pmap.c revision 1.64 1 /* $NetBSD: pmap.c,v 1.64 2001/04/23 23:57:49 thorpej Exp $ */
2
3 /*-
4 * Copyright (c) 1996, 1997 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jeremy Cooper.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * XXX These comments aren't quite accurate. Need to change.
41 * The sun3x uses the MC68851 Memory Management Unit, which is built
42 * into the CPU. The 68851 maps virtual to physical addresses using
43 * a multi-level table lookup, which is stored in the very memory that
44 * it maps. The number of levels of lookup is configurable from one
45 * to four. In this implementation, we use three, named 'A' through 'C'.
46 *
47 * The MMU translates virtual addresses into physical addresses by
48 * traversing these tables in a proccess called a 'table walk'. The most
49 * significant 7 bits of the Virtual Address ('VA') being translated are
50 * used as an index into the level A table, whose base in physical memory
51 * is stored in a special MMU register, the 'CPU Root Pointer' or CRP. The
52 * address found at that index in the A table is used as the base
53 * address for the next table, the B table. The next six bits of the VA are
54 * used as an index into the B table, which in turn gives the base address
55 * of the third and final C table.
56 *
57 * The next six bits of the VA are used as an index into the C table to
58 * locate a Page Table Entry (PTE). The PTE is a physical address in memory
59 * to which the remaining 13 bits of the VA are added, producing the
60 * mapped physical address.
61 *
62 * To map the entire memory space in this manner would require 2114296 bytes
63 * of page tables per process - quite expensive. Instead we will
64 * allocate a fixed but considerably smaller space for the page tables at
65 * the time the VM system is initialized. When the pmap code is asked by
66 * the kernel to map a VA to a PA, it allocates tables as needed from this
67 * pool. When there are no more tables in the pool, tables are stolen
68 * from the oldest mapped entries in the tree. This is only possible
69 * because all memory mappings are stored in the kernel memory map
70 * structures, independent of the pmap structures. A VA which references
71 * one of these invalidated maps will cause a page fault. The kernel
72 * will determine that the page fault was caused by a task using a valid
73 * VA, but for some reason (which does not concern it), that address was
74 * not mapped. It will ask the pmap code to re-map the entry and then
75 * it will resume executing the faulting task.
76 *
77 * In this manner the most efficient use of the page table space is
78 * achieved. Tasks which do not execute often will have their tables
79 * stolen and reused by tasks which execute more frequently. The best
80 * size for the page table pool will probably be determined by
81 * experimentation.
82 *
83 * You read all of the comments so far. Good for you.
84 * Now go play!
85 */
86
87 /*** A Note About the 68851 Address Translation Cache
88 * The MC68851 has a 64 entry cache, called the Address Translation Cache
89 * or 'ATC'. This cache stores the most recently used page descriptors
90 * accessed by the MMU when it does translations. Using a marker called a
91 * 'task alias' the MMU can store the descriptors from 8 different table
92 * spaces concurrently. The task alias is associated with the base
93 * address of the level A table of that address space. When an address
94 * space is currently active (the CRP currently points to its A table)
95 * the only cached descriptors that will be obeyed are ones which have a
96 * matching task alias of the current space associated with them.
97 *
98 * Since the cache is always consulted before any table lookups are done,
99 * it is important that it accurately reflect the state of the MMU tables.
100 * Whenever a change has been made to a table that has been loaded into
101 * the MMU, the code must be sure to flush any cached entries that are
102 * affected by the change. These instances are documented in the code at
103 * various points.
104 */
105 /*** A Note About the Note About the 68851 Address Translation Cache
106 * 4 months into this code I discovered that the sun3x does not have
107 * a MC68851 chip. Instead, it has a version of this MMU that is part of the
108 * the 68030 CPU.
109 * All though it behaves very similarly to the 68851, it only has 1 task
110 * alias and a 22 entry cache. So sadly (or happily), the first paragraph
111 * of the previous note does not apply to the sun3x pmap.
112 */
113
114 #include "opt_ddb.h"
115
116 #include <sys/param.h>
117 #include <sys/systm.h>
118 #include <sys/proc.h>
119 #include <sys/malloc.h>
120 #include <sys/pool.h>
121 #include <sys/user.h>
122 #include <sys/queue.h>
123 #include <sys/kcore.h>
124
125 #include <uvm/uvm.h>
126
127 #define PAGER_SVA (uvm.pager_sva)
128 #define PAGER_EVA (uvm.pager_eva)
129
130 #include <machine/cpu.h>
131 #include <machine/kcore.h>
132 #include <machine/mon.h>
133 #include <machine/pmap.h>
134 #include <machine/pte.h>
135 #include <machine/vmparam.h>
136
137 #include <sun3/sun3/cache.h>
138 #include <sun3/sun3/machdep.h>
139
140 #include "pmap_pvt.h"
141
142 /* XXX - What headers declare these? */
143 extern struct pcb *curpcb;
144 extern int physmem;
145
146 /* Defined in locore.s */
147 extern char kernel_text[];
148
149 /* Defined by the linker */
150 extern char etext[], edata[], end[];
151 extern char *esym; /* DDB */
152
153 /*************************** DEBUGGING DEFINITIONS ***********************
154 * Macros, preprocessor defines and variables used in debugging can make *
155 * code hard to read. Anything used exclusively for debugging purposes *
156 * is defined here to avoid having such mess scattered around the file. *
157 *************************************************************************/
158 #ifdef PMAP_DEBUG
159 /*
160 * To aid the debugging process, macros should be expanded into smaller steps
161 * that accomplish the same goal, yet provide convenient places for placing
162 * breakpoints. When this code is compiled with PMAP_DEBUG mode defined, the
163 * 'INLINE' keyword is defined to an empty string. This way, any function
164 * defined to be a 'static INLINE' will become 'outlined' and compiled as
165 * a separate function, which is much easier to debug.
166 */
167 #define INLINE /* nothing */
168
169 /*
170 * It is sometimes convenient to watch the activity of a particular table
171 * in the system. The following variables are used for that purpose.
172 */
173 a_tmgr_t *pmap_watch_atbl = 0;
174 b_tmgr_t *pmap_watch_btbl = 0;
175 c_tmgr_t *pmap_watch_ctbl = 0;
176
177 int pmap_debug = 0;
178 #define DPRINT(args) if (pmap_debug) printf args
179
180 #else /********** Stuff below is defined if NOT debugging **************/
181
182 #define INLINE inline
183 #define DPRINT(args) /* nada */
184
185 #endif /* PMAP_DEBUG */
186 /*********************** END OF DEBUGGING DEFINITIONS ********************/
187
188 /*** Management Structure - Memory Layout
189 * For every MMU table in the sun3x pmap system there must be a way to
190 * manage it; we must know which process is using it, what other tables
191 * depend on it, and whether or not it contains any locked pages. This
192 * is solved by the creation of 'table management' or 'tmgr'
193 * structures. One for each MMU table in the system.
194 *
195 * MAP OF MEMORY USED BY THE PMAP SYSTEM
196 *
197 * towards lower memory
198 * kernAbase -> +-------------------------------------------------------+
199 * | Kernel MMU A level table |
200 * kernBbase -> +-------------------------------------------------------+
201 * | Kernel MMU B level tables |
202 * kernCbase -> +-------------------------------------------------------+
203 * | |
204 * | Kernel MMU C level tables |
205 * | |
206 * mmuCbase -> +-------------------------------------------------------+
207 * | User MMU C level tables |
208 * mmuAbase -> +-------------------------------------------------------+
209 * | |
210 * | User MMU A level tables |
211 * | |
212 * mmuBbase -> +-------------------------------------------------------+
213 * | User MMU B level tables |
214 * tmgrAbase -> +-------------------------------------------------------+
215 * | TMGR A level table structures |
216 * tmgrBbase -> +-------------------------------------------------------+
217 * | TMGR B level table structures |
218 * tmgrCbase -> +-------------------------------------------------------+
219 * | TMGR C level table structures |
220 * pvbase -> +-------------------------------------------------------+
221 * | Physical to Virtual mapping table (list heads) |
222 * pvebase -> +-------------------------------------------------------+
223 * | Physical to Virtual mapping table (list elements) |
224 * | |
225 * +-------------------------------------------------------+
226 * towards higher memory
227 *
228 * For every A table in the MMU A area, there will be a corresponding
229 * a_tmgr structure in the TMGR A area. The same will be true for
230 * the B and C tables. This arrangement will make it easy to find the
231 * controling tmgr structure for any table in the system by use of
232 * (relatively) simple macros.
233 */
234
235 /*
236 * Global variables for storing the base addresses for the areas
237 * labeled above.
238 */
239 static vm_offset_t kernAphys;
240 static mmu_long_dte_t *kernAbase;
241 static mmu_short_dte_t *kernBbase;
242 static mmu_short_pte_t *kernCbase;
243 static mmu_short_pte_t *mmuCbase;
244 static mmu_short_dte_t *mmuBbase;
245 static mmu_long_dte_t *mmuAbase;
246 static a_tmgr_t *Atmgrbase;
247 static b_tmgr_t *Btmgrbase;
248 static c_tmgr_t *Ctmgrbase;
249 static pv_t *pvbase;
250 static pv_elem_t *pvebase;
251 struct pmap kernel_pmap;
252
253 /*
254 * This holds the CRP currently loaded into the MMU.
255 */
256 struct mmu_rootptr kernel_crp;
257
258 /*
259 * Just all around global variables.
260 */
261 static TAILQ_HEAD(a_pool_head_struct, a_tmgr_struct) a_pool;
262 static TAILQ_HEAD(b_pool_head_struct, b_tmgr_struct) b_pool;
263 static TAILQ_HEAD(c_pool_head_struct, c_tmgr_struct) c_pool;
264
265
266 /*
267 * Flags used to mark the safety/availability of certain operations or
268 * resources.
269 */
270 static boolean_t pv_initialized = FALSE, /* PV system has been initialized. */
271 bootstrap_alloc_enabled = FALSE; /*Safe to use pmap_bootstrap_alloc().*/
272 int tmp_vpages_inuse; /* Temporary virtual pages are in use */
273
274 /*
275 * XXX: For now, retain the traditional variables that were
276 * used in the old pmap/vm interface (without NONCONTIG).
277 */
278 /* Kernel virtual address space available: */
279 vm_offset_t virtual_avail, virtual_end;
280 /* Physical address space available: */
281 vm_offset_t avail_start, avail_end;
282
283 /* This keep track of the end of the contiguously mapped range. */
284 vm_offset_t virtual_contig_end;
285
286 /* Physical address used by pmap_next_page() */
287 vm_offset_t avail_next;
288
289 /* These are used by pmap_copy_page(), etc. */
290 vm_offset_t tmp_vpages[2];
291
292 /* memory pool for pmap structures */
293 struct pool pmap_pmap_pool;
294
295 /*
296 * The 3/80 is the only member of the sun3x family that has non-contiguous
297 * physical memory. Memory is divided into 4 banks which are physically
298 * locatable on the system board. Although the size of these banks varies
299 * with the size of memory they contain, their base addresses are
300 * permenently fixed. The following structure, which describes these
301 * banks, is initialized by pmap_bootstrap() after it reads from a similar
302 * structure provided by the ROM Monitor.
303 *
304 * For the other machines in the sun3x architecture which do have contiguous
305 * RAM, this list will have only one entry, which will describe the entire
306 * range of available memory.
307 */
308 struct pmap_physmem_struct avail_mem[SUN3X_NPHYS_RAM_SEGS];
309 u_int total_phys_mem;
310
311 /*************************************************************************/
312
313 /*
314 * XXX - Should "tune" these based on statistics.
315 *
316 * My first guess about the relative numbers of these needed is
317 * based on the fact that a "typical" process will have several
318 * pages mapped at low virtual addresses (text, data, bss), then
319 * some mapped shared libraries, and then some stack pages mapped
320 * near the high end of the VA space. Each process can use only
321 * one A table, and most will use only two B tables (maybe three)
322 * and probably about four C tables. Therefore, the first guess
323 * at the relative numbers of these needed is 1:2:4 -gwr
324 *
325 * The number of C tables needed is closely related to the amount
326 * of physical memory available plus a certain amount attributable
327 * to the use of double mappings. With a few simulation statistics
328 * we can find a reasonably good estimation of this unknown value.
329 * Armed with that and the above ratios, we have a good idea of what
330 * is needed at each level. -j
331 *
332 * Note: It is not physical memory memory size, but the total mapped
333 * virtual space required by the combined working sets of all the
334 * currently _runnable_ processes. (Sleeping ones don't count.)
335 * The amount of physical memory should be irrelevant. -gwr
336 */
337 #ifdef FIXED_NTABLES
338 #define NUM_A_TABLES 16
339 #define NUM_B_TABLES 32
340 #define NUM_C_TABLES 64
341 #else
342 unsigned int NUM_A_TABLES, NUM_B_TABLES, NUM_C_TABLES;
343 #endif /* FIXED_NTABLES */
344
345 /*
346 * This determines our total virtual mapping capacity.
347 * Yes, it is a FIXED value so we can pre-allocate.
348 */
349 #define NUM_USER_PTES (NUM_C_TABLES * MMU_C_TBL_SIZE)
350
351 /*
352 * The size of the Kernel Virtual Address Space (KVAS)
353 * for purposes of MMU table allocation is -KERNBASE
354 * (length from KERNBASE to 0xFFFFffff)
355 */
356 #define KVAS_SIZE (-KERNBASE)
357
358 /* Numbers of kernel MMU tables to support KVAS_SIZE. */
359 #define KERN_B_TABLES (KVAS_SIZE >> MMU_TIA_SHIFT)
360 #define KERN_C_TABLES (KVAS_SIZE >> MMU_TIB_SHIFT)
361 #define NUM_KERN_PTES (KVAS_SIZE >> MMU_TIC_SHIFT)
362
363 /*************************** MISCELANEOUS MACROS *************************/
364 #define pmap_lock(pmap) simple_lock(&pmap->pm_lock)
365 #define pmap_unlock(pmap) simple_unlock(&pmap->pm_lock)
366 #define pmap_add_ref(pmap) ++pmap->pm_refcount
367 #define pmap_del_ref(pmap) --pmap->pm_refcount
368 #define pmap_refcount(pmap) pmap->pm_refcount
369
370 void *pmap_bootstrap_alloc(int);
371
372 static INLINE void * mmu_ptov __P((vm_offset_t pa));
373 static INLINE vm_offset_t mmu_vtop __P((void * va));
374
375 #if 0
376 static INLINE a_tmgr_t * mmuA2tmgr __P((mmu_long_dte_t *));
377 #endif /* 0 */
378 static INLINE b_tmgr_t * mmuB2tmgr __P((mmu_short_dte_t *));
379 static INLINE c_tmgr_t * mmuC2tmgr __P((mmu_short_pte_t *));
380
381 static INLINE pv_t *pa2pv __P((vm_offset_t pa));
382 static INLINE int pteidx __P((mmu_short_pte_t *));
383 static INLINE pmap_t current_pmap __P((void));
384
385 /*
386 * We can always convert between virtual and physical addresses
387 * for anything in the range [KERNBASE ... avail_start] because
388 * that range is GUARANTEED to be mapped linearly.
389 * We rely heavily upon this feature!
390 */
391 static INLINE void *
392 mmu_ptov(pa)
393 vm_offset_t pa;
394 {
395 register vm_offset_t va;
396
397 va = (pa + KERNBASE);
398 #ifdef PMAP_DEBUG
399 if ((va < KERNBASE) || (va >= virtual_contig_end))
400 panic("mmu_ptov");
401 #endif
402 return ((void*)va);
403 }
404 static INLINE vm_offset_t
405 mmu_vtop(vva)
406 void *vva;
407 {
408 register vm_offset_t va;
409
410 va = (vm_offset_t)vva;
411 #ifdef PMAP_DEBUG
412 if ((va < KERNBASE) || (va >= virtual_contig_end))
413 panic("mmu_ptov");
414 #endif
415 return (va - KERNBASE);
416 }
417
418 /*
419 * These macros map MMU tables to their corresponding manager structures.
420 * They are needed quite often because many of the pointers in the pmap
421 * system reference MMU tables and not the structures that control them.
422 * There needs to be a way to find one when given the other and these
423 * macros do so by taking advantage of the memory layout described above.
424 * Here's a quick step through the first macro, mmuA2tmgr():
425 *
426 * 1) find the offset of the given MMU A table from the base of its table
427 * pool (table - mmuAbase).
428 * 2) convert this offset into a table index by dividing it by the
429 * size of one MMU 'A' table. (sizeof(mmu_long_dte_t) * MMU_A_TBL_SIZE)
430 * 3) use this index to select the corresponding 'A' table manager
431 * structure from the 'A' table manager pool (Atmgrbase[index]).
432 */
433 /* This function is not currently used. */
434 #if 0
435 static INLINE a_tmgr_t *
436 mmuA2tmgr(mmuAtbl)
437 mmu_long_dte_t *mmuAtbl;
438 {
439 register int idx;
440
441 /* Which table is this in? */
442 idx = (mmuAtbl - mmuAbase) / MMU_A_TBL_SIZE;
443 #ifdef PMAP_DEBUG
444 if ((idx < 0) || (idx >= NUM_A_TABLES))
445 panic("mmuA2tmgr");
446 #endif
447 return (&Atmgrbase[idx]);
448 }
449 #endif /* 0 */
450
451 static INLINE b_tmgr_t *
452 mmuB2tmgr(mmuBtbl)
453 mmu_short_dte_t *mmuBtbl;
454 {
455 register int idx;
456
457 /* Which table is this in? */
458 idx = (mmuBtbl - mmuBbase) / MMU_B_TBL_SIZE;
459 #ifdef PMAP_DEBUG
460 if ((idx < 0) || (idx >= NUM_B_TABLES))
461 panic("mmuB2tmgr");
462 #endif
463 return (&Btmgrbase[idx]);
464 }
465
466 /* mmuC2tmgr INTERNAL
467 **
468 * Given a pte known to belong to a C table, return the address of
469 * that table's management structure.
470 */
471 static INLINE c_tmgr_t *
472 mmuC2tmgr(mmuCtbl)
473 mmu_short_pte_t *mmuCtbl;
474 {
475 register int idx;
476
477 /* Which table is this in? */
478 idx = (mmuCtbl - mmuCbase) / MMU_C_TBL_SIZE;
479 #ifdef PMAP_DEBUG
480 if ((idx < 0) || (idx >= NUM_C_TABLES))
481 panic("mmuC2tmgr");
482 #endif
483 return (&Ctmgrbase[idx]);
484 }
485
486 /* This is now a function call below.
487 * #define pa2pv(pa) \
488 * (&pvbase[(unsigned long)\
489 * m68k_btop(pa)\
490 * ])
491 */
492
493 /* pa2pv INTERNAL
494 **
495 * Return the pv_list_head element which manages the given physical
496 * address.
497 */
498 static INLINE pv_t *
499 pa2pv(pa)
500 vm_offset_t pa;
501 {
502 register struct pmap_physmem_struct *bank;
503 register int idx;
504
505 bank = &avail_mem[0];
506 while (pa >= bank->pmem_end)
507 bank = bank->pmem_next;
508
509 pa -= bank->pmem_start;
510 idx = bank->pmem_pvbase + m68k_btop(pa);
511 #ifdef PMAP_DEBUG
512 if ((idx < 0) || (idx >= physmem))
513 panic("pa2pv");
514 #endif
515 return &pvbase[idx];
516 }
517
518 /* pteidx INTERNAL
519 **
520 * Return the index of the given PTE within the entire fixed table of
521 * PTEs.
522 */
523 static INLINE int
524 pteidx(pte)
525 mmu_short_pte_t *pte;
526 {
527 return (pte - kernCbase);
528 }
529
530 /*
531 * This just offers a place to put some debugging checks,
532 * and reduces the number of places "curproc" appears...
533 */
534 static INLINE pmap_t
535 current_pmap()
536 {
537 struct proc *p;
538 struct vmspace *vm;
539 vm_map_t map;
540 pmap_t pmap;
541
542 p = curproc; /* XXX */
543 if (p == NULL)
544 pmap = &kernel_pmap;
545 else {
546 vm = p->p_vmspace;
547 map = &vm->vm_map;
548 pmap = vm_map_pmap(map);
549 }
550
551 return (pmap);
552 }
553
554
555 /*************************** FUNCTION DEFINITIONS ************************
556 * These appear here merely for the compiler to enforce type checking on *
557 * all function calls. *
558 *************************************************************************/
559
560 /** External functions
561 ** - functions used within this module but written elsewhere.
562 ** both of these functions are in locore.s
563 ** XXX - These functions were later replaced with their more cryptic
564 ** hp300 counterparts. They may be removed now.
565 **/
566 #if 0 /* deprecated mmu */
567 void mmu_seturp __P((vm_offset_t));
568 void mmu_flush __P((int, vm_offset_t));
569 void mmu_flusha __P((void));
570 #endif /* 0 */
571
572 /** Internal functions
573 ** Most functions used only within this module are defined in
574 ** pmap_pvt.h (why not here if used only here?)
575 **/
576 static void pmap_page_upload __P((void));
577
578 /** Interface functions
579 ** - functions required by the Mach VM Pmap interface, with MACHINE_CONTIG
580 ** defined.
581 **/
582 int pmap_page_index __P((vm_offset_t));
583 void pmap_pinit __P((pmap_t));
584 void pmap_release __P((pmap_t));
585
586 /********************************** CODE ********************************
587 * Functions that are called from other parts of the kernel are labeled *
588 * as 'INTERFACE' functions. Functions that are only called from *
589 * within the pmap module are labeled as 'INTERNAL' functions. *
590 * Functions that are internal, but are not (currently) used at all are *
591 * labeled 'INTERNAL_X'. *
592 ************************************************************************/
593
594 /* pmap_bootstrap INTERNAL
595 **
596 * Initializes the pmap system. Called at boot time from
597 * locore2.c:_vm_init()
598 *
599 * Reminder: having a pmap_bootstrap_alloc() and also having the VM
600 * system implement pmap_steal_memory() is redundant.
601 * Don't release this code without removing one or the other!
602 */
603 void
604 pmap_bootstrap(nextva)
605 vm_offset_t nextva;
606 {
607 struct physmemory *membank;
608 struct pmap_physmem_struct *pmap_membank;
609 vm_offset_t va, pa, eva;
610 int b, c, i, j; /* running table counts */
611 int size, resvmem;
612
613 /*
614 * This function is called by __bootstrap after it has
615 * determined the type of machine and made the appropriate
616 * patches to the ROM vectors (XXX- I don't quite know what I meant
617 * by that.) It allocates and sets up enough of the pmap system
618 * to manage the kernel's address space.
619 */
620
621 /*
622 * Determine the range of kernel virtual and physical
623 * space available. Note that we ABSOLUTELY DEPEND on
624 * the fact that the first bank of memory (4MB) is
625 * mapped linearly to KERNBASE (which we guaranteed in
626 * the first instructions of locore.s).
627 * That is plenty for our bootstrap work.
628 */
629 virtual_avail = m68k_round_page(nextva);
630 virtual_contig_end = KERNBASE + 0x400000; /* +4MB */
631 virtual_end = VM_MAX_KERNEL_ADDRESS;
632 /* Don't need avail_start til later. */
633
634 /* We may now call pmap_bootstrap_alloc(). */
635 bootstrap_alloc_enabled = TRUE;
636
637 /*
638 * This is a somewhat unwrapped loop to deal with
639 * copying the PROM's 'phsymem' banks into the pmap's
640 * banks. The following is always assumed:
641 * 1. There is always at least one bank of memory.
642 * 2. There is always a last bank of memory, and its
643 * pmem_next member must be set to NULL.
644 */
645 membank = romVectorPtr->v_physmemory;
646 pmap_membank = avail_mem;
647 total_phys_mem = 0;
648
649 for (;;) { /* break on !membank */
650 pmap_membank->pmem_start = membank->address;
651 pmap_membank->pmem_end = membank->address + membank->size;
652 total_phys_mem += membank->size;
653 membank = membank->next;
654 if (!membank)
655 break;
656 /* This silly syntax arises because pmap_membank
657 * is really a pre-allocated array, but it is put into
658 * use as a linked list.
659 */
660 pmap_membank->pmem_next = pmap_membank + 1;
661 pmap_membank = pmap_membank->pmem_next;
662 }
663 /* This is the last element. */
664 pmap_membank->pmem_next = NULL;
665
666 /*
667 * Note: total_phys_mem, physmem represent
668 * actual physical memory, including that
669 * reserved for the PROM monitor.
670 */
671 physmem = btoc(total_phys_mem);
672
673 /*
674 * Avail_end is set to the first byte of physical memory
675 * after the end of the last bank. We use this only to
676 * determine if a physical address is "managed" memory.
677 * This address range should be reduced to prevent the
678 * physical pages needed by the PROM monitor from being used
679 * in the VM system.
680 */
681 resvmem = total_phys_mem - *(romVectorPtr->memoryAvail);
682 resvmem = m68k_round_page(resvmem);
683 avail_end = pmap_membank->pmem_end - resvmem;
684
685 /*
686 * First allocate enough kernel MMU tables to map all
687 * of kernel virtual space from KERNBASE to 0xFFFFFFFF.
688 * Note: All must be aligned on 256 byte boundaries.
689 * Start with the level-A table (one of those).
690 */
691 size = sizeof(mmu_long_dte_t) * MMU_A_TBL_SIZE;
692 kernAbase = pmap_bootstrap_alloc(size);
693 bzero(kernAbase, size);
694
695 /* Now the level-B kernel tables... */
696 size = sizeof(mmu_short_dte_t) * MMU_B_TBL_SIZE * KERN_B_TABLES;
697 kernBbase = pmap_bootstrap_alloc(size);
698 bzero(kernBbase, size);
699
700 /* Now the level-C kernel tables... */
701 size = sizeof(mmu_short_pte_t) * MMU_C_TBL_SIZE * KERN_C_TABLES;
702 kernCbase = pmap_bootstrap_alloc(size);
703 bzero(kernCbase, size);
704 /*
705 * Note: In order for the PV system to work correctly, the kernel
706 * and user-level C tables must be allocated contiguously.
707 * Nothing should be allocated between here and the allocation of
708 * mmuCbase below. XXX: Should do this as one allocation, and
709 * then compute a pointer for mmuCbase instead of this...
710 *
711 * Allocate user MMU tables.
712 * These must be contiguous with the preceeding.
713 */
714
715 #ifndef FIXED_NTABLES
716 /*
717 * The number of user-level C tables that should be allocated is
718 * related to the size of physical memory. In general, there should
719 * be enough tables to map four times the amount of available RAM.
720 * The extra amount is needed because some table space is wasted by
721 * fragmentation.
722 */
723 NUM_C_TABLES = (total_phys_mem * 4) / (MMU_C_TBL_SIZE * MMU_PAGE_SIZE);
724 NUM_B_TABLES = NUM_C_TABLES / 2;
725 NUM_A_TABLES = NUM_B_TABLES / 2;
726 #endif /* !FIXED_NTABLES */
727
728 size = sizeof(mmu_short_pte_t) * MMU_C_TBL_SIZE * NUM_C_TABLES;
729 mmuCbase = pmap_bootstrap_alloc(size);
730
731 size = sizeof(mmu_short_dte_t) * MMU_B_TBL_SIZE * NUM_B_TABLES;
732 mmuBbase = pmap_bootstrap_alloc(size);
733
734 size = sizeof(mmu_long_dte_t) * MMU_A_TBL_SIZE * NUM_A_TABLES;
735 mmuAbase = pmap_bootstrap_alloc(size);
736
737 /*
738 * Fill in the never-changing part of the kernel tables.
739 * For simplicity, the kernel's mappings will be editable as a
740 * flat array of page table entries at kernCbase. The
741 * higher level 'A' and 'B' tables must be initialized to point
742 * to this lower one.
743 */
744 b = c = 0;
745
746 /*
747 * Invalidate all mappings below KERNBASE in the A table.
748 * This area has already been zeroed out, but it is good
749 * practice to explicitly show that we are interpreting
750 * it as a list of A table descriptors.
751 */
752 for (i = 0; i < MMU_TIA(KERNBASE); i++) {
753 kernAbase[i].addr.raw = 0;
754 }
755
756 /*
757 * Set up the kernel A and B tables so that they will reference the
758 * correct spots in the contiguous table of PTEs allocated for the
759 * kernel's virtual memory space.
760 */
761 for (i = MMU_TIA(KERNBASE); i < MMU_A_TBL_SIZE; i++) {
762 kernAbase[i].attr.raw =
763 MMU_LONG_DTE_LU | MMU_LONG_DTE_SUPV | MMU_DT_SHORT;
764 kernAbase[i].addr.raw = mmu_vtop(&kernBbase[b]);
765
766 for (j=0; j < MMU_B_TBL_SIZE; j++) {
767 kernBbase[b + j].attr.raw = mmu_vtop(&kernCbase[c])
768 | MMU_DT_SHORT;
769 c += MMU_C_TBL_SIZE;
770 }
771 b += MMU_B_TBL_SIZE;
772 }
773
774 /* XXX - Doing kernel_pmap a little further down. */
775
776 pmap_alloc_usermmu(); /* Allocate user MMU tables. */
777 pmap_alloc_usertmgr(); /* Allocate user MMU table managers.*/
778 pmap_alloc_pv(); /* Allocate physical->virtual map. */
779
780 /*
781 * We are now done with pmap_bootstrap_alloc(). Round up
782 * `virtual_avail' to the nearest page, and set the flag
783 * to prevent use of pmap_bootstrap_alloc() hereafter.
784 */
785 pmap_bootstrap_aalign(NBPG);
786 bootstrap_alloc_enabled = FALSE;
787
788 /*
789 * Now that we are done with pmap_bootstrap_alloc(), we
790 * must save the virtual and physical addresses of the
791 * end of the linearly mapped range, which are stored in
792 * virtual_contig_end and avail_start, respectively.
793 * These variables will never change after this point.
794 */
795 virtual_contig_end = virtual_avail;
796 avail_start = virtual_avail - KERNBASE;
797
798 /*
799 * `avail_next' is a running pointer used by pmap_next_page() to
800 * keep track of the next available physical page to be handed
801 * to the VM system during its initialization, in which it
802 * asks for physical pages, one at a time.
803 */
804 avail_next = avail_start;
805
806 /*
807 * Now allocate some virtual addresses, but not the physical pages
808 * behind them. Note that virtual_avail is already page-aligned.
809 *
810 * tmp_vpages[] is an array of two virtual pages used for temporary
811 * kernel mappings in the pmap module to facilitate various physical
812 * address-oritented operations.
813 */
814 tmp_vpages[0] = virtual_avail;
815 virtual_avail += NBPG;
816 tmp_vpages[1] = virtual_avail;
817 virtual_avail += NBPG;
818
819 /** Initialize the PV system **/
820 pmap_init_pv();
821
822 /*
823 * Fill in the kernel_pmap structure and kernel_crp.
824 */
825 kernAphys = mmu_vtop(kernAbase);
826 kernel_pmap.pm_a_tmgr = NULL;
827 kernel_pmap.pm_a_phys = kernAphys;
828 kernel_pmap.pm_refcount = 1; /* always in use */
829 simple_lock_init(&kernel_pmap.pm_lock);
830
831 kernel_crp.rp_attr = MMU_LONG_DTE_LU | MMU_DT_LONG;
832 kernel_crp.rp_addr = kernAphys;
833
834 /*
835 * Now pmap_enter_kernel() may be used safely and will be
836 * the main interface used hereafter to modify the kernel's
837 * virtual address space. Note that since we are still running
838 * under the PROM's address table, none of these table modifications
839 * actually take effect until pmap_takeover_mmu() is called.
840 *
841 * Note: Our tables do NOT have the PROM linear mappings!
842 * Only the mappings created here exist in our tables, so
843 * remember to map anything we expect to use.
844 */
845 va = (vm_offset_t) KERNBASE;
846 pa = 0;
847
848 /*
849 * The first page of the kernel virtual address space is the msgbuf
850 * page. The page attributes (data, non-cached) are set here, while
851 * the address is assigned to this global pointer in cpu_startup().
852 * It is non-cached, mostly due to paranoia.
853 */
854 pmap_enter_kernel(va, pa|PMAP_NC, VM_PROT_ALL);
855 va += NBPG; pa += NBPG;
856
857 /* Next page is used as the temporary stack. */
858 pmap_enter_kernel(va, pa, VM_PROT_ALL);
859 va += NBPG; pa += NBPG;
860
861 /*
862 * Map all of the kernel's text segment as read-only and cacheable.
863 * (Cacheable is implied by default). Unfortunately, the last bytes
864 * of kernel text and the first bytes of kernel data will often be
865 * sharing the same page. Therefore, the last page of kernel text
866 * has to be mapped as read/write, to accomodate the data.
867 */
868 eva = m68k_trunc_page((vm_offset_t)etext);
869 for (; va < eva; va += NBPG, pa += NBPG)
870 pmap_enter_kernel(va, pa, VM_PROT_READ|VM_PROT_EXECUTE);
871
872 /*
873 * Map all of the kernel's data as read/write and cacheable.
874 * This includes: data, BSS, symbols, and everything in the
875 * contiguous memory used by pmap_bootstrap_alloc()
876 */
877 for (; pa < avail_start; va += NBPG, pa += NBPG)
878 pmap_enter_kernel(va, pa, VM_PROT_READ|VM_PROT_WRITE);
879
880 /*
881 * At this point we are almost ready to take over the MMU. But first
882 * we must save the PROM's address space in our map, as we call its
883 * routines and make references to its data later in the kernel.
884 */
885 pmap_bootstrap_copyprom();
886 pmap_takeover_mmu();
887 pmap_bootstrap_setprom();
888
889 /* Notify the VM system of our page size. */
890 uvmexp.pagesize = NBPG;
891 uvm_setpagesize();
892
893 pmap_page_upload();
894 }
895
896
897 /* pmap_alloc_usermmu INTERNAL
898 **
899 * Called from pmap_bootstrap() to allocate MMU tables that will
900 * eventually be used for user mappings.
901 */
902 void
903 pmap_alloc_usermmu()
904 {
905 /* XXX: Moved into caller. */
906 }
907
908 /* pmap_alloc_pv INTERNAL
909 **
910 * Called from pmap_bootstrap() to allocate the physical
911 * to virtual mapping list. Each physical page of memory
912 * in the system has a corresponding element in this list.
913 */
914 void
915 pmap_alloc_pv()
916 {
917 int i;
918 unsigned int total_mem;
919
920 /*
921 * Allocate a pv_head structure for every page of physical
922 * memory that will be managed by the system. Since memory on
923 * the 3/80 is non-contiguous, we cannot arrive at a total page
924 * count by subtraction of the lowest available address from the
925 * highest, but rather we have to step through each memory
926 * bank and add the number of pages in each to the total.
927 *
928 * At this time we also initialize the offset of each bank's
929 * starting pv_head within the pv_head list so that the physical
930 * memory state routines (pmap_is_referenced(),
931 * pmap_is_modified(), et al.) can quickly find coresponding
932 * pv_heads in spite of the non-contiguity.
933 */
934 total_mem = 0;
935 for (i = 0; i < SUN3X_NPHYS_RAM_SEGS; i++) {
936 avail_mem[i].pmem_pvbase = m68k_btop(total_mem);
937 total_mem += avail_mem[i].pmem_end -
938 avail_mem[i].pmem_start;
939 if (avail_mem[i].pmem_next == NULL)
940 break;
941 }
942 pvbase = (pv_t *) pmap_bootstrap_alloc(sizeof(pv_t) *
943 m68k_btop(total_phys_mem));
944 }
945
946 /* pmap_alloc_usertmgr INTERNAL
947 **
948 * Called from pmap_bootstrap() to allocate the structures which
949 * facilitate management of user MMU tables. Each user MMU table
950 * in the system has one such structure associated with it.
951 */
952 void
953 pmap_alloc_usertmgr()
954 {
955 /* Allocate user MMU table managers */
956 /* It would be a lot simpler to just make these BSS, but */
957 /* we may want to change their size at boot time... -j */
958 Atmgrbase = (a_tmgr_t *) pmap_bootstrap_alloc(sizeof(a_tmgr_t)
959 * NUM_A_TABLES);
960 Btmgrbase = (b_tmgr_t *) pmap_bootstrap_alloc(sizeof(b_tmgr_t)
961 * NUM_B_TABLES);
962 Ctmgrbase = (c_tmgr_t *) pmap_bootstrap_alloc(sizeof(c_tmgr_t)
963 * NUM_C_TABLES);
964
965 /*
966 * Allocate PV list elements for the physical to virtual
967 * mapping system.
968 */
969 pvebase = (pv_elem_t *) pmap_bootstrap_alloc(
970 sizeof(pv_elem_t) * (NUM_USER_PTES + NUM_KERN_PTES));
971 }
972
973 /* pmap_bootstrap_copyprom() INTERNAL
974 **
975 * Copy the PROM mappings into our own tables. Note, we
976 * can use physical addresses until __bootstrap returns.
977 */
978 void
979 pmap_bootstrap_copyprom()
980 {
981 struct sunromvec *romp;
982 int *mon_ctbl;
983 mmu_short_pte_t *kpte;
984 int i, len;
985
986 romp = romVectorPtr;
987
988 /*
989 * Copy the mappings in SUN3X_MON_KDB_BASE...SUN3X_MONEND
990 * Note: mon_ctbl[0] maps SUN3X_MON_KDB_BASE
991 */
992 mon_ctbl = *romp->monptaddr;
993 i = m68k_btop(SUN3X_MON_KDB_BASE - KERNBASE);
994 kpte = &kernCbase[i];
995 len = m68k_btop(SUN3X_MONEND - SUN3X_MON_KDB_BASE);
996
997 for (i = 0; i < len; i++) {
998 kpte[i].attr.raw = mon_ctbl[i];
999 }
1000
1001 /*
1002 * Copy the mappings at MON_DVMA_BASE (to the end).
1003 * Note, in here, mon_ctbl[0] maps MON_DVMA_BASE.
1004 * Actually, we only want the last page, which the
1005 * PROM has set up for use by the "ie" driver.
1006 * (The i82686 needs its SCP there.)
1007 * If we copy all the mappings, pmap_enter_kernel
1008 * may complain about finding valid PTEs that are
1009 * not recorded in our PV lists...
1010 */
1011 mon_ctbl = *romp->shadowpteaddr;
1012 i = m68k_btop(SUN3X_MON_DVMA_BASE - KERNBASE);
1013 kpte = &kernCbase[i];
1014 len = m68k_btop(SUN3X_MON_DVMA_SIZE);
1015 for (i = (len-1); i < len; i++) {
1016 kpte[i].attr.raw = mon_ctbl[i];
1017 }
1018 }
1019
1020 /* pmap_takeover_mmu INTERNAL
1021 **
1022 * Called from pmap_bootstrap() after it has copied enough of the
1023 * PROM mappings into the kernel map so that we can use our own
1024 * MMU table.
1025 */
1026 void
1027 pmap_takeover_mmu()
1028 {
1029
1030 loadcrp(&kernel_crp);
1031 }
1032
1033 /* pmap_bootstrap_setprom() INTERNAL
1034 **
1035 * Set the PROM mappings so it can see kernel space.
1036 * Note that physical addresses are used here, which
1037 * we can get away with because this runs with the
1038 * low 1GB set for transparent translation.
1039 */
1040 void
1041 pmap_bootstrap_setprom()
1042 {
1043 mmu_long_dte_t *mon_dte;
1044 extern struct mmu_rootptr mon_crp;
1045 int i;
1046
1047 mon_dte = (mmu_long_dte_t *) mon_crp.rp_addr;
1048 for (i = MMU_TIA(KERNBASE); i < MMU_TIA(KERN_END); i++) {
1049 mon_dte[i].attr.raw = kernAbase[i].attr.raw;
1050 mon_dte[i].addr.raw = kernAbase[i].addr.raw;
1051 }
1052 }
1053
1054
1055 /* pmap_init INTERFACE
1056 **
1057 * Called at the end of vm_init() to set up the pmap system to go
1058 * into full time operation. All initialization of kernel_pmap
1059 * should be already done by now, so this should just do things
1060 * needed for user-level pmaps to work.
1061 */
1062 void
1063 pmap_init()
1064 {
1065 /** Initialize the manager pools **/
1066 TAILQ_INIT(&a_pool);
1067 TAILQ_INIT(&b_pool);
1068 TAILQ_INIT(&c_pool);
1069
1070 /**************************************************************
1071 * Initialize all tmgr structures and MMU tables they manage. *
1072 **************************************************************/
1073 /** Initialize A tables **/
1074 pmap_init_a_tables();
1075 /** Initialize B tables **/
1076 pmap_init_b_tables();
1077 /** Initialize C tables **/
1078 pmap_init_c_tables();
1079
1080 /** Initialize the pmap pools **/
1081 pool_init(&pmap_pmap_pool, sizeof(struct pmap), 0, 0, 0, "pmappl",
1082 0, pool_page_alloc_nointr, pool_page_free_nointr, M_VMPMAP);
1083 }
1084
1085 /* pmap_init_a_tables() INTERNAL
1086 **
1087 * Initializes all A managers, their MMU A tables, and inserts
1088 * them into the A manager pool for use by the system.
1089 */
1090 void
1091 pmap_init_a_tables()
1092 {
1093 int i;
1094 a_tmgr_t *a_tbl;
1095
1096 for (i=0; i < NUM_A_TABLES; i++) {
1097 /* Select the next available A manager from the pool */
1098 a_tbl = &Atmgrbase[i];
1099
1100 /*
1101 * Clear its parent entry. Set its wired and valid
1102 * entry count to zero.
1103 */
1104 a_tbl->at_parent = NULL;
1105 a_tbl->at_wcnt = a_tbl->at_ecnt = 0;
1106
1107 /* Assign it the next available MMU A table from the pool */
1108 a_tbl->at_dtbl = &mmuAbase[i * MMU_A_TBL_SIZE];
1109
1110 /*
1111 * Initialize the MMU A table with the table in the `proc0',
1112 * or kernel, mapping. This ensures that every process has
1113 * the kernel mapped in the top part of its address space.
1114 */
1115 bcopy(kernAbase, a_tbl->at_dtbl, MMU_A_TBL_SIZE *
1116 sizeof(mmu_long_dte_t));
1117
1118 /*
1119 * Finally, insert the manager into the A pool,
1120 * making it ready to be used by the system.
1121 */
1122 TAILQ_INSERT_TAIL(&a_pool, a_tbl, at_link);
1123 }
1124 }
1125
1126 /* pmap_init_b_tables() INTERNAL
1127 **
1128 * Initializes all B table managers, their MMU B tables, and
1129 * inserts them into the B manager pool for use by the system.
1130 */
1131 void
1132 pmap_init_b_tables()
1133 {
1134 int i,j;
1135 b_tmgr_t *b_tbl;
1136
1137 for (i=0; i < NUM_B_TABLES; i++) {
1138 /* Select the next available B manager from the pool */
1139 b_tbl = &Btmgrbase[i];
1140
1141 b_tbl->bt_parent = NULL; /* clear its parent, */
1142 b_tbl->bt_pidx = 0; /* parent index, */
1143 b_tbl->bt_wcnt = 0; /* wired entry count, */
1144 b_tbl->bt_ecnt = 0; /* valid entry count. */
1145
1146 /* Assign it the next available MMU B table from the pool */
1147 b_tbl->bt_dtbl = &mmuBbase[i * MMU_B_TBL_SIZE];
1148
1149 /* Invalidate every descriptor in the table */
1150 for (j=0; j < MMU_B_TBL_SIZE; j++)
1151 b_tbl->bt_dtbl[j].attr.raw = MMU_DT_INVALID;
1152
1153 /* Insert the manager into the B pool */
1154 TAILQ_INSERT_TAIL(&b_pool, b_tbl, bt_link);
1155 }
1156 }
1157
1158 /* pmap_init_c_tables() INTERNAL
1159 **
1160 * Initializes all C table managers, their MMU C tables, and
1161 * inserts them into the C manager pool for use by the system.
1162 */
1163 void
1164 pmap_init_c_tables()
1165 {
1166 int i,j;
1167 c_tmgr_t *c_tbl;
1168
1169 for (i=0; i < NUM_C_TABLES; i++) {
1170 /* Select the next available C manager from the pool */
1171 c_tbl = &Ctmgrbase[i];
1172
1173 c_tbl->ct_parent = NULL; /* clear its parent, */
1174 c_tbl->ct_pidx = 0; /* parent index, */
1175 c_tbl->ct_wcnt = 0; /* wired entry count, */
1176 c_tbl->ct_ecnt = 0; /* valid entry count, */
1177 c_tbl->ct_pmap = NULL; /* parent pmap, */
1178 c_tbl->ct_va = 0; /* base of managed range */
1179
1180 /* Assign it the next available MMU C table from the pool */
1181 c_tbl->ct_dtbl = &mmuCbase[i * MMU_C_TBL_SIZE];
1182
1183 for (j=0; j < MMU_C_TBL_SIZE; j++)
1184 c_tbl->ct_dtbl[j].attr.raw = MMU_DT_INVALID;
1185
1186 TAILQ_INSERT_TAIL(&c_pool, c_tbl, ct_link);
1187 }
1188 }
1189
1190 /* pmap_init_pv() INTERNAL
1191 **
1192 * Initializes the Physical to Virtual mapping system.
1193 */
1194 void
1195 pmap_init_pv()
1196 {
1197 int i;
1198
1199 /* Initialize every PV head. */
1200 for (i = 0; i < m68k_btop(total_phys_mem); i++) {
1201 pvbase[i].pv_idx = PVE_EOL; /* Indicate no mappings */
1202 pvbase[i].pv_flags = 0; /* Zero out page flags */
1203 }
1204
1205 pv_initialized = TRUE;
1206 }
1207
1208 /* get_a_table INTERNAL
1209 **
1210 * Retrieve and return a level A table for use in a user map.
1211 */
1212 a_tmgr_t *
1213 get_a_table()
1214 {
1215 a_tmgr_t *tbl;
1216 pmap_t pmap;
1217
1218 /* Get the top A table in the pool */
1219 tbl = a_pool.tqh_first;
1220 if (tbl == NULL) {
1221 /*
1222 * XXX - Instead of panicing here and in other get_x_table
1223 * functions, we do have the option of sleeping on the head of
1224 * the table pool. Any function which updates the table pool
1225 * would then issue a wakeup() on the head, thus waking up any
1226 * processes waiting for a table.
1227 *
1228 * Actually, the place to sleep would be when some process
1229 * asks for a "wired" mapping that would run us short of
1230 * mapping resources. This design DEPENDS on always having
1231 * some mapping resources in the pool for stealing, so we
1232 * must make sure we NEVER let the pool become empty. -gwr
1233 */
1234 panic("get_a_table: out of A tables.");
1235 }
1236
1237 TAILQ_REMOVE(&a_pool, tbl, at_link);
1238 /*
1239 * If the table has a non-null parent pointer then it is in use.
1240 * Forcibly abduct it from its parent and clear its entries.
1241 * No re-entrancy worries here. This table would not be in the
1242 * table pool unless it was available for use.
1243 *
1244 * Note that the second argument to free_a_table() is FALSE. This
1245 * indicates that the table should not be relinked into the A table
1246 * pool. That is a job for the function that called us.
1247 */
1248 if (tbl->at_parent) {
1249 pmap = tbl->at_parent;
1250 free_a_table(tbl, FALSE);
1251 pmap->pm_a_tmgr = NULL;
1252 pmap->pm_a_phys = kernAphys;
1253 }
1254 #ifdef NON_REENTRANT
1255 /*
1256 * If the table isn't to be wired down, re-insert it at the
1257 * end of the pool.
1258 */
1259 if (!wired)
1260 /*
1261 * Quandary - XXX
1262 * Would it be better to let the calling function insert this
1263 * table into the queue? By inserting it here, we are allowing
1264 * it to be stolen immediately. The calling function is
1265 * probably not expecting to use a table that it is not
1266 * assured full control of.
1267 * Answer - In the intrest of re-entrancy, it is best to let
1268 * the calling function determine when a table is available
1269 * for use. Therefore this code block is not used.
1270 */
1271 TAILQ_INSERT_TAIL(&a_pool, tbl, at_link);
1272 #endif /* NON_REENTRANT */
1273 return tbl;
1274 }
1275
1276 /* get_b_table INTERNAL
1277 **
1278 * Return a level B table for use.
1279 */
1280 b_tmgr_t *
1281 get_b_table()
1282 {
1283 b_tmgr_t *tbl;
1284
1285 /* See 'get_a_table' for comments. */
1286 tbl = b_pool.tqh_first;
1287 if (tbl == NULL)
1288 panic("get_b_table: out of B tables.");
1289 TAILQ_REMOVE(&b_pool, tbl, bt_link);
1290 if (tbl->bt_parent) {
1291 tbl->bt_parent->at_dtbl[tbl->bt_pidx].attr.raw = MMU_DT_INVALID;
1292 tbl->bt_parent->at_ecnt--;
1293 free_b_table(tbl, FALSE);
1294 }
1295 #ifdef NON_REENTRANT
1296 if (!wired)
1297 /* XXX see quandary in get_b_table */
1298 /* XXX start lock */
1299 TAILQ_INSERT_TAIL(&b_pool, tbl, bt_link);
1300 /* XXX end lock */
1301 #endif /* NON_REENTRANT */
1302 return tbl;
1303 }
1304
1305 /* get_c_table INTERNAL
1306 **
1307 * Return a level C table for use.
1308 */
1309 c_tmgr_t *
1310 get_c_table()
1311 {
1312 c_tmgr_t *tbl;
1313
1314 /* See 'get_a_table' for comments */
1315 tbl = c_pool.tqh_first;
1316 if (tbl == NULL)
1317 panic("get_c_table: out of C tables.");
1318 TAILQ_REMOVE(&c_pool, tbl, ct_link);
1319 if (tbl->ct_parent) {
1320 tbl->ct_parent->bt_dtbl[tbl->ct_pidx].attr.raw = MMU_DT_INVALID;
1321 tbl->ct_parent->bt_ecnt--;
1322 free_c_table(tbl, FALSE);
1323 }
1324 #ifdef NON_REENTRANT
1325 if (!wired)
1326 /* XXX See quandary in get_a_table */
1327 /* XXX start lock */
1328 TAILQ_INSERT_TAIL(&c_pool, tbl, c_link);
1329 /* XXX end lock */
1330 #endif /* NON_REENTRANT */
1331
1332 return tbl;
1333 }
1334
1335 /*
1336 * The following 'free_table' and 'steal_table' functions are called to
1337 * detach tables from their current obligations (parents and children) and
1338 * prepare them for reuse in another mapping.
1339 *
1340 * Free_table is used when the calling function will handle the fate
1341 * of the parent table, such as returning it to the free pool when it has
1342 * no valid entries. Functions that do not want to handle this should
1343 * call steal_table, in which the parent table's descriptors and entry
1344 * count are automatically modified when this table is removed.
1345 */
1346
1347 /* free_a_table INTERNAL
1348 **
1349 * Unmaps the given A table and all child tables from their current
1350 * mappings. Returns the number of pages that were invalidated.
1351 * If 'relink' is true, the function will return the table to the head
1352 * of the available table pool.
1353 *
1354 * Cache note: The MC68851 will automatically flush all
1355 * descriptors derived from a given A table from its
1356 * Automatic Translation Cache (ATC) if we issue a
1357 * 'PFLUSHR' instruction with the base address of the
1358 * table. This function should do, and does so.
1359 * Note note: We are using an MC68030 - there is no
1360 * PFLUSHR.
1361 */
1362 int
1363 free_a_table(a_tbl, relink)
1364 a_tmgr_t *a_tbl;
1365 boolean_t relink;
1366 {
1367 int i, removed_cnt;
1368 mmu_long_dte_t *dte;
1369 mmu_short_dte_t *dtbl;
1370 b_tmgr_t *tmgr;
1371
1372 /*
1373 * Flush the ATC cache of all cached descriptors derived
1374 * from this table.
1375 * Sun3x does not use 68851's cached table feature
1376 * flush_atc_crp(mmu_vtop(a_tbl->dte));
1377 */
1378
1379 /*
1380 * Remove any pending cache flushes that were designated
1381 * for the pmap this A table belongs to.
1382 * a_tbl->parent->atc_flushq[0] = 0;
1383 * Not implemented in sun3x.
1384 */
1385
1386 /*
1387 * All A tables in the system should retain a map for the
1388 * kernel. If the table contains any valid descriptors
1389 * (other than those for the kernel area), invalidate them all,
1390 * stopping short of the kernel's entries.
1391 */
1392 removed_cnt = 0;
1393 if (a_tbl->at_ecnt) {
1394 dte = a_tbl->at_dtbl;
1395 for (i=0; i < MMU_TIA(KERNBASE); i++) {
1396 /*
1397 * If a table entry points to a valid B table, free
1398 * it and its children.
1399 */
1400 if (MMU_VALID_DT(dte[i])) {
1401 /*
1402 * The following block does several things,
1403 * from innermost expression to the
1404 * outermost:
1405 * 1) It extracts the base (cc 1996)
1406 * address of the B table pointed
1407 * to in the A table entry dte[i].
1408 * 2) It converts this base address into
1409 * the virtual address it can be
1410 * accessed with. (all MMU tables point
1411 * to physical addresses.)
1412 * 3) It finds the corresponding manager
1413 * structure which manages this MMU table.
1414 * 4) It frees the manager structure.
1415 * (This frees the MMU table and all
1416 * child tables. See 'free_b_table' for
1417 * details.)
1418 */
1419 dtbl = mmu_ptov(dte[i].addr.raw);
1420 tmgr = mmuB2tmgr(dtbl);
1421 removed_cnt += free_b_table(tmgr, TRUE);
1422 dte[i].attr.raw = MMU_DT_INVALID;
1423 }
1424 }
1425 a_tbl->at_ecnt = 0;
1426 }
1427 if (relink) {
1428 a_tbl->at_parent = NULL;
1429 TAILQ_REMOVE(&a_pool, a_tbl, at_link);
1430 TAILQ_INSERT_HEAD(&a_pool, a_tbl, at_link);
1431 }
1432 return removed_cnt;
1433 }
1434
1435 /* free_b_table INTERNAL
1436 **
1437 * Unmaps the given B table and all its children from their current
1438 * mappings. Returns the number of pages that were invalidated.
1439 * (For comments, see 'free_a_table()').
1440 */
1441 int
1442 free_b_table(b_tbl, relink)
1443 b_tmgr_t *b_tbl;
1444 boolean_t relink;
1445 {
1446 int i, removed_cnt;
1447 mmu_short_dte_t *dte;
1448 mmu_short_pte_t *dtbl;
1449 c_tmgr_t *tmgr;
1450
1451 removed_cnt = 0;
1452 if (b_tbl->bt_ecnt) {
1453 dte = b_tbl->bt_dtbl;
1454 for (i=0; i < MMU_B_TBL_SIZE; i++) {
1455 if (MMU_VALID_DT(dte[i])) {
1456 dtbl = mmu_ptov(MMU_DTE_PA(dte[i]));
1457 tmgr = mmuC2tmgr(dtbl);
1458 removed_cnt += free_c_table(tmgr, TRUE);
1459 dte[i].attr.raw = MMU_DT_INVALID;
1460 }
1461 }
1462 b_tbl->bt_ecnt = 0;
1463 }
1464
1465 if (relink) {
1466 b_tbl->bt_parent = NULL;
1467 TAILQ_REMOVE(&b_pool, b_tbl, bt_link);
1468 TAILQ_INSERT_HEAD(&b_pool, b_tbl, bt_link);
1469 }
1470 return removed_cnt;
1471 }
1472
1473 /* free_c_table INTERNAL
1474 **
1475 * Unmaps the given C table from use and returns it to the pool for
1476 * re-use. Returns the number of pages that were invalidated.
1477 *
1478 * This function preserves any physical page modification information
1479 * contained in the page descriptors within the C table by calling
1480 * 'pmap_remove_pte().'
1481 */
1482 int
1483 free_c_table(c_tbl, relink)
1484 c_tmgr_t *c_tbl;
1485 boolean_t relink;
1486 {
1487 int i, removed_cnt;
1488
1489 removed_cnt = 0;
1490 if (c_tbl->ct_ecnt) {
1491 for (i=0; i < MMU_C_TBL_SIZE; i++) {
1492 if (MMU_VALID_DT(c_tbl->ct_dtbl[i])) {
1493 pmap_remove_pte(&c_tbl->ct_dtbl[i]);
1494 removed_cnt++;
1495 }
1496 }
1497 c_tbl->ct_ecnt = 0;
1498 }
1499
1500 if (relink) {
1501 c_tbl->ct_parent = NULL;
1502 TAILQ_REMOVE(&c_pool, c_tbl, ct_link);
1503 TAILQ_INSERT_HEAD(&c_pool, c_tbl, ct_link);
1504 }
1505 return removed_cnt;
1506 }
1507
1508 #if 0
1509 /* free_c_table_novalid INTERNAL
1510 **
1511 * Frees the given C table manager without checking to see whether
1512 * or not it contains any valid page descriptors as it is assumed
1513 * that it does not.
1514 */
1515 void
1516 free_c_table_novalid(c_tbl)
1517 c_tmgr_t *c_tbl;
1518 {
1519 TAILQ_REMOVE(&c_pool, c_tbl, ct_link);
1520 TAILQ_INSERT_HEAD(&c_pool, c_tbl, ct_link);
1521 c_tbl->ct_parent->bt_dtbl[c_tbl->ct_pidx].attr.raw = MMU_DT_INVALID;
1522 c_tbl->ct_parent->bt_ecnt--;
1523 /*
1524 * XXX - Should call equiv. of 'free_b_table_novalid' here if
1525 * we just removed the last entry of the parent B table.
1526 * But I want to insure that this will not endanger pmap_enter()
1527 * with sudden removal of tables it is working with.
1528 *
1529 * We should probably add another field to each table, indicating
1530 * whether or not it is 'locked', ie. in the process of being
1531 * modified.
1532 */
1533 c_tbl->ct_parent = NULL;
1534 }
1535 #endif
1536
1537 /* pmap_remove_pte INTERNAL
1538 **
1539 * Unmap the given pte and preserve any page modification
1540 * information by transfering it to the pv head of the
1541 * physical page it maps to. This function does not update
1542 * any reference counts because it is assumed that the calling
1543 * function will do so.
1544 */
1545 void
1546 pmap_remove_pte(pte)
1547 mmu_short_pte_t *pte;
1548 {
1549 u_short pv_idx, targ_idx;
1550 int s;
1551 vm_offset_t pa;
1552 pv_t *pv;
1553
1554 pa = MMU_PTE_PA(*pte);
1555 if (is_managed(pa)) {
1556 pv = pa2pv(pa);
1557 targ_idx = pteidx(pte); /* Index of PTE being removed */
1558
1559 /*
1560 * If the PTE being removed is the first (or only) PTE in
1561 * the list of PTEs currently mapped to this page, remove the
1562 * PTE by changing the index found on the PV head. Otherwise
1563 * a linear search through the list will have to be executed
1564 * in order to find the PVE which points to the PTE being
1565 * removed, so that it may be modified to point to its new
1566 * neighbor.
1567 */
1568 s = splvm();
1569 pv_idx = pv->pv_idx; /* Index of first PTE in PV list */
1570 if (pv_idx == targ_idx) {
1571 pv->pv_idx = pvebase[targ_idx].pve_next;
1572 } else {
1573 /*
1574 * Find the PV element pointing to the target
1575 * element. Note: may have pv_idx==PVE_EOL
1576 */
1577 for (;;) {
1578 if (pv_idx == PVE_EOL) {
1579 #ifdef PMAP_DEBUG
1580 printf("pmap_remove_pte: PVE_EOL\n");
1581 Debugger();
1582 #endif
1583 goto pv_not_found;
1584 }
1585 if (pvebase[pv_idx].pve_next == targ_idx)
1586 break;
1587 pv_idx = pvebase[pv_idx].pve_next;
1588 }
1589 /*
1590 * At this point, pv_idx is the index of the PV
1591 * element just before the target element in the list.
1592 * Unlink the target.
1593 */
1594 pvebase[pv_idx].pve_next = pvebase[targ_idx].pve_next;
1595 pv_not_found:
1596 }
1597 /*
1598 * Save the mod/ref bits of the pte by simply
1599 * ORing the entire pte onto the pv_flags member
1600 * of the pv structure.
1601 * There is no need to use a separate bit pattern
1602 * for usage information on the pv head than that
1603 * which is used on the MMU ptes.
1604 */
1605 pv->pv_flags |= (u_short) pte->attr.raw;
1606 splx(s);
1607 }
1608
1609 pte->attr.raw = MMU_DT_INVALID;
1610 }
1611
1612 /* pmap_stroll INTERNAL
1613 **
1614 * Retrieve the addresses of all table managers involved in the mapping of
1615 * the given virtual address. If the table walk completed sucessfully,
1616 * return TRUE. If it was only partially sucessful, return FALSE.
1617 * The table walk performed by this function is important to many other
1618 * functions in this module.
1619 *
1620 * Note: This function ought to be easier to read.
1621 */
1622 boolean_t
1623 pmap_stroll(pmap, va, a_tbl, b_tbl, c_tbl, pte, a_idx, b_idx, pte_idx)
1624 pmap_t pmap;
1625 vm_offset_t va;
1626 a_tmgr_t **a_tbl;
1627 b_tmgr_t **b_tbl;
1628 c_tmgr_t **c_tbl;
1629 mmu_short_pte_t **pte;
1630 int *a_idx, *b_idx, *pte_idx;
1631 {
1632 mmu_long_dte_t *a_dte; /* A: long descriptor table */
1633 mmu_short_dte_t *b_dte; /* B: short descriptor table */
1634
1635 if (pmap == pmap_kernel())
1636 return FALSE;
1637
1638 /* Does the given pmap have its own A table? */
1639 *a_tbl = pmap->pm_a_tmgr;
1640 if (*a_tbl == NULL)
1641 return FALSE; /* No. Return unknown. */
1642 /* Does the A table have a valid B table
1643 * under the corresponding table entry?
1644 */
1645 *a_idx = MMU_TIA(va);
1646 a_dte = &((*a_tbl)->at_dtbl[*a_idx]);
1647 if (!MMU_VALID_DT(*a_dte))
1648 return FALSE; /* No. Return unknown. */
1649 /* Yes. Extract B table from the A table. */
1650 *b_tbl = mmuB2tmgr(mmu_ptov(a_dte->addr.raw));
1651 /* Does the B table have a valid C table
1652 * under the corresponding table entry?
1653 */
1654 *b_idx = MMU_TIB(va);
1655 b_dte = &((*b_tbl)->bt_dtbl[*b_idx]);
1656 if (!MMU_VALID_DT(*b_dte))
1657 return FALSE; /* No. Return unknown. */
1658 /* Yes. Extract C table from the B table. */
1659 *c_tbl = mmuC2tmgr(mmu_ptov(MMU_DTE_PA(*b_dte)));
1660 *pte_idx = MMU_TIC(va);
1661 *pte = &((*c_tbl)->ct_dtbl[*pte_idx]);
1662
1663 return TRUE;
1664 }
1665
1666 /* pmap_enter INTERFACE
1667 **
1668 * Called by the kernel to map a virtual address
1669 * to a physical address in the given process map.
1670 *
1671 * Note: this function should apply an exclusive lock
1672 * on the pmap system for its duration. (it certainly
1673 * would save my hair!!)
1674 * This function ought to be easier to read.
1675 */
1676 int
1677 pmap_enter(pmap, va, pa, prot, flags)
1678 pmap_t pmap;
1679 vm_offset_t va;
1680 vm_offset_t pa;
1681 vm_prot_t prot;
1682 int flags;
1683 {
1684 boolean_t insert, managed; /* Marks the need for PV insertion.*/
1685 u_short nidx; /* PV list index */
1686 int s; /* Used for splvm()/splx() */
1687 int mapflags; /* Flags for the mapping (see NOTE1) */
1688 u_int a_idx, b_idx, pte_idx; /* table indices */
1689 a_tmgr_t *a_tbl; /* A: long descriptor table manager */
1690 b_tmgr_t *b_tbl; /* B: short descriptor table manager */
1691 c_tmgr_t *c_tbl; /* C: short page table manager */
1692 mmu_long_dte_t *a_dte; /* A: long descriptor table */
1693 mmu_short_dte_t *b_dte; /* B: short descriptor table */
1694 mmu_short_pte_t *c_pte; /* C: short page descriptor table */
1695 pv_t *pv; /* pv list head */
1696 boolean_t wired; /* is the mapping to be wired? */
1697 enum {NONE, NEWA, NEWB, NEWC} llevel; /* used at end */
1698
1699 if (pmap == NULL)
1700 return 0;
1701 if (pmap == pmap_kernel()) {
1702 pmap_enter_kernel(va, pa, prot);
1703 return 0;
1704 }
1705
1706 /*
1707 * Determine if the mapping should be wired.
1708 */
1709 wired = ((flags & PMAP_WIRED) != 0);
1710
1711 /*
1712 * NOTE1:
1713 *
1714 * On November 13, 1999, someone changed the pmap_enter() API such
1715 * that it now accepts a 'flags' argument. This new argument
1716 * contains bit-flags for the architecture-independent (UVM) system to
1717 * use in signalling certain mapping requirements to the architecture-
1718 * dependent (pmap) system. The argument it replaces, 'wired', is now
1719 * one of the flags within it.
1720 *
1721 * In addition to flags signaled by the architecture-independent
1722 * system, parts of the architecture-dependent section of the sun3x
1723 * kernel pass their own flags in the lower, unused bits of the
1724 * physical address supplied to this function. These flags are
1725 * extracted and stored in the temporary variable 'mapflags'.
1726 *
1727 * Extract sun3x specific flags from the physical address.
1728 */
1729 mapflags = (pa & ~MMU_PAGE_MASK);
1730 pa &= MMU_PAGE_MASK;
1731
1732 /*
1733 * Determine if the physical address being mapped is on-board RAM.
1734 * Any other area of the address space is likely to belong to a
1735 * device and hence it would be disasterous to cache its contents.
1736 */
1737 if ((managed = is_managed(pa)) == FALSE)
1738 mapflags |= PMAP_NC;
1739
1740 /*
1741 * For user mappings we walk along the MMU tables of the given
1742 * pmap, reaching a PTE which describes the virtual page being
1743 * mapped or changed. If any level of the walk ends in an invalid
1744 * entry, a table must be allocated and the entry must be updated
1745 * to point to it.
1746 * There is a bit of confusion as to whether this code must be
1747 * re-entrant. For now we will assume it is. To support
1748 * re-entrancy we must unlink tables from the table pool before
1749 * we assume we may use them. Tables are re-linked into the pool
1750 * when we are finished with them at the end of the function.
1751 * But I don't feel like doing that until we have proof that this
1752 * needs to be re-entrant.
1753 * 'llevel' records which tables need to be relinked.
1754 */
1755 llevel = NONE;
1756
1757 /*
1758 * Step 1 - Retrieve the A table from the pmap. If it has no
1759 * A table, allocate a new one from the available pool.
1760 */
1761
1762 a_tbl = pmap->pm_a_tmgr;
1763 if (a_tbl == NULL) {
1764 /*
1765 * This pmap does not currently have an A table. Allocate
1766 * a new one.
1767 */
1768 a_tbl = get_a_table();
1769 a_tbl->at_parent = pmap;
1770
1771 /*
1772 * Assign this new A table to the pmap, and calculate its
1773 * physical address so that loadcrp() can be used to make
1774 * the table active.
1775 */
1776 pmap->pm_a_tmgr = a_tbl;
1777 pmap->pm_a_phys = mmu_vtop(a_tbl->at_dtbl);
1778
1779 /*
1780 * If the process receiving a new A table is the current
1781 * process, we are responsible for setting the MMU so that
1782 * it becomes the current address space. This only adds
1783 * new mappings, so no need to flush anything.
1784 */
1785 if (pmap == current_pmap()) {
1786 kernel_crp.rp_addr = pmap->pm_a_phys;
1787 loadcrp(&kernel_crp);
1788 }
1789
1790 if (!wired)
1791 llevel = NEWA;
1792 } else {
1793 /*
1794 * Use the A table already allocated for this pmap.
1795 * Unlink it from the A table pool if necessary.
1796 */
1797 if (wired && !a_tbl->at_wcnt)
1798 TAILQ_REMOVE(&a_pool, a_tbl, at_link);
1799 }
1800
1801 /*
1802 * Step 2 - Walk into the B table. If there is no valid B table,
1803 * allocate one.
1804 */
1805
1806 a_idx = MMU_TIA(va); /* Calculate the TIA of the VA. */
1807 a_dte = &a_tbl->at_dtbl[a_idx]; /* Retrieve descriptor from table */
1808 if (MMU_VALID_DT(*a_dte)) { /* Is the descriptor valid? */
1809 /* The descriptor is valid. Use the B table it points to. */
1810 /*************************************
1811 * a_idx *
1812 * v *
1813 * a_tbl -> +-+-+-+-+-+-+-+-+-+-+-+- *
1814 * | | | | | | | | | | | | *
1815 * +-+-+-+-+-+-+-+-+-+-+-+- *
1816 * | *
1817 * \- b_tbl -> +-+- *
1818 * | | *
1819 * +-+- *
1820 *************************************/
1821 b_dte = mmu_ptov(a_dte->addr.raw);
1822 b_tbl = mmuB2tmgr(b_dte);
1823
1824 /*
1825 * If the requested mapping must be wired, but this table
1826 * being used to map it is not, the table must be removed
1827 * from the available pool and its wired entry count
1828 * incremented.
1829 */
1830 if (wired && !b_tbl->bt_wcnt) {
1831 TAILQ_REMOVE(&b_pool, b_tbl, bt_link);
1832 a_tbl->at_wcnt++;
1833 }
1834 } else {
1835 /* The descriptor is invalid. Allocate a new B table. */
1836 b_tbl = get_b_table();
1837
1838 /* Point the parent A table descriptor to this new B table. */
1839 a_dte->addr.raw = mmu_vtop(b_tbl->bt_dtbl);
1840 a_dte->attr.raw = MMU_LONG_DTE_LU | MMU_DT_SHORT;
1841 a_tbl->at_ecnt++; /* Update parent's valid entry count */
1842
1843 /* Create the necessary back references to the parent table */
1844 b_tbl->bt_parent = a_tbl;
1845 b_tbl->bt_pidx = a_idx;
1846
1847 /*
1848 * If this table is to be wired, make sure the parent A table
1849 * wired count is updated to reflect that it has another wired
1850 * entry.
1851 */
1852 if (wired)
1853 a_tbl->at_wcnt++;
1854 else if (llevel == NONE)
1855 llevel = NEWB;
1856 }
1857
1858 /*
1859 * Step 3 - Walk into the C table, if there is no valid C table,
1860 * allocate one.
1861 */
1862
1863 b_idx = MMU_TIB(va); /* Calculate the TIB of the VA */
1864 b_dte = &b_tbl->bt_dtbl[b_idx]; /* Retrieve descriptor from table */
1865 if (MMU_VALID_DT(*b_dte)) { /* Is the descriptor valid? */
1866 /* The descriptor is valid. Use the C table it points to. */
1867 /**************************************
1868 * c_idx *
1869 * | v *
1870 * \- b_tbl -> +-+-+-+-+-+-+-+-+-+-+- *
1871 * | | | | | | | | | | | *
1872 * +-+-+-+-+-+-+-+-+-+-+- *
1873 * | *
1874 * \- c_tbl -> +-+-- *
1875 * | | | *
1876 * +-+-- *
1877 **************************************/
1878 c_pte = mmu_ptov(MMU_PTE_PA(*b_dte));
1879 c_tbl = mmuC2tmgr(c_pte);
1880
1881 /* If mapping is wired and table is not */
1882 if (wired && !c_tbl->ct_wcnt) {
1883 TAILQ_REMOVE(&c_pool, c_tbl, ct_link);
1884 b_tbl->bt_wcnt++;
1885 }
1886 } else {
1887 /* The descriptor is invalid. Allocate a new C table. */
1888 c_tbl = get_c_table();
1889
1890 /* Point the parent B table descriptor to this new C table. */
1891 b_dte->attr.raw = mmu_vtop(c_tbl->ct_dtbl);
1892 b_dte->attr.raw |= MMU_DT_SHORT;
1893 b_tbl->bt_ecnt++; /* Update parent's valid entry count */
1894
1895 /* Create the necessary back references to the parent table */
1896 c_tbl->ct_parent = b_tbl;
1897 c_tbl->ct_pidx = b_idx;
1898 /*
1899 * Store the pmap and base virtual managed address for faster
1900 * retrieval in the PV functions.
1901 */
1902 c_tbl->ct_pmap = pmap;
1903 c_tbl->ct_va = (va & (MMU_TIA_MASK|MMU_TIB_MASK));
1904
1905 /*
1906 * If this table is to be wired, make sure the parent B table
1907 * wired count is updated to reflect that it has another wired
1908 * entry.
1909 */
1910 if (wired)
1911 b_tbl->bt_wcnt++;
1912 else if (llevel == NONE)
1913 llevel = NEWC;
1914 }
1915
1916 /*
1917 * Step 4 - Deposit a page descriptor (PTE) into the appropriate
1918 * slot of the C table, describing the PA to which the VA is mapped.
1919 */
1920
1921 pte_idx = MMU_TIC(va);
1922 c_pte = &c_tbl->ct_dtbl[pte_idx];
1923 if (MMU_VALID_DT(*c_pte)) { /* Is the entry currently valid? */
1924 /*
1925 * The PTE is currently valid. This particular call
1926 * is just a synonym for one (or more) of the following
1927 * operations:
1928 * change protection of a page
1929 * change wiring status of a page
1930 * remove the mapping of a page
1931 *
1932 * XXX - Semi critical: This code should unwire the PTE
1933 * and, possibly, associated parent tables if this is a
1934 * change wiring operation. Currently it does not.
1935 *
1936 * This may be ok if pmap_unwire() is the only
1937 * interface used to UNWIRE a page.
1938 */
1939
1940 /* First check if this is a wiring operation. */
1941 if (wired && (c_pte->attr.raw & MMU_SHORT_PTE_WIRED)) {
1942 /*
1943 * The PTE is already wired. To prevent it from being
1944 * counted as a new wiring operation, reset the 'wired'
1945 * variable.
1946 */
1947 wired = FALSE;
1948 }
1949
1950 /* Is the new address the same as the old? */
1951 if (MMU_PTE_PA(*c_pte) == pa) {
1952 /*
1953 * Yes, mark that it does not need to be reinserted
1954 * into the PV list.
1955 */
1956 insert = FALSE;
1957
1958 /*
1959 * Clear all but the modified, referenced and wired
1960 * bits on the PTE.
1961 */
1962 c_pte->attr.raw &= (MMU_SHORT_PTE_M
1963 | MMU_SHORT_PTE_USED | MMU_SHORT_PTE_WIRED);
1964 } else {
1965 /* No, remove the old entry */
1966 pmap_remove_pte(c_pte);
1967 insert = TRUE;
1968 }
1969
1970 /*
1971 * TLB flush is only necessary if modifying current map.
1972 * However, in pmap_enter(), the pmap almost always IS
1973 * the current pmap, so don't even bother to check.
1974 */
1975 TBIS(va);
1976 } else {
1977 /*
1978 * The PTE is invalid. Increment the valid entry count in
1979 * the C table manager to reflect the addition of a new entry.
1980 */
1981 c_tbl->ct_ecnt++;
1982
1983 /* XXX - temporarily make sure the PTE is cleared. */
1984 c_pte->attr.raw = 0;
1985
1986 /* It will also need to be inserted into the PV list. */
1987 insert = TRUE;
1988 }
1989
1990 /*
1991 * If page is changing from unwired to wired status, set an unused bit
1992 * within the PTE to indicate that it is wired. Also increment the
1993 * wired entry count in the C table manager.
1994 */
1995 if (wired) {
1996 c_pte->attr.raw |= MMU_SHORT_PTE_WIRED;
1997 c_tbl->ct_wcnt++;
1998 }
1999
2000 /*
2001 * Map the page, being careful to preserve modify/reference/wired
2002 * bits. At this point it is assumed that the PTE either has no bits
2003 * set, or if there are set bits, they are only modified, reference or
2004 * wired bits. If not, the following statement will cause erratic
2005 * behavior.
2006 */
2007 #ifdef PMAP_DEBUG
2008 if (c_pte->attr.raw & ~(MMU_SHORT_PTE_M |
2009 MMU_SHORT_PTE_USED | MMU_SHORT_PTE_WIRED)) {
2010 printf("pmap_enter: junk left in PTE at %p\n", c_pte);
2011 Debugger();
2012 }
2013 #endif
2014 c_pte->attr.raw |= ((u_long) pa | MMU_DT_PAGE);
2015
2016 /*
2017 * If the mapping should be read-only, set the write protect
2018 * bit in the PTE.
2019 */
2020 if (!(prot & VM_PROT_WRITE))
2021 c_pte->attr.raw |= MMU_SHORT_PTE_WP;
2022
2023 /*
2024 * If the mapping should be cache inhibited (indicated by the flag
2025 * bits found on the lower order of the physical address.)
2026 * mark the PTE as a cache inhibited page.
2027 */
2028 if (mapflags & PMAP_NC)
2029 c_pte->attr.raw |= MMU_SHORT_PTE_CI;
2030
2031 /*
2032 * If the physical address being mapped is managed by the PV
2033 * system then link the pte into the list of pages mapped to that
2034 * address.
2035 */
2036 if (insert && managed) {
2037 pv = pa2pv(pa);
2038 nidx = pteidx(c_pte);
2039
2040 s = splvm();
2041 pvebase[nidx].pve_next = pv->pv_idx;
2042 pv->pv_idx = nidx;
2043 splx(s);
2044 }
2045
2046 /* Move any allocated tables back into the active pool. */
2047
2048 switch (llevel) {
2049 case NEWA:
2050 TAILQ_INSERT_TAIL(&a_pool, a_tbl, at_link);
2051 /* FALLTHROUGH */
2052 case NEWB:
2053 TAILQ_INSERT_TAIL(&b_pool, b_tbl, bt_link);
2054 /* FALLTHROUGH */
2055 case NEWC:
2056 TAILQ_INSERT_TAIL(&c_pool, c_tbl, ct_link);
2057 /* FALLTHROUGH */
2058 default:
2059 break;
2060 }
2061
2062 return 0;
2063 }
2064
2065 /* pmap_enter_kernel INTERNAL
2066 **
2067 * Map the given virtual address to the given physical address within the
2068 * kernel address space. This function exists because the kernel map does
2069 * not do dynamic table allocation. It consists of a contiguous array of ptes
2070 * and can be edited directly without the need to walk through any tables.
2071 *
2072 * XXX: "Danger, Will Robinson!"
2073 * Note that the kernel should never take a fault on any page
2074 * between [ KERNBASE .. virtual_avail ] and this is checked in
2075 * trap.c for kernel-mode MMU faults. This means that mappings
2076 * created in that range must be implicily wired. -gwr
2077 */
2078 void
2079 pmap_enter_kernel(va, pa, prot)
2080 vm_offset_t va;
2081 vm_offset_t pa;
2082 vm_prot_t prot;
2083 {
2084 boolean_t was_valid, insert;
2085 u_short pte_idx;
2086 int s, flags;
2087 mmu_short_pte_t *pte;
2088 pv_t *pv;
2089 vm_offset_t old_pa;
2090
2091 flags = (pa & ~MMU_PAGE_MASK);
2092 pa &= MMU_PAGE_MASK;
2093
2094 if (is_managed(pa))
2095 insert = TRUE;
2096 else
2097 insert = FALSE;
2098
2099 /*
2100 * Calculate the index of the PTE being modified.
2101 */
2102 pte_idx = (u_long) m68k_btop(va - KERNBASE);
2103
2104 /* This array is traditionally named "Sysmap" */
2105 pte = &kernCbase[pte_idx];
2106
2107 s = splvm();
2108 if (MMU_VALID_DT(*pte)) {
2109 was_valid = TRUE;
2110 /*
2111 * If the PTE already maps a different
2112 * physical address, umap and pv_unlink.
2113 */
2114 old_pa = MMU_PTE_PA(*pte);
2115 if (pa != old_pa)
2116 pmap_remove_pte(pte);
2117 else {
2118 /*
2119 * Old PA and new PA are the same. No need to
2120 * relink the mapping within the PV list.
2121 */
2122 insert = FALSE;
2123
2124 /*
2125 * Save any mod/ref bits on the PTE.
2126 */
2127 pte->attr.raw &= (MMU_SHORT_PTE_USED|MMU_SHORT_PTE_M);
2128 }
2129 } else {
2130 pte->attr.raw = MMU_DT_INVALID;
2131 was_valid = FALSE;
2132 }
2133
2134 /*
2135 * Map the page. Being careful to preserve modified/referenced bits
2136 * on the PTE.
2137 */
2138 pte->attr.raw |= (pa | MMU_DT_PAGE);
2139
2140 if (!(prot & VM_PROT_WRITE)) /* If access should be read-only */
2141 pte->attr.raw |= MMU_SHORT_PTE_WP;
2142 if (flags & PMAP_NC)
2143 pte->attr.raw |= MMU_SHORT_PTE_CI;
2144 if (was_valid)
2145 TBIS(va);
2146
2147 /*
2148 * Insert the PTE into the PV system, if need be.
2149 */
2150 if (insert) {
2151 pv = pa2pv(pa);
2152 pvebase[pte_idx].pve_next = pv->pv_idx;
2153 pv->pv_idx = pte_idx;
2154 }
2155 splx(s);
2156
2157 }
2158
2159 void
2160 pmap_kenter_pa(va, pa, prot)
2161 vaddr_t va;
2162 paddr_t pa;
2163 vm_prot_t prot;
2164 {
2165 pmap_enter(pmap_kernel(), va, pa, prot, PMAP_WIRED);
2166 }
2167
2168 void
2169 pmap_kremove(va, len)
2170 vaddr_t va;
2171 vsize_t len;
2172 {
2173 for (len >>= PAGE_SHIFT; len > 0; len--, va += PAGE_SIZE) {
2174 pmap_remove(pmap_kernel(), va, va + PAGE_SIZE);
2175 }
2176 }
2177
2178 /* pmap_map INTERNAL
2179 **
2180 * Map a contiguous range of physical memory into a contiguous range of
2181 * the kernel virtual address space.
2182 *
2183 * Used for device mappings and early mapping of the kernel text/data/bss.
2184 * Returns the first virtual address beyond the end of the range.
2185 */
2186 vm_offset_t
2187 pmap_map(va, pa, endpa, prot)
2188 vm_offset_t va;
2189 vm_offset_t pa;
2190 vm_offset_t endpa;
2191 int prot;
2192 {
2193 int sz;
2194
2195 sz = endpa - pa;
2196 do {
2197 pmap_enter_kernel(va, pa, prot);
2198 va += NBPG;
2199 pa += NBPG;
2200 sz -= NBPG;
2201 } while (sz > 0);
2202 return(va);
2203 }
2204
2205 /* pmap_protect INTERFACE
2206 **
2207 * Apply the given protection to the given virtual address range within
2208 * the given map.
2209 *
2210 * It is ok for the protection applied to be stronger than what is
2211 * specified. We use this to our advantage when the given map has no
2212 * mapping for the virtual address. By skipping a page when this
2213 * is discovered, we are effectively applying a protection of VM_PROT_NONE,
2214 * and therefore do not need to map the page just to apply a protection
2215 * code. Only pmap_enter() needs to create new mappings if they do not exist.
2216 *
2217 * XXX - This function could be speeded up by using pmap_stroll() for inital
2218 * setup, and then manual scrolling in the for() loop.
2219 */
2220 void
2221 pmap_protect(pmap, startva, endva, prot)
2222 pmap_t pmap;
2223 vm_offset_t startva, endva;
2224 vm_prot_t prot;
2225 {
2226 boolean_t iscurpmap;
2227 int a_idx, b_idx, c_idx;
2228 a_tmgr_t *a_tbl;
2229 b_tmgr_t *b_tbl;
2230 c_tmgr_t *c_tbl;
2231 mmu_short_pte_t *pte;
2232
2233 if (pmap == NULL)
2234 return;
2235 if (pmap == pmap_kernel()) {
2236 pmap_protect_kernel(startva, endva, prot);
2237 return;
2238 }
2239
2240 /*
2241 * In this particular pmap implementation, there are only three
2242 * types of memory protection: 'all' (read/write/execute),
2243 * 'read-only' (read/execute) and 'none' (no mapping.)
2244 * It is not possible for us to treat 'executable' as a separate
2245 * protection type. Therefore, protection requests that seek to
2246 * remove execute permission while retaining read or write, and those
2247 * that make little sense (write-only for example) are ignored.
2248 */
2249 switch (prot) {
2250 case VM_PROT_NONE:
2251 /*
2252 * A request to apply the protection code of
2253 * 'VM_PROT_NONE' is a synonym for pmap_remove().
2254 */
2255 pmap_remove(pmap, startva, endva);
2256 return;
2257 case VM_PROT_EXECUTE:
2258 case VM_PROT_READ:
2259 case VM_PROT_READ|VM_PROT_EXECUTE:
2260 /* continue */
2261 break;
2262 case VM_PROT_WRITE:
2263 case VM_PROT_WRITE|VM_PROT_READ:
2264 case VM_PROT_WRITE|VM_PROT_EXECUTE:
2265 case VM_PROT_ALL:
2266 /* None of these should happen in a sane system. */
2267 return;
2268 }
2269
2270 /*
2271 * If the pmap has no A table, it has no mappings and therefore
2272 * there is nothing to protect.
2273 */
2274 if ((a_tbl = pmap->pm_a_tmgr) == NULL)
2275 return;
2276
2277 a_idx = MMU_TIA(startva);
2278 b_idx = MMU_TIB(startva);
2279 c_idx = MMU_TIC(startva);
2280 b_tbl = (b_tmgr_t *) c_tbl = NULL;
2281
2282 iscurpmap = (pmap == current_pmap());
2283 while (startva < endva) {
2284 if (b_tbl || MMU_VALID_DT(a_tbl->at_dtbl[a_idx])) {
2285 if (b_tbl == NULL) {
2286 b_tbl = (b_tmgr_t *) a_tbl->at_dtbl[a_idx].addr.raw;
2287 b_tbl = mmu_ptov((vm_offset_t) b_tbl);
2288 b_tbl = mmuB2tmgr((mmu_short_dte_t *) b_tbl);
2289 }
2290 if (c_tbl || MMU_VALID_DT(b_tbl->bt_dtbl[b_idx])) {
2291 if (c_tbl == NULL) {
2292 c_tbl = (c_tmgr_t *) MMU_DTE_PA(b_tbl->bt_dtbl[b_idx]);
2293 c_tbl = mmu_ptov((vm_offset_t) c_tbl);
2294 c_tbl = mmuC2tmgr((mmu_short_pte_t *) c_tbl);
2295 }
2296 if (MMU_VALID_DT(c_tbl->ct_dtbl[c_idx])) {
2297 pte = &c_tbl->ct_dtbl[c_idx];
2298 /* make the mapping read-only */
2299 pte->attr.raw |= MMU_SHORT_PTE_WP;
2300 /*
2301 * If we just modified the current address space,
2302 * flush any translations for the modified page from
2303 * the translation cache and any data from it in the
2304 * data cache.
2305 */
2306 if (iscurpmap)
2307 TBIS(startva);
2308 }
2309 startva += NBPG;
2310
2311 if (++c_idx >= MMU_C_TBL_SIZE) { /* exceeded C table? */
2312 c_tbl = NULL;
2313 c_idx = 0;
2314 if (++b_idx >= MMU_B_TBL_SIZE) { /* exceeded B table? */
2315 b_tbl = NULL;
2316 b_idx = 0;
2317 }
2318 }
2319 } else { /* C table wasn't valid */
2320 c_tbl = NULL;
2321 c_idx = 0;
2322 startva += MMU_TIB_RANGE;
2323 if (++b_idx >= MMU_B_TBL_SIZE) { /* exceeded B table? */
2324 b_tbl = NULL;
2325 b_idx = 0;
2326 }
2327 } /* C table */
2328 } else { /* B table wasn't valid */
2329 b_tbl = NULL;
2330 b_idx = 0;
2331 startva += MMU_TIA_RANGE;
2332 a_idx++;
2333 } /* B table */
2334 }
2335 }
2336
2337 /* pmap_protect_kernel INTERNAL
2338 **
2339 * Apply the given protection code to a kernel address range.
2340 */
2341 void
2342 pmap_protect_kernel(startva, endva, prot)
2343 vm_offset_t startva, endva;
2344 vm_prot_t prot;
2345 {
2346 vm_offset_t va;
2347 mmu_short_pte_t *pte;
2348
2349 pte = &kernCbase[(unsigned long) m68k_btop(startva - KERNBASE)];
2350 for (va = startva; va < endva; va += NBPG, pte++) {
2351 if (MMU_VALID_DT(*pte)) {
2352 switch (prot) {
2353 case VM_PROT_ALL:
2354 break;
2355 case VM_PROT_EXECUTE:
2356 case VM_PROT_READ:
2357 case VM_PROT_READ|VM_PROT_EXECUTE:
2358 pte->attr.raw |= MMU_SHORT_PTE_WP;
2359 break;
2360 case VM_PROT_NONE:
2361 /* this is an alias for 'pmap_remove_kernel' */
2362 pmap_remove_pte(pte);
2363 break;
2364 default:
2365 break;
2366 }
2367 /*
2368 * since this is the kernel, immediately flush any cached
2369 * descriptors for this address.
2370 */
2371 TBIS(va);
2372 }
2373 }
2374 }
2375
2376 /* pmap_unwire INTERFACE
2377 **
2378 * Clear the wired attribute of the specified page.
2379 *
2380 * This function is called from vm_fault.c to unwire
2381 * a mapping.
2382 */
2383 void
2384 pmap_unwire(pmap, va)
2385 pmap_t pmap;
2386 vm_offset_t va;
2387 {
2388 int a_idx, b_idx, c_idx;
2389 a_tmgr_t *a_tbl;
2390 b_tmgr_t *b_tbl;
2391 c_tmgr_t *c_tbl;
2392 mmu_short_pte_t *pte;
2393
2394 /* Kernel mappings always remain wired. */
2395 if (pmap == pmap_kernel())
2396 return;
2397
2398 /*
2399 * Walk through the tables. If the walk terminates without
2400 * a valid PTE then the address wasn't wired in the first place.
2401 * Return immediately.
2402 */
2403 if (pmap_stroll(pmap, va, &a_tbl, &b_tbl, &c_tbl, &pte, &a_idx,
2404 &b_idx, &c_idx) == FALSE)
2405 return;
2406
2407
2408 /* Is the PTE wired? If not, return. */
2409 if (!(pte->attr.raw & MMU_SHORT_PTE_WIRED))
2410 return;
2411
2412 /* Remove the wiring bit. */
2413 pte->attr.raw &= ~(MMU_SHORT_PTE_WIRED);
2414
2415 /*
2416 * Decrement the wired entry count in the C table.
2417 * If it reaches zero the following things happen:
2418 * 1. The table no longer has any wired entries and is considered
2419 * unwired.
2420 * 2. It is placed on the available queue.
2421 * 3. The parent table's wired entry count is decremented.
2422 * 4. If it reaches zero, this process repeats at step 1 and
2423 * stops at after reaching the A table.
2424 */
2425 if (--c_tbl->ct_wcnt == 0) {
2426 TAILQ_INSERT_TAIL(&c_pool, c_tbl, ct_link);
2427 if (--b_tbl->bt_wcnt == 0) {
2428 TAILQ_INSERT_TAIL(&b_pool, b_tbl, bt_link);
2429 if (--a_tbl->at_wcnt == 0) {
2430 TAILQ_INSERT_TAIL(&a_pool, a_tbl, at_link);
2431 }
2432 }
2433 }
2434 }
2435
2436 /* pmap_copy INTERFACE
2437 **
2438 * Copy the mappings of a range of addresses in one pmap, into
2439 * the destination address of another.
2440 *
2441 * This routine is advisory. Should we one day decide that MMU tables
2442 * may be shared by more than one pmap, this function should be used to
2443 * link them together. Until that day however, we do nothing.
2444 */
2445 void
2446 pmap_copy(pmap_a, pmap_b, dst, len, src)
2447 pmap_t pmap_a, pmap_b;
2448 vm_offset_t dst;
2449 vm_size_t len;
2450 vm_offset_t src;
2451 {
2452 /* not implemented. */
2453 }
2454
2455 /* pmap_copy_page INTERFACE
2456 **
2457 * Copy the contents of one physical page into another.
2458 *
2459 * This function makes use of two virtual pages allocated in pmap_bootstrap()
2460 * to map the two specified physical pages into the kernel address space.
2461 *
2462 * Note: We could use the transparent translation registers to make the
2463 * mappings. If we do so, be sure to disable interrupts before using them.
2464 */
2465 void
2466 pmap_copy_page(srcpa, dstpa)
2467 vm_offset_t srcpa, dstpa;
2468 {
2469 vm_offset_t srcva, dstva;
2470 int s;
2471
2472 srcva = tmp_vpages[0];
2473 dstva = tmp_vpages[1];
2474
2475 s = splvm();
2476 if (tmp_vpages_inuse++)
2477 panic("pmap_copy_page: temporary vpages are in use.");
2478
2479 /* Map pages as non-cacheable to avoid cache polution? */
2480 pmap_enter_kernel(srcva, srcpa, VM_PROT_READ);
2481 pmap_enter_kernel(dstva, dstpa, VM_PROT_READ|VM_PROT_WRITE);
2482
2483 /* Hand-optimized version of bcopy(src, dst, NBPG) */
2484 copypage((char *) srcva, (char *) dstva);
2485
2486 pmap_remove_kernel(srcva, srcva + NBPG);
2487 pmap_remove_kernel(dstva, dstva + NBPG);
2488
2489 --tmp_vpages_inuse;
2490 splx(s);
2491 }
2492
2493 /* pmap_zero_page INTERFACE
2494 **
2495 * Zero the contents of the specified physical page.
2496 *
2497 * Uses one of the virtual pages allocated in pmap_boostrap()
2498 * to map the specified page into the kernel address space.
2499 */
2500 void
2501 pmap_zero_page(dstpa)
2502 vm_offset_t dstpa;
2503 {
2504 vm_offset_t dstva;
2505 int s;
2506
2507 dstva = tmp_vpages[1];
2508 s = splvm();
2509 if (tmp_vpages_inuse++)
2510 panic("pmap_zero_page: temporary vpages are in use.");
2511
2512 /* The comments in pmap_copy_page() above apply here also. */
2513 pmap_enter_kernel(dstva, dstpa, VM_PROT_READ|VM_PROT_WRITE);
2514
2515 /* Hand-optimized version of bzero(ptr, NBPG) */
2516 zeropage((char *) dstva);
2517
2518 pmap_remove_kernel(dstva, dstva + NBPG);
2519
2520 --tmp_vpages_inuse;
2521 splx(s);
2522 }
2523
2524 /* pmap_collect INTERFACE
2525 **
2526 * Called from the VM system when we are about to swap out
2527 * the process using this pmap. This should give up any
2528 * resources held here, including all its MMU tables.
2529 */
2530 void
2531 pmap_collect(pmap)
2532 pmap_t pmap;
2533 {
2534 /* XXX - todo... */
2535 }
2536
2537 /* pmap_create INTERFACE
2538 **
2539 * Create and return a pmap structure.
2540 */
2541 pmap_t
2542 pmap_create()
2543 {
2544 pmap_t pmap;
2545
2546 pmap = pool_get(&pmap_pmap_pool, PR_WAITOK);
2547 pmap_pinit(pmap);
2548 return pmap;
2549 }
2550
2551 /* pmap_pinit INTERNAL
2552 **
2553 * Initialize a pmap structure.
2554 */
2555 void
2556 pmap_pinit(pmap)
2557 pmap_t pmap;
2558 {
2559 bzero(pmap, sizeof(struct pmap));
2560 pmap->pm_a_tmgr = NULL;
2561 pmap->pm_a_phys = kernAphys;
2562 pmap->pm_refcount = 1;
2563 simple_lock_init(&pmap->pm_lock);
2564 }
2565
2566 /* pmap_release INTERFACE
2567 **
2568 * Release any resources held by the given pmap.
2569 *
2570 * This is the reverse analog to pmap_pinit. It does not
2571 * necessarily mean for the pmap structure to be deallocated,
2572 * as in pmap_destroy.
2573 */
2574 void
2575 pmap_release(pmap)
2576 pmap_t pmap;
2577 {
2578 /*
2579 * As long as the pmap contains no mappings,
2580 * which always should be the case whenever
2581 * this function is called, there really should
2582 * be nothing to do.
2583 */
2584 #ifdef PMAP_DEBUG
2585 if (pmap == NULL)
2586 return;
2587 if (pmap == pmap_kernel())
2588 panic("pmap_release: kernel pmap");
2589 #endif
2590 /*
2591 * XXX - If this pmap has an A table, give it back.
2592 * The pmap SHOULD be empty by now, and pmap_remove
2593 * should have already given back the A table...
2594 * However, I see: pmap->pm_a_tmgr->at_ecnt == 1
2595 * at this point, which means some mapping was not
2596 * removed when it should have been. -gwr
2597 */
2598 if (pmap->pm_a_tmgr != NULL) {
2599 /* First make sure we are not using it! */
2600 if (kernel_crp.rp_addr == pmap->pm_a_phys) {
2601 kernel_crp.rp_addr = kernAphys;
2602 loadcrp(&kernel_crp);
2603 }
2604 #ifdef PMAP_DEBUG /* XXX - todo! */
2605 /* XXX - Now complain... */
2606 printf("pmap_release: still have table\n");
2607 Debugger();
2608 #endif
2609 free_a_table(pmap->pm_a_tmgr, TRUE);
2610 pmap->pm_a_tmgr = NULL;
2611 pmap->pm_a_phys = kernAphys;
2612 }
2613 }
2614
2615 /* pmap_reference INTERFACE
2616 **
2617 * Increment the reference count of a pmap.
2618 */
2619 void
2620 pmap_reference(pmap)
2621 pmap_t pmap;
2622 {
2623 if (pmap == NULL)
2624 return;
2625
2626 pmap_lock(pmap);
2627 pmap_add_ref(pmap);
2628 pmap_unlock(pmap);
2629 }
2630
2631 /* pmap_dereference INTERNAL
2632 **
2633 * Decrease the reference count on the given pmap
2634 * by one and return the current count.
2635 */
2636 int
2637 pmap_dereference(pmap)
2638 pmap_t pmap;
2639 {
2640 int rtn;
2641
2642 if (pmap == NULL)
2643 return 0;
2644
2645 pmap_lock(pmap);
2646 rtn = pmap_del_ref(pmap);
2647 pmap_unlock(pmap);
2648
2649 return rtn;
2650 }
2651
2652 /* pmap_destroy INTERFACE
2653 **
2654 * Decrement a pmap's reference count and delete
2655 * the pmap if it becomes zero. Will be called
2656 * only after all mappings have been removed.
2657 */
2658 void
2659 pmap_destroy(pmap)
2660 pmap_t pmap;
2661 {
2662 if (pmap == NULL)
2663 return;
2664 if (pmap == &kernel_pmap)
2665 panic("pmap_destroy: kernel_pmap!");
2666 if (pmap_dereference(pmap) == 0) {
2667 pmap_release(pmap);
2668 pool_put(&pmap_pmap_pool, pmap);
2669 }
2670 }
2671
2672 /* pmap_is_referenced INTERFACE
2673 **
2674 * Determine if the given physical page has been
2675 * referenced (read from [or written to.])
2676 */
2677 boolean_t
2678 pmap_is_referenced(pg)
2679 struct vm_page *pg;
2680 {
2681 paddr_t pa = VM_PAGE_TO_PHYS(pg);
2682 pv_t *pv;
2683 int idx, s;
2684
2685 if (!pv_initialized)
2686 return FALSE;
2687 /* XXX - this may be unecessary. */
2688 if (!is_managed(pa))
2689 return FALSE;
2690
2691 pv = pa2pv(pa);
2692 /*
2693 * Check the flags on the pv head. If they are set,
2694 * return immediately. Otherwise a search must be done.
2695 */
2696 if (pv->pv_flags & PV_FLAGS_USED)
2697 return TRUE;
2698
2699 s = splvm();
2700 /*
2701 * Search through all pv elements pointing
2702 * to this page and query their reference bits
2703 */
2704 for (idx = pv->pv_idx;
2705 idx != PVE_EOL;
2706 idx = pvebase[idx].pve_next) {
2707
2708 if (MMU_PTE_USED(kernCbase[idx])) {
2709 splx(s);
2710 return TRUE;
2711 }
2712 }
2713 splx(s);
2714
2715 return FALSE;
2716 }
2717
2718 /* pmap_is_modified INTERFACE
2719 **
2720 * Determine if the given physical page has been
2721 * modified (written to.)
2722 */
2723 boolean_t
2724 pmap_is_modified(pg)
2725 struct vm_page *pg;
2726 {
2727 paddr_t pa = VM_PAGE_TO_PHYS(pg);
2728 pv_t *pv;
2729 int idx, s;
2730
2731 if (!pv_initialized)
2732 return FALSE;
2733 /* XXX - this may be unecessary. */
2734 if (!is_managed(pa))
2735 return FALSE;
2736
2737 /* see comments in pmap_is_referenced() */
2738 pv = pa2pv(pa);
2739 if (pv->pv_flags & PV_FLAGS_MDFY)
2740 return TRUE;
2741
2742 s = splvm();
2743 for (idx = pv->pv_idx;
2744 idx != PVE_EOL;
2745 idx = pvebase[idx].pve_next) {
2746
2747 if (MMU_PTE_MODIFIED(kernCbase[idx])) {
2748 splx(s);
2749 return TRUE;
2750 }
2751 }
2752 splx(s);
2753
2754 return FALSE;
2755 }
2756
2757 /* pmap_page_protect INTERFACE
2758 **
2759 * Applies the given protection to all mappings to the given
2760 * physical page.
2761 */
2762 void
2763 pmap_page_protect(pg, prot)
2764 struct vm_page *pg;
2765 vm_prot_t prot;
2766 {
2767 paddr_t pa = VM_PAGE_TO_PHYS(pg);
2768 pv_t *pv;
2769 int idx, s;
2770 vm_offset_t va;
2771 struct mmu_short_pte_struct *pte;
2772 c_tmgr_t *c_tbl;
2773 pmap_t pmap, curpmap;
2774
2775 if (!is_managed(pa))
2776 return;
2777
2778 curpmap = current_pmap();
2779 pv = pa2pv(pa);
2780 s = splvm();
2781
2782 for (idx = pv->pv_idx;
2783 idx != PVE_EOL;
2784 idx = pvebase[idx].pve_next) {
2785
2786 pte = &kernCbase[idx];
2787 switch (prot) {
2788 case VM_PROT_ALL:
2789 /* do nothing */
2790 break;
2791 case VM_PROT_EXECUTE:
2792 case VM_PROT_READ:
2793 case VM_PROT_READ|VM_PROT_EXECUTE:
2794 /*
2795 * Determine the virtual address mapped by
2796 * the PTE and flush ATC entries if necessary.
2797 */
2798 va = pmap_get_pteinfo(idx, &pmap, &c_tbl);
2799 /* XXX don't write protect pager mappings */
2800 if (va >= PAGER_SVA && va < PAGER_EVA) {
2801 #ifdef PMAP_DEBUG
2802 /* XXX - Does this actually happen? */
2803 printf("pmap_page_protect: in pager!\n");
2804 Debugger();
2805 #endif
2806 } else
2807 pte->attr.raw |= MMU_SHORT_PTE_WP;
2808 if (pmap == curpmap || pmap == pmap_kernel())
2809 TBIS(va);
2810 break;
2811 case VM_PROT_NONE:
2812 /* Save the mod/ref bits. */
2813 pv->pv_flags |= pte->attr.raw;
2814 /* Invalidate the PTE. */
2815 pte->attr.raw = MMU_DT_INVALID;
2816
2817 /*
2818 * Update table counts. And flush ATC entries
2819 * if necessary.
2820 */
2821 va = pmap_get_pteinfo(idx, &pmap, &c_tbl);
2822
2823 /*
2824 * If the PTE belongs to the kernel map,
2825 * be sure to flush the page it maps.
2826 */
2827 if (pmap == pmap_kernel()) {
2828 TBIS(va);
2829 } else {
2830 /*
2831 * The PTE belongs to a user map.
2832 * update the entry count in the C
2833 * table to which it belongs and flush
2834 * the ATC if the mapping belongs to
2835 * the current pmap.
2836 */
2837 c_tbl->ct_ecnt--;
2838 if (pmap == curpmap)
2839 TBIS(va);
2840 }
2841 break;
2842 default:
2843 break;
2844 }
2845 }
2846
2847 /*
2848 * If the protection code indicates that all mappings to the page
2849 * be removed, truncate the PV list to zero entries.
2850 */
2851 if (prot == VM_PROT_NONE)
2852 pv->pv_idx = PVE_EOL;
2853 splx(s);
2854 }
2855
2856 /* pmap_get_pteinfo INTERNAL
2857 **
2858 * Called internally to find the pmap and virtual address within that
2859 * map to which the pte at the given index maps. Also includes the PTE's C
2860 * table manager.
2861 *
2862 * Returns the pmap in the argument provided, and the virtual address
2863 * by return value.
2864 */
2865 vm_offset_t
2866 pmap_get_pteinfo(idx, pmap, tbl)
2867 u_int idx;
2868 pmap_t *pmap;
2869 c_tmgr_t **tbl;
2870 {
2871 vm_offset_t va = 0;
2872
2873 /*
2874 * Determine if the PTE is a kernel PTE or a user PTE.
2875 */
2876 if (idx >= NUM_KERN_PTES) {
2877 /*
2878 * The PTE belongs to a user mapping.
2879 */
2880 /* XXX: Would like an inline for this to validate idx... */
2881 *tbl = &Ctmgrbase[(idx - NUM_KERN_PTES) / MMU_C_TBL_SIZE];
2882
2883 *pmap = (*tbl)->ct_pmap;
2884 /*
2885 * To find the va to which the PTE maps, we first take
2886 * the table's base virtual address mapping which is stored
2887 * in ct_va. We then increment this address by a page for
2888 * every slot skipped until we reach the PTE.
2889 */
2890 va = (*tbl)->ct_va;
2891 va += m68k_ptob(idx % MMU_C_TBL_SIZE);
2892 } else {
2893 /*
2894 * The PTE belongs to the kernel map.
2895 */
2896 *pmap = pmap_kernel();
2897
2898 va = m68k_ptob(idx);
2899 va += KERNBASE;
2900 }
2901
2902 return va;
2903 }
2904
2905 /* pmap_clear_modify INTERFACE
2906 **
2907 * Clear the modification bit on the page at the specified
2908 * physical address.
2909 *
2910 */
2911 boolean_t
2912 pmap_clear_modify(pg)
2913 struct vm_page *pg;
2914 {
2915 paddr_t pa = VM_PAGE_TO_PHYS(pg);
2916 boolean_t rv;
2917
2918 if (!is_managed(pa))
2919 return FALSE;
2920 rv = pmap_is_modified(pg);
2921 pmap_clear_pv(pa, PV_FLAGS_MDFY);
2922 return rv;
2923 }
2924
2925 /* pmap_clear_reference INTERFACE
2926 **
2927 * Clear the referenced bit on the page at the specified
2928 * physical address.
2929 */
2930 boolean_t
2931 pmap_clear_reference(pg)
2932 struct vm_page *pg;
2933 {
2934 paddr_t pa = VM_PAGE_TO_PHYS(pg);
2935 boolean_t rv;
2936
2937 if (!is_managed(pa))
2938 return FALSE;
2939 rv = pmap_is_referenced(pg);
2940 pmap_clear_pv(pa, PV_FLAGS_USED);
2941 return rv;
2942 }
2943
2944 /* pmap_clear_pv INTERNAL
2945 **
2946 * Clears the specified flag from the specified physical address.
2947 * (Used by pmap_clear_modify() and pmap_clear_reference().)
2948 *
2949 * Flag is one of:
2950 * PV_FLAGS_MDFY - Page modified bit.
2951 * PV_FLAGS_USED - Page used (referenced) bit.
2952 *
2953 * This routine must not only clear the flag on the pv list
2954 * head. It must also clear the bit on every pte in the pv
2955 * list associated with the address.
2956 */
2957 void
2958 pmap_clear_pv(pa, flag)
2959 vm_offset_t pa;
2960 int flag;
2961 {
2962 pv_t *pv;
2963 int idx, s;
2964 vm_offset_t va;
2965 pmap_t pmap;
2966 mmu_short_pte_t *pte;
2967 c_tmgr_t *c_tbl;
2968
2969 pv = pa2pv(pa);
2970
2971 s = splvm();
2972 pv->pv_flags &= ~(flag);
2973
2974 for (idx = pv->pv_idx;
2975 idx != PVE_EOL;
2976 idx = pvebase[idx].pve_next) {
2977
2978 pte = &kernCbase[idx];
2979 pte->attr.raw &= ~(flag);
2980 /*
2981 * The MC68030 MMU will not set the modified or
2982 * referenced bits on any MMU tables for which it has
2983 * a cached descriptor with its modify bit set. To insure
2984 * that it will modify these bits on the PTE during the next
2985 * time it is written to or read from, we must flush it from
2986 * the ATC.
2987 *
2988 * Ordinarily it is only necessary to flush the descriptor
2989 * if it is used in the current address space. But since I
2990 * am not sure that there will always be a notion of
2991 * 'the current address space' when this function is called,
2992 * I will skip the test and always flush the address. It
2993 * does no harm.
2994 */
2995 va = pmap_get_pteinfo(idx, &pmap, &c_tbl);
2996 TBIS(va);
2997 }
2998 splx(s);
2999 }
3000
3001 /* pmap_extract INTERFACE
3002 **
3003 * Return the physical address mapped by the virtual address
3004 * in the specified pmap.
3005 *
3006 * Note: this function should also apply an exclusive lock
3007 * on the pmap system during its duration.
3008 */
3009 boolean_t
3010 pmap_extract(pmap, va, pap)
3011 pmap_t pmap;
3012 vaddr_t va;
3013 paddr_t *pap;
3014 {
3015 int a_idx, b_idx, pte_idx;
3016 a_tmgr_t *a_tbl;
3017 b_tmgr_t *b_tbl;
3018 c_tmgr_t *c_tbl;
3019 mmu_short_pte_t *c_pte;
3020
3021 if (pmap == pmap_kernel())
3022 return pmap_extract_kernel(va, pap);
3023 if (pmap == NULL)
3024 return FALSE;
3025
3026 if (pmap_stroll(pmap, va, &a_tbl, &b_tbl, &c_tbl,
3027 &c_pte, &a_idx, &b_idx, &pte_idx) == FALSE)
3028 return FALSE;
3029
3030 if (!MMU_VALID_DT(*c_pte))
3031 return FALSE;
3032
3033 if (pap != NULL)
3034 *pap = MMU_PTE_PA(*c_pte);
3035 return (TRUE);
3036 }
3037
3038 /* pmap_extract_kernel INTERNAL
3039 **
3040 * Extract a translation from the kernel address space.
3041 */
3042 boolean_t
3043 pmap_extract_kernel(va, pap)
3044 vaddr_t va;
3045 paddr_t *pap;
3046 {
3047 mmu_short_pte_t *pte;
3048
3049 pte = &kernCbase[(u_int) m68k_btop(va - KERNBASE)];
3050 if (!MMU_VALID_DT(*pte))
3051 return (FALSE);
3052 if (pap != NULL)
3053 *pap = MMU_PTE_PA(*pte);
3054 return (TRUE);
3055 }
3056
3057 /* pmap_remove_kernel INTERNAL
3058 **
3059 * Remove the mapping of a range of virtual addresses from the kernel map.
3060 * The arguments are already page-aligned.
3061 */
3062 void
3063 pmap_remove_kernel(sva, eva)
3064 vm_offset_t sva;
3065 vm_offset_t eva;
3066 {
3067 int idx, eidx;
3068
3069 #ifdef PMAP_DEBUG
3070 if ((sva & PGOFSET) || (eva & PGOFSET))
3071 panic("pmap_remove_kernel: alignment");
3072 #endif
3073
3074 idx = m68k_btop(sva - KERNBASE);
3075 eidx = m68k_btop(eva - KERNBASE);
3076
3077 while (idx < eidx) {
3078 pmap_remove_pte(&kernCbase[idx++]);
3079 TBIS(sva);
3080 sva += NBPG;
3081 }
3082 }
3083
3084 /* pmap_remove INTERFACE
3085 **
3086 * Remove the mapping of a range of virtual addresses from the given pmap.
3087 *
3088 * If the range contains any wired entries, this function will probably create
3089 * disaster.
3090 */
3091 void
3092 pmap_remove(pmap, start, end)
3093 pmap_t pmap;
3094 vm_offset_t start;
3095 vm_offset_t end;
3096 {
3097
3098 if (pmap == pmap_kernel()) {
3099 pmap_remove_kernel(start, end);
3100 return;
3101 }
3102
3103 /*
3104 * XXX - Temporary(?) statement to prevent panic caused
3105 * by vm_alloc_with_pager() handing us a software map (ie NULL)
3106 * to remove because it couldn't get backing store.
3107 * (I guess.)
3108 */
3109 if (pmap == NULL)
3110 return;
3111
3112 /*
3113 * If the pmap doesn't have an A table of its own, it has no mappings
3114 * that can be removed.
3115 */
3116 if (pmap->pm_a_tmgr == NULL)
3117 return;
3118
3119 /*
3120 * Remove the specified range from the pmap. If the function
3121 * returns true, the operation removed all the valid mappings
3122 * in the pmap and freed its A table. If this happened to the
3123 * currently loaded pmap, the MMU root pointer must be reloaded
3124 * with the default 'kernel' map.
3125 */
3126 if (pmap_remove_a(pmap->pm_a_tmgr, start, end)) {
3127 if (kernel_crp.rp_addr == pmap->pm_a_phys) {
3128 kernel_crp.rp_addr = kernAphys;
3129 loadcrp(&kernel_crp);
3130 /* will do TLB flush below */
3131 }
3132 pmap->pm_a_tmgr = NULL;
3133 pmap->pm_a_phys = kernAphys;
3134 }
3135
3136 /*
3137 * If we just modified the current address space,
3138 * make sure to flush the MMU cache.
3139 *
3140 * XXX - this could be an unecessarily large flush.
3141 * XXX - Could decide, based on the size of the VA range
3142 * to be removed, whether to flush "by pages" or "all".
3143 */
3144 if (pmap == current_pmap())
3145 TBIAU();
3146 }
3147
3148 /* pmap_remove_a INTERNAL
3149 **
3150 * This is function number one in a set of three that removes a range
3151 * of memory in the most efficient manner by removing the highest possible
3152 * tables from the memory space. This particular function attempts to remove
3153 * as many B tables as it can, delegating the remaining fragmented ranges to
3154 * pmap_remove_b().
3155 *
3156 * If the removal operation results in an empty A table, the function returns
3157 * TRUE.
3158 *
3159 * It's ugly but will do for now.
3160 */
3161 boolean_t
3162 pmap_remove_a(a_tbl, start, end)
3163 a_tmgr_t *a_tbl;
3164 vm_offset_t start;
3165 vm_offset_t end;
3166 {
3167 boolean_t empty;
3168 int idx;
3169 vm_offset_t nstart, nend;
3170 b_tmgr_t *b_tbl;
3171 mmu_long_dte_t *a_dte;
3172 mmu_short_dte_t *b_dte;
3173
3174 /*
3175 * The following code works with what I call a 'granularity
3176 * reduction algorithim'. A range of addresses will always have
3177 * the following properties, which are classified according to
3178 * how the range relates to the size of the current granularity
3179 * - an A table entry:
3180 *
3181 * 1 2 3 4
3182 * -+---+---+---+---+---+---+---+-
3183 * -+---+---+---+---+---+---+---+-
3184 *
3185 * A range will always start on a granularity boundary, illustrated
3186 * by '+' signs in the table above, or it will start at some point
3187 * inbetween a granularity boundary, as illustrated by point 1.
3188 * The first step in removing a range of addresses is to remove the
3189 * range between 1 and 2, the nearest granularity boundary. This
3190 * job is handled by the section of code governed by the
3191 * 'if (start < nstart)' statement.
3192 *
3193 * A range will always encompass zero or more intergral granules,
3194 * illustrated by points 2 and 3. Integral granules are easy to
3195 * remove. The removal of these granules is the second step, and
3196 * is handled by the code block 'if (nstart < nend)'.
3197 *
3198 * Lastly, a range will always end on a granularity boundary,
3199 * ill. by point 3, or it will fall just beyond one, ill. by point
3200 * 4. The last step involves removing this range and is handled by
3201 * the code block 'if (nend < end)'.
3202 */
3203 nstart = MMU_ROUND_UP_A(start);
3204 nend = MMU_ROUND_A(end);
3205
3206 if (start < nstart) {
3207 /*
3208 * This block is executed if the range starts between
3209 * a granularity boundary.
3210 *
3211 * First find the DTE which is responsible for mapping
3212 * the start of the range.
3213 */
3214 idx = MMU_TIA(start);
3215 a_dte = &a_tbl->at_dtbl[idx];
3216
3217 /*
3218 * If the DTE is valid then delegate the removal of the sub
3219 * range to pmap_remove_b(), which can remove addresses at
3220 * a finer granularity.
3221 */
3222 if (MMU_VALID_DT(*a_dte)) {
3223 b_dte = mmu_ptov(a_dte->addr.raw);
3224 b_tbl = mmuB2tmgr(b_dte);
3225
3226 /*
3227 * The sub range to be removed starts at the start
3228 * of the full range we were asked to remove, and ends
3229 * at the greater of:
3230 * 1. The end of the full range, -or-
3231 * 2. The end of the full range, rounded down to the
3232 * nearest granularity boundary.
3233 */
3234 if (end < nstart)
3235 empty = pmap_remove_b(b_tbl, start, end);
3236 else
3237 empty = pmap_remove_b(b_tbl, start, nstart);
3238
3239 /*
3240 * If the removal resulted in an empty B table,
3241 * invalidate the DTE that points to it and decrement
3242 * the valid entry count of the A table.
3243 */
3244 if (empty) {
3245 a_dte->attr.raw = MMU_DT_INVALID;
3246 a_tbl->at_ecnt--;
3247 }
3248 }
3249 /*
3250 * If the DTE is invalid, the address range is already non-
3251 * existant and can simply be skipped.
3252 */
3253 }
3254 if (nstart < nend) {
3255 /*
3256 * This block is executed if the range spans a whole number
3257 * multiple of granules (A table entries.)
3258 *
3259 * First find the DTE which is responsible for mapping
3260 * the start of the first granule involved.
3261 */
3262 idx = MMU_TIA(nstart);
3263 a_dte = &a_tbl->at_dtbl[idx];
3264
3265 /*
3266 * Remove entire sub-granules (B tables) one at a time,
3267 * until reaching the end of the range.
3268 */
3269 for (; nstart < nend; a_dte++, nstart += MMU_TIA_RANGE)
3270 if (MMU_VALID_DT(*a_dte)) {
3271 /*
3272 * Find the B table manager for the
3273 * entry and free it.
3274 */
3275 b_dte = mmu_ptov(a_dte->addr.raw);
3276 b_tbl = mmuB2tmgr(b_dte);
3277 free_b_table(b_tbl, TRUE);
3278
3279 /*
3280 * Invalidate the DTE that points to the
3281 * B table and decrement the valid entry
3282 * count of the A table.
3283 */
3284 a_dte->attr.raw = MMU_DT_INVALID;
3285 a_tbl->at_ecnt--;
3286 }
3287 }
3288 if (nend < end) {
3289 /*
3290 * This block is executed if the range ends beyond a
3291 * granularity boundary.
3292 *
3293 * First find the DTE which is responsible for mapping
3294 * the start of the nearest (rounded down) granularity
3295 * boundary.
3296 */
3297 idx = MMU_TIA(nend);
3298 a_dte = &a_tbl->at_dtbl[idx];
3299
3300 /*
3301 * If the DTE is valid then delegate the removal of the sub
3302 * range to pmap_remove_b(), which can remove addresses at
3303 * a finer granularity.
3304 */
3305 if (MMU_VALID_DT(*a_dte)) {
3306 /*
3307 * Find the B table manager for the entry
3308 * and hand it to pmap_remove_b() along with
3309 * the sub range.
3310 */
3311 b_dte = mmu_ptov(a_dte->addr.raw);
3312 b_tbl = mmuB2tmgr(b_dte);
3313
3314 empty = pmap_remove_b(b_tbl, nend, end);
3315
3316 /*
3317 * If the removal resulted in an empty B table,
3318 * invalidate the DTE that points to it and decrement
3319 * the valid entry count of the A table.
3320 */
3321 if (empty) {
3322 a_dte->attr.raw = MMU_DT_INVALID;
3323 a_tbl->at_ecnt--;
3324 }
3325 }
3326 }
3327
3328 /*
3329 * If there are no more entries in the A table, release it
3330 * back to the available pool and return TRUE.
3331 */
3332 if (a_tbl->at_ecnt == 0) {
3333 a_tbl->at_parent = NULL;
3334 TAILQ_REMOVE(&a_pool, a_tbl, at_link);
3335 TAILQ_INSERT_HEAD(&a_pool, a_tbl, at_link);
3336 empty = TRUE;
3337 } else {
3338 empty = FALSE;
3339 }
3340
3341 return empty;
3342 }
3343
3344 /* pmap_remove_b INTERNAL
3345 **
3346 * Remove a range of addresses from an address space, trying to remove entire
3347 * C tables if possible.
3348 *
3349 * If the operation results in an empty B table, the function returns TRUE.
3350 */
3351 boolean_t
3352 pmap_remove_b(b_tbl, start, end)
3353 b_tmgr_t *b_tbl;
3354 vm_offset_t start;
3355 vm_offset_t end;
3356 {
3357 boolean_t empty;
3358 int idx;
3359 vm_offset_t nstart, nend, rstart;
3360 c_tmgr_t *c_tbl;
3361 mmu_short_dte_t *b_dte;
3362 mmu_short_pte_t *c_dte;
3363
3364
3365 nstart = MMU_ROUND_UP_B(start);
3366 nend = MMU_ROUND_B(end);
3367
3368 if (start < nstart) {
3369 idx = MMU_TIB(start);
3370 b_dte = &b_tbl->bt_dtbl[idx];
3371 if (MMU_VALID_DT(*b_dte)) {
3372 c_dte = mmu_ptov(MMU_DTE_PA(*b_dte));
3373 c_tbl = mmuC2tmgr(c_dte);
3374 if (end < nstart)
3375 empty = pmap_remove_c(c_tbl, start, end);
3376 else
3377 empty = pmap_remove_c(c_tbl, start, nstart);
3378 if (empty) {
3379 b_dte->attr.raw = MMU_DT_INVALID;
3380 b_tbl->bt_ecnt--;
3381 }
3382 }
3383 }
3384 if (nstart < nend) {
3385 idx = MMU_TIB(nstart);
3386 b_dte = &b_tbl->bt_dtbl[idx];
3387 rstart = nstart;
3388 while (rstart < nend) {
3389 if (MMU_VALID_DT(*b_dte)) {
3390 c_dte = mmu_ptov(MMU_DTE_PA(*b_dte));
3391 c_tbl = mmuC2tmgr(c_dte);
3392 free_c_table(c_tbl, TRUE);
3393 b_dte->attr.raw = MMU_DT_INVALID;
3394 b_tbl->bt_ecnt--;
3395 }
3396 b_dte++;
3397 rstart += MMU_TIB_RANGE;
3398 }
3399 }
3400 if (nend < end) {
3401 idx = MMU_TIB(nend);
3402 b_dte = &b_tbl->bt_dtbl[idx];
3403 if (MMU_VALID_DT(*b_dte)) {
3404 c_dte = mmu_ptov(MMU_DTE_PA(*b_dte));
3405 c_tbl = mmuC2tmgr(c_dte);
3406 empty = pmap_remove_c(c_tbl, nend, end);
3407 if (empty) {
3408 b_dte->attr.raw = MMU_DT_INVALID;
3409 b_tbl->bt_ecnt--;
3410 }
3411 }
3412 }
3413
3414 if (b_tbl->bt_ecnt == 0) {
3415 b_tbl->bt_parent = NULL;
3416 TAILQ_REMOVE(&b_pool, b_tbl, bt_link);
3417 TAILQ_INSERT_HEAD(&b_pool, b_tbl, bt_link);
3418 empty = TRUE;
3419 } else {
3420 empty = FALSE;
3421 }
3422
3423 return empty;
3424 }
3425
3426 /* pmap_remove_c INTERNAL
3427 **
3428 * Remove a range of addresses from the given C table.
3429 */
3430 boolean_t
3431 pmap_remove_c(c_tbl, start, end)
3432 c_tmgr_t *c_tbl;
3433 vm_offset_t start;
3434 vm_offset_t end;
3435 {
3436 boolean_t empty;
3437 int idx;
3438 mmu_short_pte_t *c_pte;
3439
3440 idx = MMU_TIC(start);
3441 c_pte = &c_tbl->ct_dtbl[idx];
3442 for (;start < end; start += MMU_PAGE_SIZE, c_pte++) {
3443 if (MMU_VALID_DT(*c_pte)) {
3444 pmap_remove_pte(c_pte);
3445 c_tbl->ct_ecnt--;
3446 }
3447 }
3448
3449 if (c_tbl->ct_ecnt == 0) {
3450 c_tbl->ct_parent = NULL;
3451 TAILQ_REMOVE(&c_pool, c_tbl, ct_link);
3452 TAILQ_INSERT_HEAD(&c_pool, c_tbl, ct_link);
3453 empty = TRUE;
3454 } else {
3455 empty = FALSE;
3456 }
3457
3458 return empty;
3459 }
3460
3461 /* is_managed INTERNAL
3462 **
3463 * Determine if the given physical address is managed by the PV system.
3464 * Note that this logic assumes that no one will ask for the status of
3465 * addresses which lie in-between the memory banks on the 3/80. If they
3466 * do so, it will falsely report that it is managed.
3467 *
3468 * Note: A "managed" address is one that was reported to the VM system as
3469 * a "usable page" during system startup. As such, the VM system expects the
3470 * pmap module to keep an accurate track of the useage of those pages.
3471 * Any page not given to the VM system at startup does not exist (as far as
3472 * the VM system is concerned) and is therefore "unmanaged." Examples are
3473 * those pages which belong to the ROM monitor and the memory allocated before
3474 * the VM system was started.
3475 */
3476 boolean_t
3477 is_managed(pa)
3478 vm_offset_t pa;
3479 {
3480 if (pa >= avail_start && pa < avail_end)
3481 return TRUE;
3482 else
3483 return FALSE;
3484 }
3485
3486 /* pmap_bootstrap_alloc INTERNAL
3487 **
3488 * Used internally for memory allocation at startup when malloc is not
3489 * available. This code will fail once it crosses the first memory
3490 * bank boundary on the 3/80. Hopefully by then however, the VM system
3491 * will be in charge of allocation.
3492 */
3493 void *
3494 pmap_bootstrap_alloc(size)
3495 int size;
3496 {
3497 void *rtn;
3498
3499 #ifdef PMAP_DEBUG
3500 if (bootstrap_alloc_enabled == FALSE) {
3501 mon_printf("pmap_bootstrap_alloc: disabled\n");
3502 sunmon_abort();
3503 }
3504 #endif
3505
3506 rtn = (void *) virtual_avail;
3507 virtual_avail += size;
3508
3509 #ifdef PMAP_DEBUG
3510 if (virtual_avail > virtual_contig_end) {
3511 mon_printf("pmap_bootstrap_alloc: out of mem\n");
3512 sunmon_abort();
3513 }
3514 #endif
3515
3516 return rtn;
3517 }
3518
3519 /* pmap_bootstap_aalign INTERNAL
3520 **
3521 * Used to insure that the next call to pmap_bootstrap_alloc() will
3522 * return a chunk of memory aligned to the specified size.
3523 *
3524 * Note: This function will only support alignment sizes that are powers
3525 * of two.
3526 */
3527 void
3528 pmap_bootstrap_aalign(size)
3529 int size;
3530 {
3531 int off;
3532
3533 off = virtual_avail & (size - 1);
3534 if (off) {
3535 (void) pmap_bootstrap_alloc(size - off);
3536 }
3537 }
3538
3539 /* pmap_pa_exists
3540 **
3541 * Used by the /dev/mem driver to see if a given PA is memory
3542 * that can be mapped. (The PA is not in a hole.)
3543 */
3544 int
3545 pmap_pa_exists(pa)
3546 vm_offset_t pa;
3547 {
3548 register int i;
3549
3550 for (i = 0; i < SUN3X_NPHYS_RAM_SEGS; i++) {
3551 if ((pa >= avail_mem[i].pmem_start) &&
3552 (pa < avail_mem[i].pmem_end))
3553 return (1);
3554 if (avail_mem[i].pmem_next == NULL)
3555 break;
3556 }
3557 return (0);
3558 }
3559
3560 /* Called only from locore.s and pmap.c */
3561 void _pmap_switch __P((pmap_t pmap));
3562
3563 /*
3564 * _pmap_switch INTERNAL
3565 *
3566 * This is called by locore.s:cpu_switch() when it is
3567 * switching to a new process. Load new translations.
3568 * Note: done in-line by locore.s unless PMAP_DEBUG
3569 *
3570 * Note that we do NOT allocate a context here, but
3571 * share the "kernel only" context until we really
3572 * need our own context for user-space mappings in
3573 * pmap_enter_user(). [ s/context/mmu A table/ ]
3574 */
3575 void
3576 _pmap_switch(pmap)
3577 pmap_t pmap;
3578 {
3579 u_long rootpa;
3580
3581 /*
3582 * Only do reload/flush if we have to.
3583 * Note that if the old and new process
3584 * were BOTH using the "null" context,
3585 * then this will NOT flush the TLB.
3586 */
3587 rootpa = pmap->pm_a_phys;
3588 if (kernel_crp.rp_addr != rootpa) {
3589 DPRINT(("pmap_activate(%p)\n", pmap));
3590 kernel_crp.rp_addr = rootpa;
3591 loadcrp(&kernel_crp);
3592 TBIAU();
3593 }
3594 }
3595
3596 /*
3597 * Exported version of pmap_activate(). This is called from the
3598 * machine-independent VM code when a process is given a new pmap.
3599 * If (p == curproc) do like cpu_switch would do; otherwise just
3600 * take this as notification that the process has a new pmap.
3601 */
3602 void
3603 pmap_activate(p)
3604 struct proc *p;
3605 {
3606 pmap_t pmap = p->p_vmspace->vm_map.pmap;
3607 int s;
3608
3609 if (p == curproc) {
3610 s = splvm();
3611 _pmap_switch(pmap);
3612 splx(s);
3613 }
3614 }
3615
3616 /*
3617 * pmap_deactivate INTERFACE
3618 **
3619 * This is called to deactivate the specified process's address space.
3620 * XXX The semantics of this function are currently not well-defined.
3621 */
3622 void
3623 pmap_deactivate(p)
3624 struct proc *p;
3625 {
3626 /* not implemented. */
3627 }
3628
3629 /*
3630 * Fill in the sun3x-specific part of the kernel core header
3631 * for dumpsys(). (See machdep.c for the rest.)
3632 */
3633 void
3634 pmap_kcore_hdr(sh)
3635 struct sun3x_kcore_hdr *sh;
3636 {
3637 u_long spa, len;
3638 int i;
3639
3640 sh->pg_frame = MMU_SHORT_PTE_BASEADDR;
3641 sh->pg_valid = MMU_DT_PAGE;
3642 sh->contig_end = virtual_contig_end;
3643 sh->kernCbase = (u_long) kernCbase;
3644 for (i = 0; i < SUN3X_NPHYS_RAM_SEGS; i++) {
3645 spa = avail_mem[i].pmem_start;
3646 spa = m68k_trunc_page(spa);
3647 len = avail_mem[i].pmem_end - spa;
3648 len = m68k_round_page(len);
3649 sh->ram_segs[i].start = spa;
3650 sh->ram_segs[i].size = len;
3651 }
3652 }
3653
3654
3655 /* pmap_virtual_space INTERFACE
3656 **
3657 * Return the current available range of virtual addresses in the
3658 * arguuments provided. Only really called once.
3659 */
3660 void
3661 pmap_virtual_space(vstart, vend)
3662 vm_offset_t *vstart, *vend;
3663 {
3664 *vstart = virtual_avail;
3665 *vend = virtual_end;
3666 }
3667
3668 /*
3669 * Provide memory to the VM system.
3670 *
3671 * Assume avail_start is always in the
3672 * first segment as pmap_bootstrap does.
3673 */
3674 static void
3675 pmap_page_upload()
3676 {
3677 vm_offset_t a, b; /* memory range */
3678 int i;
3679
3680 /* Supply the memory in segments. */
3681 for (i = 0; i < SUN3X_NPHYS_RAM_SEGS; i++) {
3682 a = atop(avail_mem[i].pmem_start);
3683 b = atop(avail_mem[i].pmem_end);
3684 if (i == 0)
3685 a = atop(avail_start);
3686 if (avail_mem[i].pmem_end > avail_end)
3687 b = atop(avail_end);
3688
3689 uvm_page_physload(a, b, a, b, VM_FREELIST_DEFAULT);
3690
3691 if (avail_mem[i].pmem_next == NULL)
3692 break;
3693 }
3694 }
3695
3696 /* pmap_page_index INTERFACE
3697 **
3698 * Return the index of the given physical page in a list of useable
3699 * physical pages in the system. Holes in physical memory may be counted
3700 * if so desired. As long as pmap_free_pages() and pmap_page_index()
3701 * agree as to whether holes in memory do or do not count as valid pages,
3702 * it really doesn't matter. However, if you like to save a little
3703 * memory, don't count holes as valid pages. This is even more true when
3704 * the holes are large.
3705 *
3706 * We will not count holes as valid pages. We can generate page indices
3707 * that conform to this by using the memory bank structures initialized
3708 * in pmap_alloc_pv().
3709 */
3710 int
3711 pmap_page_index(pa)
3712 vm_offset_t pa;
3713 {
3714 struct pmap_physmem_struct *bank = avail_mem;
3715 vm_offset_t off;
3716
3717 /* Search for the memory bank with this page. */
3718 /* XXX - What if it is not physical memory? */
3719 while (pa > bank->pmem_end)
3720 bank = bank->pmem_next;
3721 off = pa - bank->pmem_start;
3722
3723 return (bank->pmem_pvbase + m68k_btop(off));
3724 }
3725
3726 /* pmap_count INTERFACE
3727 **
3728 * Return the number of resident (valid) pages in the given pmap.
3729 *
3730 * Note: If this function is handed the kernel map, it will report
3731 * that it has no mappings. Hopefully the VM system won't ask for kernel
3732 * map statistics.
3733 */
3734 segsz_t
3735 pmap_count(pmap, type)
3736 pmap_t pmap;
3737 int type;
3738 {
3739 u_int count;
3740 int a_idx, b_idx;
3741 a_tmgr_t *a_tbl;
3742 b_tmgr_t *b_tbl;
3743 c_tmgr_t *c_tbl;
3744
3745 /*
3746 * If the pmap does not have its own A table manager, it has no
3747 * valid entires.
3748 */
3749 if (pmap->pm_a_tmgr == NULL)
3750 return 0;
3751
3752 a_tbl = pmap->pm_a_tmgr;
3753
3754 count = 0;
3755 for (a_idx = 0; a_idx < MMU_TIA(KERNBASE); a_idx++) {
3756 if (MMU_VALID_DT(a_tbl->at_dtbl[a_idx])) {
3757 b_tbl = mmuB2tmgr(mmu_ptov(a_tbl->at_dtbl[a_idx].addr.raw));
3758 for (b_idx = 0; b_idx < MMU_B_TBL_SIZE; b_idx++) {
3759 if (MMU_VALID_DT(b_tbl->bt_dtbl[b_idx])) {
3760 c_tbl = mmuC2tmgr(
3761 mmu_ptov(MMU_DTE_PA(b_tbl->bt_dtbl[b_idx])));
3762 if (type == 0)
3763 /*
3764 * A resident entry count has been requested.
3765 */
3766 count += c_tbl->ct_ecnt;
3767 else
3768 /*
3769 * A wired entry count has been requested.
3770 */
3771 count += c_tbl->ct_wcnt;
3772 }
3773 }
3774 }
3775 }
3776
3777 return count;
3778 }
3779
3780 /************************ SUN3 COMPATIBILITY ROUTINES ********************
3781 * The following routines are only used by DDB for tricky kernel text *
3782 * text operations in db_memrw.c. They are provided for sun3 *
3783 * compatibility. *
3784 *************************************************************************/
3785 /* get_pte INTERNAL
3786 **
3787 * Return the page descriptor the describes the kernel mapping
3788 * of the given virtual address.
3789 */
3790 extern u_long ptest_addr __P((u_long)); /* XXX: locore.s */
3791 u_int
3792 get_pte(va)
3793 vm_offset_t va;
3794 {
3795 u_long pte_pa;
3796 mmu_short_pte_t *pte;
3797
3798 /* Get the physical address of the PTE */
3799 pte_pa = ptest_addr(va & ~PGOFSET);
3800
3801 /* Convert to a virtual address... */
3802 pte = (mmu_short_pte_t *) (KERNBASE + pte_pa);
3803
3804 /* Make sure it is in our level-C tables... */
3805 if ((pte < kernCbase) ||
3806 (pte >= &mmuCbase[NUM_USER_PTES]))
3807 return 0;
3808
3809 /* ... and just return its contents. */
3810 return (pte->attr.raw);
3811 }
3812
3813
3814 /* set_pte INTERNAL
3815 **
3816 * Set the page descriptor that describes the kernel mapping
3817 * of the given virtual address.
3818 */
3819 void
3820 set_pte(va, pte)
3821 vm_offset_t va;
3822 u_int pte;
3823 {
3824 u_long idx;
3825
3826 if (va < KERNBASE)
3827 return;
3828
3829 idx = (unsigned long) m68k_btop(va - KERNBASE);
3830 kernCbase[idx].attr.raw = pte;
3831 TBIS(va);
3832 }
3833
3834 /*
3835 * Routine: pmap_procwr
3836 *
3837 * Function:
3838 * Synchronize caches corresponding to [addr, addr+len) in p.
3839 */
3840 void
3841 pmap_procwr(p, va, len)
3842 struct proc *p;
3843 vaddr_t va;
3844 size_t len;
3845 {
3846 (void)cachectl1(0x80000004, va, len, p);
3847 }
3848
3849
3850 #ifdef PMAP_DEBUG
3851 /************************** DEBUGGING ROUTINES **************************
3852 * The following routines are meant to be an aid to debugging the pmap *
3853 * system. They are callable from the DDB command line and should be *
3854 * prepared to be handed unstable or incomplete states of the system. *
3855 ************************************************************************/
3856
3857 /* pv_list
3858 **
3859 * List all pages found on the pv list for the given physical page.
3860 * To avoid endless loops, the listing will stop at the end of the list
3861 * or after 'n' entries - whichever comes first.
3862 */
3863 void
3864 pv_list(pa, n)
3865 vm_offset_t pa;
3866 int n;
3867 {
3868 int idx;
3869 vm_offset_t va;
3870 pv_t *pv;
3871 c_tmgr_t *c_tbl;
3872 pmap_t pmap;
3873
3874 pv = pa2pv(pa);
3875 idx = pv->pv_idx;
3876
3877 for (;idx != PVE_EOL && n > 0;
3878 idx=pvebase[idx].pve_next, n--) {
3879
3880 va = pmap_get_pteinfo(idx, &pmap, &c_tbl);
3881 printf("idx %d, pmap 0x%x, va 0x%x, c_tbl %x\n",
3882 idx, (u_int) pmap, (u_int) va, (u_int) c_tbl);
3883 }
3884 }
3885 #endif /* PMAP_DEBUG */
3886
3887 #ifdef NOT_YET
3888 /* and maybe not ever */
3889 /************************** LOW-LEVEL ROUTINES **************************
3890 * These routines will eventualy be re-written into assembly and placed *
3891 * in locore.s. They are here now as stubs so that the pmap module can *
3892 * be linked as a standalone user program for testing. *
3893 ************************************************************************/
3894 /* flush_atc_crp INTERNAL
3895 **
3896 * Flush all page descriptors derived from the given CPU Root Pointer
3897 * (CRP), or 'A' table as it is known here, from the 68851's automatic
3898 * cache.
3899 */
3900 void
3901 flush_atc_crp(a_tbl)
3902 {
3903 mmu_long_rp_t rp;
3904
3905 /* Create a temporary root table pointer that points to the
3906 * given A table.
3907 */
3908 rp.attr.raw = ~MMU_LONG_RP_LU;
3909 rp.addr.raw = (unsigned int) a_tbl;
3910
3911 mmu_pflushr(&rp);
3912 /* mmu_pflushr:
3913 * movel sp(4)@,a0
3914 * pflushr a0@
3915 * rts
3916 */
3917 }
3918 #endif /* NOT_YET */
3919