pmap.c revision 1.68 1 /* $NetBSD: pmap.c,v 1.68 2001/06/19 13:42:16 wiz Exp $ */
2
3 /*-
4 * Copyright (c) 1996, 1997 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jeremy Cooper.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * XXX These comments aren't quite accurate. Need to change.
41 * The sun3x uses the MC68851 Memory Management Unit, which is built
42 * into the CPU. The 68851 maps virtual to physical addresses using
43 * a multi-level table lookup, which is stored in the very memory that
44 * it maps. The number of levels of lookup is configurable from one
45 * to four. In this implementation, we use three, named 'A' through 'C'.
46 *
47 * The MMU translates virtual addresses into physical addresses by
48 * traversing these tables in a proccess called a 'table walk'. The most
49 * significant 7 bits of the Virtual Address ('VA') being translated are
50 * used as an index into the level A table, whose base in physical memory
51 * is stored in a special MMU register, the 'CPU Root Pointer' or CRP. The
52 * address found at that index in the A table is used as the base
53 * address for the next table, the B table. The next six bits of the VA are
54 * used as an index into the B table, which in turn gives the base address
55 * of the third and final C table.
56 *
57 * The next six bits of the VA are used as an index into the C table to
58 * locate a Page Table Entry (PTE). The PTE is a physical address in memory
59 * to which the remaining 13 bits of the VA are added, producing the
60 * mapped physical address.
61 *
62 * To map the entire memory space in this manner would require 2114296 bytes
63 * of page tables per process - quite expensive. Instead we will
64 * allocate a fixed but considerably smaller space for the page tables at
65 * the time the VM system is initialized. When the pmap code is asked by
66 * the kernel to map a VA to a PA, it allocates tables as needed from this
67 * pool. When there are no more tables in the pool, tables are stolen
68 * from the oldest mapped entries in the tree. This is only possible
69 * because all memory mappings are stored in the kernel memory map
70 * structures, independent of the pmap structures. A VA which references
71 * one of these invalidated maps will cause a page fault. The kernel
72 * will determine that the page fault was caused by a task using a valid
73 * VA, but for some reason (which does not concern it), that address was
74 * not mapped. It will ask the pmap code to re-map the entry and then
75 * it will resume executing the faulting task.
76 *
77 * In this manner the most efficient use of the page table space is
78 * achieved. Tasks which do not execute often will have their tables
79 * stolen and reused by tasks which execute more frequently. The best
80 * size for the page table pool will probably be determined by
81 * experimentation.
82 *
83 * You read all of the comments so far. Good for you.
84 * Now go play!
85 */
86
87 /*** A Note About the 68851 Address Translation Cache
88 * The MC68851 has a 64 entry cache, called the Address Translation Cache
89 * or 'ATC'. This cache stores the most recently used page descriptors
90 * accessed by the MMU when it does translations. Using a marker called a
91 * 'task alias' the MMU can store the descriptors from 8 different table
92 * spaces concurrently. The task alias is associated with the base
93 * address of the level A table of that address space. When an address
94 * space is currently active (the CRP currently points to its A table)
95 * the only cached descriptors that will be obeyed are ones which have a
96 * matching task alias of the current space associated with them.
97 *
98 * Since the cache is always consulted before any table lookups are done,
99 * it is important that it accurately reflect the state of the MMU tables.
100 * Whenever a change has been made to a table that has been loaded into
101 * the MMU, the code must be sure to flush any cached entries that are
102 * affected by the change. These instances are documented in the code at
103 * various points.
104 */
105 /*** A Note About the Note About the 68851 Address Translation Cache
106 * 4 months into this code I discovered that the sun3x does not have
107 * a MC68851 chip. Instead, it has a version of this MMU that is part of the
108 * the 68030 CPU.
109 * All though it behaves very similarly to the 68851, it only has 1 task
110 * alias and a 22 entry cache. So sadly (or happily), the first paragraph
111 * of the previous note does not apply to the sun3x pmap.
112 */
113
114 #include "opt_ddb.h"
115
116 #include <sys/param.h>
117 #include <sys/systm.h>
118 #include <sys/proc.h>
119 #include <sys/malloc.h>
120 #include <sys/pool.h>
121 #include <sys/user.h>
122 #include <sys/queue.h>
123 #include <sys/kcore.h>
124
125 #include <uvm/uvm.h>
126
127 #define PAGER_SVA (uvm.pager_sva)
128 #define PAGER_EVA (uvm.pager_eva)
129
130 #include <machine/cpu.h>
131 #include <machine/kcore.h>
132 #include <machine/mon.h>
133 #include <machine/pmap.h>
134 #include <machine/pte.h>
135 #include <machine/vmparam.h>
136
137 #include <sun3/sun3/cache.h>
138 #include <sun3/sun3/machdep.h>
139
140 #include "pmap_pvt.h"
141
142 /* XXX - What headers declare these? */
143 extern struct pcb *curpcb;
144 extern int physmem;
145
146 /* Defined in locore.s */
147 extern char kernel_text[];
148
149 /* Defined by the linker */
150 extern char etext[], edata[], end[];
151 extern char *esym; /* DDB */
152
153 /*************************** DEBUGGING DEFINITIONS ***********************
154 * Macros, preprocessor defines and variables used in debugging can make *
155 * code hard to read. Anything used exclusively for debugging purposes *
156 * is defined here to avoid having such mess scattered around the file. *
157 *************************************************************************/
158 #ifdef PMAP_DEBUG
159 /*
160 * To aid the debugging process, macros should be expanded into smaller steps
161 * that accomplish the same goal, yet provide convenient places for placing
162 * breakpoints. When this code is compiled with PMAP_DEBUG mode defined, the
163 * 'INLINE' keyword is defined to an empty string. This way, any function
164 * defined to be a 'static INLINE' will become 'outlined' and compiled as
165 * a separate function, which is much easier to debug.
166 */
167 #define INLINE /* nothing */
168
169 /*
170 * It is sometimes convenient to watch the activity of a particular table
171 * in the system. The following variables are used for that purpose.
172 */
173 a_tmgr_t *pmap_watch_atbl = 0;
174 b_tmgr_t *pmap_watch_btbl = 0;
175 c_tmgr_t *pmap_watch_ctbl = 0;
176
177 int pmap_debug = 0;
178 #define DPRINT(args) if (pmap_debug) printf args
179
180 #else /********** Stuff below is defined if NOT debugging **************/
181
182 #define INLINE inline
183 #define DPRINT(args) /* nada */
184
185 #endif /* PMAP_DEBUG */
186 /*********************** END OF DEBUGGING DEFINITIONS ********************/
187
188 /*** Management Structure - Memory Layout
189 * For every MMU table in the sun3x pmap system there must be a way to
190 * manage it; we must know which process is using it, what other tables
191 * depend on it, and whether or not it contains any locked pages. This
192 * is solved by the creation of 'table management' or 'tmgr'
193 * structures. One for each MMU table in the system.
194 *
195 * MAP OF MEMORY USED BY THE PMAP SYSTEM
196 *
197 * towards lower memory
198 * kernAbase -> +-------------------------------------------------------+
199 * | Kernel MMU A level table |
200 * kernBbase -> +-------------------------------------------------------+
201 * | Kernel MMU B level tables |
202 * kernCbase -> +-------------------------------------------------------+
203 * | |
204 * | Kernel MMU C level tables |
205 * | |
206 * mmuCbase -> +-------------------------------------------------------+
207 * | User MMU C level tables |
208 * mmuAbase -> +-------------------------------------------------------+
209 * | |
210 * | User MMU A level tables |
211 * | |
212 * mmuBbase -> +-------------------------------------------------------+
213 * | User MMU B level tables |
214 * tmgrAbase -> +-------------------------------------------------------+
215 * | TMGR A level table structures |
216 * tmgrBbase -> +-------------------------------------------------------+
217 * | TMGR B level table structures |
218 * tmgrCbase -> +-------------------------------------------------------+
219 * | TMGR C level table structures |
220 * pvbase -> +-------------------------------------------------------+
221 * | Physical to Virtual mapping table (list heads) |
222 * pvebase -> +-------------------------------------------------------+
223 * | Physical to Virtual mapping table (list elements) |
224 * | |
225 * +-------------------------------------------------------+
226 * towards higher memory
227 *
228 * For every A table in the MMU A area, there will be a corresponding
229 * a_tmgr structure in the TMGR A area. The same will be true for
230 * the B and C tables. This arrangement will make it easy to find the
231 * controling tmgr structure for any table in the system by use of
232 * (relatively) simple macros.
233 */
234
235 /*
236 * Global variables for storing the base addresses for the areas
237 * labeled above.
238 */
239 static vm_offset_t kernAphys;
240 static mmu_long_dte_t *kernAbase;
241 static mmu_short_dte_t *kernBbase;
242 static mmu_short_pte_t *kernCbase;
243 static mmu_short_pte_t *mmuCbase;
244 static mmu_short_dte_t *mmuBbase;
245 static mmu_long_dte_t *mmuAbase;
246 static a_tmgr_t *Atmgrbase;
247 static b_tmgr_t *Btmgrbase;
248 static c_tmgr_t *Ctmgrbase;
249 static pv_t *pvbase;
250 static pv_elem_t *pvebase;
251 struct pmap kernel_pmap;
252
253 /*
254 * This holds the CRP currently loaded into the MMU.
255 */
256 struct mmu_rootptr kernel_crp;
257
258 /*
259 * Just all around global variables.
260 */
261 static TAILQ_HEAD(a_pool_head_struct, a_tmgr_struct) a_pool;
262 static TAILQ_HEAD(b_pool_head_struct, b_tmgr_struct) b_pool;
263 static TAILQ_HEAD(c_pool_head_struct, c_tmgr_struct) c_pool;
264
265
266 /*
267 * Flags used to mark the safety/availability of certain operations or
268 * resources.
269 */
270 static boolean_t pv_initialized = FALSE, /* PV system has been initialized. */
271 bootstrap_alloc_enabled = FALSE; /*Safe to use pmap_bootstrap_alloc().*/
272 int tmp_vpages_inuse; /* Temporary virtual pages are in use */
273
274 /*
275 * XXX: For now, retain the traditional variables that were
276 * used in the old pmap/vm interface (without NONCONTIG).
277 */
278 /* Kernel virtual address space available: */
279 vm_offset_t virtual_avail, virtual_end;
280 /* Physical address space available: */
281 vm_offset_t avail_start, avail_end;
282
283 /* This keep track of the end of the contiguously mapped range. */
284 vm_offset_t virtual_contig_end;
285
286 /* Physical address used by pmap_next_page() */
287 vm_offset_t avail_next;
288
289 /* These are used by pmap_copy_page(), etc. */
290 vm_offset_t tmp_vpages[2];
291
292 /* memory pool for pmap structures */
293 struct pool pmap_pmap_pool;
294
295 /*
296 * The 3/80 is the only member of the sun3x family that has non-contiguous
297 * physical memory. Memory is divided into 4 banks which are physically
298 * locatable on the system board. Although the size of these banks varies
299 * with the size of memory they contain, their base addresses are
300 * permenently fixed. The following structure, which describes these
301 * banks, is initialized by pmap_bootstrap() after it reads from a similar
302 * structure provided by the ROM Monitor.
303 *
304 * For the other machines in the sun3x architecture which do have contiguous
305 * RAM, this list will have only one entry, which will describe the entire
306 * range of available memory.
307 */
308 struct pmap_physmem_struct avail_mem[SUN3X_NPHYS_RAM_SEGS];
309 u_int total_phys_mem;
310
311 /*************************************************************************/
312
313 /*
314 * XXX - Should "tune" these based on statistics.
315 *
316 * My first guess about the relative numbers of these needed is
317 * based on the fact that a "typical" process will have several
318 * pages mapped at low virtual addresses (text, data, bss), then
319 * some mapped shared libraries, and then some stack pages mapped
320 * near the high end of the VA space. Each process can use only
321 * one A table, and most will use only two B tables (maybe three)
322 * and probably about four C tables. Therefore, the first guess
323 * at the relative numbers of these needed is 1:2:4 -gwr
324 *
325 * The number of C tables needed is closely related to the amount
326 * of physical memory available plus a certain amount attributable
327 * to the use of double mappings. With a few simulation statistics
328 * we can find a reasonably good estimation of this unknown value.
329 * Armed with that and the above ratios, we have a good idea of what
330 * is needed at each level. -j
331 *
332 * Note: It is not physical memory memory size, but the total mapped
333 * virtual space required by the combined working sets of all the
334 * currently _runnable_ processes. (Sleeping ones don't count.)
335 * The amount of physical memory should be irrelevant. -gwr
336 */
337 #ifdef FIXED_NTABLES
338 #define NUM_A_TABLES 16
339 #define NUM_B_TABLES 32
340 #define NUM_C_TABLES 64
341 #else
342 unsigned int NUM_A_TABLES, NUM_B_TABLES, NUM_C_TABLES;
343 #endif /* FIXED_NTABLES */
344
345 /*
346 * This determines our total virtual mapping capacity.
347 * Yes, it is a FIXED value so we can pre-allocate.
348 */
349 #define NUM_USER_PTES (NUM_C_TABLES * MMU_C_TBL_SIZE)
350
351 /*
352 * The size of the Kernel Virtual Address Space (KVAS)
353 * for purposes of MMU table allocation is -KERNBASE
354 * (length from KERNBASE to 0xFFFFffff)
355 */
356 #define KVAS_SIZE (-KERNBASE)
357
358 /* Numbers of kernel MMU tables to support KVAS_SIZE. */
359 #define KERN_B_TABLES (KVAS_SIZE >> MMU_TIA_SHIFT)
360 #define KERN_C_TABLES (KVAS_SIZE >> MMU_TIB_SHIFT)
361 #define NUM_KERN_PTES (KVAS_SIZE >> MMU_TIC_SHIFT)
362
363 /*************************** MISCELANEOUS MACROS *************************/
364 #define pmap_lock(pmap) simple_lock(&pmap->pm_lock)
365 #define pmap_unlock(pmap) simple_unlock(&pmap->pm_lock)
366 #define pmap_add_ref(pmap) ++pmap->pm_refcount
367 #define pmap_del_ref(pmap) --pmap->pm_refcount
368 #define pmap_refcount(pmap) pmap->pm_refcount
369
370 void *pmap_bootstrap_alloc(int);
371
372 static INLINE void * mmu_ptov __P((vm_offset_t pa));
373 static INLINE vm_offset_t mmu_vtop __P((void * va));
374
375 #if 0
376 static INLINE a_tmgr_t * mmuA2tmgr __P((mmu_long_dte_t *));
377 #endif /* 0 */
378 static INLINE b_tmgr_t * mmuB2tmgr __P((mmu_short_dte_t *));
379 static INLINE c_tmgr_t * mmuC2tmgr __P((mmu_short_pte_t *));
380
381 static INLINE pv_t *pa2pv __P((vm_offset_t pa));
382 static INLINE int pteidx __P((mmu_short_pte_t *));
383 static INLINE pmap_t current_pmap __P((void));
384
385 /*
386 * We can always convert between virtual and physical addresses
387 * for anything in the range [KERNBASE ... avail_start] because
388 * that range is GUARANTEED to be mapped linearly.
389 * We rely heavily upon this feature!
390 */
391 static INLINE void *
392 mmu_ptov(pa)
393 vm_offset_t pa;
394 {
395 register vm_offset_t va;
396
397 va = (pa + KERNBASE);
398 #ifdef PMAP_DEBUG
399 if ((va < KERNBASE) || (va >= virtual_contig_end))
400 panic("mmu_ptov");
401 #endif
402 return ((void*)va);
403 }
404 static INLINE vm_offset_t
405 mmu_vtop(vva)
406 void *vva;
407 {
408 register vm_offset_t va;
409
410 va = (vm_offset_t)vva;
411 #ifdef PMAP_DEBUG
412 if ((va < KERNBASE) || (va >= virtual_contig_end))
413 panic("mmu_ptov");
414 #endif
415 return (va - KERNBASE);
416 }
417
418 /*
419 * These macros map MMU tables to their corresponding manager structures.
420 * They are needed quite often because many of the pointers in the pmap
421 * system reference MMU tables and not the structures that control them.
422 * There needs to be a way to find one when given the other and these
423 * macros do so by taking advantage of the memory layout described above.
424 * Here's a quick step through the first macro, mmuA2tmgr():
425 *
426 * 1) find the offset of the given MMU A table from the base of its table
427 * pool (table - mmuAbase).
428 * 2) convert this offset into a table index by dividing it by the
429 * size of one MMU 'A' table. (sizeof(mmu_long_dte_t) * MMU_A_TBL_SIZE)
430 * 3) use this index to select the corresponding 'A' table manager
431 * structure from the 'A' table manager pool (Atmgrbase[index]).
432 */
433 /* This function is not currently used. */
434 #if 0
435 static INLINE a_tmgr_t *
436 mmuA2tmgr(mmuAtbl)
437 mmu_long_dte_t *mmuAtbl;
438 {
439 register int idx;
440
441 /* Which table is this in? */
442 idx = (mmuAtbl - mmuAbase) / MMU_A_TBL_SIZE;
443 #ifdef PMAP_DEBUG
444 if ((idx < 0) || (idx >= NUM_A_TABLES))
445 panic("mmuA2tmgr");
446 #endif
447 return (&Atmgrbase[idx]);
448 }
449 #endif /* 0 */
450
451 static INLINE b_tmgr_t *
452 mmuB2tmgr(mmuBtbl)
453 mmu_short_dte_t *mmuBtbl;
454 {
455 register int idx;
456
457 /* Which table is this in? */
458 idx = (mmuBtbl - mmuBbase) / MMU_B_TBL_SIZE;
459 #ifdef PMAP_DEBUG
460 if ((idx < 0) || (idx >= NUM_B_TABLES))
461 panic("mmuB2tmgr");
462 #endif
463 return (&Btmgrbase[idx]);
464 }
465
466 /* mmuC2tmgr INTERNAL
467 **
468 * Given a pte known to belong to a C table, return the address of
469 * that table's management structure.
470 */
471 static INLINE c_tmgr_t *
472 mmuC2tmgr(mmuCtbl)
473 mmu_short_pte_t *mmuCtbl;
474 {
475 register int idx;
476
477 /* Which table is this in? */
478 idx = (mmuCtbl - mmuCbase) / MMU_C_TBL_SIZE;
479 #ifdef PMAP_DEBUG
480 if ((idx < 0) || (idx >= NUM_C_TABLES))
481 panic("mmuC2tmgr");
482 #endif
483 return (&Ctmgrbase[idx]);
484 }
485
486 /* This is now a function call below.
487 * #define pa2pv(pa) \
488 * (&pvbase[(unsigned long)\
489 * m68k_btop(pa)\
490 * ])
491 */
492
493 /* pa2pv INTERNAL
494 **
495 * Return the pv_list_head element which manages the given physical
496 * address.
497 */
498 static INLINE pv_t *
499 pa2pv(pa)
500 vm_offset_t pa;
501 {
502 register struct pmap_physmem_struct *bank;
503 register int idx;
504
505 bank = &avail_mem[0];
506 while (pa >= bank->pmem_end)
507 bank = bank->pmem_next;
508
509 pa -= bank->pmem_start;
510 idx = bank->pmem_pvbase + m68k_btop(pa);
511 #ifdef PMAP_DEBUG
512 if ((idx < 0) || (idx >= physmem))
513 panic("pa2pv");
514 #endif
515 return &pvbase[idx];
516 }
517
518 /* pteidx INTERNAL
519 **
520 * Return the index of the given PTE within the entire fixed table of
521 * PTEs.
522 */
523 static INLINE int
524 pteidx(pte)
525 mmu_short_pte_t *pte;
526 {
527 return (pte - kernCbase);
528 }
529
530 /*
531 * This just offers a place to put some debugging checks,
532 * and reduces the number of places "curproc" appears...
533 */
534 static INLINE pmap_t
535 current_pmap()
536 {
537 struct proc *p;
538 struct vmspace *vm;
539 struct vm_map *map;
540 pmap_t pmap;
541
542 p = curproc; /* XXX */
543 if (p == NULL)
544 pmap = &kernel_pmap;
545 else {
546 vm = p->p_vmspace;
547 map = &vm->vm_map;
548 pmap = vm_map_pmap(map);
549 }
550
551 return (pmap);
552 }
553
554
555 /*************************** FUNCTION DEFINITIONS ************************
556 * These appear here merely for the compiler to enforce type checking on *
557 * all function calls. *
558 *************************************************************************/
559
560 /** External functions
561 ** - functions used within this module but written elsewhere.
562 ** both of these functions are in locore.s
563 ** XXX - These functions were later replaced with their more cryptic
564 ** hp300 counterparts. They may be removed now.
565 **/
566 #if 0 /* deprecated mmu */
567 void mmu_seturp __P((vm_offset_t));
568 void mmu_flush __P((int, vm_offset_t));
569 void mmu_flusha __P((void));
570 #endif /* 0 */
571
572 /** Internal functions
573 ** Most functions used only within this module are defined in
574 ** pmap_pvt.h (why not here if used only here?)
575 **/
576 static void pmap_page_upload __P((void));
577
578 /** Interface functions
579 ** - functions required by the Mach VM Pmap interface, with MACHINE_CONTIG
580 ** defined.
581 **/
582 void pmap_pinit __P((pmap_t));
583 void pmap_release __P((pmap_t));
584
585 /********************************** CODE ********************************
586 * Functions that are called from other parts of the kernel are labeled *
587 * as 'INTERFACE' functions. Functions that are only called from *
588 * within the pmap module are labeled as 'INTERNAL' functions. *
589 * Functions that are internal, but are not (currently) used at all are *
590 * labeled 'INTERNAL_X'. *
591 ************************************************************************/
592
593 /* pmap_bootstrap INTERNAL
594 **
595 * Initializes the pmap system. Called at boot time from
596 * locore2.c:_vm_init()
597 *
598 * Reminder: having a pmap_bootstrap_alloc() and also having the VM
599 * system implement pmap_steal_memory() is redundant.
600 * Don't release this code without removing one or the other!
601 */
602 void
603 pmap_bootstrap(nextva)
604 vm_offset_t nextva;
605 {
606 struct physmemory *membank;
607 struct pmap_physmem_struct *pmap_membank;
608 vm_offset_t va, pa, eva;
609 int b, c, i, j; /* running table counts */
610 int size, resvmem;
611
612 /*
613 * This function is called by __bootstrap after it has
614 * determined the type of machine and made the appropriate
615 * patches to the ROM vectors (XXX- I don't quite know what I meant
616 * by that.) It allocates and sets up enough of the pmap system
617 * to manage the kernel's address space.
618 */
619
620 /*
621 * Determine the range of kernel virtual and physical
622 * space available. Note that we ABSOLUTELY DEPEND on
623 * the fact that the first bank of memory (4MB) is
624 * mapped linearly to KERNBASE (which we guaranteed in
625 * the first instructions of locore.s).
626 * That is plenty for our bootstrap work.
627 */
628 virtual_avail = m68k_round_page(nextva);
629 virtual_contig_end = KERNBASE + 0x400000; /* +4MB */
630 virtual_end = VM_MAX_KERNEL_ADDRESS;
631 /* Don't need avail_start til later. */
632
633 /* We may now call pmap_bootstrap_alloc(). */
634 bootstrap_alloc_enabled = TRUE;
635
636 /*
637 * This is a somewhat unwrapped loop to deal with
638 * copying the PROM's 'phsymem' banks into the pmap's
639 * banks. The following is always assumed:
640 * 1. There is always at least one bank of memory.
641 * 2. There is always a last bank of memory, and its
642 * pmem_next member must be set to NULL.
643 */
644 membank = romVectorPtr->v_physmemory;
645 pmap_membank = avail_mem;
646 total_phys_mem = 0;
647
648 for (;;) { /* break on !membank */
649 pmap_membank->pmem_start = membank->address;
650 pmap_membank->pmem_end = membank->address + membank->size;
651 total_phys_mem += membank->size;
652 membank = membank->next;
653 if (!membank)
654 break;
655 /* This silly syntax arises because pmap_membank
656 * is really a pre-allocated array, but it is put into
657 * use as a linked list.
658 */
659 pmap_membank->pmem_next = pmap_membank + 1;
660 pmap_membank = pmap_membank->pmem_next;
661 }
662 /* This is the last element. */
663 pmap_membank->pmem_next = NULL;
664
665 /*
666 * Note: total_phys_mem, physmem represent
667 * actual physical memory, including that
668 * reserved for the PROM monitor.
669 */
670 physmem = btoc(total_phys_mem);
671
672 /*
673 * Avail_end is set to the first byte of physical memory
674 * after the end of the last bank. We use this only to
675 * determine if a physical address is "managed" memory.
676 * This address range should be reduced to prevent the
677 * physical pages needed by the PROM monitor from being used
678 * in the VM system.
679 */
680 resvmem = total_phys_mem - *(romVectorPtr->memoryAvail);
681 resvmem = m68k_round_page(resvmem);
682 avail_end = pmap_membank->pmem_end - resvmem;
683
684 /*
685 * First allocate enough kernel MMU tables to map all
686 * of kernel virtual space from KERNBASE to 0xFFFFFFFF.
687 * Note: All must be aligned on 256 byte boundaries.
688 * Start with the level-A table (one of those).
689 */
690 size = sizeof(mmu_long_dte_t) * MMU_A_TBL_SIZE;
691 kernAbase = pmap_bootstrap_alloc(size);
692 bzero(kernAbase, size);
693
694 /* Now the level-B kernel tables... */
695 size = sizeof(mmu_short_dte_t) * MMU_B_TBL_SIZE * KERN_B_TABLES;
696 kernBbase = pmap_bootstrap_alloc(size);
697 bzero(kernBbase, size);
698
699 /* Now the level-C kernel tables... */
700 size = sizeof(mmu_short_pte_t) * MMU_C_TBL_SIZE * KERN_C_TABLES;
701 kernCbase = pmap_bootstrap_alloc(size);
702 bzero(kernCbase, size);
703 /*
704 * Note: In order for the PV system to work correctly, the kernel
705 * and user-level C tables must be allocated contiguously.
706 * Nothing should be allocated between here and the allocation of
707 * mmuCbase below. XXX: Should do this as one allocation, and
708 * then compute a pointer for mmuCbase instead of this...
709 *
710 * Allocate user MMU tables.
711 * These must be contiguous with the preceeding.
712 */
713
714 #ifndef FIXED_NTABLES
715 /*
716 * The number of user-level C tables that should be allocated is
717 * related to the size of physical memory. In general, there should
718 * be enough tables to map four times the amount of available RAM.
719 * The extra amount is needed because some table space is wasted by
720 * fragmentation.
721 */
722 NUM_C_TABLES = (total_phys_mem * 4) / (MMU_C_TBL_SIZE * MMU_PAGE_SIZE);
723 NUM_B_TABLES = NUM_C_TABLES / 2;
724 NUM_A_TABLES = NUM_B_TABLES / 2;
725 #endif /* !FIXED_NTABLES */
726
727 size = sizeof(mmu_short_pte_t) * MMU_C_TBL_SIZE * NUM_C_TABLES;
728 mmuCbase = pmap_bootstrap_alloc(size);
729
730 size = sizeof(mmu_short_dte_t) * MMU_B_TBL_SIZE * NUM_B_TABLES;
731 mmuBbase = pmap_bootstrap_alloc(size);
732
733 size = sizeof(mmu_long_dte_t) * MMU_A_TBL_SIZE * NUM_A_TABLES;
734 mmuAbase = pmap_bootstrap_alloc(size);
735
736 /*
737 * Fill in the never-changing part of the kernel tables.
738 * For simplicity, the kernel's mappings will be editable as a
739 * flat array of page table entries at kernCbase. The
740 * higher level 'A' and 'B' tables must be initialized to point
741 * to this lower one.
742 */
743 b = c = 0;
744
745 /*
746 * Invalidate all mappings below KERNBASE in the A table.
747 * This area has already been zeroed out, but it is good
748 * practice to explicitly show that we are interpreting
749 * it as a list of A table descriptors.
750 */
751 for (i = 0; i < MMU_TIA(KERNBASE); i++) {
752 kernAbase[i].addr.raw = 0;
753 }
754
755 /*
756 * Set up the kernel A and B tables so that they will reference the
757 * correct spots in the contiguous table of PTEs allocated for the
758 * kernel's virtual memory space.
759 */
760 for (i = MMU_TIA(KERNBASE); i < MMU_A_TBL_SIZE; i++) {
761 kernAbase[i].attr.raw =
762 MMU_LONG_DTE_LU | MMU_LONG_DTE_SUPV | MMU_DT_SHORT;
763 kernAbase[i].addr.raw = mmu_vtop(&kernBbase[b]);
764
765 for (j=0; j < MMU_B_TBL_SIZE; j++) {
766 kernBbase[b + j].attr.raw = mmu_vtop(&kernCbase[c])
767 | MMU_DT_SHORT;
768 c += MMU_C_TBL_SIZE;
769 }
770 b += MMU_B_TBL_SIZE;
771 }
772
773 /* XXX - Doing kernel_pmap a little further down. */
774
775 pmap_alloc_usermmu(); /* Allocate user MMU tables. */
776 pmap_alloc_usertmgr(); /* Allocate user MMU table managers.*/
777 pmap_alloc_pv(); /* Allocate physical->virtual map. */
778
779 /*
780 * We are now done with pmap_bootstrap_alloc(). Round up
781 * `virtual_avail' to the nearest page, and set the flag
782 * to prevent use of pmap_bootstrap_alloc() hereafter.
783 */
784 pmap_bootstrap_aalign(NBPG);
785 bootstrap_alloc_enabled = FALSE;
786
787 /*
788 * Now that we are done with pmap_bootstrap_alloc(), we
789 * must save the virtual and physical addresses of the
790 * end of the linearly mapped range, which are stored in
791 * virtual_contig_end and avail_start, respectively.
792 * These variables will never change after this point.
793 */
794 virtual_contig_end = virtual_avail;
795 avail_start = virtual_avail - KERNBASE;
796
797 /*
798 * `avail_next' is a running pointer used by pmap_next_page() to
799 * keep track of the next available physical page to be handed
800 * to the VM system during its initialization, in which it
801 * asks for physical pages, one at a time.
802 */
803 avail_next = avail_start;
804
805 /*
806 * Now allocate some virtual addresses, but not the physical pages
807 * behind them. Note that virtual_avail is already page-aligned.
808 *
809 * tmp_vpages[] is an array of two virtual pages used for temporary
810 * kernel mappings in the pmap module to facilitate various physical
811 * address-oritented operations.
812 */
813 tmp_vpages[0] = virtual_avail;
814 virtual_avail += NBPG;
815 tmp_vpages[1] = virtual_avail;
816 virtual_avail += NBPG;
817
818 /** Initialize the PV system **/
819 pmap_init_pv();
820
821 /*
822 * Fill in the kernel_pmap structure and kernel_crp.
823 */
824 kernAphys = mmu_vtop(kernAbase);
825 kernel_pmap.pm_a_tmgr = NULL;
826 kernel_pmap.pm_a_phys = kernAphys;
827 kernel_pmap.pm_refcount = 1; /* always in use */
828 simple_lock_init(&kernel_pmap.pm_lock);
829
830 kernel_crp.rp_attr = MMU_LONG_DTE_LU | MMU_DT_LONG;
831 kernel_crp.rp_addr = kernAphys;
832
833 /*
834 * Now pmap_enter_kernel() may be used safely and will be
835 * the main interface used hereafter to modify the kernel's
836 * virtual address space. Note that since we are still running
837 * under the PROM's address table, none of these table modifications
838 * actually take effect until pmap_takeover_mmu() is called.
839 *
840 * Note: Our tables do NOT have the PROM linear mappings!
841 * Only the mappings created here exist in our tables, so
842 * remember to map anything we expect to use.
843 */
844 va = (vm_offset_t) KERNBASE;
845 pa = 0;
846
847 /*
848 * The first page of the kernel virtual address space is the msgbuf
849 * page. The page attributes (data, non-cached) are set here, while
850 * the address is assigned to this global pointer in cpu_startup().
851 * It is non-cached, mostly due to paranoia.
852 */
853 pmap_enter_kernel(va, pa|PMAP_NC, VM_PROT_ALL);
854 va += NBPG; pa += NBPG;
855
856 /* Next page is used as the temporary stack. */
857 pmap_enter_kernel(va, pa, VM_PROT_ALL);
858 va += NBPG; pa += NBPG;
859
860 /*
861 * Map all of the kernel's text segment as read-only and cacheable.
862 * (Cacheable is implied by default). Unfortunately, the last bytes
863 * of kernel text and the first bytes of kernel data will often be
864 * sharing the same page. Therefore, the last page of kernel text
865 * has to be mapped as read/write, to accomodate the data.
866 */
867 eva = m68k_trunc_page((vm_offset_t)etext);
868 for (; va < eva; va += NBPG, pa += NBPG)
869 pmap_enter_kernel(va, pa, VM_PROT_READ|VM_PROT_EXECUTE);
870
871 /*
872 * Map all of the kernel's data as read/write and cacheable.
873 * This includes: data, BSS, symbols, and everything in the
874 * contiguous memory used by pmap_bootstrap_alloc()
875 */
876 for (; pa < avail_start; va += NBPG, pa += NBPG)
877 pmap_enter_kernel(va, pa, VM_PROT_READ|VM_PROT_WRITE);
878
879 /*
880 * At this point we are almost ready to take over the MMU. But first
881 * we must save the PROM's address space in our map, as we call its
882 * routines and make references to its data later in the kernel.
883 */
884 pmap_bootstrap_copyprom();
885 pmap_takeover_mmu();
886 pmap_bootstrap_setprom();
887
888 /* Notify the VM system of our page size. */
889 uvmexp.pagesize = NBPG;
890 uvm_setpagesize();
891
892 pmap_page_upload();
893 }
894
895
896 /* pmap_alloc_usermmu INTERNAL
897 **
898 * Called from pmap_bootstrap() to allocate MMU tables that will
899 * eventually be used for user mappings.
900 */
901 void
902 pmap_alloc_usermmu()
903 {
904 /* XXX: Moved into caller. */
905 }
906
907 /* pmap_alloc_pv INTERNAL
908 **
909 * Called from pmap_bootstrap() to allocate the physical
910 * to virtual mapping list. Each physical page of memory
911 * in the system has a corresponding element in this list.
912 */
913 void
914 pmap_alloc_pv()
915 {
916 int i;
917 unsigned int total_mem;
918
919 /*
920 * Allocate a pv_head structure for every page of physical
921 * memory that will be managed by the system. Since memory on
922 * the 3/80 is non-contiguous, we cannot arrive at a total page
923 * count by subtraction of the lowest available address from the
924 * highest, but rather we have to step through each memory
925 * bank and add the number of pages in each to the total.
926 *
927 * At this time we also initialize the offset of each bank's
928 * starting pv_head within the pv_head list so that the physical
929 * memory state routines (pmap_is_referenced(),
930 * pmap_is_modified(), et al.) can quickly find coresponding
931 * pv_heads in spite of the non-contiguity.
932 */
933 total_mem = 0;
934 for (i = 0; i < SUN3X_NPHYS_RAM_SEGS; i++) {
935 avail_mem[i].pmem_pvbase = m68k_btop(total_mem);
936 total_mem += avail_mem[i].pmem_end -
937 avail_mem[i].pmem_start;
938 if (avail_mem[i].pmem_next == NULL)
939 break;
940 }
941 pvbase = (pv_t *) pmap_bootstrap_alloc(sizeof(pv_t) *
942 m68k_btop(total_phys_mem));
943 }
944
945 /* pmap_alloc_usertmgr INTERNAL
946 **
947 * Called from pmap_bootstrap() to allocate the structures which
948 * facilitate management of user MMU tables. Each user MMU table
949 * in the system has one such structure associated with it.
950 */
951 void
952 pmap_alloc_usertmgr()
953 {
954 /* Allocate user MMU table managers */
955 /* It would be a lot simpler to just make these BSS, but */
956 /* we may want to change their size at boot time... -j */
957 Atmgrbase = (a_tmgr_t *) pmap_bootstrap_alloc(sizeof(a_tmgr_t)
958 * NUM_A_TABLES);
959 Btmgrbase = (b_tmgr_t *) pmap_bootstrap_alloc(sizeof(b_tmgr_t)
960 * NUM_B_TABLES);
961 Ctmgrbase = (c_tmgr_t *) pmap_bootstrap_alloc(sizeof(c_tmgr_t)
962 * NUM_C_TABLES);
963
964 /*
965 * Allocate PV list elements for the physical to virtual
966 * mapping system.
967 */
968 pvebase = (pv_elem_t *) pmap_bootstrap_alloc(
969 sizeof(pv_elem_t) * (NUM_USER_PTES + NUM_KERN_PTES));
970 }
971
972 /* pmap_bootstrap_copyprom() INTERNAL
973 **
974 * Copy the PROM mappings into our own tables. Note, we
975 * can use physical addresses until __bootstrap returns.
976 */
977 void
978 pmap_bootstrap_copyprom()
979 {
980 struct sunromvec *romp;
981 int *mon_ctbl;
982 mmu_short_pte_t *kpte;
983 int i, len;
984
985 romp = romVectorPtr;
986
987 /*
988 * Copy the mappings in SUN3X_MON_KDB_BASE...SUN3X_MONEND
989 * Note: mon_ctbl[0] maps SUN3X_MON_KDB_BASE
990 */
991 mon_ctbl = *romp->monptaddr;
992 i = m68k_btop(SUN3X_MON_KDB_BASE - KERNBASE);
993 kpte = &kernCbase[i];
994 len = m68k_btop(SUN3X_MONEND - SUN3X_MON_KDB_BASE);
995
996 for (i = 0; i < len; i++) {
997 kpte[i].attr.raw = mon_ctbl[i];
998 }
999
1000 /*
1001 * Copy the mappings at MON_DVMA_BASE (to the end).
1002 * Note, in here, mon_ctbl[0] maps MON_DVMA_BASE.
1003 * Actually, we only want the last page, which the
1004 * PROM has set up for use by the "ie" driver.
1005 * (The i82686 needs its SCP there.)
1006 * If we copy all the mappings, pmap_enter_kernel
1007 * may complain about finding valid PTEs that are
1008 * not recorded in our PV lists...
1009 */
1010 mon_ctbl = *romp->shadowpteaddr;
1011 i = m68k_btop(SUN3X_MON_DVMA_BASE - KERNBASE);
1012 kpte = &kernCbase[i];
1013 len = m68k_btop(SUN3X_MON_DVMA_SIZE);
1014 for (i = (len-1); i < len; i++) {
1015 kpte[i].attr.raw = mon_ctbl[i];
1016 }
1017 }
1018
1019 /* pmap_takeover_mmu INTERNAL
1020 **
1021 * Called from pmap_bootstrap() after it has copied enough of the
1022 * PROM mappings into the kernel map so that we can use our own
1023 * MMU table.
1024 */
1025 void
1026 pmap_takeover_mmu()
1027 {
1028
1029 loadcrp(&kernel_crp);
1030 }
1031
1032 /* pmap_bootstrap_setprom() INTERNAL
1033 **
1034 * Set the PROM mappings so it can see kernel space.
1035 * Note that physical addresses are used here, which
1036 * we can get away with because this runs with the
1037 * low 1GB set for transparent translation.
1038 */
1039 void
1040 pmap_bootstrap_setprom()
1041 {
1042 mmu_long_dte_t *mon_dte;
1043 extern struct mmu_rootptr mon_crp;
1044 int i;
1045
1046 mon_dte = (mmu_long_dte_t *) mon_crp.rp_addr;
1047 for (i = MMU_TIA(KERNBASE); i < MMU_TIA(KERN_END); i++) {
1048 mon_dte[i].attr.raw = kernAbase[i].attr.raw;
1049 mon_dte[i].addr.raw = kernAbase[i].addr.raw;
1050 }
1051 }
1052
1053
1054 /* pmap_init INTERFACE
1055 **
1056 * Called at the end of vm_init() to set up the pmap system to go
1057 * into full time operation. All initialization of kernel_pmap
1058 * should be already done by now, so this should just do things
1059 * needed for user-level pmaps to work.
1060 */
1061 void
1062 pmap_init()
1063 {
1064 /** Initialize the manager pools **/
1065 TAILQ_INIT(&a_pool);
1066 TAILQ_INIT(&b_pool);
1067 TAILQ_INIT(&c_pool);
1068
1069 /**************************************************************
1070 * Initialize all tmgr structures and MMU tables they manage. *
1071 **************************************************************/
1072 /** Initialize A tables **/
1073 pmap_init_a_tables();
1074 /** Initialize B tables **/
1075 pmap_init_b_tables();
1076 /** Initialize C tables **/
1077 pmap_init_c_tables();
1078
1079 /** Initialize the pmap pools **/
1080 pool_init(&pmap_pmap_pool, sizeof(struct pmap), 0, 0, 0, "pmappl",
1081 0, pool_page_alloc_nointr, pool_page_free_nointr, M_VMPMAP);
1082 }
1083
1084 /* pmap_init_a_tables() INTERNAL
1085 **
1086 * Initializes all A managers, their MMU A tables, and inserts
1087 * them into the A manager pool for use by the system.
1088 */
1089 void
1090 pmap_init_a_tables()
1091 {
1092 int i;
1093 a_tmgr_t *a_tbl;
1094
1095 for (i=0; i < NUM_A_TABLES; i++) {
1096 /* Select the next available A manager from the pool */
1097 a_tbl = &Atmgrbase[i];
1098
1099 /*
1100 * Clear its parent entry. Set its wired and valid
1101 * entry count to zero.
1102 */
1103 a_tbl->at_parent = NULL;
1104 a_tbl->at_wcnt = a_tbl->at_ecnt = 0;
1105
1106 /* Assign it the next available MMU A table from the pool */
1107 a_tbl->at_dtbl = &mmuAbase[i * MMU_A_TBL_SIZE];
1108
1109 /*
1110 * Initialize the MMU A table with the table in the `proc0',
1111 * or kernel, mapping. This ensures that every process has
1112 * the kernel mapped in the top part of its address space.
1113 */
1114 bcopy(kernAbase, a_tbl->at_dtbl, MMU_A_TBL_SIZE *
1115 sizeof(mmu_long_dte_t));
1116
1117 /*
1118 * Finally, insert the manager into the A pool,
1119 * making it ready to be used by the system.
1120 */
1121 TAILQ_INSERT_TAIL(&a_pool, a_tbl, at_link);
1122 }
1123 }
1124
1125 /* pmap_init_b_tables() INTERNAL
1126 **
1127 * Initializes all B table managers, their MMU B tables, and
1128 * inserts them into the B manager pool for use by the system.
1129 */
1130 void
1131 pmap_init_b_tables()
1132 {
1133 int i,j;
1134 b_tmgr_t *b_tbl;
1135
1136 for (i=0; i < NUM_B_TABLES; i++) {
1137 /* Select the next available B manager from the pool */
1138 b_tbl = &Btmgrbase[i];
1139
1140 b_tbl->bt_parent = NULL; /* clear its parent, */
1141 b_tbl->bt_pidx = 0; /* parent index, */
1142 b_tbl->bt_wcnt = 0; /* wired entry count, */
1143 b_tbl->bt_ecnt = 0; /* valid entry count. */
1144
1145 /* Assign it the next available MMU B table from the pool */
1146 b_tbl->bt_dtbl = &mmuBbase[i * MMU_B_TBL_SIZE];
1147
1148 /* Invalidate every descriptor in the table */
1149 for (j=0; j < MMU_B_TBL_SIZE; j++)
1150 b_tbl->bt_dtbl[j].attr.raw = MMU_DT_INVALID;
1151
1152 /* Insert the manager into the B pool */
1153 TAILQ_INSERT_TAIL(&b_pool, b_tbl, bt_link);
1154 }
1155 }
1156
1157 /* pmap_init_c_tables() INTERNAL
1158 **
1159 * Initializes all C table managers, their MMU C tables, and
1160 * inserts them into the C manager pool for use by the system.
1161 */
1162 void
1163 pmap_init_c_tables()
1164 {
1165 int i,j;
1166 c_tmgr_t *c_tbl;
1167
1168 for (i=0; i < NUM_C_TABLES; i++) {
1169 /* Select the next available C manager from the pool */
1170 c_tbl = &Ctmgrbase[i];
1171
1172 c_tbl->ct_parent = NULL; /* clear its parent, */
1173 c_tbl->ct_pidx = 0; /* parent index, */
1174 c_tbl->ct_wcnt = 0; /* wired entry count, */
1175 c_tbl->ct_ecnt = 0; /* valid entry count, */
1176 c_tbl->ct_pmap = NULL; /* parent pmap, */
1177 c_tbl->ct_va = 0; /* base of managed range */
1178
1179 /* Assign it the next available MMU C table from the pool */
1180 c_tbl->ct_dtbl = &mmuCbase[i * MMU_C_TBL_SIZE];
1181
1182 for (j=0; j < MMU_C_TBL_SIZE; j++)
1183 c_tbl->ct_dtbl[j].attr.raw = MMU_DT_INVALID;
1184
1185 TAILQ_INSERT_TAIL(&c_pool, c_tbl, ct_link);
1186 }
1187 }
1188
1189 /* pmap_init_pv() INTERNAL
1190 **
1191 * Initializes the Physical to Virtual mapping system.
1192 */
1193 void
1194 pmap_init_pv()
1195 {
1196 int i;
1197
1198 /* Initialize every PV head. */
1199 for (i = 0; i < m68k_btop(total_phys_mem); i++) {
1200 pvbase[i].pv_idx = PVE_EOL; /* Indicate no mappings */
1201 pvbase[i].pv_flags = 0; /* Zero out page flags */
1202 }
1203
1204 pv_initialized = TRUE;
1205 }
1206
1207 /* get_a_table INTERNAL
1208 **
1209 * Retrieve and return a level A table for use in a user map.
1210 */
1211 a_tmgr_t *
1212 get_a_table()
1213 {
1214 a_tmgr_t *tbl;
1215 pmap_t pmap;
1216
1217 /* Get the top A table in the pool */
1218 tbl = a_pool.tqh_first;
1219 if (tbl == NULL) {
1220 /*
1221 * XXX - Instead of panicing here and in other get_x_table
1222 * functions, we do have the option of sleeping on the head of
1223 * the table pool. Any function which updates the table pool
1224 * would then issue a wakeup() on the head, thus waking up any
1225 * processes waiting for a table.
1226 *
1227 * Actually, the place to sleep would be when some process
1228 * asks for a "wired" mapping that would run us short of
1229 * mapping resources. This design DEPENDS on always having
1230 * some mapping resources in the pool for stealing, so we
1231 * must make sure we NEVER let the pool become empty. -gwr
1232 */
1233 panic("get_a_table: out of A tables.");
1234 }
1235
1236 TAILQ_REMOVE(&a_pool, tbl, at_link);
1237 /*
1238 * If the table has a non-null parent pointer then it is in use.
1239 * Forcibly abduct it from its parent and clear its entries.
1240 * No re-entrancy worries here. This table would not be in the
1241 * table pool unless it was available for use.
1242 *
1243 * Note that the second argument to free_a_table() is FALSE. This
1244 * indicates that the table should not be relinked into the A table
1245 * pool. That is a job for the function that called us.
1246 */
1247 if (tbl->at_parent) {
1248 pmap = tbl->at_parent;
1249 free_a_table(tbl, FALSE);
1250 pmap->pm_a_tmgr = NULL;
1251 pmap->pm_a_phys = kernAphys;
1252 }
1253 #ifdef NON_REENTRANT
1254 /*
1255 * If the table isn't to be wired down, re-insert it at the
1256 * end of the pool.
1257 */
1258 if (!wired)
1259 /*
1260 * Quandary - XXX
1261 * Would it be better to let the calling function insert this
1262 * table into the queue? By inserting it here, we are allowing
1263 * it to be stolen immediately. The calling function is
1264 * probably not expecting to use a table that it is not
1265 * assured full control of.
1266 * Answer - In the intrest of re-entrancy, it is best to let
1267 * the calling function determine when a table is available
1268 * for use. Therefore this code block is not used.
1269 */
1270 TAILQ_INSERT_TAIL(&a_pool, tbl, at_link);
1271 #endif /* NON_REENTRANT */
1272 return tbl;
1273 }
1274
1275 /* get_b_table INTERNAL
1276 **
1277 * Return a level B table for use.
1278 */
1279 b_tmgr_t *
1280 get_b_table()
1281 {
1282 b_tmgr_t *tbl;
1283
1284 /* See 'get_a_table' for comments. */
1285 tbl = b_pool.tqh_first;
1286 if (tbl == NULL)
1287 panic("get_b_table: out of B tables.");
1288 TAILQ_REMOVE(&b_pool, tbl, bt_link);
1289 if (tbl->bt_parent) {
1290 tbl->bt_parent->at_dtbl[tbl->bt_pidx].attr.raw = MMU_DT_INVALID;
1291 tbl->bt_parent->at_ecnt--;
1292 free_b_table(tbl, FALSE);
1293 }
1294 #ifdef NON_REENTRANT
1295 if (!wired)
1296 /* XXX see quandary in get_b_table */
1297 /* XXX start lock */
1298 TAILQ_INSERT_TAIL(&b_pool, tbl, bt_link);
1299 /* XXX end lock */
1300 #endif /* NON_REENTRANT */
1301 return tbl;
1302 }
1303
1304 /* get_c_table INTERNAL
1305 **
1306 * Return a level C table for use.
1307 */
1308 c_tmgr_t *
1309 get_c_table()
1310 {
1311 c_tmgr_t *tbl;
1312
1313 /* See 'get_a_table' for comments */
1314 tbl = c_pool.tqh_first;
1315 if (tbl == NULL)
1316 panic("get_c_table: out of C tables.");
1317 TAILQ_REMOVE(&c_pool, tbl, ct_link);
1318 if (tbl->ct_parent) {
1319 tbl->ct_parent->bt_dtbl[tbl->ct_pidx].attr.raw = MMU_DT_INVALID;
1320 tbl->ct_parent->bt_ecnt--;
1321 free_c_table(tbl, FALSE);
1322 }
1323 #ifdef NON_REENTRANT
1324 if (!wired)
1325 /* XXX See quandary in get_a_table */
1326 /* XXX start lock */
1327 TAILQ_INSERT_TAIL(&c_pool, tbl, c_link);
1328 /* XXX end lock */
1329 #endif /* NON_REENTRANT */
1330
1331 return tbl;
1332 }
1333
1334 /*
1335 * The following 'free_table' and 'steal_table' functions are called to
1336 * detach tables from their current obligations (parents and children) and
1337 * prepare them for reuse in another mapping.
1338 *
1339 * Free_table is used when the calling function will handle the fate
1340 * of the parent table, such as returning it to the free pool when it has
1341 * no valid entries. Functions that do not want to handle this should
1342 * call steal_table, in which the parent table's descriptors and entry
1343 * count are automatically modified when this table is removed.
1344 */
1345
1346 /* free_a_table INTERNAL
1347 **
1348 * Unmaps the given A table and all child tables from their current
1349 * mappings. Returns the number of pages that were invalidated.
1350 * If 'relink' is true, the function will return the table to the head
1351 * of the available table pool.
1352 *
1353 * Cache note: The MC68851 will automatically flush all
1354 * descriptors derived from a given A table from its
1355 * Automatic Translation Cache (ATC) if we issue a
1356 * 'PFLUSHR' instruction with the base address of the
1357 * table. This function should do, and does so.
1358 * Note note: We are using an MC68030 - there is no
1359 * PFLUSHR.
1360 */
1361 int
1362 free_a_table(a_tbl, relink)
1363 a_tmgr_t *a_tbl;
1364 boolean_t relink;
1365 {
1366 int i, removed_cnt;
1367 mmu_long_dte_t *dte;
1368 mmu_short_dte_t *dtbl;
1369 b_tmgr_t *tmgr;
1370
1371 /*
1372 * Flush the ATC cache of all cached descriptors derived
1373 * from this table.
1374 * Sun3x does not use 68851's cached table feature
1375 * flush_atc_crp(mmu_vtop(a_tbl->dte));
1376 */
1377
1378 /*
1379 * Remove any pending cache flushes that were designated
1380 * for the pmap this A table belongs to.
1381 * a_tbl->parent->atc_flushq[0] = 0;
1382 * Not implemented in sun3x.
1383 */
1384
1385 /*
1386 * All A tables in the system should retain a map for the
1387 * kernel. If the table contains any valid descriptors
1388 * (other than those for the kernel area), invalidate them all,
1389 * stopping short of the kernel's entries.
1390 */
1391 removed_cnt = 0;
1392 if (a_tbl->at_ecnt) {
1393 dte = a_tbl->at_dtbl;
1394 for (i=0; i < MMU_TIA(KERNBASE); i++) {
1395 /*
1396 * If a table entry points to a valid B table, free
1397 * it and its children.
1398 */
1399 if (MMU_VALID_DT(dte[i])) {
1400 /*
1401 * The following block does several things,
1402 * from innermost expression to the
1403 * outermost:
1404 * 1) It extracts the base (cc 1996)
1405 * address of the B table pointed
1406 * to in the A table entry dte[i].
1407 * 2) It converts this base address into
1408 * the virtual address it can be
1409 * accessed with. (all MMU tables point
1410 * to physical addresses.)
1411 * 3) It finds the corresponding manager
1412 * structure which manages this MMU table.
1413 * 4) It frees the manager structure.
1414 * (This frees the MMU table and all
1415 * child tables. See 'free_b_table' for
1416 * details.)
1417 */
1418 dtbl = mmu_ptov(dte[i].addr.raw);
1419 tmgr = mmuB2tmgr(dtbl);
1420 removed_cnt += free_b_table(tmgr, TRUE);
1421 dte[i].attr.raw = MMU_DT_INVALID;
1422 }
1423 }
1424 a_tbl->at_ecnt = 0;
1425 }
1426 if (relink) {
1427 a_tbl->at_parent = NULL;
1428 TAILQ_REMOVE(&a_pool, a_tbl, at_link);
1429 TAILQ_INSERT_HEAD(&a_pool, a_tbl, at_link);
1430 }
1431 return removed_cnt;
1432 }
1433
1434 /* free_b_table INTERNAL
1435 **
1436 * Unmaps the given B table and all its children from their current
1437 * mappings. Returns the number of pages that were invalidated.
1438 * (For comments, see 'free_a_table()').
1439 */
1440 int
1441 free_b_table(b_tbl, relink)
1442 b_tmgr_t *b_tbl;
1443 boolean_t relink;
1444 {
1445 int i, removed_cnt;
1446 mmu_short_dte_t *dte;
1447 mmu_short_pte_t *dtbl;
1448 c_tmgr_t *tmgr;
1449
1450 removed_cnt = 0;
1451 if (b_tbl->bt_ecnt) {
1452 dte = b_tbl->bt_dtbl;
1453 for (i=0; i < MMU_B_TBL_SIZE; i++) {
1454 if (MMU_VALID_DT(dte[i])) {
1455 dtbl = mmu_ptov(MMU_DTE_PA(dte[i]));
1456 tmgr = mmuC2tmgr(dtbl);
1457 removed_cnt += free_c_table(tmgr, TRUE);
1458 dte[i].attr.raw = MMU_DT_INVALID;
1459 }
1460 }
1461 b_tbl->bt_ecnt = 0;
1462 }
1463
1464 if (relink) {
1465 b_tbl->bt_parent = NULL;
1466 TAILQ_REMOVE(&b_pool, b_tbl, bt_link);
1467 TAILQ_INSERT_HEAD(&b_pool, b_tbl, bt_link);
1468 }
1469 return removed_cnt;
1470 }
1471
1472 /* free_c_table INTERNAL
1473 **
1474 * Unmaps the given C table from use and returns it to the pool for
1475 * re-use. Returns the number of pages that were invalidated.
1476 *
1477 * This function preserves any physical page modification information
1478 * contained in the page descriptors within the C table by calling
1479 * 'pmap_remove_pte().'
1480 */
1481 int
1482 free_c_table(c_tbl, relink)
1483 c_tmgr_t *c_tbl;
1484 boolean_t relink;
1485 {
1486 int i, removed_cnt;
1487
1488 removed_cnt = 0;
1489 if (c_tbl->ct_ecnt) {
1490 for (i=0; i < MMU_C_TBL_SIZE; i++) {
1491 if (MMU_VALID_DT(c_tbl->ct_dtbl[i])) {
1492 pmap_remove_pte(&c_tbl->ct_dtbl[i]);
1493 removed_cnt++;
1494 }
1495 }
1496 c_tbl->ct_ecnt = 0;
1497 }
1498
1499 if (relink) {
1500 c_tbl->ct_parent = NULL;
1501 TAILQ_REMOVE(&c_pool, c_tbl, ct_link);
1502 TAILQ_INSERT_HEAD(&c_pool, c_tbl, ct_link);
1503 }
1504 return removed_cnt;
1505 }
1506
1507 #if 0
1508 /* free_c_table_novalid INTERNAL
1509 **
1510 * Frees the given C table manager without checking to see whether
1511 * or not it contains any valid page descriptors as it is assumed
1512 * that it does not.
1513 */
1514 void
1515 free_c_table_novalid(c_tbl)
1516 c_tmgr_t *c_tbl;
1517 {
1518 TAILQ_REMOVE(&c_pool, c_tbl, ct_link);
1519 TAILQ_INSERT_HEAD(&c_pool, c_tbl, ct_link);
1520 c_tbl->ct_parent->bt_dtbl[c_tbl->ct_pidx].attr.raw = MMU_DT_INVALID;
1521 c_tbl->ct_parent->bt_ecnt--;
1522 /*
1523 * XXX - Should call equiv. of 'free_b_table_novalid' here if
1524 * we just removed the last entry of the parent B table.
1525 * But I want to insure that this will not endanger pmap_enter()
1526 * with sudden removal of tables it is working with.
1527 *
1528 * We should probably add another field to each table, indicating
1529 * whether or not it is 'locked', ie. in the process of being
1530 * modified.
1531 */
1532 c_tbl->ct_parent = NULL;
1533 }
1534 #endif
1535
1536 /* pmap_remove_pte INTERNAL
1537 **
1538 * Unmap the given pte and preserve any page modification
1539 * information by transfering it to the pv head of the
1540 * physical page it maps to. This function does not update
1541 * any reference counts because it is assumed that the calling
1542 * function will do so.
1543 */
1544 void
1545 pmap_remove_pte(pte)
1546 mmu_short_pte_t *pte;
1547 {
1548 u_short pv_idx, targ_idx;
1549 int s;
1550 vm_offset_t pa;
1551 pv_t *pv;
1552
1553 pa = MMU_PTE_PA(*pte);
1554 if (is_managed(pa)) {
1555 pv = pa2pv(pa);
1556 targ_idx = pteidx(pte); /* Index of PTE being removed */
1557
1558 /*
1559 * If the PTE being removed is the first (or only) PTE in
1560 * the list of PTEs currently mapped to this page, remove the
1561 * PTE by changing the index found on the PV head. Otherwise
1562 * a linear search through the list will have to be executed
1563 * in order to find the PVE which points to the PTE being
1564 * removed, so that it may be modified to point to its new
1565 * neighbor.
1566 */
1567 s = splvm();
1568 pv_idx = pv->pv_idx; /* Index of first PTE in PV list */
1569 if (pv_idx == targ_idx) {
1570 pv->pv_idx = pvebase[targ_idx].pve_next;
1571 } else {
1572 /*
1573 * Find the PV element pointing to the target
1574 * element. Note: may have pv_idx==PVE_EOL
1575 */
1576 for (;;) {
1577 if (pv_idx == PVE_EOL) {
1578 #ifdef PMAP_DEBUG
1579 printf("pmap_remove_pte: PVE_EOL\n");
1580 Debugger();
1581 #endif
1582 goto pv_not_found;
1583 }
1584 if (pvebase[pv_idx].pve_next == targ_idx)
1585 break;
1586 pv_idx = pvebase[pv_idx].pve_next;
1587 }
1588 /*
1589 * At this point, pv_idx is the index of the PV
1590 * element just before the target element in the list.
1591 * Unlink the target.
1592 */
1593 pvebase[pv_idx].pve_next = pvebase[targ_idx].pve_next;
1594 pv_not_found:
1595 }
1596 /*
1597 * Save the mod/ref bits of the pte by simply
1598 * ORing the entire pte onto the pv_flags member
1599 * of the pv structure.
1600 * There is no need to use a separate bit pattern
1601 * for usage information on the pv head than that
1602 * which is used on the MMU ptes.
1603 */
1604 pv->pv_flags |= (u_short) pte->attr.raw;
1605 splx(s);
1606 }
1607
1608 pte->attr.raw = MMU_DT_INVALID;
1609 }
1610
1611 /* pmap_stroll INTERNAL
1612 **
1613 * Retrieve the addresses of all table managers involved in the mapping of
1614 * the given virtual address. If the table walk completed sucessfully,
1615 * return TRUE. If it was only partially sucessful, return FALSE.
1616 * The table walk performed by this function is important to many other
1617 * functions in this module.
1618 *
1619 * Note: This function ought to be easier to read.
1620 */
1621 boolean_t
1622 pmap_stroll(pmap, va, a_tbl, b_tbl, c_tbl, pte, a_idx, b_idx, pte_idx)
1623 pmap_t pmap;
1624 vm_offset_t va;
1625 a_tmgr_t **a_tbl;
1626 b_tmgr_t **b_tbl;
1627 c_tmgr_t **c_tbl;
1628 mmu_short_pte_t **pte;
1629 int *a_idx, *b_idx, *pte_idx;
1630 {
1631 mmu_long_dte_t *a_dte; /* A: long descriptor table */
1632 mmu_short_dte_t *b_dte; /* B: short descriptor table */
1633
1634 if (pmap == pmap_kernel())
1635 return FALSE;
1636
1637 /* Does the given pmap have its own A table? */
1638 *a_tbl = pmap->pm_a_tmgr;
1639 if (*a_tbl == NULL)
1640 return FALSE; /* No. Return unknown. */
1641 /* Does the A table have a valid B table
1642 * under the corresponding table entry?
1643 */
1644 *a_idx = MMU_TIA(va);
1645 a_dte = &((*a_tbl)->at_dtbl[*a_idx]);
1646 if (!MMU_VALID_DT(*a_dte))
1647 return FALSE; /* No. Return unknown. */
1648 /* Yes. Extract B table from the A table. */
1649 *b_tbl = mmuB2tmgr(mmu_ptov(a_dte->addr.raw));
1650 /* Does the B table have a valid C table
1651 * under the corresponding table entry?
1652 */
1653 *b_idx = MMU_TIB(va);
1654 b_dte = &((*b_tbl)->bt_dtbl[*b_idx]);
1655 if (!MMU_VALID_DT(*b_dte))
1656 return FALSE; /* No. Return unknown. */
1657 /* Yes. Extract C table from the B table. */
1658 *c_tbl = mmuC2tmgr(mmu_ptov(MMU_DTE_PA(*b_dte)));
1659 *pte_idx = MMU_TIC(va);
1660 *pte = &((*c_tbl)->ct_dtbl[*pte_idx]);
1661
1662 return TRUE;
1663 }
1664
1665 /* pmap_enter INTERFACE
1666 **
1667 * Called by the kernel to map a virtual address
1668 * to a physical address in the given process map.
1669 *
1670 * Note: this function should apply an exclusive lock
1671 * on the pmap system for its duration. (it certainly
1672 * would save my hair!!)
1673 * This function ought to be easier to read.
1674 */
1675 int
1676 pmap_enter(pmap, va, pa, prot, flags)
1677 pmap_t pmap;
1678 vm_offset_t va;
1679 vm_offset_t pa;
1680 vm_prot_t prot;
1681 int flags;
1682 {
1683 boolean_t insert, managed; /* Marks the need for PV insertion.*/
1684 u_short nidx; /* PV list index */
1685 int s; /* Used for splvm()/splx() */
1686 int mapflags; /* Flags for the mapping (see NOTE1) */
1687 u_int a_idx, b_idx, pte_idx; /* table indices */
1688 a_tmgr_t *a_tbl; /* A: long descriptor table manager */
1689 b_tmgr_t *b_tbl; /* B: short descriptor table manager */
1690 c_tmgr_t *c_tbl; /* C: short page table manager */
1691 mmu_long_dte_t *a_dte; /* A: long descriptor table */
1692 mmu_short_dte_t *b_dte; /* B: short descriptor table */
1693 mmu_short_pte_t *c_pte; /* C: short page descriptor table */
1694 pv_t *pv; /* pv list head */
1695 boolean_t wired; /* is the mapping to be wired? */
1696 enum {NONE, NEWA, NEWB, NEWC} llevel; /* used at end */
1697
1698 if (pmap == NULL)
1699 return 0;
1700 if (pmap == pmap_kernel()) {
1701 pmap_enter_kernel(va, pa, prot);
1702 return 0;
1703 }
1704
1705 /*
1706 * Determine if the mapping should be wired.
1707 */
1708 wired = ((flags & PMAP_WIRED) != 0);
1709
1710 /*
1711 * NOTE1:
1712 *
1713 * On November 13, 1999, someone changed the pmap_enter() API such
1714 * that it now accepts a 'flags' argument. This new argument
1715 * contains bit-flags for the architecture-independent (UVM) system to
1716 * use in signalling certain mapping requirements to the architecture-
1717 * dependent (pmap) system. The argument it replaces, 'wired', is now
1718 * one of the flags within it.
1719 *
1720 * In addition to flags signaled by the architecture-independent
1721 * system, parts of the architecture-dependent section of the sun3x
1722 * kernel pass their own flags in the lower, unused bits of the
1723 * physical address supplied to this function. These flags are
1724 * extracted and stored in the temporary variable 'mapflags'.
1725 *
1726 * Extract sun3x specific flags from the physical address.
1727 */
1728 mapflags = (pa & ~MMU_PAGE_MASK);
1729 pa &= MMU_PAGE_MASK;
1730
1731 /*
1732 * Determine if the physical address being mapped is on-board RAM.
1733 * Any other area of the address space is likely to belong to a
1734 * device and hence it would be disasterous to cache its contents.
1735 */
1736 if ((managed = is_managed(pa)) == FALSE)
1737 mapflags |= PMAP_NC;
1738
1739 /*
1740 * For user mappings we walk along the MMU tables of the given
1741 * pmap, reaching a PTE which describes the virtual page being
1742 * mapped or changed. If any level of the walk ends in an invalid
1743 * entry, a table must be allocated and the entry must be updated
1744 * to point to it.
1745 * There is a bit of confusion as to whether this code must be
1746 * re-entrant. For now we will assume it is. To support
1747 * re-entrancy we must unlink tables from the table pool before
1748 * we assume we may use them. Tables are re-linked into the pool
1749 * when we are finished with them at the end of the function.
1750 * But I don't feel like doing that until we have proof that this
1751 * needs to be re-entrant.
1752 * 'llevel' records which tables need to be relinked.
1753 */
1754 llevel = NONE;
1755
1756 /*
1757 * Step 1 - Retrieve the A table from the pmap. If it has no
1758 * A table, allocate a new one from the available pool.
1759 */
1760
1761 a_tbl = pmap->pm_a_tmgr;
1762 if (a_tbl == NULL) {
1763 /*
1764 * This pmap does not currently have an A table. Allocate
1765 * a new one.
1766 */
1767 a_tbl = get_a_table();
1768 a_tbl->at_parent = pmap;
1769
1770 /*
1771 * Assign this new A table to the pmap, and calculate its
1772 * physical address so that loadcrp() can be used to make
1773 * the table active.
1774 */
1775 pmap->pm_a_tmgr = a_tbl;
1776 pmap->pm_a_phys = mmu_vtop(a_tbl->at_dtbl);
1777
1778 /*
1779 * If the process receiving a new A table is the current
1780 * process, we are responsible for setting the MMU so that
1781 * it becomes the current address space. This only adds
1782 * new mappings, so no need to flush anything.
1783 */
1784 if (pmap == current_pmap()) {
1785 kernel_crp.rp_addr = pmap->pm_a_phys;
1786 loadcrp(&kernel_crp);
1787 }
1788
1789 if (!wired)
1790 llevel = NEWA;
1791 } else {
1792 /*
1793 * Use the A table already allocated for this pmap.
1794 * Unlink it from the A table pool if necessary.
1795 */
1796 if (wired && !a_tbl->at_wcnt)
1797 TAILQ_REMOVE(&a_pool, a_tbl, at_link);
1798 }
1799
1800 /*
1801 * Step 2 - Walk into the B table. If there is no valid B table,
1802 * allocate one.
1803 */
1804
1805 a_idx = MMU_TIA(va); /* Calculate the TIA of the VA. */
1806 a_dte = &a_tbl->at_dtbl[a_idx]; /* Retrieve descriptor from table */
1807 if (MMU_VALID_DT(*a_dte)) { /* Is the descriptor valid? */
1808 /* The descriptor is valid. Use the B table it points to. */
1809 /*************************************
1810 * a_idx *
1811 * v *
1812 * a_tbl -> +-+-+-+-+-+-+-+-+-+-+-+- *
1813 * | | | | | | | | | | | | *
1814 * +-+-+-+-+-+-+-+-+-+-+-+- *
1815 * | *
1816 * \- b_tbl -> +-+- *
1817 * | | *
1818 * +-+- *
1819 *************************************/
1820 b_dte = mmu_ptov(a_dte->addr.raw);
1821 b_tbl = mmuB2tmgr(b_dte);
1822
1823 /*
1824 * If the requested mapping must be wired, but this table
1825 * being used to map it is not, the table must be removed
1826 * from the available pool and its wired entry count
1827 * incremented.
1828 */
1829 if (wired && !b_tbl->bt_wcnt) {
1830 TAILQ_REMOVE(&b_pool, b_tbl, bt_link);
1831 a_tbl->at_wcnt++;
1832 }
1833 } else {
1834 /* The descriptor is invalid. Allocate a new B table. */
1835 b_tbl = get_b_table();
1836
1837 /* Point the parent A table descriptor to this new B table. */
1838 a_dte->addr.raw = mmu_vtop(b_tbl->bt_dtbl);
1839 a_dte->attr.raw = MMU_LONG_DTE_LU | MMU_DT_SHORT;
1840 a_tbl->at_ecnt++; /* Update parent's valid entry count */
1841
1842 /* Create the necessary back references to the parent table */
1843 b_tbl->bt_parent = a_tbl;
1844 b_tbl->bt_pidx = a_idx;
1845
1846 /*
1847 * If this table is to be wired, make sure the parent A table
1848 * wired count is updated to reflect that it has another wired
1849 * entry.
1850 */
1851 if (wired)
1852 a_tbl->at_wcnt++;
1853 else if (llevel == NONE)
1854 llevel = NEWB;
1855 }
1856
1857 /*
1858 * Step 3 - Walk into the C table, if there is no valid C table,
1859 * allocate one.
1860 */
1861
1862 b_idx = MMU_TIB(va); /* Calculate the TIB of the VA */
1863 b_dte = &b_tbl->bt_dtbl[b_idx]; /* Retrieve descriptor from table */
1864 if (MMU_VALID_DT(*b_dte)) { /* Is the descriptor valid? */
1865 /* The descriptor is valid. Use the C table it points to. */
1866 /**************************************
1867 * c_idx *
1868 * | v *
1869 * \- b_tbl -> +-+-+-+-+-+-+-+-+-+-+- *
1870 * | | | | | | | | | | | *
1871 * +-+-+-+-+-+-+-+-+-+-+- *
1872 * | *
1873 * \- c_tbl -> +-+-- *
1874 * | | | *
1875 * +-+-- *
1876 **************************************/
1877 c_pte = mmu_ptov(MMU_PTE_PA(*b_dte));
1878 c_tbl = mmuC2tmgr(c_pte);
1879
1880 /* If mapping is wired and table is not */
1881 if (wired && !c_tbl->ct_wcnt) {
1882 TAILQ_REMOVE(&c_pool, c_tbl, ct_link);
1883 b_tbl->bt_wcnt++;
1884 }
1885 } else {
1886 /* The descriptor is invalid. Allocate a new C table. */
1887 c_tbl = get_c_table();
1888
1889 /* Point the parent B table descriptor to this new C table. */
1890 b_dte->attr.raw = mmu_vtop(c_tbl->ct_dtbl);
1891 b_dte->attr.raw |= MMU_DT_SHORT;
1892 b_tbl->bt_ecnt++; /* Update parent's valid entry count */
1893
1894 /* Create the necessary back references to the parent table */
1895 c_tbl->ct_parent = b_tbl;
1896 c_tbl->ct_pidx = b_idx;
1897 /*
1898 * Store the pmap and base virtual managed address for faster
1899 * retrieval in the PV functions.
1900 */
1901 c_tbl->ct_pmap = pmap;
1902 c_tbl->ct_va = (va & (MMU_TIA_MASK|MMU_TIB_MASK));
1903
1904 /*
1905 * If this table is to be wired, make sure the parent B table
1906 * wired count is updated to reflect that it has another wired
1907 * entry.
1908 */
1909 if (wired)
1910 b_tbl->bt_wcnt++;
1911 else if (llevel == NONE)
1912 llevel = NEWC;
1913 }
1914
1915 /*
1916 * Step 4 - Deposit a page descriptor (PTE) into the appropriate
1917 * slot of the C table, describing the PA to which the VA is mapped.
1918 */
1919
1920 pte_idx = MMU_TIC(va);
1921 c_pte = &c_tbl->ct_dtbl[pte_idx];
1922 if (MMU_VALID_DT(*c_pte)) { /* Is the entry currently valid? */
1923 /*
1924 * The PTE is currently valid. This particular call
1925 * is just a synonym for one (or more) of the following
1926 * operations:
1927 * change protection of a page
1928 * change wiring status of a page
1929 * remove the mapping of a page
1930 *
1931 * XXX - Semi critical: This code should unwire the PTE
1932 * and, possibly, associated parent tables if this is a
1933 * change wiring operation. Currently it does not.
1934 *
1935 * This may be ok if pmap_unwire() is the only
1936 * interface used to UNWIRE a page.
1937 */
1938
1939 /* First check if this is a wiring operation. */
1940 if (wired && (c_pte->attr.raw & MMU_SHORT_PTE_WIRED)) {
1941 /*
1942 * The PTE is already wired. To prevent it from being
1943 * counted as a new wiring operation, reset the 'wired'
1944 * variable.
1945 */
1946 wired = FALSE;
1947 }
1948
1949 /* Is the new address the same as the old? */
1950 if (MMU_PTE_PA(*c_pte) == pa) {
1951 /*
1952 * Yes, mark that it does not need to be reinserted
1953 * into the PV list.
1954 */
1955 insert = FALSE;
1956
1957 /*
1958 * Clear all but the modified, referenced and wired
1959 * bits on the PTE.
1960 */
1961 c_pte->attr.raw &= (MMU_SHORT_PTE_M
1962 | MMU_SHORT_PTE_USED | MMU_SHORT_PTE_WIRED);
1963 } else {
1964 /* No, remove the old entry */
1965 pmap_remove_pte(c_pte);
1966 insert = TRUE;
1967 }
1968
1969 /*
1970 * TLB flush is only necessary if modifying current map.
1971 * However, in pmap_enter(), the pmap almost always IS
1972 * the current pmap, so don't even bother to check.
1973 */
1974 TBIS(va);
1975 } else {
1976 /*
1977 * The PTE is invalid. Increment the valid entry count in
1978 * the C table manager to reflect the addition of a new entry.
1979 */
1980 c_tbl->ct_ecnt++;
1981
1982 /* XXX - temporarily make sure the PTE is cleared. */
1983 c_pte->attr.raw = 0;
1984
1985 /* It will also need to be inserted into the PV list. */
1986 insert = TRUE;
1987 }
1988
1989 /*
1990 * If page is changing from unwired to wired status, set an unused bit
1991 * within the PTE to indicate that it is wired. Also increment the
1992 * wired entry count in the C table manager.
1993 */
1994 if (wired) {
1995 c_pte->attr.raw |= MMU_SHORT_PTE_WIRED;
1996 c_tbl->ct_wcnt++;
1997 }
1998
1999 /*
2000 * Map the page, being careful to preserve modify/reference/wired
2001 * bits. At this point it is assumed that the PTE either has no bits
2002 * set, or if there are set bits, they are only modified, reference or
2003 * wired bits. If not, the following statement will cause erratic
2004 * behavior.
2005 */
2006 #ifdef PMAP_DEBUG
2007 if (c_pte->attr.raw & ~(MMU_SHORT_PTE_M |
2008 MMU_SHORT_PTE_USED | MMU_SHORT_PTE_WIRED)) {
2009 printf("pmap_enter: junk left in PTE at %p\n", c_pte);
2010 Debugger();
2011 }
2012 #endif
2013 c_pte->attr.raw |= ((u_long) pa | MMU_DT_PAGE);
2014
2015 /*
2016 * If the mapping should be read-only, set the write protect
2017 * bit in the PTE.
2018 */
2019 if (!(prot & VM_PROT_WRITE))
2020 c_pte->attr.raw |= MMU_SHORT_PTE_WP;
2021
2022 /*
2023 * If the mapping should be cache inhibited (indicated by the flag
2024 * bits found on the lower order of the physical address.)
2025 * mark the PTE as a cache inhibited page.
2026 */
2027 if (mapflags & PMAP_NC)
2028 c_pte->attr.raw |= MMU_SHORT_PTE_CI;
2029
2030 /*
2031 * If the physical address being mapped is managed by the PV
2032 * system then link the pte into the list of pages mapped to that
2033 * address.
2034 */
2035 if (insert && managed) {
2036 pv = pa2pv(pa);
2037 nidx = pteidx(c_pte);
2038
2039 s = splvm();
2040 pvebase[nidx].pve_next = pv->pv_idx;
2041 pv->pv_idx = nidx;
2042 splx(s);
2043 }
2044
2045 /* Move any allocated tables back into the active pool. */
2046
2047 switch (llevel) {
2048 case NEWA:
2049 TAILQ_INSERT_TAIL(&a_pool, a_tbl, at_link);
2050 /* FALLTHROUGH */
2051 case NEWB:
2052 TAILQ_INSERT_TAIL(&b_pool, b_tbl, bt_link);
2053 /* FALLTHROUGH */
2054 case NEWC:
2055 TAILQ_INSERT_TAIL(&c_pool, c_tbl, ct_link);
2056 /* FALLTHROUGH */
2057 default:
2058 break;
2059 }
2060
2061 return 0;
2062 }
2063
2064 /* pmap_enter_kernel INTERNAL
2065 **
2066 * Map the given virtual address to the given physical address within the
2067 * kernel address space. This function exists because the kernel map does
2068 * not do dynamic table allocation. It consists of a contiguous array of ptes
2069 * and can be edited directly without the need to walk through any tables.
2070 *
2071 * XXX: "Danger, Will Robinson!"
2072 * Note that the kernel should never take a fault on any page
2073 * between [ KERNBASE .. virtual_avail ] and this is checked in
2074 * trap.c for kernel-mode MMU faults. This means that mappings
2075 * created in that range must be implicily wired. -gwr
2076 */
2077 void
2078 pmap_enter_kernel(va, pa, prot)
2079 vm_offset_t va;
2080 vm_offset_t pa;
2081 vm_prot_t prot;
2082 {
2083 boolean_t was_valid, insert;
2084 u_short pte_idx;
2085 int s, flags;
2086 mmu_short_pte_t *pte;
2087 pv_t *pv;
2088 vm_offset_t old_pa;
2089
2090 flags = (pa & ~MMU_PAGE_MASK);
2091 pa &= MMU_PAGE_MASK;
2092
2093 if (is_managed(pa))
2094 insert = TRUE;
2095 else
2096 insert = FALSE;
2097
2098 /*
2099 * Calculate the index of the PTE being modified.
2100 */
2101 pte_idx = (u_long) m68k_btop(va - KERNBASE);
2102
2103 /* This array is traditionally named "Sysmap" */
2104 pte = &kernCbase[pte_idx];
2105
2106 s = splvm();
2107 if (MMU_VALID_DT(*pte)) {
2108 was_valid = TRUE;
2109 /*
2110 * If the PTE already maps a different
2111 * physical address, umap and pv_unlink.
2112 */
2113 old_pa = MMU_PTE_PA(*pte);
2114 if (pa != old_pa)
2115 pmap_remove_pte(pte);
2116 else {
2117 /*
2118 * Old PA and new PA are the same. No need to
2119 * relink the mapping within the PV list.
2120 */
2121 insert = FALSE;
2122
2123 /*
2124 * Save any mod/ref bits on the PTE.
2125 */
2126 pte->attr.raw &= (MMU_SHORT_PTE_USED|MMU_SHORT_PTE_M);
2127 }
2128 } else {
2129 pte->attr.raw = MMU_DT_INVALID;
2130 was_valid = FALSE;
2131 }
2132
2133 /*
2134 * Map the page. Being careful to preserve modified/referenced bits
2135 * on the PTE.
2136 */
2137 pte->attr.raw |= (pa | MMU_DT_PAGE);
2138
2139 if (!(prot & VM_PROT_WRITE)) /* If access should be read-only */
2140 pte->attr.raw |= MMU_SHORT_PTE_WP;
2141 if (flags & PMAP_NC)
2142 pte->attr.raw |= MMU_SHORT_PTE_CI;
2143 if (was_valid)
2144 TBIS(va);
2145
2146 /*
2147 * Insert the PTE into the PV system, if need be.
2148 */
2149 if (insert) {
2150 pv = pa2pv(pa);
2151 pvebase[pte_idx].pve_next = pv->pv_idx;
2152 pv->pv_idx = pte_idx;
2153 }
2154 splx(s);
2155
2156 }
2157
2158 void
2159 pmap_kenter_pa(va, pa, prot)
2160 vaddr_t va;
2161 paddr_t pa;
2162 vm_prot_t prot;
2163 {
2164 pmap_enter(pmap_kernel(), va, pa, prot, PMAP_WIRED);
2165 }
2166
2167 void
2168 pmap_kremove(va, len)
2169 vaddr_t va;
2170 vsize_t len;
2171 {
2172 for (len >>= PAGE_SHIFT; len > 0; len--, va += PAGE_SIZE) {
2173 pmap_remove(pmap_kernel(), va, va + PAGE_SIZE);
2174 }
2175 }
2176
2177 /* pmap_map INTERNAL
2178 **
2179 * Map a contiguous range of physical memory into a contiguous range of
2180 * the kernel virtual address space.
2181 *
2182 * Used for device mappings and early mapping of the kernel text/data/bss.
2183 * Returns the first virtual address beyond the end of the range.
2184 */
2185 vm_offset_t
2186 pmap_map(va, pa, endpa, prot)
2187 vm_offset_t va;
2188 vm_offset_t pa;
2189 vm_offset_t endpa;
2190 int prot;
2191 {
2192 int sz;
2193
2194 sz = endpa - pa;
2195 do {
2196 pmap_enter_kernel(va, pa, prot);
2197 va += NBPG;
2198 pa += NBPG;
2199 sz -= NBPG;
2200 } while (sz > 0);
2201 pmap_update();
2202 return(va);
2203 }
2204
2205 /* pmap_protect INTERFACE
2206 **
2207 * Apply the given protection to the given virtual address range within
2208 * the given map.
2209 *
2210 * It is ok for the protection applied to be stronger than what is
2211 * specified. We use this to our advantage when the given map has no
2212 * mapping for the virtual address. By skipping a page when this
2213 * is discovered, we are effectively applying a protection of VM_PROT_NONE,
2214 * and therefore do not need to map the page just to apply a protection
2215 * code. Only pmap_enter() needs to create new mappings if they do not exist.
2216 *
2217 * XXX - This function could be speeded up by using pmap_stroll() for inital
2218 * setup, and then manual scrolling in the for() loop.
2219 */
2220 void
2221 pmap_protect(pmap, startva, endva, prot)
2222 pmap_t pmap;
2223 vm_offset_t startva, endva;
2224 vm_prot_t prot;
2225 {
2226 boolean_t iscurpmap;
2227 int a_idx, b_idx, c_idx;
2228 a_tmgr_t *a_tbl;
2229 b_tmgr_t *b_tbl;
2230 c_tmgr_t *c_tbl;
2231 mmu_short_pte_t *pte;
2232
2233 if (pmap == NULL)
2234 return;
2235 if (pmap == pmap_kernel()) {
2236 pmap_protect_kernel(startva, endva, prot);
2237 return;
2238 }
2239
2240 /*
2241 * In this particular pmap implementation, there are only three
2242 * types of memory protection: 'all' (read/write/execute),
2243 * 'read-only' (read/execute) and 'none' (no mapping.)
2244 * It is not possible for us to treat 'executable' as a separate
2245 * protection type. Therefore, protection requests that seek to
2246 * remove execute permission while retaining read or write, and those
2247 * that make little sense (write-only for example) are ignored.
2248 */
2249 switch (prot) {
2250 case VM_PROT_NONE:
2251 /*
2252 * A request to apply the protection code of
2253 * 'VM_PROT_NONE' is a synonym for pmap_remove().
2254 */
2255 pmap_remove(pmap, startva, endva);
2256 return;
2257 case VM_PROT_EXECUTE:
2258 case VM_PROT_READ:
2259 case VM_PROT_READ|VM_PROT_EXECUTE:
2260 /* continue */
2261 break;
2262 case VM_PROT_WRITE:
2263 case VM_PROT_WRITE|VM_PROT_READ:
2264 case VM_PROT_WRITE|VM_PROT_EXECUTE:
2265 case VM_PROT_ALL:
2266 /* None of these should happen in a sane system. */
2267 return;
2268 }
2269
2270 /*
2271 * If the pmap has no A table, it has no mappings and therefore
2272 * there is nothing to protect.
2273 */
2274 if ((a_tbl = pmap->pm_a_tmgr) == NULL)
2275 return;
2276
2277 a_idx = MMU_TIA(startva);
2278 b_idx = MMU_TIB(startva);
2279 c_idx = MMU_TIC(startva);
2280 b_tbl = (b_tmgr_t *) c_tbl = NULL;
2281
2282 iscurpmap = (pmap == current_pmap());
2283 while (startva < endva) {
2284 if (b_tbl || MMU_VALID_DT(a_tbl->at_dtbl[a_idx])) {
2285 if (b_tbl == NULL) {
2286 b_tbl = (b_tmgr_t *) a_tbl->at_dtbl[a_idx].addr.raw;
2287 b_tbl = mmu_ptov((vm_offset_t) b_tbl);
2288 b_tbl = mmuB2tmgr((mmu_short_dte_t *) b_tbl);
2289 }
2290 if (c_tbl || MMU_VALID_DT(b_tbl->bt_dtbl[b_idx])) {
2291 if (c_tbl == NULL) {
2292 c_tbl = (c_tmgr_t *) MMU_DTE_PA(b_tbl->bt_dtbl[b_idx]);
2293 c_tbl = mmu_ptov((vm_offset_t) c_tbl);
2294 c_tbl = mmuC2tmgr((mmu_short_pte_t *) c_tbl);
2295 }
2296 if (MMU_VALID_DT(c_tbl->ct_dtbl[c_idx])) {
2297 pte = &c_tbl->ct_dtbl[c_idx];
2298 /* make the mapping read-only */
2299 pte->attr.raw |= MMU_SHORT_PTE_WP;
2300 /*
2301 * If we just modified the current address space,
2302 * flush any translations for the modified page from
2303 * the translation cache and any data from it in the
2304 * data cache.
2305 */
2306 if (iscurpmap)
2307 TBIS(startva);
2308 }
2309 startva += NBPG;
2310
2311 if (++c_idx >= MMU_C_TBL_SIZE) { /* exceeded C table? */
2312 c_tbl = NULL;
2313 c_idx = 0;
2314 if (++b_idx >= MMU_B_TBL_SIZE) { /* exceeded B table? */
2315 b_tbl = NULL;
2316 b_idx = 0;
2317 }
2318 }
2319 } else { /* C table wasn't valid */
2320 c_tbl = NULL;
2321 c_idx = 0;
2322 startva += MMU_TIB_RANGE;
2323 if (++b_idx >= MMU_B_TBL_SIZE) { /* exceeded B table? */
2324 b_tbl = NULL;
2325 b_idx = 0;
2326 }
2327 } /* C table */
2328 } else { /* B table wasn't valid */
2329 b_tbl = NULL;
2330 b_idx = 0;
2331 startva += MMU_TIA_RANGE;
2332 a_idx++;
2333 } /* B table */
2334 }
2335 }
2336
2337 /* pmap_protect_kernel INTERNAL
2338 **
2339 * Apply the given protection code to a kernel address range.
2340 */
2341 void
2342 pmap_protect_kernel(startva, endva, prot)
2343 vm_offset_t startva, endva;
2344 vm_prot_t prot;
2345 {
2346 vm_offset_t va;
2347 mmu_short_pte_t *pte;
2348
2349 pte = &kernCbase[(unsigned long) m68k_btop(startva - KERNBASE)];
2350 for (va = startva; va < endva; va += NBPG, pte++) {
2351 if (MMU_VALID_DT(*pte)) {
2352 switch (prot) {
2353 case VM_PROT_ALL:
2354 break;
2355 case VM_PROT_EXECUTE:
2356 case VM_PROT_READ:
2357 case VM_PROT_READ|VM_PROT_EXECUTE:
2358 pte->attr.raw |= MMU_SHORT_PTE_WP;
2359 break;
2360 case VM_PROT_NONE:
2361 /* this is an alias for 'pmap_remove_kernel' */
2362 pmap_remove_pte(pte);
2363 break;
2364 default:
2365 break;
2366 }
2367 /*
2368 * since this is the kernel, immediately flush any cached
2369 * descriptors for this address.
2370 */
2371 TBIS(va);
2372 }
2373 }
2374 }
2375
2376 /* pmap_unwire INTERFACE
2377 **
2378 * Clear the wired attribute of the specified page.
2379 *
2380 * This function is called from vm_fault.c to unwire
2381 * a mapping.
2382 */
2383 void
2384 pmap_unwire(pmap, va)
2385 pmap_t pmap;
2386 vm_offset_t va;
2387 {
2388 int a_idx, b_idx, c_idx;
2389 a_tmgr_t *a_tbl;
2390 b_tmgr_t *b_tbl;
2391 c_tmgr_t *c_tbl;
2392 mmu_short_pte_t *pte;
2393
2394 /* Kernel mappings always remain wired. */
2395 if (pmap == pmap_kernel())
2396 return;
2397
2398 /*
2399 * Walk through the tables. If the walk terminates without
2400 * a valid PTE then the address wasn't wired in the first place.
2401 * Return immediately.
2402 */
2403 if (pmap_stroll(pmap, va, &a_tbl, &b_tbl, &c_tbl, &pte, &a_idx,
2404 &b_idx, &c_idx) == FALSE)
2405 return;
2406
2407
2408 /* Is the PTE wired? If not, return. */
2409 if (!(pte->attr.raw & MMU_SHORT_PTE_WIRED))
2410 return;
2411
2412 /* Remove the wiring bit. */
2413 pte->attr.raw &= ~(MMU_SHORT_PTE_WIRED);
2414
2415 /*
2416 * Decrement the wired entry count in the C table.
2417 * If it reaches zero the following things happen:
2418 * 1. The table no longer has any wired entries and is considered
2419 * unwired.
2420 * 2. It is placed on the available queue.
2421 * 3. The parent table's wired entry count is decremented.
2422 * 4. If it reaches zero, this process repeats at step 1 and
2423 * stops at after reaching the A table.
2424 */
2425 if (--c_tbl->ct_wcnt == 0) {
2426 TAILQ_INSERT_TAIL(&c_pool, c_tbl, ct_link);
2427 if (--b_tbl->bt_wcnt == 0) {
2428 TAILQ_INSERT_TAIL(&b_pool, b_tbl, bt_link);
2429 if (--a_tbl->at_wcnt == 0) {
2430 TAILQ_INSERT_TAIL(&a_pool, a_tbl, at_link);
2431 }
2432 }
2433 }
2434 }
2435
2436 /* pmap_copy INTERFACE
2437 **
2438 * Copy the mappings of a range of addresses in one pmap, into
2439 * the destination address of another.
2440 *
2441 * This routine is advisory. Should we one day decide that MMU tables
2442 * may be shared by more than one pmap, this function should be used to
2443 * link them together. Until that day however, we do nothing.
2444 */
2445 void
2446 pmap_copy(pmap_a, pmap_b, dst, len, src)
2447 pmap_t pmap_a, pmap_b;
2448 vm_offset_t dst;
2449 vm_size_t len;
2450 vm_offset_t src;
2451 {
2452 /* not implemented. */
2453 }
2454
2455 /* pmap_copy_page INTERFACE
2456 **
2457 * Copy the contents of one physical page into another.
2458 *
2459 * This function makes use of two virtual pages allocated in pmap_bootstrap()
2460 * to map the two specified physical pages into the kernel address space.
2461 *
2462 * Note: We could use the transparent translation registers to make the
2463 * mappings. If we do so, be sure to disable interrupts before using them.
2464 */
2465 void
2466 pmap_copy_page(srcpa, dstpa)
2467 vm_offset_t srcpa, dstpa;
2468 {
2469 vm_offset_t srcva, dstva;
2470 int s;
2471
2472 srcva = tmp_vpages[0];
2473 dstva = tmp_vpages[1];
2474
2475 s = splvm();
2476 if (tmp_vpages_inuse++)
2477 panic("pmap_copy_page: temporary vpages are in use.");
2478
2479 /* Map pages as non-cacheable to avoid cache polution? */
2480 pmap_enter_kernel(srcva, srcpa, VM_PROT_READ);
2481 pmap_enter_kernel(dstva, dstpa, VM_PROT_READ|VM_PROT_WRITE);
2482
2483 /* Hand-optimized version of bcopy(src, dst, NBPG) */
2484 copypage((char *) srcva, (char *) dstva);
2485
2486 pmap_remove_kernel(srcva, srcva + NBPG);
2487 pmap_remove_kernel(dstva, dstva + NBPG);
2488
2489 --tmp_vpages_inuse;
2490 splx(s);
2491 }
2492
2493 /* pmap_zero_page INTERFACE
2494 **
2495 * Zero the contents of the specified physical page.
2496 *
2497 * Uses one of the virtual pages allocated in pmap_boostrap()
2498 * to map the specified page into the kernel address space.
2499 */
2500 void
2501 pmap_zero_page(dstpa)
2502 vm_offset_t dstpa;
2503 {
2504 vm_offset_t dstva;
2505 int s;
2506
2507 dstva = tmp_vpages[1];
2508 s = splvm();
2509 if (tmp_vpages_inuse++)
2510 panic("pmap_zero_page: temporary vpages are in use.");
2511
2512 /* The comments in pmap_copy_page() above apply here also. */
2513 pmap_enter_kernel(dstva, dstpa, VM_PROT_READ|VM_PROT_WRITE);
2514
2515 /* Hand-optimized version of bzero(ptr, NBPG) */
2516 zeropage((char *) dstva);
2517
2518 pmap_remove_kernel(dstva, dstva + NBPG);
2519
2520 --tmp_vpages_inuse;
2521 splx(s);
2522 }
2523
2524 /* pmap_collect INTERFACE
2525 **
2526 * Called from the VM system when we are about to swap out
2527 * the process using this pmap. This should give up any
2528 * resources held here, including all its MMU tables.
2529 */
2530 void
2531 pmap_collect(pmap)
2532 pmap_t pmap;
2533 {
2534 /* XXX - todo... */
2535 }
2536
2537 /* pmap_create INTERFACE
2538 **
2539 * Create and return a pmap structure.
2540 */
2541 pmap_t
2542 pmap_create()
2543 {
2544 pmap_t pmap;
2545
2546 pmap = pool_get(&pmap_pmap_pool, PR_WAITOK);
2547 pmap_pinit(pmap);
2548 return pmap;
2549 }
2550
2551 /* pmap_pinit INTERNAL
2552 **
2553 * Initialize a pmap structure.
2554 */
2555 void
2556 pmap_pinit(pmap)
2557 pmap_t pmap;
2558 {
2559 bzero(pmap, sizeof(struct pmap));
2560 pmap->pm_a_tmgr = NULL;
2561 pmap->pm_a_phys = kernAphys;
2562 pmap->pm_refcount = 1;
2563 simple_lock_init(&pmap->pm_lock);
2564 }
2565
2566 /* pmap_release INTERFACE
2567 **
2568 * Release any resources held by the given pmap.
2569 *
2570 * This is the reverse analog to pmap_pinit. It does not
2571 * necessarily mean for the pmap structure to be deallocated,
2572 * as in pmap_destroy.
2573 */
2574 void
2575 pmap_release(pmap)
2576 pmap_t pmap;
2577 {
2578 /*
2579 * As long as the pmap contains no mappings,
2580 * which always should be the case whenever
2581 * this function is called, there really should
2582 * be nothing to do.
2583 */
2584 #ifdef PMAP_DEBUG
2585 if (pmap == NULL)
2586 return;
2587 if (pmap == pmap_kernel())
2588 panic("pmap_release: kernel pmap");
2589 #endif
2590 /*
2591 * XXX - If this pmap has an A table, give it back.
2592 * The pmap SHOULD be empty by now, and pmap_remove
2593 * should have already given back the A table...
2594 * However, I see: pmap->pm_a_tmgr->at_ecnt == 1
2595 * at this point, which means some mapping was not
2596 * removed when it should have been. -gwr
2597 */
2598 if (pmap->pm_a_tmgr != NULL) {
2599 /* First make sure we are not using it! */
2600 if (kernel_crp.rp_addr == pmap->pm_a_phys) {
2601 kernel_crp.rp_addr = kernAphys;
2602 loadcrp(&kernel_crp);
2603 }
2604 #ifdef PMAP_DEBUG /* XXX - todo! */
2605 /* XXX - Now complain... */
2606 printf("pmap_release: still have table\n");
2607 Debugger();
2608 #endif
2609 free_a_table(pmap->pm_a_tmgr, TRUE);
2610 pmap->pm_a_tmgr = NULL;
2611 pmap->pm_a_phys = kernAphys;
2612 }
2613 }
2614
2615 /* pmap_reference INTERFACE
2616 **
2617 * Increment the reference count of a pmap.
2618 */
2619 void
2620 pmap_reference(pmap)
2621 pmap_t pmap;
2622 {
2623 if (pmap == NULL)
2624 return;
2625
2626 pmap_lock(pmap);
2627 pmap_add_ref(pmap);
2628 pmap_unlock(pmap);
2629 }
2630
2631 /* pmap_dereference INTERNAL
2632 **
2633 * Decrease the reference count on the given pmap
2634 * by one and return the current count.
2635 */
2636 int
2637 pmap_dereference(pmap)
2638 pmap_t pmap;
2639 {
2640 int rtn;
2641
2642 if (pmap == NULL)
2643 return 0;
2644
2645 pmap_lock(pmap);
2646 rtn = pmap_del_ref(pmap);
2647 pmap_unlock(pmap);
2648
2649 return rtn;
2650 }
2651
2652 /* pmap_destroy INTERFACE
2653 **
2654 * Decrement a pmap's reference count and delete
2655 * the pmap if it becomes zero. Will be called
2656 * only after all mappings have been removed.
2657 */
2658 void
2659 pmap_destroy(pmap)
2660 pmap_t pmap;
2661 {
2662 if (pmap == NULL)
2663 return;
2664 if (pmap == &kernel_pmap)
2665 panic("pmap_destroy: kernel_pmap!");
2666 if (pmap_dereference(pmap) == 0) {
2667 pmap_release(pmap);
2668 pool_put(&pmap_pmap_pool, pmap);
2669 }
2670 }
2671
2672 /* pmap_is_referenced INTERFACE
2673 **
2674 * Determine if the given physical page has been
2675 * referenced (read from [or written to.])
2676 */
2677 boolean_t
2678 pmap_is_referenced(pg)
2679 struct vm_page *pg;
2680 {
2681 paddr_t pa = VM_PAGE_TO_PHYS(pg);
2682 pv_t *pv;
2683 int idx, s;
2684
2685 if (!pv_initialized)
2686 return FALSE;
2687 /* XXX - this may be unecessary. */
2688 if (!is_managed(pa))
2689 return FALSE;
2690
2691 pv = pa2pv(pa);
2692 /*
2693 * Check the flags on the pv head. If they are set,
2694 * return immediately. Otherwise a search must be done.
2695 */
2696 if (pv->pv_flags & PV_FLAGS_USED)
2697 return TRUE;
2698
2699 s = splvm();
2700 /*
2701 * Search through all pv elements pointing
2702 * to this page and query their reference bits
2703 */
2704 for (idx = pv->pv_idx;
2705 idx != PVE_EOL;
2706 idx = pvebase[idx].pve_next) {
2707
2708 if (MMU_PTE_USED(kernCbase[idx])) {
2709 splx(s);
2710 return TRUE;
2711 }
2712 }
2713 splx(s);
2714
2715 return FALSE;
2716 }
2717
2718 /* pmap_is_modified INTERFACE
2719 **
2720 * Determine if the given physical page has been
2721 * modified (written to.)
2722 */
2723 boolean_t
2724 pmap_is_modified(pg)
2725 struct vm_page *pg;
2726 {
2727 paddr_t pa = VM_PAGE_TO_PHYS(pg);
2728 pv_t *pv;
2729 int idx, s;
2730
2731 if (!pv_initialized)
2732 return FALSE;
2733 /* XXX - this may be unecessary. */
2734 if (!is_managed(pa))
2735 return FALSE;
2736
2737 /* see comments in pmap_is_referenced() */
2738 pv = pa2pv(pa);
2739 if (pv->pv_flags & PV_FLAGS_MDFY)
2740 return TRUE;
2741
2742 s = splvm();
2743 for (idx = pv->pv_idx;
2744 idx != PVE_EOL;
2745 idx = pvebase[idx].pve_next) {
2746
2747 if (MMU_PTE_MODIFIED(kernCbase[idx])) {
2748 splx(s);
2749 return TRUE;
2750 }
2751 }
2752 splx(s);
2753
2754 return FALSE;
2755 }
2756
2757 /* pmap_page_protect INTERFACE
2758 **
2759 * Applies the given protection to all mappings to the given
2760 * physical page.
2761 */
2762 void
2763 pmap_page_protect(pg, prot)
2764 struct vm_page *pg;
2765 vm_prot_t prot;
2766 {
2767 paddr_t pa = VM_PAGE_TO_PHYS(pg);
2768 pv_t *pv;
2769 int idx, s;
2770 vm_offset_t va;
2771 struct mmu_short_pte_struct *pte;
2772 c_tmgr_t *c_tbl;
2773 pmap_t pmap, curpmap;
2774
2775 if (!is_managed(pa))
2776 return;
2777
2778 curpmap = current_pmap();
2779 pv = pa2pv(pa);
2780 s = splvm();
2781
2782 for (idx = pv->pv_idx;
2783 idx != PVE_EOL;
2784 idx = pvebase[idx].pve_next) {
2785
2786 pte = &kernCbase[idx];
2787 switch (prot) {
2788 case VM_PROT_ALL:
2789 /* do nothing */
2790 break;
2791 case VM_PROT_EXECUTE:
2792 case VM_PROT_READ:
2793 case VM_PROT_READ|VM_PROT_EXECUTE:
2794 /*
2795 * Determine the virtual address mapped by
2796 * the PTE and flush ATC entries if necessary.
2797 */
2798 va = pmap_get_pteinfo(idx, &pmap, &c_tbl);
2799 /* XXX don't write protect pager mappings */
2800 if (va >= PAGER_SVA && va < PAGER_EVA) {
2801 #ifdef PMAP_DEBUG
2802 /* XXX - Does this actually happen? */
2803 printf("pmap_page_protect: in pager!\n");
2804 Debugger();
2805 #endif
2806 } else
2807 pte->attr.raw |= MMU_SHORT_PTE_WP;
2808 if (pmap == curpmap || pmap == pmap_kernel())
2809 TBIS(va);
2810 break;
2811 case VM_PROT_NONE:
2812 /* Save the mod/ref bits. */
2813 pv->pv_flags |= pte->attr.raw;
2814 /* Invalidate the PTE. */
2815 pte->attr.raw = MMU_DT_INVALID;
2816
2817 /*
2818 * Update table counts. And flush ATC entries
2819 * if necessary.
2820 */
2821 va = pmap_get_pteinfo(idx, &pmap, &c_tbl);
2822
2823 /*
2824 * If the PTE belongs to the kernel map,
2825 * be sure to flush the page it maps.
2826 */
2827 if (pmap == pmap_kernel()) {
2828 TBIS(va);
2829 } else {
2830 /*
2831 * The PTE belongs to a user map.
2832 * update the entry count in the C
2833 * table to which it belongs and flush
2834 * the ATC if the mapping belongs to
2835 * the current pmap.
2836 */
2837 c_tbl->ct_ecnt--;
2838 if (pmap == curpmap)
2839 TBIS(va);
2840 }
2841 break;
2842 default:
2843 break;
2844 }
2845 }
2846
2847 /*
2848 * If the protection code indicates that all mappings to the page
2849 * be removed, truncate the PV list to zero entries.
2850 */
2851 if (prot == VM_PROT_NONE)
2852 pv->pv_idx = PVE_EOL;
2853 splx(s);
2854 }
2855
2856 /* pmap_get_pteinfo INTERNAL
2857 **
2858 * Called internally to find the pmap and virtual address within that
2859 * map to which the pte at the given index maps. Also includes the PTE's C
2860 * table manager.
2861 *
2862 * Returns the pmap in the argument provided, and the virtual address
2863 * by return value.
2864 */
2865 vm_offset_t
2866 pmap_get_pteinfo(idx, pmap, tbl)
2867 u_int idx;
2868 pmap_t *pmap;
2869 c_tmgr_t **tbl;
2870 {
2871 vm_offset_t va = 0;
2872
2873 /*
2874 * Determine if the PTE is a kernel PTE or a user PTE.
2875 */
2876 if (idx >= NUM_KERN_PTES) {
2877 /*
2878 * The PTE belongs to a user mapping.
2879 */
2880 /* XXX: Would like an inline for this to validate idx... */
2881 *tbl = &Ctmgrbase[(idx - NUM_KERN_PTES) / MMU_C_TBL_SIZE];
2882
2883 *pmap = (*tbl)->ct_pmap;
2884 /*
2885 * To find the va to which the PTE maps, we first take
2886 * the table's base virtual address mapping which is stored
2887 * in ct_va. We then increment this address by a page for
2888 * every slot skipped until we reach the PTE.
2889 */
2890 va = (*tbl)->ct_va;
2891 va += m68k_ptob(idx % MMU_C_TBL_SIZE);
2892 } else {
2893 /*
2894 * The PTE belongs to the kernel map.
2895 */
2896 *pmap = pmap_kernel();
2897
2898 va = m68k_ptob(idx);
2899 va += KERNBASE;
2900 }
2901
2902 return va;
2903 }
2904
2905 /* pmap_clear_modify INTERFACE
2906 **
2907 * Clear the modification bit on the page at the specified
2908 * physical address.
2909 *
2910 */
2911 boolean_t
2912 pmap_clear_modify(pg)
2913 struct vm_page *pg;
2914 {
2915 paddr_t pa = VM_PAGE_TO_PHYS(pg);
2916 boolean_t rv;
2917
2918 if (!is_managed(pa))
2919 return FALSE;
2920 rv = pmap_is_modified(pg);
2921 pmap_clear_pv(pa, PV_FLAGS_MDFY);
2922 return rv;
2923 }
2924
2925 /* pmap_clear_reference INTERFACE
2926 **
2927 * Clear the referenced bit on the page at the specified
2928 * physical address.
2929 */
2930 boolean_t
2931 pmap_clear_reference(pg)
2932 struct vm_page *pg;
2933 {
2934 paddr_t pa = VM_PAGE_TO_PHYS(pg);
2935 boolean_t rv;
2936
2937 if (!is_managed(pa))
2938 return FALSE;
2939 rv = pmap_is_referenced(pg);
2940 pmap_clear_pv(pa, PV_FLAGS_USED);
2941 return rv;
2942 }
2943
2944 /* pmap_clear_pv INTERNAL
2945 **
2946 * Clears the specified flag from the specified physical address.
2947 * (Used by pmap_clear_modify() and pmap_clear_reference().)
2948 *
2949 * Flag is one of:
2950 * PV_FLAGS_MDFY - Page modified bit.
2951 * PV_FLAGS_USED - Page used (referenced) bit.
2952 *
2953 * This routine must not only clear the flag on the pv list
2954 * head. It must also clear the bit on every pte in the pv
2955 * list associated with the address.
2956 */
2957 void
2958 pmap_clear_pv(pa, flag)
2959 vm_offset_t pa;
2960 int flag;
2961 {
2962 pv_t *pv;
2963 int idx, s;
2964 vm_offset_t va;
2965 pmap_t pmap;
2966 mmu_short_pte_t *pte;
2967 c_tmgr_t *c_tbl;
2968
2969 pv = pa2pv(pa);
2970
2971 s = splvm();
2972 pv->pv_flags &= ~(flag);
2973
2974 for (idx = pv->pv_idx;
2975 idx != PVE_EOL;
2976 idx = pvebase[idx].pve_next) {
2977
2978 pte = &kernCbase[idx];
2979 pte->attr.raw &= ~(flag);
2980 /*
2981 * The MC68030 MMU will not set the modified or
2982 * referenced bits on any MMU tables for which it has
2983 * a cached descriptor with its modify bit set. To insure
2984 * that it will modify these bits on the PTE during the next
2985 * time it is written to or read from, we must flush it from
2986 * the ATC.
2987 *
2988 * Ordinarily it is only necessary to flush the descriptor
2989 * if it is used in the current address space. But since I
2990 * am not sure that there will always be a notion of
2991 * 'the current address space' when this function is called,
2992 * I will skip the test and always flush the address. It
2993 * does no harm.
2994 */
2995 va = pmap_get_pteinfo(idx, &pmap, &c_tbl);
2996 TBIS(va);
2997 }
2998 splx(s);
2999 }
3000
3001 /* pmap_extract INTERFACE
3002 **
3003 * Return the physical address mapped by the virtual address
3004 * in the specified pmap.
3005 *
3006 * Note: this function should also apply an exclusive lock
3007 * on the pmap system during its duration.
3008 */
3009 boolean_t
3010 pmap_extract(pmap, va, pap)
3011 pmap_t pmap;
3012 vaddr_t va;
3013 paddr_t *pap;
3014 {
3015 int a_idx, b_idx, pte_idx;
3016 a_tmgr_t *a_tbl;
3017 b_tmgr_t *b_tbl;
3018 c_tmgr_t *c_tbl;
3019 mmu_short_pte_t *c_pte;
3020
3021 if (pmap == pmap_kernel())
3022 return pmap_extract_kernel(va, pap);
3023 if (pmap == NULL)
3024 return FALSE;
3025
3026 if (pmap_stroll(pmap, va, &a_tbl, &b_tbl, &c_tbl,
3027 &c_pte, &a_idx, &b_idx, &pte_idx) == FALSE)
3028 return FALSE;
3029
3030 if (!MMU_VALID_DT(*c_pte))
3031 return FALSE;
3032
3033 if (pap != NULL)
3034 *pap = MMU_PTE_PA(*c_pte);
3035 return (TRUE);
3036 }
3037
3038 /* pmap_extract_kernel INTERNAL
3039 **
3040 * Extract a translation from the kernel address space.
3041 */
3042 boolean_t
3043 pmap_extract_kernel(va, pap)
3044 vaddr_t va;
3045 paddr_t *pap;
3046 {
3047 mmu_short_pte_t *pte;
3048
3049 pte = &kernCbase[(u_int) m68k_btop(va - KERNBASE)];
3050 if (!MMU_VALID_DT(*pte))
3051 return (FALSE);
3052 if (pap != NULL)
3053 *pap = MMU_PTE_PA(*pte);
3054 return (TRUE);
3055 }
3056
3057 /* pmap_remove_kernel INTERNAL
3058 **
3059 * Remove the mapping of a range of virtual addresses from the kernel map.
3060 * The arguments are already page-aligned.
3061 */
3062 void
3063 pmap_remove_kernel(sva, eva)
3064 vm_offset_t sva;
3065 vm_offset_t eva;
3066 {
3067 int idx, eidx;
3068
3069 #ifdef PMAP_DEBUG
3070 if ((sva & PGOFSET) || (eva & PGOFSET))
3071 panic("pmap_remove_kernel: alignment");
3072 #endif
3073
3074 idx = m68k_btop(sva - KERNBASE);
3075 eidx = m68k_btop(eva - KERNBASE);
3076
3077 while (idx < eidx) {
3078 pmap_remove_pte(&kernCbase[idx++]);
3079 TBIS(sva);
3080 sva += NBPG;
3081 }
3082 }
3083
3084 /* pmap_remove INTERFACE
3085 **
3086 * Remove the mapping of a range of virtual addresses from the given pmap.
3087 *
3088 * If the range contains any wired entries, this function will probably create
3089 * disaster.
3090 */
3091 void
3092 pmap_remove(pmap, start, end)
3093 pmap_t pmap;
3094 vm_offset_t start;
3095 vm_offset_t end;
3096 {
3097
3098 if (pmap == pmap_kernel()) {
3099 pmap_remove_kernel(start, end);
3100 return;
3101 }
3102
3103 /*
3104 * XXX - Temporary(?) statement to prevent panic caused
3105 * by vm_alloc_with_pager() handing us a software map (ie NULL)
3106 * to remove because it couldn't get backing store.
3107 * (I guess.)
3108 */
3109 if (pmap == NULL)
3110 return;
3111
3112 /*
3113 * If the pmap doesn't have an A table of its own, it has no mappings
3114 * that can be removed.
3115 */
3116 if (pmap->pm_a_tmgr == NULL)
3117 return;
3118
3119 /*
3120 * Remove the specified range from the pmap. If the function
3121 * returns true, the operation removed all the valid mappings
3122 * in the pmap and freed its A table. If this happened to the
3123 * currently loaded pmap, the MMU root pointer must be reloaded
3124 * with the default 'kernel' map.
3125 */
3126 if (pmap_remove_a(pmap->pm_a_tmgr, start, end)) {
3127 if (kernel_crp.rp_addr == pmap->pm_a_phys) {
3128 kernel_crp.rp_addr = kernAphys;
3129 loadcrp(&kernel_crp);
3130 /* will do TLB flush below */
3131 }
3132 pmap->pm_a_tmgr = NULL;
3133 pmap->pm_a_phys = kernAphys;
3134 }
3135
3136 /*
3137 * If we just modified the current address space,
3138 * make sure to flush the MMU cache.
3139 *
3140 * XXX - this could be an unecessarily large flush.
3141 * XXX - Could decide, based on the size of the VA range
3142 * to be removed, whether to flush "by pages" or "all".
3143 */
3144 if (pmap == current_pmap())
3145 TBIAU();
3146 }
3147
3148 /* pmap_remove_a INTERNAL
3149 **
3150 * This is function number one in a set of three that removes a range
3151 * of memory in the most efficient manner by removing the highest possible
3152 * tables from the memory space. This particular function attempts to remove
3153 * as many B tables as it can, delegating the remaining fragmented ranges to
3154 * pmap_remove_b().
3155 *
3156 * If the removal operation results in an empty A table, the function returns
3157 * TRUE.
3158 *
3159 * It's ugly but will do for now.
3160 */
3161 boolean_t
3162 pmap_remove_a(a_tbl, start, end)
3163 a_tmgr_t *a_tbl;
3164 vm_offset_t start;
3165 vm_offset_t end;
3166 {
3167 boolean_t empty;
3168 int idx;
3169 vm_offset_t nstart, nend;
3170 b_tmgr_t *b_tbl;
3171 mmu_long_dte_t *a_dte;
3172 mmu_short_dte_t *b_dte;
3173
3174 /*
3175 * The following code works with what I call a 'granularity
3176 * reduction algorithim'. A range of addresses will always have
3177 * the following properties, which are classified according to
3178 * how the range relates to the size of the current granularity
3179 * - an A table entry:
3180 *
3181 * 1 2 3 4
3182 * -+---+---+---+---+---+---+---+-
3183 * -+---+---+---+---+---+---+---+-
3184 *
3185 * A range will always start on a granularity boundary, illustrated
3186 * by '+' signs in the table above, or it will start at some point
3187 * inbetween a granularity boundary, as illustrated by point 1.
3188 * The first step in removing a range of addresses is to remove the
3189 * range between 1 and 2, the nearest granularity boundary. This
3190 * job is handled by the section of code governed by the
3191 * 'if (start < nstart)' statement.
3192 *
3193 * A range will always encompass zero or more intergral granules,
3194 * illustrated by points 2 and 3. Integral granules are easy to
3195 * remove. The removal of these granules is the second step, and
3196 * is handled by the code block 'if (nstart < nend)'.
3197 *
3198 * Lastly, a range will always end on a granularity boundary,
3199 * ill. by point 3, or it will fall just beyond one, ill. by point
3200 * 4. The last step involves removing this range and is handled by
3201 * the code block 'if (nend < end)'.
3202 */
3203 nstart = MMU_ROUND_UP_A(start);
3204 nend = MMU_ROUND_A(end);
3205
3206 if (start < nstart) {
3207 /*
3208 * This block is executed if the range starts between
3209 * a granularity boundary.
3210 *
3211 * First find the DTE which is responsible for mapping
3212 * the start of the range.
3213 */
3214 idx = MMU_TIA(start);
3215 a_dte = &a_tbl->at_dtbl[idx];
3216
3217 /*
3218 * If the DTE is valid then delegate the removal of the sub
3219 * range to pmap_remove_b(), which can remove addresses at
3220 * a finer granularity.
3221 */
3222 if (MMU_VALID_DT(*a_dte)) {
3223 b_dte = mmu_ptov(a_dte->addr.raw);
3224 b_tbl = mmuB2tmgr(b_dte);
3225
3226 /*
3227 * The sub range to be removed starts at the start
3228 * of the full range we were asked to remove, and ends
3229 * at the greater of:
3230 * 1. The end of the full range, -or-
3231 * 2. The end of the full range, rounded down to the
3232 * nearest granularity boundary.
3233 */
3234 if (end < nstart)
3235 empty = pmap_remove_b(b_tbl, start, end);
3236 else
3237 empty = pmap_remove_b(b_tbl, start, nstart);
3238
3239 /*
3240 * If the removal resulted in an empty B table,
3241 * invalidate the DTE that points to it and decrement
3242 * the valid entry count of the A table.
3243 */
3244 if (empty) {
3245 a_dte->attr.raw = MMU_DT_INVALID;
3246 a_tbl->at_ecnt--;
3247 }
3248 }
3249 /*
3250 * If the DTE is invalid, the address range is already non-
3251 * existent and can simply be skipped.
3252 */
3253 }
3254 if (nstart < nend) {
3255 /*
3256 * This block is executed if the range spans a whole number
3257 * multiple of granules (A table entries.)
3258 *
3259 * First find the DTE which is responsible for mapping
3260 * the start of the first granule involved.
3261 */
3262 idx = MMU_TIA(nstart);
3263 a_dte = &a_tbl->at_dtbl[idx];
3264
3265 /*
3266 * Remove entire sub-granules (B tables) one at a time,
3267 * until reaching the end of the range.
3268 */
3269 for (; nstart < nend; a_dte++, nstart += MMU_TIA_RANGE)
3270 if (MMU_VALID_DT(*a_dte)) {
3271 /*
3272 * Find the B table manager for the
3273 * entry and free it.
3274 */
3275 b_dte = mmu_ptov(a_dte->addr.raw);
3276 b_tbl = mmuB2tmgr(b_dte);
3277 free_b_table(b_tbl, TRUE);
3278
3279 /*
3280 * Invalidate the DTE that points to the
3281 * B table and decrement the valid entry
3282 * count of the A table.
3283 */
3284 a_dte->attr.raw = MMU_DT_INVALID;
3285 a_tbl->at_ecnt--;
3286 }
3287 }
3288 if (nend < end) {
3289 /*
3290 * This block is executed if the range ends beyond a
3291 * granularity boundary.
3292 *
3293 * First find the DTE which is responsible for mapping
3294 * the start of the nearest (rounded down) granularity
3295 * boundary.
3296 */
3297 idx = MMU_TIA(nend);
3298 a_dte = &a_tbl->at_dtbl[idx];
3299
3300 /*
3301 * If the DTE is valid then delegate the removal of the sub
3302 * range to pmap_remove_b(), which can remove addresses at
3303 * a finer granularity.
3304 */
3305 if (MMU_VALID_DT(*a_dte)) {
3306 /*
3307 * Find the B table manager for the entry
3308 * and hand it to pmap_remove_b() along with
3309 * the sub range.
3310 */
3311 b_dte = mmu_ptov(a_dte->addr.raw);
3312 b_tbl = mmuB2tmgr(b_dte);
3313
3314 empty = pmap_remove_b(b_tbl, nend, end);
3315
3316 /*
3317 * If the removal resulted in an empty B table,
3318 * invalidate the DTE that points to it and decrement
3319 * the valid entry count of the A table.
3320 */
3321 if (empty) {
3322 a_dte->attr.raw = MMU_DT_INVALID;
3323 a_tbl->at_ecnt--;
3324 }
3325 }
3326 }
3327
3328 /*
3329 * If there are no more entries in the A table, release it
3330 * back to the available pool and return TRUE.
3331 */
3332 if (a_tbl->at_ecnt == 0) {
3333 a_tbl->at_parent = NULL;
3334 TAILQ_REMOVE(&a_pool, a_tbl, at_link);
3335 TAILQ_INSERT_HEAD(&a_pool, a_tbl, at_link);
3336 empty = TRUE;
3337 } else {
3338 empty = FALSE;
3339 }
3340
3341 return empty;
3342 }
3343
3344 /* pmap_remove_b INTERNAL
3345 **
3346 * Remove a range of addresses from an address space, trying to remove entire
3347 * C tables if possible.
3348 *
3349 * If the operation results in an empty B table, the function returns TRUE.
3350 */
3351 boolean_t
3352 pmap_remove_b(b_tbl, start, end)
3353 b_tmgr_t *b_tbl;
3354 vm_offset_t start;
3355 vm_offset_t end;
3356 {
3357 boolean_t empty;
3358 int idx;
3359 vm_offset_t nstart, nend, rstart;
3360 c_tmgr_t *c_tbl;
3361 mmu_short_dte_t *b_dte;
3362 mmu_short_pte_t *c_dte;
3363
3364
3365 nstart = MMU_ROUND_UP_B(start);
3366 nend = MMU_ROUND_B(end);
3367
3368 if (start < nstart) {
3369 idx = MMU_TIB(start);
3370 b_dte = &b_tbl->bt_dtbl[idx];
3371 if (MMU_VALID_DT(*b_dte)) {
3372 c_dte = mmu_ptov(MMU_DTE_PA(*b_dte));
3373 c_tbl = mmuC2tmgr(c_dte);
3374 if (end < nstart)
3375 empty = pmap_remove_c(c_tbl, start, end);
3376 else
3377 empty = pmap_remove_c(c_tbl, start, nstart);
3378 if (empty) {
3379 b_dte->attr.raw = MMU_DT_INVALID;
3380 b_tbl->bt_ecnt--;
3381 }
3382 }
3383 }
3384 if (nstart < nend) {
3385 idx = MMU_TIB(nstart);
3386 b_dte = &b_tbl->bt_dtbl[idx];
3387 rstart = nstart;
3388 while (rstart < nend) {
3389 if (MMU_VALID_DT(*b_dte)) {
3390 c_dte = mmu_ptov(MMU_DTE_PA(*b_dte));
3391 c_tbl = mmuC2tmgr(c_dte);
3392 free_c_table(c_tbl, TRUE);
3393 b_dte->attr.raw = MMU_DT_INVALID;
3394 b_tbl->bt_ecnt--;
3395 }
3396 b_dte++;
3397 rstart += MMU_TIB_RANGE;
3398 }
3399 }
3400 if (nend < end) {
3401 idx = MMU_TIB(nend);
3402 b_dte = &b_tbl->bt_dtbl[idx];
3403 if (MMU_VALID_DT(*b_dte)) {
3404 c_dte = mmu_ptov(MMU_DTE_PA(*b_dte));
3405 c_tbl = mmuC2tmgr(c_dte);
3406 empty = pmap_remove_c(c_tbl, nend, end);
3407 if (empty) {
3408 b_dte->attr.raw = MMU_DT_INVALID;
3409 b_tbl->bt_ecnt--;
3410 }
3411 }
3412 }
3413
3414 if (b_tbl->bt_ecnt == 0) {
3415 b_tbl->bt_parent = NULL;
3416 TAILQ_REMOVE(&b_pool, b_tbl, bt_link);
3417 TAILQ_INSERT_HEAD(&b_pool, b_tbl, bt_link);
3418 empty = TRUE;
3419 } else {
3420 empty = FALSE;
3421 }
3422
3423 return empty;
3424 }
3425
3426 /* pmap_remove_c INTERNAL
3427 **
3428 * Remove a range of addresses from the given C table.
3429 */
3430 boolean_t
3431 pmap_remove_c(c_tbl, start, end)
3432 c_tmgr_t *c_tbl;
3433 vm_offset_t start;
3434 vm_offset_t end;
3435 {
3436 boolean_t empty;
3437 int idx;
3438 mmu_short_pte_t *c_pte;
3439
3440 idx = MMU_TIC(start);
3441 c_pte = &c_tbl->ct_dtbl[idx];
3442 for (;start < end; start += MMU_PAGE_SIZE, c_pte++) {
3443 if (MMU_VALID_DT(*c_pte)) {
3444 pmap_remove_pte(c_pte);
3445 c_tbl->ct_ecnt--;
3446 }
3447 }
3448
3449 if (c_tbl->ct_ecnt == 0) {
3450 c_tbl->ct_parent = NULL;
3451 TAILQ_REMOVE(&c_pool, c_tbl, ct_link);
3452 TAILQ_INSERT_HEAD(&c_pool, c_tbl, ct_link);
3453 empty = TRUE;
3454 } else {
3455 empty = FALSE;
3456 }
3457
3458 return empty;
3459 }
3460
3461 /* is_managed INTERNAL
3462 **
3463 * Determine if the given physical address is managed by the PV system.
3464 * Note that this logic assumes that no one will ask for the status of
3465 * addresses which lie in-between the memory banks on the 3/80. If they
3466 * do so, it will falsely report that it is managed.
3467 *
3468 * Note: A "managed" address is one that was reported to the VM system as
3469 * a "usable page" during system startup. As such, the VM system expects the
3470 * pmap module to keep an accurate track of the useage of those pages.
3471 * Any page not given to the VM system at startup does not exist (as far as
3472 * the VM system is concerned) and is therefore "unmanaged." Examples are
3473 * those pages which belong to the ROM monitor and the memory allocated before
3474 * the VM system was started.
3475 */
3476 boolean_t
3477 is_managed(pa)
3478 vm_offset_t pa;
3479 {
3480 if (pa >= avail_start && pa < avail_end)
3481 return TRUE;
3482 else
3483 return FALSE;
3484 }
3485
3486 /* pmap_bootstrap_alloc INTERNAL
3487 **
3488 * Used internally for memory allocation at startup when malloc is not
3489 * available. This code will fail once it crosses the first memory
3490 * bank boundary on the 3/80. Hopefully by then however, the VM system
3491 * will be in charge of allocation.
3492 */
3493 void *
3494 pmap_bootstrap_alloc(size)
3495 int size;
3496 {
3497 void *rtn;
3498
3499 #ifdef PMAP_DEBUG
3500 if (bootstrap_alloc_enabled == FALSE) {
3501 mon_printf("pmap_bootstrap_alloc: disabled\n");
3502 sunmon_abort();
3503 }
3504 #endif
3505
3506 rtn = (void *) virtual_avail;
3507 virtual_avail += size;
3508
3509 #ifdef PMAP_DEBUG
3510 if (virtual_avail > virtual_contig_end) {
3511 mon_printf("pmap_bootstrap_alloc: out of mem\n");
3512 sunmon_abort();
3513 }
3514 #endif
3515
3516 return rtn;
3517 }
3518
3519 /* pmap_bootstap_aalign INTERNAL
3520 **
3521 * Used to insure that the next call to pmap_bootstrap_alloc() will
3522 * return a chunk of memory aligned to the specified size.
3523 *
3524 * Note: This function will only support alignment sizes that are powers
3525 * of two.
3526 */
3527 void
3528 pmap_bootstrap_aalign(size)
3529 int size;
3530 {
3531 int off;
3532
3533 off = virtual_avail & (size - 1);
3534 if (off) {
3535 (void) pmap_bootstrap_alloc(size - off);
3536 }
3537 }
3538
3539 /* pmap_pa_exists
3540 **
3541 * Used by the /dev/mem driver to see if a given PA is memory
3542 * that can be mapped. (The PA is not in a hole.)
3543 */
3544 int
3545 pmap_pa_exists(pa)
3546 vm_offset_t pa;
3547 {
3548 register int i;
3549
3550 for (i = 0; i < SUN3X_NPHYS_RAM_SEGS; i++) {
3551 if ((pa >= avail_mem[i].pmem_start) &&
3552 (pa < avail_mem[i].pmem_end))
3553 return (1);
3554 if (avail_mem[i].pmem_next == NULL)
3555 break;
3556 }
3557 return (0);
3558 }
3559
3560 /* Called only from locore.s and pmap.c */
3561 void _pmap_switch __P((pmap_t pmap));
3562
3563 /*
3564 * _pmap_switch INTERNAL
3565 *
3566 * This is called by locore.s:cpu_switch() when it is
3567 * switching to a new process. Load new translations.
3568 * Note: done in-line by locore.s unless PMAP_DEBUG
3569 *
3570 * Note that we do NOT allocate a context here, but
3571 * share the "kernel only" context until we really
3572 * need our own context for user-space mappings in
3573 * pmap_enter_user(). [ s/context/mmu A table/ ]
3574 */
3575 void
3576 _pmap_switch(pmap)
3577 pmap_t pmap;
3578 {
3579 u_long rootpa;
3580
3581 /*
3582 * Only do reload/flush if we have to.
3583 * Note that if the old and new process
3584 * were BOTH using the "null" context,
3585 * then this will NOT flush the TLB.
3586 */
3587 rootpa = pmap->pm_a_phys;
3588 if (kernel_crp.rp_addr != rootpa) {
3589 DPRINT(("pmap_activate(%p)\n", pmap));
3590 kernel_crp.rp_addr = rootpa;
3591 loadcrp(&kernel_crp);
3592 TBIAU();
3593 }
3594 }
3595
3596 /*
3597 * Exported version of pmap_activate(). This is called from the
3598 * machine-independent VM code when a process is given a new pmap.
3599 * If (p == curproc) do like cpu_switch would do; otherwise just
3600 * take this as notification that the process has a new pmap.
3601 */
3602 void
3603 pmap_activate(p)
3604 struct proc *p;
3605 {
3606 pmap_t pmap = p->p_vmspace->vm_map.pmap;
3607 int s;
3608
3609 if (p == curproc) {
3610 s = splvm();
3611 _pmap_switch(pmap);
3612 splx(s);
3613 }
3614 }
3615
3616 /*
3617 * pmap_deactivate INTERFACE
3618 **
3619 * This is called to deactivate the specified process's address space.
3620 * XXX The semantics of this function are currently not well-defined.
3621 */
3622 void
3623 pmap_deactivate(p)
3624 struct proc *p;
3625 {
3626 /* not implemented. */
3627 }
3628
3629 /*
3630 * Fill in the sun3x-specific part of the kernel core header
3631 * for dumpsys(). (See machdep.c for the rest.)
3632 */
3633 void
3634 pmap_kcore_hdr(sh)
3635 struct sun3x_kcore_hdr *sh;
3636 {
3637 u_long spa, len;
3638 int i;
3639
3640 sh->pg_frame = MMU_SHORT_PTE_BASEADDR;
3641 sh->pg_valid = MMU_DT_PAGE;
3642 sh->contig_end = virtual_contig_end;
3643 sh->kernCbase = (u_long) kernCbase;
3644 for (i = 0; i < SUN3X_NPHYS_RAM_SEGS; i++) {
3645 spa = avail_mem[i].pmem_start;
3646 spa = m68k_trunc_page(spa);
3647 len = avail_mem[i].pmem_end - spa;
3648 len = m68k_round_page(len);
3649 sh->ram_segs[i].start = spa;
3650 sh->ram_segs[i].size = len;
3651 }
3652 }
3653
3654
3655 /* pmap_virtual_space INTERFACE
3656 **
3657 * Return the current available range of virtual addresses in the
3658 * arguuments provided. Only really called once.
3659 */
3660 void
3661 pmap_virtual_space(vstart, vend)
3662 vm_offset_t *vstart, *vend;
3663 {
3664 *vstart = virtual_avail;
3665 *vend = virtual_end;
3666 }
3667
3668 /*
3669 * Provide memory to the VM system.
3670 *
3671 * Assume avail_start is always in the
3672 * first segment as pmap_bootstrap does.
3673 */
3674 static void
3675 pmap_page_upload()
3676 {
3677 vm_offset_t a, b; /* memory range */
3678 int i;
3679
3680 /* Supply the memory in segments. */
3681 for (i = 0; i < SUN3X_NPHYS_RAM_SEGS; i++) {
3682 a = atop(avail_mem[i].pmem_start);
3683 b = atop(avail_mem[i].pmem_end);
3684 if (i == 0)
3685 a = atop(avail_start);
3686 if (avail_mem[i].pmem_end > avail_end)
3687 b = atop(avail_end);
3688
3689 uvm_page_physload(a, b, a, b, VM_FREELIST_DEFAULT);
3690
3691 if (avail_mem[i].pmem_next == NULL)
3692 break;
3693 }
3694 }
3695
3696 /* pmap_count INTERFACE
3697 **
3698 * Return the number of resident (valid) pages in the given pmap.
3699 *
3700 * Note: If this function is handed the kernel map, it will report
3701 * that it has no mappings. Hopefully the VM system won't ask for kernel
3702 * map statistics.
3703 */
3704 segsz_t
3705 pmap_count(pmap, type)
3706 pmap_t pmap;
3707 int type;
3708 {
3709 u_int count;
3710 int a_idx, b_idx;
3711 a_tmgr_t *a_tbl;
3712 b_tmgr_t *b_tbl;
3713 c_tmgr_t *c_tbl;
3714
3715 /*
3716 * If the pmap does not have its own A table manager, it has no
3717 * valid entires.
3718 */
3719 if (pmap->pm_a_tmgr == NULL)
3720 return 0;
3721
3722 a_tbl = pmap->pm_a_tmgr;
3723
3724 count = 0;
3725 for (a_idx = 0; a_idx < MMU_TIA(KERNBASE); a_idx++) {
3726 if (MMU_VALID_DT(a_tbl->at_dtbl[a_idx])) {
3727 b_tbl = mmuB2tmgr(mmu_ptov(a_tbl->at_dtbl[a_idx].addr.raw));
3728 for (b_idx = 0; b_idx < MMU_B_TBL_SIZE; b_idx++) {
3729 if (MMU_VALID_DT(b_tbl->bt_dtbl[b_idx])) {
3730 c_tbl = mmuC2tmgr(
3731 mmu_ptov(MMU_DTE_PA(b_tbl->bt_dtbl[b_idx])));
3732 if (type == 0)
3733 /*
3734 * A resident entry count has been requested.
3735 */
3736 count += c_tbl->ct_ecnt;
3737 else
3738 /*
3739 * A wired entry count has been requested.
3740 */
3741 count += c_tbl->ct_wcnt;
3742 }
3743 }
3744 }
3745 }
3746
3747 return count;
3748 }
3749
3750 /************************ SUN3 COMPATIBILITY ROUTINES ********************
3751 * The following routines are only used by DDB for tricky kernel text *
3752 * text operations in db_memrw.c. They are provided for sun3 *
3753 * compatibility. *
3754 *************************************************************************/
3755 /* get_pte INTERNAL
3756 **
3757 * Return the page descriptor the describes the kernel mapping
3758 * of the given virtual address.
3759 */
3760 extern u_long ptest_addr __P((u_long)); /* XXX: locore.s */
3761 u_int
3762 get_pte(va)
3763 vm_offset_t va;
3764 {
3765 u_long pte_pa;
3766 mmu_short_pte_t *pte;
3767
3768 /* Get the physical address of the PTE */
3769 pte_pa = ptest_addr(va & ~PGOFSET);
3770
3771 /* Convert to a virtual address... */
3772 pte = (mmu_short_pte_t *) (KERNBASE + pte_pa);
3773
3774 /* Make sure it is in our level-C tables... */
3775 if ((pte < kernCbase) ||
3776 (pte >= &mmuCbase[NUM_USER_PTES]))
3777 return 0;
3778
3779 /* ... and just return its contents. */
3780 return (pte->attr.raw);
3781 }
3782
3783
3784 /* set_pte INTERNAL
3785 **
3786 * Set the page descriptor that describes the kernel mapping
3787 * of the given virtual address.
3788 */
3789 void
3790 set_pte(va, pte)
3791 vm_offset_t va;
3792 u_int pte;
3793 {
3794 u_long idx;
3795
3796 if (va < KERNBASE)
3797 return;
3798
3799 idx = (unsigned long) m68k_btop(va - KERNBASE);
3800 kernCbase[idx].attr.raw = pte;
3801 TBIS(va);
3802 }
3803
3804 /*
3805 * Routine: pmap_procwr
3806 *
3807 * Function:
3808 * Synchronize caches corresponding to [addr, addr+len) in p.
3809 */
3810 void
3811 pmap_procwr(p, va, len)
3812 struct proc *p;
3813 vaddr_t va;
3814 size_t len;
3815 {
3816 (void)cachectl1(0x80000004, va, len, p);
3817 }
3818
3819
3820 #ifdef PMAP_DEBUG
3821 /************************** DEBUGGING ROUTINES **************************
3822 * The following routines are meant to be an aid to debugging the pmap *
3823 * system. They are callable from the DDB command line and should be *
3824 * prepared to be handed unstable or incomplete states of the system. *
3825 ************************************************************************/
3826
3827 /* pv_list
3828 **
3829 * List all pages found on the pv list for the given physical page.
3830 * To avoid endless loops, the listing will stop at the end of the list
3831 * or after 'n' entries - whichever comes first.
3832 */
3833 void
3834 pv_list(pa, n)
3835 vm_offset_t pa;
3836 int n;
3837 {
3838 int idx;
3839 vm_offset_t va;
3840 pv_t *pv;
3841 c_tmgr_t *c_tbl;
3842 pmap_t pmap;
3843
3844 pv = pa2pv(pa);
3845 idx = pv->pv_idx;
3846
3847 for (;idx != PVE_EOL && n > 0;
3848 idx=pvebase[idx].pve_next, n--) {
3849
3850 va = pmap_get_pteinfo(idx, &pmap, &c_tbl);
3851 printf("idx %d, pmap 0x%x, va 0x%x, c_tbl %x\n",
3852 idx, (u_int) pmap, (u_int) va, (u_int) c_tbl);
3853 }
3854 }
3855 #endif /* PMAP_DEBUG */
3856
3857 #ifdef NOT_YET
3858 /* and maybe not ever */
3859 /************************** LOW-LEVEL ROUTINES **************************
3860 * These routines will eventualy be re-written into assembly and placed *
3861 * in locore.s. They are here now as stubs so that the pmap module can *
3862 * be linked as a standalone user program for testing. *
3863 ************************************************************************/
3864 /* flush_atc_crp INTERNAL
3865 **
3866 * Flush all page descriptors derived from the given CPU Root Pointer
3867 * (CRP), or 'A' table as it is known here, from the 68851's automatic
3868 * cache.
3869 */
3870 void
3871 flush_atc_crp(a_tbl)
3872 {
3873 mmu_long_rp_t rp;
3874
3875 /* Create a temporary root table pointer that points to the
3876 * given A table.
3877 */
3878 rp.attr.raw = ~MMU_LONG_RP_LU;
3879 rp.addr.raw = (unsigned int) a_tbl;
3880
3881 mmu_pflushr(&rp);
3882 /* mmu_pflushr:
3883 * movel sp(4)@,a0
3884 * pflushr a0@
3885 * rts
3886 */
3887 }
3888 #endif /* NOT_YET */
3889