pmap.c revision 1.78 1 /* $NetBSD: pmap.c,v 1.78 2003/01/28 22:52:11 wiz Exp $ */
2
3 /*-
4 * Copyright (c) 1996, 1997 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jeremy Cooper.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * XXX These comments aren't quite accurate. Need to change.
41 * The sun3x uses the MC68851 Memory Management Unit, which is built
42 * into the CPU. The 68851 maps virtual to physical addresses using
43 * a multi-level table lookup, which is stored in the very memory that
44 * it maps. The number of levels of lookup is configurable from one
45 * to four. In this implementation, we use three, named 'A' through 'C'.
46 *
47 * The MMU translates virtual addresses into physical addresses by
48 * traversing these tables in a proccess called a 'table walk'. The most
49 * significant 7 bits of the Virtual Address ('VA') being translated are
50 * used as an index into the level A table, whose base in physical memory
51 * is stored in a special MMU register, the 'CPU Root Pointer' or CRP. The
52 * address found at that index in the A table is used as the base
53 * address for the next table, the B table. The next six bits of the VA are
54 * used as an index into the B table, which in turn gives the base address
55 * of the third and final C table.
56 *
57 * The next six bits of the VA are used as an index into the C table to
58 * locate a Page Table Entry (PTE). The PTE is a physical address in memory
59 * to which the remaining 13 bits of the VA are added, producing the
60 * mapped physical address.
61 *
62 * To map the entire memory space in this manner would require 2114296 bytes
63 * of page tables per process - quite expensive. Instead we will
64 * allocate a fixed but considerably smaller space for the page tables at
65 * the time the VM system is initialized. When the pmap code is asked by
66 * the kernel to map a VA to a PA, it allocates tables as needed from this
67 * pool. When there are no more tables in the pool, tables are stolen
68 * from the oldest mapped entries in the tree. This is only possible
69 * because all memory mappings are stored in the kernel memory map
70 * structures, independent of the pmap structures. A VA which references
71 * one of these invalidated maps will cause a page fault. The kernel
72 * will determine that the page fault was caused by a task using a valid
73 * VA, but for some reason (which does not concern it), that address was
74 * not mapped. It will ask the pmap code to re-map the entry and then
75 * it will resume executing the faulting task.
76 *
77 * In this manner the most efficient use of the page table space is
78 * achieved. Tasks which do not execute often will have their tables
79 * stolen and reused by tasks which execute more frequently. The best
80 * size for the page table pool will probably be determined by
81 * experimentation.
82 *
83 * You read all of the comments so far. Good for you.
84 * Now go play!
85 */
86
87 /*** A Note About the 68851 Address Translation Cache
88 * The MC68851 has a 64 entry cache, called the Address Translation Cache
89 * or 'ATC'. This cache stores the most recently used page descriptors
90 * accessed by the MMU when it does translations. Using a marker called a
91 * 'task alias' the MMU can store the descriptors from 8 different table
92 * spaces concurrently. The task alias is associated with the base
93 * address of the level A table of that address space. When an address
94 * space is currently active (the CRP currently points to its A table)
95 * the only cached descriptors that will be obeyed are ones which have a
96 * matching task alias of the current space associated with them.
97 *
98 * Since the cache is always consulted before any table lookups are done,
99 * it is important that it accurately reflect the state of the MMU tables.
100 * Whenever a change has been made to a table that has been loaded into
101 * the MMU, the code must be sure to flush any cached entries that are
102 * affected by the change. These instances are documented in the code at
103 * various points.
104 */
105 /*** A Note About the Note About the 68851 Address Translation Cache
106 * 4 months into this code I discovered that the sun3x does not have
107 * a MC68851 chip. Instead, it has a version of this MMU that is part of the
108 * the 68030 CPU.
109 * All though it behaves very similarly to the 68851, it only has 1 task
110 * alias and a 22 entry cache. So sadly (or happily), the first paragraph
111 * of the previous note does not apply to the sun3x pmap.
112 */
113
114 #include "opt_ddb.h"
115
116 #include <sys/param.h>
117 #include <sys/systm.h>
118 #include <sys/proc.h>
119 #include <sys/malloc.h>
120 #include <sys/pool.h>
121 #include <sys/user.h>
122 #include <sys/queue.h>
123 #include <sys/kcore.h>
124
125 #include <uvm/uvm.h>
126
127 #include <machine/cpu.h>
128 #include <machine/kcore.h>
129 #include <machine/mon.h>
130 #include <machine/pmap.h>
131 #include <machine/pte.h>
132 #include <machine/vmparam.h>
133 #include <m68k/cacheops.h>
134
135 #include <sun3/sun3/cache.h>
136 #include <sun3/sun3/machdep.h>
137
138 #include "pmap_pvt.h"
139
140 /* XXX - What headers declare these? */
141 extern struct pcb *curpcb;
142 extern int physmem;
143
144 /* Defined in locore.s */
145 extern char kernel_text[];
146
147 /* Defined by the linker */
148 extern char etext[], edata[], end[];
149 extern char *esym; /* DDB */
150
151 /*************************** DEBUGGING DEFINITIONS ***********************
152 * Macros, preprocessor defines and variables used in debugging can make *
153 * code hard to read. Anything used exclusively for debugging purposes *
154 * is defined here to avoid having such mess scattered around the file. *
155 *************************************************************************/
156 #ifdef PMAP_DEBUG
157 /*
158 * To aid the debugging process, macros should be expanded into smaller steps
159 * that accomplish the same goal, yet provide convenient places for placing
160 * breakpoints. When this code is compiled with PMAP_DEBUG mode defined, the
161 * 'INLINE' keyword is defined to an empty string. This way, any function
162 * defined to be a 'static INLINE' will become 'outlined' and compiled as
163 * a separate function, which is much easier to debug.
164 */
165 #define INLINE /* nothing */
166
167 /*
168 * It is sometimes convenient to watch the activity of a particular table
169 * in the system. The following variables are used for that purpose.
170 */
171 a_tmgr_t *pmap_watch_atbl = 0;
172 b_tmgr_t *pmap_watch_btbl = 0;
173 c_tmgr_t *pmap_watch_ctbl = 0;
174
175 int pmap_debug = 0;
176 #define DPRINT(args) if (pmap_debug) printf args
177
178 #else /********** Stuff below is defined if NOT debugging **************/
179
180 #define INLINE inline
181 #define DPRINT(args) /* nada */
182
183 #endif /* PMAP_DEBUG */
184 /*********************** END OF DEBUGGING DEFINITIONS ********************/
185
186 /*** Management Structure - Memory Layout
187 * For every MMU table in the sun3x pmap system there must be a way to
188 * manage it; we must know which process is using it, what other tables
189 * depend on it, and whether or not it contains any locked pages. This
190 * is solved by the creation of 'table management' or 'tmgr'
191 * structures. One for each MMU table in the system.
192 *
193 * MAP OF MEMORY USED BY THE PMAP SYSTEM
194 *
195 * towards lower memory
196 * kernAbase -> +-------------------------------------------------------+
197 * | Kernel MMU A level table |
198 * kernBbase -> +-------------------------------------------------------+
199 * | Kernel MMU B level tables |
200 * kernCbase -> +-------------------------------------------------------+
201 * | |
202 * | Kernel MMU C level tables |
203 * | |
204 * mmuCbase -> +-------------------------------------------------------+
205 * | User MMU C level tables |
206 * mmuAbase -> +-------------------------------------------------------+
207 * | |
208 * | User MMU A level tables |
209 * | |
210 * mmuBbase -> +-------------------------------------------------------+
211 * | User MMU B level tables |
212 * tmgrAbase -> +-------------------------------------------------------+
213 * | TMGR A level table structures |
214 * tmgrBbase -> +-------------------------------------------------------+
215 * | TMGR B level table structures |
216 * tmgrCbase -> +-------------------------------------------------------+
217 * | TMGR C level table structures |
218 * pvbase -> +-------------------------------------------------------+
219 * | Physical to Virtual mapping table (list heads) |
220 * pvebase -> +-------------------------------------------------------+
221 * | Physical to Virtual mapping table (list elements) |
222 * | |
223 * +-------------------------------------------------------+
224 * towards higher memory
225 *
226 * For every A table in the MMU A area, there will be a corresponding
227 * a_tmgr structure in the TMGR A area. The same will be true for
228 * the B and C tables. This arrangement will make it easy to find the
229 * controling tmgr structure for any table in the system by use of
230 * (relatively) simple macros.
231 */
232
233 /*
234 * Global variables for storing the base addresses for the areas
235 * labeled above.
236 */
237 static vaddr_t kernAphys;
238 static mmu_long_dte_t *kernAbase;
239 static mmu_short_dte_t *kernBbase;
240 static mmu_short_pte_t *kernCbase;
241 static mmu_short_pte_t *mmuCbase;
242 static mmu_short_dte_t *mmuBbase;
243 static mmu_long_dte_t *mmuAbase;
244 static a_tmgr_t *Atmgrbase;
245 static b_tmgr_t *Btmgrbase;
246 static c_tmgr_t *Ctmgrbase;
247 static pv_t *pvbase;
248 static pv_elem_t *pvebase;
249 struct pmap kernel_pmap;
250
251 /*
252 * This holds the CRP currently loaded into the MMU.
253 */
254 struct mmu_rootptr kernel_crp;
255
256 /*
257 * Just all around global variables.
258 */
259 static TAILQ_HEAD(a_pool_head_struct, a_tmgr_struct) a_pool;
260 static TAILQ_HEAD(b_pool_head_struct, b_tmgr_struct) b_pool;
261 static TAILQ_HEAD(c_pool_head_struct, c_tmgr_struct) c_pool;
262
263
264 /*
265 * Flags used to mark the safety/availability of certain operations or
266 * resources.
267 */
268 static boolean_t bootstrap_alloc_enabled = FALSE; /*Safe to use pmap_bootstrap_alloc().*/
269 int tmp_vpages_inuse; /* Temporary virtual pages are in use */
270
271 /*
272 * XXX: For now, retain the traditional variables that were
273 * used in the old pmap/vm interface (without NONCONTIG).
274 */
275 /* Kernel virtual address space available: */
276 vaddr_t virtual_avail, virtual_end;
277 /* Physical address space available: */
278 paddr_t avail_start, avail_end;
279
280 /* This keep track of the end of the contiguously mapped range. */
281 vaddr_t virtual_contig_end;
282
283 /* Physical address used by pmap_next_page() */
284 paddr_t avail_next;
285
286 /* These are used by pmap_copy_page(), etc. */
287 vaddr_t tmp_vpages[2];
288
289 /* memory pool for pmap structures */
290 struct pool pmap_pmap_pool;
291
292 /*
293 * The 3/80 is the only member of the sun3x family that has non-contiguous
294 * physical memory. Memory is divided into 4 banks which are physically
295 * locatable on the system board. Although the size of these banks varies
296 * with the size of memory they contain, their base addresses are
297 * permenently fixed. The following structure, which describes these
298 * banks, is initialized by pmap_bootstrap() after it reads from a similar
299 * structure provided by the ROM Monitor.
300 *
301 * For the other machines in the sun3x architecture which do have contiguous
302 * RAM, this list will have only one entry, which will describe the entire
303 * range of available memory.
304 */
305 struct pmap_physmem_struct avail_mem[SUN3X_NPHYS_RAM_SEGS];
306 u_int total_phys_mem;
307
308 /*************************************************************************/
309
310 /*
311 * XXX - Should "tune" these based on statistics.
312 *
313 * My first guess about the relative numbers of these needed is
314 * based on the fact that a "typical" process will have several
315 * pages mapped at low virtual addresses (text, data, bss), then
316 * some mapped shared libraries, and then some stack pages mapped
317 * near the high end of the VA space. Each process can use only
318 * one A table, and most will use only two B tables (maybe three)
319 * and probably about four C tables. Therefore, the first guess
320 * at the relative numbers of these needed is 1:2:4 -gwr
321 *
322 * The number of C tables needed is closely related to the amount
323 * of physical memory available plus a certain amount attributable
324 * to the use of double mappings. With a few simulation statistics
325 * we can find a reasonably good estimation of this unknown value.
326 * Armed with that and the above ratios, we have a good idea of what
327 * is needed at each level. -j
328 *
329 * Note: It is not physical memory memory size, but the total mapped
330 * virtual space required by the combined working sets of all the
331 * currently _runnable_ processes. (Sleeping ones don't count.)
332 * The amount of physical memory should be irrelevant. -gwr
333 */
334 #ifdef FIXED_NTABLES
335 #define NUM_A_TABLES 16
336 #define NUM_B_TABLES 32
337 #define NUM_C_TABLES 64
338 #else
339 unsigned int NUM_A_TABLES, NUM_B_TABLES, NUM_C_TABLES;
340 #endif /* FIXED_NTABLES */
341
342 /*
343 * This determines our total virtual mapping capacity.
344 * Yes, it is a FIXED value so we can pre-allocate.
345 */
346 #define NUM_USER_PTES (NUM_C_TABLES * MMU_C_TBL_SIZE)
347
348 /*
349 * The size of the Kernel Virtual Address Space (KVAS)
350 * for purposes of MMU table allocation is -KERNBASE
351 * (length from KERNBASE to 0xFFFFffff)
352 */
353 #define KVAS_SIZE (-KERNBASE)
354
355 /* Numbers of kernel MMU tables to support KVAS_SIZE. */
356 #define KERN_B_TABLES (KVAS_SIZE >> MMU_TIA_SHIFT)
357 #define KERN_C_TABLES (KVAS_SIZE >> MMU_TIB_SHIFT)
358 #define NUM_KERN_PTES (KVAS_SIZE >> MMU_TIC_SHIFT)
359
360 /*************************** MISCELANEOUS MACROS *************************/
361 #define pmap_lock(pmap) simple_lock(&pmap->pm_lock)
362 #define pmap_unlock(pmap) simple_unlock(&pmap->pm_lock)
363 #define pmap_add_ref(pmap) ++pmap->pm_refcount
364 #define pmap_del_ref(pmap) --pmap->pm_refcount
365 #define pmap_refcount(pmap) pmap->pm_refcount
366
367 void *pmap_bootstrap_alloc(int);
368
369 static INLINE void *mmu_ptov __P((paddr_t));
370 static INLINE paddr_t mmu_vtop __P((void *));
371
372 #if 0
373 static INLINE a_tmgr_t * mmuA2tmgr __P((mmu_long_dte_t *));
374 #endif /* 0 */
375 static INLINE b_tmgr_t * mmuB2tmgr __P((mmu_short_dte_t *));
376 static INLINE c_tmgr_t * mmuC2tmgr __P((mmu_short_pte_t *));
377
378 static INLINE pv_t *pa2pv __P((paddr_t));
379 static INLINE int pteidx __P((mmu_short_pte_t *));
380 static INLINE pmap_t current_pmap __P((void));
381
382 /*
383 * We can always convert between virtual and physical addresses
384 * for anything in the range [KERNBASE ... avail_start] because
385 * that range is GUARANTEED to be mapped linearly.
386 * We rely heavily upon this feature!
387 */
388 static INLINE void *
389 mmu_ptov(pa)
390 paddr_t pa;
391 {
392 vaddr_t va;
393
394 va = (pa + KERNBASE);
395 #ifdef PMAP_DEBUG
396 if ((va < KERNBASE) || (va >= virtual_contig_end))
397 panic("mmu_ptov");
398 #endif
399 return ((void*)va);
400 }
401
402 static INLINE paddr_t
403 mmu_vtop(vva)
404 void *vva;
405 {
406 vaddr_t va;
407
408 va = (vaddr_t)vva;
409 #ifdef PMAP_DEBUG
410 if ((va < KERNBASE) || (va >= virtual_contig_end))
411 panic("mmu_vtop");
412 #endif
413 return (va - KERNBASE);
414 }
415
416 /*
417 * These macros map MMU tables to their corresponding manager structures.
418 * They are needed quite often because many of the pointers in the pmap
419 * system reference MMU tables and not the structures that control them.
420 * There needs to be a way to find one when given the other and these
421 * macros do so by taking advantage of the memory layout described above.
422 * Here's a quick step through the first macro, mmuA2tmgr():
423 *
424 * 1) find the offset of the given MMU A table from the base of its table
425 * pool (table - mmuAbase).
426 * 2) convert this offset into a table index by dividing it by the
427 * size of one MMU 'A' table. (sizeof(mmu_long_dte_t) * MMU_A_TBL_SIZE)
428 * 3) use this index to select the corresponding 'A' table manager
429 * structure from the 'A' table manager pool (Atmgrbase[index]).
430 */
431 /* This function is not currently used. */
432 #if 0
433 static INLINE a_tmgr_t *
434 mmuA2tmgr(mmuAtbl)
435 mmu_long_dte_t *mmuAtbl;
436 {
437 int idx;
438
439 /* Which table is this in? */
440 idx = (mmuAtbl - mmuAbase) / MMU_A_TBL_SIZE;
441 #ifdef PMAP_DEBUG
442 if ((idx < 0) || (idx >= NUM_A_TABLES))
443 panic("mmuA2tmgr");
444 #endif
445 return (&Atmgrbase[idx]);
446 }
447 #endif /* 0 */
448
449 static INLINE b_tmgr_t *
450 mmuB2tmgr(mmuBtbl)
451 mmu_short_dte_t *mmuBtbl;
452 {
453 int idx;
454
455 /* Which table is this in? */
456 idx = (mmuBtbl - mmuBbase) / MMU_B_TBL_SIZE;
457 #ifdef PMAP_DEBUG
458 if ((idx < 0) || (idx >= NUM_B_TABLES))
459 panic("mmuB2tmgr");
460 #endif
461 return (&Btmgrbase[idx]);
462 }
463
464 /* mmuC2tmgr INTERNAL
465 **
466 * Given a pte known to belong to a C table, return the address of
467 * that table's management structure.
468 */
469 static INLINE c_tmgr_t *
470 mmuC2tmgr(mmuCtbl)
471 mmu_short_pte_t *mmuCtbl;
472 {
473 int idx;
474
475 /* Which table is this in? */
476 idx = (mmuCtbl - mmuCbase) / MMU_C_TBL_SIZE;
477 #ifdef PMAP_DEBUG
478 if ((idx < 0) || (idx >= NUM_C_TABLES))
479 panic("mmuC2tmgr");
480 #endif
481 return (&Ctmgrbase[idx]);
482 }
483
484 /* This is now a function call below.
485 * #define pa2pv(pa) \
486 * (&pvbase[(unsigned long)\
487 * m68k_btop(pa)\
488 * ])
489 */
490
491 /* pa2pv INTERNAL
492 **
493 * Return the pv_list_head element which manages the given physical
494 * address.
495 */
496 static INLINE pv_t *
497 pa2pv(pa)
498 paddr_t pa;
499 {
500 struct pmap_physmem_struct *bank;
501 int idx;
502
503 bank = &avail_mem[0];
504 while (pa >= bank->pmem_end)
505 bank = bank->pmem_next;
506
507 pa -= bank->pmem_start;
508 idx = bank->pmem_pvbase + m68k_btop(pa);
509 #ifdef PMAP_DEBUG
510 if ((idx < 0) || (idx >= physmem))
511 panic("pa2pv");
512 #endif
513 return &pvbase[idx];
514 }
515
516 /* pteidx INTERNAL
517 **
518 * Return the index of the given PTE within the entire fixed table of
519 * PTEs.
520 */
521 static INLINE int
522 pteidx(pte)
523 mmu_short_pte_t *pte;
524 {
525 return (pte - kernCbase);
526 }
527
528 /*
529 * This just offers a place to put some debugging checks,
530 * and reduces the number of places "curlwp" appears...
531 */
532 static INLINE pmap_t
533 current_pmap()
534 {
535 struct vmspace *vm;
536 struct vm_map *map;
537 pmap_t pmap;
538
539 if (curlwp == NULL)
540 pmap = &kernel_pmap;
541 else {
542 vm = curproc->p_vmspace;
543 map = &vm->vm_map;
544 pmap = vm_map_pmap(map);
545 }
546
547 return (pmap);
548 }
549
550
551 /*************************** FUNCTION DEFINITIONS ************************
552 * These appear here merely for the compiler to enforce type checking on *
553 * all function calls. *
554 *************************************************************************/
555
556 /** Internal functions
557 ** Most functions used only within this module are defined in
558 ** pmap_pvt.h (why not here if used only here?)
559 **/
560 static void pmap_page_upload __P((void));
561
562 /** Interface functions
563 ** - functions required by the Mach VM Pmap interface, with MACHINE_CONTIG
564 ** defined.
565 **/
566 void pmap_pinit __P((pmap_t));
567 void pmap_release __P((pmap_t));
568
569 /********************************** CODE ********************************
570 * Functions that are called from other parts of the kernel are labeled *
571 * as 'INTERFACE' functions. Functions that are only called from *
572 * within the pmap module are labeled as 'INTERNAL' functions. *
573 * Functions that are internal, but are not (currently) used at all are *
574 * labeled 'INTERNAL_X'. *
575 ************************************************************************/
576
577 /* pmap_bootstrap INTERNAL
578 **
579 * Initializes the pmap system. Called at boot time from
580 * locore2.c:_vm_init()
581 *
582 * Reminder: having a pmap_bootstrap_alloc() and also having the VM
583 * system implement pmap_steal_memory() is redundant.
584 * Don't release this code without removing one or the other!
585 */
586 void
587 pmap_bootstrap(nextva)
588 vaddr_t nextva;
589 {
590 struct physmemory *membank;
591 struct pmap_physmem_struct *pmap_membank;
592 vaddr_t va, eva;
593 paddr_t pa;
594 int b, c, i, j; /* running table counts */
595 int size, resvmem;
596
597 /*
598 * This function is called by __bootstrap after it has
599 * determined the type of machine and made the appropriate
600 * patches to the ROM vectors (XXX- I don't quite know what I meant
601 * by that.) It allocates and sets up enough of the pmap system
602 * to manage the kernel's address space.
603 */
604
605 /*
606 * Determine the range of kernel virtual and physical
607 * space available. Note that we ABSOLUTELY DEPEND on
608 * the fact that the first bank of memory (4MB) is
609 * mapped linearly to KERNBASE (which we guaranteed in
610 * the first instructions of locore.s).
611 * That is plenty for our bootstrap work.
612 */
613 virtual_avail = m68k_round_page(nextva);
614 virtual_contig_end = KERNBASE + 0x400000; /* +4MB */
615 virtual_end = VM_MAX_KERNEL_ADDRESS;
616 /* Don't need avail_start til later. */
617
618 /* We may now call pmap_bootstrap_alloc(). */
619 bootstrap_alloc_enabled = TRUE;
620
621 /*
622 * This is a somewhat unwrapped loop to deal with
623 * copying the PROM's 'phsymem' banks into the pmap's
624 * banks. The following is always assumed:
625 * 1. There is always at least one bank of memory.
626 * 2. There is always a last bank of memory, and its
627 * pmem_next member must be set to NULL.
628 */
629 membank = romVectorPtr->v_physmemory;
630 pmap_membank = avail_mem;
631 total_phys_mem = 0;
632
633 for (;;) { /* break on !membank */
634 pmap_membank->pmem_start = membank->address;
635 pmap_membank->pmem_end = membank->address + membank->size;
636 total_phys_mem += membank->size;
637 membank = membank->next;
638 if (!membank)
639 break;
640 /* This silly syntax arises because pmap_membank
641 * is really a pre-allocated array, but it is put into
642 * use as a linked list.
643 */
644 pmap_membank->pmem_next = pmap_membank + 1;
645 pmap_membank = pmap_membank->pmem_next;
646 }
647 /* This is the last element. */
648 pmap_membank->pmem_next = NULL;
649
650 /*
651 * Note: total_phys_mem, physmem represent
652 * actual physical memory, including that
653 * reserved for the PROM monitor.
654 */
655 physmem = btoc(total_phys_mem);
656
657 /*
658 * Avail_end is set to the first byte of physical memory
659 * after the end of the last bank. We use this only to
660 * determine if a physical address is "managed" memory.
661 * This address range should be reduced to prevent the
662 * physical pages needed by the PROM monitor from being used
663 * in the VM system.
664 */
665 resvmem = total_phys_mem - *(romVectorPtr->memoryAvail);
666 resvmem = m68k_round_page(resvmem);
667 avail_end = pmap_membank->pmem_end - resvmem;
668
669 /*
670 * First allocate enough kernel MMU tables to map all
671 * of kernel virtual space from KERNBASE to 0xFFFFFFFF.
672 * Note: All must be aligned on 256 byte boundaries.
673 * Start with the level-A table (one of those).
674 */
675 size = sizeof(mmu_long_dte_t) * MMU_A_TBL_SIZE;
676 kernAbase = pmap_bootstrap_alloc(size);
677 memset(kernAbase, 0, size);
678
679 /* Now the level-B kernel tables... */
680 size = sizeof(mmu_short_dte_t) * MMU_B_TBL_SIZE * KERN_B_TABLES;
681 kernBbase = pmap_bootstrap_alloc(size);
682 memset(kernBbase, 0, size);
683
684 /* Now the level-C kernel tables... */
685 size = sizeof(mmu_short_pte_t) * MMU_C_TBL_SIZE * KERN_C_TABLES;
686 kernCbase = pmap_bootstrap_alloc(size);
687 memset(kernCbase, 0, size);
688 /*
689 * Note: In order for the PV system to work correctly, the kernel
690 * and user-level C tables must be allocated contiguously.
691 * Nothing should be allocated between here and the allocation of
692 * mmuCbase below. XXX: Should do this as one allocation, and
693 * then compute a pointer for mmuCbase instead of this...
694 *
695 * Allocate user MMU tables.
696 * These must be contiguous with the preceding.
697 */
698
699 #ifndef FIXED_NTABLES
700 /*
701 * The number of user-level C tables that should be allocated is
702 * related to the size of physical memory. In general, there should
703 * be enough tables to map four times the amount of available RAM.
704 * The extra amount is needed because some table space is wasted by
705 * fragmentation.
706 */
707 NUM_C_TABLES = (total_phys_mem * 4) / (MMU_C_TBL_SIZE * MMU_PAGE_SIZE);
708 NUM_B_TABLES = NUM_C_TABLES / 2;
709 NUM_A_TABLES = NUM_B_TABLES / 2;
710 #endif /* !FIXED_NTABLES */
711
712 size = sizeof(mmu_short_pte_t) * MMU_C_TBL_SIZE * NUM_C_TABLES;
713 mmuCbase = pmap_bootstrap_alloc(size);
714
715 size = sizeof(mmu_short_dte_t) * MMU_B_TBL_SIZE * NUM_B_TABLES;
716 mmuBbase = pmap_bootstrap_alloc(size);
717
718 size = sizeof(mmu_long_dte_t) * MMU_A_TBL_SIZE * NUM_A_TABLES;
719 mmuAbase = pmap_bootstrap_alloc(size);
720
721 /*
722 * Fill in the never-changing part of the kernel tables.
723 * For simplicity, the kernel's mappings will be editable as a
724 * flat array of page table entries at kernCbase. The
725 * higher level 'A' and 'B' tables must be initialized to point
726 * to this lower one.
727 */
728 b = c = 0;
729
730 /*
731 * Invalidate all mappings below KERNBASE in the A table.
732 * This area has already been zeroed out, but it is good
733 * practice to explicitly show that we are interpreting
734 * it as a list of A table descriptors.
735 */
736 for (i = 0; i < MMU_TIA(KERNBASE); i++) {
737 kernAbase[i].addr.raw = 0;
738 }
739
740 /*
741 * Set up the kernel A and B tables so that they will reference the
742 * correct spots in the contiguous table of PTEs allocated for the
743 * kernel's virtual memory space.
744 */
745 for (i = MMU_TIA(KERNBASE); i < MMU_A_TBL_SIZE; i++) {
746 kernAbase[i].attr.raw =
747 MMU_LONG_DTE_LU | MMU_LONG_DTE_SUPV | MMU_DT_SHORT;
748 kernAbase[i].addr.raw = mmu_vtop(&kernBbase[b]);
749
750 for (j=0; j < MMU_B_TBL_SIZE; j++) {
751 kernBbase[b + j].attr.raw = mmu_vtop(&kernCbase[c])
752 | MMU_DT_SHORT;
753 c += MMU_C_TBL_SIZE;
754 }
755 b += MMU_B_TBL_SIZE;
756 }
757
758 pmap_alloc_usermmu(); /* Allocate user MMU tables. */
759 pmap_alloc_usertmgr(); /* Allocate user MMU table managers.*/
760 pmap_alloc_pv(); /* Allocate physical->virtual map. */
761
762 /*
763 * We are now done with pmap_bootstrap_alloc(). Round up
764 * `virtual_avail' to the nearest page, and set the flag
765 * to prevent use of pmap_bootstrap_alloc() hereafter.
766 */
767 pmap_bootstrap_aalign(NBPG);
768 bootstrap_alloc_enabled = FALSE;
769
770 /*
771 * Now that we are done with pmap_bootstrap_alloc(), we
772 * must save the virtual and physical addresses of the
773 * end of the linearly mapped range, which are stored in
774 * virtual_contig_end and avail_start, respectively.
775 * These variables will never change after this point.
776 */
777 virtual_contig_end = virtual_avail;
778 avail_start = virtual_avail - KERNBASE;
779
780 /*
781 * `avail_next' is a running pointer used by pmap_next_page() to
782 * keep track of the next available physical page to be handed
783 * to the VM system during its initialization, in which it
784 * asks for physical pages, one at a time.
785 */
786 avail_next = avail_start;
787
788 /*
789 * Now allocate some virtual addresses, but not the physical pages
790 * behind them. Note that virtual_avail is already page-aligned.
791 *
792 * tmp_vpages[] is an array of two virtual pages used for temporary
793 * kernel mappings in the pmap module to facilitate various physical
794 * address-oritented operations.
795 */
796 tmp_vpages[0] = virtual_avail;
797 virtual_avail += NBPG;
798 tmp_vpages[1] = virtual_avail;
799 virtual_avail += NBPG;
800
801 /** Initialize the PV system **/
802 pmap_init_pv();
803
804 /*
805 * Fill in the kernel_pmap structure and kernel_crp.
806 */
807 kernAphys = mmu_vtop(kernAbase);
808 kernel_pmap.pm_a_tmgr = NULL;
809 kernel_pmap.pm_a_phys = kernAphys;
810 kernel_pmap.pm_refcount = 1; /* always in use */
811 simple_lock_init(&kernel_pmap.pm_lock);
812
813 kernel_crp.rp_attr = MMU_LONG_DTE_LU | MMU_DT_LONG;
814 kernel_crp.rp_addr = kernAphys;
815
816 /*
817 * Now pmap_enter_kernel() may be used safely and will be
818 * the main interface used hereafter to modify the kernel's
819 * virtual address space. Note that since we are still running
820 * under the PROM's address table, none of these table modifications
821 * actually take effect until pmap_takeover_mmu() is called.
822 *
823 * Note: Our tables do NOT have the PROM linear mappings!
824 * Only the mappings created here exist in our tables, so
825 * remember to map anything we expect to use.
826 */
827 va = (vaddr_t)KERNBASE;
828 pa = 0;
829
830 /*
831 * The first page of the kernel virtual address space is the msgbuf
832 * page. The page attributes (data, non-cached) are set here, while
833 * the address is assigned to this global pointer in cpu_startup().
834 * It is non-cached, mostly due to paranoia.
835 */
836 pmap_enter_kernel(va, pa|PMAP_NC, VM_PROT_ALL);
837 va += NBPG; pa += NBPG;
838
839 /* Next page is used as the temporary stack. */
840 pmap_enter_kernel(va, pa, VM_PROT_ALL);
841 va += NBPG; pa += NBPG;
842
843 /*
844 * Map all of the kernel's text segment as read-only and cacheable.
845 * (Cacheable is implied by default). Unfortunately, the last bytes
846 * of kernel text and the first bytes of kernel data will often be
847 * sharing the same page. Therefore, the last page of kernel text
848 * has to be mapped as read/write, to accomodate the data.
849 */
850 eva = m68k_trunc_page((vaddr_t)etext);
851 for (; va < eva; va += NBPG, pa += NBPG)
852 pmap_enter_kernel(va, pa, VM_PROT_READ|VM_PROT_EXECUTE);
853
854 /*
855 * Map all of the kernel's data as read/write and cacheable.
856 * This includes: data, BSS, symbols, and everything in the
857 * contiguous memory used by pmap_bootstrap_alloc()
858 */
859 for (; pa < avail_start; va += NBPG, pa += NBPG)
860 pmap_enter_kernel(va, pa, VM_PROT_READ|VM_PROT_WRITE);
861
862 /*
863 * At this point we are almost ready to take over the MMU. But first
864 * we must save the PROM's address space in our map, as we call its
865 * routines and make references to its data later in the kernel.
866 */
867 pmap_bootstrap_copyprom();
868 pmap_takeover_mmu();
869 pmap_bootstrap_setprom();
870
871 /* Notify the VM system of our page size. */
872 uvmexp.pagesize = NBPG;
873 uvm_setpagesize();
874
875 pmap_page_upload();
876 }
877
878
879 /* pmap_alloc_usermmu INTERNAL
880 **
881 * Called from pmap_bootstrap() to allocate MMU tables that will
882 * eventually be used for user mappings.
883 */
884 void
885 pmap_alloc_usermmu()
886 {
887 /* XXX: Moved into caller. */
888 }
889
890 /* pmap_alloc_pv INTERNAL
891 **
892 * Called from pmap_bootstrap() to allocate the physical
893 * to virtual mapping list. Each physical page of memory
894 * in the system has a corresponding element in this list.
895 */
896 void
897 pmap_alloc_pv()
898 {
899 int i;
900 unsigned int total_mem;
901
902 /*
903 * Allocate a pv_head structure for every page of physical
904 * memory that will be managed by the system. Since memory on
905 * the 3/80 is non-contiguous, we cannot arrive at a total page
906 * count by subtraction of the lowest available address from the
907 * highest, but rather we have to step through each memory
908 * bank and add the number of pages in each to the total.
909 *
910 * At this time we also initialize the offset of each bank's
911 * starting pv_head within the pv_head list so that the physical
912 * memory state routines (pmap_is_referenced(),
913 * pmap_is_modified(), et al.) can quickly find coresponding
914 * pv_heads in spite of the non-contiguity.
915 */
916 total_mem = 0;
917 for (i = 0; i < SUN3X_NPHYS_RAM_SEGS; i++) {
918 avail_mem[i].pmem_pvbase = m68k_btop(total_mem);
919 total_mem += avail_mem[i].pmem_end -
920 avail_mem[i].pmem_start;
921 if (avail_mem[i].pmem_next == NULL)
922 break;
923 }
924 pvbase = (pv_t *) pmap_bootstrap_alloc(sizeof(pv_t) *
925 m68k_btop(total_phys_mem));
926 }
927
928 /* pmap_alloc_usertmgr INTERNAL
929 **
930 * Called from pmap_bootstrap() to allocate the structures which
931 * facilitate management of user MMU tables. Each user MMU table
932 * in the system has one such structure associated with it.
933 */
934 void
935 pmap_alloc_usertmgr()
936 {
937 /* Allocate user MMU table managers */
938 /* It would be a lot simpler to just make these BSS, but */
939 /* we may want to change their size at boot time... -j */
940 Atmgrbase = (a_tmgr_t *) pmap_bootstrap_alloc(sizeof(a_tmgr_t)
941 * NUM_A_TABLES);
942 Btmgrbase = (b_tmgr_t *) pmap_bootstrap_alloc(sizeof(b_tmgr_t)
943 * NUM_B_TABLES);
944 Ctmgrbase = (c_tmgr_t *) pmap_bootstrap_alloc(sizeof(c_tmgr_t)
945 * NUM_C_TABLES);
946
947 /*
948 * Allocate PV list elements for the physical to virtual
949 * mapping system.
950 */
951 pvebase = (pv_elem_t *) pmap_bootstrap_alloc(
952 sizeof(pv_elem_t) * (NUM_USER_PTES + NUM_KERN_PTES));
953 }
954
955 /* pmap_bootstrap_copyprom() INTERNAL
956 **
957 * Copy the PROM mappings into our own tables. Note, we
958 * can use physical addresses until __bootstrap returns.
959 */
960 void
961 pmap_bootstrap_copyprom()
962 {
963 struct sunromvec *romp;
964 int *mon_ctbl;
965 mmu_short_pte_t *kpte;
966 int i, len;
967
968 romp = romVectorPtr;
969
970 /*
971 * Copy the mappings in SUN3X_MON_KDB_BASE...SUN3X_MONEND
972 * Note: mon_ctbl[0] maps SUN3X_MON_KDB_BASE
973 */
974 mon_ctbl = *romp->monptaddr;
975 i = m68k_btop(SUN3X_MON_KDB_BASE - KERNBASE);
976 kpte = &kernCbase[i];
977 len = m68k_btop(SUN3X_MONEND - SUN3X_MON_KDB_BASE);
978
979 for (i = 0; i < len; i++) {
980 kpte[i].attr.raw = mon_ctbl[i];
981 }
982
983 /*
984 * Copy the mappings at MON_DVMA_BASE (to the end).
985 * Note, in here, mon_ctbl[0] maps MON_DVMA_BASE.
986 * Actually, we only want the last page, which the
987 * PROM has set up for use by the "ie" driver.
988 * (The i82686 needs its SCP there.)
989 * If we copy all the mappings, pmap_enter_kernel
990 * may complain about finding valid PTEs that are
991 * not recorded in our PV lists...
992 */
993 mon_ctbl = *romp->shadowpteaddr;
994 i = m68k_btop(SUN3X_MON_DVMA_BASE - KERNBASE);
995 kpte = &kernCbase[i];
996 len = m68k_btop(SUN3X_MON_DVMA_SIZE);
997 for (i = (len-1); i < len; i++) {
998 kpte[i].attr.raw = mon_ctbl[i];
999 }
1000 }
1001
1002 /* pmap_takeover_mmu INTERNAL
1003 **
1004 * Called from pmap_bootstrap() after it has copied enough of the
1005 * PROM mappings into the kernel map so that we can use our own
1006 * MMU table.
1007 */
1008 void
1009 pmap_takeover_mmu()
1010 {
1011
1012 loadcrp(&kernel_crp);
1013 }
1014
1015 /* pmap_bootstrap_setprom() INTERNAL
1016 **
1017 * Set the PROM mappings so it can see kernel space.
1018 * Note that physical addresses are used here, which
1019 * we can get away with because this runs with the
1020 * low 1GB set for transparent translation.
1021 */
1022 void
1023 pmap_bootstrap_setprom()
1024 {
1025 mmu_long_dte_t *mon_dte;
1026 extern struct mmu_rootptr mon_crp;
1027 int i;
1028
1029 mon_dte = (mmu_long_dte_t *) mon_crp.rp_addr;
1030 for (i = MMU_TIA(KERNBASE); i < MMU_TIA(KERN_END); i++) {
1031 mon_dte[i].attr.raw = kernAbase[i].attr.raw;
1032 mon_dte[i].addr.raw = kernAbase[i].addr.raw;
1033 }
1034 }
1035
1036
1037 /* pmap_init INTERFACE
1038 **
1039 * Called at the end of vm_init() to set up the pmap system to go
1040 * into full time operation. All initialization of kernel_pmap
1041 * should be already done by now, so this should just do things
1042 * needed for user-level pmaps to work.
1043 */
1044 void
1045 pmap_init()
1046 {
1047 /** Initialize the manager pools **/
1048 TAILQ_INIT(&a_pool);
1049 TAILQ_INIT(&b_pool);
1050 TAILQ_INIT(&c_pool);
1051
1052 /**************************************************************
1053 * Initialize all tmgr structures and MMU tables they manage. *
1054 **************************************************************/
1055 /** Initialize A tables **/
1056 pmap_init_a_tables();
1057 /** Initialize B tables **/
1058 pmap_init_b_tables();
1059 /** Initialize C tables **/
1060 pmap_init_c_tables();
1061
1062 /** Initialize the pmap pools **/
1063 pool_init(&pmap_pmap_pool, sizeof(struct pmap), 0, 0, 0, "pmappl",
1064 &pool_allocator_nointr);
1065 }
1066
1067 /* pmap_init_a_tables() INTERNAL
1068 **
1069 * Initializes all A managers, their MMU A tables, and inserts
1070 * them into the A manager pool for use by the system.
1071 */
1072 void
1073 pmap_init_a_tables()
1074 {
1075 int i;
1076 a_tmgr_t *a_tbl;
1077
1078 for (i=0; i < NUM_A_TABLES; i++) {
1079 /* Select the next available A manager from the pool */
1080 a_tbl = &Atmgrbase[i];
1081
1082 /*
1083 * Clear its parent entry. Set its wired and valid
1084 * entry count to zero.
1085 */
1086 a_tbl->at_parent = NULL;
1087 a_tbl->at_wcnt = a_tbl->at_ecnt = 0;
1088
1089 /* Assign it the next available MMU A table from the pool */
1090 a_tbl->at_dtbl = &mmuAbase[i * MMU_A_TBL_SIZE];
1091
1092 /*
1093 * Initialize the MMU A table with the table in the `proc0',
1094 * or kernel, mapping. This ensures that every process has
1095 * the kernel mapped in the top part of its address space.
1096 */
1097 memcpy(a_tbl->at_dtbl, kernAbase, MMU_A_TBL_SIZE *
1098 sizeof(mmu_long_dte_t));
1099
1100 /*
1101 * Finally, insert the manager into the A pool,
1102 * making it ready to be used by the system.
1103 */
1104 TAILQ_INSERT_TAIL(&a_pool, a_tbl, at_link);
1105 }
1106 }
1107
1108 /* pmap_init_b_tables() INTERNAL
1109 **
1110 * Initializes all B table managers, their MMU B tables, and
1111 * inserts them into the B manager pool for use by the system.
1112 */
1113 void
1114 pmap_init_b_tables()
1115 {
1116 int i,j;
1117 b_tmgr_t *b_tbl;
1118
1119 for (i=0; i < NUM_B_TABLES; i++) {
1120 /* Select the next available B manager from the pool */
1121 b_tbl = &Btmgrbase[i];
1122
1123 b_tbl->bt_parent = NULL; /* clear its parent, */
1124 b_tbl->bt_pidx = 0; /* parent index, */
1125 b_tbl->bt_wcnt = 0; /* wired entry count, */
1126 b_tbl->bt_ecnt = 0; /* valid entry count. */
1127
1128 /* Assign it the next available MMU B table from the pool */
1129 b_tbl->bt_dtbl = &mmuBbase[i * MMU_B_TBL_SIZE];
1130
1131 /* Invalidate every descriptor in the table */
1132 for (j=0; j < MMU_B_TBL_SIZE; j++)
1133 b_tbl->bt_dtbl[j].attr.raw = MMU_DT_INVALID;
1134
1135 /* Insert the manager into the B pool */
1136 TAILQ_INSERT_TAIL(&b_pool, b_tbl, bt_link);
1137 }
1138 }
1139
1140 /* pmap_init_c_tables() INTERNAL
1141 **
1142 * Initializes all C table managers, their MMU C tables, and
1143 * inserts them into the C manager pool for use by the system.
1144 */
1145 void
1146 pmap_init_c_tables()
1147 {
1148 int i,j;
1149 c_tmgr_t *c_tbl;
1150
1151 for (i=0; i < NUM_C_TABLES; i++) {
1152 /* Select the next available C manager from the pool */
1153 c_tbl = &Ctmgrbase[i];
1154
1155 c_tbl->ct_parent = NULL; /* clear its parent, */
1156 c_tbl->ct_pidx = 0; /* parent index, */
1157 c_tbl->ct_wcnt = 0; /* wired entry count, */
1158 c_tbl->ct_ecnt = 0; /* valid entry count, */
1159 c_tbl->ct_pmap = NULL; /* parent pmap, */
1160 c_tbl->ct_va = 0; /* base of managed range */
1161
1162 /* Assign it the next available MMU C table from the pool */
1163 c_tbl->ct_dtbl = &mmuCbase[i * MMU_C_TBL_SIZE];
1164
1165 for (j=0; j < MMU_C_TBL_SIZE; j++)
1166 c_tbl->ct_dtbl[j].attr.raw = MMU_DT_INVALID;
1167
1168 TAILQ_INSERT_TAIL(&c_pool, c_tbl, ct_link);
1169 }
1170 }
1171
1172 /* pmap_init_pv() INTERNAL
1173 **
1174 * Initializes the Physical to Virtual mapping system.
1175 */
1176 void
1177 pmap_init_pv()
1178 {
1179 int i;
1180
1181 /* Initialize every PV head. */
1182 for (i = 0; i < m68k_btop(total_phys_mem); i++) {
1183 pvbase[i].pv_idx = PVE_EOL; /* Indicate no mappings */
1184 pvbase[i].pv_flags = 0; /* Zero out page flags */
1185 }
1186 }
1187
1188 /* get_a_table INTERNAL
1189 **
1190 * Retrieve and return a level A table for use in a user map.
1191 */
1192 a_tmgr_t *
1193 get_a_table()
1194 {
1195 a_tmgr_t *tbl;
1196 pmap_t pmap;
1197
1198 /* Get the top A table in the pool */
1199 tbl = a_pool.tqh_first;
1200 if (tbl == NULL) {
1201 /*
1202 * XXX - Instead of panicing here and in other get_x_table
1203 * functions, we do have the option of sleeping on the head of
1204 * the table pool. Any function which updates the table pool
1205 * would then issue a wakeup() on the head, thus waking up any
1206 * processes waiting for a table.
1207 *
1208 * Actually, the place to sleep would be when some process
1209 * asks for a "wired" mapping that would run us short of
1210 * mapping resources. This design DEPENDS on always having
1211 * some mapping resources in the pool for stealing, so we
1212 * must make sure we NEVER let the pool become empty. -gwr
1213 */
1214 panic("get_a_table: out of A tables.");
1215 }
1216
1217 TAILQ_REMOVE(&a_pool, tbl, at_link);
1218 /*
1219 * If the table has a non-null parent pointer then it is in use.
1220 * Forcibly abduct it from its parent and clear its entries.
1221 * No re-entrancy worries here. This table would not be in the
1222 * table pool unless it was available for use.
1223 *
1224 * Note that the second argument to free_a_table() is FALSE. This
1225 * indicates that the table should not be relinked into the A table
1226 * pool. That is a job for the function that called us.
1227 */
1228 if (tbl->at_parent) {
1229 pmap = tbl->at_parent;
1230 free_a_table(tbl, FALSE);
1231 pmap->pm_a_tmgr = NULL;
1232 pmap->pm_a_phys = kernAphys;
1233 }
1234 return tbl;
1235 }
1236
1237 /* get_b_table INTERNAL
1238 **
1239 * Return a level B table for use.
1240 */
1241 b_tmgr_t *
1242 get_b_table()
1243 {
1244 b_tmgr_t *tbl;
1245
1246 /* See 'get_a_table' for comments. */
1247 tbl = b_pool.tqh_first;
1248 if (tbl == NULL)
1249 panic("get_b_table: out of B tables.");
1250 TAILQ_REMOVE(&b_pool, tbl, bt_link);
1251 if (tbl->bt_parent) {
1252 tbl->bt_parent->at_dtbl[tbl->bt_pidx].attr.raw = MMU_DT_INVALID;
1253 tbl->bt_parent->at_ecnt--;
1254 free_b_table(tbl, FALSE);
1255 }
1256 return tbl;
1257 }
1258
1259 /* get_c_table INTERNAL
1260 **
1261 * Return a level C table for use.
1262 */
1263 c_tmgr_t *
1264 get_c_table()
1265 {
1266 c_tmgr_t *tbl;
1267
1268 /* See 'get_a_table' for comments */
1269 tbl = c_pool.tqh_first;
1270 if (tbl == NULL)
1271 panic("get_c_table: out of C tables.");
1272 TAILQ_REMOVE(&c_pool, tbl, ct_link);
1273 if (tbl->ct_parent) {
1274 tbl->ct_parent->bt_dtbl[tbl->ct_pidx].attr.raw = MMU_DT_INVALID;
1275 tbl->ct_parent->bt_ecnt--;
1276 free_c_table(tbl, FALSE);
1277 }
1278 return tbl;
1279 }
1280
1281 /*
1282 * The following 'free_table' and 'steal_table' functions are called to
1283 * detach tables from their current obligations (parents and children) and
1284 * prepare them for reuse in another mapping.
1285 *
1286 * Free_table is used when the calling function will handle the fate
1287 * of the parent table, such as returning it to the free pool when it has
1288 * no valid entries. Functions that do not want to handle this should
1289 * call steal_table, in which the parent table's descriptors and entry
1290 * count are automatically modified when this table is removed.
1291 */
1292
1293 /* free_a_table INTERNAL
1294 **
1295 * Unmaps the given A table and all child tables from their current
1296 * mappings. Returns the number of pages that were invalidated.
1297 * If 'relink' is true, the function will return the table to the head
1298 * of the available table pool.
1299 *
1300 * Cache note: The MC68851 will automatically flush all
1301 * descriptors derived from a given A table from its
1302 * Automatic Translation Cache (ATC) if we issue a
1303 * 'PFLUSHR' instruction with the base address of the
1304 * table. This function should do, and does so.
1305 * Note note: We are using an MC68030 - there is no
1306 * PFLUSHR.
1307 */
1308 int
1309 free_a_table(a_tbl, relink)
1310 a_tmgr_t *a_tbl;
1311 boolean_t relink;
1312 {
1313 int i, removed_cnt;
1314 mmu_long_dte_t *dte;
1315 mmu_short_dte_t *dtbl;
1316 b_tmgr_t *tmgr;
1317
1318 /*
1319 * Flush the ATC cache of all cached descriptors derived
1320 * from this table.
1321 * Sun3x does not use 68851's cached table feature
1322 * flush_atc_crp(mmu_vtop(a_tbl->dte));
1323 */
1324
1325 /*
1326 * Remove any pending cache flushes that were designated
1327 * for the pmap this A table belongs to.
1328 * a_tbl->parent->atc_flushq[0] = 0;
1329 * Not implemented in sun3x.
1330 */
1331
1332 /*
1333 * All A tables in the system should retain a map for the
1334 * kernel. If the table contains any valid descriptors
1335 * (other than those for the kernel area), invalidate them all,
1336 * stopping short of the kernel's entries.
1337 */
1338 removed_cnt = 0;
1339 if (a_tbl->at_ecnt) {
1340 dte = a_tbl->at_dtbl;
1341 for (i=0; i < MMU_TIA(KERNBASE); i++) {
1342 /*
1343 * If a table entry points to a valid B table, free
1344 * it and its children.
1345 */
1346 if (MMU_VALID_DT(dte[i])) {
1347 /*
1348 * The following block does several things,
1349 * from innermost expression to the
1350 * outermost:
1351 * 1) It extracts the base (cc 1996)
1352 * address of the B table pointed
1353 * to in the A table entry dte[i].
1354 * 2) It converts this base address into
1355 * the virtual address it can be
1356 * accessed with. (all MMU tables point
1357 * to physical addresses.)
1358 * 3) It finds the corresponding manager
1359 * structure which manages this MMU table.
1360 * 4) It frees the manager structure.
1361 * (This frees the MMU table and all
1362 * child tables. See 'free_b_table' for
1363 * details.)
1364 */
1365 dtbl = mmu_ptov(dte[i].addr.raw);
1366 tmgr = mmuB2tmgr(dtbl);
1367 removed_cnt += free_b_table(tmgr, TRUE);
1368 dte[i].attr.raw = MMU_DT_INVALID;
1369 }
1370 }
1371 a_tbl->at_ecnt = 0;
1372 }
1373 if (relink) {
1374 a_tbl->at_parent = NULL;
1375 TAILQ_REMOVE(&a_pool, a_tbl, at_link);
1376 TAILQ_INSERT_HEAD(&a_pool, a_tbl, at_link);
1377 }
1378 return removed_cnt;
1379 }
1380
1381 /* free_b_table INTERNAL
1382 **
1383 * Unmaps the given B table and all its children from their current
1384 * mappings. Returns the number of pages that were invalidated.
1385 * (For comments, see 'free_a_table()').
1386 */
1387 int
1388 free_b_table(b_tbl, relink)
1389 b_tmgr_t *b_tbl;
1390 boolean_t relink;
1391 {
1392 int i, removed_cnt;
1393 mmu_short_dte_t *dte;
1394 mmu_short_pte_t *dtbl;
1395 c_tmgr_t *tmgr;
1396
1397 removed_cnt = 0;
1398 if (b_tbl->bt_ecnt) {
1399 dte = b_tbl->bt_dtbl;
1400 for (i=0; i < MMU_B_TBL_SIZE; i++) {
1401 if (MMU_VALID_DT(dte[i])) {
1402 dtbl = mmu_ptov(MMU_DTE_PA(dte[i]));
1403 tmgr = mmuC2tmgr(dtbl);
1404 removed_cnt += free_c_table(tmgr, TRUE);
1405 dte[i].attr.raw = MMU_DT_INVALID;
1406 }
1407 }
1408 b_tbl->bt_ecnt = 0;
1409 }
1410
1411 if (relink) {
1412 b_tbl->bt_parent = NULL;
1413 TAILQ_REMOVE(&b_pool, b_tbl, bt_link);
1414 TAILQ_INSERT_HEAD(&b_pool, b_tbl, bt_link);
1415 }
1416 return removed_cnt;
1417 }
1418
1419 /* free_c_table INTERNAL
1420 **
1421 * Unmaps the given C table from use and returns it to the pool for
1422 * re-use. Returns the number of pages that were invalidated.
1423 *
1424 * This function preserves any physical page modification information
1425 * contained in the page descriptors within the C table by calling
1426 * 'pmap_remove_pte().'
1427 */
1428 int
1429 free_c_table(c_tbl, relink)
1430 c_tmgr_t *c_tbl;
1431 boolean_t relink;
1432 {
1433 int i, removed_cnt;
1434
1435 removed_cnt = 0;
1436 if (c_tbl->ct_ecnt) {
1437 for (i=0; i < MMU_C_TBL_SIZE; i++) {
1438 if (MMU_VALID_DT(c_tbl->ct_dtbl[i])) {
1439 pmap_remove_pte(&c_tbl->ct_dtbl[i]);
1440 removed_cnt++;
1441 }
1442 }
1443 c_tbl->ct_ecnt = 0;
1444 }
1445
1446 if (relink) {
1447 c_tbl->ct_parent = NULL;
1448 TAILQ_REMOVE(&c_pool, c_tbl, ct_link);
1449 TAILQ_INSERT_HEAD(&c_pool, c_tbl, ct_link);
1450 }
1451 return removed_cnt;
1452 }
1453
1454
1455 /* pmap_remove_pte INTERNAL
1456 **
1457 * Unmap the given pte and preserve any page modification
1458 * information by transfering it to the pv head of the
1459 * physical page it maps to. This function does not update
1460 * any reference counts because it is assumed that the calling
1461 * function will do so.
1462 */
1463 void
1464 pmap_remove_pte(pte)
1465 mmu_short_pte_t *pte;
1466 {
1467 u_short pv_idx, targ_idx;
1468 paddr_t pa;
1469 pv_t *pv;
1470
1471 pa = MMU_PTE_PA(*pte);
1472 if (is_managed(pa)) {
1473 pv = pa2pv(pa);
1474 targ_idx = pteidx(pte); /* Index of PTE being removed */
1475
1476 /*
1477 * If the PTE being removed is the first (or only) PTE in
1478 * the list of PTEs currently mapped to this page, remove the
1479 * PTE by changing the index found on the PV head. Otherwise
1480 * a linear search through the list will have to be executed
1481 * in order to find the PVE which points to the PTE being
1482 * removed, so that it may be modified to point to its new
1483 * neighbor.
1484 */
1485
1486 pv_idx = pv->pv_idx; /* Index of first PTE in PV list */
1487 if (pv_idx == targ_idx) {
1488 pv->pv_idx = pvebase[targ_idx].pve_next;
1489 } else {
1490
1491 /*
1492 * Find the PV element pointing to the target
1493 * element. Note: may have pv_idx==PVE_EOL
1494 */
1495
1496 for (;;) {
1497 if (pv_idx == PVE_EOL) {
1498 goto pv_not_found;
1499 }
1500 if (pvebase[pv_idx].pve_next == targ_idx)
1501 break;
1502 pv_idx = pvebase[pv_idx].pve_next;
1503 }
1504
1505 /*
1506 * At this point, pv_idx is the index of the PV
1507 * element just before the target element in the list.
1508 * Unlink the target.
1509 */
1510
1511 pvebase[pv_idx].pve_next = pvebase[targ_idx].pve_next;
1512 }
1513
1514 /*
1515 * Save the mod/ref bits of the pte by simply
1516 * ORing the entire pte onto the pv_flags member
1517 * of the pv structure.
1518 * There is no need to use a separate bit pattern
1519 * for usage information on the pv head than that
1520 * which is used on the MMU ptes.
1521 */
1522
1523 pv_not_found:
1524 pv->pv_flags |= (u_short) pte->attr.raw;
1525 }
1526 pte->attr.raw = MMU_DT_INVALID;
1527 }
1528
1529 /* pmap_stroll INTERNAL
1530 **
1531 * Retrieve the addresses of all table managers involved in the mapping of
1532 * the given virtual address. If the table walk completed successfully,
1533 * return TRUE. If it was only partially successful, return FALSE.
1534 * The table walk performed by this function is important to many other
1535 * functions in this module.
1536 *
1537 * Note: This function ought to be easier to read.
1538 */
1539 boolean_t
1540 pmap_stroll(pmap, va, a_tbl, b_tbl, c_tbl, pte, a_idx, b_idx, pte_idx)
1541 pmap_t pmap;
1542 vaddr_t va;
1543 a_tmgr_t **a_tbl;
1544 b_tmgr_t **b_tbl;
1545 c_tmgr_t **c_tbl;
1546 mmu_short_pte_t **pte;
1547 int *a_idx, *b_idx, *pte_idx;
1548 {
1549 mmu_long_dte_t *a_dte; /* A: long descriptor table */
1550 mmu_short_dte_t *b_dte; /* B: short descriptor table */
1551
1552 if (pmap == pmap_kernel())
1553 return FALSE;
1554
1555 /* Does the given pmap have its own A table? */
1556 *a_tbl = pmap->pm_a_tmgr;
1557 if (*a_tbl == NULL)
1558 return FALSE; /* No. Return unknown. */
1559 /* Does the A table have a valid B table
1560 * under the corresponding table entry?
1561 */
1562 *a_idx = MMU_TIA(va);
1563 a_dte = &((*a_tbl)->at_dtbl[*a_idx]);
1564 if (!MMU_VALID_DT(*a_dte))
1565 return FALSE; /* No. Return unknown. */
1566 /* Yes. Extract B table from the A table. */
1567 *b_tbl = mmuB2tmgr(mmu_ptov(a_dte->addr.raw));
1568 /* Does the B table have a valid C table
1569 * under the corresponding table entry?
1570 */
1571 *b_idx = MMU_TIB(va);
1572 b_dte = &((*b_tbl)->bt_dtbl[*b_idx]);
1573 if (!MMU_VALID_DT(*b_dte))
1574 return FALSE; /* No. Return unknown. */
1575 /* Yes. Extract C table from the B table. */
1576 *c_tbl = mmuC2tmgr(mmu_ptov(MMU_DTE_PA(*b_dte)));
1577 *pte_idx = MMU_TIC(va);
1578 *pte = &((*c_tbl)->ct_dtbl[*pte_idx]);
1579
1580 return TRUE;
1581 }
1582
1583 /* pmap_enter INTERFACE
1584 **
1585 * Called by the kernel to map a virtual address
1586 * to a physical address in the given process map.
1587 *
1588 * Note: this function should apply an exclusive lock
1589 * on the pmap system for its duration. (it certainly
1590 * would save my hair!!)
1591 * This function ought to be easier to read.
1592 */
1593 int
1594 pmap_enter(pmap, va, pa, prot, flags)
1595 pmap_t pmap;
1596 vaddr_t va;
1597 paddr_t pa;
1598 vm_prot_t prot;
1599 int flags;
1600 {
1601 boolean_t insert, managed; /* Marks the need for PV insertion.*/
1602 u_short nidx; /* PV list index */
1603 int mapflags; /* Flags for the mapping (see NOTE1) */
1604 u_int a_idx, b_idx, pte_idx; /* table indices */
1605 a_tmgr_t *a_tbl; /* A: long descriptor table manager */
1606 b_tmgr_t *b_tbl; /* B: short descriptor table manager */
1607 c_tmgr_t *c_tbl; /* C: short page table manager */
1608 mmu_long_dte_t *a_dte; /* A: long descriptor table */
1609 mmu_short_dte_t *b_dte; /* B: short descriptor table */
1610 mmu_short_pte_t *c_pte; /* C: short page descriptor table */
1611 pv_t *pv; /* pv list head */
1612 boolean_t wired; /* is the mapping to be wired? */
1613 enum {NONE, NEWA, NEWB, NEWC} llevel; /* used at end */
1614
1615 if (pmap == pmap_kernel()) {
1616 pmap_enter_kernel(va, pa, prot);
1617 return 0;
1618 }
1619
1620 /*
1621 * Determine if the mapping should be wired.
1622 */
1623 wired = ((flags & PMAP_WIRED) != 0);
1624
1625 /*
1626 * NOTE1:
1627 *
1628 * On November 13, 1999, someone changed the pmap_enter() API such
1629 * that it now accepts a 'flags' argument. This new argument
1630 * contains bit-flags for the architecture-independent (UVM) system to
1631 * use in signalling certain mapping requirements to the architecture-
1632 * dependent (pmap) system. The argument it replaces, 'wired', is now
1633 * one of the flags within it.
1634 *
1635 * In addition to flags signaled by the architecture-independent
1636 * system, parts of the architecture-dependent section of the sun3x
1637 * kernel pass their own flags in the lower, unused bits of the
1638 * physical address supplied to this function. These flags are
1639 * extracted and stored in the temporary variable 'mapflags'.
1640 *
1641 * Extract sun3x specific flags from the physical address.
1642 */
1643 mapflags = (pa & ~MMU_PAGE_MASK);
1644 pa &= MMU_PAGE_MASK;
1645
1646 /*
1647 * Determine if the physical address being mapped is on-board RAM.
1648 * Any other area of the address space is likely to belong to a
1649 * device and hence it would be disasterous to cache its contents.
1650 */
1651 if ((managed = is_managed(pa)) == FALSE)
1652 mapflags |= PMAP_NC;
1653
1654 /*
1655 * For user mappings we walk along the MMU tables of the given
1656 * pmap, reaching a PTE which describes the virtual page being
1657 * mapped or changed. If any level of the walk ends in an invalid
1658 * entry, a table must be allocated and the entry must be updated
1659 * to point to it.
1660 * There is a bit of confusion as to whether this code must be
1661 * re-entrant. For now we will assume it is. To support
1662 * re-entrancy we must unlink tables from the table pool before
1663 * we assume we may use them. Tables are re-linked into the pool
1664 * when we are finished with them at the end of the function.
1665 * But I don't feel like doing that until we have proof that this
1666 * needs to be re-entrant.
1667 * 'llevel' records which tables need to be relinked.
1668 */
1669 llevel = NONE;
1670
1671 /*
1672 * Step 1 - Retrieve the A table from the pmap. If it has no
1673 * A table, allocate a new one from the available pool.
1674 */
1675
1676 a_tbl = pmap->pm_a_tmgr;
1677 if (a_tbl == NULL) {
1678 /*
1679 * This pmap does not currently have an A table. Allocate
1680 * a new one.
1681 */
1682 a_tbl = get_a_table();
1683 a_tbl->at_parent = pmap;
1684
1685 /*
1686 * Assign this new A table to the pmap, and calculate its
1687 * physical address so that loadcrp() can be used to make
1688 * the table active.
1689 */
1690 pmap->pm_a_tmgr = a_tbl;
1691 pmap->pm_a_phys = mmu_vtop(a_tbl->at_dtbl);
1692
1693 /*
1694 * If the process receiving a new A table is the current
1695 * process, we are responsible for setting the MMU so that
1696 * it becomes the current address space. This only adds
1697 * new mappings, so no need to flush anything.
1698 */
1699 if (pmap == current_pmap()) {
1700 kernel_crp.rp_addr = pmap->pm_a_phys;
1701 loadcrp(&kernel_crp);
1702 }
1703
1704 if (!wired)
1705 llevel = NEWA;
1706 } else {
1707 /*
1708 * Use the A table already allocated for this pmap.
1709 * Unlink it from the A table pool if necessary.
1710 */
1711 if (wired && !a_tbl->at_wcnt)
1712 TAILQ_REMOVE(&a_pool, a_tbl, at_link);
1713 }
1714
1715 /*
1716 * Step 2 - Walk into the B table. If there is no valid B table,
1717 * allocate one.
1718 */
1719
1720 a_idx = MMU_TIA(va); /* Calculate the TIA of the VA. */
1721 a_dte = &a_tbl->at_dtbl[a_idx]; /* Retrieve descriptor from table */
1722 if (MMU_VALID_DT(*a_dte)) { /* Is the descriptor valid? */
1723 /* The descriptor is valid. Use the B table it points to. */
1724 /*************************************
1725 * a_idx *
1726 * v *
1727 * a_tbl -> +-+-+-+-+-+-+-+-+-+-+-+- *
1728 * | | | | | | | | | | | | *
1729 * +-+-+-+-+-+-+-+-+-+-+-+- *
1730 * | *
1731 * \- b_tbl -> +-+- *
1732 * | | *
1733 * +-+- *
1734 *************************************/
1735 b_dte = mmu_ptov(a_dte->addr.raw);
1736 b_tbl = mmuB2tmgr(b_dte);
1737
1738 /*
1739 * If the requested mapping must be wired, but this table
1740 * being used to map it is not, the table must be removed
1741 * from the available pool and its wired entry count
1742 * incremented.
1743 */
1744 if (wired && !b_tbl->bt_wcnt) {
1745 TAILQ_REMOVE(&b_pool, b_tbl, bt_link);
1746 a_tbl->at_wcnt++;
1747 }
1748 } else {
1749 /* The descriptor is invalid. Allocate a new B table. */
1750 b_tbl = get_b_table();
1751
1752 /* Point the parent A table descriptor to this new B table. */
1753 a_dte->addr.raw = mmu_vtop(b_tbl->bt_dtbl);
1754 a_dte->attr.raw = MMU_LONG_DTE_LU | MMU_DT_SHORT;
1755 a_tbl->at_ecnt++; /* Update parent's valid entry count */
1756
1757 /* Create the necessary back references to the parent table */
1758 b_tbl->bt_parent = a_tbl;
1759 b_tbl->bt_pidx = a_idx;
1760
1761 /*
1762 * If this table is to be wired, make sure the parent A table
1763 * wired count is updated to reflect that it has another wired
1764 * entry.
1765 */
1766 if (wired)
1767 a_tbl->at_wcnt++;
1768 else if (llevel == NONE)
1769 llevel = NEWB;
1770 }
1771
1772 /*
1773 * Step 3 - Walk into the C table, if there is no valid C table,
1774 * allocate one.
1775 */
1776
1777 b_idx = MMU_TIB(va); /* Calculate the TIB of the VA */
1778 b_dte = &b_tbl->bt_dtbl[b_idx]; /* Retrieve descriptor from table */
1779 if (MMU_VALID_DT(*b_dte)) { /* Is the descriptor valid? */
1780 /* The descriptor is valid. Use the C table it points to. */
1781 /**************************************
1782 * c_idx *
1783 * | v *
1784 * \- b_tbl -> +-+-+-+-+-+-+-+-+-+-+- *
1785 * | | | | | | | | | | | *
1786 * +-+-+-+-+-+-+-+-+-+-+- *
1787 * | *
1788 * \- c_tbl -> +-+-- *
1789 * | | | *
1790 * +-+-- *
1791 **************************************/
1792 c_pte = mmu_ptov(MMU_PTE_PA(*b_dte));
1793 c_tbl = mmuC2tmgr(c_pte);
1794
1795 /* If mapping is wired and table is not */
1796 if (wired && !c_tbl->ct_wcnt) {
1797 TAILQ_REMOVE(&c_pool, c_tbl, ct_link);
1798 b_tbl->bt_wcnt++;
1799 }
1800 } else {
1801 /* The descriptor is invalid. Allocate a new C table. */
1802 c_tbl = get_c_table();
1803
1804 /* Point the parent B table descriptor to this new C table. */
1805 b_dte->attr.raw = mmu_vtop(c_tbl->ct_dtbl);
1806 b_dte->attr.raw |= MMU_DT_SHORT;
1807 b_tbl->bt_ecnt++; /* Update parent's valid entry count */
1808
1809 /* Create the necessary back references to the parent table */
1810 c_tbl->ct_parent = b_tbl;
1811 c_tbl->ct_pidx = b_idx;
1812 /*
1813 * Store the pmap and base virtual managed address for faster
1814 * retrieval in the PV functions.
1815 */
1816 c_tbl->ct_pmap = pmap;
1817 c_tbl->ct_va = (va & (MMU_TIA_MASK|MMU_TIB_MASK));
1818
1819 /*
1820 * If this table is to be wired, make sure the parent B table
1821 * wired count is updated to reflect that it has another wired
1822 * entry.
1823 */
1824 if (wired)
1825 b_tbl->bt_wcnt++;
1826 else if (llevel == NONE)
1827 llevel = NEWC;
1828 }
1829
1830 /*
1831 * Step 4 - Deposit a page descriptor (PTE) into the appropriate
1832 * slot of the C table, describing the PA to which the VA is mapped.
1833 */
1834
1835 pte_idx = MMU_TIC(va);
1836 c_pte = &c_tbl->ct_dtbl[pte_idx];
1837 if (MMU_VALID_DT(*c_pte)) { /* Is the entry currently valid? */
1838 /*
1839 * The PTE is currently valid. This particular call
1840 * is just a synonym for one (or more) of the following
1841 * operations:
1842 * change protection of a page
1843 * change wiring status of a page
1844 * remove the mapping of a page
1845 *
1846 * XXX - Semi critical: This code should unwire the PTE
1847 * and, possibly, associated parent tables if this is a
1848 * change wiring operation. Currently it does not.
1849 *
1850 * This may be ok if pmap_unwire() is the only
1851 * interface used to UNWIRE a page.
1852 */
1853
1854 /* First check if this is a wiring operation. */
1855 if (wired && (c_pte->attr.raw & MMU_SHORT_PTE_WIRED)) {
1856 /*
1857 * The PTE is already wired. To prevent it from being
1858 * counted as a new wiring operation, reset the 'wired'
1859 * variable.
1860 */
1861 wired = FALSE;
1862 }
1863
1864 /* Is the new address the same as the old? */
1865 if (MMU_PTE_PA(*c_pte) == pa) {
1866 /*
1867 * Yes, mark that it does not need to be reinserted
1868 * into the PV list.
1869 */
1870 insert = FALSE;
1871
1872 /*
1873 * Clear all but the modified, referenced and wired
1874 * bits on the PTE.
1875 */
1876 c_pte->attr.raw &= (MMU_SHORT_PTE_M
1877 | MMU_SHORT_PTE_USED | MMU_SHORT_PTE_WIRED);
1878 } else {
1879 /* No, remove the old entry */
1880 pmap_remove_pte(c_pte);
1881 insert = TRUE;
1882 }
1883
1884 /*
1885 * TLB flush is only necessary if modifying current map.
1886 * However, in pmap_enter(), the pmap almost always IS
1887 * the current pmap, so don't even bother to check.
1888 */
1889 TBIS(va);
1890 } else {
1891 /*
1892 * The PTE is invalid. Increment the valid entry count in
1893 * the C table manager to reflect the addition of a new entry.
1894 */
1895 c_tbl->ct_ecnt++;
1896
1897 /* XXX - temporarily make sure the PTE is cleared. */
1898 c_pte->attr.raw = 0;
1899
1900 /* It will also need to be inserted into the PV list. */
1901 insert = TRUE;
1902 }
1903
1904 /*
1905 * If page is changing from unwired to wired status, set an unused bit
1906 * within the PTE to indicate that it is wired. Also increment the
1907 * wired entry count in the C table manager.
1908 */
1909 if (wired) {
1910 c_pte->attr.raw |= MMU_SHORT_PTE_WIRED;
1911 c_tbl->ct_wcnt++;
1912 }
1913
1914 /*
1915 * Map the page, being careful to preserve modify/reference/wired
1916 * bits. At this point it is assumed that the PTE either has no bits
1917 * set, or if there are set bits, they are only modified, reference or
1918 * wired bits. If not, the following statement will cause erratic
1919 * behavior.
1920 */
1921 #ifdef PMAP_DEBUG
1922 if (c_pte->attr.raw & ~(MMU_SHORT_PTE_M |
1923 MMU_SHORT_PTE_USED | MMU_SHORT_PTE_WIRED)) {
1924 printf("pmap_enter: junk left in PTE at %p\n", c_pte);
1925 Debugger();
1926 }
1927 #endif
1928 c_pte->attr.raw |= ((u_long) pa | MMU_DT_PAGE);
1929
1930 /*
1931 * If the mapping should be read-only, set the write protect
1932 * bit in the PTE.
1933 */
1934 if (!(prot & VM_PROT_WRITE))
1935 c_pte->attr.raw |= MMU_SHORT_PTE_WP;
1936
1937 /*
1938 * If the mapping should be cache inhibited (indicated by the flag
1939 * bits found on the lower order of the physical address.)
1940 * mark the PTE as a cache inhibited page.
1941 */
1942 if (mapflags & PMAP_NC)
1943 c_pte->attr.raw |= MMU_SHORT_PTE_CI;
1944
1945 /*
1946 * If the physical address being mapped is managed by the PV
1947 * system then link the pte into the list of pages mapped to that
1948 * address.
1949 */
1950 if (insert && managed) {
1951 pv = pa2pv(pa);
1952 nidx = pteidx(c_pte);
1953
1954 pvebase[nidx].pve_next = pv->pv_idx;
1955 pv->pv_idx = nidx;
1956 }
1957
1958 /* Move any allocated tables back into the active pool. */
1959
1960 switch (llevel) {
1961 case NEWA:
1962 TAILQ_INSERT_TAIL(&a_pool, a_tbl, at_link);
1963 /* FALLTHROUGH */
1964 case NEWB:
1965 TAILQ_INSERT_TAIL(&b_pool, b_tbl, bt_link);
1966 /* FALLTHROUGH */
1967 case NEWC:
1968 TAILQ_INSERT_TAIL(&c_pool, c_tbl, ct_link);
1969 /* FALLTHROUGH */
1970 default:
1971 break;
1972 }
1973
1974 return 0;
1975 }
1976
1977 /* pmap_enter_kernel INTERNAL
1978 **
1979 * Map the given virtual address to the given physical address within the
1980 * kernel address space. This function exists because the kernel map does
1981 * not do dynamic table allocation. It consists of a contiguous array of ptes
1982 * and can be edited directly without the need to walk through any tables.
1983 *
1984 * XXX: "Danger, Will Robinson!"
1985 * Note that the kernel should never take a fault on any page
1986 * between [ KERNBASE .. virtual_avail ] and this is checked in
1987 * trap.c for kernel-mode MMU faults. This means that mappings
1988 * created in that range must be implicily wired. -gwr
1989 */
1990 void
1991 pmap_enter_kernel(va, pa, prot)
1992 vaddr_t va;
1993 paddr_t pa;
1994 vm_prot_t prot;
1995 {
1996 boolean_t was_valid, insert;
1997 u_short pte_idx;
1998 int flags;
1999 mmu_short_pte_t *pte;
2000 pv_t *pv;
2001 paddr_t old_pa;
2002
2003 flags = (pa & ~MMU_PAGE_MASK);
2004 pa &= MMU_PAGE_MASK;
2005
2006 if (is_managed(pa))
2007 insert = TRUE;
2008 else
2009 insert = FALSE;
2010
2011 /*
2012 * Calculate the index of the PTE being modified.
2013 */
2014 pte_idx = (u_long) m68k_btop(va - KERNBASE);
2015
2016 /* This array is traditionally named "Sysmap" */
2017 pte = &kernCbase[pte_idx];
2018
2019 if (MMU_VALID_DT(*pte)) {
2020 was_valid = TRUE;
2021 /*
2022 * If the PTE already maps a different
2023 * physical address, umap and pv_unlink.
2024 */
2025 old_pa = MMU_PTE_PA(*pte);
2026 if (pa != old_pa)
2027 pmap_remove_pte(pte);
2028 else {
2029 /*
2030 * Old PA and new PA are the same. No need to
2031 * relink the mapping within the PV list.
2032 */
2033 insert = FALSE;
2034
2035 /*
2036 * Save any mod/ref bits on the PTE.
2037 */
2038 pte->attr.raw &= (MMU_SHORT_PTE_USED|MMU_SHORT_PTE_M);
2039 }
2040 } else {
2041 pte->attr.raw = MMU_DT_INVALID;
2042 was_valid = FALSE;
2043 }
2044
2045 /*
2046 * Map the page. Being careful to preserve modified/referenced bits
2047 * on the PTE.
2048 */
2049 pte->attr.raw |= (pa | MMU_DT_PAGE);
2050
2051 if (!(prot & VM_PROT_WRITE)) /* If access should be read-only */
2052 pte->attr.raw |= MMU_SHORT_PTE_WP;
2053 if (flags & PMAP_NC)
2054 pte->attr.raw |= MMU_SHORT_PTE_CI;
2055 if (was_valid)
2056 TBIS(va);
2057
2058 /*
2059 * Insert the PTE into the PV system, if need be.
2060 */
2061 if (insert) {
2062 pv = pa2pv(pa);
2063 pvebase[pte_idx].pve_next = pv->pv_idx;
2064 pv->pv_idx = pte_idx;
2065 }
2066 }
2067
2068 void
2069 pmap_kenter_pa(va, pa, prot)
2070 vaddr_t va;
2071 paddr_t pa;
2072 vm_prot_t prot;
2073 {
2074 mmu_short_pte_t *pte;
2075
2076 /* This array is traditionally named "Sysmap" */
2077 pte = &kernCbase[(u_long)m68k_btop(va - KERNBASE)];
2078
2079 KASSERT(!MMU_VALID_DT(*pte));
2080 pte->attr.raw = MMU_DT_INVALID | MMU_DT_PAGE | (pa & MMU_PAGE_MASK);
2081 if (!(prot & VM_PROT_WRITE))
2082 pte->attr.raw |= MMU_SHORT_PTE_WP;
2083 }
2084
2085 void
2086 pmap_kremove(va, len)
2087 vaddr_t va;
2088 vsize_t len;
2089 {
2090 int idx, eidx;
2091
2092 #ifdef PMAP_DEBUG
2093 if ((sva & PGOFSET) || (eva & PGOFSET))
2094 panic("pmap_kremove: alignment");
2095 #endif
2096
2097 idx = m68k_btop(va - KERNBASE);
2098 eidx = m68k_btop(va + len - KERNBASE);
2099
2100 while (idx < eidx) {
2101 kernCbase[idx++].attr.raw = MMU_DT_INVALID;
2102 TBIS(va);
2103 va += NBPG;
2104 }
2105 }
2106
2107 /* pmap_map INTERNAL
2108 **
2109 * Map a contiguous range of physical memory into a contiguous range of
2110 * the kernel virtual address space.
2111 *
2112 * Used for device mappings and early mapping of the kernel text/data/bss.
2113 * Returns the first virtual address beyond the end of the range.
2114 */
2115 vaddr_t
2116 pmap_map(va, pa, endpa, prot)
2117 vaddr_t va;
2118 paddr_t pa;
2119 paddr_t endpa;
2120 int prot;
2121 {
2122 int sz;
2123
2124 sz = endpa - pa;
2125 do {
2126 pmap_enter_kernel(va, pa, prot);
2127 va += NBPG;
2128 pa += NBPG;
2129 sz -= NBPG;
2130 } while (sz > 0);
2131 pmap_update(pmap_kernel());
2132 return(va);
2133 }
2134
2135 /* pmap_protect INTERFACE
2136 **
2137 * Apply the given protection to the given virtual address range within
2138 * the given map.
2139 *
2140 * It is ok for the protection applied to be stronger than what is
2141 * specified. We use this to our advantage when the given map has no
2142 * mapping for the virtual address. By skipping a page when this
2143 * is discovered, we are effectively applying a protection of VM_PROT_NONE,
2144 * and therefore do not need to map the page just to apply a protection
2145 * code. Only pmap_enter() needs to create new mappings if they do not exist.
2146 *
2147 * XXX - This function could be speeded up by using pmap_stroll() for inital
2148 * setup, and then manual scrolling in the for() loop.
2149 */
2150 void
2151 pmap_protect(pmap, startva, endva, prot)
2152 pmap_t pmap;
2153 vaddr_t startva, endva;
2154 vm_prot_t prot;
2155 {
2156 boolean_t iscurpmap;
2157 int a_idx, b_idx, c_idx;
2158 a_tmgr_t *a_tbl;
2159 b_tmgr_t *b_tbl;
2160 c_tmgr_t *c_tbl;
2161 mmu_short_pte_t *pte;
2162
2163 if (pmap == pmap_kernel()) {
2164 pmap_protect_kernel(startva, endva, prot);
2165 return;
2166 }
2167
2168 /*
2169 * In this particular pmap implementation, there are only three
2170 * types of memory protection: 'all' (read/write/execute),
2171 * 'read-only' (read/execute) and 'none' (no mapping.)
2172 * It is not possible for us to treat 'executable' as a separate
2173 * protection type. Therefore, protection requests that seek to
2174 * remove execute permission while retaining read or write, and those
2175 * that make little sense (write-only for example) are ignored.
2176 */
2177 switch (prot) {
2178 case VM_PROT_NONE:
2179 /*
2180 * A request to apply the protection code of
2181 * 'VM_PROT_NONE' is a synonym for pmap_remove().
2182 */
2183 pmap_remove(pmap, startva, endva);
2184 return;
2185 case VM_PROT_EXECUTE:
2186 case VM_PROT_READ:
2187 case VM_PROT_READ|VM_PROT_EXECUTE:
2188 /* continue */
2189 break;
2190 case VM_PROT_WRITE:
2191 case VM_PROT_WRITE|VM_PROT_READ:
2192 case VM_PROT_WRITE|VM_PROT_EXECUTE:
2193 case VM_PROT_ALL:
2194 /* None of these should happen in a sane system. */
2195 return;
2196 }
2197
2198 /*
2199 * If the pmap has no A table, it has no mappings and therefore
2200 * there is nothing to protect.
2201 */
2202 if ((a_tbl = pmap->pm_a_tmgr) == NULL)
2203 return;
2204
2205 a_idx = MMU_TIA(startva);
2206 b_idx = MMU_TIB(startva);
2207 c_idx = MMU_TIC(startva);
2208 b_tbl = (b_tmgr_t *) c_tbl = NULL;
2209
2210 iscurpmap = (pmap == current_pmap());
2211 while (startva < endva) {
2212 if (b_tbl || MMU_VALID_DT(a_tbl->at_dtbl[a_idx])) {
2213 if (b_tbl == NULL) {
2214 b_tbl = (b_tmgr_t *) a_tbl->at_dtbl[a_idx].addr.raw;
2215 b_tbl = mmu_ptov((vaddr_t)b_tbl);
2216 b_tbl = mmuB2tmgr((mmu_short_dte_t *)b_tbl);
2217 }
2218 if (c_tbl || MMU_VALID_DT(b_tbl->bt_dtbl[b_idx])) {
2219 if (c_tbl == NULL) {
2220 c_tbl = (c_tmgr_t *) MMU_DTE_PA(b_tbl->bt_dtbl[b_idx]);
2221 c_tbl = mmu_ptov((vaddr_t)c_tbl);
2222 c_tbl = mmuC2tmgr((mmu_short_pte_t *)c_tbl);
2223 }
2224 if (MMU_VALID_DT(c_tbl->ct_dtbl[c_idx])) {
2225 pte = &c_tbl->ct_dtbl[c_idx];
2226 /* make the mapping read-only */
2227 pte->attr.raw |= MMU_SHORT_PTE_WP;
2228 /*
2229 * If we just modified the current address space,
2230 * flush any translations for the modified page from
2231 * the translation cache and any data from it in the
2232 * data cache.
2233 */
2234 if (iscurpmap)
2235 TBIS(startva);
2236 }
2237 startva += NBPG;
2238
2239 if (++c_idx >= MMU_C_TBL_SIZE) { /* exceeded C table? */
2240 c_tbl = NULL;
2241 c_idx = 0;
2242 if (++b_idx >= MMU_B_TBL_SIZE) { /* exceeded B table? */
2243 b_tbl = NULL;
2244 b_idx = 0;
2245 }
2246 }
2247 } else { /* C table wasn't valid */
2248 c_tbl = NULL;
2249 c_idx = 0;
2250 startva += MMU_TIB_RANGE;
2251 if (++b_idx >= MMU_B_TBL_SIZE) { /* exceeded B table? */
2252 b_tbl = NULL;
2253 b_idx = 0;
2254 }
2255 } /* C table */
2256 } else { /* B table wasn't valid */
2257 b_tbl = NULL;
2258 b_idx = 0;
2259 startva += MMU_TIA_RANGE;
2260 a_idx++;
2261 } /* B table */
2262 }
2263 }
2264
2265 /* pmap_protect_kernel INTERNAL
2266 **
2267 * Apply the given protection code to a kernel address range.
2268 */
2269 void
2270 pmap_protect_kernel(startva, endva, prot)
2271 vaddr_t startva, endva;
2272 vm_prot_t prot;
2273 {
2274 vaddr_t va;
2275 mmu_short_pte_t *pte;
2276
2277 pte = &kernCbase[(unsigned long) m68k_btop(startva - KERNBASE)];
2278 for (va = startva; va < endva; va += NBPG, pte++) {
2279 if (MMU_VALID_DT(*pte)) {
2280 switch (prot) {
2281 case VM_PROT_ALL:
2282 break;
2283 case VM_PROT_EXECUTE:
2284 case VM_PROT_READ:
2285 case VM_PROT_READ|VM_PROT_EXECUTE:
2286 pte->attr.raw |= MMU_SHORT_PTE_WP;
2287 break;
2288 case VM_PROT_NONE:
2289 /* this is an alias for 'pmap_remove_kernel' */
2290 pmap_remove_pte(pte);
2291 break;
2292 default:
2293 break;
2294 }
2295 /*
2296 * since this is the kernel, immediately flush any cached
2297 * descriptors for this address.
2298 */
2299 TBIS(va);
2300 }
2301 }
2302 }
2303
2304 /* pmap_unwire INTERFACE
2305 **
2306 * Clear the wired attribute of the specified page.
2307 *
2308 * This function is called from vm_fault.c to unwire
2309 * a mapping.
2310 */
2311 void
2312 pmap_unwire(pmap, va)
2313 pmap_t pmap;
2314 vaddr_t va;
2315 {
2316 int a_idx, b_idx, c_idx;
2317 a_tmgr_t *a_tbl;
2318 b_tmgr_t *b_tbl;
2319 c_tmgr_t *c_tbl;
2320 mmu_short_pte_t *pte;
2321
2322 /* Kernel mappings always remain wired. */
2323 if (pmap == pmap_kernel())
2324 return;
2325
2326 /*
2327 * Walk through the tables. If the walk terminates without
2328 * a valid PTE then the address wasn't wired in the first place.
2329 * Return immediately.
2330 */
2331 if (pmap_stroll(pmap, va, &a_tbl, &b_tbl, &c_tbl, &pte, &a_idx,
2332 &b_idx, &c_idx) == FALSE)
2333 return;
2334
2335
2336 /* Is the PTE wired? If not, return. */
2337 if (!(pte->attr.raw & MMU_SHORT_PTE_WIRED))
2338 return;
2339
2340 /* Remove the wiring bit. */
2341 pte->attr.raw &= ~(MMU_SHORT_PTE_WIRED);
2342
2343 /*
2344 * Decrement the wired entry count in the C table.
2345 * If it reaches zero the following things happen:
2346 * 1. The table no longer has any wired entries and is considered
2347 * unwired.
2348 * 2. It is placed on the available queue.
2349 * 3. The parent table's wired entry count is decremented.
2350 * 4. If it reaches zero, this process repeats at step 1 and
2351 * stops at after reaching the A table.
2352 */
2353 if (--c_tbl->ct_wcnt == 0) {
2354 TAILQ_INSERT_TAIL(&c_pool, c_tbl, ct_link);
2355 if (--b_tbl->bt_wcnt == 0) {
2356 TAILQ_INSERT_TAIL(&b_pool, b_tbl, bt_link);
2357 if (--a_tbl->at_wcnt == 0) {
2358 TAILQ_INSERT_TAIL(&a_pool, a_tbl, at_link);
2359 }
2360 }
2361 }
2362 }
2363
2364 /* pmap_copy INTERFACE
2365 **
2366 * Copy the mappings of a range of addresses in one pmap, into
2367 * the destination address of another.
2368 *
2369 * This routine is advisory. Should we one day decide that MMU tables
2370 * may be shared by more than one pmap, this function should be used to
2371 * link them together. Until that day however, we do nothing.
2372 */
2373 void
2374 pmap_copy(pmap_a, pmap_b, dst, len, src)
2375 pmap_t pmap_a, pmap_b;
2376 vaddr_t dst;
2377 vsize_t len;
2378 vaddr_t src;
2379 {
2380 /* not implemented. */
2381 }
2382
2383 /* pmap_copy_page INTERFACE
2384 **
2385 * Copy the contents of one physical page into another.
2386 *
2387 * This function makes use of two virtual pages allocated in pmap_bootstrap()
2388 * to map the two specified physical pages into the kernel address space.
2389 *
2390 * Note: We could use the transparent translation registers to make the
2391 * mappings. If we do so, be sure to disable interrupts before using them.
2392 */
2393 void
2394 pmap_copy_page(srcpa, dstpa)
2395 paddr_t srcpa, dstpa;
2396 {
2397 vaddr_t srcva, dstva;
2398 int s;
2399
2400 srcva = tmp_vpages[0];
2401 dstva = tmp_vpages[1];
2402
2403 s = splvm();
2404 #ifdef DIAGNOSTIC
2405 if (tmp_vpages_inuse++)
2406 panic("pmap_copy_page: temporary vpages are in use.");
2407 #endif
2408
2409 /* Map pages as non-cacheable to avoid cache polution? */
2410 pmap_kenter_pa(srcva, srcpa, VM_PROT_READ);
2411 pmap_kenter_pa(dstva, dstpa, VM_PROT_READ|VM_PROT_WRITE);
2412
2413 /* Hand-optimized version of bcopy(src, dst, NBPG) */
2414 copypage((char *) srcva, (char *) dstva);
2415
2416 pmap_kremove(srcva, NBPG);
2417 pmap_kremove(dstva, NBPG);
2418
2419 #ifdef DIAGNOSTIC
2420 --tmp_vpages_inuse;
2421 #endif
2422 splx(s);
2423 }
2424
2425 /* pmap_zero_page INTERFACE
2426 **
2427 * Zero the contents of the specified physical page.
2428 *
2429 * Uses one of the virtual pages allocated in pmap_boostrap()
2430 * to map the specified page into the kernel address space.
2431 */
2432 void
2433 pmap_zero_page(dstpa)
2434 paddr_t dstpa;
2435 {
2436 vaddr_t dstva;
2437 int s;
2438
2439 dstva = tmp_vpages[1];
2440 s = splvm();
2441 #ifdef DIAGNOSTIC
2442 if (tmp_vpages_inuse++)
2443 panic("pmap_zero_page: temporary vpages are in use.");
2444 #endif
2445
2446 /* The comments in pmap_copy_page() above apply here also. */
2447 pmap_kenter_pa(dstva, dstpa, VM_PROT_READ|VM_PROT_WRITE);
2448
2449 /* Hand-optimized version of bzero(ptr, NBPG) */
2450 zeropage((char *) dstva);
2451
2452 pmap_kremove(dstva, NBPG);
2453 #ifdef DIAGNOSTIC
2454 --tmp_vpages_inuse;
2455 #endif
2456 splx(s);
2457 }
2458
2459 /* pmap_collect INTERFACE
2460 **
2461 * Called from the VM system when we are about to swap out
2462 * the process using this pmap. This should give up any
2463 * resources held here, including all its MMU tables.
2464 */
2465 void
2466 pmap_collect(pmap)
2467 pmap_t pmap;
2468 {
2469 /* XXX - todo... */
2470 }
2471
2472 /* pmap_create INTERFACE
2473 **
2474 * Create and return a pmap structure.
2475 */
2476 pmap_t
2477 pmap_create()
2478 {
2479 pmap_t pmap;
2480
2481 pmap = pool_get(&pmap_pmap_pool, PR_WAITOK);
2482 pmap_pinit(pmap);
2483 return pmap;
2484 }
2485
2486 /* pmap_pinit INTERNAL
2487 **
2488 * Initialize a pmap structure.
2489 */
2490 void
2491 pmap_pinit(pmap)
2492 pmap_t pmap;
2493 {
2494 memset(pmap, 0, sizeof(struct pmap));
2495 pmap->pm_a_tmgr = NULL;
2496 pmap->pm_a_phys = kernAphys;
2497 pmap->pm_refcount = 1;
2498 simple_lock_init(&pmap->pm_lock);
2499 }
2500
2501 /* pmap_release INTERFACE
2502 **
2503 * Release any resources held by the given pmap.
2504 *
2505 * This is the reverse analog to pmap_pinit. It does not
2506 * necessarily mean for the pmap structure to be deallocated,
2507 * as in pmap_destroy.
2508 */
2509 void
2510 pmap_release(pmap)
2511 pmap_t pmap;
2512 {
2513 /*
2514 * As long as the pmap contains no mappings,
2515 * which always should be the case whenever
2516 * this function is called, there really should
2517 * be nothing to do.
2518 */
2519 #ifdef PMAP_DEBUG
2520 if (pmap == pmap_kernel())
2521 panic("pmap_release: kernel pmap");
2522 #endif
2523 /*
2524 * XXX - If this pmap has an A table, give it back.
2525 * The pmap SHOULD be empty by now, and pmap_remove
2526 * should have already given back the A table...
2527 * However, I see: pmap->pm_a_tmgr->at_ecnt == 1
2528 * at this point, which means some mapping was not
2529 * removed when it should have been. -gwr
2530 */
2531 if (pmap->pm_a_tmgr != NULL) {
2532 /* First make sure we are not using it! */
2533 if (kernel_crp.rp_addr == pmap->pm_a_phys) {
2534 kernel_crp.rp_addr = kernAphys;
2535 loadcrp(&kernel_crp);
2536 }
2537 #ifdef PMAP_DEBUG /* XXX - todo! */
2538 /* XXX - Now complain... */
2539 printf("pmap_release: still have table\n");
2540 Debugger();
2541 #endif
2542 free_a_table(pmap->pm_a_tmgr, TRUE);
2543 pmap->pm_a_tmgr = NULL;
2544 pmap->pm_a_phys = kernAphys;
2545 }
2546 }
2547
2548 /* pmap_reference INTERFACE
2549 **
2550 * Increment the reference count of a pmap.
2551 */
2552 void
2553 pmap_reference(pmap)
2554 pmap_t pmap;
2555 {
2556 pmap_lock(pmap);
2557 pmap_add_ref(pmap);
2558 pmap_unlock(pmap);
2559 }
2560
2561 /* pmap_dereference INTERNAL
2562 **
2563 * Decrease the reference count on the given pmap
2564 * by one and return the current count.
2565 */
2566 int
2567 pmap_dereference(pmap)
2568 pmap_t pmap;
2569 {
2570 int rtn;
2571
2572 pmap_lock(pmap);
2573 rtn = pmap_del_ref(pmap);
2574 pmap_unlock(pmap);
2575
2576 return rtn;
2577 }
2578
2579 /* pmap_destroy INTERFACE
2580 **
2581 * Decrement a pmap's reference count and delete
2582 * the pmap if it becomes zero. Will be called
2583 * only after all mappings have been removed.
2584 */
2585 void
2586 pmap_destroy(pmap)
2587 pmap_t pmap;
2588 {
2589 if (pmap_dereference(pmap) == 0) {
2590 pmap_release(pmap);
2591 pool_put(&pmap_pmap_pool, pmap);
2592 }
2593 }
2594
2595 /* pmap_is_referenced INTERFACE
2596 **
2597 * Determine if the given physical page has been
2598 * referenced (read from [or written to.])
2599 */
2600 boolean_t
2601 pmap_is_referenced(pg)
2602 struct vm_page *pg;
2603 {
2604 paddr_t pa = VM_PAGE_TO_PHYS(pg);
2605 pv_t *pv;
2606 int idx;
2607
2608 /*
2609 * Check the flags on the pv head. If they are set,
2610 * return immediately. Otherwise a search must be done.
2611 */
2612
2613 pv = pa2pv(pa);
2614 if (pv->pv_flags & PV_FLAGS_USED)
2615 return TRUE;
2616
2617 /*
2618 * Search through all pv elements pointing
2619 * to this page and query their reference bits
2620 */
2621
2622 for (idx = pv->pv_idx; idx != PVE_EOL; idx = pvebase[idx].pve_next) {
2623 if (MMU_PTE_USED(kernCbase[idx])) {
2624 return TRUE;
2625 }
2626 }
2627 return FALSE;
2628 }
2629
2630 /* pmap_is_modified INTERFACE
2631 **
2632 * Determine if the given physical page has been
2633 * modified (written to.)
2634 */
2635 boolean_t
2636 pmap_is_modified(pg)
2637 struct vm_page *pg;
2638 {
2639 paddr_t pa = VM_PAGE_TO_PHYS(pg);
2640 pv_t *pv;
2641 int idx;
2642
2643 /* see comments in pmap_is_referenced() */
2644 pv = pa2pv(pa);
2645 if (pv->pv_flags & PV_FLAGS_MDFY)
2646 return TRUE;
2647
2648 for (idx = pv->pv_idx;
2649 idx != PVE_EOL;
2650 idx = pvebase[idx].pve_next) {
2651
2652 if (MMU_PTE_MODIFIED(kernCbase[idx])) {
2653 return TRUE;
2654 }
2655 }
2656
2657 return FALSE;
2658 }
2659
2660 /* pmap_page_protect INTERFACE
2661 **
2662 * Applies the given protection to all mappings to the given
2663 * physical page.
2664 */
2665 void
2666 pmap_page_protect(pg, prot)
2667 struct vm_page *pg;
2668 vm_prot_t prot;
2669 {
2670 paddr_t pa = VM_PAGE_TO_PHYS(pg);
2671 pv_t *pv;
2672 int idx;
2673 vaddr_t va;
2674 struct mmu_short_pte_struct *pte;
2675 c_tmgr_t *c_tbl;
2676 pmap_t pmap, curpmap;
2677
2678 curpmap = current_pmap();
2679 pv = pa2pv(pa);
2680
2681 for (idx = pv->pv_idx; idx != PVE_EOL; idx = pvebase[idx].pve_next) {
2682 pte = &kernCbase[idx];
2683 switch (prot) {
2684 case VM_PROT_ALL:
2685 /* do nothing */
2686 break;
2687 case VM_PROT_EXECUTE:
2688 case VM_PROT_READ:
2689 case VM_PROT_READ|VM_PROT_EXECUTE:
2690 /*
2691 * Determine the virtual address mapped by
2692 * the PTE and flush ATC entries if necessary.
2693 */
2694 va = pmap_get_pteinfo(idx, &pmap, &c_tbl);
2695 pte->attr.raw |= MMU_SHORT_PTE_WP;
2696 if (pmap == curpmap || pmap == pmap_kernel())
2697 TBIS(va);
2698 break;
2699 case VM_PROT_NONE:
2700 /* Save the mod/ref bits. */
2701 pv->pv_flags |= pte->attr.raw;
2702 /* Invalidate the PTE. */
2703 pte->attr.raw = MMU_DT_INVALID;
2704
2705 /*
2706 * Update table counts. And flush ATC entries
2707 * if necessary.
2708 */
2709 va = pmap_get_pteinfo(idx, &pmap, &c_tbl);
2710
2711 /*
2712 * If the PTE belongs to the kernel map,
2713 * be sure to flush the page it maps.
2714 */
2715 if (pmap == pmap_kernel()) {
2716 TBIS(va);
2717 } else {
2718 /*
2719 * The PTE belongs to a user map.
2720 * update the entry count in the C
2721 * table to which it belongs and flush
2722 * the ATC if the mapping belongs to
2723 * the current pmap.
2724 */
2725 c_tbl->ct_ecnt--;
2726 if (pmap == curpmap)
2727 TBIS(va);
2728 }
2729 break;
2730 default:
2731 break;
2732 }
2733 }
2734
2735 /*
2736 * If the protection code indicates that all mappings to the page
2737 * be removed, truncate the PV list to zero entries.
2738 */
2739 if (prot == VM_PROT_NONE)
2740 pv->pv_idx = PVE_EOL;
2741 }
2742
2743 /* pmap_get_pteinfo INTERNAL
2744 **
2745 * Called internally to find the pmap and virtual address within that
2746 * map to which the pte at the given index maps. Also includes the PTE's C
2747 * table manager.
2748 *
2749 * Returns the pmap in the argument provided, and the virtual address
2750 * by return value.
2751 */
2752 vaddr_t
2753 pmap_get_pteinfo(idx, pmap, tbl)
2754 u_int idx;
2755 pmap_t *pmap;
2756 c_tmgr_t **tbl;
2757 {
2758 vaddr_t va = 0;
2759
2760 /*
2761 * Determine if the PTE is a kernel PTE or a user PTE.
2762 */
2763 if (idx >= NUM_KERN_PTES) {
2764 /*
2765 * The PTE belongs to a user mapping.
2766 */
2767 /* XXX: Would like an inline for this to validate idx... */
2768 *tbl = &Ctmgrbase[(idx - NUM_KERN_PTES) / MMU_C_TBL_SIZE];
2769
2770 *pmap = (*tbl)->ct_pmap;
2771 /*
2772 * To find the va to which the PTE maps, we first take
2773 * the table's base virtual address mapping which is stored
2774 * in ct_va. We then increment this address by a page for
2775 * every slot skipped until we reach the PTE.
2776 */
2777 va = (*tbl)->ct_va;
2778 va += m68k_ptob(idx % MMU_C_TBL_SIZE);
2779 } else {
2780 /*
2781 * The PTE belongs to the kernel map.
2782 */
2783 *pmap = pmap_kernel();
2784
2785 va = m68k_ptob(idx);
2786 va += KERNBASE;
2787 }
2788
2789 return va;
2790 }
2791
2792 /* pmap_clear_modify INTERFACE
2793 **
2794 * Clear the modification bit on the page at the specified
2795 * physical address.
2796 *
2797 */
2798 boolean_t
2799 pmap_clear_modify(pg)
2800 struct vm_page *pg;
2801 {
2802 paddr_t pa = VM_PAGE_TO_PHYS(pg);
2803 boolean_t rv;
2804
2805 rv = pmap_is_modified(pg);
2806 pmap_clear_pv(pa, PV_FLAGS_MDFY);
2807 return rv;
2808 }
2809
2810 /* pmap_clear_reference INTERFACE
2811 **
2812 * Clear the referenced bit on the page at the specified
2813 * physical address.
2814 */
2815 boolean_t
2816 pmap_clear_reference(pg)
2817 struct vm_page *pg;
2818 {
2819 paddr_t pa = VM_PAGE_TO_PHYS(pg);
2820 boolean_t rv;
2821
2822 rv = pmap_is_referenced(pg);
2823 pmap_clear_pv(pa, PV_FLAGS_USED);
2824 return rv;
2825 }
2826
2827 /* pmap_clear_pv INTERNAL
2828 **
2829 * Clears the specified flag from the specified physical address.
2830 * (Used by pmap_clear_modify() and pmap_clear_reference().)
2831 *
2832 * Flag is one of:
2833 * PV_FLAGS_MDFY - Page modified bit.
2834 * PV_FLAGS_USED - Page used (referenced) bit.
2835 *
2836 * This routine must not only clear the flag on the pv list
2837 * head. It must also clear the bit on every pte in the pv
2838 * list associated with the address.
2839 */
2840 void
2841 pmap_clear_pv(pa, flag)
2842 paddr_t pa;
2843 int flag;
2844 {
2845 pv_t *pv;
2846 int idx;
2847 vaddr_t va;
2848 pmap_t pmap;
2849 mmu_short_pte_t *pte;
2850 c_tmgr_t *c_tbl;
2851
2852 pv = pa2pv(pa);
2853 pv->pv_flags &= ~(flag);
2854 for (idx = pv->pv_idx; idx != PVE_EOL; idx = pvebase[idx].pve_next) {
2855 pte = &kernCbase[idx];
2856 pte->attr.raw &= ~(flag);
2857
2858 /*
2859 * The MC68030 MMU will not set the modified or
2860 * referenced bits on any MMU tables for which it has
2861 * a cached descriptor with its modify bit set. To insure
2862 * that it will modify these bits on the PTE during the next
2863 * time it is written to or read from, we must flush it from
2864 * the ATC.
2865 *
2866 * Ordinarily it is only necessary to flush the descriptor
2867 * if it is used in the current address space. But since I
2868 * am not sure that there will always be a notion of
2869 * 'the current address space' when this function is called,
2870 * I will skip the test and always flush the address. It
2871 * does no harm.
2872 */
2873
2874 va = pmap_get_pteinfo(idx, &pmap, &c_tbl);
2875 TBIS(va);
2876 }
2877 }
2878
2879 /* pmap_extract INTERFACE
2880 **
2881 * Return the physical address mapped by the virtual address
2882 * in the specified pmap.
2883 *
2884 * Note: this function should also apply an exclusive lock
2885 * on the pmap system during its duration.
2886 */
2887 boolean_t
2888 pmap_extract(pmap, va, pap)
2889 pmap_t pmap;
2890 vaddr_t va;
2891 paddr_t *pap;
2892 {
2893 int a_idx, b_idx, pte_idx;
2894 a_tmgr_t *a_tbl;
2895 b_tmgr_t *b_tbl;
2896 c_tmgr_t *c_tbl;
2897 mmu_short_pte_t *c_pte;
2898
2899 if (pmap == pmap_kernel())
2900 return pmap_extract_kernel(va, pap);
2901
2902 if (pmap_stroll(pmap, va, &a_tbl, &b_tbl, &c_tbl,
2903 &c_pte, &a_idx, &b_idx, &pte_idx) == FALSE)
2904 return FALSE;
2905
2906 if (!MMU_VALID_DT(*c_pte))
2907 return FALSE;
2908
2909 if (pap != NULL)
2910 *pap = MMU_PTE_PA(*c_pte);
2911 return (TRUE);
2912 }
2913
2914 /* pmap_extract_kernel INTERNAL
2915 **
2916 * Extract a translation from the kernel address space.
2917 */
2918 boolean_t
2919 pmap_extract_kernel(va, pap)
2920 vaddr_t va;
2921 paddr_t *pap;
2922 {
2923 mmu_short_pte_t *pte;
2924
2925 pte = &kernCbase[(u_int) m68k_btop(va - KERNBASE)];
2926 if (!MMU_VALID_DT(*pte))
2927 return (FALSE);
2928 if (pap != NULL)
2929 *pap = MMU_PTE_PA(*pte);
2930 return (TRUE);
2931 }
2932
2933 /* pmap_remove_kernel INTERNAL
2934 **
2935 * Remove the mapping of a range of virtual addresses from the kernel map.
2936 * The arguments are already page-aligned.
2937 */
2938 void
2939 pmap_remove_kernel(sva, eva)
2940 vaddr_t sva;
2941 vaddr_t eva;
2942 {
2943 int idx, eidx;
2944
2945 #ifdef PMAP_DEBUG
2946 if ((sva & PGOFSET) || (eva & PGOFSET))
2947 panic("pmap_remove_kernel: alignment");
2948 #endif
2949
2950 idx = m68k_btop(sva - KERNBASE);
2951 eidx = m68k_btop(eva - KERNBASE);
2952
2953 while (idx < eidx) {
2954 pmap_remove_pte(&kernCbase[idx++]);
2955 TBIS(sva);
2956 sva += NBPG;
2957 }
2958 }
2959
2960 /* pmap_remove INTERFACE
2961 **
2962 * Remove the mapping of a range of virtual addresses from the given pmap.
2963 *
2964 * If the range contains any wired entries, this function will probably create
2965 * disaster.
2966 */
2967 void
2968 pmap_remove(pmap, start, end)
2969 pmap_t pmap;
2970 vaddr_t start;
2971 vaddr_t end;
2972 {
2973
2974 if (pmap == pmap_kernel()) {
2975 pmap_remove_kernel(start, end);
2976 return;
2977 }
2978
2979 /*
2980 * If the pmap doesn't have an A table of its own, it has no mappings
2981 * that can be removed.
2982 */
2983 if (pmap->pm_a_tmgr == NULL)
2984 return;
2985
2986 /*
2987 * Remove the specified range from the pmap. If the function
2988 * returns true, the operation removed all the valid mappings
2989 * in the pmap and freed its A table. If this happened to the
2990 * currently loaded pmap, the MMU root pointer must be reloaded
2991 * with the default 'kernel' map.
2992 */
2993 if (pmap_remove_a(pmap->pm_a_tmgr, start, end)) {
2994 if (kernel_crp.rp_addr == pmap->pm_a_phys) {
2995 kernel_crp.rp_addr = kernAphys;
2996 loadcrp(&kernel_crp);
2997 /* will do TLB flush below */
2998 }
2999 pmap->pm_a_tmgr = NULL;
3000 pmap->pm_a_phys = kernAphys;
3001 }
3002
3003 /*
3004 * If we just modified the current address space,
3005 * make sure to flush the MMU cache.
3006 *
3007 * XXX - this could be an unecessarily large flush.
3008 * XXX - Could decide, based on the size of the VA range
3009 * to be removed, whether to flush "by pages" or "all".
3010 */
3011 if (pmap == current_pmap())
3012 TBIAU();
3013 }
3014
3015 /* pmap_remove_a INTERNAL
3016 **
3017 * This is function number one in a set of three that removes a range
3018 * of memory in the most efficient manner by removing the highest possible
3019 * tables from the memory space. This particular function attempts to remove
3020 * as many B tables as it can, delegating the remaining fragmented ranges to
3021 * pmap_remove_b().
3022 *
3023 * If the removal operation results in an empty A table, the function returns
3024 * TRUE.
3025 *
3026 * It's ugly but will do for now.
3027 */
3028 boolean_t
3029 pmap_remove_a(a_tbl, start, end)
3030 a_tmgr_t *a_tbl;
3031 vaddr_t start;
3032 vaddr_t end;
3033 {
3034 boolean_t empty;
3035 int idx;
3036 vaddr_t nstart, nend;
3037 b_tmgr_t *b_tbl;
3038 mmu_long_dte_t *a_dte;
3039 mmu_short_dte_t *b_dte;
3040
3041 /*
3042 * The following code works with what I call a 'granularity
3043 * reduction algorithim'. A range of addresses will always have
3044 * the following properties, which are classified according to
3045 * how the range relates to the size of the current granularity
3046 * - an A table entry:
3047 *
3048 * 1 2 3 4
3049 * -+---+---+---+---+---+---+---+-
3050 * -+---+---+---+---+---+---+---+-
3051 *
3052 * A range will always start on a granularity boundary, illustrated
3053 * by '+' signs in the table above, or it will start at some point
3054 * inbetween a granularity boundary, as illustrated by point 1.
3055 * The first step in removing a range of addresses is to remove the
3056 * range between 1 and 2, the nearest granularity boundary. This
3057 * job is handled by the section of code governed by the
3058 * 'if (start < nstart)' statement.
3059 *
3060 * A range will always encompass zero or more intergral granules,
3061 * illustrated by points 2 and 3. Integral granules are easy to
3062 * remove. The removal of these granules is the second step, and
3063 * is handled by the code block 'if (nstart < nend)'.
3064 *
3065 * Lastly, a range will always end on a granularity boundary,
3066 * ill. by point 3, or it will fall just beyond one, ill. by point
3067 * 4. The last step involves removing this range and is handled by
3068 * the code block 'if (nend < end)'.
3069 */
3070 nstart = MMU_ROUND_UP_A(start);
3071 nend = MMU_ROUND_A(end);
3072
3073 if (start < nstart) {
3074 /*
3075 * This block is executed if the range starts between
3076 * a granularity boundary.
3077 *
3078 * First find the DTE which is responsible for mapping
3079 * the start of the range.
3080 */
3081 idx = MMU_TIA(start);
3082 a_dte = &a_tbl->at_dtbl[idx];
3083
3084 /*
3085 * If the DTE is valid then delegate the removal of the sub
3086 * range to pmap_remove_b(), which can remove addresses at
3087 * a finer granularity.
3088 */
3089 if (MMU_VALID_DT(*a_dte)) {
3090 b_dte = mmu_ptov(a_dte->addr.raw);
3091 b_tbl = mmuB2tmgr(b_dte);
3092
3093 /*
3094 * The sub range to be removed starts at the start
3095 * of the full range we were asked to remove, and ends
3096 * at the greater of:
3097 * 1. The end of the full range, -or-
3098 * 2. The end of the full range, rounded down to the
3099 * nearest granularity boundary.
3100 */
3101 if (end < nstart)
3102 empty = pmap_remove_b(b_tbl, start, end);
3103 else
3104 empty = pmap_remove_b(b_tbl, start, nstart);
3105
3106 /*
3107 * If the removal resulted in an empty B table,
3108 * invalidate the DTE that points to it and decrement
3109 * the valid entry count of the A table.
3110 */
3111 if (empty) {
3112 a_dte->attr.raw = MMU_DT_INVALID;
3113 a_tbl->at_ecnt--;
3114 }
3115 }
3116 /*
3117 * If the DTE is invalid, the address range is already non-
3118 * existent and can simply be skipped.
3119 */
3120 }
3121 if (nstart < nend) {
3122 /*
3123 * This block is executed if the range spans a whole number
3124 * multiple of granules (A table entries.)
3125 *
3126 * First find the DTE which is responsible for mapping
3127 * the start of the first granule involved.
3128 */
3129 idx = MMU_TIA(nstart);
3130 a_dte = &a_tbl->at_dtbl[idx];
3131
3132 /*
3133 * Remove entire sub-granules (B tables) one at a time,
3134 * until reaching the end of the range.
3135 */
3136 for (; nstart < nend; a_dte++, nstart += MMU_TIA_RANGE)
3137 if (MMU_VALID_DT(*a_dte)) {
3138 /*
3139 * Find the B table manager for the
3140 * entry and free it.
3141 */
3142 b_dte = mmu_ptov(a_dte->addr.raw);
3143 b_tbl = mmuB2tmgr(b_dte);
3144 free_b_table(b_tbl, TRUE);
3145
3146 /*
3147 * Invalidate the DTE that points to the
3148 * B table and decrement the valid entry
3149 * count of the A table.
3150 */
3151 a_dte->attr.raw = MMU_DT_INVALID;
3152 a_tbl->at_ecnt--;
3153 }
3154 }
3155 if (nend < end) {
3156 /*
3157 * This block is executed if the range ends beyond a
3158 * granularity boundary.
3159 *
3160 * First find the DTE which is responsible for mapping
3161 * the start of the nearest (rounded down) granularity
3162 * boundary.
3163 */
3164 idx = MMU_TIA(nend);
3165 a_dte = &a_tbl->at_dtbl[idx];
3166
3167 /*
3168 * If the DTE is valid then delegate the removal of the sub
3169 * range to pmap_remove_b(), which can remove addresses at
3170 * a finer granularity.
3171 */
3172 if (MMU_VALID_DT(*a_dte)) {
3173 /*
3174 * Find the B table manager for the entry
3175 * and hand it to pmap_remove_b() along with
3176 * the sub range.
3177 */
3178 b_dte = mmu_ptov(a_dte->addr.raw);
3179 b_tbl = mmuB2tmgr(b_dte);
3180
3181 empty = pmap_remove_b(b_tbl, nend, end);
3182
3183 /*
3184 * If the removal resulted in an empty B table,
3185 * invalidate the DTE that points to it and decrement
3186 * the valid entry count of the A table.
3187 */
3188 if (empty) {
3189 a_dte->attr.raw = MMU_DT_INVALID;
3190 a_tbl->at_ecnt--;
3191 }
3192 }
3193 }
3194
3195 /*
3196 * If there are no more entries in the A table, release it
3197 * back to the available pool and return TRUE.
3198 */
3199 if (a_tbl->at_ecnt == 0) {
3200 a_tbl->at_parent = NULL;
3201 TAILQ_REMOVE(&a_pool, a_tbl, at_link);
3202 TAILQ_INSERT_HEAD(&a_pool, a_tbl, at_link);
3203 empty = TRUE;
3204 } else {
3205 empty = FALSE;
3206 }
3207
3208 return empty;
3209 }
3210
3211 /* pmap_remove_b INTERNAL
3212 **
3213 * Remove a range of addresses from an address space, trying to remove entire
3214 * C tables if possible.
3215 *
3216 * If the operation results in an empty B table, the function returns TRUE.
3217 */
3218 boolean_t
3219 pmap_remove_b(b_tbl, start, end)
3220 b_tmgr_t *b_tbl;
3221 vaddr_t start;
3222 vaddr_t end;
3223 {
3224 boolean_t empty;
3225 int idx;
3226 vaddr_t nstart, nend, rstart;
3227 c_tmgr_t *c_tbl;
3228 mmu_short_dte_t *b_dte;
3229 mmu_short_pte_t *c_dte;
3230
3231
3232 nstart = MMU_ROUND_UP_B(start);
3233 nend = MMU_ROUND_B(end);
3234
3235 if (start < nstart) {
3236 idx = MMU_TIB(start);
3237 b_dte = &b_tbl->bt_dtbl[idx];
3238 if (MMU_VALID_DT(*b_dte)) {
3239 c_dte = mmu_ptov(MMU_DTE_PA(*b_dte));
3240 c_tbl = mmuC2tmgr(c_dte);
3241 if (end < nstart)
3242 empty = pmap_remove_c(c_tbl, start, end);
3243 else
3244 empty = pmap_remove_c(c_tbl, start, nstart);
3245 if (empty) {
3246 b_dte->attr.raw = MMU_DT_INVALID;
3247 b_tbl->bt_ecnt--;
3248 }
3249 }
3250 }
3251 if (nstart < nend) {
3252 idx = MMU_TIB(nstart);
3253 b_dte = &b_tbl->bt_dtbl[idx];
3254 rstart = nstart;
3255 while (rstart < nend) {
3256 if (MMU_VALID_DT(*b_dte)) {
3257 c_dte = mmu_ptov(MMU_DTE_PA(*b_dte));
3258 c_tbl = mmuC2tmgr(c_dte);
3259 free_c_table(c_tbl, TRUE);
3260 b_dte->attr.raw = MMU_DT_INVALID;
3261 b_tbl->bt_ecnt--;
3262 }
3263 b_dte++;
3264 rstart += MMU_TIB_RANGE;
3265 }
3266 }
3267 if (nend < end) {
3268 idx = MMU_TIB(nend);
3269 b_dte = &b_tbl->bt_dtbl[idx];
3270 if (MMU_VALID_DT(*b_dte)) {
3271 c_dte = mmu_ptov(MMU_DTE_PA(*b_dte));
3272 c_tbl = mmuC2tmgr(c_dte);
3273 empty = pmap_remove_c(c_tbl, nend, end);
3274 if (empty) {
3275 b_dte->attr.raw = MMU_DT_INVALID;
3276 b_tbl->bt_ecnt--;
3277 }
3278 }
3279 }
3280
3281 if (b_tbl->bt_ecnt == 0) {
3282 b_tbl->bt_parent = NULL;
3283 TAILQ_REMOVE(&b_pool, b_tbl, bt_link);
3284 TAILQ_INSERT_HEAD(&b_pool, b_tbl, bt_link);
3285 empty = TRUE;
3286 } else {
3287 empty = FALSE;
3288 }
3289
3290 return empty;
3291 }
3292
3293 /* pmap_remove_c INTERNAL
3294 **
3295 * Remove a range of addresses from the given C table.
3296 */
3297 boolean_t
3298 pmap_remove_c(c_tbl, start, end)
3299 c_tmgr_t *c_tbl;
3300 vaddr_t start;
3301 vaddr_t end;
3302 {
3303 boolean_t empty;
3304 int idx;
3305 mmu_short_pte_t *c_pte;
3306
3307 idx = MMU_TIC(start);
3308 c_pte = &c_tbl->ct_dtbl[idx];
3309 for (;start < end; start += MMU_PAGE_SIZE, c_pte++) {
3310 if (MMU_VALID_DT(*c_pte)) {
3311 pmap_remove_pte(c_pte);
3312 c_tbl->ct_ecnt--;
3313 }
3314 }
3315
3316 if (c_tbl->ct_ecnt == 0) {
3317 c_tbl->ct_parent = NULL;
3318 TAILQ_REMOVE(&c_pool, c_tbl, ct_link);
3319 TAILQ_INSERT_HEAD(&c_pool, c_tbl, ct_link);
3320 empty = TRUE;
3321 } else {
3322 empty = FALSE;
3323 }
3324
3325 return empty;
3326 }
3327
3328 /* is_managed INTERNAL
3329 **
3330 * Determine if the given physical address is managed by the PV system.
3331 * Note that this logic assumes that no one will ask for the status of
3332 * addresses which lie in-between the memory banks on the 3/80. If they
3333 * do so, it will falsely report that it is managed.
3334 *
3335 * Note: A "managed" address is one that was reported to the VM system as
3336 * a "usable page" during system startup. As such, the VM system expects the
3337 * pmap module to keep an accurate track of the useage of those pages.
3338 * Any page not given to the VM system at startup does not exist (as far as
3339 * the VM system is concerned) and is therefore "unmanaged." Examples are
3340 * those pages which belong to the ROM monitor and the memory allocated before
3341 * the VM system was started.
3342 */
3343 boolean_t
3344 is_managed(pa)
3345 paddr_t pa;
3346 {
3347 if (pa >= avail_start && pa < avail_end)
3348 return TRUE;
3349 else
3350 return FALSE;
3351 }
3352
3353 /* pmap_bootstrap_alloc INTERNAL
3354 **
3355 * Used internally for memory allocation at startup when malloc is not
3356 * available. This code will fail once it crosses the first memory
3357 * bank boundary on the 3/80. Hopefully by then however, the VM system
3358 * will be in charge of allocation.
3359 */
3360 void *
3361 pmap_bootstrap_alloc(size)
3362 int size;
3363 {
3364 void *rtn;
3365
3366 #ifdef PMAP_DEBUG
3367 if (bootstrap_alloc_enabled == FALSE) {
3368 mon_printf("pmap_bootstrap_alloc: disabled\n");
3369 sunmon_abort();
3370 }
3371 #endif
3372
3373 rtn = (void *) virtual_avail;
3374 virtual_avail += size;
3375
3376 #ifdef PMAP_DEBUG
3377 if (virtual_avail > virtual_contig_end) {
3378 mon_printf("pmap_bootstrap_alloc: out of mem\n");
3379 sunmon_abort();
3380 }
3381 #endif
3382
3383 return rtn;
3384 }
3385
3386 /* pmap_bootstap_aalign INTERNAL
3387 **
3388 * Used to insure that the next call to pmap_bootstrap_alloc() will
3389 * return a chunk of memory aligned to the specified size.
3390 *
3391 * Note: This function will only support alignment sizes that are powers
3392 * of two.
3393 */
3394 void
3395 pmap_bootstrap_aalign(size)
3396 int size;
3397 {
3398 int off;
3399
3400 off = virtual_avail & (size - 1);
3401 if (off) {
3402 (void) pmap_bootstrap_alloc(size - off);
3403 }
3404 }
3405
3406 /* pmap_pa_exists
3407 **
3408 * Used by the /dev/mem driver to see if a given PA is memory
3409 * that can be mapped. (The PA is not in a hole.)
3410 */
3411 int
3412 pmap_pa_exists(pa)
3413 paddr_t pa;
3414 {
3415 int i;
3416
3417 for (i = 0; i < SUN3X_NPHYS_RAM_SEGS; i++) {
3418 if ((pa >= avail_mem[i].pmem_start) &&
3419 (pa < avail_mem[i].pmem_end))
3420 return (1);
3421 if (avail_mem[i].pmem_next == NULL)
3422 break;
3423 }
3424 return (0);
3425 }
3426
3427 /* Called only from locore.s and pmap.c */
3428 void _pmap_switch __P((pmap_t pmap));
3429
3430 /*
3431 * _pmap_switch INTERNAL
3432 *
3433 * This is called by locore.s:cpu_switch() when it is
3434 * switching to a new process. Load new translations.
3435 * Note: done in-line by locore.s unless PMAP_DEBUG
3436 *
3437 * Note that we do NOT allocate a context here, but
3438 * share the "kernel only" context until we really
3439 * need our own context for user-space mappings in
3440 * pmap_enter_user(). [ s/context/mmu A table/ ]
3441 */
3442 void
3443 _pmap_switch(pmap)
3444 pmap_t pmap;
3445 {
3446 u_long rootpa;
3447
3448 /*
3449 * Only do reload/flush if we have to.
3450 * Note that if the old and new process
3451 * were BOTH using the "null" context,
3452 * then this will NOT flush the TLB.
3453 */
3454 rootpa = pmap->pm_a_phys;
3455 if (kernel_crp.rp_addr != rootpa) {
3456 DPRINT(("pmap_activate(%p)\n", pmap));
3457 kernel_crp.rp_addr = rootpa;
3458 loadcrp(&kernel_crp);
3459 TBIAU();
3460 }
3461 }
3462
3463 /*
3464 * Exported version of pmap_activate(). This is called from the
3465 * machine-independent VM code when a process is given a new pmap.
3466 * If (p == curlwp) do like cpu_switch would do; otherwise just
3467 * take this as notification that the process has a new pmap.
3468 */
3469 void
3470 pmap_activate(l)
3471 struct lwp *l;
3472 {
3473 if (l->l_proc == curproc) {
3474 _pmap_switch(l->l_proc->p_vmspace->vm_map.pmap);
3475 }
3476 }
3477
3478 /*
3479 * pmap_deactivate INTERFACE
3480 **
3481 * This is called to deactivate the specified process's address space.
3482 */
3483 void
3484 pmap_deactivate(l)
3485 struct lwp *l;
3486 {
3487 /* Nothing to do. */
3488 }
3489
3490 /*
3491 * Fill in the sun3x-specific part of the kernel core header
3492 * for dumpsys(). (See machdep.c for the rest.)
3493 */
3494 void
3495 pmap_kcore_hdr(sh)
3496 struct sun3x_kcore_hdr *sh;
3497 {
3498 u_long spa, len;
3499 int i;
3500
3501 sh->pg_frame = MMU_SHORT_PTE_BASEADDR;
3502 sh->pg_valid = MMU_DT_PAGE;
3503 sh->contig_end = virtual_contig_end;
3504 sh->kernCbase = (u_long)kernCbase;
3505 for (i = 0; i < SUN3X_NPHYS_RAM_SEGS; i++) {
3506 spa = avail_mem[i].pmem_start;
3507 spa = m68k_trunc_page(spa);
3508 len = avail_mem[i].pmem_end - spa;
3509 len = m68k_round_page(len);
3510 sh->ram_segs[i].start = spa;
3511 sh->ram_segs[i].size = len;
3512 }
3513 }
3514
3515
3516 /* pmap_virtual_space INTERFACE
3517 **
3518 * Return the current available range of virtual addresses in the
3519 * arguuments provided. Only really called once.
3520 */
3521 void
3522 pmap_virtual_space(vstart, vend)
3523 vaddr_t *vstart, *vend;
3524 {
3525 *vstart = virtual_avail;
3526 *vend = virtual_end;
3527 }
3528
3529 /*
3530 * Provide memory to the VM system.
3531 *
3532 * Assume avail_start is always in the
3533 * first segment as pmap_bootstrap does.
3534 */
3535 static void
3536 pmap_page_upload()
3537 {
3538 paddr_t a, b; /* memory range */
3539 int i;
3540
3541 /* Supply the memory in segments. */
3542 for (i = 0; i < SUN3X_NPHYS_RAM_SEGS; i++) {
3543 a = atop(avail_mem[i].pmem_start);
3544 b = atop(avail_mem[i].pmem_end);
3545 if (i == 0)
3546 a = atop(avail_start);
3547 if (avail_mem[i].pmem_end > avail_end)
3548 b = atop(avail_end);
3549
3550 uvm_page_physload(a, b, a, b, VM_FREELIST_DEFAULT);
3551
3552 if (avail_mem[i].pmem_next == NULL)
3553 break;
3554 }
3555 }
3556
3557 /* pmap_count INTERFACE
3558 **
3559 * Return the number of resident (valid) pages in the given pmap.
3560 *
3561 * Note: If this function is handed the kernel map, it will report
3562 * that it has no mappings. Hopefully the VM system won't ask for kernel
3563 * map statistics.
3564 */
3565 segsz_t
3566 pmap_count(pmap, type)
3567 pmap_t pmap;
3568 int type;
3569 {
3570 u_int count;
3571 int a_idx, b_idx;
3572 a_tmgr_t *a_tbl;
3573 b_tmgr_t *b_tbl;
3574 c_tmgr_t *c_tbl;
3575
3576 /*
3577 * If the pmap does not have its own A table manager, it has no
3578 * valid entires.
3579 */
3580 if (pmap->pm_a_tmgr == NULL)
3581 return 0;
3582
3583 a_tbl = pmap->pm_a_tmgr;
3584
3585 count = 0;
3586 for (a_idx = 0; a_idx < MMU_TIA(KERNBASE); a_idx++) {
3587 if (MMU_VALID_DT(a_tbl->at_dtbl[a_idx])) {
3588 b_tbl = mmuB2tmgr(mmu_ptov(a_tbl->at_dtbl[a_idx].addr.raw));
3589 for (b_idx = 0; b_idx < MMU_B_TBL_SIZE; b_idx++) {
3590 if (MMU_VALID_DT(b_tbl->bt_dtbl[b_idx])) {
3591 c_tbl = mmuC2tmgr(
3592 mmu_ptov(MMU_DTE_PA(b_tbl->bt_dtbl[b_idx])));
3593 if (type == 0)
3594 /*
3595 * A resident entry count has been requested.
3596 */
3597 count += c_tbl->ct_ecnt;
3598 else
3599 /*
3600 * A wired entry count has been requested.
3601 */
3602 count += c_tbl->ct_wcnt;
3603 }
3604 }
3605 }
3606 }
3607
3608 return count;
3609 }
3610
3611 /************************ SUN3 COMPATIBILITY ROUTINES ********************
3612 * The following routines are only used by DDB for tricky kernel text *
3613 * text operations in db_memrw.c. They are provided for sun3 *
3614 * compatibility. *
3615 *************************************************************************/
3616 /* get_pte INTERNAL
3617 **
3618 * Return the page descriptor the describes the kernel mapping
3619 * of the given virtual address.
3620 */
3621 extern u_long ptest_addr __P((u_long)); /* XXX: locore.s */
3622 u_int
3623 get_pte(va)
3624 vaddr_t va;
3625 {
3626 u_long pte_pa;
3627 mmu_short_pte_t *pte;
3628
3629 /* Get the physical address of the PTE */
3630 pte_pa = ptest_addr(va & ~PGOFSET);
3631
3632 /* Convert to a virtual address... */
3633 pte = (mmu_short_pte_t *) (KERNBASE + pte_pa);
3634
3635 /* Make sure it is in our level-C tables... */
3636 if ((pte < kernCbase) ||
3637 (pte >= &mmuCbase[NUM_USER_PTES]))
3638 return 0;
3639
3640 /* ... and just return its contents. */
3641 return (pte->attr.raw);
3642 }
3643
3644
3645 /* set_pte INTERNAL
3646 **
3647 * Set the page descriptor that describes the kernel mapping
3648 * of the given virtual address.
3649 */
3650 void
3651 set_pte(va, pte)
3652 vaddr_t va;
3653 u_int pte;
3654 {
3655 u_long idx;
3656
3657 if (va < KERNBASE)
3658 return;
3659
3660 idx = (unsigned long) m68k_btop(va - KERNBASE);
3661 kernCbase[idx].attr.raw = pte;
3662 TBIS(va);
3663 }
3664
3665 /*
3666 * Routine: pmap_procwr
3667 *
3668 * Function:
3669 * Synchronize caches corresponding to [addr, addr+len) in p.
3670 */
3671 void
3672 pmap_procwr(p, va, len)
3673 struct proc *p;
3674 vaddr_t va;
3675 size_t len;
3676 {
3677 (void)cachectl1(0x80000004, va, len, p);
3678 }
3679
3680
3681 #ifdef PMAP_DEBUG
3682 /************************** DEBUGGING ROUTINES **************************
3683 * The following routines are meant to be an aid to debugging the pmap *
3684 * system. They are callable from the DDB command line and should be *
3685 * prepared to be handed unstable or incomplete states of the system. *
3686 ************************************************************************/
3687
3688 /* pv_list
3689 **
3690 * List all pages found on the pv list for the given physical page.
3691 * To avoid endless loops, the listing will stop at the end of the list
3692 * or after 'n' entries - whichever comes first.
3693 */
3694 void
3695 pv_list(pa, n)
3696 paddr_t pa;
3697 int n;
3698 {
3699 int idx;
3700 vaddr_t va;
3701 pv_t *pv;
3702 c_tmgr_t *c_tbl;
3703 pmap_t pmap;
3704
3705 pv = pa2pv(pa);
3706 idx = pv->pv_idx;
3707 for (; idx != PVE_EOL && n > 0; idx = pvebase[idx].pve_next, n--) {
3708 va = pmap_get_pteinfo(idx, &pmap, &c_tbl);
3709 printf("idx %d, pmap 0x%x, va 0x%x, c_tbl %x\n",
3710 idx, (u_int) pmap, (u_int) va, (u_int) c_tbl);
3711 }
3712 }
3713 #endif /* PMAP_DEBUG */
3714
3715 #ifdef NOT_YET
3716 /* and maybe not ever */
3717 /************************** LOW-LEVEL ROUTINES **************************
3718 * These routines will eventually be re-written into assembly and placed*
3719 * in locore.s. They are here now as stubs so that the pmap module can *
3720 * be linked as a standalone user program for testing. *
3721 ************************************************************************/
3722 /* flush_atc_crp INTERNAL
3723 **
3724 * Flush all page descriptors derived from the given CPU Root Pointer
3725 * (CRP), or 'A' table as it is known here, from the 68851's automatic
3726 * cache.
3727 */
3728 void
3729 flush_atc_crp(a_tbl)
3730 {
3731 mmu_long_rp_t rp;
3732
3733 /* Create a temporary root table pointer that points to the
3734 * given A table.
3735 */
3736 rp.attr.raw = ~MMU_LONG_RP_LU;
3737 rp.addr.raw = (unsigned int) a_tbl;
3738
3739 mmu_pflushr(&rp);
3740 /* mmu_pflushr:
3741 * movel sp(4)@,a0
3742 * pflushr a0@
3743 * rts
3744 */
3745 }
3746 #endif /* NOT_YET */
3747