Home | History | Annotate | Line # | Download | only in sun3x
pmap.c revision 1.73
      1 /*	$NetBSD: pmap.c,v 1.73 2001/09/10 21:19:28 chris Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1996, 1997 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jeremy Cooper.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  * 3. All advertising materials mentioning features or use of this software
     19  *    must display the following acknowledgement:
     20  *        This product includes software developed by the NetBSD
     21  *        Foundation, Inc. and its contributors.
     22  * 4. Neither the name of The NetBSD Foundation nor the names of its
     23  *    contributors may be used to endorse or promote products derived
     24  *    from this software without specific prior written permission.
     25  *
     26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36  * POSSIBILITY OF SUCH DAMAGE.
     37  */
     38 
     39 /*
     40  * XXX These comments aren't quite accurate.  Need to change.
     41  * The sun3x uses the MC68851 Memory Management Unit, which is built
     42  * into the CPU.  The 68851 maps virtual to physical addresses using
     43  * a multi-level table lookup, which is stored in the very memory that
     44  * it maps.  The number of levels of lookup is configurable from one
     45  * to four.  In this implementation, we use three, named 'A' through 'C'.
     46  *
     47  * The MMU translates virtual addresses into physical addresses by
     48  * traversing these tables in a proccess called a 'table walk'.  The most
     49  * significant 7 bits of the Virtual Address ('VA') being translated are
     50  * used as an index into the level A table, whose base in physical memory
     51  * is stored in a special MMU register, the 'CPU Root Pointer' or CRP.  The
     52  * address found at that index in the A table is used as the base
     53  * address for the next table, the B table.  The next six bits of the VA are
     54  * used as an index into the B table, which in turn gives the base address
     55  * of the third and final C table.
     56  *
     57  * The next six bits of the VA are used as an index into the C table to
     58  * locate a Page Table Entry (PTE).  The PTE is a physical address in memory
     59  * to which the remaining 13 bits of the VA are added, producing the
     60  * mapped physical address.
     61  *
     62  * To map the entire memory space in this manner would require 2114296 bytes
     63  * of page tables per process - quite expensive.  Instead we will
     64  * allocate a fixed but considerably smaller space for the page tables at
     65  * the time the VM system is initialized.  When the pmap code is asked by
     66  * the kernel to map a VA to a PA, it allocates tables as needed from this
     67  * pool.  When there are no more tables in the pool, tables are stolen
     68  * from the oldest mapped entries in the tree.  This is only possible
     69  * because all memory mappings are stored in the kernel memory map
     70  * structures, independent of the pmap structures.  A VA which references
     71  * one of these invalidated maps will cause a page fault.  The kernel
     72  * will determine that the page fault was caused by a task using a valid
     73  * VA, but for some reason (which does not concern it), that address was
     74  * not mapped.  It will ask the pmap code to re-map the entry and then
     75  * it will resume executing the faulting task.
     76  *
     77  * In this manner the most efficient use of the page table space is
     78  * achieved.  Tasks which do not execute often will have their tables
     79  * stolen and reused by tasks which execute more frequently.  The best
     80  * size for the page table pool will probably be determined by
     81  * experimentation.
     82  *
     83  * You read all of the comments so far.  Good for you.
     84  * Now go play!
     85  */
     86 
     87 /*** A Note About the 68851 Address Translation Cache
     88  * The MC68851 has a 64 entry cache, called the Address Translation Cache
     89  * or 'ATC'.  This cache stores the most recently used page descriptors
     90  * accessed by the MMU when it does translations.  Using a marker called a
     91  * 'task alias' the MMU can store the descriptors from 8 different table
     92  * spaces concurrently.  The task alias is associated with the base
     93  * address of the level A table of that address space.  When an address
     94  * space is currently active (the CRP currently points to its A table)
     95  * the only cached descriptors that will be obeyed are ones which have a
     96  * matching task alias of the current space associated with them.
     97  *
     98  * Since the cache is always consulted before any table lookups are done,
     99  * it is important that it accurately reflect the state of the MMU tables.
    100  * Whenever a change has been made to a table that has been loaded into
    101  * the MMU, the code must be sure to flush any cached entries that are
    102  * affected by the change.  These instances are documented in the code at
    103  * various points.
    104  */
    105 /*** A Note About the Note About the 68851 Address Translation Cache
    106  * 4 months into this code I discovered that the sun3x does not have
    107  * a MC68851 chip. Instead, it has a version of this MMU that is part of the
    108  * the 68030 CPU.
    109  * All though it behaves very similarly to the 68851, it only has 1 task
    110  * alias and a 22 entry cache.  So sadly (or happily), the first paragraph
    111  * of the previous note does not apply to the sun3x pmap.
    112  */
    113 
    114 #include "opt_ddb.h"
    115 
    116 #include <sys/param.h>
    117 #include <sys/systm.h>
    118 #include <sys/proc.h>
    119 #include <sys/malloc.h>
    120 #include <sys/pool.h>
    121 #include <sys/user.h>
    122 #include <sys/queue.h>
    123 #include <sys/kcore.h>
    124 
    125 #include <uvm/uvm.h>
    126 
    127 #include <machine/cpu.h>
    128 #include <machine/kcore.h>
    129 #include <machine/mon.h>
    130 #include <machine/pmap.h>
    131 #include <machine/pte.h>
    132 #include <machine/vmparam.h>
    133 
    134 #include <sun3/sun3/cache.h>
    135 #include <sun3/sun3/machdep.h>
    136 
    137 #include "pmap_pvt.h"
    138 
    139 /* XXX - What headers declare these? */
    140 extern struct pcb *curpcb;
    141 extern int physmem;
    142 
    143 /* Defined in locore.s */
    144 extern char kernel_text[];
    145 
    146 /* Defined by the linker */
    147 extern char etext[], edata[], end[];
    148 extern char *esym;	/* DDB */
    149 
    150 /*************************** DEBUGGING DEFINITIONS ***********************
    151  * Macros, preprocessor defines and variables used in debugging can make *
    152  * code hard to read.  Anything used exclusively for debugging purposes  *
    153  * is defined here to avoid having such mess scattered around the file.  *
    154  *************************************************************************/
    155 #ifdef	PMAP_DEBUG
    156 /*
    157  * To aid the debugging process, macros should be expanded into smaller steps
    158  * that accomplish the same goal, yet provide convenient places for placing
    159  * breakpoints.  When this code is compiled with PMAP_DEBUG mode defined, the
    160  * 'INLINE' keyword is defined to an empty string.  This way, any function
    161  * defined to be a 'static INLINE' will become 'outlined' and compiled as
    162  * a separate function, which is much easier to debug.
    163  */
    164 #define	INLINE	/* nothing */
    165 
    166 /*
    167  * It is sometimes convenient to watch the activity of a particular table
    168  * in the system.  The following variables are used for that purpose.
    169  */
    170 a_tmgr_t *pmap_watch_atbl = 0;
    171 b_tmgr_t *pmap_watch_btbl = 0;
    172 c_tmgr_t *pmap_watch_ctbl = 0;
    173 
    174 int pmap_debug = 0;
    175 #define DPRINT(args) if (pmap_debug) printf args
    176 
    177 #else	/********** Stuff below is defined if NOT debugging **************/
    178 
    179 #define	INLINE	inline
    180 #define DPRINT(args)  /* nada */
    181 
    182 #endif	/* PMAP_DEBUG */
    183 /*********************** END OF DEBUGGING DEFINITIONS ********************/
    184 
    185 /*** Management Structure - Memory Layout
    186  * For every MMU table in the sun3x pmap system there must be a way to
    187  * manage it; we must know which process is using it, what other tables
    188  * depend on it, and whether or not it contains any locked pages.  This
    189  * is solved by the creation of 'table management'  or 'tmgr'
    190  * structures.  One for each MMU table in the system.
    191  *
    192  *                        MAP OF MEMORY USED BY THE PMAP SYSTEM
    193  *
    194  *      towards lower memory
    195  * kernAbase -> +-------------------------------------------------------+
    196  *              | Kernel     MMU A level table                          |
    197  * kernBbase -> +-------------------------------------------------------+
    198  *              | Kernel     MMU B level tables                         |
    199  * kernCbase -> +-------------------------------------------------------+
    200  *              |                                                       |
    201  *              | Kernel     MMU C level tables                         |
    202  *              |                                                       |
    203  * mmuCbase  -> +-------------------------------------------------------+
    204  *              | User       MMU C level tables                         |
    205  * mmuAbase  -> +-------------------------------------------------------+
    206  *              |                                                       |
    207  *              | User       MMU A level tables                         |
    208  *              |                                                       |
    209  * mmuBbase  -> +-------------------------------------------------------+
    210  *              | User       MMU B level tables                         |
    211  * tmgrAbase -> +-------------------------------------------------------+
    212  *              |  TMGR A level table structures                        |
    213  * tmgrBbase -> +-------------------------------------------------------+
    214  *              |  TMGR B level table structures                        |
    215  * tmgrCbase -> +-------------------------------------------------------+
    216  *              |  TMGR C level table structures                        |
    217  * pvbase    -> +-------------------------------------------------------+
    218  *              |  Physical to Virtual mapping table (list heads)       |
    219  * pvebase   -> +-------------------------------------------------------+
    220  *              |  Physical to Virtual mapping table (list elements)    |
    221  *              |                                                       |
    222  *              +-------------------------------------------------------+
    223  *      towards higher memory
    224  *
    225  * For every A table in the MMU A area, there will be a corresponding
    226  * a_tmgr structure in the TMGR A area.  The same will be true for
    227  * the B and C tables.  This arrangement will make it easy to find the
    228  * controling tmgr structure for any table in the system by use of
    229  * (relatively) simple macros.
    230  */
    231 
    232 /*
    233  * Global variables for storing the base addresses for the areas
    234  * labeled above.
    235  */
    236 static vaddr_t  	kernAphys;
    237 static mmu_long_dte_t	*kernAbase;
    238 static mmu_short_dte_t	*kernBbase;
    239 static mmu_short_pte_t	*kernCbase;
    240 static mmu_short_pte_t	*mmuCbase;
    241 static mmu_short_dte_t	*mmuBbase;
    242 static mmu_long_dte_t	*mmuAbase;
    243 static a_tmgr_t		*Atmgrbase;
    244 static b_tmgr_t		*Btmgrbase;
    245 static c_tmgr_t		*Ctmgrbase;
    246 static pv_t 		*pvbase;
    247 static pv_elem_t	*pvebase;
    248 struct pmap 		kernel_pmap;
    249 
    250 /*
    251  * This holds the CRP currently loaded into the MMU.
    252  */
    253 struct mmu_rootptr kernel_crp;
    254 
    255 /*
    256  * Just all around global variables.
    257  */
    258 static TAILQ_HEAD(a_pool_head_struct, a_tmgr_struct) a_pool;
    259 static TAILQ_HEAD(b_pool_head_struct, b_tmgr_struct) b_pool;
    260 static TAILQ_HEAD(c_pool_head_struct, c_tmgr_struct) c_pool;
    261 
    262 
    263 /*
    264  * Flags used to mark the safety/availability of certain operations or
    265  * resources.
    266  */
    267 static boolean_t bootstrap_alloc_enabled = FALSE; /*Safe to use pmap_bootstrap_alloc().*/
    268 int tmp_vpages_inuse;	/* Temporary virtual pages are in use */
    269 
    270 /*
    271  * XXX:  For now, retain the traditional variables that were
    272  * used in the old pmap/vm interface (without NONCONTIG).
    273  */
    274 /* Kernel virtual address space available: */
    275 vaddr_t	virtual_avail, virtual_end;
    276 /* Physical address space available: */
    277 paddr_t	avail_start, avail_end;
    278 
    279 /* This keep track of the end of the contiguously mapped range. */
    280 vaddr_t virtual_contig_end;
    281 
    282 /* Physical address used by pmap_next_page() */
    283 paddr_t avail_next;
    284 
    285 /* These are used by pmap_copy_page(), etc. */
    286 vaddr_t tmp_vpages[2];
    287 
    288 /* memory pool for pmap structures */
    289 struct pool	pmap_pmap_pool;
    290 
    291 /*
    292  * The 3/80 is the only member of the sun3x family that has non-contiguous
    293  * physical memory.  Memory is divided into 4 banks which are physically
    294  * locatable on the system board.  Although the size of these banks varies
    295  * with the size of memory they contain, their base addresses are
    296  * permenently fixed.  The following structure, which describes these
    297  * banks, is initialized by pmap_bootstrap() after it reads from a similar
    298  * structure provided by the ROM Monitor.
    299  *
    300  * For the other machines in the sun3x architecture which do have contiguous
    301  * RAM, this list will have only one entry, which will describe the entire
    302  * range of available memory.
    303  */
    304 struct pmap_physmem_struct avail_mem[SUN3X_NPHYS_RAM_SEGS];
    305 u_int total_phys_mem;
    306 
    307 /*************************************************************************/
    308 
    309 /*
    310  * XXX - Should "tune" these based on statistics.
    311  *
    312  * My first guess about the relative numbers of these needed is
    313  * based on the fact that a "typical" process will have several
    314  * pages mapped at low virtual addresses (text, data, bss), then
    315  * some mapped shared libraries, and then some stack pages mapped
    316  * near the high end of the VA space.  Each process can use only
    317  * one A table, and most will use only two B tables (maybe three)
    318  * and probably about four C tables.  Therefore, the first guess
    319  * at the relative numbers of these needed is 1:2:4 -gwr
    320  *
    321  * The number of C tables needed is closely related to the amount
    322  * of physical memory available plus a certain amount attributable
    323  * to the use of double mappings.  With a few simulation statistics
    324  * we can find a reasonably good estimation of this unknown value.
    325  * Armed with that and the above ratios, we have a good idea of what
    326  * is needed at each level. -j
    327  *
    328  * Note: It is not physical memory memory size, but the total mapped
    329  * virtual space required by the combined working sets of all the
    330  * currently _runnable_ processes.  (Sleeping ones don't count.)
    331  * The amount of physical memory should be irrelevant. -gwr
    332  */
    333 #ifdef	FIXED_NTABLES
    334 #define NUM_A_TABLES	16
    335 #define NUM_B_TABLES	32
    336 #define NUM_C_TABLES	64
    337 #else
    338 unsigned int	NUM_A_TABLES, NUM_B_TABLES, NUM_C_TABLES;
    339 #endif	/* FIXED_NTABLES */
    340 
    341 /*
    342  * This determines our total virtual mapping capacity.
    343  * Yes, it is a FIXED value so we can pre-allocate.
    344  */
    345 #define NUM_USER_PTES	(NUM_C_TABLES * MMU_C_TBL_SIZE)
    346 
    347 /*
    348  * The size of the Kernel Virtual Address Space (KVAS)
    349  * for purposes of MMU table allocation is -KERNBASE
    350  * (length from KERNBASE to 0xFFFFffff)
    351  */
    352 #define	KVAS_SIZE		(-KERNBASE)
    353 
    354 /* Numbers of kernel MMU tables to support KVAS_SIZE. */
    355 #define KERN_B_TABLES	(KVAS_SIZE >> MMU_TIA_SHIFT)
    356 #define KERN_C_TABLES	(KVAS_SIZE >> MMU_TIB_SHIFT)
    357 #define	NUM_KERN_PTES	(KVAS_SIZE >> MMU_TIC_SHIFT)
    358 
    359 /*************************** MISCELANEOUS MACROS *************************/
    360 #define pmap_lock(pmap) simple_lock(&pmap->pm_lock)
    361 #define pmap_unlock(pmap) simple_unlock(&pmap->pm_lock)
    362 #define pmap_add_ref(pmap) ++pmap->pm_refcount
    363 #define pmap_del_ref(pmap) --pmap->pm_refcount
    364 #define pmap_refcount(pmap) pmap->pm_refcount
    365 
    366 void *pmap_bootstrap_alloc(int);
    367 
    368 static INLINE void *mmu_ptov __P((paddr_t));
    369 static INLINE paddr_t mmu_vtop __P((void *));
    370 
    371 #if	0
    372 static INLINE a_tmgr_t * mmuA2tmgr __P((mmu_long_dte_t *));
    373 #endif /* 0 */
    374 static INLINE b_tmgr_t * mmuB2tmgr __P((mmu_short_dte_t *));
    375 static INLINE c_tmgr_t * mmuC2tmgr __P((mmu_short_pte_t *));
    376 
    377 static INLINE pv_t *pa2pv __P((paddr_t));
    378 static INLINE int   pteidx __P((mmu_short_pte_t *));
    379 static INLINE pmap_t current_pmap __P((void));
    380 
    381 /*
    382  * We can always convert between virtual and physical addresses
    383  * for anything in the range [KERNBASE ... avail_start] because
    384  * that range is GUARANTEED to be mapped linearly.
    385  * We rely heavily upon this feature!
    386  */
    387 static INLINE void *
    388 mmu_ptov(pa)
    389 	paddr_t pa;
    390 {
    391 	vaddr_t va;
    392 
    393 	va = (pa + KERNBASE);
    394 #ifdef	PMAP_DEBUG
    395 	if ((va < KERNBASE) || (va >= virtual_contig_end))
    396 		panic("mmu_ptov");
    397 #endif
    398 	return ((void*)va);
    399 }
    400 
    401 static INLINE paddr_t
    402 mmu_vtop(vva)
    403 	void *vva;
    404 {
    405 	vaddr_t va;
    406 
    407 	va = (vaddr_t)vva;
    408 #ifdef	PMAP_DEBUG
    409 	if ((va < KERNBASE) || (va >= virtual_contig_end))
    410 		panic("mmu_vtop");
    411 #endif
    412 	return (va - KERNBASE);
    413 }
    414 
    415 /*
    416  * These macros map MMU tables to their corresponding manager structures.
    417  * They are needed quite often because many of the pointers in the pmap
    418  * system reference MMU tables and not the structures that control them.
    419  * There needs to be a way to find one when given the other and these
    420  * macros do so by taking advantage of the memory layout described above.
    421  * Here's a quick step through the first macro, mmuA2tmgr():
    422  *
    423  * 1) find the offset of the given MMU A table from the base of its table
    424  *    pool (table - mmuAbase).
    425  * 2) convert this offset into a table index by dividing it by the
    426  *    size of one MMU 'A' table. (sizeof(mmu_long_dte_t) * MMU_A_TBL_SIZE)
    427  * 3) use this index to select the corresponding 'A' table manager
    428  *    structure from the 'A' table manager pool (Atmgrbase[index]).
    429  */
    430 /*  This function is not currently used. */
    431 #if	0
    432 static INLINE a_tmgr_t *
    433 mmuA2tmgr(mmuAtbl)
    434 	mmu_long_dte_t *mmuAtbl;
    435 {
    436 	int idx;
    437 
    438 	/* Which table is this in? */
    439 	idx = (mmuAtbl - mmuAbase) / MMU_A_TBL_SIZE;
    440 #ifdef	PMAP_DEBUG
    441 	if ((idx < 0) || (idx >= NUM_A_TABLES))
    442 		panic("mmuA2tmgr");
    443 #endif
    444 	return (&Atmgrbase[idx]);
    445 }
    446 #endif	/* 0 */
    447 
    448 static INLINE b_tmgr_t *
    449 mmuB2tmgr(mmuBtbl)
    450 	mmu_short_dte_t *mmuBtbl;
    451 {
    452 	int idx;
    453 
    454 	/* Which table is this in? */
    455 	idx = (mmuBtbl - mmuBbase) / MMU_B_TBL_SIZE;
    456 #ifdef	PMAP_DEBUG
    457 	if ((idx < 0) || (idx >= NUM_B_TABLES))
    458 		panic("mmuB2tmgr");
    459 #endif
    460 	return (&Btmgrbase[idx]);
    461 }
    462 
    463 /* mmuC2tmgr			INTERNAL
    464  **
    465  * Given a pte known to belong to a C table, return the address of
    466  * that table's management structure.
    467  */
    468 static INLINE c_tmgr_t *
    469 mmuC2tmgr(mmuCtbl)
    470 	mmu_short_pte_t *mmuCtbl;
    471 {
    472 	int idx;
    473 
    474 	/* Which table is this in? */
    475 	idx = (mmuCtbl - mmuCbase) / MMU_C_TBL_SIZE;
    476 #ifdef	PMAP_DEBUG
    477 	if ((idx < 0) || (idx >= NUM_C_TABLES))
    478 		panic("mmuC2tmgr");
    479 #endif
    480 	return (&Ctmgrbase[idx]);
    481 }
    482 
    483 /* This is now a function call below.
    484  * #define pa2pv(pa) \
    485  *	(&pvbase[(unsigned long)\
    486  *		m68k_btop(pa)\
    487  *	])
    488  */
    489 
    490 /* pa2pv			INTERNAL
    491  **
    492  * Return the pv_list_head element which manages the given physical
    493  * address.
    494  */
    495 static INLINE pv_t *
    496 pa2pv(pa)
    497 	paddr_t pa;
    498 {
    499 	struct pmap_physmem_struct *bank;
    500 	int idx;
    501 
    502 	bank = &avail_mem[0];
    503 	while (pa >= bank->pmem_end)
    504 		bank = bank->pmem_next;
    505 
    506 	pa -= bank->pmem_start;
    507 	idx = bank->pmem_pvbase + m68k_btop(pa);
    508 #ifdef	PMAP_DEBUG
    509 	if ((idx < 0) || (idx >= physmem))
    510 		panic("pa2pv");
    511 #endif
    512 	return &pvbase[idx];
    513 }
    514 
    515 /* pteidx			INTERNAL
    516  **
    517  * Return the index of the given PTE within the entire fixed table of
    518  * PTEs.
    519  */
    520 static INLINE int
    521 pteidx(pte)
    522 	mmu_short_pte_t *pte;
    523 {
    524 	return (pte - kernCbase);
    525 }
    526 
    527 /*
    528  * This just offers a place to put some debugging checks,
    529  * and reduces the number of places "curproc" appears...
    530  */
    531 static INLINE pmap_t
    532 current_pmap()
    533 {
    534 	struct proc *p;
    535 	struct vmspace *vm;
    536 	struct vm_map *map;
    537 	pmap_t	pmap;
    538 
    539 	p = curproc;	/* XXX */
    540 	if (p == NULL)
    541 		pmap = &kernel_pmap;
    542 	else {
    543 		vm = p->p_vmspace;
    544 		map = &vm->vm_map;
    545 		pmap = vm_map_pmap(map);
    546 	}
    547 
    548 	return (pmap);
    549 }
    550 
    551 
    552 /*************************** FUNCTION DEFINITIONS ************************
    553  * These appear here merely for the compiler to enforce type checking on *
    554  * all function calls.                                                   *
    555  *************************************************************************/
    556 
    557 /** Internal functions
    558  ** Most functions used only within this module are defined in
    559  **   pmap_pvt.h (why not here if used only here?)
    560  **/
    561 static void pmap_page_upload __P((void));
    562 
    563 /** Interface functions
    564  ** - functions required by the Mach VM Pmap interface, with MACHINE_CONTIG
    565  **   defined.
    566  **/
    567 void pmap_pinit __P((pmap_t));
    568 void pmap_release __P((pmap_t));
    569 
    570 /********************************** CODE ********************************
    571  * Functions that are called from other parts of the kernel are labeled *
    572  * as 'INTERFACE' functions.  Functions that are only called from       *
    573  * within the pmap module are labeled as 'INTERNAL' functions.          *
    574  * Functions that are internal, but are not (currently) used at all are *
    575  * labeled 'INTERNAL_X'.                                                *
    576  ************************************************************************/
    577 
    578 /* pmap_bootstrap			INTERNAL
    579  **
    580  * Initializes the pmap system.  Called at boot time from
    581  * locore2.c:_vm_init()
    582  *
    583  * Reminder: having a pmap_bootstrap_alloc() and also having the VM
    584  *           system implement pmap_steal_memory() is redundant.
    585  *           Don't release this code without removing one or the other!
    586  */
    587 void
    588 pmap_bootstrap(nextva)
    589 	vaddr_t nextva;
    590 {
    591 	struct physmemory *membank;
    592 	struct pmap_physmem_struct *pmap_membank;
    593 	vaddr_t va, eva;
    594 	paddr_t pa;
    595 	int b, c, i, j;	/* running table counts */
    596 	int size, resvmem;
    597 
    598 	/*
    599 	 * This function is called by __bootstrap after it has
    600 	 * determined the type of machine and made the appropriate
    601 	 * patches to the ROM vectors (XXX- I don't quite know what I meant
    602 	 * by that.)  It allocates and sets up enough of the pmap system
    603 	 * to manage the kernel's address space.
    604 	 */
    605 
    606 	/*
    607 	 * Determine the range of kernel virtual and physical
    608 	 * space available. Note that we ABSOLUTELY DEPEND on
    609 	 * the fact that the first bank of memory (4MB) is
    610 	 * mapped linearly to KERNBASE (which we guaranteed in
    611 	 * the first instructions of locore.s).
    612 	 * That is plenty for our bootstrap work.
    613 	 */
    614 	virtual_avail = m68k_round_page(nextva);
    615 	virtual_contig_end = KERNBASE + 0x400000; /* +4MB */
    616 	virtual_end = VM_MAX_KERNEL_ADDRESS;
    617 	/* Don't need avail_start til later. */
    618 
    619 	/* We may now call pmap_bootstrap_alloc(). */
    620 	bootstrap_alloc_enabled = TRUE;
    621 
    622 	/*
    623 	 * This is a somewhat unwrapped loop to deal with
    624 	 * copying the PROM's 'phsymem' banks into the pmap's
    625 	 * banks.  The following is always assumed:
    626 	 * 1. There is always at least one bank of memory.
    627 	 * 2. There is always a last bank of memory, and its
    628 	 *    pmem_next member must be set to NULL.
    629 	 */
    630 	membank = romVectorPtr->v_physmemory;
    631 	pmap_membank = avail_mem;
    632 	total_phys_mem = 0;
    633 
    634 	for (;;) { /* break on !membank */
    635 		pmap_membank->pmem_start = membank->address;
    636 		pmap_membank->pmem_end = membank->address + membank->size;
    637 		total_phys_mem += membank->size;
    638 		membank = membank->next;
    639 		if (!membank)
    640 			break;
    641 		/* This silly syntax arises because pmap_membank
    642 		 * is really a pre-allocated array, but it is put into
    643 		 * use as a linked list.
    644 		 */
    645 		pmap_membank->pmem_next = pmap_membank + 1;
    646 		pmap_membank = pmap_membank->pmem_next;
    647 	}
    648 	/* This is the last element. */
    649 	pmap_membank->pmem_next = NULL;
    650 
    651 	/*
    652 	 * Note: total_phys_mem, physmem represent
    653 	 * actual physical memory, including that
    654 	 * reserved for the PROM monitor.
    655 	 */
    656 	physmem = btoc(total_phys_mem);
    657 
    658 	/*
    659 	 * Avail_end is set to the first byte of physical memory
    660 	 * after the end of the last bank.  We use this only to
    661 	 * determine if a physical address is "managed" memory.
    662 	 * This address range should be reduced to prevent the
    663 	 * physical pages needed by the PROM monitor from being used
    664 	 * in the VM system.
    665 	 */
    666 	resvmem = total_phys_mem - *(romVectorPtr->memoryAvail);
    667 	resvmem = m68k_round_page(resvmem);
    668 	avail_end = pmap_membank->pmem_end - resvmem;
    669 
    670 	/*
    671 	 * First allocate enough kernel MMU tables to map all
    672 	 * of kernel virtual space from KERNBASE to 0xFFFFFFFF.
    673 	 * Note: All must be aligned on 256 byte boundaries.
    674 	 * Start with the level-A table (one of those).
    675 	 */
    676 	size = sizeof(mmu_long_dte_t) * MMU_A_TBL_SIZE;
    677 	kernAbase = pmap_bootstrap_alloc(size);
    678 	memset(kernAbase, 0, size);
    679 
    680 	/* Now the level-B kernel tables... */
    681 	size = sizeof(mmu_short_dte_t) * MMU_B_TBL_SIZE * KERN_B_TABLES;
    682 	kernBbase = pmap_bootstrap_alloc(size);
    683 	memset(kernBbase, 0, size);
    684 
    685 	/* Now the level-C kernel tables... */
    686 	size = sizeof(mmu_short_pte_t) * MMU_C_TBL_SIZE * KERN_C_TABLES;
    687 	kernCbase = pmap_bootstrap_alloc(size);
    688 	memset(kernCbase, 0, size);
    689 	/*
    690 	 * Note: In order for the PV system to work correctly, the kernel
    691 	 * and user-level C tables must be allocated contiguously.
    692 	 * Nothing should be allocated between here and the allocation of
    693 	 * mmuCbase below.  XXX: Should do this as one allocation, and
    694 	 * then compute a pointer for mmuCbase instead of this...
    695 	 *
    696 	 * Allocate user MMU tables.
    697 	 * These must be contiguous with the preceding.
    698 	 */
    699 
    700 #ifndef	FIXED_NTABLES
    701 	/*
    702 	 * The number of user-level C tables that should be allocated is
    703 	 * related to the size of physical memory.  In general, there should
    704 	 * be enough tables to map four times the amount of available RAM.
    705 	 * The extra amount is needed because some table space is wasted by
    706 	 * fragmentation.
    707 	 */
    708 	NUM_C_TABLES = (total_phys_mem * 4) / (MMU_C_TBL_SIZE * MMU_PAGE_SIZE);
    709 	NUM_B_TABLES = NUM_C_TABLES / 2;
    710 	NUM_A_TABLES = NUM_B_TABLES / 2;
    711 #endif	/* !FIXED_NTABLES */
    712 
    713 	size = sizeof(mmu_short_pte_t) * MMU_C_TBL_SIZE	* NUM_C_TABLES;
    714 	mmuCbase = pmap_bootstrap_alloc(size);
    715 
    716 	size = sizeof(mmu_short_dte_t) * MMU_B_TBL_SIZE	* NUM_B_TABLES;
    717 	mmuBbase = pmap_bootstrap_alloc(size);
    718 
    719 	size = sizeof(mmu_long_dte_t) * MMU_A_TBL_SIZE * NUM_A_TABLES;
    720 	mmuAbase = pmap_bootstrap_alloc(size);
    721 
    722 	/*
    723 	 * Fill in the never-changing part of the kernel tables.
    724 	 * For simplicity, the kernel's mappings will be editable as a
    725 	 * flat array of page table entries at kernCbase.  The
    726 	 * higher level 'A' and 'B' tables must be initialized to point
    727 	 * to this lower one.
    728 	 */
    729 	b = c = 0;
    730 
    731 	/*
    732 	 * Invalidate all mappings below KERNBASE in the A table.
    733 	 * This area has already been zeroed out, but it is good
    734 	 * practice to explicitly show that we are interpreting
    735 	 * it as a list of A table descriptors.
    736 	 */
    737 	for (i = 0; i < MMU_TIA(KERNBASE); i++) {
    738 		kernAbase[i].addr.raw = 0;
    739 	}
    740 
    741 	/*
    742 	 * Set up the kernel A and B tables so that they will reference the
    743 	 * correct spots in the contiguous table of PTEs allocated for the
    744 	 * kernel's virtual memory space.
    745 	 */
    746 	for (i = MMU_TIA(KERNBASE); i < MMU_A_TBL_SIZE; i++) {
    747 		kernAbase[i].attr.raw =
    748 			MMU_LONG_DTE_LU | MMU_LONG_DTE_SUPV | MMU_DT_SHORT;
    749 		kernAbase[i].addr.raw = mmu_vtop(&kernBbase[b]);
    750 
    751 		for (j=0; j < MMU_B_TBL_SIZE; j++) {
    752 			kernBbase[b + j].attr.raw = mmu_vtop(&kernCbase[c])
    753 				| MMU_DT_SHORT;
    754 			c += MMU_C_TBL_SIZE;
    755 		}
    756 		b += MMU_B_TBL_SIZE;
    757 	}
    758 
    759 	pmap_alloc_usermmu();	/* Allocate user MMU tables.        */
    760 	pmap_alloc_usertmgr();	/* Allocate user MMU table managers.*/
    761 	pmap_alloc_pv();	/* Allocate physical->virtual map.  */
    762 
    763 	/*
    764 	 * We are now done with pmap_bootstrap_alloc().  Round up
    765 	 * `virtual_avail' to the nearest page, and set the flag
    766 	 * to prevent use of pmap_bootstrap_alloc() hereafter.
    767 	 */
    768 	pmap_bootstrap_aalign(NBPG);
    769 	bootstrap_alloc_enabled = FALSE;
    770 
    771 	/*
    772 	 * Now that we are done with pmap_bootstrap_alloc(), we
    773 	 * must save the virtual and physical addresses of the
    774 	 * end of the linearly mapped range, which are stored in
    775 	 * virtual_contig_end and avail_start, respectively.
    776 	 * These variables will never change after this point.
    777 	 */
    778 	virtual_contig_end = virtual_avail;
    779 	avail_start = virtual_avail - KERNBASE;
    780 
    781 	/*
    782 	 * `avail_next' is a running pointer used by pmap_next_page() to
    783 	 * keep track of the next available physical page to be handed
    784 	 * to the VM system during its initialization, in which it
    785 	 * asks for physical pages, one at a time.
    786 	 */
    787 	avail_next = avail_start;
    788 
    789 	/*
    790 	 * Now allocate some virtual addresses, but not the physical pages
    791 	 * behind them.  Note that virtual_avail is already page-aligned.
    792 	 *
    793 	 * tmp_vpages[] is an array of two virtual pages used for temporary
    794 	 * kernel mappings in the pmap module to facilitate various physical
    795 	 * address-oritented operations.
    796 	 */
    797 	tmp_vpages[0] = virtual_avail;
    798 	virtual_avail += NBPG;
    799 	tmp_vpages[1] = virtual_avail;
    800 	virtual_avail += NBPG;
    801 
    802 	/** Initialize the PV system **/
    803 	pmap_init_pv();
    804 
    805 	/*
    806 	 * Fill in the kernel_pmap structure and kernel_crp.
    807 	 */
    808 	kernAphys = mmu_vtop(kernAbase);
    809 	kernel_pmap.pm_a_tmgr = NULL;
    810 	kernel_pmap.pm_a_phys = kernAphys;
    811 	kernel_pmap.pm_refcount = 1; /* always in use */
    812 	simple_lock_init(&kernel_pmap.pm_lock);
    813 
    814 	kernel_crp.rp_attr = MMU_LONG_DTE_LU | MMU_DT_LONG;
    815 	kernel_crp.rp_addr = kernAphys;
    816 
    817 	/*
    818 	 * Now pmap_enter_kernel() may be used safely and will be
    819 	 * the main interface used hereafter to modify the kernel's
    820 	 * virtual address space.  Note that since we are still running
    821 	 * under the PROM's address table, none of these table modifications
    822 	 * actually take effect until pmap_takeover_mmu() is called.
    823 	 *
    824 	 * Note: Our tables do NOT have the PROM linear mappings!
    825 	 * Only the mappings created here exist in our tables, so
    826 	 * remember to map anything we expect to use.
    827 	 */
    828 	va = (vaddr_t)KERNBASE;
    829 	pa = 0;
    830 
    831 	/*
    832 	 * The first page of the kernel virtual address space is the msgbuf
    833 	 * page.  The page attributes (data, non-cached) are set here, while
    834 	 * the address is assigned to this global pointer in cpu_startup().
    835 	 * It is non-cached, mostly due to paranoia.
    836 	 */
    837 	pmap_enter_kernel(va, pa|PMAP_NC, VM_PROT_ALL);
    838 	va += NBPG; pa += NBPG;
    839 
    840 	/* Next page is used as the temporary stack. */
    841 	pmap_enter_kernel(va, pa, VM_PROT_ALL);
    842 	va += NBPG; pa += NBPG;
    843 
    844 	/*
    845 	 * Map all of the kernel's text segment as read-only and cacheable.
    846 	 * (Cacheable is implied by default).  Unfortunately, the last bytes
    847 	 * of kernel text and the first bytes of kernel data will often be
    848 	 * sharing the same page.  Therefore, the last page of kernel text
    849 	 * has to be mapped as read/write, to accomodate the data.
    850 	 */
    851 	eva = m68k_trunc_page((vaddr_t)etext);
    852 	for (; va < eva; va += NBPG, pa += NBPG)
    853 		pmap_enter_kernel(va, pa, VM_PROT_READ|VM_PROT_EXECUTE);
    854 
    855 	/*
    856 	 * Map all of the kernel's data as read/write and cacheable.
    857 	 * This includes: data, BSS, symbols, and everything in the
    858 	 * contiguous memory used by pmap_bootstrap_alloc()
    859 	 */
    860 	for (; pa < avail_start; va += NBPG, pa += NBPG)
    861 		pmap_enter_kernel(va, pa, VM_PROT_READ|VM_PROT_WRITE);
    862 
    863 	/*
    864 	 * At this point we are almost ready to take over the MMU.  But first
    865 	 * we must save the PROM's address space in our map, as we call its
    866 	 * routines and make references to its data later in the kernel.
    867 	 */
    868 	pmap_bootstrap_copyprom();
    869 	pmap_takeover_mmu();
    870 	pmap_bootstrap_setprom();
    871 
    872 	/* Notify the VM system of our page size. */
    873 	uvmexp.pagesize = NBPG;
    874 	uvm_setpagesize();
    875 
    876 	pmap_page_upload();
    877 }
    878 
    879 
    880 /* pmap_alloc_usermmu			INTERNAL
    881  **
    882  * Called from pmap_bootstrap() to allocate MMU tables that will
    883  * eventually be used for user mappings.
    884  */
    885 void
    886 pmap_alloc_usermmu()
    887 {
    888 	/* XXX: Moved into caller. */
    889 }
    890 
    891 /* pmap_alloc_pv			INTERNAL
    892  **
    893  * Called from pmap_bootstrap() to allocate the physical
    894  * to virtual mapping list.  Each physical page of memory
    895  * in the system has a corresponding element in this list.
    896  */
    897 void
    898 pmap_alloc_pv()
    899 {
    900 	int	i;
    901 	unsigned int	total_mem;
    902 
    903 	/*
    904 	 * Allocate a pv_head structure for every page of physical
    905 	 * memory that will be managed by the system.  Since memory on
    906 	 * the 3/80 is non-contiguous, we cannot arrive at a total page
    907 	 * count by subtraction of the lowest available address from the
    908 	 * highest, but rather we have to step through each memory
    909 	 * bank and add the number of pages in each to the total.
    910 	 *
    911 	 * At this time we also initialize the offset of each bank's
    912 	 * starting pv_head within the pv_head list so that the physical
    913 	 * memory state routines (pmap_is_referenced(),
    914 	 * pmap_is_modified(), et al.) can quickly find coresponding
    915 	 * pv_heads in spite of the non-contiguity.
    916 	 */
    917 	total_mem = 0;
    918 	for (i = 0; i < SUN3X_NPHYS_RAM_SEGS; i++) {
    919 		avail_mem[i].pmem_pvbase = m68k_btop(total_mem);
    920 		total_mem += avail_mem[i].pmem_end -
    921 			avail_mem[i].pmem_start;
    922 		if (avail_mem[i].pmem_next == NULL)
    923 			break;
    924 	}
    925 	pvbase = (pv_t *) pmap_bootstrap_alloc(sizeof(pv_t) *
    926 		m68k_btop(total_phys_mem));
    927 }
    928 
    929 /* pmap_alloc_usertmgr			INTERNAL
    930  **
    931  * Called from pmap_bootstrap() to allocate the structures which
    932  * facilitate management of user MMU tables.  Each user MMU table
    933  * in the system has one such structure associated with it.
    934  */
    935 void
    936 pmap_alloc_usertmgr()
    937 {
    938 	/* Allocate user MMU table managers */
    939 	/* It would be a lot simpler to just make these BSS, but */
    940 	/* we may want to change their size at boot time... -j */
    941 	Atmgrbase = (a_tmgr_t *) pmap_bootstrap_alloc(sizeof(a_tmgr_t)
    942 		* NUM_A_TABLES);
    943 	Btmgrbase = (b_tmgr_t *) pmap_bootstrap_alloc(sizeof(b_tmgr_t)
    944 		* NUM_B_TABLES);
    945 	Ctmgrbase = (c_tmgr_t *) pmap_bootstrap_alloc(sizeof(c_tmgr_t)
    946 		* NUM_C_TABLES);
    947 
    948 	/*
    949 	 * Allocate PV list elements for the physical to virtual
    950 	 * mapping system.
    951 	 */
    952 	pvebase = (pv_elem_t *) pmap_bootstrap_alloc(
    953 		sizeof(pv_elem_t) * (NUM_USER_PTES + NUM_KERN_PTES));
    954 }
    955 
    956 /* pmap_bootstrap_copyprom()			INTERNAL
    957  **
    958  * Copy the PROM mappings into our own tables.  Note, we
    959  * can use physical addresses until __bootstrap returns.
    960  */
    961 void
    962 pmap_bootstrap_copyprom()
    963 {
    964 	struct sunromvec *romp;
    965 	int *mon_ctbl;
    966 	mmu_short_pte_t *kpte;
    967 	int i, len;
    968 
    969 	romp = romVectorPtr;
    970 
    971 	/*
    972 	 * Copy the mappings in SUN3X_MON_KDB_BASE...SUN3X_MONEND
    973 	 * Note: mon_ctbl[0] maps SUN3X_MON_KDB_BASE
    974 	 */
    975 	mon_ctbl = *romp->monptaddr;
    976 	i = m68k_btop(SUN3X_MON_KDB_BASE - KERNBASE);
    977 	kpte = &kernCbase[i];
    978 	len = m68k_btop(SUN3X_MONEND - SUN3X_MON_KDB_BASE);
    979 
    980 	for (i = 0; i < len; i++) {
    981 		kpte[i].attr.raw = mon_ctbl[i];
    982 	}
    983 
    984 	/*
    985 	 * Copy the mappings at MON_DVMA_BASE (to the end).
    986 	 * Note, in here, mon_ctbl[0] maps MON_DVMA_BASE.
    987 	 * Actually, we only want the last page, which the
    988 	 * PROM has set up for use by the "ie" driver.
    989 	 * (The i82686 needs its SCP there.)
    990 	 * If we copy all the mappings, pmap_enter_kernel
    991 	 * may complain about finding valid PTEs that are
    992 	 * not recorded in our PV lists...
    993 	 */
    994 	mon_ctbl = *romp->shadowpteaddr;
    995 	i = m68k_btop(SUN3X_MON_DVMA_BASE - KERNBASE);
    996 	kpte = &kernCbase[i];
    997 	len = m68k_btop(SUN3X_MON_DVMA_SIZE);
    998 	for (i = (len-1); i < len; i++) {
    999 		kpte[i].attr.raw = mon_ctbl[i];
   1000 	}
   1001 }
   1002 
   1003 /* pmap_takeover_mmu			INTERNAL
   1004  **
   1005  * Called from pmap_bootstrap() after it has copied enough of the
   1006  * PROM mappings into the kernel map so that we can use our own
   1007  * MMU table.
   1008  */
   1009 void
   1010 pmap_takeover_mmu()
   1011 {
   1012 
   1013 	loadcrp(&kernel_crp);
   1014 }
   1015 
   1016 /* pmap_bootstrap_setprom()			INTERNAL
   1017  **
   1018  * Set the PROM mappings so it can see kernel space.
   1019  * Note that physical addresses are used here, which
   1020  * we can get away with because this runs with the
   1021  * low 1GB set for transparent translation.
   1022  */
   1023 void
   1024 pmap_bootstrap_setprom()
   1025 {
   1026 	mmu_long_dte_t *mon_dte;
   1027 	extern struct mmu_rootptr mon_crp;
   1028 	int i;
   1029 
   1030 	mon_dte = (mmu_long_dte_t *) mon_crp.rp_addr;
   1031 	for (i = MMU_TIA(KERNBASE); i < MMU_TIA(KERN_END); i++) {
   1032 		mon_dte[i].attr.raw = kernAbase[i].attr.raw;
   1033 		mon_dte[i].addr.raw = kernAbase[i].addr.raw;
   1034 	}
   1035 }
   1036 
   1037 
   1038 /* pmap_init			INTERFACE
   1039  **
   1040  * Called at the end of vm_init() to set up the pmap system to go
   1041  * into full time operation.  All initialization of kernel_pmap
   1042  * should be already done by now, so this should just do things
   1043  * needed for user-level pmaps to work.
   1044  */
   1045 void
   1046 pmap_init()
   1047 {
   1048 	/** Initialize the manager pools **/
   1049 	TAILQ_INIT(&a_pool);
   1050 	TAILQ_INIT(&b_pool);
   1051 	TAILQ_INIT(&c_pool);
   1052 
   1053 	/**************************************************************
   1054 	 * Initialize all tmgr structures and MMU tables they manage. *
   1055 	 **************************************************************/
   1056 	/** Initialize A tables **/
   1057 	pmap_init_a_tables();
   1058 	/** Initialize B tables **/
   1059 	pmap_init_b_tables();
   1060 	/** Initialize C tables **/
   1061 	pmap_init_c_tables();
   1062 
   1063 	/** Initialize the pmap pools **/
   1064 	pool_init(&pmap_pmap_pool, sizeof(struct pmap), 0, 0, 0, "pmappl",
   1065 	    0, pool_page_alloc_nointr, pool_page_free_nointr, M_VMPMAP);
   1066 }
   1067 
   1068 /* pmap_init_a_tables()			INTERNAL
   1069  **
   1070  * Initializes all A managers, their MMU A tables, and inserts
   1071  * them into the A manager pool for use by the system.
   1072  */
   1073 void
   1074 pmap_init_a_tables()
   1075 {
   1076 	int i;
   1077 	a_tmgr_t *a_tbl;
   1078 
   1079 	for (i=0; i < NUM_A_TABLES; i++) {
   1080 		/* Select the next available A manager from the pool */
   1081 		a_tbl = &Atmgrbase[i];
   1082 
   1083 		/*
   1084 		 * Clear its parent entry.  Set its wired and valid
   1085 		 * entry count to zero.
   1086 		 */
   1087 		a_tbl->at_parent = NULL;
   1088 		a_tbl->at_wcnt = a_tbl->at_ecnt = 0;
   1089 
   1090 		/* Assign it the next available MMU A table from the pool */
   1091 		a_tbl->at_dtbl = &mmuAbase[i * MMU_A_TBL_SIZE];
   1092 
   1093 		/*
   1094 		 * Initialize the MMU A table with the table in the `proc0',
   1095 		 * or kernel, mapping.  This ensures that every process has
   1096 		 * the kernel mapped in the top part of its address space.
   1097 		 */
   1098 		memcpy(a_tbl->at_dtbl, kernAbase, MMU_A_TBL_SIZE *
   1099 			sizeof(mmu_long_dte_t));
   1100 
   1101 		/*
   1102 		 * Finally, insert the manager into the A pool,
   1103 		 * making it ready to be used by the system.
   1104 		 */
   1105 		TAILQ_INSERT_TAIL(&a_pool, a_tbl, at_link);
   1106     }
   1107 }
   1108 
   1109 /* pmap_init_b_tables()			INTERNAL
   1110  **
   1111  * Initializes all B table managers, their MMU B tables, and
   1112  * inserts them into the B manager pool for use by the system.
   1113  */
   1114 void
   1115 pmap_init_b_tables()
   1116 {
   1117 	int i,j;
   1118 	b_tmgr_t *b_tbl;
   1119 
   1120 	for (i=0; i < NUM_B_TABLES; i++) {
   1121 		/* Select the next available B manager from the pool */
   1122 		b_tbl = &Btmgrbase[i];
   1123 
   1124 		b_tbl->bt_parent = NULL;	/* clear its parent,  */
   1125 		b_tbl->bt_pidx = 0;		/* parent index,      */
   1126 		b_tbl->bt_wcnt = 0;		/* wired entry count, */
   1127 		b_tbl->bt_ecnt = 0;		/* valid entry count. */
   1128 
   1129 		/* Assign it the next available MMU B table from the pool */
   1130 		b_tbl->bt_dtbl = &mmuBbase[i * MMU_B_TBL_SIZE];
   1131 
   1132 		/* Invalidate every descriptor in the table */
   1133 		for (j=0; j < MMU_B_TBL_SIZE; j++)
   1134 			b_tbl->bt_dtbl[j].attr.raw = MMU_DT_INVALID;
   1135 
   1136 		/* Insert the manager into the B pool */
   1137 		TAILQ_INSERT_TAIL(&b_pool, b_tbl, bt_link);
   1138 	}
   1139 }
   1140 
   1141 /* pmap_init_c_tables()			INTERNAL
   1142  **
   1143  * Initializes all C table managers, their MMU C tables, and
   1144  * inserts them into the C manager pool for use by the system.
   1145  */
   1146 void
   1147 pmap_init_c_tables()
   1148 {
   1149 	int i,j;
   1150 	c_tmgr_t *c_tbl;
   1151 
   1152 	for (i=0; i < NUM_C_TABLES; i++) {
   1153 		/* Select the next available C manager from the pool */
   1154 		c_tbl = &Ctmgrbase[i];
   1155 
   1156 		c_tbl->ct_parent = NULL;	/* clear its parent,  */
   1157 		c_tbl->ct_pidx = 0;		/* parent index,      */
   1158 		c_tbl->ct_wcnt = 0;		/* wired entry count, */
   1159 		c_tbl->ct_ecnt = 0;		/* valid entry count, */
   1160 		c_tbl->ct_pmap = NULL;		/* parent pmap,       */
   1161 		c_tbl->ct_va = 0;		/* base of managed range */
   1162 
   1163 		/* Assign it the next available MMU C table from the pool */
   1164 		c_tbl->ct_dtbl = &mmuCbase[i * MMU_C_TBL_SIZE];
   1165 
   1166 		for (j=0; j < MMU_C_TBL_SIZE; j++)
   1167 			c_tbl->ct_dtbl[j].attr.raw = MMU_DT_INVALID;
   1168 
   1169 		TAILQ_INSERT_TAIL(&c_pool, c_tbl, ct_link);
   1170 	}
   1171 }
   1172 
   1173 /* pmap_init_pv()			INTERNAL
   1174  **
   1175  * Initializes the Physical to Virtual mapping system.
   1176  */
   1177 void
   1178 pmap_init_pv()
   1179 {
   1180 	int	i;
   1181 
   1182 	/* Initialize every PV head. */
   1183 	for (i = 0; i < m68k_btop(total_phys_mem); i++) {
   1184 		pvbase[i].pv_idx = PVE_EOL;	/* Indicate no mappings */
   1185 		pvbase[i].pv_flags = 0;		/* Zero out page flags  */
   1186 	}
   1187 }
   1188 
   1189 /* get_a_table			INTERNAL
   1190  **
   1191  * Retrieve and return a level A table for use in a user map.
   1192  */
   1193 a_tmgr_t *
   1194 get_a_table()
   1195 {
   1196 	a_tmgr_t *tbl;
   1197 	pmap_t pmap;
   1198 
   1199 	/* Get the top A table in the pool */
   1200 	tbl = a_pool.tqh_first;
   1201 	if (tbl == NULL) {
   1202 		/*
   1203 		 * XXX - Instead of panicing here and in other get_x_table
   1204 		 * functions, we do have the option of sleeping on the head of
   1205 		 * the table pool.  Any function which updates the table pool
   1206 		 * would then issue a wakeup() on the head, thus waking up any
   1207 		 * processes waiting for a table.
   1208 		 *
   1209 		 * Actually, the place to sleep would be when some process
   1210 		 * asks for a "wired" mapping that would run us short of
   1211 		 * mapping resources.  This design DEPENDS on always having
   1212 		 * some mapping resources in the pool for stealing, so we
   1213 		 * must make sure we NEVER let the pool become empty. -gwr
   1214 		 */
   1215 		panic("get_a_table: out of A tables.");
   1216 	}
   1217 
   1218 	TAILQ_REMOVE(&a_pool, tbl, at_link);
   1219 	/*
   1220 	 * If the table has a non-null parent pointer then it is in use.
   1221 	 * Forcibly abduct it from its parent and clear its entries.
   1222 	 * No re-entrancy worries here.  This table would not be in the
   1223 	 * table pool unless it was available for use.
   1224 	 *
   1225 	 * Note that the second argument to free_a_table() is FALSE.  This
   1226 	 * indicates that the table should not be relinked into the A table
   1227 	 * pool.  That is a job for the function that called us.
   1228 	 */
   1229 	if (tbl->at_parent) {
   1230 		pmap = tbl->at_parent;
   1231 		free_a_table(tbl, FALSE);
   1232 		pmap->pm_a_tmgr = NULL;
   1233 		pmap->pm_a_phys = kernAphys;
   1234 	}
   1235 	return tbl;
   1236 }
   1237 
   1238 /* get_b_table			INTERNAL
   1239  **
   1240  * Return a level B table for use.
   1241  */
   1242 b_tmgr_t *
   1243 get_b_table()
   1244 {
   1245 	b_tmgr_t *tbl;
   1246 
   1247 	/* See 'get_a_table' for comments. */
   1248 	tbl = b_pool.tqh_first;
   1249 	if (tbl == NULL)
   1250 		panic("get_b_table: out of B tables.");
   1251 	TAILQ_REMOVE(&b_pool, tbl, bt_link);
   1252 	if (tbl->bt_parent) {
   1253 		tbl->bt_parent->at_dtbl[tbl->bt_pidx].attr.raw = MMU_DT_INVALID;
   1254 		tbl->bt_parent->at_ecnt--;
   1255 		free_b_table(tbl, FALSE);
   1256 	}
   1257 	return tbl;
   1258 }
   1259 
   1260 /* get_c_table			INTERNAL
   1261  **
   1262  * Return a level C table for use.
   1263  */
   1264 c_tmgr_t *
   1265 get_c_table()
   1266 {
   1267 	c_tmgr_t *tbl;
   1268 
   1269 	/* See 'get_a_table' for comments */
   1270 	tbl = c_pool.tqh_first;
   1271 	if (tbl == NULL)
   1272 		panic("get_c_table: out of C tables.");
   1273 	TAILQ_REMOVE(&c_pool, tbl, ct_link);
   1274 	if (tbl->ct_parent) {
   1275 		tbl->ct_parent->bt_dtbl[tbl->ct_pidx].attr.raw = MMU_DT_INVALID;
   1276 		tbl->ct_parent->bt_ecnt--;
   1277 		free_c_table(tbl, FALSE);
   1278 	}
   1279 	return tbl;
   1280 }
   1281 
   1282 /*
   1283  * The following 'free_table' and 'steal_table' functions are called to
   1284  * detach tables from their current obligations (parents and children) and
   1285  * prepare them for reuse in another mapping.
   1286  *
   1287  * Free_table is used when the calling function will handle the fate
   1288  * of the parent table, such as returning it to the free pool when it has
   1289  * no valid entries.  Functions that do not want to handle this should
   1290  * call steal_table, in which the parent table's descriptors and entry
   1291  * count are automatically modified when this table is removed.
   1292  */
   1293 
   1294 /* free_a_table			INTERNAL
   1295  **
   1296  * Unmaps the given A table and all child tables from their current
   1297  * mappings.  Returns the number of pages that were invalidated.
   1298  * If 'relink' is true, the function will return the table to the head
   1299  * of the available table pool.
   1300  *
   1301  * Cache note: The MC68851 will automatically flush all
   1302  * descriptors derived from a given A table from its
   1303  * Automatic Translation Cache (ATC) if we issue a
   1304  * 'PFLUSHR' instruction with the base address of the
   1305  * table.  This function should do, and does so.
   1306  * Note note: We are using an MC68030 - there is no
   1307  * PFLUSHR.
   1308  */
   1309 int
   1310 free_a_table(a_tbl, relink)
   1311 	a_tmgr_t *a_tbl;
   1312 	boolean_t relink;
   1313 {
   1314 	int i, removed_cnt;
   1315 	mmu_long_dte_t	*dte;
   1316 	mmu_short_dte_t *dtbl;
   1317 	b_tmgr_t	*tmgr;
   1318 
   1319 	/*
   1320 	 * Flush the ATC cache of all cached descriptors derived
   1321 	 * from this table.
   1322 	 * Sun3x does not use 68851's cached table feature
   1323 	 * flush_atc_crp(mmu_vtop(a_tbl->dte));
   1324 	 */
   1325 
   1326 	/*
   1327 	 * Remove any pending cache flushes that were designated
   1328 	 * for the pmap this A table belongs to.
   1329 	 * a_tbl->parent->atc_flushq[0] = 0;
   1330 	 * Not implemented in sun3x.
   1331 	 */
   1332 
   1333 	/*
   1334 	 * All A tables in the system should retain a map for the
   1335 	 * kernel. If the table contains any valid descriptors
   1336 	 * (other than those for the kernel area), invalidate them all,
   1337 	 * stopping short of the kernel's entries.
   1338 	 */
   1339 	removed_cnt = 0;
   1340 	if (a_tbl->at_ecnt) {
   1341 		dte = a_tbl->at_dtbl;
   1342 		for (i=0; i < MMU_TIA(KERNBASE); i++) {
   1343 			/*
   1344 			 * If a table entry points to a valid B table, free
   1345 			 * it and its children.
   1346 			 */
   1347 			if (MMU_VALID_DT(dte[i])) {
   1348 				/*
   1349 				 * The following block does several things,
   1350 				 * from innermost expression to the
   1351 				 * outermost:
   1352 				 * 1) It extracts the base (cc 1996)
   1353 				 *    address of the B table pointed
   1354 				 *    to in the A table entry dte[i].
   1355 				 * 2) It converts this base address into
   1356 				 *    the virtual address it can be
   1357 				 *    accessed with. (all MMU tables point
   1358 				 *    to physical addresses.)
   1359 				 * 3) It finds the corresponding manager
   1360 				 *    structure which manages this MMU table.
   1361 				 * 4) It frees the manager structure.
   1362 				 *    (This frees the MMU table and all
   1363 				 *    child tables. See 'free_b_table' for
   1364 				 *    details.)
   1365 				 */
   1366 				dtbl = mmu_ptov(dte[i].addr.raw);
   1367 				tmgr = mmuB2tmgr(dtbl);
   1368 				removed_cnt += free_b_table(tmgr, TRUE);
   1369 				dte[i].attr.raw = MMU_DT_INVALID;
   1370 			}
   1371 		}
   1372 		a_tbl->at_ecnt = 0;
   1373 	}
   1374 	if (relink) {
   1375 		a_tbl->at_parent = NULL;
   1376 		TAILQ_REMOVE(&a_pool, a_tbl, at_link);
   1377 		TAILQ_INSERT_HEAD(&a_pool, a_tbl, at_link);
   1378 	}
   1379 	return removed_cnt;
   1380 }
   1381 
   1382 /* free_b_table			INTERNAL
   1383  **
   1384  * Unmaps the given B table and all its children from their current
   1385  * mappings.  Returns the number of pages that were invalidated.
   1386  * (For comments, see 'free_a_table()').
   1387  */
   1388 int
   1389 free_b_table(b_tbl, relink)
   1390 	b_tmgr_t *b_tbl;
   1391 	boolean_t relink;
   1392 {
   1393 	int i, removed_cnt;
   1394 	mmu_short_dte_t *dte;
   1395 	mmu_short_pte_t	*dtbl;
   1396 	c_tmgr_t	*tmgr;
   1397 
   1398 	removed_cnt = 0;
   1399 	if (b_tbl->bt_ecnt) {
   1400 		dte = b_tbl->bt_dtbl;
   1401 		for (i=0; i < MMU_B_TBL_SIZE; i++) {
   1402 			if (MMU_VALID_DT(dte[i])) {
   1403 				dtbl = mmu_ptov(MMU_DTE_PA(dte[i]));
   1404 				tmgr = mmuC2tmgr(dtbl);
   1405 				removed_cnt += free_c_table(tmgr, TRUE);
   1406 				dte[i].attr.raw = MMU_DT_INVALID;
   1407 			}
   1408 		}
   1409 		b_tbl->bt_ecnt = 0;
   1410 	}
   1411 
   1412 	if (relink) {
   1413 		b_tbl->bt_parent = NULL;
   1414 		TAILQ_REMOVE(&b_pool, b_tbl, bt_link);
   1415 		TAILQ_INSERT_HEAD(&b_pool, b_tbl, bt_link);
   1416 	}
   1417 	return removed_cnt;
   1418 }
   1419 
   1420 /* free_c_table			INTERNAL
   1421  **
   1422  * Unmaps the given C table from use and returns it to the pool for
   1423  * re-use.  Returns the number of pages that were invalidated.
   1424  *
   1425  * This function preserves any physical page modification information
   1426  * contained in the page descriptors within the C table by calling
   1427  * 'pmap_remove_pte().'
   1428  */
   1429 int
   1430 free_c_table(c_tbl, relink)
   1431 	c_tmgr_t *c_tbl;
   1432 	boolean_t relink;
   1433 {
   1434 	int i, removed_cnt;
   1435 
   1436 	removed_cnt = 0;
   1437 	if (c_tbl->ct_ecnt) {
   1438 		for (i=0; i < MMU_C_TBL_SIZE; i++) {
   1439 			if (MMU_VALID_DT(c_tbl->ct_dtbl[i])) {
   1440 				pmap_remove_pte(&c_tbl->ct_dtbl[i]);
   1441 				removed_cnt++;
   1442 			}
   1443 		}
   1444 		c_tbl->ct_ecnt = 0;
   1445 	}
   1446 
   1447 	if (relink) {
   1448 		c_tbl->ct_parent = NULL;
   1449 		TAILQ_REMOVE(&c_pool, c_tbl, ct_link);
   1450 		TAILQ_INSERT_HEAD(&c_pool, c_tbl, ct_link);
   1451 	}
   1452 	return removed_cnt;
   1453 }
   1454 
   1455 
   1456 /* pmap_remove_pte			INTERNAL
   1457  **
   1458  * Unmap the given pte and preserve any page modification
   1459  * information by transfering it to the pv head of the
   1460  * physical page it maps to.  This function does not update
   1461  * any reference counts because it is assumed that the calling
   1462  * function will do so.
   1463  */
   1464 void
   1465 pmap_remove_pte(pte)
   1466 	mmu_short_pte_t *pte;
   1467 {
   1468 	u_short     pv_idx, targ_idx;
   1469 	paddr_t     pa;
   1470 	pv_t       *pv;
   1471 
   1472 	pa = MMU_PTE_PA(*pte);
   1473 	if (is_managed(pa)) {
   1474 		pv = pa2pv(pa);
   1475 		targ_idx = pteidx(pte);	/* Index of PTE being removed    */
   1476 
   1477 		/*
   1478 		 * If the PTE being removed is the first (or only) PTE in
   1479 		 * the list of PTEs currently mapped to this page, remove the
   1480 		 * PTE by changing the index found on the PV head.  Otherwise
   1481 		 * a linear search through the list will have to be executed
   1482 		 * in order to find the PVE which points to the PTE being
   1483 		 * removed, so that it may be modified to point to its new
   1484 		 * neighbor.
   1485 		 */
   1486 
   1487 		pv_idx = pv->pv_idx;	/* Index of first PTE in PV list */
   1488 		if (pv_idx == targ_idx) {
   1489 			pv->pv_idx = pvebase[targ_idx].pve_next;
   1490 		} else {
   1491 
   1492 			/*
   1493 			 * Find the PV element pointing to the target
   1494 			 * element.  Note: may have pv_idx==PVE_EOL
   1495 			 */
   1496 
   1497 			for (;;) {
   1498 				if (pv_idx == PVE_EOL) {
   1499 					goto pv_not_found;
   1500 				}
   1501 				if (pvebase[pv_idx].pve_next == targ_idx)
   1502 					break;
   1503 				pv_idx = pvebase[pv_idx].pve_next;
   1504 			}
   1505 
   1506 			/*
   1507 			 * At this point, pv_idx is the index of the PV
   1508 			 * element just before the target element in the list.
   1509 			 * Unlink the target.
   1510 			 */
   1511 
   1512 			pvebase[pv_idx].pve_next = pvebase[targ_idx].pve_next;
   1513 		}
   1514 
   1515 		/*
   1516 		 * Save the mod/ref bits of the pte by simply
   1517 		 * ORing the entire pte onto the pv_flags member
   1518 		 * of the pv structure.
   1519 		 * There is no need to use a separate bit pattern
   1520 		 * for usage information on the pv head than that
   1521 		 * which is used on the MMU ptes.
   1522 		 */
   1523 
   1524 pv_not_found:
   1525 		pv->pv_flags |= (u_short) pte->attr.raw;
   1526 	}
   1527 	pte->attr.raw = MMU_DT_INVALID;
   1528 }
   1529 
   1530 /* pmap_stroll			INTERNAL
   1531  **
   1532  * Retrieve the addresses of all table managers involved in the mapping of
   1533  * the given virtual address.  If the table walk completed sucessfully,
   1534  * return TRUE.  If it was only partially sucessful, return FALSE.
   1535  * The table walk performed by this function is important to many other
   1536  * functions in this module.
   1537  *
   1538  * Note: This function ought to be easier to read.
   1539  */
   1540 boolean_t
   1541 pmap_stroll(pmap, va, a_tbl, b_tbl, c_tbl, pte, a_idx, b_idx, pte_idx)
   1542 	pmap_t pmap;
   1543 	vaddr_t va;
   1544 	a_tmgr_t **a_tbl;
   1545 	b_tmgr_t **b_tbl;
   1546 	c_tmgr_t **c_tbl;
   1547 	mmu_short_pte_t **pte;
   1548 	int *a_idx, *b_idx, *pte_idx;
   1549 {
   1550 	mmu_long_dte_t *a_dte;   /* A: long descriptor table          */
   1551 	mmu_short_dte_t *b_dte;  /* B: short descriptor table         */
   1552 
   1553 	if (pmap == pmap_kernel())
   1554 		return FALSE;
   1555 
   1556 	/* Does the given pmap have its own A table? */
   1557 	*a_tbl = pmap->pm_a_tmgr;
   1558 	if (*a_tbl == NULL)
   1559 		return FALSE; /* No.  Return unknown. */
   1560 	/* Does the A table have a valid B table
   1561 	 * under the corresponding table entry?
   1562 	 */
   1563 	*a_idx = MMU_TIA(va);
   1564 	a_dte = &((*a_tbl)->at_dtbl[*a_idx]);
   1565 	if (!MMU_VALID_DT(*a_dte))
   1566 		return FALSE; /* No. Return unknown. */
   1567 	/* Yes. Extract B table from the A table. */
   1568 	*b_tbl = mmuB2tmgr(mmu_ptov(a_dte->addr.raw));
   1569 	/* Does the B table have a valid C table
   1570 	 * under the corresponding table entry?
   1571 	 */
   1572 	*b_idx = MMU_TIB(va);
   1573 	b_dte = &((*b_tbl)->bt_dtbl[*b_idx]);
   1574 	if (!MMU_VALID_DT(*b_dte))
   1575 		return FALSE; /* No. Return unknown. */
   1576 	/* Yes. Extract C table from the B table. */
   1577 	*c_tbl = mmuC2tmgr(mmu_ptov(MMU_DTE_PA(*b_dte)));
   1578 	*pte_idx = MMU_TIC(va);
   1579 	*pte = &((*c_tbl)->ct_dtbl[*pte_idx]);
   1580 
   1581 	return	TRUE;
   1582 }
   1583 
   1584 /* pmap_enter			INTERFACE
   1585  **
   1586  * Called by the kernel to map a virtual address
   1587  * to a physical address in the given process map.
   1588  *
   1589  * Note: this function should apply an exclusive lock
   1590  * on the pmap system for its duration.  (it certainly
   1591  * would save my hair!!)
   1592  * This function ought to be easier to read.
   1593  */
   1594 int
   1595 pmap_enter(pmap, va, pa, prot, flags)
   1596 	pmap_t	pmap;
   1597 	vaddr_t va;
   1598 	paddr_t pa;
   1599 	vm_prot_t prot;
   1600 	int flags;
   1601 {
   1602 	boolean_t insert, managed; /* Marks the need for PV insertion.*/
   1603 	u_short nidx;            /* PV list index                     */
   1604 	int mapflags;            /* Flags for the mapping (see NOTE1) */
   1605 	u_int a_idx, b_idx, pte_idx; /* table indices                 */
   1606 	a_tmgr_t *a_tbl;         /* A: long descriptor table manager  */
   1607 	b_tmgr_t *b_tbl;         /* B: short descriptor table manager */
   1608 	c_tmgr_t *c_tbl;         /* C: short page table manager       */
   1609 	mmu_long_dte_t *a_dte;   /* A: long descriptor table          */
   1610 	mmu_short_dte_t *b_dte;  /* B: short descriptor table         */
   1611 	mmu_short_pte_t *c_pte;  /* C: short page descriptor table    */
   1612 	pv_t      *pv;           /* pv list head                      */
   1613 	boolean_t wired;         /* is the mapping to be wired?       */
   1614 	enum {NONE, NEWA, NEWB, NEWC} llevel; /* used at end   */
   1615 
   1616 	if (pmap == pmap_kernel()) {
   1617 		pmap_enter_kernel(va, pa, prot);
   1618 		return 0;
   1619 	}
   1620 
   1621 	/*
   1622 	 * Determine if the mapping should be wired.
   1623 	 */
   1624 	wired = ((flags & PMAP_WIRED) != 0);
   1625 
   1626 	/*
   1627 	 * NOTE1:
   1628 	 *
   1629 	 * On November 13, 1999, someone changed the pmap_enter() API such
   1630 	 * that it now accepts a 'flags' argument.  This new argument
   1631 	 * contains bit-flags for the architecture-independent (UVM) system to
   1632 	 * use in signalling certain mapping requirements to the architecture-
   1633 	 * dependent (pmap) system.  The argument it replaces, 'wired', is now
   1634 	 * one of the flags within it.
   1635 	 *
   1636 	 * In addition to flags signaled by the architecture-independent
   1637 	 * system, parts of the architecture-dependent section of the sun3x
   1638 	 * kernel pass their own flags in the lower, unused bits of the
   1639 	 * physical address supplied to this function.  These flags are
   1640 	 * extracted and stored in the temporary variable 'mapflags'.
   1641 	 *
   1642 	 * Extract sun3x specific flags from the physical address.
   1643 	 */
   1644 	mapflags  = (pa & ~MMU_PAGE_MASK);
   1645 	pa       &= MMU_PAGE_MASK;
   1646 
   1647 	/*
   1648 	 * Determine if the physical address being mapped is on-board RAM.
   1649 	 * Any other area of the address space is likely to belong to a
   1650 	 * device and hence it would be disasterous to cache its contents.
   1651 	 */
   1652 	if ((managed = is_managed(pa)) == FALSE)
   1653 		mapflags |= PMAP_NC;
   1654 
   1655 	/*
   1656 	 * For user mappings we walk along the MMU tables of the given
   1657 	 * pmap, reaching a PTE which describes the virtual page being
   1658 	 * mapped or changed.  If any level of the walk ends in an invalid
   1659 	 * entry, a table must be allocated and the entry must be updated
   1660 	 * to point to it.
   1661 	 * There is a bit of confusion as to whether this code must be
   1662 	 * re-entrant.  For now we will assume it is.  To support
   1663 	 * re-entrancy we must unlink tables from the table pool before
   1664 	 * we assume we may use them.  Tables are re-linked into the pool
   1665 	 * when we are finished with them at the end of the function.
   1666 	 * But I don't feel like doing that until we have proof that this
   1667 	 * needs to be re-entrant.
   1668 	 * 'llevel' records which tables need to be relinked.
   1669 	 */
   1670 	llevel = NONE;
   1671 
   1672 	/*
   1673 	 * Step 1 - Retrieve the A table from the pmap.  If it has no
   1674 	 * A table, allocate a new one from the available pool.
   1675 	 */
   1676 
   1677 	a_tbl = pmap->pm_a_tmgr;
   1678 	if (a_tbl == NULL) {
   1679 		/*
   1680 		 * This pmap does not currently have an A table.  Allocate
   1681 		 * a new one.
   1682 		 */
   1683 		a_tbl = get_a_table();
   1684 		a_tbl->at_parent = pmap;
   1685 
   1686 		/*
   1687 		 * Assign this new A table to the pmap, and calculate its
   1688 		 * physical address so that loadcrp() can be used to make
   1689 		 * the table active.
   1690 		 */
   1691 		pmap->pm_a_tmgr = a_tbl;
   1692 		pmap->pm_a_phys = mmu_vtop(a_tbl->at_dtbl);
   1693 
   1694 		/*
   1695 		 * If the process receiving a new A table is the current
   1696 		 * process, we are responsible for setting the MMU so that
   1697 		 * it becomes the current address space.  This only adds
   1698 		 * new mappings, so no need to flush anything.
   1699 		 */
   1700 		if (pmap == current_pmap()) {
   1701 			kernel_crp.rp_addr = pmap->pm_a_phys;
   1702 			loadcrp(&kernel_crp);
   1703 		}
   1704 
   1705 		if (!wired)
   1706 			llevel = NEWA;
   1707 	} else {
   1708 		/*
   1709 		 * Use the A table already allocated for this pmap.
   1710 		 * Unlink it from the A table pool if necessary.
   1711 		 */
   1712 		if (wired && !a_tbl->at_wcnt)
   1713 			TAILQ_REMOVE(&a_pool, a_tbl, at_link);
   1714 	}
   1715 
   1716 	/*
   1717 	 * Step 2 - Walk into the B table.  If there is no valid B table,
   1718 	 * allocate one.
   1719 	 */
   1720 
   1721 	a_idx = MMU_TIA(va);            /* Calculate the TIA of the VA. */
   1722 	a_dte = &a_tbl->at_dtbl[a_idx]; /* Retrieve descriptor from table */
   1723 	if (MMU_VALID_DT(*a_dte)) {     /* Is the descriptor valid? */
   1724 		/* The descriptor is valid.  Use the B table it points to. */
   1725 		/*************************************
   1726 		 *               a_idx               *
   1727 		 *                 v                 *
   1728 		 * a_tbl -> +-+-+-+-+-+-+-+-+-+-+-+- *
   1729 		 *          | | | | | | | | | | | |  *
   1730 		 *          +-+-+-+-+-+-+-+-+-+-+-+- *
   1731 		 *                 |                 *
   1732 		 *                 \- b_tbl -> +-+-  *
   1733 		 *                             | |   *
   1734 		 *                             +-+-  *
   1735 		 *************************************/
   1736 		b_dte = mmu_ptov(a_dte->addr.raw);
   1737 		b_tbl = mmuB2tmgr(b_dte);
   1738 
   1739 		/*
   1740 		 * If the requested mapping must be wired, but this table
   1741 		 * being used to map it is not, the table must be removed
   1742 		 * from the available pool and its wired entry count
   1743 		 * incremented.
   1744 		 */
   1745 		if (wired && !b_tbl->bt_wcnt) {
   1746 			TAILQ_REMOVE(&b_pool, b_tbl, bt_link);
   1747 			a_tbl->at_wcnt++;
   1748 		}
   1749 	} else {
   1750 		/* The descriptor is invalid.  Allocate a new B table. */
   1751 		b_tbl = get_b_table();
   1752 
   1753 		/* Point the parent A table descriptor to this new B table. */
   1754 		a_dte->addr.raw = mmu_vtop(b_tbl->bt_dtbl);
   1755 		a_dte->attr.raw = MMU_LONG_DTE_LU | MMU_DT_SHORT;
   1756 		a_tbl->at_ecnt++; /* Update parent's valid entry count */
   1757 
   1758 		/* Create the necessary back references to the parent table */
   1759 		b_tbl->bt_parent = a_tbl;
   1760 		b_tbl->bt_pidx = a_idx;
   1761 
   1762 		/*
   1763 		 * If this table is to be wired, make sure the parent A table
   1764 		 * wired count is updated to reflect that it has another wired
   1765 		 * entry.
   1766 		 */
   1767 		if (wired)
   1768 			a_tbl->at_wcnt++;
   1769 		else if (llevel == NONE)
   1770 			llevel = NEWB;
   1771 	}
   1772 
   1773 	/*
   1774 	 * Step 3 - Walk into the C table, if there is no valid C table,
   1775 	 * allocate one.
   1776 	 */
   1777 
   1778 	b_idx = MMU_TIB(va);            /* Calculate the TIB of the VA */
   1779 	b_dte = &b_tbl->bt_dtbl[b_idx]; /* Retrieve descriptor from table */
   1780 	if (MMU_VALID_DT(*b_dte)) {     /* Is the descriptor valid? */
   1781 		/* The descriptor is valid.  Use the C table it points to. */
   1782 		/**************************************
   1783 		 *               c_idx                *
   1784 		 * |                v                 *
   1785 		 * \- b_tbl -> +-+-+-+-+-+-+-+-+-+-+- *
   1786 		 *             | | | | | | | | | | |  *
   1787 		 *             +-+-+-+-+-+-+-+-+-+-+- *
   1788 		 *                  |                 *
   1789 		 *                  \- c_tbl -> +-+-- *
   1790 		 *                              | | | *
   1791 		 *                              +-+-- *
   1792 		 **************************************/
   1793 		c_pte = mmu_ptov(MMU_PTE_PA(*b_dte));
   1794 		c_tbl = mmuC2tmgr(c_pte);
   1795 
   1796 		/* If mapping is wired and table is not */
   1797 		if (wired && !c_tbl->ct_wcnt) {
   1798 			TAILQ_REMOVE(&c_pool, c_tbl, ct_link);
   1799 			b_tbl->bt_wcnt++;
   1800 		}
   1801 	} else {
   1802 		/* The descriptor is invalid.  Allocate a new C table. */
   1803 		c_tbl = get_c_table();
   1804 
   1805 		/* Point the parent B table descriptor to this new C table. */
   1806 		b_dte->attr.raw = mmu_vtop(c_tbl->ct_dtbl);
   1807 		b_dte->attr.raw |= MMU_DT_SHORT;
   1808 		b_tbl->bt_ecnt++; /* Update parent's valid entry count */
   1809 
   1810 		/* Create the necessary back references to the parent table */
   1811 		c_tbl->ct_parent = b_tbl;
   1812 		c_tbl->ct_pidx = b_idx;
   1813 		/*
   1814 		 * Store the pmap and base virtual managed address for faster
   1815 		 * retrieval in the PV functions.
   1816 		 */
   1817 		c_tbl->ct_pmap = pmap;
   1818 		c_tbl->ct_va = (va & (MMU_TIA_MASK|MMU_TIB_MASK));
   1819 
   1820 		/*
   1821 		 * If this table is to be wired, make sure the parent B table
   1822 		 * wired count is updated to reflect that it has another wired
   1823 		 * entry.
   1824 		 */
   1825 		if (wired)
   1826 			b_tbl->bt_wcnt++;
   1827 		else if (llevel == NONE)
   1828 			llevel = NEWC;
   1829 	}
   1830 
   1831 	/*
   1832 	 * Step 4 - Deposit a page descriptor (PTE) into the appropriate
   1833 	 * slot of the C table, describing the PA to which the VA is mapped.
   1834 	 */
   1835 
   1836 	pte_idx = MMU_TIC(va);
   1837 	c_pte = &c_tbl->ct_dtbl[pte_idx];
   1838 	if (MMU_VALID_DT(*c_pte)) { /* Is the entry currently valid? */
   1839 		/*
   1840 		 * The PTE is currently valid.  This particular call
   1841 		 * is just a synonym for one (or more) of the following
   1842 		 * operations:
   1843 		 *     change protection of a page
   1844 		 *     change wiring status of a page
   1845 		 *     remove the mapping of a page
   1846 		 *
   1847 		 * XXX - Semi critical: This code should unwire the PTE
   1848 		 * and, possibly, associated parent tables if this is a
   1849 		 * change wiring operation.  Currently it does not.
   1850 		 *
   1851 		 * This may be ok if pmap_unwire() is the only
   1852 		 * interface used to UNWIRE a page.
   1853 		 */
   1854 
   1855 		/* First check if this is a wiring operation. */
   1856 		if (wired && (c_pte->attr.raw & MMU_SHORT_PTE_WIRED)) {
   1857 			/*
   1858 			 * The PTE is already wired.  To prevent it from being
   1859 			 * counted as a new wiring operation, reset the 'wired'
   1860 			 * variable.
   1861 			 */
   1862 			wired = FALSE;
   1863 		}
   1864 
   1865 		/* Is the new address the same as the old? */
   1866 		if (MMU_PTE_PA(*c_pte) == pa) {
   1867 			/*
   1868 			 * Yes, mark that it does not need to be reinserted
   1869 			 * into the PV list.
   1870 			 */
   1871 			insert = FALSE;
   1872 
   1873 			/*
   1874 			 * Clear all but the modified, referenced and wired
   1875 			 * bits on the PTE.
   1876 			 */
   1877 			c_pte->attr.raw &= (MMU_SHORT_PTE_M
   1878 				| MMU_SHORT_PTE_USED | MMU_SHORT_PTE_WIRED);
   1879 		} else {
   1880 			/* No, remove the old entry */
   1881 			pmap_remove_pte(c_pte);
   1882 			insert = TRUE;
   1883 		}
   1884 
   1885 		/*
   1886 		 * TLB flush is only necessary if modifying current map.
   1887 		 * However, in pmap_enter(), the pmap almost always IS
   1888 		 * the current pmap, so don't even bother to check.
   1889 		 */
   1890 		TBIS(va);
   1891 	} else {
   1892 		/*
   1893 		 * The PTE is invalid.  Increment the valid entry count in
   1894 		 * the C table manager to reflect the addition of a new entry.
   1895 		 */
   1896 		c_tbl->ct_ecnt++;
   1897 
   1898 		/* XXX - temporarily make sure the PTE is cleared. */
   1899 		c_pte->attr.raw = 0;
   1900 
   1901 		/* It will also need to be inserted into the PV list. */
   1902 		insert = TRUE;
   1903 	}
   1904 
   1905 	/*
   1906 	 * If page is changing from unwired to wired status, set an unused bit
   1907 	 * within the PTE to indicate that it is wired.  Also increment the
   1908 	 * wired entry count in the C table manager.
   1909 	 */
   1910 	if (wired) {
   1911 		c_pte->attr.raw |= MMU_SHORT_PTE_WIRED;
   1912 		c_tbl->ct_wcnt++;
   1913 	}
   1914 
   1915 	/*
   1916 	 * Map the page, being careful to preserve modify/reference/wired
   1917 	 * bits.  At this point it is assumed that the PTE either has no bits
   1918 	 * set, or if there are set bits, they are only modified, reference or
   1919 	 * wired bits.  If not, the following statement will cause erratic
   1920 	 * behavior.
   1921 	 */
   1922 #ifdef	PMAP_DEBUG
   1923 	if (c_pte->attr.raw & ~(MMU_SHORT_PTE_M |
   1924 		MMU_SHORT_PTE_USED | MMU_SHORT_PTE_WIRED)) {
   1925 		printf("pmap_enter: junk left in PTE at %p\n", c_pte);
   1926 		Debugger();
   1927 	}
   1928 #endif
   1929 	c_pte->attr.raw |= ((u_long) pa | MMU_DT_PAGE);
   1930 
   1931 	/*
   1932 	 * If the mapping should be read-only, set the write protect
   1933 	 * bit in the PTE.
   1934 	 */
   1935 	if (!(prot & VM_PROT_WRITE))
   1936 		c_pte->attr.raw |= MMU_SHORT_PTE_WP;
   1937 
   1938 	/*
   1939 	 * If the mapping should be cache inhibited (indicated by the flag
   1940 	 * bits found on the lower order of the physical address.)
   1941 	 * mark the PTE as a cache inhibited page.
   1942 	 */
   1943 	if (mapflags & PMAP_NC)
   1944 		c_pte->attr.raw |= MMU_SHORT_PTE_CI;
   1945 
   1946 	/*
   1947 	 * If the physical address being mapped is managed by the PV
   1948 	 * system then link the pte into the list of pages mapped to that
   1949 	 * address.
   1950 	 */
   1951 	if (insert && managed) {
   1952 		pv = pa2pv(pa);
   1953 		nidx = pteidx(c_pte);
   1954 
   1955 		pvebase[nidx].pve_next = pv->pv_idx;
   1956 		pv->pv_idx = nidx;
   1957 	}
   1958 
   1959 	/* Move any allocated tables back into the active pool. */
   1960 
   1961 	switch (llevel) {
   1962 		case NEWA:
   1963 			TAILQ_INSERT_TAIL(&a_pool, a_tbl, at_link);
   1964 			/* FALLTHROUGH */
   1965 		case NEWB:
   1966 			TAILQ_INSERT_TAIL(&b_pool, b_tbl, bt_link);
   1967 			/* FALLTHROUGH */
   1968 		case NEWC:
   1969 			TAILQ_INSERT_TAIL(&c_pool, c_tbl, ct_link);
   1970 			/* FALLTHROUGH */
   1971 		default:
   1972 			break;
   1973 	}
   1974 
   1975 	return 0;
   1976 }
   1977 
   1978 /* pmap_enter_kernel			INTERNAL
   1979  **
   1980  * Map the given virtual address to the given physical address within the
   1981  * kernel address space.  This function exists because the kernel map does
   1982  * not do dynamic table allocation.  It consists of a contiguous array of ptes
   1983  * and can be edited directly without the need to walk through any tables.
   1984  *
   1985  * XXX: "Danger, Will Robinson!"
   1986  * Note that the kernel should never take a fault on any page
   1987  * between [ KERNBASE .. virtual_avail ] and this is checked in
   1988  * trap.c for kernel-mode MMU faults.  This means that mappings
   1989  * created in that range must be implicily wired. -gwr
   1990  */
   1991 void
   1992 pmap_enter_kernel(va, pa, prot)
   1993 	vaddr_t va;
   1994 	paddr_t pa;
   1995 	vm_prot_t   prot;
   1996 {
   1997 	boolean_t       was_valid, insert;
   1998 	u_short         pte_idx;
   1999 	int             flags;
   2000 	mmu_short_pte_t *pte;
   2001 	pv_t            *pv;
   2002 	paddr_t     old_pa;
   2003 
   2004 	flags = (pa & ~MMU_PAGE_MASK);
   2005 	pa &= MMU_PAGE_MASK;
   2006 
   2007 	if (is_managed(pa))
   2008 		insert = TRUE;
   2009 	else
   2010 		insert = FALSE;
   2011 
   2012 	/*
   2013 	 * Calculate the index of the PTE being modified.
   2014 	 */
   2015 	pte_idx = (u_long) m68k_btop(va - KERNBASE);
   2016 
   2017 	/* This array is traditionally named "Sysmap" */
   2018 	pte = &kernCbase[pte_idx];
   2019 
   2020 	if (MMU_VALID_DT(*pte)) {
   2021 		was_valid = TRUE;
   2022 		/*
   2023 		 * If the PTE already maps a different
   2024 		 * physical address, umap and pv_unlink.
   2025 		 */
   2026 		old_pa = MMU_PTE_PA(*pte);
   2027 		if (pa != old_pa)
   2028 			pmap_remove_pte(pte);
   2029 		else {
   2030 		    /*
   2031 		     * Old PA and new PA are the same.  No need to
   2032 		     * relink the mapping within the PV list.
   2033 		     */
   2034 		     insert = FALSE;
   2035 
   2036 		    /*
   2037 		     * Save any mod/ref bits on the PTE.
   2038 		     */
   2039 		    pte->attr.raw &= (MMU_SHORT_PTE_USED|MMU_SHORT_PTE_M);
   2040 		}
   2041 	} else {
   2042 		pte->attr.raw = MMU_DT_INVALID;
   2043 		was_valid = FALSE;
   2044 	}
   2045 
   2046 	/*
   2047 	 * Map the page.  Being careful to preserve modified/referenced bits
   2048 	 * on the PTE.
   2049 	 */
   2050 	pte->attr.raw |= (pa | MMU_DT_PAGE);
   2051 
   2052 	if (!(prot & VM_PROT_WRITE)) /* If access should be read-only */
   2053 		pte->attr.raw |= MMU_SHORT_PTE_WP;
   2054 	if (flags & PMAP_NC)
   2055 		pte->attr.raw |= MMU_SHORT_PTE_CI;
   2056 	if (was_valid)
   2057 		TBIS(va);
   2058 
   2059 	/*
   2060 	 * Insert the PTE into the PV system, if need be.
   2061 	 */
   2062 	if (insert) {
   2063 		pv = pa2pv(pa);
   2064 		pvebase[pte_idx].pve_next = pv->pv_idx;
   2065 		pv->pv_idx = pte_idx;
   2066 	}
   2067 }
   2068 
   2069 void
   2070 pmap_kenter_pa(va, pa, prot)
   2071 	vaddr_t va;
   2072 	paddr_t pa;
   2073 	vm_prot_t prot;
   2074 {
   2075 	mmu_short_pte_t	*pte;
   2076 
   2077 	/* This array is traditionally named "Sysmap" */
   2078 	pte = &kernCbase[(u_long)m68k_btop(va - KERNBASE)];
   2079 
   2080 	KASSERT(!MMU_VALID_DT(*pte));
   2081 	pte->attr.raw = MMU_DT_INVALID | MMU_DT_PAGE | (pa & MMU_PAGE_MASK);
   2082 	if (!(prot & VM_PROT_WRITE))
   2083 		pte->attr.raw |= MMU_SHORT_PTE_WP;
   2084 }
   2085 
   2086 void
   2087 pmap_kremove(va, len)
   2088 	vaddr_t va;
   2089 	vsize_t len;
   2090 {
   2091 	int idx, eidx;
   2092 
   2093 #ifdef	PMAP_DEBUG
   2094 	if ((sva & PGOFSET) || (eva & PGOFSET))
   2095 		panic("pmap_kremove: alignment");
   2096 #endif
   2097 
   2098 	idx  = m68k_btop(va - KERNBASE);
   2099 	eidx = m68k_btop(va + len - KERNBASE);
   2100 
   2101 	while (idx < eidx) {
   2102 		kernCbase[idx++].attr.raw = MMU_DT_INVALID;
   2103 		TBIS(va);
   2104 		va += NBPG;
   2105 	}
   2106 }
   2107 
   2108 /* pmap_map			INTERNAL
   2109  **
   2110  * Map a contiguous range of physical memory into a contiguous range of
   2111  * the kernel virtual address space.
   2112  *
   2113  * Used for device mappings and early mapping of the kernel text/data/bss.
   2114  * Returns the first virtual address beyond the end of the range.
   2115  */
   2116 vaddr_t
   2117 pmap_map(va, pa, endpa, prot)
   2118 	vaddr_t	va;
   2119 	paddr_t	pa;
   2120 	paddr_t	endpa;
   2121 	int		prot;
   2122 {
   2123 	int sz;
   2124 
   2125 	sz = endpa - pa;
   2126 	do {
   2127 		pmap_enter_kernel(va, pa, prot);
   2128 		va += NBPG;
   2129 		pa += NBPG;
   2130 		sz -= NBPG;
   2131 	} while (sz > 0);
   2132 	pmap_update(pmap_kernel());
   2133 	return(va);
   2134 }
   2135 
   2136 /* pmap_protect			INTERFACE
   2137  **
   2138  * Apply the given protection to the given virtual address range within
   2139  * the given map.
   2140  *
   2141  * It is ok for the protection applied to be stronger than what is
   2142  * specified.  We use this to our advantage when the given map has no
   2143  * mapping for the virtual address.  By skipping a page when this
   2144  * is discovered, we are effectively applying a protection of VM_PROT_NONE,
   2145  * and therefore do not need to map the page just to apply a protection
   2146  * code.  Only pmap_enter() needs to create new mappings if they do not exist.
   2147  *
   2148  * XXX - This function could be speeded up by using pmap_stroll() for inital
   2149  *       setup, and then manual scrolling in the for() loop.
   2150  */
   2151 void
   2152 pmap_protect(pmap, startva, endva, prot)
   2153 	pmap_t pmap;
   2154 	vaddr_t startva, endva;
   2155 	vm_prot_t prot;
   2156 {
   2157 	boolean_t iscurpmap;
   2158 	int a_idx, b_idx, c_idx;
   2159 	a_tmgr_t *a_tbl;
   2160 	b_tmgr_t *b_tbl;
   2161 	c_tmgr_t *c_tbl;
   2162 	mmu_short_pte_t *pte;
   2163 
   2164 	if (pmap == pmap_kernel()) {
   2165 		pmap_protect_kernel(startva, endva, prot);
   2166 		return;
   2167 	}
   2168 
   2169 	/*
   2170 	 * In this particular pmap implementation, there are only three
   2171 	 * types of memory protection: 'all' (read/write/execute),
   2172 	 * 'read-only' (read/execute) and 'none' (no mapping.)
   2173 	 * It is not possible for us to treat 'executable' as a separate
   2174 	 * protection type.  Therefore, protection requests that seek to
   2175 	 * remove execute permission while retaining read or write, and those
   2176 	 * that make little sense (write-only for example) are ignored.
   2177 	 */
   2178 	switch (prot) {
   2179 		case VM_PROT_NONE:
   2180 			/*
   2181 			 * A request to apply the protection code of
   2182 			 * 'VM_PROT_NONE' is a synonym for pmap_remove().
   2183 			 */
   2184 			pmap_remove(pmap, startva, endva);
   2185 			return;
   2186 		case	VM_PROT_EXECUTE:
   2187 		case	VM_PROT_READ:
   2188 		case	VM_PROT_READ|VM_PROT_EXECUTE:
   2189 			/* continue */
   2190 			break;
   2191 		case	VM_PROT_WRITE:
   2192 		case	VM_PROT_WRITE|VM_PROT_READ:
   2193 		case	VM_PROT_WRITE|VM_PROT_EXECUTE:
   2194 		case	VM_PROT_ALL:
   2195 			/* None of these should happen in a sane system. */
   2196 			return;
   2197 	}
   2198 
   2199 	/*
   2200 	 * If the pmap has no A table, it has no mappings and therefore
   2201 	 * there is nothing to protect.
   2202 	 */
   2203 	if ((a_tbl = pmap->pm_a_tmgr) == NULL)
   2204 		return;
   2205 
   2206 	a_idx = MMU_TIA(startva);
   2207 	b_idx = MMU_TIB(startva);
   2208 	c_idx = MMU_TIC(startva);
   2209 	b_tbl = (b_tmgr_t *) c_tbl = NULL;
   2210 
   2211 	iscurpmap = (pmap == current_pmap());
   2212 	while (startva < endva) {
   2213 		if (b_tbl || MMU_VALID_DT(a_tbl->at_dtbl[a_idx])) {
   2214 		  if (b_tbl == NULL) {
   2215 		    b_tbl = (b_tmgr_t *) a_tbl->at_dtbl[a_idx].addr.raw;
   2216 		    b_tbl = mmu_ptov((vaddr_t)b_tbl);
   2217 		    b_tbl = mmuB2tmgr((mmu_short_dte_t *)b_tbl);
   2218 		  }
   2219 		  if (c_tbl || MMU_VALID_DT(b_tbl->bt_dtbl[b_idx])) {
   2220 		    if (c_tbl == NULL) {
   2221 		      c_tbl = (c_tmgr_t *) MMU_DTE_PA(b_tbl->bt_dtbl[b_idx]);
   2222 		      c_tbl = mmu_ptov((vaddr_t)c_tbl);
   2223 		      c_tbl = mmuC2tmgr((mmu_short_pte_t *)c_tbl);
   2224 		    }
   2225 		    if (MMU_VALID_DT(c_tbl->ct_dtbl[c_idx])) {
   2226 		      pte = &c_tbl->ct_dtbl[c_idx];
   2227 		      /* make the mapping read-only */
   2228 		      pte->attr.raw |= MMU_SHORT_PTE_WP;
   2229 		      /*
   2230 		       * If we just modified the current address space,
   2231 		       * flush any translations for the modified page from
   2232 		       * the translation cache and any data from it in the
   2233 		       * data cache.
   2234 		       */
   2235 		      if (iscurpmap)
   2236 		          TBIS(startva);
   2237 		    }
   2238 		    startva += NBPG;
   2239 
   2240 		    if (++c_idx >= MMU_C_TBL_SIZE) { /* exceeded C table? */
   2241 		      c_tbl = NULL;
   2242 		      c_idx = 0;
   2243 		      if (++b_idx >= MMU_B_TBL_SIZE) { /* exceeded B table? */
   2244 		        b_tbl = NULL;
   2245 		        b_idx = 0;
   2246 		      }
   2247 		    }
   2248 		  } else { /* C table wasn't valid */
   2249 		    c_tbl = NULL;
   2250 		    c_idx = 0;
   2251 		    startva += MMU_TIB_RANGE;
   2252 		    if (++b_idx >= MMU_B_TBL_SIZE) { /* exceeded B table? */
   2253 		      b_tbl = NULL;
   2254 		      b_idx = 0;
   2255 		    }
   2256 		  } /* C table */
   2257 		} else { /* B table wasn't valid */
   2258 		  b_tbl = NULL;
   2259 		  b_idx = 0;
   2260 		  startva += MMU_TIA_RANGE;
   2261 		  a_idx++;
   2262 		} /* B table */
   2263 	}
   2264 }
   2265 
   2266 /* pmap_protect_kernel			INTERNAL
   2267  **
   2268  * Apply the given protection code to a kernel address range.
   2269  */
   2270 void
   2271 pmap_protect_kernel(startva, endva, prot)
   2272 	vaddr_t startva, endva;
   2273 	vm_prot_t prot;
   2274 {
   2275 	vaddr_t va;
   2276 	mmu_short_pte_t *pte;
   2277 
   2278 	pte = &kernCbase[(unsigned long) m68k_btop(startva - KERNBASE)];
   2279 	for (va = startva; va < endva; va += NBPG, pte++) {
   2280 		if (MMU_VALID_DT(*pte)) {
   2281 		    switch (prot) {
   2282 		        case VM_PROT_ALL:
   2283 		            break;
   2284 		        case VM_PROT_EXECUTE:
   2285 		        case VM_PROT_READ:
   2286 		        case VM_PROT_READ|VM_PROT_EXECUTE:
   2287 		            pte->attr.raw |= MMU_SHORT_PTE_WP;
   2288 		            break;
   2289 		        case VM_PROT_NONE:
   2290 		            /* this is an alias for 'pmap_remove_kernel' */
   2291 		            pmap_remove_pte(pte);
   2292 		            break;
   2293 		        default:
   2294 		            break;
   2295 		    }
   2296 		    /*
   2297 		     * since this is the kernel, immediately flush any cached
   2298 		     * descriptors for this address.
   2299 		     */
   2300 		    TBIS(va);
   2301 		}
   2302 	}
   2303 }
   2304 
   2305 /* pmap_unwire				INTERFACE
   2306  **
   2307  * Clear the wired attribute of the specified page.
   2308  *
   2309  * This function is called from vm_fault.c to unwire
   2310  * a mapping.
   2311  */
   2312 void
   2313 pmap_unwire(pmap, va)
   2314 	pmap_t pmap;
   2315 	vaddr_t va;
   2316 {
   2317 	int a_idx, b_idx, c_idx;
   2318 	a_tmgr_t *a_tbl;
   2319 	b_tmgr_t *b_tbl;
   2320 	c_tmgr_t *c_tbl;
   2321 	mmu_short_pte_t *pte;
   2322 
   2323 	/* Kernel mappings always remain wired. */
   2324 	if (pmap == pmap_kernel())
   2325 		return;
   2326 
   2327 	/*
   2328 	 * Walk through the tables.  If the walk terminates without
   2329 	 * a valid PTE then the address wasn't wired in the first place.
   2330 	 * Return immediately.
   2331 	 */
   2332 	if (pmap_stroll(pmap, va, &a_tbl, &b_tbl, &c_tbl, &pte, &a_idx,
   2333 		&b_idx, &c_idx) == FALSE)
   2334 		return;
   2335 
   2336 
   2337 	/* Is the PTE wired?  If not, return. */
   2338 	if (!(pte->attr.raw & MMU_SHORT_PTE_WIRED))
   2339 		return;
   2340 
   2341 	/* Remove the wiring bit. */
   2342 	pte->attr.raw &= ~(MMU_SHORT_PTE_WIRED);
   2343 
   2344 	/*
   2345 	 * Decrement the wired entry count in the C table.
   2346 	 * If it reaches zero the following things happen:
   2347 	 * 1. The table no longer has any wired entries and is considered
   2348 	 *    unwired.
   2349 	 * 2. It is placed on the available queue.
   2350 	 * 3. The parent table's wired entry count is decremented.
   2351 	 * 4. If it reaches zero, this process repeats at step 1 and
   2352 	 *    stops at after reaching the A table.
   2353 	 */
   2354 	if (--c_tbl->ct_wcnt == 0) {
   2355 		TAILQ_INSERT_TAIL(&c_pool, c_tbl, ct_link);
   2356 		if (--b_tbl->bt_wcnt == 0) {
   2357 			TAILQ_INSERT_TAIL(&b_pool, b_tbl, bt_link);
   2358 			if (--a_tbl->at_wcnt == 0) {
   2359 				TAILQ_INSERT_TAIL(&a_pool, a_tbl, at_link);
   2360 			}
   2361 		}
   2362 	}
   2363 }
   2364 
   2365 /* pmap_copy				INTERFACE
   2366  **
   2367  * Copy the mappings of a range of addresses in one pmap, into
   2368  * the destination address of another.
   2369  *
   2370  * This routine is advisory.  Should we one day decide that MMU tables
   2371  * may be shared by more than one pmap, this function should be used to
   2372  * link them together.  Until that day however, we do nothing.
   2373  */
   2374 void
   2375 pmap_copy(pmap_a, pmap_b, dst, len, src)
   2376 	pmap_t pmap_a, pmap_b;
   2377 	vaddr_t dst;
   2378 	vsize_t len;
   2379 	vaddr_t src;
   2380 {
   2381 	/* not implemented. */
   2382 }
   2383 
   2384 /* pmap_copy_page			INTERFACE
   2385  **
   2386  * Copy the contents of one physical page into another.
   2387  *
   2388  * This function makes use of two virtual pages allocated in pmap_bootstrap()
   2389  * to map the two specified physical pages into the kernel address space.
   2390  *
   2391  * Note: We could use the transparent translation registers to make the
   2392  * mappings.  If we do so, be sure to disable interrupts before using them.
   2393  */
   2394 void
   2395 pmap_copy_page(srcpa, dstpa)
   2396 	paddr_t srcpa, dstpa;
   2397 {
   2398 	vaddr_t srcva, dstva;
   2399 	int s;
   2400 
   2401 	srcva = tmp_vpages[0];
   2402 	dstva = tmp_vpages[1];
   2403 
   2404 	s = splvm();
   2405 #ifdef DIAGNOSTIC
   2406 	if (tmp_vpages_inuse++)
   2407 		panic("pmap_copy_page: temporary vpages are in use.");
   2408 #endif
   2409 
   2410 	/* Map pages as non-cacheable to avoid cache polution? */
   2411 	pmap_kenter_pa(srcva, srcpa, VM_PROT_READ);
   2412 	pmap_kenter_pa(dstva, dstpa, VM_PROT_READ|VM_PROT_WRITE);
   2413 
   2414 	/* Hand-optimized version of bcopy(src, dst, NBPG) */
   2415 	copypage((char *) srcva, (char *) dstva);
   2416 
   2417 	pmap_kremove(srcva, NBPG);
   2418 	pmap_kremove(dstva, NBPG);
   2419 
   2420 #ifdef DIAGNOSTIC
   2421 	--tmp_vpages_inuse;
   2422 #endif
   2423 	splx(s);
   2424 }
   2425 
   2426 /* pmap_zero_page			INTERFACE
   2427  **
   2428  * Zero the contents of the specified physical page.
   2429  *
   2430  * Uses one of the virtual pages allocated in pmap_boostrap()
   2431  * to map the specified page into the kernel address space.
   2432  */
   2433 void
   2434 pmap_zero_page(dstpa)
   2435 	paddr_t dstpa;
   2436 {
   2437 	vaddr_t dstva;
   2438 	int s;
   2439 
   2440 	dstva = tmp_vpages[1];
   2441 	s = splvm();
   2442 #ifdef DIAGNOSTIC
   2443 	if (tmp_vpages_inuse++)
   2444 		panic("pmap_zero_page: temporary vpages are in use.");
   2445 #endif
   2446 
   2447 	/* The comments in pmap_copy_page() above apply here also. */
   2448 	pmap_kenter_pa(dstva, dstpa, VM_PROT_READ|VM_PROT_WRITE);
   2449 
   2450 	/* Hand-optimized version of bzero(ptr, NBPG) */
   2451 	zeropage((char *) dstva);
   2452 
   2453 	pmap_kremove(dstva, NBPG);
   2454 #ifdef DIAGNOSTIC
   2455 	--tmp_vpages_inuse;
   2456 #endif
   2457 	splx(s);
   2458 }
   2459 
   2460 /* pmap_collect			INTERFACE
   2461  **
   2462  * Called from the VM system when we are about to swap out
   2463  * the process using this pmap.  This should give up any
   2464  * resources held here, including all its MMU tables.
   2465  */
   2466 void
   2467 pmap_collect(pmap)
   2468 	pmap_t pmap;
   2469 {
   2470 	/* XXX - todo... */
   2471 }
   2472 
   2473 /* pmap_create			INTERFACE
   2474  **
   2475  * Create and return a pmap structure.
   2476  */
   2477 pmap_t
   2478 pmap_create()
   2479 {
   2480 	pmap_t	pmap;
   2481 
   2482 	pmap = pool_get(&pmap_pmap_pool, PR_WAITOK);
   2483 	pmap_pinit(pmap);
   2484 	return pmap;
   2485 }
   2486 
   2487 /* pmap_pinit			INTERNAL
   2488  **
   2489  * Initialize a pmap structure.
   2490  */
   2491 void
   2492 pmap_pinit(pmap)
   2493 	pmap_t pmap;
   2494 {
   2495 	memset(pmap, 0, sizeof(struct pmap));
   2496 	pmap->pm_a_tmgr = NULL;
   2497 	pmap->pm_a_phys = kernAphys;
   2498 	pmap->pm_refcount = 1;
   2499 	simple_lock_init(&pmap->pm_lock);
   2500 }
   2501 
   2502 /* pmap_release				INTERFACE
   2503  **
   2504  * Release any resources held by the given pmap.
   2505  *
   2506  * This is the reverse analog to pmap_pinit.  It does not
   2507  * necessarily mean for the pmap structure to be deallocated,
   2508  * as in pmap_destroy.
   2509  */
   2510 void
   2511 pmap_release(pmap)
   2512 	pmap_t pmap;
   2513 {
   2514 	/*
   2515 	 * As long as the pmap contains no mappings,
   2516 	 * which always should be the case whenever
   2517 	 * this function is called, there really should
   2518 	 * be nothing to do.
   2519 	 */
   2520 #ifdef	PMAP_DEBUG
   2521 	if (pmap == pmap_kernel())
   2522 		panic("pmap_release: kernel pmap");
   2523 #endif
   2524 	/*
   2525 	 * XXX - If this pmap has an A table, give it back.
   2526 	 * The pmap SHOULD be empty by now, and pmap_remove
   2527 	 * should have already given back the A table...
   2528 	 * However, I see:  pmap->pm_a_tmgr->at_ecnt == 1
   2529 	 * at this point, which means some mapping was not
   2530 	 * removed when it should have been. -gwr
   2531 	 */
   2532 	if (pmap->pm_a_tmgr != NULL) {
   2533 		/* First make sure we are not using it! */
   2534 		if (kernel_crp.rp_addr == pmap->pm_a_phys) {
   2535 			kernel_crp.rp_addr = kernAphys;
   2536 			loadcrp(&kernel_crp);
   2537 		}
   2538 #ifdef	PMAP_DEBUG /* XXX - todo! */
   2539 		/* XXX - Now complain... */
   2540 		printf("pmap_release: still have table\n");
   2541 		Debugger();
   2542 #endif
   2543 		free_a_table(pmap->pm_a_tmgr, TRUE);
   2544 		pmap->pm_a_tmgr = NULL;
   2545 		pmap->pm_a_phys = kernAphys;
   2546 	}
   2547 }
   2548 
   2549 /* pmap_reference			INTERFACE
   2550  **
   2551  * Increment the reference count of a pmap.
   2552  */
   2553 void
   2554 pmap_reference(pmap)
   2555 	pmap_t pmap;
   2556 {
   2557 	pmap_lock(pmap);
   2558 	pmap_add_ref(pmap);
   2559 	pmap_unlock(pmap);
   2560 }
   2561 
   2562 /* pmap_dereference			INTERNAL
   2563  **
   2564  * Decrease the reference count on the given pmap
   2565  * by one and return the current count.
   2566  */
   2567 int
   2568 pmap_dereference(pmap)
   2569 	pmap_t pmap;
   2570 {
   2571 	int rtn;
   2572 
   2573 	pmap_lock(pmap);
   2574 	rtn = pmap_del_ref(pmap);
   2575 	pmap_unlock(pmap);
   2576 
   2577 	return rtn;
   2578 }
   2579 
   2580 /* pmap_destroy			INTERFACE
   2581  **
   2582  * Decrement a pmap's reference count and delete
   2583  * the pmap if it becomes zero.  Will be called
   2584  * only after all mappings have been removed.
   2585  */
   2586 void
   2587 pmap_destroy(pmap)
   2588 	pmap_t pmap;
   2589 {
   2590 	if (pmap_dereference(pmap) == 0) {
   2591 		pmap_release(pmap);
   2592 		pool_put(&pmap_pmap_pool, pmap);
   2593 	}
   2594 }
   2595 
   2596 /* pmap_is_referenced			INTERFACE
   2597  **
   2598  * Determine if the given physical page has been
   2599  * referenced (read from [or written to.])
   2600  */
   2601 boolean_t
   2602 pmap_is_referenced(pg)
   2603 	struct vm_page *pg;
   2604 {
   2605 	paddr_t   pa = VM_PAGE_TO_PHYS(pg);
   2606 	pv_t      *pv;
   2607 	int       idx;
   2608 
   2609 	/*
   2610 	 * Check the flags on the pv head.  If they are set,
   2611 	 * return immediately.  Otherwise a search must be done.
   2612 	 */
   2613 
   2614 	pv = pa2pv(pa);
   2615 	if (pv->pv_flags & PV_FLAGS_USED)
   2616 		return TRUE;
   2617 
   2618 	/*
   2619 	 * Search through all pv elements pointing
   2620 	 * to this page and query their reference bits
   2621 	 */
   2622 
   2623 	for (idx = pv->pv_idx; idx != PVE_EOL; idx = pvebase[idx].pve_next) {
   2624 		if (MMU_PTE_USED(kernCbase[idx])) {
   2625 			return TRUE;
   2626 		}
   2627 	}
   2628 	return FALSE;
   2629 }
   2630 
   2631 /* pmap_is_modified			INTERFACE
   2632  **
   2633  * Determine if the given physical page has been
   2634  * modified (written to.)
   2635  */
   2636 boolean_t
   2637 pmap_is_modified(pg)
   2638 	struct vm_page *pg;
   2639 {
   2640 	paddr_t   pa = VM_PAGE_TO_PHYS(pg);
   2641 	pv_t      *pv;
   2642 	int       idx;
   2643 
   2644 	/* see comments in pmap_is_referenced() */
   2645 	pv = pa2pv(pa);
   2646 	if (pv->pv_flags & PV_FLAGS_MDFY)
   2647 		return TRUE;
   2648 
   2649 	for (idx = pv->pv_idx;
   2650 		 idx != PVE_EOL;
   2651 		 idx = pvebase[idx].pve_next) {
   2652 
   2653 		if (MMU_PTE_MODIFIED(kernCbase[idx])) {
   2654 			return TRUE;
   2655 		}
   2656 	}
   2657 
   2658 	return FALSE;
   2659 }
   2660 
   2661 /* pmap_page_protect			INTERFACE
   2662  **
   2663  * Applies the given protection to all mappings to the given
   2664  * physical page.
   2665  */
   2666 void
   2667 pmap_page_protect(pg, prot)
   2668 	struct vm_page *pg;
   2669 	vm_prot_t prot;
   2670 {
   2671 	paddr_t   pa = VM_PAGE_TO_PHYS(pg);
   2672 	pv_t      *pv;
   2673 	int       idx;
   2674 	vaddr_t va;
   2675 	struct mmu_short_pte_struct *pte;
   2676 	c_tmgr_t  *c_tbl;
   2677 	pmap_t    pmap, curpmap;
   2678 
   2679 	curpmap = current_pmap();
   2680 	pv = pa2pv(pa);
   2681 
   2682 	for (idx = pv->pv_idx; idx != PVE_EOL; idx = pvebase[idx].pve_next) {
   2683 		pte = &kernCbase[idx];
   2684 		switch (prot) {
   2685 			case VM_PROT_ALL:
   2686 				/* do nothing */
   2687 				break;
   2688 			case VM_PROT_EXECUTE:
   2689 			case VM_PROT_READ:
   2690 			case VM_PROT_READ|VM_PROT_EXECUTE:
   2691 				/*
   2692 				 * Determine the virtual address mapped by
   2693 				 * the PTE and flush ATC entries if necessary.
   2694 				 */
   2695 				va = pmap_get_pteinfo(idx, &pmap, &c_tbl);
   2696 				pte->attr.raw |= MMU_SHORT_PTE_WP;
   2697 				if (pmap == curpmap || pmap == pmap_kernel())
   2698 					TBIS(va);
   2699 				break;
   2700 			case VM_PROT_NONE:
   2701 				/* Save the mod/ref bits. */
   2702 				pv->pv_flags |= pte->attr.raw;
   2703 				/* Invalidate the PTE. */
   2704 				pte->attr.raw = MMU_DT_INVALID;
   2705 
   2706 				/*
   2707 				 * Update table counts.  And flush ATC entries
   2708 				 * if necessary.
   2709 				 */
   2710 				va = pmap_get_pteinfo(idx, &pmap, &c_tbl);
   2711 
   2712 				/*
   2713 				 * If the PTE belongs to the kernel map,
   2714 				 * be sure to flush the page it maps.
   2715 				 */
   2716 				if (pmap == pmap_kernel()) {
   2717 					TBIS(va);
   2718 				} else {
   2719 					/*
   2720 					 * The PTE belongs to a user map.
   2721 					 * update the entry count in the C
   2722 					 * table to which it belongs and flush
   2723 					 * the ATC if the mapping belongs to
   2724 					 * the current pmap.
   2725 					 */
   2726 					c_tbl->ct_ecnt--;
   2727 					if (pmap == curpmap)
   2728 						TBIS(va);
   2729 				}
   2730 				break;
   2731 			default:
   2732 				break;
   2733 		}
   2734 	}
   2735 
   2736 	/*
   2737 	 * If the protection code indicates that all mappings to the page
   2738 	 * be removed, truncate the PV list to zero entries.
   2739 	 */
   2740 	if (prot == VM_PROT_NONE)
   2741 		pv->pv_idx = PVE_EOL;
   2742 }
   2743 
   2744 /* pmap_get_pteinfo		INTERNAL
   2745  **
   2746  * Called internally to find the pmap and virtual address within that
   2747  * map to which the pte at the given index maps.  Also includes the PTE's C
   2748  * table manager.
   2749  *
   2750  * Returns the pmap in the argument provided, and the virtual address
   2751  * by return value.
   2752  */
   2753 vaddr_t
   2754 pmap_get_pteinfo(idx, pmap, tbl)
   2755 	u_int idx;
   2756 	pmap_t *pmap;
   2757 	c_tmgr_t **tbl;
   2758 {
   2759 	vaddr_t     va = 0;
   2760 
   2761 	/*
   2762 	 * Determine if the PTE is a kernel PTE or a user PTE.
   2763 	 */
   2764 	if (idx >= NUM_KERN_PTES) {
   2765 		/*
   2766 		 * The PTE belongs to a user mapping.
   2767 		 */
   2768 		/* XXX: Would like an inline for this to validate idx... */
   2769 		*tbl = &Ctmgrbase[(idx - NUM_KERN_PTES) / MMU_C_TBL_SIZE];
   2770 
   2771 		*pmap = (*tbl)->ct_pmap;
   2772 		/*
   2773 		 * To find the va to which the PTE maps, we first take
   2774 		 * the table's base virtual address mapping which is stored
   2775 		 * in ct_va.  We then increment this address by a page for
   2776 		 * every slot skipped until we reach the PTE.
   2777 		 */
   2778 		va =    (*tbl)->ct_va;
   2779 		va += m68k_ptob(idx % MMU_C_TBL_SIZE);
   2780 	} else {
   2781 		/*
   2782 		 * The PTE belongs to the kernel map.
   2783 		 */
   2784 		*pmap = pmap_kernel();
   2785 
   2786 		va = m68k_ptob(idx);
   2787 		va += KERNBASE;
   2788 	}
   2789 
   2790 	return va;
   2791 }
   2792 
   2793 /* pmap_clear_modify			INTERFACE
   2794  **
   2795  * Clear the modification bit on the page at the specified
   2796  * physical address.
   2797  *
   2798  */
   2799 boolean_t
   2800 pmap_clear_modify(pg)
   2801 	struct vm_page *pg;
   2802 {
   2803 	paddr_t pa = VM_PAGE_TO_PHYS(pg);
   2804 	boolean_t rv;
   2805 
   2806 	rv = pmap_is_modified(pg);
   2807 	pmap_clear_pv(pa, PV_FLAGS_MDFY);
   2808 	return rv;
   2809 }
   2810 
   2811 /* pmap_clear_reference			INTERFACE
   2812  **
   2813  * Clear the referenced bit on the page at the specified
   2814  * physical address.
   2815  */
   2816 boolean_t
   2817 pmap_clear_reference(pg)
   2818 	struct vm_page *pg;
   2819 {
   2820 	paddr_t pa = VM_PAGE_TO_PHYS(pg);
   2821 	boolean_t rv;
   2822 
   2823 	rv = pmap_is_referenced(pg);
   2824 	pmap_clear_pv(pa, PV_FLAGS_USED);
   2825 	return rv;
   2826 }
   2827 
   2828 /* pmap_clear_pv			INTERNAL
   2829  **
   2830  * Clears the specified flag from the specified physical address.
   2831  * (Used by pmap_clear_modify() and pmap_clear_reference().)
   2832  *
   2833  * Flag is one of:
   2834  *   PV_FLAGS_MDFY - Page modified bit.
   2835  *   PV_FLAGS_USED - Page used (referenced) bit.
   2836  *
   2837  * This routine must not only clear the flag on the pv list
   2838  * head.  It must also clear the bit on every pte in the pv
   2839  * list associated with the address.
   2840  */
   2841 void
   2842 pmap_clear_pv(pa, flag)
   2843 	paddr_t pa;
   2844 	int flag;
   2845 {
   2846 	pv_t      *pv;
   2847 	int       idx;
   2848 	vaddr_t   va;
   2849 	pmap_t          pmap;
   2850 	mmu_short_pte_t *pte;
   2851 	c_tmgr_t        *c_tbl;
   2852 
   2853 	pv = pa2pv(pa);
   2854 	pv->pv_flags &= ~(flag);
   2855 	for (idx = pv->pv_idx; idx != PVE_EOL; idx = pvebase[idx].pve_next) {
   2856 		pte = &kernCbase[idx];
   2857 		pte->attr.raw &= ~(flag);
   2858 
   2859 		/*
   2860 		 * The MC68030 MMU will not set the modified or
   2861 		 * referenced bits on any MMU tables for which it has
   2862 		 * a cached descriptor with its modify bit set.  To insure
   2863 		 * that it will modify these bits on the PTE during the next
   2864 		 * time it is written to or read from, we must flush it from
   2865 		 * the ATC.
   2866 		 *
   2867 		 * Ordinarily it is only necessary to flush the descriptor
   2868 		 * if it is used in the current address space.  But since I
   2869 		 * am not sure that there will always be a notion of
   2870 		 * 'the current address space' when this function is called,
   2871 		 * I will skip the test and always flush the address.  It
   2872 		 * does no harm.
   2873 		 */
   2874 
   2875 		va = pmap_get_pteinfo(idx, &pmap, &c_tbl);
   2876 		TBIS(va);
   2877 	}
   2878 }
   2879 
   2880 /* pmap_extract			INTERFACE
   2881  **
   2882  * Return the physical address mapped by the virtual address
   2883  * in the specified pmap.
   2884  *
   2885  * Note: this function should also apply an exclusive lock
   2886  * on the pmap system during its duration.
   2887  */
   2888 boolean_t
   2889 pmap_extract(pmap, va, pap)
   2890 	pmap_t pmap;
   2891 	vaddr_t va;
   2892 	paddr_t *pap;
   2893 {
   2894 	int a_idx, b_idx, pte_idx;
   2895 	a_tmgr_t	*a_tbl;
   2896 	b_tmgr_t	*b_tbl;
   2897 	c_tmgr_t	*c_tbl;
   2898 	mmu_short_pte_t	*c_pte;
   2899 
   2900 	if (pmap == pmap_kernel())
   2901 		return pmap_extract_kernel(va, pap);
   2902 
   2903 	if (pmap_stroll(pmap, va, &a_tbl, &b_tbl, &c_tbl,
   2904 		&c_pte, &a_idx, &b_idx, &pte_idx) == FALSE)
   2905 		return FALSE;
   2906 
   2907 	if (!MMU_VALID_DT(*c_pte))
   2908 		return FALSE;
   2909 
   2910 	if (pap != NULL)
   2911 		*pap = MMU_PTE_PA(*c_pte);
   2912 	return (TRUE);
   2913 }
   2914 
   2915 /* pmap_extract_kernel		INTERNAL
   2916  **
   2917  * Extract a translation from the kernel address space.
   2918  */
   2919 boolean_t
   2920 pmap_extract_kernel(va, pap)
   2921 	vaddr_t va;
   2922 	paddr_t *pap;
   2923 {
   2924 	mmu_short_pte_t *pte;
   2925 
   2926 	pte = &kernCbase[(u_int) m68k_btop(va - KERNBASE)];
   2927 	if (!MMU_VALID_DT(*pte))
   2928 		return (FALSE);
   2929 	if (pap != NULL)
   2930 		*pap = MMU_PTE_PA(*pte);
   2931 	return (TRUE);
   2932 }
   2933 
   2934 /* pmap_remove_kernel		INTERNAL
   2935  **
   2936  * Remove the mapping of a range of virtual addresses from the kernel map.
   2937  * The arguments are already page-aligned.
   2938  */
   2939 void
   2940 pmap_remove_kernel(sva, eva)
   2941 	vaddr_t sva;
   2942 	vaddr_t eva;
   2943 {
   2944 	int idx, eidx;
   2945 
   2946 #ifdef	PMAP_DEBUG
   2947 	if ((sva & PGOFSET) || (eva & PGOFSET))
   2948 		panic("pmap_remove_kernel: alignment");
   2949 #endif
   2950 
   2951 	idx  = m68k_btop(sva - KERNBASE);
   2952 	eidx = m68k_btop(eva - KERNBASE);
   2953 
   2954 	while (idx < eidx) {
   2955 		pmap_remove_pte(&kernCbase[idx++]);
   2956 		TBIS(sva);
   2957 		sva += NBPG;
   2958 	}
   2959 }
   2960 
   2961 /* pmap_remove			INTERFACE
   2962  **
   2963  * Remove the mapping of a range of virtual addresses from the given pmap.
   2964  *
   2965  * If the range contains any wired entries, this function will probably create
   2966  * disaster.
   2967  */
   2968 void
   2969 pmap_remove(pmap, start, end)
   2970 	pmap_t pmap;
   2971 	vaddr_t start;
   2972 	vaddr_t end;
   2973 {
   2974 
   2975 	if (pmap == pmap_kernel()) {
   2976 		pmap_remove_kernel(start, end);
   2977 		return;
   2978 	}
   2979 
   2980 	/*
   2981 	 * If the pmap doesn't have an A table of its own, it has no mappings
   2982 	 * that can be removed.
   2983 	 */
   2984 	if (pmap->pm_a_tmgr == NULL)
   2985 		return;
   2986 
   2987 	/*
   2988 	 * Remove the specified range from the pmap.  If the function
   2989 	 * returns true, the operation removed all the valid mappings
   2990 	 * in the pmap and freed its A table.  If this happened to the
   2991 	 * currently loaded pmap, the MMU root pointer must be reloaded
   2992 	 * with the default 'kernel' map.
   2993 	 */
   2994 	if (pmap_remove_a(pmap->pm_a_tmgr, start, end)) {
   2995 		if (kernel_crp.rp_addr == pmap->pm_a_phys) {
   2996 			kernel_crp.rp_addr = kernAphys;
   2997 			loadcrp(&kernel_crp);
   2998 			/* will do TLB flush below */
   2999 		}
   3000 		pmap->pm_a_tmgr = NULL;
   3001 		pmap->pm_a_phys = kernAphys;
   3002 	}
   3003 
   3004 	/*
   3005 	 * If we just modified the current address space,
   3006 	 * make sure to flush the MMU cache.
   3007 	 *
   3008 	 * XXX - this could be an unecessarily large flush.
   3009 	 * XXX - Could decide, based on the size of the VA range
   3010 	 * to be removed, whether to flush "by pages" or "all".
   3011 	 */
   3012 	if (pmap == current_pmap())
   3013 		TBIAU();
   3014 }
   3015 
   3016 /* pmap_remove_a			INTERNAL
   3017  **
   3018  * This is function number one in a set of three that removes a range
   3019  * of memory in the most efficient manner by removing the highest possible
   3020  * tables from the memory space.  This particular function attempts to remove
   3021  * as many B tables as it can, delegating the remaining fragmented ranges to
   3022  * pmap_remove_b().
   3023  *
   3024  * If the removal operation results in an empty A table, the function returns
   3025  * TRUE.
   3026  *
   3027  * It's ugly but will do for now.
   3028  */
   3029 boolean_t
   3030 pmap_remove_a(a_tbl, start, end)
   3031 	a_tmgr_t *a_tbl;
   3032 	vaddr_t start;
   3033 	vaddr_t end;
   3034 {
   3035 	boolean_t empty;
   3036 	int idx;
   3037 	vaddr_t nstart, nend;
   3038 	b_tmgr_t *b_tbl;
   3039 	mmu_long_dte_t  *a_dte;
   3040 	mmu_short_dte_t *b_dte;
   3041 
   3042 	/*
   3043 	 * The following code works with what I call a 'granularity
   3044 	 * reduction algorithim'.  A range of addresses will always have
   3045 	 * the following properties, which are classified according to
   3046 	 * how the range relates to the size of the current granularity
   3047 	 * - an A table entry:
   3048 	 *
   3049 	 *            1 2       3 4
   3050 	 * -+---+---+---+---+---+---+---+-
   3051 	 * -+---+---+---+---+---+---+---+-
   3052 	 *
   3053 	 * A range will always start on a granularity boundary, illustrated
   3054 	 * by '+' signs in the table above, or it will start at some point
   3055 	 * inbetween a granularity boundary, as illustrated by point 1.
   3056 	 * The first step in removing a range of addresses is to remove the
   3057 	 * range between 1 and 2, the nearest granularity boundary.  This
   3058 	 * job is handled by the section of code governed by the
   3059 	 * 'if (start < nstart)' statement.
   3060 	 *
   3061 	 * A range will always encompass zero or more intergral granules,
   3062 	 * illustrated by points 2 and 3.  Integral granules are easy to
   3063 	 * remove.  The removal of these granules is the second step, and
   3064 	 * is handled by the code block 'if (nstart < nend)'.
   3065 	 *
   3066 	 * Lastly, a range will always end on a granularity boundary,
   3067 	 * ill. by point 3, or it will fall just beyond one, ill. by point
   3068 	 * 4.  The last step involves removing this range and is handled by
   3069 	 * the code block 'if (nend < end)'.
   3070 	 */
   3071 	nstart = MMU_ROUND_UP_A(start);
   3072 	nend = MMU_ROUND_A(end);
   3073 
   3074 	if (start < nstart) {
   3075 		/*
   3076 		 * This block is executed if the range starts between
   3077 		 * a granularity boundary.
   3078 		 *
   3079 		 * First find the DTE which is responsible for mapping
   3080 		 * the start of the range.
   3081 		 */
   3082 		idx = MMU_TIA(start);
   3083 		a_dte = &a_tbl->at_dtbl[idx];
   3084 
   3085 		/*
   3086 		 * If the DTE is valid then delegate the removal of the sub
   3087 		 * range to pmap_remove_b(), which can remove addresses at
   3088 		 * a finer granularity.
   3089 		 */
   3090 		if (MMU_VALID_DT(*a_dte)) {
   3091 			b_dte = mmu_ptov(a_dte->addr.raw);
   3092 			b_tbl = mmuB2tmgr(b_dte);
   3093 
   3094 			/*
   3095 			 * The sub range to be removed starts at the start
   3096 			 * of the full range we were asked to remove, and ends
   3097 			 * at the greater of:
   3098 			 * 1. The end of the full range, -or-
   3099 			 * 2. The end of the full range, rounded down to the
   3100 			 *    nearest granularity boundary.
   3101 			 */
   3102 			if (end < nstart)
   3103 				empty = pmap_remove_b(b_tbl, start, end);
   3104 			else
   3105 				empty = pmap_remove_b(b_tbl, start, nstart);
   3106 
   3107 			/*
   3108 			 * If the removal resulted in an empty B table,
   3109 			 * invalidate the DTE that points to it and decrement
   3110 			 * the valid entry count of the A table.
   3111 			 */
   3112 			if (empty) {
   3113 				a_dte->attr.raw = MMU_DT_INVALID;
   3114 				a_tbl->at_ecnt--;
   3115 			}
   3116 		}
   3117 		/*
   3118 		 * If the DTE is invalid, the address range is already non-
   3119 		 * existent and can simply be skipped.
   3120 		 */
   3121 	}
   3122 	if (nstart < nend) {
   3123 		/*
   3124 		 * This block is executed if the range spans a whole number
   3125 		 * multiple of granules (A table entries.)
   3126 		 *
   3127 		 * First find the DTE which is responsible for mapping
   3128 		 * the start of the first granule involved.
   3129 		 */
   3130 		idx = MMU_TIA(nstart);
   3131 		a_dte = &a_tbl->at_dtbl[idx];
   3132 
   3133 		/*
   3134 		 * Remove entire sub-granules (B tables) one at a time,
   3135 		 * until reaching the end of the range.
   3136 		 */
   3137 		for (; nstart < nend; a_dte++, nstart += MMU_TIA_RANGE)
   3138 			if (MMU_VALID_DT(*a_dte)) {
   3139 				/*
   3140 				 * Find the B table manager for the
   3141 				 * entry and free it.
   3142 				 */
   3143 				b_dte = mmu_ptov(a_dte->addr.raw);
   3144 				b_tbl = mmuB2tmgr(b_dte);
   3145 				free_b_table(b_tbl, TRUE);
   3146 
   3147 				/*
   3148 				 * Invalidate the DTE that points to the
   3149 				 * B table and decrement the valid entry
   3150 				 * count of the A table.
   3151 				 */
   3152 				a_dte->attr.raw = MMU_DT_INVALID;
   3153 				a_tbl->at_ecnt--;
   3154 			}
   3155 	}
   3156 	if (nend < end) {
   3157 		/*
   3158 		 * This block is executed if the range ends beyond a
   3159 		 * granularity boundary.
   3160 		 *
   3161 		 * First find the DTE which is responsible for mapping
   3162 		 * the start of the nearest (rounded down) granularity
   3163 		 * boundary.
   3164 		 */
   3165 		idx = MMU_TIA(nend);
   3166 		a_dte = &a_tbl->at_dtbl[idx];
   3167 
   3168 		/*
   3169 		 * If the DTE is valid then delegate the removal of the sub
   3170 		 * range to pmap_remove_b(), which can remove addresses at
   3171 		 * a finer granularity.
   3172 		 */
   3173 		if (MMU_VALID_DT(*a_dte)) {
   3174 			/*
   3175 			 * Find the B table manager for the entry
   3176 			 * and hand it to pmap_remove_b() along with
   3177 			 * the sub range.
   3178 			 */
   3179 			b_dte = mmu_ptov(a_dte->addr.raw);
   3180 			b_tbl = mmuB2tmgr(b_dte);
   3181 
   3182 			empty = pmap_remove_b(b_tbl, nend, end);
   3183 
   3184 			/*
   3185 			 * If the removal resulted in an empty B table,
   3186 			 * invalidate the DTE that points to it and decrement
   3187 			 * the valid entry count of the A table.
   3188 			 */
   3189 			if (empty) {
   3190 				a_dte->attr.raw = MMU_DT_INVALID;
   3191 				a_tbl->at_ecnt--;
   3192 			}
   3193 		}
   3194 	}
   3195 
   3196 	/*
   3197 	 * If there are no more entries in the A table, release it
   3198 	 * back to the available pool and return TRUE.
   3199 	 */
   3200 	if (a_tbl->at_ecnt == 0) {
   3201 		a_tbl->at_parent = NULL;
   3202 		TAILQ_REMOVE(&a_pool, a_tbl, at_link);
   3203 		TAILQ_INSERT_HEAD(&a_pool, a_tbl, at_link);
   3204 		empty = TRUE;
   3205 	} else {
   3206 		empty = FALSE;
   3207 	}
   3208 
   3209 	return empty;
   3210 }
   3211 
   3212 /* pmap_remove_b			INTERNAL
   3213  **
   3214  * Remove a range of addresses from an address space, trying to remove entire
   3215  * C tables if possible.
   3216  *
   3217  * If the operation results in an empty B table, the function returns TRUE.
   3218  */
   3219 boolean_t
   3220 pmap_remove_b(b_tbl, start, end)
   3221 	b_tmgr_t *b_tbl;
   3222 	vaddr_t start;
   3223 	vaddr_t end;
   3224 {
   3225 	boolean_t empty;
   3226 	int idx;
   3227 	vaddr_t nstart, nend, rstart;
   3228 	c_tmgr_t *c_tbl;
   3229 	mmu_short_dte_t  *b_dte;
   3230 	mmu_short_pte_t  *c_dte;
   3231 
   3232 
   3233 	nstart = MMU_ROUND_UP_B(start);
   3234 	nend = MMU_ROUND_B(end);
   3235 
   3236 	if (start < nstart) {
   3237 		idx = MMU_TIB(start);
   3238 		b_dte = &b_tbl->bt_dtbl[idx];
   3239 		if (MMU_VALID_DT(*b_dte)) {
   3240 			c_dte = mmu_ptov(MMU_DTE_PA(*b_dte));
   3241 			c_tbl = mmuC2tmgr(c_dte);
   3242 			if (end < nstart)
   3243 				empty = pmap_remove_c(c_tbl, start, end);
   3244 			else
   3245 				empty = pmap_remove_c(c_tbl, start, nstart);
   3246 			if (empty) {
   3247 				b_dte->attr.raw = MMU_DT_INVALID;
   3248 				b_tbl->bt_ecnt--;
   3249 			}
   3250 		}
   3251 	}
   3252 	if (nstart < nend) {
   3253 		idx = MMU_TIB(nstart);
   3254 		b_dte = &b_tbl->bt_dtbl[idx];
   3255 		rstart = nstart;
   3256 		while (rstart < nend) {
   3257 			if (MMU_VALID_DT(*b_dte)) {
   3258 				c_dte = mmu_ptov(MMU_DTE_PA(*b_dte));
   3259 				c_tbl = mmuC2tmgr(c_dte);
   3260 				free_c_table(c_tbl, TRUE);
   3261 				b_dte->attr.raw = MMU_DT_INVALID;
   3262 				b_tbl->bt_ecnt--;
   3263 			}
   3264 			b_dte++;
   3265 			rstart += MMU_TIB_RANGE;
   3266 		}
   3267 	}
   3268 	if (nend < end) {
   3269 		idx = MMU_TIB(nend);
   3270 		b_dte = &b_tbl->bt_dtbl[idx];
   3271 		if (MMU_VALID_DT(*b_dte)) {
   3272 			c_dte = mmu_ptov(MMU_DTE_PA(*b_dte));
   3273 			c_tbl = mmuC2tmgr(c_dte);
   3274 			empty = pmap_remove_c(c_tbl, nend, end);
   3275 			if (empty) {
   3276 				b_dte->attr.raw = MMU_DT_INVALID;
   3277 				b_tbl->bt_ecnt--;
   3278 			}
   3279 		}
   3280 	}
   3281 
   3282 	if (b_tbl->bt_ecnt == 0) {
   3283 		b_tbl->bt_parent = NULL;
   3284 		TAILQ_REMOVE(&b_pool, b_tbl, bt_link);
   3285 		TAILQ_INSERT_HEAD(&b_pool, b_tbl, bt_link);
   3286 		empty = TRUE;
   3287 	} else {
   3288 		empty = FALSE;
   3289 	}
   3290 
   3291 	return empty;
   3292 }
   3293 
   3294 /* pmap_remove_c			INTERNAL
   3295  **
   3296  * Remove a range of addresses from the given C table.
   3297  */
   3298 boolean_t
   3299 pmap_remove_c(c_tbl, start, end)
   3300 	c_tmgr_t *c_tbl;
   3301 	vaddr_t start;
   3302 	vaddr_t end;
   3303 {
   3304 	boolean_t empty;
   3305 	int idx;
   3306 	mmu_short_pte_t *c_pte;
   3307 
   3308 	idx = MMU_TIC(start);
   3309 	c_pte = &c_tbl->ct_dtbl[idx];
   3310 	for (;start < end; start += MMU_PAGE_SIZE, c_pte++) {
   3311 		if (MMU_VALID_DT(*c_pte)) {
   3312 			pmap_remove_pte(c_pte);
   3313 			c_tbl->ct_ecnt--;
   3314 		}
   3315 	}
   3316 
   3317 	if (c_tbl->ct_ecnt == 0) {
   3318 		c_tbl->ct_parent = NULL;
   3319 		TAILQ_REMOVE(&c_pool, c_tbl, ct_link);
   3320 		TAILQ_INSERT_HEAD(&c_pool, c_tbl, ct_link);
   3321 		empty = TRUE;
   3322 	} else {
   3323 		empty = FALSE;
   3324 	}
   3325 
   3326 	return empty;
   3327 }
   3328 
   3329 /* is_managed				INTERNAL
   3330  **
   3331  * Determine if the given physical address is managed by the PV system.
   3332  * Note that this logic assumes that no one will ask for the status of
   3333  * addresses which lie in-between the memory banks on the 3/80.  If they
   3334  * do so, it will falsely report that it is managed.
   3335  *
   3336  * Note: A "managed" address is one that was reported to the VM system as
   3337  * a "usable page" during system startup.  As such, the VM system expects the
   3338  * pmap module to keep an accurate track of the useage of those pages.
   3339  * Any page not given to the VM system at startup does not exist (as far as
   3340  * the VM system is concerned) and is therefore "unmanaged."  Examples are
   3341  * those pages which belong to the ROM monitor and the memory allocated before
   3342  * the VM system was started.
   3343  */
   3344 boolean_t
   3345 is_managed(pa)
   3346 	paddr_t pa;
   3347 {
   3348 	if (pa >= avail_start && pa < avail_end)
   3349 		return TRUE;
   3350 	else
   3351 		return FALSE;
   3352 }
   3353 
   3354 /* pmap_bootstrap_alloc			INTERNAL
   3355  **
   3356  * Used internally for memory allocation at startup when malloc is not
   3357  * available.  This code will fail once it crosses the first memory
   3358  * bank boundary on the 3/80.  Hopefully by then however, the VM system
   3359  * will be in charge of allocation.
   3360  */
   3361 void *
   3362 pmap_bootstrap_alloc(size)
   3363 	int size;
   3364 {
   3365 	void *rtn;
   3366 
   3367 #ifdef	PMAP_DEBUG
   3368 	if (bootstrap_alloc_enabled == FALSE) {
   3369 		mon_printf("pmap_bootstrap_alloc: disabled\n");
   3370 		sunmon_abort();
   3371 	}
   3372 #endif
   3373 
   3374 	rtn = (void *) virtual_avail;
   3375 	virtual_avail += size;
   3376 
   3377 #ifdef	PMAP_DEBUG
   3378 	if (virtual_avail > virtual_contig_end) {
   3379 		mon_printf("pmap_bootstrap_alloc: out of mem\n");
   3380 		sunmon_abort();
   3381 	}
   3382 #endif
   3383 
   3384 	return rtn;
   3385 }
   3386 
   3387 /* pmap_bootstap_aalign			INTERNAL
   3388  **
   3389  * Used to insure that the next call to pmap_bootstrap_alloc() will
   3390  * return a chunk of memory aligned to the specified size.
   3391  *
   3392  * Note: This function will only support alignment sizes that are powers
   3393  * of two.
   3394  */
   3395 void
   3396 pmap_bootstrap_aalign(size)
   3397 	int size;
   3398 {
   3399 	int off;
   3400 
   3401 	off = virtual_avail & (size - 1);
   3402 	if (off) {
   3403 		(void) pmap_bootstrap_alloc(size - off);
   3404 	}
   3405 }
   3406 
   3407 /* pmap_pa_exists
   3408  **
   3409  * Used by the /dev/mem driver to see if a given PA is memory
   3410  * that can be mapped.  (The PA is not in a hole.)
   3411  */
   3412 int
   3413 pmap_pa_exists(pa)
   3414 	paddr_t pa;
   3415 {
   3416 	int i;
   3417 
   3418 	for (i = 0; i < SUN3X_NPHYS_RAM_SEGS; i++) {
   3419 		if ((pa >= avail_mem[i].pmem_start) &&
   3420 			(pa <  avail_mem[i].pmem_end))
   3421 			return (1);
   3422 		if (avail_mem[i].pmem_next == NULL)
   3423 			break;
   3424 	}
   3425 	return (0);
   3426 }
   3427 
   3428 /* Called only from locore.s and pmap.c */
   3429 void	_pmap_switch __P((pmap_t pmap));
   3430 
   3431 /*
   3432  * _pmap_switch			INTERNAL
   3433  *
   3434  * This is called by locore.s:cpu_switch() when it is
   3435  * switching to a new process.  Load new translations.
   3436  * Note: done in-line by locore.s unless PMAP_DEBUG
   3437  *
   3438  * Note that we do NOT allocate a context here, but
   3439  * share the "kernel only" context until we really
   3440  * need our own context for user-space mappings in
   3441  * pmap_enter_user().  [ s/context/mmu A table/ ]
   3442  */
   3443 void
   3444 _pmap_switch(pmap)
   3445 	pmap_t pmap;
   3446 {
   3447 	u_long rootpa;
   3448 
   3449 	/*
   3450 	 * Only do reload/flush if we have to.
   3451 	 * Note that if the old and new process
   3452 	 * were BOTH using the "null" context,
   3453 	 * then this will NOT flush the TLB.
   3454 	 */
   3455 	rootpa = pmap->pm_a_phys;
   3456 	if (kernel_crp.rp_addr != rootpa) {
   3457 		DPRINT(("pmap_activate(%p)\n", pmap));
   3458 		kernel_crp.rp_addr = rootpa;
   3459 		loadcrp(&kernel_crp);
   3460 		TBIAU();
   3461 	}
   3462 }
   3463 
   3464 /*
   3465  * Exported version of pmap_activate().  This is called from the
   3466  * machine-independent VM code when a process is given a new pmap.
   3467  * If (p == curproc) do like cpu_switch would do; otherwise just
   3468  * take this as notification that the process has a new pmap.
   3469  */
   3470 void
   3471 pmap_activate(p)
   3472 	struct proc *p;
   3473 {
   3474 	if (p == curproc) {
   3475 		_pmap_switch(p->p_vmspace->vm_map.pmap);
   3476 	}
   3477 }
   3478 
   3479 /*
   3480  * pmap_deactivate			INTERFACE
   3481  **
   3482  * This is called to deactivate the specified process's address space.
   3483  */
   3484 void
   3485 pmap_deactivate(p)
   3486 struct proc *p;
   3487 {
   3488 	/* Nothing to do. */
   3489 }
   3490 
   3491 /*
   3492  * Fill in the sun3x-specific part of the kernel core header
   3493  * for dumpsys().  (See machdep.c for the rest.)
   3494  */
   3495 void
   3496 pmap_kcore_hdr(sh)
   3497 	struct sun3x_kcore_hdr *sh;
   3498 {
   3499 	u_long spa, len;
   3500 	int i;
   3501 
   3502 	sh->pg_frame = MMU_SHORT_PTE_BASEADDR;
   3503 	sh->pg_valid = MMU_DT_PAGE;
   3504 	sh->contig_end = virtual_contig_end;
   3505 	sh->kernCbase = (u_long)kernCbase;
   3506 	for (i = 0; i < SUN3X_NPHYS_RAM_SEGS; i++) {
   3507 		spa = avail_mem[i].pmem_start;
   3508 		spa = m68k_trunc_page(spa);
   3509 		len = avail_mem[i].pmem_end - spa;
   3510 		len = m68k_round_page(len);
   3511 		sh->ram_segs[i].start = spa;
   3512 		sh->ram_segs[i].size  = len;
   3513 	}
   3514 }
   3515 
   3516 
   3517 /* pmap_virtual_space			INTERFACE
   3518  **
   3519  * Return the current available range of virtual addresses in the
   3520  * arguuments provided.  Only really called once.
   3521  */
   3522 void
   3523 pmap_virtual_space(vstart, vend)
   3524 	vaddr_t *vstart, *vend;
   3525 {
   3526 	*vstart = virtual_avail;
   3527 	*vend = virtual_end;
   3528 }
   3529 
   3530 /*
   3531  * Provide memory to the VM system.
   3532  *
   3533  * Assume avail_start is always in the
   3534  * first segment as pmap_bootstrap does.
   3535  */
   3536 static void
   3537 pmap_page_upload()
   3538 {
   3539 	paddr_t	a, b;	/* memory range */
   3540 	int i;
   3541 
   3542 	/* Supply the memory in segments. */
   3543 	for (i = 0; i < SUN3X_NPHYS_RAM_SEGS; i++) {
   3544 		a = atop(avail_mem[i].pmem_start);
   3545 		b = atop(avail_mem[i].pmem_end);
   3546 		if (i == 0)
   3547 			a = atop(avail_start);
   3548 		if (avail_mem[i].pmem_end > avail_end)
   3549 			b = atop(avail_end);
   3550 
   3551 		uvm_page_physload(a, b, a, b, VM_FREELIST_DEFAULT);
   3552 
   3553 		if (avail_mem[i].pmem_next == NULL)
   3554 			break;
   3555 	}
   3556 }
   3557 
   3558 /* pmap_count			INTERFACE
   3559  **
   3560  * Return the number of resident (valid) pages in the given pmap.
   3561  *
   3562  * Note:  If this function is handed the kernel map, it will report
   3563  * that it has no mappings.  Hopefully the VM system won't ask for kernel
   3564  * map statistics.
   3565  */
   3566 segsz_t
   3567 pmap_count(pmap, type)
   3568 	pmap_t pmap;
   3569 	int    type;
   3570 {
   3571 	u_int     count;
   3572 	int       a_idx, b_idx;
   3573 	a_tmgr_t *a_tbl;
   3574 	b_tmgr_t *b_tbl;
   3575 	c_tmgr_t *c_tbl;
   3576 
   3577 	/*
   3578 	 * If the pmap does not have its own A table manager, it has no
   3579 	 * valid entires.
   3580 	 */
   3581 	if (pmap->pm_a_tmgr == NULL)
   3582 		return 0;
   3583 
   3584 	a_tbl = pmap->pm_a_tmgr;
   3585 
   3586 	count = 0;
   3587 	for (a_idx = 0; a_idx < MMU_TIA(KERNBASE); a_idx++) {
   3588 	    if (MMU_VALID_DT(a_tbl->at_dtbl[a_idx])) {
   3589 	        b_tbl = mmuB2tmgr(mmu_ptov(a_tbl->at_dtbl[a_idx].addr.raw));
   3590 	        for (b_idx = 0; b_idx < MMU_B_TBL_SIZE; b_idx++) {
   3591 	            if (MMU_VALID_DT(b_tbl->bt_dtbl[b_idx])) {
   3592 	                c_tbl = mmuC2tmgr(
   3593 	                    mmu_ptov(MMU_DTE_PA(b_tbl->bt_dtbl[b_idx])));
   3594 	                if (type == 0)
   3595 	                    /*
   3596 	                     * A resident entry count has been requested.
   3597 	                     */
   3598 	                    count += c_tbl->ct_ecnt;
   3599 	                else
   3600 	                    /*
   3601 	                     * A wired entry count has been requested.
   3602 	                     */
   3603 	                    count += c_tbl->ct_wcnt;
   3604 	            }
   3605 	        }
   3606 	    }
   3607 	}
   3608 
   3609 	return count;
   3610 }
   3611 
   3612 /************************ SUN3 COMPATIBILITY ROUTINES ********************
   3613  * The following routines are only used by DDB for tricky kernel text    *
   3614  * text operations in db_memrw.c.  They are provided for sun3            *
   3615  * compatibility.                                                        *
   3616  *************************************************************************/
   3617 /* get_pte			INTERNAL
   3618  **
   3619  * Return the page descriptor the describes the kernel mapping
   3620  * of the given virtual address.
   3621  */
   3622 extern u_long ptest_addr __P((u_long));	/* XXX: locore.s */
   3623 u_int
   3624 get_pte(va)
   3625 	vaddr_t va;
   3626 {
   3627 	u_long pte_pa;
   3628 	mmu_short_pte_t *pte;
   3629 
   3630 	/* Get the physical address of the PTE */
   3631 	pte_pa = ptest_addr(va & ~PGOFSET);
   3632 
   3633 	/* Convert to a virtual address... */
   3634 	pte = (mmu_short_pte_t *) (KERNBASE + pte_pa);
   3635 
   3636 	/* Make sure it is in our level-C tables... */
   3637 	if ((pte < kernCbase) ||
   3638 		(pte >= &mmuCbase[NUM_USER_PTES]))
   3639 		return 0;
   3640 
   3641 	/* ... and just return its contents. */
   3642 	return (pte->attr.raw);
   3643 }
   3644 
   3645 
   3646 /* set_pte			INTERNAL
   3647  **
   3648  * Set the page descriptor that describes the kernel mapping
   3649  * of the given virtual address.
   3650  */
   3651 void
   3652 set_pte(va, pte)
   3653 	vaddr_t va;
   3654 	u_int pte;
   3655 {
   3656 	u_long idx;
   3657 
   3658 	if (va < KERNBASE)
   3659 		return;
   3660 
   3661 	idx = (unsigned long) m68k_btop(va - KERNBASE);
   3662 	kernCbase[idx].attr.raw = pte;
   3663 	TBIS(va);
   3664 }
   3665 
   3666 /*
   3667  *	Routine:        pmap_procwr
   3668  *
   3669  *	Function:
   3670  *		Synchronize caches corresponding to [addr, addr+len) in p.
   3671  */
   3672 void
   3673 pmap_procwr(p, va, len)
   3674 	struct proc	*p;
   3675 	vaddr_t		va;
   3676 	size_t		len;
   3677 {
   3678 	(void)cachectl1(0x80000004, va, len, p);
   3679 }
   3680 
   3681 
   3682 #ifdef	PMAP_DEBUG
   3683 /************************** DEBUGGING ROUTINES **************************
   3684  * The following routines are meant to be an aid to debugging the pmap  *
   3685  * system.  They are callable from the DDB command line and should be   *
   3686  * prepared to be handed unstable or incomplete states of the system.   *
   3687  ************************************************************************/
   3688 
   3689 /* pv_list
   3690  **
   3691  * List all pages found on the pv list for the given physical page.
   3692  * To avoid endless loops, the listing will stop at the end of the list
   3693  * or after 'n' entries - whichever comes first.
   3694  */
   3695 void
   3696 pv_list(pa, n)
   3697 	paddr_t pa;
   3698 	int n;
   3699 {
   3700 	int  idx;
   3701 	vaddr_t va;
   3702 	pv_t *pv;
   3703 	c_tmgr_t *c_tbl;
   3704 	pmap_t pmap;
   3705 
   3706 	pv = pa2pv(pa);
   3707 	idx = pv->pv_idx;
   3708 	for (; idx != PVE_EOL && n > 0; idx = pvebase[idx].pve_next, n--) {
   3709 		va = pmap_get_pteinfo(idx, &pmap, &c_tbl);
   3710 		printf("idx %d, pmap 0x%x, va 0x%x, c_tbl %x\n",
   3711 			idx, (u_int) pmap, (u_int) va, (u_int) c_tbl);
   3712 	}
   3713 }
   3714 #endif	/* PMAP_DEBUG */
   3715 
   3716 #ifdef NOT_YET
   3717 /* and maybe not ever */
   3718 /************************** LOW-LEVEL ROUTINES **************************
   3719  * These routines will eventualy be re-written into assembly and placed *
   3720  * in locore.s.  They are here now as stubs so that the pmap module can *
   3721  * be linked as a standalone user program for testing.                  *
   3722  ************************************************************************/
   3723 /* flush_atc_crp			INTERNAL
   3724  **
   3725  * Flush all page descriptors derived from the given CPU Root Pointer
   3726  * (CRP), or 'A' table as it is known here, from the 68851's automatic
   3727  * cache.
   3728  */
   3729 void
   3730 flush_atc_crp(a_tbl)
   3731 {
   3732 	mmu_long_rp_t rp;
   3733 
   3734 	/* Create a temporary root table pointer that points to the
   3735 	 * given A table.
   3736 	 */
   3737 	rp.attr.raw = ~MMU_LONG_RP_LU;
   3738 	rp.addr.raw = (unsigned int) a_tbl;
   3739 
   3740 	mmu_pflushr(&rp);
   3741 	/* mmu_pflushr:
   3742 	 * 	movel   sp(4)@,a0
   3743 	 * 	pflushr a0@
   3744 	 *	rts
   3745 	 */
   3746 }
   3747 #endif /* NOT_YET */
   3748