 	extern struct mmu_rootptr mon_crp;
   1046 	int i;
   1047 
   1048 	mon_dte = (mmu_long_dte_t *) mon_crp.rp_addr;
   1049 	for (i = MMU_TIA(KERNBASE); i < MMU_TIA(KERN_END); i++) {
   1050 		mon_dte[i].attr.raw = kernAbase[i].attr.raw;
   1051 		mon_dte[i].addr.raw = kernAbase[i].addr.raw;
   1052 	}
   1053 }
   1054 
   1055 
   1056 /* pmap_init			INTERFACE
   1057  **
   1058  * Called at the end of vm_init() to set up the pmap system to go
   1059  * into full time operation.  All initialization of kernel_pmap
   1060  * should be already done by now, so this should just do things
   1061  * needed for user-level pmaps to work.
   1062  */
   1063 void
   1064 pmap_init()
   1065 {
   1066 	/** Initialize the manager pools **/
   1067 	TAILQ_INIT(&a_pool);
   1068 	TAILQ_INIT(&b_pool);
   1069 	TAILQ_INIT(&c_pool);
   1070 
   1071 	/**************************************************************
   1072 	 * Initialize all tmgr structures and MMU tables they manage. *
   1073 	 **************************************************************/
   1074 	/** Initialize A tables **/
   1075 	pmap_init_a_tables();
   1076 	/** Initialize B tables **/
   1077 	pmap_init_b_tables();
   1078 	/** Initialize C tables **/
   1079 	pmap_init_c_tables();
   1080 }
   1081 
   1082 /* pmap_init_a_tables()			INTERNAL
   1083  **
   1084  * Initializes all A managers, their MMU A tables, and inserts
   1085  * them into the A manager pool for use by the system.
   1086  */
   1087 void
   1088 pmap_init_a_tables()
   1089 {
   1090 	int i;
   1091 	a_tmgr_t *a_tbl;
   1092 
   1093 	for (i=0; i < NUM_A_TABLES; i++) {
   1094 		/* Select the next available A manager from the pool */
   1095 		a_tbl = &Atmgrbase[i];
   1096 
   1097 		/*
   1098 		 * Clear its parent entry.  Set its wired and valid
   1099 		 * entry count to zero.
   1100 		 */
   1101 		a_tbl->at_parent = NULL;
   1102 		a_tbl->at_wcnt = a_tbl->at_ecnt = 0;
   1103 
   1104 		/* Assign it the next available MMU A table from the pool */
   1105 		a_tbl->at_dtbl = &mmuAbase[i * MMU_A_TBL_SIZE];
   1106 
   1107 		/*
   1108 		 * Initialize the MMU A table with the table in the `proc0',
   1109 		 * or kernel, mapping.  This ensures that every process has
   1110 		 * the kernel mapped in the top part of its address space.
   1111 		 */
   1112 		bcopy(kernAbase, a_tbl->at_dtbl, MMU_A_TBL_SIZE *
   1113 			sizeof(mmu_long_dte_t));
   1114 
   1115 		/*
   1116 		 * Finally, insert the manager into the A pool,
   1117 		 * making it ready to be used by the system.
   1118 		 */
   1119 		TAILQ_INSERT_TAIL(&a_pool, a_tbl, at_link);
   1120     }
   1121 }
   1122 
   1123 /* pmap_init_b_tables()			INTERNAL
   1124  **
   1125  * Initializes all B table managers, their MMU B tables, and
   1126  * inserts them into the B manager pool for use by the system.
   1127  */
   1128 void
   1129 pmap_init_b_tables()
   1130 {
   1131 	int i,j;
   1132 	b_tmgr_t *b_tbl;
   1133 
   1134 	for (i=0; i < NUM_B_TABLES; i++) {
   1135 		/* Select the next available B manager from the pool */
   1136 		b_tbl = &Btmgrbase[i];
   1137 
   1138 		b_tbl->bt_parent = NULL;	/* clear its parent,  */
   1139 		b_tbl->bt_pidx = 0;		/* parent index,      */
   1140 		b_tbl->bt_wcnt = 0;		/* wired entry count, */
   1141 		b_tbl->bt_ecnt = 0;		/* valid entry count. */
   1142 
   1143 		/* Assign it the next available MMU B table from the pool */
   1144 		b_tbl->bt_dtbl = &mmuBbase[i * MMU_B_TBL_SIZE];
   1145 
   1146 		/* Invalidate every descriptor in the table */
   1147 		for (j=0; j < MMU_B_TBL_SIZE; j++)
   1148 			b_tbl->bt_dtbl[j].attr.raw = MMU_DT_INVALID;
   1149 
   1150 		/* Insert the manager into the B pool */
   1151 		TAILQ_INSERT_TAIL(&b_pool, b_tbl, bt_link);
   1152 	}
   1153 }
   1154 
   1155 /* pmap_init_c_tables()			INTERNAL
   1156  **
   1157  * Initializes all C table managers, their MMU C tables, and
   1158  * inserts them into the C manager pool for use by the system.
   1159  */
   1160 void
   1161 pmap_init_c_tables()
   1162 {
   1163 	int i,j;
   1164 	c_tmgr_t *c_tbl;
   1165 
   1166 	for (i=0; i < NUM_C_TABLES; i++) {
   1167 		/* Select the next available C manager from the pool */
   1168 		c_tbl = &Ctmgrbase[i];
   1169 
   1170 		c_tbl->ct_parent = NULL;	/* clear its parent,  */
   1171 		c_tbl->ct_pidx = 0;		/* parent index,      */
   1172 		c_tbl->ct_wcnt = 0;		/* wired entry count, */
   1173 		c_tbl->ct_ecnt = 0;		/* valid entry count, */
   1174 		c_tbl->ct_pmap = NULL;		/* parent pmap,       */
   1175 		c_tbl->ct_va = 0;		/* base of managed range */
   1176 
   1177 		/* Assign it the next available MMU C table from the pool */
   1178 		c_tbl->ct_dtbl = &mmuCbase[i * MMU_C_TBL_SIZE];
   1179 
   1180 		for (j=0; j < MMU_C_TBL_SIZE; j++)
   1181 			c_tbl->ct_dtbl[j].attr.raw = MMU_DT_INVALID;
   1182 
   1183 		TAILQ_INSERT_TAIL(&c_pool, c_tbl, ct_link);
   1184 	}
   1185 }
   1186 
   1187 /* pmap_init_pv()			INTERNAL
   1188  **
   1189  * Initializes the Physical to Virtual mapping system.
   1190  */
   1191 void
   1192 pmap_init_pv()
   1193 {
   1194 	int	i;
   1195 
   1196 	/* Initialize every PV head. */
   1197 	for (i = 0; i < m68k_btop(total_phys_mem); i++) {
   1198 		pvbase[i].pv_idx = PVE_EOL;	/* Indicate no mappings */
   1199 		pvbase[i].pv_flags = 0;		/* Zero out page flags  */
   1200 	}
   1201 
   1202 	pv_initialized = TRUE;
   1203 }
   1204 
   1205 /* get_a_table			INTERNAL
   1206  **
   1207  * Retrieve and return a level A table for use in a user map.
   1208  */
   1209 a_tmgr_t *
   1210 get_a_table()
   1211 {
   1212 	a_tmgr_t *tbl;
   1213 	pmap_t pmap;
   1214 
   1215 	/* Get the top A table in the pool */
   1216 	tbl = a_pool.tqh_first;
   1217 	if (tbl == NULL) {
   1218 		/*
   1219 		 * XXX - Instead of panicing here and in other get_x_table
   1220 		 * functions, we do have the option of sleeping on the head of
   1221 		 * the table pool.  Any function which updates the table pool
   1222 		 * would then issue a wakeup() on the head, thus waking up any
   1223 		 * processes waiting for a table.
   1224 		 *
   1225 		 * Actually, the place to sleep would be when some process
   1226 		 * asks for a "wired" mapping that would run us short of
   1227 		 * mapping resources.  This design DEPENDS on always having
   1228 		 * some mapping resources in the pool for stealing, so we
   1229 		 * must make sure we NEVER let the pool become empty. -gwr
   1230 		 */
   1231 		panic("get_a_table: out of A tables.");
   1232 	}
   1233 
   1234 	TAILQ_REMOVE(&a_pool, tbl, at_link);
   1235 	/*
   1236 	 * If the table has a non-null parent pointer then it is in use.
   1237 	 * Forcibly abduct it from its parent and clear its entries.
   1238 	 * No re-entrancy worries here.  This table would not be in the
   1239 	 * table pool unless it was available for use.
   1240 	 *
   1241 	 * Note that the second argument to free_a_table() is FALSE.  This
   1242 	 * indicates that the table should not be relinked into the A table
   1243 	 * pool.  That is a job for the function that called us.
   1244 	 */
   1245 	if (tbl->at_parent) {
   1246 		pmap = tbl->at_parent;
   1247 		free_a_table(tbl, FALSE);
   1248 		pmap->pm_a_tmgr = NULL;
   1249 		pmap->pm_a_phys = kernAphys;
   1250 	}
   1251 #ifdef  NON_REENTRANT
   1252 	/*
   1253 	 * If the table isn't to be wired down, re-insert it at the
   1254 	 * end of the pool.
   1255 	 */
   1256 	if (!wired)
   1257 		/*
   1258 		 * Quandary - XXX
   1259 		 * Would it be better to let the calling function insert this
   1260 		 * table into the queue?  By inserting it here, we are allowing
   1261 		 * it to be stolen immediately.  The calling function is
   1262 		 * probably not expecting to use a table that it is not
   1263 		 * assured full control of.
   1264 		 * Answer - In the intrest of re-entrancy, it is best to let
   1265 		 * the calling function determine when a table is available
   1266 		 * for use.  Therefore this code block is not used.
   1267 		 */
   1268 		TAILQ_INSERT_TAIL(&a_pool, tbl, at_link);
   1269 #endif	/* NON_REENTRANT */
   1270 	return tbl;
   1271 }
   1272 
   1273 /* get_b_table			INTERNAL
   1274  **
   1275  * Return a level B table for use.
   1276  */
   1277 b_tmgr_t *
   1278 get_b_table()
   1279 {
   1280 	b_tmgr_t *tbl;
   1281 
   1282 	/* See 'get_a_table' for comments. */
   1283 	tbl = b_pool.tqh_first;
   1284 	if (tbl == NULL)
   1285 		panic("get_b_table: out of B tables.");
   1286 	TAILQ_REMOVE(&b_pool, tbl, bt_link);
   1287 	if (tbl->bt_parent) {
   1288 		tbl->bt_parent->at_dtbl[tbl->bt_pidx].attr.raw = MMU_DT_INVALID;
   1289 		tbl->bt_parent->at_ecnt--;
   1290 		free_b_table(tbl, FALSE);
   1291 	}
   1292 #ifdef	NON_REENTRANT
   1293 	if (!wired)
   1294 		/* XXX see quandary in get_b_table */
   1295 		/* XXX start lock */
   1296 		TAILQ_INSERT_TAIL(&b_pool, tbl, bt_link);
   1297 		/* XXX end lock */
   1298 #endif	/* NON_REENTRANT */
   1299 	return tbl;
   1300 }
   1301 
   1302 /* get_c_table			INTERNAL
   1303  **
   1304  * Return a level C table for use.
   1305  */
   1306 c_tmgr_t *
   1307 get_c_table()
   1308 {
   1309 	c_tmgr_t *tbl;
   1310 
   1311 	/* See 'get_a_table' for comments */
   1312 	tbl = c_pool.tqh_first;
   1313 	if (tbl == NULL)
   1314 		panic("get_c_table: out of C tables.");
   1315 	TAILQ_REMOVE(&c_pool, tbl, ct_link);
   1316 	if (tbl->ct_parent) {
   1317 		tbl->ct_parent->bt_dtbl[tbl->ct_pidx].attr.raw = MMU_DT_INVALID;
   1318 		tbl->ct_parent->bt_ecnt--;
   1319 		free_c_table(tbl, FALSE);
   1320 	}
   1321 #ifdef	NON_REENTRANT
   1322 	if (!wired)
   1323 		/* XXX See quandary in get_a_table */
   1324 		/* XXX start lock */
   1325 		TAILQ_INSERT_TAIL(&c_pool, tbl, c_link);
   1326 		/* XXX end lock */
   1327 #endif	/* NON_REENTRANT */
   1328 
   1329 	return tbl;
   1330 }
   1331 
   1332 /*
   1333  * The following 'free_table' and 'steal_table' functions are called to
   1334  * detach tables from their current obligations (parents and children) and
   1335  * prepare them for reuse in another mapping.
   1336  *
   1337  * Free_table is used when the calling function will handle the fate
   1338  * of the parent table, such as returning it to the free pool when it has
   1339  * no valid entries.  Functions that do not want to handle this should
   1340  * call steal_table, in which the parent table's descriptors and entry
   1341  * count are automatically modified when this table is removed.
   1342  */
   1343 
   1344 /* free_a_table			INTERNAL
   1345  **
   1346  * Unmaps the given A table and all child tables from their current
   1347  * mappings.  Returns the number of pages that were invalidated.
   1348  * If 'relink' is true, the function will return the table to the head
   1349  * of the available table pool.
   1350  *
   1351  * Cache note: The MC68851 will automatically flush all
   1352  * descriptors derived from a given A table from its
   1353  * Automatic Translation Cache (ATC) if we issue a
   1354  * 'PFLUSHR' instruction with the base address of the
   1355  * table.  This function should do, and does so.
   1356  * Note note: We are using an MC68030 - there is no
   1357  * PFLUSHR.
   1358  */
   1359 int
   1360 free_a_table(a_tbl, relink)
   1361 	a_tmgr_t *a_tbl;
   1362 	boolean_t relink;
   1363 {
   1364 	int i, removed_cnt;
   1365 	mmu_long_dte_t	*dte;
   1366 	mmu_short_dte_t *dtbl;
   1367 	b_tmgr_t	*tmgr;
   1368 
   1369 	/*
   1370 	 * Flush the ATC cache of all cached descriptors derived
   1371 	 * from this table.
   1372 	 * Sun3x does not use 68851's cached table feature
   1373 	 * flush_atc_crp(mmu_vtop(a_tbl->dte));
   1374 	 */
   1375 
   1376 	/*
   1377 	 * Remove any pending cache flushes that were designated
   1378 	 * for the pmap this A table belongs to.
   1379 	 * a_tbl->parent->atc_flushq[0] = 0;
   1380 	 * Not implemented in sun3x.
   1381 	 */
   1382 
   1383 	/*
   1384 	 * All A tables in the system should retain a map for the
   1385 	 * kernel. If the table contains any valid descriptors
   1386 	 * (other than those for the kernel area), invalidate them all,
   1387 	 * stopping short of the kernel's entries.
   1388 	 */
   1389 	removed_cnt = 0;
   1390 	if (a_tbl->at_ecnt) {
   1391 		dte = a_tbl->at_dtbl;
   1392 		for (i=0; i < MMU_TIA(KERNBASE); i++) {
   1393 			/*
   1394 			 * If a table entry points to a valid B table, free
   1395 			 * it and its children.
   1396 			 */
   1397 			if (MMU_VALID_DT(dte[i])) {
   1398 				/*
   1399 				 * The following block does several things,
   1400 				 * from innermost expression to the
   1401 				 * outermost:
   1402 				 * 1) It extracts the base (cc 1996)
   1403 				 *    address of the B table pointed
   1404 				 *    to in the A table entry dte[i].
   1405 				 * 2) It converts this base address into
   1406 				 *    the virtual address it can be
   1407 				 *    accessed with. (all MMU tables point
   1408 				 *    to physical addresses.)
   1409 				 * 3) It finds the corresponding manager
   1410 				 *    structure which manages this MMU table.
   1411 				 * 4) It frees the manager structure.
   1412 				 *    (This frees the MMU table and all
   1413 				 *    child tables. See 'free_b_table' for
   1414 				 *    details.)
   1415 				 */
   1416 				dtbl = mmu_ptov(dte[i].addr.raw);
   1417 				tmgr = mmuB2tmgr(dtbl);
   1418 				removed_cnt += free_b_table(tmgr, TRUE);
   1419 				dte[i].attr.raw = MMU_DT_INVALID;
   1420 			}
   1421 		}
   1422 		a_tbl->at_ecnt = 0;
   1423 	}
   1424 	if (relink) {
   1425 		a_tbl->at_parent = NULL;
   1426 		TAILQ_REMOVE(&a_pool, a_tbl, at_link);
   1427 		TAILQ_INSERT_HEAD(&a_pool, a_tbl, at_link);
   1428 	}
   1429 	return removed_cnt;
   1430 }
   1431 
   1432 /* free_b_table			INTERNAL
   1433  **
   1434  * Unmaps the given B table and all its children from their current
   1435  * mappings.  Returns the number of pages that were invalidated.
   1436  * (For comments, see 'free_a_table()').
   1437  */
   1438 int
   1439 free_b_table(b_tbl, relink)
   1440 	b_tmgr_t *b_tbl;
   1441 	boolean_t relink;
   1442 {
   1443 	int i, removed_cnt;
   1444 	mmu_short_dte_t *dte;
   1445 	mmu_short_pte_t	*dtbl;
   1446 	c_tmgr_t	*tmgr;
   1447 
   1448 	removed_cnt = 0;
   1449 	if (b_tbl->bt_ecnt) {
   1450 		dte = b_tbl->bt_dtbl;
   1451 		for (i=0; i < MMU_B_TBL_SIZE; i++) {
   1452 			if (MMU_VALID_DT(dte[i])) {
   1453 				dtbl = mmu_ptov(MMU_DTE_PA(dte[i]));
   1454 				tmgr = mmuC2tmgr(dtbl);
   1455 				removed_cnt += free_c_table(tmgr, TRUE);
   1456 				dte[i].attr.raw = MMU_DT_INVALID;
   1457 			}
   1458 		}
   1459 		b_tbl->bt_ecnt = 0;
   1460 	}
   1461 
   1462 	if (relink) {
   1463 		b_tbl->bt_parent = NULL;
   1464 		TAILQ_REMOVE(&b_pool, b_tbl, bt_link);
   1465 		TAILQ_INSERT_HEAD(&b_pool, b_tbl, bt_link);
   1466 	}
   1467 	return removed_cnt;
   1468 }
   1469 
   1470 /* free_c_table			INTERNAL
   1471  **
   1472  * Unmaps the given C table from use and returns it to the pool for
   1473  * re-use.  Returns the number of pages that were invalidated.
   1474  *
   1475  * This function preserves any physical page modification information
   1476  * contained in the page descriptors within the C table by calling
   1477  * 'pmap_remove_pte().'
   1478  */
   1479 int
   1480 free_c_table(c_tbl, relink)
   1481 	c_tmgr_t *c_tbl;
   1482 	boolean_t relink;
   1483 {
   1484 	int i, removed_cnt;
   1485 
   1486 	removed_cnt = 0;
   1487 	if (c_tbl->ct_ecnt) {
   1488 		for (i=0; i < MMU_C_TBL_SIZE; i++) {
   1489 			if (MMU_VALID_DT(c_tbl->ct_dtbl[i])) {
   1490 				pmap_remove_pte(&c_tbl->ct_dtbl[i]);
   1491 				removed_cnt++;
   1492 			}
   1493 		}
   1494 		c_tbl->ct_ecnt = 0;
   1495 	}
   1496 
   1497 	if (relink) {
   1498 		c_tbl->ct_parent = NULL;
   1499 		TAILQ_REMOVE(&c_pool, c_tbl, ct_link);
   1500 		TAILQ_INSERT_HEAD(&c_pool, c_tbl, ct_link);
   1501 	}
   1502 	return removed_cnt;
   1503 }
   1504 
   1505 #if 0
   1506 /* free_c_table_novalid			INTERNAL
   1507  **
   1508  * Frees the given C table manager without checking to see whether
   1509  * or not it contains any valid page descriptors as it is assumed
   1510  * that it does not.
   1511  */
   1512 void
   1513 free_c_table_novalid(c_tbl)
   1514 	c_tmgr_t *c_tbl;
   1515 {
   1516 	TAILQ_REMOVE(&c_pool, c_tbl, ct_link);
   1517 	TAILQ_INSERT_HEAD(&c_pool, c_tbl, ct_link);
   1518 	c_tbl->ct_parent->bt_dtbl[c_tbl->ct_pidx].attr.raw = MMU_DT_INVALID;
   1519 	c_tbl->ct_parent->bt_ecnt--;
   1520 	/*
   1521 	 * XXX - Should call equiv. of 'free_b_table_novalid' here if
   1522 	 * we just removed the last entry of the parent B table.
   1523 	 * But I want to insure that this will not endanger pmap_enter()
   1524 	 * with sudden removal of tables it is working with.
   1525 	 *
   1526 	 * We should probably add another field to each table, indicating
   1527 	 * whether or not it is 'locked', ie. in the process of being
   1528 	 * modified.
   1529 	 */
   1530 	c_tbl->ct_parent = NULL;
   1531 }
   1532 #endif
   1533 
   1534 /* pmap_remove_pte			INTERNAL
   1535  **
   1536  * Unmap the given pte and preserve any page modification
   1537  * information by transfering it to the pv head of the
   1538  * physical page it maps to.  This function does not update
   1539  * any reference counts because it is assumed that the calling
   1540  * function will do so.
   1541  */
   1542 void
   1543 pmap_remove_pte(pte)
   1544 	mmu_short_pte_t *pte;
   1545 {
   1546 	u_short     pv_idx, targ_idx;
   1547 	int         s;
   1548 	vm_offset_t pa;
   1549 	pv_t       *pv;
   1550 
   1551 	pa = MMU_PTE_PA(*pte);
   1552 	if (is_managed(pa)) {
   1553 		pv = pa2pv(pa);
   1554 		targ_idx = pteidx(pte);	/* Index of PTE being removed    */
   1555 
   1556 		/*
   1557 		 * If the PTE being removed is the first (or only) PTE in
   1558 		 * the list of PTEs currently mapped to this page, remove the
   1559 		 * PTE by changing the index found on the PV head.  Otherwise
   1560 		 * a linear search through the list will have to be executed
   1561 		 * in order to find the PVE which points to the PTE being
   1562 		 * removed, so that it may be modified to point to its new
   1563 		 * neighbor.
   1564 		 */
   1565 		s = splimp();
   1566 		pv_idx = pv->pv_idx;	/* Index of first PTE in PV list */
   1567 		if (pv_idx == targ_idx) {
   1568 			pv->pv_idx = pvebase[targ_idx].pve_next;
   1569 		} else {
   1570 			/*
   1571 			 * Find the PV element pointing to the target
   1572 			 * element.  Note: may have pv_idx==PVE_EOL
   1573 			 */
   1574 			for (;;) {
   1575 				if (pv_idx == PVE_EOL) {
   1576 #ifdef	PMAP_DEBUG
   1577 					printf("pmap_remove_pte: PVE_EOL\n");
   1578 					Debugger();
   1579 #endif
   1580 					goto pv_not_found;
   1581 				}
   1582 				if (pvebase[pv_idx].pve_next == targ_idx)
   1583 					break;
   1584 				pv_idx = pvebase[pv_idx].pve_next;
   1585 			}
   1586 			/*
   1587 			 * At this point, pv_idx is the index of the PV
   1588 			 * element just before the target element in the list.
   1589 			 * Unlink the target.
   1590 			 */
   1591 			pvebase[pv_idx].pve_next = pvebase[targ_idx].pve_next;
   1592 		pv_not_found:
   1593 		}
   1594 		/*
   1595 		 * Save the mod/ref bits of the pte by simply
   1596 		 * ORing the entire pte onto the pv_flags member
   1597 		 * of the pv structure.
   1598 		 * There is no need to use a separate bit pattern
   1599 		 * for usage information on the pv head than that
   1600 		 * which is used on the MMU ptes.
   1601 		 */
   1602 		pv->pv_flags |= (u_short) pte->attr.raw;
   1603 		splx(s);
   1604 	}
   1605 
   1606 	pte->attr.raw = MMU_DT_INVALID;
   1607 }
   1608 
   1609 /* pmap_stroll			INTERNAL
   1610  **
   1611  * Retrieve the addresses of all table managers involved in the mapping of
   1612  * the given virtual address.  If the table walk completed sucessfully,
   1613  * return TRUE.  If it was only partially sucessful, return FALSE.
   1614  * The table walk performed by this function is important to many other
   1615  * functions in this module.
   1616  *
   1617  * Note: This function ought to be easier to read.
   1618  */
   1619 boolean_t
   1620 pmap_stroll(pmap, va, a_tbl, b_tbl, c_tbl, pte, a_idx, b_idx, pte_idx)
   1621 	pmap_t pmap;
   1622 	vm_offset_t va;
   1623 	a_tmgr_t **a_tbl;
   1624 	b_tmgr_t **b_tbl;
   1625 	c_tmgr_t **c_tbl;
   1626 	mmu_short_pte_t **pte;
   1627 	int *a_idx, *b_idx, *pte_idx;
   1628 {
   1629 	mmu_long_dte_t *a_dte;   /* A: long descriptor table          */
   1630 	mmu_short_dte_t *b_dte;  /* B: short descriptor table         */
   1631 
   1632 	if (pmap == pmap_kernel())
   1633 		return FALSE;
   1634 
   1635 	/* Does the given pmap have its own A table? */
   1636 	*a_tbl = pmap->pm_a_tmgr;
   1637 	if (*a_tbl == NULL)
   1638 		return FALSE; /* No.  Return unknown. */
   1639 	/* Does the A table have a valid B table
   1640 	 * under the corresponding table entry?
   1641 	 */
   1642 	*a_idx = MMU_TIA(va);
   1643 	a_dte = &((*a_tbl)->at_dtbl[*a_idx]);
   1644 	if (!MMU_VALID_DT(*a_dte))
   1645 		return FALSE; /* No. Return unknown. */
   1646 	/* Yes. Extract B table from the A table. */
   1647 	*b_tbl = mmuB2tmgr(mmu_ptov(a_dte->addr.raw));
   1648 	/* Does the B table have a valid C table
   1649 	 * under the corresponding table entry?
   1650 	 */
   1651 	*b_idx = MMU_TIB(va);
   1652 	b_dte = &((*b_tbl)->bt_dtbl[*b_idx]);
   1653 	if (!MMU_VALID_DT(*b_dte))
   1654 		return FALSE; /* No. Return unknown. */
   1655 	/* Yes. Extract C table from the B table. */
   1656 	*c_tbl = mmuC2tmgr(mmu_ptov(MMU_DTE_PA(*b_dte)));
   1657 	*pte_idx = MMU_TIC(va);
   1658 	*pte = &((*c_tbl)->ct_dtbl[*pte_idx]);
   1659 
   1660 	return	TRUE;
   1661 }
   1662 
   1663 /* pmap_enter			INTERFACE
   1664  **
   1665  * Called by the kernel to map a virtual address
   1666  * to a physical address in the given process map.
   1667  *
   1668  * Note: this function should apply an exclusive lock
   1669  * on the pmap system for its duration.  (it certainly
   1670  * would save my hair!!)
   1671  * This function ought to be easier to read.
   1672  */
   1673 int
   1674 pmap_enter(pmap, va, pa, prot, flags)
   1675 	pmap_t	pmap;
   1676 	vm_offset_t va;
   1677 	vm_offset_t pa;
   1678 	vm_prot_t prot;
   1679 	int flags;
   1680 {
   1681 	boolean_t insert, managed; /* Marks the need for PV insertion.*/
   1682 	u_short nidx;            /* PV list index                     */
   1683 	int s;                   /* Used for splimp()/splx()          */
   1684 	int mapflags;            /* Flags for the mapping (see NOTE1) */
   1685 	u_int a_idx, b_idx, pte_idx; /* table indices                 */
   1686 	a_tmgr_t *a_tbl;         /* A: long descriptor table manager  */
   1687 	b_tmgr_t *b_tbl;         /* B: short descriptor table manager */
   1688 	c_tmgr_t *c_tbl;         /* C: short page table manager       */
   1689 	mmu_long_dte_t *a_dte;   /* A: long descriptor table          */
   1690 	mmu_short_dte_t *b_dte;  /* B: short descriptor table         */
   1691 	mmu_short_pte_t *c_pte;  /* C: short page descriptor table    */
   1692 	pv_t      *pv;           /* pv list head                      */
   1693 	boolean_t wired;         /* is the mapping to be wired?       */
   1694 	enum {NONE, NEWA, NEWB, NEWC} llevel; /* used at end   */
   1695 
   1696 	if (pmap == NULL)
   1697 		return (KERN_SUCCESS);
   1698 	if (pmap == pmap_kernel()) {
   1699 		pmap_enter_kernel(va, pa, prot);
   1700 		return (KERN_SUCCESS);
   1701 	}
   1702 
   1703 	/*
   1704 	 * Determine if the mapping should be wired.
   1705 	 */
   1706 	wired = ((flags & PMAP_WIRED) != 0);
   1707 
   1708 	/*
   1709 	 * NOTE1:
   1710 	 *
   1711 	 * On November 13, 1999, someone changed the pmap_enter() API such
   1712 	 * that it now accepts a 'flags' argument.  This new argument
   1713 	 * contains bit-flags for the architecture-independent (UVM) system to
   1714 	 * use in signalling certain mapping requirements to the architecture-
   1715 	 * dependent (pmap) system.  The argument it replaces, 'wired', is now
   1716 	 * one of the flags within it.
   1717 	 *
   1718 	 * In addition to flags signaled by the architecture-independent
   1719 	 * system, parts of the architecture-dependent section of the sun3x
   1720 	 * kernel pass their own flags in the lower, unused bits of the
   1721 	 * physical address supplied to this function.  These flags are
   1722 	 * extracted and stored in the temporary variable 'mapflags'.
   1723 	 *
   1724 	 * Extract sun3x specific flags from the physical address.
   1725 	 */
   1726 	mapflags  = (pa & ~MMU_PAGE_MASK);
   1727 	pa       &= MMU_PAGE_MASK;
   1728 
   1729 	/*
   1730 	 * Determine if the physical address being mapped is on-board RAM.
   1731 	 * Any other area of the address space is likely to belong to a
   1732 	 * device and hence it would be disasterous to cache its contents.
   1733 	 */
   1734 	if ((managed = is_managed(pa)) == FALSE)
   1735 		mapflags |= PMAP_NC;
   1736 
   1737 	/*
   1738 	 * For user mappings we walk along the MMU tables of the given
   1739 	 * pmap, reaching a PTE which describes the virtual page being
   1740 	 * mapped or changed.  If any level of the walk ends in an invalid
   1741 	 * entry, a table must be allocated and the entry must be updated
   1742 	 * to point to it.
   1743 	 * There is a bit of confusion as to whether this code must be
   1744 	 * re-entrant.  For now we will assume it is.  To support
   1745 	 * re-entrancy we must unlink tables from the table pool before
   1746 	 * we assume we may use them.  Tables are re-linked into the pool
   1747 	 * when we are finished with them at the end of the function.
   1748 	 * But I don't feel like doing that until we have proof that this
   1749 	 * needs to be re-entrant.
   1750 	 * 'llevel' records which tables need to be relinked.
   1751 	 */
   1752 	llevel = NONE;
   1753 
   1754 	/*
   1755 	 * Step 1 - Retrieve the A table from the pmap.  If it has no
   1756 	 * A table, allocate a new one from the available pool.
   1757 	 */
   1758 
   1759 	a_tbl = pmap->pm_a_tmgr;
   1760 	if (a_tbl == NULL) {
   1761 		/*
   1762 		 * This pmap does not currently have an A table.  Allocate
   1763 		 * a new one.
   1764 		 */
   1765 		a_tbl = get_a_table();
   1766 		a_tbl->at_parent = pmap;
   1767 
   1768 		/*
   1769 		 * Assign this new A table to the pmap, and calculate its
   1770 		 * physical address so that loadcrp() can be used to make
   1771 		 * the table active.
   1772 		 */
   1773 		pmap->pm_a_tmgr = a_tbl;
   1774 		pmap->pm_a_phys = mmu_vtop(a_tbl->at_dtbl);
   1775 
   1776 		/*
   1777 		 * If the process receiving a new A table is the current
   1778 		 * process, we are responsible for setting the MMU so that
   1779 		 * it becomes the current address space.  This only adds
   1780 		 * new mappings, so no need to flush anything.
   1781 		 */
   1782 		if (pmap == current_pmap()) {
   1783 			kernel_crp.rp_addr = pmap->pm_a_phys;
   1784 			loadcrp(&kernel_crp);
   1785 		}
   1786 
   1787 		if (!wired)
   1788 			llevel = NEWA;
   1789 	} else {
   1790 		/*
   1791 		 * Use the A table already allocated for this pmap.
   1792 		 * Unlink it from the A table pool if necessary.
   1793 		 */
   1794 		if (wired && !a_tbl->at_wcnt)
   1795 			TAILQ_REMOVE(&a_pool, a_tbl, at_link);
   1796 	}
   1797 
   1798 	/*
   1799 	 * Step 2 - Walk into the B table.  If there is no valid B table,
   1800 	 * allocate one.
   1801 	 */
   1802 
   1803 	a_idx = MMU_TIA(va);            /* Calculate the TIA of the VA. */
   1804 	a_dte = &a_tbl->at_dtbl[a_idx]; /* Retrieve descriptor from table */
   1805 	if (MMU_VALID_DT(*a_dte)) {     /* Is the descriptor valid? */
   1806 		/* The descriptor is valid.  Use the B table it points to. */
   1807 		/*************************************
   1808 		 *               a_idx               *
   1809 		 *                 v                 *
   1810 		 * a_tbl -> +-+-+-+-+-+-+-+-+-+-+-+- *
   1811 		 *          | | | | | | | | | | | |  *
   1812 		 *          +-+-+-+-+-+-+-+-+-+-+-+- *
   1813 		 *                 |                 *
   1814 		 *                 \- b_tbl -> +-+-  *
   1815 		 *                             | |   *
   1816 		 *                             +-+-  *
   1817 		 *************************************/
   1818 		b_dte = mmu_ptov(a_dte->addr.raw);
   1819 		b_tbl = mmuB2tmgr(b_dte);
   1820 
   1821 		/*
   1822 		 * If the requested mapping must be wired, but this table
   1823 		 * being used to map it is not, the table must be removed
   1824 		 * from the available pool and its wired entry count
   1825 		 * incremented.
   1826 		 */
   1827 		if (wired && !b_tbl->bt_wcnt) {
   1828 			TAILQ_REMOVE(&b_pool, b_tbl, bt_link);
   1829 			a_tbl->at_wcnt++;
   1830 		}
   1831 	} else {
   1832 		/* The descriptor is invalid.  Allocate a new B table. */
   1833 		b_tbl = get_b_table();
   1834 
   1835 		/* Point the parent A table descriptor to this new B table. */
   1836 		a_dte->addr.raw = mmu_vtop(b_tbl->bt_dtbl);
   1837 		a_dte->attr.raw = MMU_LONG_DTE_LU | MMU_DT_SHORT;
   1838 		a_tbl->at_ecnt++; /* Update parent's valid entry count */
   1839 
   1840 		/* Create the necessary back references to the parent table */
   1841 		b_tbl->bt_parent = a_tbl;
   1842 		b_tbl->bt_pidx = a_idx;
   1843 
   1844 		/*
   1845 		 * If this table is to be wired, make sure the parent A table
   1846 		 * wired count is updated to reflect that it has another wired
   1847 		 * entry.
   1848 		 */
   1849 		if (wired)
   1850 			a_tbl->at_wcnt++;
   1851 		else if (llevel == NONE)
   1852 			llevel = NEWB;
   1853 	}
   1854 
   1855 	/*
   1856 	 * Step 3 - Walk into the C table, if there is no valid C table,
   1857 	 * allocate one.
   1858 	 */
   1859 
   1860 	b_idx = MMU_TIB(va);            /* Calculate the TIB of the VA */
   1861 	b_dte = &b_tbl->bt_dtbl[b_idx]; /* Retrieve descriptor from table */
   1862 	if (MMU_VALID_DT(*b_dte)) {     /* Is the descriptor valid? */
   1863 		/* The descriptor is valid.  Use the C table it points to. */
   1864 		/**************************************
   1865 		 *               c_idx                *
   1866 		 * |                v                 *
   1867 		 * \- b_tbl -> +-+-+-+-+-+-+-+-+-+-+- *
   1868 		 *             | | | | | | | | | | |  *
   1869 		 *             +-+-+-+-+-+-+-+-+-+-+- *
   1870 		 *                  |                 *
   1871 		 *                  \- c_tbl -> +-+-- *
   1872 		 *                              | | | *
   1873 		 *                              +-+-- *
   1874 		 **************************************/
   1875 		c_pte = mmu_ptov(MMU_PTE_PA(*b_dte));
   1876 		c_tbl = mmuC2tmgr(c_pte);
   1877 
   1878 		/* If mapping is wired and table is not */
   1879 		if (wired && !c_tbl->ct_wcnt) {
   1880 			TAILQ_REMOVE(&c_pool, c_tbl, ct_link);
   1881 			b_tbl->bt_wcnt++;
   1882 		}
   1883 	} else {
   1884 		/* The descriptor is invalid.  Allocate a new C table. */
   1885 		c_tbl = get_c_table();
   1886 
   1887 		/* Point the parent B table descriptor to this new C table. */
   1888 		b_dte->attr.raw = mmu_vtop(c_tbl->ct_dtbl);
   1889 		b_dte->attr.raw |= MMU_DT_SHORT;
   1890 		b_tbl->bt_ecnt++; /* Update parent's valid entry count */
   1891 
   1892 		/* Create the necessary back references to the parent table */
   1893 		c_tbl->ct_parent = b_tbl;
   1894 		c_tbl->ct_pidx = b_idx;
   1895 		/*
   1896 		 * Store the pmap and base virtual managed address for faster
   1897 		 * retrieval in the PV functions.
   1898 		 */
   1899 		c_tbl->ct_pmap = pmap;
   1900 		c_tbl->ct_va = (va & (MMU_TIA_MASK|MMU_TIB_MASK));
   1901 
   1902 		/*
   1903 		 * If this table is to be wired, make sure the parent B table
   1904 		 * wired count is updated to reflect that it has another wired
   1905 		 * entry.
   1906 		 */
   1907 		if (wired)
   1908 			b_tbl->bt_wcnt++;
   1909 		else if (llevel == NONE)
   1910 			llevel = NEWC;
   1911 	}
   1912 
   1913 	/*
   1914 	 * Step 4 - Deposit a page descriptor (PTE) into the appropriate
   1915 	 * slot of the C table, describing the PA to which the VA is mapped.
   1916 	 */
   1917 
   1918 	pte_idx = MMU_TIC(va);
   1919 	c_pte = &c_tbl->ct_dtbl[pte_idx];
   1920 	if (MMU_VALID_DT(*c_pte)) { /* Is the entry currently valid? */
   1921 		/*
   1922 		 * The PTE is currently valid.  This particular call
   1923 		 * is just a synonym for one (or more) of the following
   1924 		 * operations:
   1925 		 *     change protection of a page
   1926 		 *     change wiring status of a page
   1927 		 *     remove the mapping of a page
   1928 		 *
   1929 		 * XXX - Semi critical: This code should unwire the PTE
   1930 		 * and, possibly, associated parent tables if this is a
   1931 		 * change wiring operation.  Currently it does not.
   1932 		 *
   1933 		 * This may be ok if pmap_unwire() is the only
   1934 		 * interface used to UNWIRE a page.
   1935 		 */
   1936 
   1937 		/* First check if this is a wiring operation. */
   1938 		if (wired && (c_pte->attr.raw & MMU_SHORT_PTE_WIRED)) {
   1939 			/*
   1940 			 * The PTE is already wired.  To prevent it from being
   1941 			 * counted as a new wiring operation, reset the 'wired'
   1942 			 * variable.
   1943 			 */
   1944 			wired = FALSE;
   1945 		}
   1946 
   1947 		/* Is the new address the same as the old? */
   1948 		if (MMU_PTE_PA(*c_pte) == pa) {
   1949 			/*
   1950 			 * Yes, mark that it does not need to be reinserted
   1951 			 * into the PV list.
   1952 			 */
   1953 			insert = FALSE;
   1954 
   1955 			/*
   1956 			 * Clear all but the modified, referenced and wired
   1957 			 * bits on the PTE.
   1958 			 */
   1959 			c_pte->attr.raw &= (MMU_SHORT_PTE_M
   1960 				| MMU_SHORT_PTE_USED | MMU_SHORT_PTE_WIRED);
   1961 		} else {
   1962 			/* No, remove the old entry */
   1963 			pmap_remove_pte(c_pte);
   1964 			insert = TRUE;
   1965 		}
   1966 
   1967 		/*
   1968 		 * TLB flush is only necessary if modifying current map.
   1969 		 * However, in pmap_enter(), the pmap almost always IS
   1970 		 * the current pmap, so don't even bother to check.
   1971 		 */
   1972 		TBIS(va);
   1973 	} else {
   1974 		/*
   1975 		 * The PTE is invalid.  Increment the valid entry count in
   1976 		 * the C table manager to reflect the addition of a new entry.
   1977 		 */
   1978 		c_tbl->ct_ecnt++;
   1979 
   1980 		/* XXX - temporarily make sure the PTE is cleared. */
   1981 		c_pte->attr.raw = 0;
   1982 
   1983 		/* It will also need to be inserted into the PV list. */
   1984 		insert = TRUE;
   1985 	}
   1986 
   1987 	/*
   1988 	 * If page is changing from unwired to wired status, set an unused bit
   1989 	 * within the PTE to indicate that it is wired.  Also increment the
   1990 	 * wired entry count in the C table manager.
   1991 	 */
   1992 	if (wired) {
   1993 		c_pte->attr.raw |= MMU_SHORT_PTE_WIRED;
   1994 		c_tbl->ct_wcnt++;
   1995 	}
   1996 
   1997 	/*
   1998 	 * Map the page, being careful to preserve modify/reference/wired
   1999 	 * bits.  At this point it is assumed that the PTE either has no bits
   2000 	 * set, or if there are set bits, they are only modified, reference or
   2001 	 * wired bits.  If not, the following statement will cause erratic
   2002 	 * behavior.
   2003 	 */
   2004 #ifdef	PMAP_DEBUG
   2005 	if (c_pte->attr.raw & ~(MMU_SHORT_PTE_M |
   2006 		MMU_SHORT_PTE_USED | MMU_SHORT_PTE_WIRED)) {
   2007 		printf("pmap_enter: junk left in PTE at %p\n", c_pte);
   2008 		Debugger();
   2009 	}
   2010 #endif
   2011 	c_pte->attr.raw |= ((u_long) pa | MMU_DT_PAGE);
   2012 
   2013 	/*
   2014 	 * If the mapping should be read-only, set the write protect
   2015 	 * bit in the PTE.
   2016 	 */
   2017 	if (!(prot & VM_PROT_WRITE))
   2018 		c_pte->attr.raw |= MMU_SHORT_PTE_WP;
   2019 
   2020 	/*
   2021 	 * If the mapping should be cache inhibited (indicated by the flag
   2022 	 * bits found on the lower order of the physical address.)
   2023 	 * mark the PTE as a cache inhibited page.
   2024 	 */
   2025 	if (mapflags & PMAP_NC)
   2026 		c_pte->attr.raw |= MMU_SHORT_PTE_CI;
   2027 
   2028 	/*
   2029 	 * If the physical address being mapped is managed by the PV
   2030 	 * system then link the pte into the list of pages mapped to that
   2031 	 * address.
   2032 	 */
   2033 	if (insert && managed) {
   2034 		pv = pa2pv(pa);
   2035 		nidx = pteidx(c_pte);
   2036 
   2037 		s = splimp();
   2038 		pvebase[nidx].pve_next = pv->pv_idx;
   2039 		pv->pv_idx = nidx;
   2040 		splx(s);
   2041 	}
   2042 
   2043 	/* Move any allocated tables back into the active pool. */
   2044 
   2045 	switch (llevel) {
   2046 		case NEWA:
   2047 			TAILQ_INSERT_TAIL(&a_pool, a_tbl, at_link);
   2048 			/* FALLTHROUGH */
   2049 		case NEWB:
   2050 			TAILQ_INSERT_TAIL(&b_pool, b_tbl, bt_link);
   2051 			/* FALLTHROUGH */
   2052 		case NEWC:
   2053 			TAILQ_INSERT_TAIL(&c_pool, c_tbl, ct_link);
   2054 			/* FALLTHROUGH */
   2055 		default:
   2056 			break;
   2057 	}
   2058 
   2059 	return (KERN_SUCCESS);
   2060 }
   2061 
   2062 /* pmap_enter_kernel			INTERNAL
   2063  **
   2064  * Map the given virtual address to the given physical address within the
   2065  * kernel address space.  This function exists because the kernel map does
   2066  * not do dynamic table allocation.  It consists of a contiguous array of ptes
   2067  * and can be edited directly without the need to walk through any tables.
   2068  *
   2069  * XXX: "Danger, Will Robinson!"
   2070  * Note that the kernel should never take a fault on any page
   2071  * between [ KERNBASE .. virtual_avail ] and this is checked in
   2072  * trap.c for kernel-mode MMU faults.  This means that mappings
   2073  * created in that range must be implicily wired. -gwr
   2074  */
   2075 void
   2076 pmap_enter_kernel(va, pa, prot)
   2077 	vm_offset_t va;
   2078 	vm_offset_t pa;
   2079 	vm_prot_t   prot;
   2080 {
   2081 	boolean_t       was_valid, insert;
   2082 	u_short         pte_idx;
   2083 	int             s, flags;
   2084 	mmu_short_pte_t *pte;
   2085 	pv_t            *pv;
   2086 	vm_offset_t     old_pa;
   2087 
   2088 	flags = (pa & ~MMU_PAGE_MASK);
   2089 	pa &= MMU_PAGE_MASK;
   2090 
   2091 	if (is_managed(pa))
   2092 		insert = TRUE;
   2093 	else
   2094 		insert = FALSE;
   2095 
   2096 	/*
   2097 	 * Calculate the index of the PTE being modified.
   2098 	 */
   2099 	pte_idx = (u_long) m68k_btop(va - KERNBASE);
   2100 
   2101 	/* This array is traditionally named "Sysmap" */
   2102 	pte = &kernCbase[pte_idx];
   2103 
   2104 	s = splimp();
   2105 	if (MMU_VALID_DT(*pte)) {
   2106 		was_valid = TRUE;
   2107 		/*
   2108 		 * If the PTE already maps a different
   2109 		 * physical address, umap and pv_unlink.
   2110 		 */
   2111 		old_pa = MMU_PTE_PA(*pte);
   2112 		if (pa != old_pa)
   2113 			pmap_remove_pte(pte);
   2114 		else {
   2115 		    /*
   2116 		     * Old PA and new PA are the same.  No need to
   2117 		     * relink the mapping within the PV list.
   2118 		     */
   2119 		     insert = FALSE;
   2120 
   2121 		    /*
   2122 		     * Save any mod/ref bits on the PTE.
   2123 		     */
   2124 		    pte->attr.raw &= (MMU_SHORT_PTE_USED|MMU_SHORT_PTE_M);
   2125 		}
   2126 	} else {
   2127 		pte->attr.raw = MMU_DT_INVALID;
   2128 		was_valid = FALSE;
   2129 	}
   2130 
   2131 	/*
   2132 	 * Map the page.  Being careful to preserve modified/referenced bits
   2133 	 * on the PTE.
   2134 	 */
   2135 	pte->attr.raw |= (pa | MMU_DT_PAGE);
   2136 
   2137 	if (!(prot & VM_PROT_WRITE)) /* If access should be read-only */
   2138 		pte->attr.raw |= MMU_SHORT_PTE_WP;
   2139 	if (flags & PMAP_NC)
   2140 		pte->attr.raw |= MMU_SHORT_PTE_CI;
   2141 	if (was_valid)
   2142 		TBIS(va);
   2143 
   2144 	/*
   2145 	 * Insert the PTE into the PV system, if need be.
   2146 	 */
   2147 	if (insert) {
   2148 		pv = pa2pv(pa);
   2149 		pvebase[pte_idx].pve_next = pv->pv_idx;
   2150 		pv->pv_idx = pte_idx;
   2151 	}
   2152 	splx(s);
   2153 
   2154 }
   2155 
   2156 void
   2157 pmap_kenter_pa(va, pa, prot)
   2158 	vaddr_t va;
   2159 	paddr_t pa;
   2160 	vm_prot_t prot;
   2161 {
   2162 	pmap_enter(pmap_kernel(), va, pa, prot, PMAP_WIRED);
   2163 }
   2164 
   2165 void
   2166 pmap_kenter_pgs(va, pgs, npgs)
   2167 	vaddr_t va;
   2168 	struct vm_page **pgs;
   2169 	int npgs;
   2170 {
   2171 	int i;
   2172 
   2173 	for (i = 0; i < npgs; i++, va += PAGE_SIZE) {
   2174 		pmap_enter(pmap_kernel(), va, VM_PAGE_TO_PHYS(pgs[i]),
   2175 				VM_PROT_READ|VM_PROT_WRITE, PMAP_WIRED);
   2176 	}
   2177 }
   2178 
   2179 void
   2180 pmap_kremove(va, len)
   2181 	vaddr_t va;
   2182 	vsize_t len;
   2183 {
   2184 	for (len >>= PAGE_SHIFT; len > 0; len--, va += PAGE_SIZE) {
   2185 		pmap_remove(pmap_kernel(), va, va + PAGE_SIZE);
   2186 	}
   2187 }
   2188 
   2189 /* pmap_map			INTERNAL
   2190  **
   2191  * Map a contiguous range of physical memory into a contiguous range of
   2192  * the kernel virtual address space.
   2193  *
   2194  * Used for device mappings and early mapping of the kernel text/data/bss.
   2195  * Returns the first virtual address beyond the end of the range.
   2196  */
   2197 vm_offset_t
   2198 pmap_map(va, pa, endpa, prot)
   2199 	vm_offset_t	va;
   2200 	vm_offset_t	pa;
   2201 	vm_offset_t	endpa;
   2202 	int		prot;
   2203 {
   2204 	int sz;
   2205 
   2206 	sz = endpa - pa;
   2207 	do {
   2208 		pmap_enter_kernel(va, pa, prot);
   2209 		va += NBPG;
   2210 		pa += NBPG;
   2211 		sz -= NBPG;
   2212 	} while (sz > 0);
   2213 	return(va);
   2214 }
   2215 
   2216 /* pmap_protect			INTERFACE
   2217  **
   2218  * Apply the given protection to the given virtual address range within
   2219  * the given map.
   2220  *
   2221  * It is ok for the protection applied to be stronger than what is
   2222  * specified.  We use this to our advantage when the given map has no
   2223  * mapping for the virtual address.  By skipping a page when this
   2224  * is discovered, we are effectively applying a protection of VM_PROT_NONE,
   2225  * and therefore do not need to map the page just to apply a protection
   2226  * code.  Only pmap_enter() needs to create new mappings if they do not exist.
   2227  *
   2228  * XXX - This function could be speeded up by using pmap_stroll() for inital
   2229  *       setup, and then manual scrolling in the for() loop.
   2230  */
   2231 void
   2232 pmap_protect(pmap, startva, endva, prot)
   2233 	pmap_t pmap;
   2234 	vm_offset_t startva, endva;
   2235 	vm_prot_t prot;
   2236 {
   2237 	boolean_t iscurpmap;
   2238 	int a_idx, b_idx, c_idx;
   2239 	a_tmgr_t *a_tbl;
   2240 	b_tmgr_t *b_tbl;
   2241 	c_tmgr_t *c_tbl;
   2242 	mmu_short_pte_t *pte;
   2243 
   2244 	if (pmap == NULL)
   2245 		return;
   2246 	if (pmap == pmap_kernel()) {
   2247 		pmap_protect_kernel(startva, endva, prot);
   2248 		return;
   2249 	}
   2250 
   2251 	/*
   2252 	 * In this particular pmap implementation, there are only three
   2253 	 * types of memory protection: 'all' (read/write/execute),
   2254 	 * 'read-only' (read/execute) and 'none' (no mapping.)
   2255 	 * It is not possible for us to treat 'executable' as a separate
   2256 	 * protection type.  Therefore, protection requests that seek to
   2257 	 * remove execute permission while retaining read or write, and those
   2258 	 * that make little sense (write-only for example) are ignored.
   2259 	 */
   2260 	switch (prot) {
   2261 		case VM_PROT_NONE:
   2262 			/*
   2263 			 * A request to apply the protection code of
   2264 			 * 'VM_PROT_NONE' is a synonym for pmap_remove().
   2265 			 */
   2266 			pmap_remove(pmap, startva, endva);
   2267 			return;
   2268 		case	VM_PROT_EXECUTE:
   2269 		case	VM_PROT_READ:
   2270 		case	VM_PROT_READ|VM_PROT_EXECUTE:
   2271 			/* continue */
   2272 			break;
   2273 		case	VM_PROT_WRITE:
   2274 		case	VM_PROT_WRITE|VM_PROT_READ:
   2275 		case	VM_PROT_WRITE|VM_PROT_EXECUTE:
   2276 		case	VM_PROT_ALL:
   2277 			/* None of these should happen in a sane system. */
   2278 			return;
   2279 	}
   2280 
   2281 	/*
   2282 	 * If the pmap has no A table, it has no mappings and therefore
   2283 	 * there is nothing to protect.
   2284 	 */
   2285 	if ((a_tbl = pmap->pm_a_tmgr) == NULL)
   2286 		return;
   2287 
   2288 	a_idx = MMU_TIA(startva);
   2289 	b_idx = MMU_TIB(startva);
   2290 	c_idx = MMU_TIC(startva);
   2291 	b_tbl = (b_tmgr_t *) c_tbl = NULL;
   2292 
   2293 	iscurpmap = (pmap == current_pmap());
   2294 	while (startva < endva) {
   2295 		if (b_tbl || MMU_VALID_DT(a_tbl->at_dtbl[a_idx])) {
   2296 		  if (b_tbl == NULL) {
   2297 		    b_tbl = (b_tmgr_t *) a_tbl->at_dtbl[a_idx].addr.raw;
   2298 		    b_tbl = mmu_ptov((vm_offset_t) b_tbl);
   2299 		    b_tbl = mmuB2tmgr((mmu_short_dte_t *) b_tbl);
   2300 		  }
   2301 		  if (c_tbl || MMU_VALID_DT(b_tbl->bt_dtbl[b_idx])) {
   2302 		    if (c_tbl == NULL) {
   2303 		      c_tbl = (c_tmgr_t *) MMU_DTE_PA(b_tbl->bt_dtbl[b_idx]);
   2304 		      c_tbl = mmu_ptov((vm_offset_t) c_tbl);
   2305 		      c_tbl = mmuC2tmgr((mmu_short_pte_t *) c_tbl);
   2306 		    }
   2307 		    if (MMU_VALID_DT(c_tbl->ct_dtbl[c_idx])) {
   2308 		      pte = &c_tbl->ct_dtbl[c_idx];
   2309 		      /* make the mapping read-only */
   2310 		      pte->attr.raw |= MMU_SHORT_PTE_WP;
   2311 		      /*
   2312 		       * If we just modified the current address space,
   2313 		       * flush any translations for the modified page from
   2314 		       * the translation cache and any data from it in the
   2315 		       * data cache.
   2316 		       */
   2317 		      if (iscurpmap)
   2318 		          TBIS(startva);
   2319 		    }
   2320 		    startva += NBPG;
   2321 
   2322 		    if (++c_idx >= MMU_C_TBL_SIZE) { /* exceeded C table? */
   2323 		      c_tbl = NULL;
   2324 		      c_idx = 0;
   2325 		      if (++b_idx >= MMU_B_TBL_SIZE) { /* exceeded B table? */
   2326 		        b_tbl = NULL;
   2327 		        b_idx = 0;
   2328 		      }
   2329 		    }
   2330 		  } else { /* C table wasn't valid */
   2331 		    c_tbl = NULL;
   2332 		    c_idx = 0;
   2333 		    startva += MMU_TIB_RANGE;
   2334 		    if (++b_idx >= MMU_B_TBL_SIZE) { /* exceeded B table? */
   2335 		      b_tbl = NULL;
   2336 		      b_idx = 0;
   2337 		    }
   2338 		  } /* C table */
   2339 		} else { /* B table wasn't valid */
   2340 		  b_tbl = NULL;
   2341 		  b_idx = 0;
   2342 		  startva += MMU_TIA_RANGE;
   2343 		  a_idx++;
   2344 		} /* B table */
   2345 	}
   2346 }
   2347 
   2348 /* pmap_protect_kernel			INTERNAL
   2349  **
   2350  * Apply the given protection code to a kernel address range.
   2351  */
   2352 void
   2353 pmap_protect_kernel(startva, endva, prot)
   2354 	vm_offset_t startva, endva;
   2355 	vm_prot_t prot;
   2356 {
   2357 	vm_offset_t va;
   2358 	mmu_short_pte_t *pte;
   2359 
   2360 	pte = &kernCbase[(unsigned long) m68k_btop(startva - KERNBASE)];
   2361 	for (va = startva; va < endva; va += NBPG, pte++) {
   2362 		if (MMU_VALID_DT(*pte)) {
   2363 		    switch (prot) {
   2364 		        case VM_PROT_ALL:
   2365 		            break;
   2366 		        case VM_PROT_EXECUTE:
   2367 		        case VM_PROT_READ:
   2368 		        case VM_PROT_READ|VM_PROT_EXECUTE:
   2369 		            pte->attr.raw |= MMU_SHORT_PTE_WP;
   2370 		            break;
   2371 		        case VM_PROT_NONE:
   2372 		            /* this is an alias for 'pmap_remove_kernel' */
   2373 		            pmap_remove_pte(pte);
   2374 		            break;
   2375 		        default:
   2376 		            break;
   2377 		    }
   2378 		    /*
   2379 		     * since this is the kernel, immediately flush any cached
   2380 		     * descriptors for this address.
   2381 		     */
   2382 		    TBIS(va);
   2383 		}
   2384 	}
   2385 }
   2386 
   2387 /* pmap_unwire				INTERFACE
   2388  **
   2389  * Clear the wired attribute of the specified page.
   2390  *
   2391  * This function is called from vm_fault.c to unwire
   2392  * a mapping.
   2393  */
   2394 void
   2395 pmap_unwire(pmap, va)
   2396 	pmap_t pmap;
   2397 	vm_offset_t va;
   2398 {
   2399 	int a_idx, b_idx, c_idx;
   2400 	a_tmgr_t *a_tbl;
   2401 	b_tmgr_t *b_tbl;
   2402 	c_tmgr_t *c_tbl;
   2403 	mmu_short_pte_t *pte;
   2404 
   2405 	/* Kernel mappings always remain wired. */
   2406 	if (pmap == pmap_kernel())
   2407 		return;
   2408 
   2409 	/*
   2410 	 * Walk through the tables.  If the walk terminates without
   2411 	 * a valid PTE then the address wasn't wired in the first place.
   2412 	 * Return immediately.
   2413 	 */
   2414 	if (pmap_stroll(pmap, va, &a_tbl, &b_tbl, &c_tbl, &pte, &a_idx,
   2415 		&b_idx, &c_idx) == FALSE)
   2416 		return;
   2417 
   2418 
   2419 	/* Is the PTE wired?  If not, return. */
   2420 	if (!(pte->attr.raw & MMU_SHORT_PTE_WIRED))
   2421 		return;
   2422 
   2423 	/* Remove the wiring bit. */
   2424 	pte->attr.raw &= ~(MMU_SHORT_PTE_WIRED);
   2425 
   2426 	/*
   2427 	 * Decrement the wired entry count in the C table.
   2428 	 * If it reaches zero the following things happen:
   2429 	 * 1. The table no longer has any wired entries and is considered
   2430 	 *    unwired.
   2431 	 * 2. It is placed on the available queue.
   2432 	 * 3. The parent table's wired entry count is decremented.
   2433 	 * 4. If it reaches zero, this process repeats at step 1 and
   2434 	 *    stops at after reaching the A table.
   2435 	 */
   2436 	if (--c_tbl->ct_wcnt == 0) {
   2437 		TAILQ_INSERT_TAIL(&c_pool, c_tbl, ct_link);
   2438 		if (--b_tbl->bt_wcnt == 0) {
   2439 			TAILQ_INSERT_TAIL(&b_pool, b_tbl, bt_link);
   2440 			if (--a_tbl->at_wcnt == 0) {
   2441 				TAILQ_INSERT_TAIL(&a_pool, a_tbl, at_link);
   2442 			}
   2443 		}
   2444 	}
   2445 }
   2446 
   2447 /* pmap_copy				INTERFACE
   2448  **
   2449  * Copy the mappings of a range of addresses in one pmap, into
   2450  * the destination address of another.
   2451  *
   2452  * This routine is advisory.  Should we one day decide that MMU tables
   2453  * may be shared by more than one pmap, this function should be used to
   2454  * link them together.  Until that day however, we do nothing.
   2455  */
   2456 void
   2457 pmap_copy(pmap_a, pmap_b, dst, len, src)
   2458 	pmap_t pmap_a, pmap_b;
   2459 	vm_offset_t dst;
   2460 	vm_size_t   len;
   2461 	vm_offset_t src;
   2462 {
   2463 	/* not implemented. */
   2464 }
   2465 
   2466 /* pmap_copy_page			INTERFACE
   2467  **
   2468  * Copy the contents of one physical page into another.
   2469  *
   2470  * This function makes use of two virtual pages allocated in pmap_bootstrap()
   2471  * to map the two specified physical pages into the kernel address space.
   2472  *
   2473  * Note: We could use the transparent translation registers to make the
   2474  * mappings.  If we do so, be sure to disable interrupts before using them.
   2475  */
   2476 void
   2477 pmap_copy_page(srcpa, dstpa)
   2478 	vm_offset_t srcpa, dstpa;
   2479 {
   2480 	vm_offset_t srcva, dstva;
   2481 	int s;
   2482 
   2483 	srcva = tmp_vpages[0];
   2484 	dstva = tmp_vpages[1];
   2485 
   2486 	s = splimp();
   2487 	if (tmp_vpages_inuse++)
   2488 		panic("pmap_copy_page: temporary vpages are in use.");
   2489 
   2490 	/* Map pages as non-cacheable to avoid cache polution? */
   2491 	pmap_enter_kernel(srcva, srcpa, VM_PROT_READ);
   2492 	pmap_enter_kernel(dstva, dstpa, VM_PROT_READ|VM_PROT_WRITE);
   2493 
   2494 	/* Hand-optimized version of bcopy(src, dst, NBPG) */
   2495 	copypage((char *) srcva, (char *) dstva);
   2496 
   2497 	pmap_remove_kernel(srcva, srcva + NBPG);
   2498 	pmap_remove_kernel(dstva, dstva + NBPG);
   2499 
   2500 	--tmp_vpages_inuse;
   2501 	splx(s);
   2502 }
   2503 
   2504 /* pmap_zero_page			INTERFACE
   2505  **
   2506  * Zero the contents of the specified physical page.
   2507  *
   2508  * Uses one of the virtual pages allocated in pmap_boostrap()
   2509  * to map the specified page into the kernel address space.
   2510  */
   2511 void
   2512 pmap_zero_page(dstpa)
   2513 	vm_offset_t dstpa;
   2514 {
   2515 	vm_offset_t dstva;
   2516 	int s;
   2517 
   2518 	dstva = tmp_vpages[1];
   2519 	s = splimp();
   2520 	if (tmp_vpages_inuse++)
   2521 		panic("pmap_zero_page: temporary vpages are in use.");
   2522 
   2523 	/* The comments in pmap_copy_page() above apply here also. */
   2524 	pmap_enter_kernel(dstva, dstpa, VM_PROT_READ|VM_PROT_WRITE);
   2525 
   2526 	/* Hand-optimized version of bzero(ptr, NBPG) */
   2527 	zeropage((char *) dstva);
   2528 
   2529 	pmap_remove_kernel(dstva, dstva + NBPG);
   2530 
   2531 	--tmp_vpages_inuse;
   2532 	splx(s);
   2533 }
   2534 
   2535 /* pmap_collect			INTERFACE
   2536  **
   2537  * Called from the VM system when we are about to swap out
   2538  * the process using this pmap.  This should give up any
   2539  * resources held here, including all its MMU tables.
   2540  */
   2541 void
   2542 pmap_collect(pmap)
   2543 	pmap_t pmap;
   2544 {
   2545 	/* XXX - todo... */
   2546 }
   2547 
   2548 /* pmap_create			INTERFACE
   2549  **
   2550  * Create and return a pmap structure.
   2551  */
   2552 pmap_t
   2553 pmap_create()
   2554 {
   2555 	pmap_t	pmap;
   2556 
   2557 	pmap = (pmap_t) malloc(sizeof(struct pmap), M_VMPMAP, M_WAITOK);
   2558 	pmap_pinit(pmap);
   2559 	return pmap;
   2560 }
   2561 
   2562 /* pmap_pinit			INTERNAL
   2563  **
   2564  * Initialize a pmap structure.
   2565  */
   2566 void
   2567 pmap_pinit(pmap)
   2568 	pmap_t pmap;
   2569 {
   2570 	bzero(pmap, sizeof(struct pmap));
   2571 	pmap->pm_a_tmgr = NULL;
   2572 	pmap->pm_a_phys = kernAphys;
   2573 	pmap->pm_refcount = 1;
   2574 	simple_lock_init(&pmap->pm_lock);
   2575 }
   2576 
   2577 /* pmap_release				INTERFACE
   2578  **
   2579  * Release any resources held by the given pmap.
   2580  *
   2581  * This is the reverse analog to pmap_pinit.  It does not
   2582  * necessarily mean for the pmap structure to be deallocated,
   2583  * as in pmap_destroy.
   2584  */
   2585 void
   2586 pmap_release(pmap)
   2587 	pmap_t pmap;
   2588 {
   2589 	/*
   2590 	 * As long as the pmap contains no mappings,
   2591 	 * which always should be the case whenever
   2592 	 * this function is called, there really should
   2593 	 * be nothing to do.
   2594 	 */
   2595 #ifdef	PMAP_DEBUG
   2596 	if (pmap == NULL)
   2597 		return;
   2598 	if (pmap == pmap_kernel())
   2599 		panic("pmap_release: kernel pmap");
   2600 #endif
   2601 	/*
   2602 	 * XXX - If this pmap has an A table, give it back.
   2603 	 * The pmap SHOULD be empty by now, and pmap_remove
   2604 	 * should have already given back the A table...
   2605 	 * However, I see:  pmap->pm_a_tmgr->at_ecnt == 1
   2606 	 * at this point, which means some mapping was not
   2607 	 * removed when it should have been. -gwr
   2608 	 */
   2609 	if (pmap->pm_a_tmgr != NULL) {
   2610 		/* First make sure we are not using it! */
   2611 		if (kernel_crp.rp_addr == pmap->pm_a_phys) {
   2612 			kernel_crp.rp_addr = kernAphys;
   2613 			loadcrp(&kernel_crp);
   2614 		}
   2615 #ifdef	PMAP_DEBUG /* XXX - todo! */
   2616 		/* XXX - Now complain... */
   2617 		printf("pmap_release: still have table\n");
   2618 		Debugger();
   2619 #endif
   2620 		free_a_table(pmap->pm_a_tmgr, TRUE);
   2621 		pmap->pm_a_tmgr = NULL;
   2622 		pmap->pm_a_phys = kernAphys;
   2623 	}
   2624 }
   2625 
   2626 /* pmap_reference			INTERFACE
   2627  **
   2628  * Increment the reference count of a pmap.
   2629  */
   2630 void
   2631 pmap_reference(pmap)
   2632 	pmap_t pmap;
   2633 {
   2634 	if (pmap == NULL)
   2635 		return;
   2636 
   2637 	pmap_lock(pmap);
   2638 	pmap_add_ref(pmap);
   2639 	pmap_unlock(pmap);
   2640 }
   2641 
   2642 /* pmap_dereference			INTERNAL
   2643  **
   2644  * Decrease the reference count on the given pmap
   2645  * by one and return the current count.
   2646  */
   2647 int
   2648 pmap_dereference(pmap)
   2649 	pmap_t pmap;
   2650 {
   2651 	int rtn;
   2652 
   2653 	if (pmap == NULL)
   2654 		return 0;
   2655 
   2656 	pmap_lock(pmap);
   2657 	rtn = pmap_del_ref(pmap);
   2658 	pmap_unlock(pmap);
   2659 
   2660 	return rtn;
   2661 }
   2662 
   2663 /* pmap_destroy			INTERFACE
   2664  **
   2665  * Decrement a pmap's reference count and delete
   2666  * the pmap if it becomes zero.  Will be called
   2667  * only after all mappings have been removed.
   2668  */
   2669 void
   2670 pmap_destroy(pmap)
   2671 	pmap_t pmap;
   2672 {
   2673 	if (pmap == NULL)
   2674 		return;
   2675 	if (pmap == &kernel_pmap)
   2676 		panic("pmap_destroy: kernel_pmap!");
   2677 	if (pmap_dereference(pmap) == 0) {
   2678 		pmap_release(pmap);
   2679 		free(pmap, M_VMPMAP);
   2680 	}
   2681 }
   2682 
   2683 /* pmap_is_referenced			INTERFACE
   2684  **
   2685  * Determine if the given physical page has been
   2686  * referenced (read from [or written to.])
   2687  */
   2688 boolean_t
   2689 pmap_is_referenced(pg)
   2690 	struct vm_page *pg;
   2691 {
   2692 	paddr_t   pa = VM_PAGE_TO_PHYS(pg);
   2693 	pv_t      *pv;
   2694 	int       idx, s;
   2695 
   2696 	if (!pv_initialized)
   2697 		return FALSE;
   2698 	/* XXX - this may be unecessary. */
   2699 	if (!is_managed(pa))
   2700 		return FALSE;
   2701 
   2702 	pv = pa2pv(pa);
   2703 	/*
   2704 	 * Check the flags on the pv head.  If they are set,
   2705 	 * return immediately.  Otherwise a search must be done.
   2706 	 */
   2707 	if (pv->pv_flags & PV_FLAGS_USED)
   2708 		return TRUE;
   2709 
   2710 	s = splimp();
   2711 	/*
   2712 	 * Search through all pv elements pointing
   2713 	 * to this page and query their reference bits
   2714 	 */
   2715 	for (idx = pv->pv_idx;
   2716 		 idx != PVE_EOL;
   2717 		 idx = pvebase[idx].pve_next) {
   2718 
   2719 		if (MMU_PTE_USED(kernCbase[idx])) {
   2720 			splx(s);
   2721 			return TRUE;
   2722 		}
   2723 	}
   2724 	splx(s);
   2725 
   2726 	return FALSE;
   2727 }
   2728 
   2729 /* pmap_is_modified			INTERFACE
   2730  **
   2731  * Determine if the given physical page has been
   2732  * modified (written to.)
   2733  */
   2734 boolean_t
   2735 pmap_is_modified(pg)
   2736 	struct vm_page *pg;
   2737 {
   2738 	paddr_t   pa = VM_PAGE_TO_PHYS(pg);
   2739 	pv_t      *pv;
   2740 	int       idx, s;
   2741 
   2742 	if (!pv_initialized)
   2743 		return FALSE;
   2744 	/* XXX - this may be unecessary. */
   2745 	if (!is_managed(pa))
   2746 		return FALSE;
   2747 
   2748 	/* see comments in pmap_is_referenced() */
   2749 	pv = pa2pv(pa);
   2750 	if (pv->pv_flags & PV_FLAGS_MDFY)
   2751 		return TRUE;
   2752 
   2753 	s = splimp();
   2754 	for (idx = pv->pv_idx;
   2755 		 idx != PVE_EOL;
   2756 		 idx = pvebase[idx].pve_next) {
   2757 
   2758 		if (MMU_PTE_MODIFIED(kernCbase[idx])) {
   2759 			splx(s);
   2760 			return TRUE;
   2761 		}
   2762 	}
   2763 	splx(s);
   2764 
   2765 	return FALSE;
   2766 }
   2767 
   2768 /* pmap_page_protect			INTERFACE
   2769  **
   2770  * Applies the given protection to all mappings to the given
   2771  * physical page.
   2772  */
   2773 void
   2774 pmap_page_protect(pg, prot)
   2775 	struct vm_page *pg;
   2776 	vm_prot_t prot;
   2777 {
   2778 	paddr_t   pa = VM_PAGE_TO_PHYS(pg);
   2779 	pv_t      *pv;
   2780 	int       idx, s;
   2781 	vm_offset_t va;
   2782 	struct mmu_short_pte_struct *pte;
   2783 	c_tmgr_t  *c_tbl;
   2784 	pmap_t    pmap, curpmap;
   2785 
   2786 	if (!is_managed(pa))
   2787 		return;
   2788 
   2789 	curpmap = current_pmap();
   2790 	pv = pa2pv(pa);
   2791 	s = splimp();
   2792 
   2793 	for (idx = pv->pv_idx;
   2794 		 idx != PVE_EOL;
   2795 		 idx = pvebase[idx].pve_next) {
   2796 
   2797 		pte = &kernCbase[idx];
   2798 		switch (prot) {
   2799 			case VM_PROT_ALL:
   2800 				/* do nothing */
   2801 				break;
   2802 			case VM_PROT_EXECUTE:
   2803 			case VM_PROT_READ:
   2804 			case VM_PROT_READ|VM_PROT_EXECUTE:
   2805 				/*
   2806 				 * Determine the virtual address mapped by
   2807 				 * the PTE and flush ATC entries if necessary.
   2808 				 */
   2809 				va = pmap_get_pteinfo(idx, &pmap, &c_tbl);
   2810 				/* XXX don't write protect pager mappings */
   2811 				if (va >= PAGER_SVA && va < PAGER_EVA) {
   2812 #ifdef	PMAP_DEBUG
   2813 					/* XXX - Does this actually happen? */
   2814 					printf("pmap_page_protect: in pager!\n");
   2815 					Debugger();
   2816 #endif
   2817 				} else
   2818 					pte->attr.raw |= MMU_SHORT_PTE_WP;
   2819 				if (pmap == curpmap || pmap == pmap_kernel())
   2820 					TBIS(va);
   2821 				break;
   2822 			case VM_PROT_NONE:
   2823 				/* Save the mod/ref bits. */
   2824 				pv->pv_flags |= pte->attr.raw;
   2825 				/* Invalidate the PTE. */
   2826 				pte->attr.raw = MMU_DT_INVALID;
   2827 
   2828 				/*
   2829 				 * Update table counts.  And flush ATC entries
   2830 				 * if necessary.
   2831 				 */
   2832 				va = pmap_get_pteinfo(idx, &pmap, &c_tbl);
   2833 
   2834 				/*
   2835 				 * If the PTE belongs to the kernel map,
   2836 				 * be sure to flush the page it maps.
   2837 				 */
   2838 				if (pmap == pmap_kernel()) {
   2839 					TBIS(va);
   2840 				} else {
   2841 					/*
   2842 					 * The PTE belongs to a user map.
   2843 					 * update the entry count in the C
   2844 					 * table to which it belongs and flush
   2845 					 * the ATC if the mapping belongs to
   2846 					 * the current pmap.
   2847 					 */
   2848 					c_tbl->ct_ecnt--;
   2849 					if (pmap == curpmap)
   2850 						TBIS(va);
   2851 				}
   2852 				break;
   2853 			default:
   2854 				break;
   2855 		}
   2856 	}
   2857 
   2858 	/*
   2859 	 * If the protection code indicates that all mappings to the page
   2860 	 * be removed, truncate the PV list to zero entries.
   2861 	 */
   2862 	if (prot == VM_PROT_NONE)
   2863 		pv->pv_idx = PVE_EOL;
   2864 	splx(s);
   2865 }
   2866 
   2867 /* pmap_get_pteinfo		INTERNAL
   2868  **
   2869  * Called internally to find the pmap and virtual address within that
   2870  * map to which the pte at the given index maps.  Also includes the PTE's C
   2871  * table manager.
   2872  *
   2873  * Returns the pmap in the argument provided, and the virtual address
   2874  * by return value.
   2875  */
   2876 vm_offset_t
   2877 pmap_get_pteinfo(idx, pmap, tbl)
   2878 	u_int idx;
   2879 	pmap_t *pmap;
   2880 	c_tmgr_t **tbl;
   2881 {
   2882 	vm_offset_t     va = 0;
   2883 
   2884 	/*
   2885 	 * Determine if the PTE is a kernel PTE or a user PTE.
   2886 	 */
   2887 	if (idx >= NUM_KERN_PTES) {
   2888 		/*
   2889 		 * The PTE belongs to a user mapping.
   2890 		 */
   2891 		/* XXX: Would like an inline for this to validate idx... */
   2892 		*tbl = &Ctmgrbase[(idx - NUM_KERN_PTES) / MMU_C_TBL_SIZE];
   2893 
   2894 		*pmap = (*tbl)->ct_pmap;
   2895 		/*
   2896 		 * To find the va to which the PTE maps, we first take
   2897 		 * the table's base virtual address mapping which is stored
   2898 		 * in ct_va.  We then increment this address by a page for
   2899 		 * every slot skipped until we reach the PTE.
   2900 		 */
   2901 		va =    (*tbl)->ct_va;
   2902 		va += m68k_ptob(idx % MMU_C_TBL_SIZE);
   2903 	} else {
   2904 		/*
   2905 		 * The PTE belongs to the kernel map.
   2906 		 */
   2907 		*pmap = pmap_kernel();
   2908 
   2909 		va = m68k_ptob(idx);
   2910 		va += KERNBASE;
   2911 	}
   2912 
   2913 	return va;
   2914 }
   2915 
   2916 /* pmap_clear_modify			INTERFACE
   2917  **
   2918  * Clear the modification bit on the page at the specified
   2919  * physical address.
   2920  *
   2921  */
   2922 boolean_t
   2923 pmap_clear_modify(pg)
   2924 	struct vm_page *pg;
   2925 {
   2926 	paddr_t pa = VM_PAGE_TO_PHYS(pg);
   2927 	boolean_t rv;
   2928 
   2929 	if (!is_managed(pa))
   2930 		return FALSE;
   2931 	rv = pmap_is_modified(pg);
   2932 	pmap_clear_pv(pa, PV_FLAGS_MDFY);
   2933 	return rv;
   2934 }
   2935 
   2936 /* pmap_clear_reference			INTERFACE
   2937  **
   2938  * Clear the referenced bit on the page at the specified
   2939  * physical address.
   2940  */
   2941 boolean_t
   2942 pmap_clear_reference(pg)
   2943 	struct vm_page *pg;
   2944 {
   2945 	paddr_t pa = VM_PAGE_TO_PHYS(pg);
   2946 	boolean_t rv;
   2947 
   2948 	if (!is_managed(pa))
   2949 		return FALSE;
   2950 	rv = pmap_is_referenced(pg);
   2951 	pmap_clear_pv(pa, PV_FLAGS_USED);
   2952 	return rv;
   2953 }
   2954 
   2955 /* pmap_clear_pv			INTERNAL
   2956  **
   2957  * Clears the specified flag from the specified physical address.
   2958  * (Used by pmap_clear_modify() and pmap_clear_reference().)
   2959  *
   2960  * Flag is one of:
   2961  *   PV_FLAGS_MDFY - Page modified bit.
   2962  *   PV_FLAGS_USED - Page used (referenced) bit.
   2963  *
   2964  * This routine must not only clear the flag on the pv list
   2965  * head.  It must also clear the bit on every pte in the pv
   2966  * list associated with the address.
   2967  */
   2968 void
   2969 pmap_clear_pv(pa, flag)
   2970 	vm_offset_t pa;
   2971 	int flag;
   2972 {
   2973 	pv_t      *pv;
   2974 	int       idx, s;
   2975 	vm_offset_t     va;
   2976 	pmap_t          pmap;
   2977 	mmu_short_pte_t *pte;
   2978 	c_tmgr_t        *c_tbl;
   2979 
   2980 	pv = pa2pv(pa);
   2981 
   2982 	s = splimp();
   2983 	pv->pv_flags &= ~(flag);
   2984 
   2985 	for (idx = pv->pv_idx;
   2986 		 idx != PVE_EOL;
   2987 		 idx = pvebase[idx].pve_next) {
   2988 
   2989 		pte = &kernCbase[idx];
   2990 		pte->attr.raw &= ~(flag);
   2991 		/*
   2992 		 * The MC68030 MMU will not set the modified or
   2993 		 * referenced bits on any MMU tables for which it has
   2994 		 * a cached descriptor with its modify bit set.  To insure
   2995 		 * that it will modify these bits on the PTE during the next
   2996 		 * time it is written to or read from, we must flush it from
   2997 		 * the ATC.
   2998 		 *
   2999 		 * Ordinarily it is only necessary to flush the descriptor
   3000 		 * if it is used in the current address space.  But since I
   3001 		 * am not sure that there will always be a notion of
   3002 		 * 'the current address space' when this function is called,
   3003 		 * I will skip the test and always flush the address.  It
   3004 		 * does no harm.
   3005 		 */
   3006 		va = pmap_get_pteinfo(idx, &pmap, &c_tbl);
   3007 		TBIS(va);
   3008 	}
   3009 	splx(s);
   3010 }
   3011 
   3012 /* pmap_extract			INTERFACE
   3013  **
   3014  * Return the physical address mapped by the virtual address
   3015  * in the specified pmap.
   3016  *
   3017  * Note: this function should also apply an exclusive lock
   3018  * on the pmap system during its duration.
   3019  */
   3020 boolean_t
   3021 pmap_extract(pmap, va, pap)
   3022 	pmap_t pmap;
   3023 	vaddr_t va;
   3024 	paddr_t *pap;
   3025 {
   3026 	int a_idx, b_idx, pte_idx;
   3027 	a_tmgr_t	*a_tbl;
   3028 	b_tmgr_t	*b_tbl;
   3029 	c_tmgr_t	*c_tbl;
   3030 	mmu_short_pte_t	*c_pte;
   3031 
   3032 	if (pmap == pmap_kernel())
   3033 		return pmap_extract_kernel(va, pap);
   3034 	if (pmap == NULL)
   3035 		return FALSE;
   3036 
   3037 	if (pmap_stroll(pmap, va, &a_tbl, &b_tbl, &c_tbl,
   3038 		&c_pte, &a_idx, &b_idx, &pte_idx) == FALSE)
   3039 		return FALSE;
   3040 
   3041 	if (!MMU_VALID_DT(*c_pte))
   3042 		return FALSE;
   3043 
   3044 	if (pap != NULL)
   3045 		*pap = MMU_PTE_PA(*c_pte);
   3046 	return (TRUE);
   3047 }
   3048 
   3049 /* pmap_extract_kernel		INTERNAL
   3050  **
   3051  * Extract a translation from the kernel address space.
   3052  */
   3053 boolean_t
   3054 pmap_extract_kernel(va, pap)
   3055 	vaddr_t va;
   3056 	paddr_t *pap;
   3057 {
   3058 	mmu_short_pte_t *pte;
   3059 
   3060 	pte = &kernCbase[(u_int) m68k_btop(va - KERNBASE)];
   3061 	if (!MMU_VALID_DT(*pte))
   3062 		return (FALSE);
   3063 	if (pap != NULL)
   3064 		*pap = MMU_PTE_PA(*pte);
   3065 	return (TRUE);
   3066 }
   3067 
   3068 /* pmap_remove_kernel		INTERNAL
   3069  **
   3070  * Remove the mapping of a range of virtual addresses from the kernel map.
   3071  * The arguments are already page-aligned.
   3072  */
   3073 void
   3074 pmap_remove_kernel(sva, eva)
   3075 	vm_offset_t sva;
   3076 	vm_offset_t eva;
   3077 {
   3078 	int idx, eidx;
   3079 
   3080 #ifdef	PMAP_DEBUG
   3081 	if ((sva & PGOFSET) || (eva & PGOFSET))
   3082 		panic("pmap_remove_kernel: alignment");
   3083 #endif
   3084 
   3085 	idx  = m68k_btop(sva - KERNBASE);
   3086 	eidx = m68k_btop(eva - KERNBASE);
   3087 
   3088 	while (idx < eidx) {
   3089 		pmap_remove_pte(&kernCbase[idx++]);
   3090 		TBIS(sva);
   3091 		sva += NBPG;
   3092 	}
   3093 }
   3094 
   3095 /* pmap_remove			INTERFACE
   3096  **
   3097  * Remove the mapping of a range of virtual addresses from the given pmap.
   3098  *
   3099  * If the range contains any wired entries, this function will probably create
   3100  * disaster.
   3101  */
   3102 void
   3103 pmap_remove(pmap, start, end)
   3104 	pmap_t pmap;
   3105 	vm_offset_t start;
   3106 	vm_offset_t end;
   3107 {
   3108 
   3109 	if (pmap == pmap_kernel()) {
   3110 		pmap_remove_kernel(start, end);
   3111 		return;
   3112 	}
   3113 
   3114 	/*
   3115 	 * XXX - Temporary(?) statement to prevent panic caused
   3116 	 * by vm_alloc_with_pager() handing us a software map (ie NULL)
   3117 	 * to remove because it couldn't get backing store.
   3118 	 * (I guess.)
   3119 	 */
   3120 	if (pmap == NULL)
   3121 		return;
   3122 
   3123 	/*
   3124 	 * If the pmap doesn't have an A table of its own, it has no mappings
   3125 	 * that can be removed.
   3126 	 */
   3127 	if (pmap->pm_a_tmgr == NULL)
   3128 		return;
   3129 
   3130 	/*
   3131 	 * Remove the specified range from the pmap.  If the function
   3132 	 * returns true, the operation removed all the valid mappings
   3133 	 * in the pmap and freed its A table.  If this happened to the
   3134 	 * currently loaded pmap, the MMU root pointer must be reloaded
   3135 	 * with the default 'kernel' map.
   3136 	 */
   3137 	if (pmap_remove_a(pmap->pm_a_tmgr, start, end)) {
   3138 		if (kernel_crp.rp_addr == pmap->pm_a_phys) {
   3139 			kernel_crp.rp_addr = kernAphys;
   3140 			loadcrp(&kernel_crp);
   3141 			/* will do TLB flush below */
   3142 		}
   3143 		pmap->pm_a_tmgr = NULL;
   3144 		pmap->pm_a_phys = kernAphys;
   3145 	}
   3146 
   3147 	/*
   3148 	 * If we just modified the current address space,
   3149 	 * make sure to flush the MMU cache.
   3150 	 *
   3151 	 * XXX - this could be an unecessarily large flush.
   3152 	 * XXX - Could decide, based on the size of the VA range
   3153 	 * to be removed, whether to flush "by pages" or "all".
   3154 	 */
   3155 	if (pmap == current_pmap())
   3156 		TBIAU();
   3157 }
   3158 
   3159 /* pmap_remove_a			INTERNAL
   3160  **
   3161  * This is function number one in a set of three that removes a range
   3162  * of memory in the most efficient manner by removing the highest possible
   3163  * tables from the memory space.  This particular function attempts to remove
   3164  * as many B tables as it can, delegating the remaining fragmented ranges to
   3165  * pmap_remove_b().
   3166  *
   3167  * If the removal operation results in an empty A table, the function returns
   3168  * TRUE.
   3169  *
   3170  * It's ugly but will do for now.
   3171  */
   3172 boolean_t
   3173 pmap_remove_a(a_tbl, start, end)
   3174 	a_tmgr_t *a_tbl;
   3175 	vm_offset_t start;
   3176 	vm_offset_t end;
   3177 {
   3178 	boolean_t empty;
   3179 	int idx;
   3180 	vm_offset_t nstart, nend;
   3181 	b_tmgr_t *b_tbl;
   3182 	mmu_long_dte_t  *a_dte;
   3183 	mmu_short_dte_t *b_dte;
   3184 
   3185 	/*
   3186 	 * The following code works with what I call a 'granularity
   3187 	 * reduction algorithim'.  A range of addresses will always have
   3188 	 * the following properties, which are classified according to
   3189 	 * how the range relates to the size of the current granularity
   3190 	 * - an A table entry:
   3191 	 *
   3192 	 *            1 2       3 4
   3193 	 * -+---+---+---+---+---+---+---+-
   3194 	 * -+---+---+---+---+---+---+---+-
   3195 	 *
   3196 	 * A range will always start on a granularity boundary, illustrated
   3197 	 * by '+' signs in the table above, or it will start at some point
   3198 	 * inbetween a granularity boundary, as illustrated by point 1.
   3199 	 * The first step in removing a range of addresses is to remove the
   3200 	 * range between 1 and 2, the nearest granularity boundary.  This
   3201 	 * job is handled by the section of code governed by the
   3202 	 * 'if (start < nstart)' statement.
   3203 	 *
   3204 	 * A range will always encompass zero or more intergral granules,
   3205 	 * illustrated by points 2 and 3.  Integral granules are easy to
   3206 	 * remove.  The removal of these granules is the second step, and
   3207 	 * is handled by the code block 'if (nstart < nend)'.
   3208 	 *
   3209 	 * Lastly, a range will always end on a granularity boundary,
   3210 	 * ill. by point 3, or it will fall just beyond one, ill. by point
   3211 	 * 4.  The last step involves removing this range and is handled by
   3212 	 * the code block 'if (nend < end)'.
   3213 	 */
   3214 	nstart = MMU_ROUND_UP_A(start);
   3215 	nend = MMU_ROUND_A(end);
   3216 
   3217 	if (start < nstart) {
   3218 		/*
   3219 		 * This block is executed if the range starts between
   3220 		 * a granularity boundary.
   3221 		 *
   3222 		 * First find the DTE which is responsible for mapping
   3223 		 * the start of the range.
   3224 		 */
   3225 		idx = MMU_TIA(start);
   3226 		a_dte = &a_tbl->at_dtbl[idx];
   3227 
   3228 		/*
   3229 		 * If the DTE is valid then delegate the removal of the sub
   3230 		 * range to pmap_remove_b(), which can remove addresses at
   3231 		 * a finer granularity.
   3232 		 */
   3233 		if (MMU_VALID_DT(*a_dte)) {
   3234 			b_dte = mmu_ptov(a_dte->addr.raw);
   3235 			b_tbl = mmuB2tmgr(b_dte);
   3236 
   3237 			/*
   3238 			 * The sub range to be removed starts at the start
   3239 			 * of the full range we were asked to remove, and ends
   3240 			 * at the greater of:
   3241 			 * 1. The end of the full range, -or-
   3242 			 * 2. The end of the full range, rounded down to the
   3243 			 *    nearest granularity boundary.
   3244 			 */
   3245 			if (end < nstart)
   3246 				empty = pmap_remove_b(b_tbl, start, end);
   3247 			else
   3248 				empty = pmap_remove_b(b_tbl, start, nstart);
   3249 
   3250 			/*
   3251 			 * If the removal resulted in an empty B table,
   3252 			 * invalidate the DTE that points to it and decrement
   3253 			 * the valid entry count of the A table.
   3254 			 */
   3255 			if (empty) {
   3256 				a_dte->attr.raw = MMU_DT_INVALID;
   3257 				a_tbl->at_ecnt--;
   3258 			}
   3259 		}
   3260 		/*
   3261 		 * If the DTE is invalid, the address range is already non-
   3262 		 * existant and can simply be skipped.
   3263 		 */
   3264 	}
   3265 	if (nstart < nend) {
   3266 		/*
   3267 		 * This block is executed if the range spans a whole number
   3268 		 * multiple of granules (A table entries.)
   3269 		 *
   3270 		 * First find the DTE which is responsible for mapping
   3271 		 * the start of the first granule involved.
   3272 		 */
   3273 		idx = MMU_TIA(nstart);
   3274 		a_dte = &a_tbl->at_dtbl[idx];
   3275 
   3276 		/*
   3277 		 * Remove entire sub-granules (B tables) one at a time,
   3278 		 * until reaching the end of the range.
   3279 		 */
   3280 		for (; nstart < nend; a_dte++, nstart += MMU_TIA_RANGE)
   3281 			if (MMU_VALID_DT(*a_dte)) {
   3282 				/*
   3283 				 * Find the B table manager for the
   3284 				 * entry and free it.
   3285 				 */
   3286 				b_dte = mmu_ptov(a_dte->addr.raw);
   3287 				b_tbl = mmuB2tmgr(b_dte);
   3288 				free_b_table(b_tbl, TRUE);
   3289 
   3290 				/*
   3291 				 * Invalidate the DTE that points to the
   3292 				 * B table and decrement the valid entry
   3293 				 * count of the A table.
   3294 				 */
   3295 				a_dte->attr.raw = MMU_DT_INVALID;
   3296 				a_tbl->at_ecnt--;
   3297 			}
   3298 	}
   3299 	if (nend < end) {
   3300 		/*
   3301 		 * This block is executed if the range ends beyond a
   3302 		 * granularity boundary.
   3303 		 *
   3304 		 * First find the DTE which is responsible for mapping
   3305 		 * the start of the nearest (rounded down) granularity
   3306 		 * boundary.
   3307 		 */
   3308 		idx = MMU_TIA(nend);
   3309 		a_dte = &a_tbl->at_dtbl[idx];
   3310 
   3311 		/*
   3312 		 * If the DTE is valid then delegate the removal of the sub
   3313 		 * range to pmap_remove_b(), which can remove addresses at
   3314 		 * a finer granularity.
   3315 		 */
   3316 		if (MMU_VALID_DT(*a_dte)) {
   3317 			/*
   3318 			 * Find the B table manager for the entry
   3319 			 * and hand it to pmap_remove_b() along with
   3320 			 * the sub range.
   3321 			 */
   3322 			b_dte = mmu_ptov(a_dte->addr.raw);
   3323 			b_tbl = mmuB2tmgr(b_dte);
   3324 
   3325 			empty = pmap_remove_b(b_tbl, nend, end);
   3326 
   3327 			/*
   3328 			 * If the removal resulted in an empty B table,
   3329 			 * invalidate the DTE that points to it and decrement
   3330 			 * the valid entry count of the A table.
   3331 			 */
   3332 			if (empty) {
   3333 				a_dte->attr.raw = MMU_DT_INVALID;
   3334 				a_tbl->at_ecnt--;
   3335 			}
   3336 		}
   3337 	}
   3338 
   3339 	/*
   3340 	 * If there are no more entries in the A table, release it
   3341 	 * back to the available pool and return TRUE.
   3342 	 */
   3343 	if (a_tbl->at_ecnt == 0) {
   3344 		a_tbl->at_parent = NULL;
   3345 		TAILQ_REMOVE(&a_pool, a_tbl, at_link);
   3346 		TAILQ_INSERT_HEAD(&a_pool, a_tbl, at_link);
   3347 		empty = TRUE;
   3348 	} else {
   3349 		empty = FALSE;
   3350 	}
   3351 
   3352 	return empty;
   3353 }
   3354 
   3355 /* pmap_remove_b			INTERNAL
   3356  **
   3357  * Remove a range of addresses from an address space, trying to remove entire
   3358  * C tables if possible.
   3359  *
   3360  * If the operation results in an empty B table, the function returns TRUE.
   3361  */
   3362 boolean_t
   3363 pmap_remove_b(b_tbl, start, end)
   3364 	b_tmgr_t *b_tbl;
   3365 	vm_offset_t start;
   3366 	vm_offset_t end;
   3367 {
   3368 	boolean_t empty;
   3369 	int idx;
   3370 	vm_offset_t nstart, nend, rstart;
   3371 	c_tmgr_t *c_tbl;
   3372 	mmu_short_dte_t  *b_dte;
   3373 	mmu_short_pte_t  *c_dte;
   3374 
   3375 
   3376 	nstart = MMU_ROUND_UP_B(start);
   3377 	nend = MMU_ROUND_B(end);
   3378 
   3379 	if (start < nstart) {
   3380 		idx = MMU_TIB(start);
   3381 		b_dte = &b_tbl->bt_dtbl[idx];
   3382 		if (MMU_VALID_DT(*b_dte)) {
   3383 			c_dte = mmu_ptov(MMU_DTE_PA(*b_dte));
   3384 			c_tbl = mmuC2tmgr(c_dte);
   3385 			if (end < nstart)
   3386 				empty = pmap_remove_c(c_tbl, start, end);
   3387 			else
   3388 				empty = pmap_remove_c(c_tbl, start, nstart);
   3389 			if (empty) {
   3390 				b_dte->attr.raw = MMU_DT_INVALID;
   3391 				b_tbl->bt_ecnt--;
   3392 			}
   3393 		}
   3394 	}
   3395 	if (nstart < nend) {
   3396 		idx = MMU_TIB(nstart);
   3397 		b_dte = &b_tbl->bt_dtbl[idx];
   3398 		rstart = nstart;
   3399 		while (rstart < nend) {
   3400 			if (MMU_VALID_DT(*b_dte)) {
   3401 				c_dte = mmu_ptov(MMU_DTE_PA(*b_dte));
   3402 				c_tbl = mmuC2tmgr(c_dte);
   3403 				free_c_table(c_tbl, TRUE);
   3404 				b_dte->attr.raw = MMU_DT_INVALID;
   3405 				b_tbl->bt_ecnt--;
   3406 			}
   3407 			b_dte++;
   3408 			rstart += MMU_TIB_RANGE;
   3409 		}
   3410 	}
   3411 	if (nend < end) {
   3412 		idx = MMU_TIB(nend);
   3413 		b_dte = &b_tbl->bt_dtbl[idx];
   3414 		if (MMU_VALID_DT(*b_dte)) {
   3415 			c_dte = mmu_ptov(MMU_DTE_PA(*b_dte));
   3416 			c_tbl = mmuC2tmgr(c_dte);
   3417 			empty = pmap_remove_c(c_tbl, nend, end);
   3418 			if (empty) {
   3419 				b_dte->attr.raw = MMU_DT_INVALID;
   3420 				b_tbl->bt_ecnt--;
   3421 			}
   3422 		}
   3423 	}
   3424 
   3425 	if (b_tbl->bt_ecnt == 0) {
   3426 		b_tbl->bt_parent = NULL;
   3427 		TAILQ_REMOVE(&b_pool, b_tbl, bt_link);
   3428 		TAILQ_INSERT_HEAD(&b_pool, b_tbl, bt_link);
   3429 		empty = TRUE;
   3430 	} else {
   3431 		empty = FALSE;
   3432 	}
   3433 
   3434 	return empty;
   3435 }
   3436 
   3437 /* pmap_remove_c			INTERNAL
   3438  **
   3439  * Remove a range of addresses from the given C table.
   3440  */
   3441 boolean_t
   3442 pmap_remove_c(c_tbl, start, end)
   3443 	c_tmgr_t *c_tbl;
   3444 	vm_offset_t start;
   3445 	vm_offset_t end;
   3446 {
   3447 	boolean_t empty;
   3448 	int idx;
   3449 	mmu_short_pte_t *c_pte;
   3450 
   3451 	idx = MMU_TIC(start);
   3452 	c_pte = &c_tbl->ct_dtbl[idx];
   3453 	for (;start < end; start += MMU_PAGE_SIZE, c_pte++) {
   3454 		if (MMU_VALID_DT(*c_pte)) {
   3455 			pmap_remove_pte(c_pte);
   3456 			c_tbl->ct_ecnt--;
   3457 		}
   3458 	}
   3459 
   3460 	if (c_tbl->ct_ecnt == 0) {
   3461 		c_tbl->ct_parent = NULL;
   3462 		TAILQ_REMOVE(&c_pool, c_tbl, ct_link);
   3463 		TAILQ_INSERT_HEAD(&c_pool, c_tbl, ct_link);
   3464 		empty = TRUE;
   3465 	} else {
   3466 		empty = FALSE;
   3467 	}
   3468 
   3469 	return empty;
   3470 }
   3471 
   3472 /* is_managed				INTERNAL
   3473  **
   3474  * Determine if the given physical address is managed by the PV system.
   3475  * Note that this logic assumes that no one will ask for the status of
   3476  * addresses which lie in-between the memory banks on the 3/80.  If they
   3477  * do so, it will falsely report that it is managed.
   3478  *
   3479  * Note: A "managed" address is one that was reported to the VM system as
   3480  * a "usable page" during system startup.  As such, the VM system expects the
   3481  * pmap module to keep an accurate track of the useage of those pages.
   3482  * Any page not given to the VM system at startup does not exist (as far as
   3483  * the VM system is concerned) and is therefore "unmanaged."  Examples are
   3484  * those pages which belong to the ROM monitor and the memory allocated before
   3485  * the VM system was started.
   3486  */
   3487 boolean_t
   3488 is_managed(pa)
   3489 	vm_offset_t pa;
   3490 {
   3491 	if (pa >= avail_start && pa < avail_end)
   3492 		return TRUE;
   3493 	else
   3494 		return FALSE;
   3495 }
   3496 
   3497 /* pmap_bootstrap_alloc			INTERNAL
   3498  **
   3499  * Used internally for memory allocation at startup when malloc is not
   3500  * available.  This code will fail once it crosses the first memory
   3501  * bank boundary on the 3/80.  Hopefully by then however, the VM system
   3502  * will be in charge of allocation.
   3503  */
   3504 void *
   3505 pmap_bootstrap_alloc(size)
   3506 	int size;
   3507 {
   3508 	void *rtn;
   3509 
   3510 #ifdef	PMAP_DEBUG
   3511 	if (bootstrap_alloc_enabled == FALSE) {
   3512 		mon_printf("pmap_bootstrap_alloc: disabled\n");
   3513 		sunmon_abort();
   3514 	}
   3515 #endif
   3516 
   3517 	rtn = (void *) virtual_avail;
   3518 	virtual_avail += size;
   3519 
   3520 #ifdef	PMAP_DEBUG
   3521 	if (virtual_avail > virtual_contig_end) {
   3522 		mon_printf("pmap_bootstrap_alloc: out of mem\n");
   3523 		sunmon_abort();
   3524 	}
   3525 #endif
   3526 
   3527 	return rtn;
   3528 }
   3529 
   3530 /* pmap_bootstap_aalign			INTERNAL
   3531  **
   3532  * Used to insure that the next call to pmap_bootstrap_alloc() will
   3533  * return a chunk of memory aligned to the specified size.
   3534  *
   3535  * Note: This function will only support alignment sizes that are powers
   3536  * of two.
   3537  */
   3538 void
   3539 pmap_bootstrap_aalign(size)
   3540 	int size;
   3541 {
   3542 	int off;
   3543 
   3544 	off = virtual_avail & (size - 1);
   3545 	if (off) {
   3546 		(void) pmap_bootstrap_alloc(size - off);
   3547 	}
   3548 }
   3549 
   3550 /* pmap_pa_exists
   3551  **
   3552  * Used by the /dev/mem driver to see if a given PA is memory
   3553  * that can be mapped.  (The PA is not in a hole.)
   3554  */
   3555 int
   3556 pmap_pa_exists(pa)
   3557 	vm_offset_t pa;
   3558 {
   3559 	register int i;
   3560 
   3561 	for (i = 0; i < SUN3X_NPHYS_RAM_SEGS; i++) {
   3562 		if ((pa >= avail_mem[i].pmem_start) &&
   3563 			(pa <  avail_mem[i].pmem_end))
   3564 			return (1);
   3565 		if (avail_mem[i].pmem_next == NULL)
   3566 			break;
   3567 	}
   3568 	return (0);
   3569 }
   3570 
   3571 /* Called only from locore.s and pmap.c */
   3572 void	_pmap_switch __P((pmap_t pmap));
   3573 
   3574 /*
   3575  * _pmap_switch			INTERNAL
   3576  *
   3577  * This is called by locore.s:cpu_switch() when it is
   3578  * switching to a new process.  Load new translations.
   3579  * Note: done in-line by locore.s unless PMAP_DEBUG
   3580  *
   3581  * Note that we do NOT allocate a context here, but
   3582  * share the "kernel only" context until we really
   3583  * need our own context for user-space mappings in
   3584  * pmap_enter_user().  [ s/context/mmu A table/ ]
   3585  */
   3586 void
   3587 _pmap_switch(pmap)
   3588 	pmap_t pmap;
   3589 {
   3590 	u_long rootpa;
   3591 
   3592 	/*
   3593 	 * Only do reload/flush if we have to.
   3594 	 * Note that if the old and new process
   3595 	 * were BOTH using the "null" context,
   3596 	 * then this will NOT flush the TLB.
   3597 	 */
   3598 	rootpa = pmap->pm_a_phys;
   3599 	if (kernel_crp.rp_addr != rootpa) {
   3600 		DPRINT(("pmap_activate(%p)\n", pmap));
   3601 		kernel_crp.rp_addr = rootpa;
   3602 		loadcrp(&kernel_crp);
   3603 		TBIAU();
   3604 	}
   3605 }
   3606 
   3607 /*
   3608  * Exported version of pmap_activate().  This is called from the
   3609  * machine-independent VM code when a process is given a new pmap.
   3610  * If (p == curproc) do like cpu_switch would do; otherwise just
   3611  * take this as notification that the process has a new pmap.
   3612  */
   3613 void
   3614 pmap_activate(p)
   3615 	struct proc *p;
   3616 {
   3617 	pmap_t pmap = p->p_vmspace->vm_map.pmap;
   3618 	int s;
   3619 
   3620 	if (p == curproc) {
   3621 		s = splimp();
   3622 		_pmap_switch(pmap);
   3623 		splx(s);
   3624 	}
   3625 }
   3626 
   3627 /*
   3628  * pmap_deactivate			INTERFACE
   3629  **
   3630  * This is called to deactivate the specified process's address space.
   3631  * XXX The semantics of this function are currently not well-defined.
   3632  */
   3633 void
   3634 pmap_deactivate(p)
   3635 struct proc *p;
   3636 {
   3637 	/* not implemented. */
   3638 }
   3639 
   3640 /* pmap_update
   3641  **
   3642  * Apply any delayed changes scheduled for all pmaps immediately.
   3643  *
   3644  * No delayed operations are currently done in this pmap.
   3645  */
   3646 void
   3647 pmap_update()
   3648 {
   3649 	/* not implemented. */
   3650 }
   3651 
   3652 /*
   3653  * Fill in the sun3x-specific part of the kernel core header
   3654  * for dumpsys().  (See machdep.c for the rest.)
   3655  */
   3656 void
   3657 pmap_kcore_hdr(sh)
   3658 	struct sun3x_kcore_hdr *sh;
   3659 {
   3660 	u_long spa, len;
   3661 	int i;
   3662 
   3663 	sh->pg_frame = MMU_SHORT_PTE_BASEADDR;
   3664 	sh->pg_valid = MMU_DT_PAGE;
   3665 	sh->contig_end = virtual_contig_end;
   3666 	sh->kernCbase = (u_long) kernCbase;
   3667 	for (i = 0; i < SUN3X_NPHYS_RAM_SEGS; i++) {
   3668 		spa = avail_mem[i].pmem_start;
   3669 		spa = m68k_trunc_page(spa);
   3670 		len = avail_mem[i].pmem_end - spa;
   3671 		len = m68k_round_page(len);
   3672 		sh->ram_segs[i].start = spa;
   3673 		sh->ram_segs[i].size  = len;
   3674 	}
   3675 }
   3676 
   3677 
   3678 /* pmap_virtual_space			INTERFACE
   3679  **
   3680  * Return the current available range of virtual addresses in the
   3681  * arguuments provided.  Only really called once.
   3682  */
   3683 void
   3684 pmap_virtual_space(vstart, vend)
   3685 	vm_offset_t *vstart, *vend;
   3686 {
   3687 	*vstart = virtual_avail;
   3688 	*vend = virtual_end;
   3689 }
   3690 
   3691 /*
   3692  * Provide memory to the VM system.
   3693  *
   3694  * Assume avail_start is always in the
   3695  * first segment as pmap_bootstrap does.
   3696  */
   3697 static void
   3698 pmap_page_upload()
   3699 {
   3700 	vm_offset_t	a, b;	/* memory range */
   3701 	int i;
   3702 
   3703 	/* Supply the memory in segments. */
   3704 	for (i = 0; i < SUN3X_NPHYS_RAM_SEGS; i++) {
   3705 		a = atop(avail_mem[i].pmem_start);
   3706 		b = atop(avail_mem[i].pmem_end);
   3707 		if (i == 0)
   3708 			a = atop(avail_start);
   3709 
   3710 		uvm_page_physload(a, b, a, b, VM_FREELIST_DEFAULT);
   3711 
   3712 		if (avail_mem[i].pmem_next == NULL)
   3713 			break;
   3714 	}
   3715 }
   3716 
   3717 /* pmap_page_index			INTERFACE
   3718  **
   3719  * Return the index of the given physical page in a list of useable
   3720  * physical pages in the system.  Holes in physical memory may be counted
   3721  * if so desired.  As long as pmap_free_pages() and pmap_page_index()
   3722  * agree as to whether holes in memory do or do not count as valid pages,
   3723  * it really doesn't matter.  However, if you like to save a little
   3724  * memory, don't count holes as valid pages.  This is even more true when
   3725  * the holes are large.
   3726  *
   3727  * We will not count holes as valid pages.  We can generate page indices
   3728  * that conform to this by using the memory bank structures initialized
   3729  * in pmap_alloc_pv().
   3730  */
   3731 int
   3732 pmap_page_index(pa)
   3733 	vm_offset_t pa;
   3734 {
   3735 	struct pmap_physmem_struct *bank = avail_mem;
   3736 	vm_offset_t off;
   3737 
   3738 	/* Search for the memory bank with this page. */
   3739 	/* XXX - What if it is not physical memory? */
   3740 	while (pa > bank->pmem_end)
   3741 		bank = bank->pmem_next;
   3742 	off = pa - bank->pmem_start;
   3743 
   3744 	return (bank->pmem_pvbase + m68k_btop(off));
   3745 }
   3746 
   3747 /* pmap_count			INTERFACE
   3748  **
   3749  * Return the number of resident (valid) pages in the given pmap.
   3750  *
   3751  * Note:  If this function is handed the kernel map, it will report
   3752  * that it has no mappings.  Hopefully the VM system won't ask for kernel
   3753  * map statistics.
   3754  */
   3755 segsz_t
   3756 pmap_count(pmap, type)
   3757 	pmap_t pmap;
   3758 	int    type;
   3759 {
   3760 	u_int     count;
   3761 	int       a_idx, b_idx;
   3762 	a_tmgr_t *a_tbl;
   3763 	b_tmgr_t *b_tbl;
   3764 	c_tmgr_t *c_tbl;
   3765 
   3766 	/*
   3767 	 * If the pmap does not have its own A table manager, it has no
   3768 	 * valid entires.
   3769 	 */
   3770 	if (pmap->pm_a_tmgr == NULL)
   3771 		return 0;
   3772 
   3773 	a_tbl = pmap->pm_a_tmgr;
   3774 
   3775 	count = 0;
   3776 	for (a_idx = 0; a_idx < MMU_TIA(KERNBASE); a_idx++) {
   3777 	    if (MMU_VALID_DT(a_tbl->at_dtbl[a_idx])) {
   3778 	        b_tbl = mmuB2tmgr(mmu_ptov(a_tbl->at_dtbl[a_idx].addr.raw));
   3779 	        for (b_idx = 0; b_idx < MMU_B_TBL_SIZE; b_idx++) {
   3780 	            if (MMU_VALID_DT(b_tbl->bt_dtbl[b_idx])) {
   3781 	                c_tbl = mmuC2tmgr(
   3782 	                    mmu_ptov(MMU_DTE_PA(b_tbl->bt_dtbl[b_idx])));
   3783 	                if (type == 0)
   3784 	                    /*
   3785 	                     * A resident entry count has been requested.
   3786 	                     */
   3787 	                    count += c_tbl->ct_ecnt;
   3788 	                else
   3789 	                    /*
   3790 	                     * A wired entry count has been requested.
   3791 	                     */
   3792 	                    count += c_tbl->ct_wcnt;
   3793 	            }
   3794 	        }
   3795 	    }
   3796 	}
   3797 
   3798 	return count;
   3799 }
   3800 
   3801 /************************ SUN3 COMPATIBILITY ROUTINES ********************
   3802  * The following routines are only used by DDB for tricky kernel text    *
   3803  * text operations in db_memrw.c.  They are provided for sun3            *
   3804  * compatibility.                                                        *
   3805  *************************************************************************/
   3806 /* get_pte			INTERNAL
   3807  **
   3808  * Return the page descriptor the describes the kernel mapping
   3809  * of the given virtual address.
   3810  */
   3811 extern u_long ptest_addr __P((u_long));	/* XXX: locore.s */
   3812 u_int
   3813 get_pte(va)
   3814 	vm_offset_t va;
   3815 {
   3816 	u_long pte_pa;
   3817 	mmu_short_pte_t *pte;
   3818 
   3819 	/* Get the physical address of the PTE */
   3820 	pte_pa = ptest_addr(va & ~PGOFSET);
   3821 
   3822 	/* Convert to a virtual address... */
   3823 	pte = (mmu_short_pte_t *) (KERNBASE + pte_pa);
   3824 
   3825 	/* Make sure it is in our level-C tables... */
   3826 	if ((pte < kernCbase) ||
   3827 		(pte >= &mmuCbase[NUM_USER_PTES]))
   3828 		return 0;
   3829 
   3830 	/* ... and just return its contents. */
   3831 	return (pte->attr.raw);
   3832 }
   3833 
   3834 
   3835 /* set_pte			INTERNAL
   3836  **
   3837  * Set the page descriptor that describes the kernel mapping
   3838  * of the given virtual address.
   3839  */
   3840 void
   3841 set_pte(va, pte)
   3842 	vm_offset_t va;
   3843 	u_int pte;
   3844 {
   3845 	u_long idx;
   3846 
   3847 	if (va < KERNBASE)
   3848 		return;
   3849 
   3850 	idx = (unsigned long) m68k_btop(va - KERNBASE);
   3851 	kernCbase[idx].attr.raw = pte;
   3852 	TBIS(va);
   3853 }
   3854 
   3855 /*
   3856  *	Routine:        pmap_procwr
   3857  *
   3858  *	Function:
   3859  *		Synchronize caches corresponding to [addr, addr+len) in p.
   3860  */
   3861 void
   3862 pmap_procwr(p, va, len)
   3863 	struct proc	*p;
   3864 	vaddr_t		va;
   3865 	size_t		len;
   3866 {
   3867 	(void)cachectl1(0x80000004, va, len, p);
   3868 }
   3869 
   3870 
   3871 #ifdef	PMAP_DEBUG
   3872 /************************** DEBUGGING ROUTINES **************************
   3873  * The following routines are meant to be an aid to debugging the pmap  *
   3874  * system.  They are callable from the DDB command line and should be   *
   3875  * prepared to be handed unstable or incomplete states of the system.   *
   3876  ************************************************************************/
   3877 
   3878 /* pv_list
   3879  **
   3880  * List all pages found on the pv list for the given physical page.
   3881  * To avoid endless loops, the listing will stop at the end of the list
   3882  * or after 'n' entries - whichever comes first.
   3883  */
   3884 void
   3885 pv_list(pa, n)
   3886 	vm_offset_t pa;
   3887 	int n;
   3888 {
   3889 	int  idx;
   3890 	vm_offset_t va;
   3891 	pv_t *pv;
   3892 	c_tmgr_t *c_tbl;
   3893 	pmap_t pmap;
   3894 
   3895 	pv = pa2pv(pa);
   3896 	idx = pv->pv_idx;
   3897 
   3898 	for (;idx != PVE_EOL && n > 0;
   3899 		 idx=pvebase[idx].pve_next, n--) {
   3900 
   3901 		va = pmap_get_pteinfo(idx, &pmap, &c_tbl);
   3902 		printf("idx %d, pmap 0x%x, va 0x%x, c_tbl %x\n",
   3903 			idx, (u_int) pmap, (u_int) va, (u_int) c_tbl);
   3904 	}
   3905 }
   3906 #endif	/* PMAP_DEBUG */
   3907 
   3908 #ifdef NOT_YET
   3909 /* and maybe not ever */
   3910 /************************** LOW-LEVEL ROUTINES **************************
   3911  * These routines will eventualy be re-written into assembly and placed *
   3912  * in locore.s.  They are here now as stubs so that the pmap module can *
   3913  * be linked as a standalone user program for testing.                  *
   3914  ************************************************************************/
   3915 /* flush_atc_crp			INTERNAL
   3916  **
   3917  * Flush all page descriptors derived from the given CPU Root Pointer
   3918  * (CRP), or 'A' table as it is known here, from the 68851's automatic
   3919  * cache.
   3920  */
   3921 void
   3922 flush_atc_crp(a_tbl)
   3923 {
   3924 	mmu_long_rp_t rp;
   3925 
   3926 	/* Create a temporary root table pointer that points to the
   3927 	 * given A table.
   3928 	 */
   3929 	rp.attr.raw = ~MMU_LONG_RP_LU;
   3930 	rp.addr.raw = (unsigned int) a_tbl;
   3931 
   3932 	mmu_pflushr(&rp);
   3933 	/* mmu_pflushr:
   3934 	 * 	movel   sp(4)@,a0
   3935 	 * 	pflushr a0@
   3936 	 *	rts
   3937 	 */
   3938 }
   3939 #endif /* NOT_YET */
   3940