pmap.c revision 1.80 1 /* $NetBSD: pmap.c,v 1.80 2003/05/08 18:13:26 thorpej Exp $ */
2
3 /*-
4 * Copyright (c) 1996, 1997 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jeremy Cooper.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * XXX These comments aren't quite accurate. Need to change.
41 * The sun3x uses the MC68851 Memory Management Unit, which is built
42 * into the CPU. The 68851 maps virtual to physical addresses using
43 * a multi-level table lookup, which is stored in the very memory that
44 * it maps. The number of levels of lookup is configurable from one
45 * to four. In this implementation, we use three, named 'A' through 'C'.
46 *
47 * The MMU translates virtual addresses into physical addresses by
48 * traversing these tables in a proccess called a 'table walk'. The most
49 * significant 7 bits of the Virtual Address ('VA') being translated are
50 * used as an index into the level A table, whose base in physical memory
51 * is stored in a special MMU register, the 'CPU Root Pointer' or CRP. The
52 * address found at that index in the A table is used as the base
53 * address for the next table, the B table. The next six bits of the VA are
54 * used as an index into the B table, which in turn gives the base address
55 * of the third and final C table.
56 *
57 * The next six bits of the VA are used as an index into the C table to
58 * locate a Page Table Entry (PTE). The PTE is a physical address in memory
59 * to which the remaining 13 bits of the VA are added, producing the
60 * mapped physical address.
61 *
62 * To map the entire memory space in this manner would require 2114296 bytes
63 * of page tables per process - quite expensive. Instead we will
64 * allocate a fixed but considerably smaller space for the page tables at
65 * the time the VM system is initialized. When the pmap code is asked by
66 * the kernel to map a VA to a PA, it allocates tables as needed from this
67 * pool. When there are no more tables in the pool, tables are stolen
68 * from the oldest mapped entries in the tree. This is only possible
69 * because all memory mappings are stored in the kernel memory map
70 * structures, independent of the pmap structures. A VA which references
71 * one of these invalidated maps will cause a page fault. The kernel
72 * will determine that the page fault was caused by a task using a valid
73 * VA, but for some reason (which does not concern it), that address was
74 * not mapped. It will ask the pmap code to re-map the entry and then
75 * it will resume executing the faulting task.
76 *
77 * In this manner the most efficient use of the page table space is
78 * achieved. Tasks which do not execute often will have their tables
79 * stolen and reused by tasks which execute more frequently. The best
80 * size for the page table pool will probably be determined by
81 * experimentation.
82 *
83 * You read all of the comments so far. Good for you.
84 * Now go play!
85 */
86
87 /*** A Note About the 68851 Address Translation Cache
88 * The MC68851 has a 64 entry cache, called the Address Translation Cache
89 * or 'ATC'. This cache stores the most recently used page descriptors
90 * accessed by the MMU when it does translations. Using a marker called a
91 * 'task alias' the MMU can store the descriptors from 8 different table
92 * spaces concurrently. The task alias is associated with the base
93 * address of the level A table of that address space. When an address
94 * space is currently active (the CRP currently points to its A table)
95 * the only cached descriptors that will be obeyed are ones which have a
96 * matching task alias of the current space associated with them.
97 *
98 * Since the cache is always consulted before any table lookups are done,
99 * it is important that it accurately reflect the state of the MMU tables.
100 * Whenever a change has been made to a table that has been loaded into
101 * the MMU, the code must be sure to flush any cached entries that are
102 * affected by the change. These instances are documented in the code at
103 * various points.
104 */
105 /*** A Note About the Note About the 68851 Address Translation Cache
106 * 4 months into this code I discovered that the sun3x does not have
107 * a MC68851 chip. Instead, it has a version of this MMU that is part of the
108 * the 68030 CPU.
109 * All though it behaves very similarly to the 68851, it only has 1 task
110 * alias and a 22 entry cache. So sadly (or happily), the first paragraph
111 * of the previous note does not apply to the sun3x pmap.
112 */
113
114 #include "opt_ddb.h"
115
116 #include <sys/param.h>
117 #include <sys/systm.h>
118 #include <sys/proc.h>
119 #include <sys/malloc.h>
120 #include <sys/pool.h>
121 #include <sys/user.h>
122 #include <sys/queue.h>
123 #include <sys/kcore.h>
124
125 #include <uvm/uvm.h>
126
127 #include <machine/cpu.h>
128 #include <machine/kcore.h>
129 #include <machine/mon.h>
130 #include <machine/pmap.h>
131 #include <machine/pte.h>
132 #include <machine/vmparam.h>
133 #include <m68k/cacheops.h>
134
135 #include <sun3/sun3/cache.h>
136 #include <sun3/sun3/machdep.h>
137
138 #include "pmap_pvt.h"
139
140 /* XXX - What headers declare these? */
141 extern struct pcb *curpcb;
142 extern int physmem;
143
144 /* Defined in locore.s */
145 extern char kernel_text[];
146
147 /* Defined by the linker */
148 extern char etext[], edata[], end[];
149 extern char *esym; /* DDB */
150
151 /*************************** DEBUGGING DEFINITIONS ***********************
152 * Macros, preprocessor defines and variables used in debugging can make *
153 * code hard to read. Anything used exclusively for debugging purposes *
154 * is defined here to avoid having such mess scattered around the file. *
155 *************************************************************************/
156 #ifdef PMAP_DEBUG
157 /*
158 * To aid the debugging process, macros should be expanded into smaller steps
159 * that accomplish the same goal, yet provide convenient places for placing
160 * breakpoints. When this code is compiled with PMAP_DEBUG mode defined, the
161 * 'INLINE' keyword is defined to an empty string. This way, any function
162 * defined to be a 'static INLINE' will become 'outlined' and compiled as
163 * a separate function, which is much easier to debug.
164 */
165 #define INLINE /* nothing */
166
167 /*
168 * It is sometimes convenient to watch the activity of a particular table
169 * in the system. The following variables are used for that purpose.
170 */
171 a_tmgr_t *pmap_watch_atbl = 0;
172 b_tmgr_t *pmap_watch_btbl = 0;
173 c_tmgr_t *pmap_watch_ctbl = 0;
174
175 int pmap_debug = 0;
176 #define DPRINT(args) if (pmap_debug) printf args
177
178 #else /********** Stuff below is defined if NOT debugging **************/
179
180 #define INLINE inline
181 #define DPRINT(args) /* nada */
182
183 #endif /* PMAP_DEBUG */
184 /*********************** END OF DEBUGGING DEFINITIONS ********************/
185
186 /*** Management Structure - Memory Layout
187 * For every MMU table in the sun3x pmap system there must be a way to
188 * manage it; we must know which process is using it, what other tables
189 * depend on it, and whether or not it contains any locked pages. This
190 * is solved by the creation of 'table management' or 'tmgr'
191 * structures. One for each MMU table in the system.
192 *
193 * MAP OF MEMORY USED BY THE PMAP SYSTEM
194 *
195 * towards lower memory
196 * kernAbase -> +-------------------------------------------------------+
197 * | Kernel MMU A level table |
198 * kernBbase -> +-------------------------------------------------------+
199 * | Kernel MMU B level tables |
200 * kernCbase -> +-------------------------------------------------------+
201 * | |
202 * | Kernel MMU C level tables |
203 * | |
204 * mmuCbase -> +-------------------------------------------------------+
205 * | User MMU C level tables |
206 * mmuAbase -> +-------------------------------------------------------+
207 * | |
208 * | User MMU A level tables |
209 * | |
210 * mmuBbase -> +-------------------------------------------------------+
211 * | User MMU B level tables |
212 * tmgrAbase -> +-------------------------------------------------------+
213 * | TMGR A level table structures |
214 * tmgrBbase -> +-------------------------------------------------------+
215 * | TMGR B level table structures |
216 * tmgrCbase -> +-------------------------------------------------------+
217 * | TMGR C level table structures |
218 * pvbase -> +-------------------------------------------------------+
219 * | Physical to Virtual mapping table (list heads) |
220 * pvebase -> +-------------------------------------------------------+
221 * | Physical to Virtual mapping table (list elements) |
222 * | |
223 * +-------------------------------------------------------+
224 * towards higher memory
225 *
226 * For every A table in the MMU A area, there will be a corresponding
227 * a_tmgr structure in the TMGR A area. The same will be true for
228 * the B and C tables. This arrangement will make it easy to find the
229 * controling tmgr structure for any table in the system by use of
230 * (relatively) simple macros.
231 */
232
233 /*
234 * Global variables for storing the base addresses for the areas
235 * labeled above.
236 */
237 static vaddr_t kernAphys;
238 static mmu_long_dte_t *kernAbase;
239 static mmu_short_dte_t *kernBbase;
240 static mmu_short_pte_t *kernCbase;
241 static mmu_short_pte_t *mmuCbase;
242 static mmu_short_dte_t *mmuBbase;
243 static mmu_long_dte_t *mmuAbase;
244 static a_tmgr_t *Atmgrbase;
245 static b_tmgr_t *Btmgrbase;
246 static c_tmgr_t *Ctmgrbase;
247 static pv_t *pvbase;
248 static pv_elem_t *pvebase;
249 struct pmap kernel_pmap;
250
251 /*
252 * This holds the CRP currently loaded into the MMU.
253 */
254 struct mmu_rootptr kernel_crp;
255
256 /*
257 * Just all around global variables.
258 */
259 static TAILQ_HEAD(a_pool_head_struct, a_tmgr_struct) a_pool;
260 static TAILQ_HEAD(b_pool_head_struct, b_tmgr_struct) b_pool;
261 static TAILQ_HEAD(c_pool_head_struct, c_tmgr_struct) c_pool;
262
263
264 /*
265 * Flags used to mark the safety/availability of certain operations or
266 * resources.
267 */
268 static boolean_t bootstrap_alloc_enabled = FALSE; /*Safe to use pmap_bootstrap_alloc().*/
269 int tmp_vpages_inuse; /* Temporary virtual pages are in use */
270
271 /*
272 * XXX: For now, retain the traditional variables that were
273 * used in the old pmap/vm interface (without NONCONTIG).
274 */
275 /* Physical address space available: */
276 paddr_t avail_start, avail_end;
277
278 /* This keep track of the end of the contiguously mapped range. */
279 vaddr_t virtual_contig_end;
280
281 /* Physical address used by pmap_next_page() */
282 paddr_t avail_next;
283
284 /* These are used by pmap_copy_page(), etc. */
285 vaddr_t tmp_vpages[2];
286
287 /* memory pool for pmap structures */
288 struct pool pmap_pmap_pool;
289
290 /*
291 * The 3/80 is the only member of the sun3x family that has non-contiguous
292 * physical memory. Memory is divided into 4 banks which are physically
293 * locatable on the system board. Although the size of these banks varies
294 * with the size of memory they contain, their base addresses are
295 * permenently fixed. The following structure, which describes these
296 * banks, is initialized by pmap_bootstrap() after it reads from a similar
297 * structure provided by the ROM Monitor.
298 *
299 * For the other machines in the sun3x architecture which do have contiguous
300 * RAM, this list will have only one entry, which will describe the entire
301 * range of available memory.
302 */
303 struct pmap_physmem_struct avail_mem[SUN3X_NPHYS_RAM_SEGS];
304 u_int total_phys_mem;
305
306 /*************************************************************************/
307
308 /*
309 * XXX - Should "tune" these based on statistics.
310 *
311 * My first guess about the relative numbers of these needed is
312 * based on the fact that a "typical" process will have several
313 * pages mapped at low virtual addresses (text, data, bss), then
314 * some mapped shared libraries, and then some stack pages mapped
315 * near the high end of the VA space. Each process can use only
316 * one A table, and most will use only two B tables (maybe three)
317 * and probably about four C tables. Therefore, the first guess
318 * at the relative numbers of these needed is 1:2:4 -gwr
319 *
320 * The number of C tables needed is closely related to the amount
321 * of physical memory available plus a certain amount attributable
322 * to the use of double mappings. With a few simulation statistics
323 * we can find a reasonably good estimation of this unknown value.
324 * Armed with that and the above ratios, we have a good idea of what
325 * is needed at each level. -j
326 *
327 * Note: It is not physical memory memory size, but the total mapped
328 * virtual space required by the combined working sets of all the
329 * currently _runnable_ processes. (Sleeping ones don't count.)
330 * The amount of physical memory should be irrelevant. -gwr
331 */
332 #ifdef FIXED_NTABLES
333 #define NUM_A_TABLES 16
334 #define NUM_B_TABLES 32
335 #define NUM_C_TABLES 64
336 #else
337 unsigned int NUM_A_TABLES, NUM_B_TABLES, NUM_C_TABLES;
338 #endif /* FIXED_NTABLES */
339
340 /*
341 * This determines our total virtual mapping capacity.
342 * Yes, it is a FIXED value so we can pre-allocate.
343 */
344 #define NUM_USER_PTES (NUM_C_TABLES * MMU_C_TBL_SIZE)
345
346 /*
347 * The size of the Kernel Virtual Address Space (KVAS)
348 * for purposes of MMU table allocation is -KERNBASE
349 * (length from KERNBASE to 0xFFFFffff)
350 */
351 #define KVAS_SIZE (-KERNBASE)
352
353 /* Numbers of kernel MMU tables to support KVAS_SIZE. */
354 #define KERN_B_TABLES (KVAS_SIZE >> MMU_TIA_SHIFT)
355 #define KERN_C_TABLES (KVAS_SIZE >> MMU_TIB_SHIFT)
356 #define NUM_KERN_PTES (KVAS_SIZE >> MMU_TIC_SHIFT)
357
358 /*************************** MISCELANEOUS MACROS *************************/
359 #define pmap_lock(pmap) simple_lock(&pmap->pm_lock)
360 #define pmap_unlock(pmap) simple_unlock(&pmap->pm_lock)
361 #define pmap_add_ref(pmap) ++pmap->pm_refcount
362 #define pmap_del_ref(pmap) --pmap->pm_refcount
363 #define pmap_refcount(pmap) pmap->pm_refcount
364
365 void *pmap_bootstrap_alloc(int);
366
367 static INLINE void *mmu_ptov __P((paddr_t));
368 static INLINE paddr_t mmu_vtop __P((void *));
369
370 #if 0
371 static INLINE a_tmgr_t * mmuA2tmgr __P((mmu_long_dte_t *));
372 #endif /* 0 */
373 static INLINE b_tmgr_t * mmuB2tmgr __P((mmu_short_dte_t *));
374 static INLINE c_tmgr_t * mmuC2tmgr __P((mmu_short_pte_t *));
375
376 static INLINE pv_t *pa2pv __P((paddr_t));
377 static INLINE int pteidx __P((mmu_short_pte_t *));
378 static INLINE pmap_t current_pmap __P((void));
379
380 /*
381 * We can always convert between virtual and physical addresses
382 * for anything in the range [KERNBASE ... avail_start] because
383 * that range is GUARANTEED to be mapped linearly.
384 * We rely heavily upon this feature!
385 */
386 static INLINE void *
387 mmu_ptov(pa)
388 paddr_t pa;
389 {
390 vaddr_t va;
391
392 va = (pa + KERNBASE);
393 #ifdef PMAP_DEBUG
394 if ((va < KERNBASE) || (va >= virtual_contig_end))
395 panic("mmu_ptov");
396 #endif
397 return ((void*)va);
398 }
399
400 static INLINE paddr_t
401 mmu_vtop(vva)
402 void *vva;
403 {
404 vaddr_t va;
405
406 va = (vaddr_t)vva;
407 #ifdef PMAP_DEBUG
408 if ((va < KERNBASE) || (va >= virtual_contig_end))
409 panic("mmu_vtop");
410 #endif
411 return (va - KERNBASE);
412 }
413
414 /*
415 * These macros map MMU tables to their corresponding manager structures.
416 * They are needed quite often because many of the pointers in the pmap
417 * system reference MMU tables and not the structures that control them.
418 * There needs to be a way to find one when given the other and these
419 * macros do so by taking advantage of the memory layout described above.
420 * Here's a quick step through the first macro, mmuA2tmgr():
421 *
422 * 1) find the offset of the given MMU A table from the base of its table
423 * pool (table - mmuAbase).
424 * 2) convert this offset into a table index by dividing it by the
425 * size of one MMU 'A' table. (sizeof(mmu_long_dte_t) * MMU_A_TBL_SIZE)
426 * 3) use this index to select the corresponding 'A' table manager
427 * structure from the 'A' table manager pool (Atmgrbase[index]).
428 */
429 /* This function is not currently used. */
430 #if 0
431 static INLINE a_tmgr_t *
432 mmuA2tmgr(mmuAtbl)
433 mmu_long_dte_t *mmuAtbl;
434 {
435 int idx;
436
437 /* Which table is this in? */
438 idx = (mmuAtbl - mmuAbase) / MMU_A_TBL_SIZE;
439 #ifdef PMAP_DEBUG
440 if ((idx < 0) || (idx >= NUM_A_TABLES))
441 panic("mmuA2tmgr");
442 #endif
443 return (&Atmgrbase[idx]);
444 }
445 #endif /* 0 */
446
447 static INLINE b_tmgr_t *
448 mmuB2tmgr(mmuBtbl)
449 mmu_short_dte_t *mmuBtbl;
450 {
451 int idx;
452
453 /* Which table is this in? */
454 idx = (mmuBtbl - mmuBbase) / MMU_B_TBL_SIZE;
455 #ifdef PMAP_DEBUG
456 if ((idx < 0) || (idx >= NUM_B_TABLES))
457 panic("mmuB2tmgr");
458 #endif
459 return (&Btmgrbase[idx]);
460 }
461
462 /* mmuC2tmgr INTERNAL
463 **
464 * Given a pte known to belong to a C table, return the address of
465 * that table's management structure.
466 */
467 static INLINE c_tmgr_t *
468 mmuC2tmgr(mmuCtbl)
469 mmu_short_pte_t *mmuCtbl;
470 {
471 int idx;
472
473 /* Which table is this in? */
474 idx = (mmuCtbl - mmuCbase) / MMU_C_TBL_SIZE;
475 #ifdef PMAP_DEBUG
476 if ((idx < 0) || (idx >= NUM_C_TABLES))
477 panic("mmuC2tmgr");
478 #endif
479 return (&Ctmgrbase[idx]);
480 }
481
482 /* This is now a function call below.
483 * #define pa2pv(pa) \
484 * (&pvbase[(unsigned long)\
485 * m68k_btop(pa)\
486 * ])
487 */
488
489 /* pa2pv INTERNAL
490 **
491 * Return the pv_list_head element which manages the given physical
492 * address.
493 */
494 static INLINE pv_t *
495 pa2pv(pa)
496 paddr_t pa;
497 {
498 struct pmap_physmem_struct *bank;
499 int idx;
500
501 bank = &avail_mem[0];
502 while (pa >= bank->pmem_end)
503 bank = bank->pmem_next;
504
505 pa -= bank->pmem_start;
506 idx = bank->pmem_pvbase + m68k_btop(pa);
507 #ifdef PMAP_DEBUG
508 if ((idx < 0) || (idx >= physmem))
509 panic("pa2pv");
510 #endif
511 return &pvbase[idx];
512 }
513
514 /* pteidx INTERNAL
515 **
516 * Return the index of the given PTE within the entire fixed table of
517 * PTEs.
518 */
519 static INLINE int
520 pteidx(pte)
521 mmu_short_pte_t *pte;
522 {
523 return (pte - kernCbase);
524 }
525
526 /*
527 * This just offers a place to put some debugging checks,
528 * and reduces the number of places "curlwp" appears...
529 */
530 static INLINE pmap_t
531 current_pmap()
532 {
533 struct vmspace *vm;
534 struct vm_map *map;
535 pmap_t pmap;
536
537 if (curlwp == NULL)
538 pmap = &kernel_pmap;
539 else {
540 vm = curproc->p_vmspace;
541 map = &vm->vm_map;
542 pmap = vm_map_pmap(map);
543 }
544
545 return (pmap);
546 }
547
548
549 /*************************** FUNCTION DEFINITIONS ************************
550 * These appear here merely for the compiler to enforce type checking on *
551 * all function calls. *
552 *************************************************************************/
553
554 /** Internal functions
555 ** Most functions used only within this module are defined in
556 ** pmap_pvt.h (why not here if used only here?)
557 **/
558 static void pmap_page_upload __P((void));
559
560 /** Interface functions
561 ** - functions required by the Mach VM Pmap interface, with MACHINE_CONTIG
562 ** defined.
563 **/
564 void pmap_pinit __P((pmap_t));
565 void pmap_release __P((pmap_t));
566
567 /********************************** CODE ********************************
568 * Functions that are called from other parts of the kernel are labeled *
569 * as 'INTERFACE' functions. Functions that are only called from *
570 * within the pmap module are labeled as 'INTERNAL' functions. *
571 * Functions that are internal, but are not (currently) used at all are *
572 * labeled 'INTERNAL_X'. *
573 ************************************************************************/
574
575 /* pmap_bootstrap INTERNAL
576 **
577 * Initializes the pmap system. Called at boot time from
578 * locore2.c:_vm_init()
579 *
580 * Reminder: having a pmap_bootstrap_alloc() and also having the VM
581 * system implement pmap_steal_memory() is redundant.
582 * Don't release this code without removing one or the other!
583 */
584 void
585 pmap_bootstrap(nextva)
586 vaddr_t nextva;
587 {
588 struct physmemory *membank;
589 struct pmap_physmem_struct *pmap_membank;
590 vaddr_t va, eva;
591 paddr_t pa;
592 int b, c, i, j; /* running table counts */
593 int size, resvmem;
594
595 /*
596 * This function is called by __bootstrap after it has
597 * determined the type of machine and made the appropriate
598 * patches to the ROM vectors (XXX- I don't quite know what I meant
599 * by that.) It allocates and sets up enough of the pmap system
600 * to manage the kernel's address space.
601 */
602
603 /*
604 * Determine the range of kernel virtual and physical
605 * space available. Note that we ABSOLUTELY DEPEND on
606 * the fact that the first bank of memory (4MB) is
607 * mapped linearly to KERNBASE (which we guaranteed in
608 * the first instructions of locore.s).
609 * That is plenty for our bootstrap work.
610 */
611 virtual_avail = m68k_round_page(nextva);
612 virtual_contig_end = KERNBASE + 0x400000; /* +4MB */
613 virtual_end = VM_MAX_KERNEL_ADDRESS;
614 /* Don't need avail_start til later. */
615
616 /* We may now call pmap_bootstrap_alloc(). */
617 bootstrap_alloc_enabled = TRUE;
618
619 /*
620 * This is a somewhat unwrapped loop to deal with
621 * copying the PROM's 'phsymem' banks into the pmap's
622 * banks. The following is always assumed:
623 * 1. There is always at least one bank of memory.
624 * 2. There is always a last bank of memory, and its
625 * pmem_next member must be set to NULL.
626 */
627 membank = romVectorPtr->v_physmemory;
628 pmap_membank = avail_mem;
629 total_phys_mem = 0;
630
631 for (;;) { /* break on !membank */
632 pmap_membank->pmem_start = membank->address;
633 pmap_membank->pmem_end = membank->address + membank->size;
634 total_phys_mem += membank->size;
635 membank = membank->next;
636 if (!membank)
637 break;
638 /* This silly syntax arises because pmap_membank
639 * is really a pre-allocated array, but it is put into
640 * use as a linked list.
641 */
642 pmap_membank->pmem_next = pmap_membank + 1;
643 pmap_membank = pmap_membank->pmem_next;
644 }
645 /* This is the last element. */
646 pmap_membank->pmem_next = NULL;
647
648 /*
649 * Note: total_phys_mem, physmem represent
650 * actual physical memory, including that
651 * reserved for the PROM monitor.
652 */
653 physmem = btoc(total_phys_mem);
654
655 /*
656 * Avail_end is set to the first byte of physical memory
657 * after the end of the last bank. We use this only to
658 * determine if a physical address is "managed" memory.
659 * This address range should be reduced to prevent the
660 * physical pages needed by the PROM monitor from being used
661 * in the VM system.
662 */
663 resvmem = total_phys_mem - *(romVectorPtr->memoryAvail);
664 resvmem = m68k_round_page(resvmem);
665 avail_end = pmap_membank->pmem_end - resvmem;
666
667 /*
668 * First allocate enough kernel MMU tables to map all
669 * of kernel virtual space from KERNBASE to 0xFFFFFFFF.
670 * Note: All must be aligned on 256 byte boundaries.
671 * Start with the level-A table (one of those).
672 */
673 size = sizeof(mmu_long_dte_t) * MMU_A_TBL_SIZE;
674 kernAbase = pmap_bootstrap_alloc(size);
675 memset(kernAbase, 0, size);
676
677 /* Now the level-B kernel tables... */
678 size = sizeof(mmu_short_dte_t) * MMU_B_TBL_SIZE * KERN_B_TABLES;
679 kernBbase = pmap_bootstrap_alloc(size);
680 memset(kernBbase, 0, size);
681
682 /* Now the level-C kernel tables... */
683 size = sizeof(mmu_short_pte_t) * MMU_C_TBL_SIZE * KERN_C_TABLES;
684 kernCbase = pmap_bootstrap_alloc(size);
685 memset(kernCbase, 0, size);
686 /*
687 * Note: In order for the PV system to work correctly, the kernel
688 * and user-level C tables must be allocated contiguously.
689 * Nothing should be allocated between here and the allocation of
690 * mmuCbase below. XXX: Should do this as one allocation, and
691 * then compute a pointer for mmuCbase instead of this...
692 *
693 * Allocate user MMU tables.
694 * These must be contiguous with the preceding.
695 */
696
697 #ifndef FIXED_NTABLES
698 /*
699 * The number of user-level C tables that should be allocated is
700 * related to the size of physical memory. In general, there should
701 * be enough tables to map four times the amount of available RAM.
702 * The extra amount is needed because some table space is wasted by
703 * fragmentation.
704 */
705 NUM_C_TABLES = (total_phys_mem * 4) / (MMU_C_TBL_SIZE * MMU_PAGE_SIZE);
706 NUM_B_TABLES = NUM_C_TABLES / 2;
707 NUM_A_TABLES = NUM_B_TABLES / 2;
708 #endif /* !FIXED_NTABLES */
709
710 size = sizeof(mmu_short_pte_t) * MMU_C_TBL_SIZE * NUM_C_TABLES;
711 mmuCbase = pmap_bootstrap_alloc(size);
712
713 size = sizeof(mmu_short_dte_t) * MMU_B_TBL_SIZE * NUM_B_TABLES;
714 mmuBbase = pmap_bootstrap_alloc(size);
715
716 size = sizeof(mmu_long_dte_t) * MMU_A_TBL_SIZE * NUM_A_TABLES;
717 mmuAbase = pmap_bootstrap_alloc(size);
718
719 /*
720 * Fill in the never-changing part of the kernel tables.
721 * For simplicity, the kernel's mappings will be editable as a
722 * flat array of page table entries at kernCbase. The
723 * higher level 'A' and 'B' tables must be initialized to point
724 * to this lower one.
725 */
726 b = c = 0;
727
728 /*
729 * Invalidate all mappings below KERNBASE in the A table.
730 * This area has already been zeroed out, but it is good
731 * practice to explicitly show that we are interpreting
732 * it as a list of A table descriptors.
733 */
734 for (i = 0; i < MMU_TIA(KERNBASE); i++) {
735 kernAbase[i].addr.raw = 0;
736 }
737
738 /*
739 * Set up the kernel A and B tables so that they will reference the
740 * correct spots in the contiguous table of PTEs allocated for the
741 * kernel's virtual memory space.
742 */
743 for (i = MMU_TIA(KERNBASE); i < MMU_A_TBL_SIZE; i++) {
744 kernAbase[i].attr.raw =
745 MMU_LONG_DTE_LU | MMU_LONG_DTE_SUPV | MMU_DT_SHORT;
746 kernAbase[i].addr.raw = mmu_vtop(&kernBbase[b]);
747
748 for (j=0; j < MMU_B_TBL_SIZE; j++) {
749 kernBbase[b + j].attr.raw = mmu_vtop(&kernCbase[c])
750 | MMU_DT_SHORT;
751 c += MMU_C_TBL_SIZE;
752 }
753 b += MMU_B_TBL_SIZE;
754 }
755
756 pmap_alloc_usermmu(); /* Allocate user MMU tables. */
757 pmap_alloc_usertmgr(); /* Allocate user MMU table managers.*/
758 pmap_alloc_pv(); /* Allocate physical->virtual map. */
759
760 /*
761 * We are now done with pmap_bootstrap_alloc(). Round up
762 * `virtual_avail' to the nearest page, and set the flag
763 * to prevent use of pmap_bootstrap_alloc() hereafter.
764 */
765 pmap_bootstrap_aalign(PAGE_SIZE);
766 bootstrap_alloc_enabled = FALSE;
767
768 /*
769 * Now that we are done with pmap_bootstrap_alloc(), we
770 * must save the virtual and physical addresses of the
771 * end of the linearly mapped range, which are stored in
772 * virtual_contig_end and avail_start, respectively.
773 * These variables will never change after this point.
774 */
775 virtual_contig_end = virtual_avail;
776 avail_start = virtual_avail - KERNBASE;
777
778 /*
779 * `avail_next' is a running pointer used by pmap_next_page() to
780 * keep track of the next available physical page to be handed
781 * to the VM system during its initialization, in which it
782 * asks for physical pages, one at a time.
783 */
784 avail_next = avail_start;
785
786 /*
787 * Now allocate some virtual addresses, but not the physical pages
788 * behind them. Note that virtual_avail is already page-aligned.
789 *
790 * tmp_vpages[] is an array of two virtual pages used for temporary
791 * kernel mappings in the pmap module to facilitate various physical
792 * address-oritented operations.
793 */
794 tmp_vpages[0] = virtual_avail;
795 virtual_avail += PAGE_SIZE;
796 tmp_vpages[1] = virtual_avail;
797 virtual_avail += PAGE_SIZE;
798
799 /** Initialize the PV system **/
800 pmap_init_pv();
801
802 /*
803 * Fill in the kernel_pmap structure and kernel_crp.
804 */
805 kernAphys = mmu_vtop(kernAbase);
806 kernel_pmap.pm_a_tmgr = NULL;
807 kernel_pmap.pm_a_phys = kernAphys;
808 kernel_pmap.pm_refcount = 1; /* always in use */
809 simple_lock_init(&kernel_pmap.pm_lock);
810
811 kernel_crp.rp_attr = MMU_LONG_DTE_LU | MMU_DT_LONG;
812 kernel_crp.rp_addr = kernAphys;
813
814 /*
815 * Now pmap_enter_kernel() may be used safely and will be
816 * the main interface used hereafter to modify the kernel's
817 * virtual address space. Note that since we are still running
818 * under the PROM's address table, none of these table modifications
819 * actually take effect until pmap_takeover_mmu() is called.
820 *
821 * Note: Our tables do NOT have the PROM linear mappings!
822 * Only the mappings created here exist in our tables, so
823 * remember to map anything we expect to use.
824 */
825 va = (vaddr_t)KERNBASE;
826 pa = 0;
827
828 /*
829 * The first page of the kernel virtual address space is the msgbuf
830 * page. The page attributes (data, non-cached) are set here, while
831 * the address is assigned to this global pointer in cpu_startup().
832 * It is non-cached, mostly due to paranoia.
833 */
834 pmap_enter_kernel(va, pa|PMAP_NC, VM_PROT_ALL);
835 va += PAGE_SIZE; pa += PAGE_SIZE;
836
837 /* Next page is used as the temporary stack. */
838 pmap_enter_kernel(va, pa, VM_PROT_ALL);
839 va += PAGE_SIZE; pa += PAGE_SIZE;
840
841 /*
842 * Map all of the kernel's text segment as read-only and cacheable.
843 * (Cacheable is implied by default). Unfortunately, the last bytes
844 * of kernel text and the first bytes of kernel data will often be
845 * sharing the same page. Therefore, the last page of kernel text
846 * has to be mapped as read/write, to accomodate the data.
847 */
848 eva = m68k_trunc_page((vaddr_t)etext);
849 for (; va < eva; va += PAGE_SIZE, pa += PAGE_SIZE)
850 pmap_enter_kernel(va, pa, VM_PROT_READ|VM_PROT_EXECUTE);
851
852 /*
853 * Map all of the kernel's data as read/write and cacheable.
854 * This includes: data, BSS, symbols, and everything in the
855 * contiguous memory used by pmap_bootstrap_alloc()
856 */
857 for (; pa < avail_start; va += PAGE_SIZE, pa += PAGE_SIZE)
858 pmap_enter_kernel(va, pa, VM_PROT_READ|VM_PROT_WRITE);
859
860 /*
861 * At this point we are almost ready to take over the MMU. But first
862 * we must save the PROM's address space in our map, as we call its
863 * routines and make references to its data later in the kernel.
864 */
865 pmap_bootstrap_copyprom();
866 pmap_takeover_mmu();
867 pmap_bootstrap_setprom();
868
869 /* Notify the VM system of our page size. */
870 uvmexp.pagesize = PAGE_SIZE;
871 uvm_setpagesize();
872
873 pmap_page_upload();
874 }
875
876
877 /* pmap_alloc_usermmu INTERNAL
878 **
879 * Called from pmap_bootstrap() to allocate MMU tables that will
880 * eventually be used for user mappings.
881 */
882 void
883 pmap_alloc_usermmu()
884 {
885 /* XXX: Moved into caller. */
886 }
887
888 /* pmap_alloc_pv INTERNAL
889 **
890 * Called from pmap_bootstrap() to allocate the physical
891 * to virtual mapping list. Each physical page of memory
892 * in the system has a corresponding element in this list.
893 */
894 void
895 pmap_alloc_pv()
896 {
897 int i;
898 unsigned int total_mem;
899
900 /*
901 * Allocate a pv_head structure for every page of physical
902 * memory that will be managed by the system. Since memory on
903 * the 3/80 is non-contiguous, we cannot arrive at a total page
904 * count by subtraction of the lowest available address from the
905 * highest, but rather we have to step through each memory
906 * bank and add the number of pages in each to the total.
907 *
908 * At this time we also initialize the offset of each bank's
909 * starting pv_head within the pv_head list so that the physical
910 * memory state routines (pmap_is_referenced(),
911 * pmap_is_modified(), et al.) can quickly find coresponding
912 * pv_heads in spite of the non-contiguity.
913 */
914 total_mem = 0;
915 for (i = 0; i < SUN3X_NPHYS_RAM_SEGS; i++) {
916 avail_mem[i].pmem_pvbase = m68k_btop(total_mem);
917 total_mem += avail_mem[i].pmem_end -
918 avail_mem[i].pmem_start;
919 if (avail_mem[i].pmem_next == NULL)
920 break;
921 }
922 pvbase = (pv_t *) pmap_bootstrap_alloc(sizeof(pv_t) *
923 m68k_btop(total_phys_mem));
924 }
925
926 /* pmap_alloc_usertmgr INTERNAL
927 **
928 * Called from pmap_bootstrap() to allocate the structures which
929 * facilitate management of user MMU tables. Each user MMU table
930 * in the system has one such structure associated with it.
931 */
932 void
933 pmap_alloc_usertmgr()
934 {
935 /* Allocate user MMU table managers */
936 /* It would be a lot simpler to just make these BSS, but */
937 /* we may want to change their size at boot time... -j */
938 Atmgrbase = (a_tmgr_t *) pmap_bootstrap_alloc(sizeof(a_tmgr_t)
939 * NUM_A_TABLES);
940 Btmgrbase = (b_tmgr_t *) pmap_bootstrap_alloc(sizeof(b_tmgr_t)
941 * NUM_B_TABLES);
942 Ctmgrbase = (c_tmgr_t *) pmap_bootstrap_alloc(sizeof(c_tmgr_t)
943 * NUM_C_TABLES);
944
945 /*
946 * Allocate PV list elements for the physical to virtual
947 * mapping system.
948 */
949 pvebase = (pv_elem_t *) pmap_bootstrap_alloc(
950 sizeof(pv_elem_t) * (NUM_USER_PTES + NUM_KERN_PTES));
951 }
952
953 /* pmap_bootstrap_copyprom() INTERNAL
954 **
955 * Copy the PROM mappings into our own tables. Note, we
956 * can use physical addresses until __bootstrap returns.
957 */
958 void
959 pmap_bootstrap_copyprom()
960 {
961 struct sunromvec *romp;
962 int *mon_ctbl;
963 mmu_short_pte_t *kpte;
964 int i, len;
965
966 romp = romVectorPtr;
967
968 /*
969 * Copy the mappings in SUN3X_MON_KDB_BASE...SUN3X_MONEND
970 * Note: mon_ctbl[0] maps SUN3X_MON_KDB_BASE
971 */
972 mon_ctbl = *romp->monptaddr;
973 i = m68k_btop(SUN3X_MON_KDB_BASE - KERNBASE);
974 kpte = &kernCbase[i];
975 len = m68k_btop(SUN3X_MONEND - SUN3X_MON_KDB_BASE);
976
977 for (i = 0; i < len; i++) {
978 kpte[i].attr.raw = mon_ctbl[i];
979 }
980
981 /*
982 * Copy the mappings at MON_DVMA_BASE (to the end).
983 * Note, in here, mon_ctbl[0] maps MON_DVMA_BASE.
984 * Actually, we only want the last page, which the
985 * PROM has set up for use by the "ie" driver.
986 * (The i82686 needs its SCP there.)
987 * If we copy all the mappings, pmap_enter_kernel
988 * may complain about finding valid PTEs that are
989 * not recorded in our PV lists...
990 */
991 mon_ctbl = *romp->shadowpteaddr;
992 i = m68k_btop(SUN3X_MON_DVMA_BASE - KERNBASE);
993 kpte = &kernCbase[i];
994 len = m68k_btop(SUN3X_MON_DVMA_SIZE);
995 for (i = (len-1); i < len; i++) {
996 kpte[i].attr.raw = mon_ctbl[i];
997 }
998 }
999
1000 /* pmap_takeover_mmu INTERNAL
1001 **
1002 * Called from pmap_bootstrap() after it has copied enough of the
1003 * PROM mappings into the kernel map so that we can use our own
1004 * MMU table.
1005 */
1006 void
1007 pmap_takeover_mmu()
1008 {
1009
1010 loadcrp(&kernel_crp);
1011 }
1012
1013 /* pmap_bootstrap_setprom() INTERNAL
1014 **
1015 * Set the PROM mappings so it can see kernel space.
1016 * Note that physical addresses are used here, which
1017 * we can get away with because this runs with the
1018 * low 1GB set for transparent translation.
1019 */
1020 void
1021 pmap_bootstrap_setprom()
1022 {
1023 mmu_long_dte_t *mon_dte;
1024 extern struct mmu_rootptr mon_crp;
1025 int i;
1026
1027 mon_dte = (mmu_long_dte_t *) mon_crp.rp_addr;
1028 for (i = MMU_TIA(KERNBASE); i < MMU_TIA(KERN_END); i++) {
1029 mon_dte[i].attr.raw = kernAbase[i].attr.raw;
1030 mon_dte[i].addr.raw = kernAbase[i].addr.raw;
1031 }
1032 }
1033
1034
1035 /* pmap_init INTERFACE
1036 **
1037 * Called at the end of vm_init() to set up the pmap system to go
1038 * into full time operation. All initialization of kernel_pmap
1039 * should be already done by now, so this should just do things
1040 * needed for user-level pmaps to work.
1041 */
1042 void
1043 pmap_init()
1044 {
1045 /** Initialize the manager pools **/
1046 TAILQ_INIT(&a_pool);
1047 TAILQ_INIT(&b_pool);
1048 TAILQ_INIT(&c_pool);
1049
1050 /**************************************************************
1051 * Initialize all tmgr structures and MMU tables they manage. *
1052 **************************************************************/
1053 /** Initialize A tables **/
1054 pmap_init_a_tables();
1055 /** Initialize B tables **/
1056 pmap_init_b_tables();
1057 /** Initialize C tables **/
1058 pmap_init_c_tables();
1059
1060 /** Initialize the pmap pools **/
1061 pool_init(&pmap_pmap_pool, sizeof(struct pmap), 0, 0, 0, "pmappl",
1062 &pool_allocator_nointr);
1063 }
1064
1065 /* pmap_init_a_tables() INTERNAL
1066 **
1067 * Initializes all A managers, their MMU A tables, and inserts
1068 * them into the A manager pool for use by the system.
1069 */
1070 void
1071 pmap_init_a_tables()
1072 {
1073 int i;
1074 a_tmgr_t *a_tbl;
1075
1076 for (i=0; i < NUM_A_TABLES; i++) {
1077 /* Select the next available A manager from the pool */
1078 a_tbl = &Atmgrbase[i];
1079
1080 /*
1081 * Clear its parent entry. Set its wired and valid
1082 * entry count to zero.
1083 */
1084 a_tbl->at_parent = NULL;
1085 a_tbl->at_wcnt = a_tbl->at_ecnt = 0;
1086
1087 /* Assign it the next available MMU A table from the pool */
1088 a_tbl->at_dtbl = &mmuAbase[i * MMU_A_TBL_SIZE];
1089
1090 /*
1091 * Initialize the MMU A table with the table in the `proc0',
1092 * or kernel, mapping. This ensures that every process has
1093 * the kernel mapped in the top part of its address space.
1094 */
1095 memcpy(a_tbl->at_dtbl, kernAbase, MMU_A_TBL_SIZE *
1096 sizeof(mmu_long_dte_t));
1097
1098 /*
1099 * Finally, insert the manager into the A pool,
1100 * making it ready to be used by the system.
1101 */
1102 TAILQ_INSERT_TAIL(&a_pool, a_tbl, at_link);
1103 }
1104 }
1105
1106 /* pmap_init_b_tables() INTERNAL
1107 **
1108 * Initializes all B table managers, their MMU B tables, and
1109 * inserts them into the B manager pool for use by the system.
1110 */
1111 void
1112 pmap_init_b_tables()
1113 {
1114 int i,j;
1115 b_tmgr_t *b_tbl;
1116
1117 for (i=0; i < NUM_B_TABLES; i++) {
1118 /* Select the next available B manager from the pool */
1119 b_tbl = &Btmgrbase[i];
1120
1121 b_tbl->bt_parent = NULL; /* clear its parent, */
1122 b_tbl->bt_pidx = 0; /* parent index, */
1123 b_tbl->bt_wcnt = 0; /* wired entry count, */
1124 b_tbl->bt_ecnt = 0; /* valid entry count. */
1125
1126 /* Assign it the next available MMU B table from the pool */
1127 b_tbl->bt_dtbl = &mmuBbase[i * MMU_B_TBL_SIZE];
1128
1129 /* Invalidate every descriptor in the table */
1130 for (j=0; j < MMU_B_TBL_SIZE; j++)
1131 b_tbl->bt_dtbl[j].attr.raw = MMU_DT_INVALID;
1132
1133 /* Insert the manager into the B pool */
1134 TAILQ_INSERT_TAIL(&b_pool, b_tbl, bt_link);
1135 }
1136 }
1137
1138 /* pmap_init_c_tables() INTERNAL
1139 **
1140 * Initializes all C table managers, their MMU C tables, and
1141 * inserts them into the C manager pool for use by the system.
1142 */
1143 void
1144 pmap_init_c_tables()
1145 {
1146 int i,j;
1147 c_tmgr_t *c_tbl;
1148
1149 for (i=0; i < NUM_C_TABLES; i++) {
1150 /* Select the next available C manager from the pool */
1151 c_tbl = &Ctmgrbase[i];
1152
1153 c_tbl->ct_parent = NULL; /* clear its parent, */
1154 c_tbl->ct_pidx = 0; /* parent index, */
1155 c_tbl->ct_wcnt = 0; /* wired entry count, */
1156 c_tbl->ct_ecnt = 0; /* valid entry count, */
1157 c_tbl->ct_pmap = NULL; /* parent pmap, */
1158 c_tbl->ct_va = 0; /* base of managed range */
1159
1160 /* Assign it the next available MMU C table from the pool */
1161 c_tbl->ct_dtbl = &mmuCbase[i * MMU_C_TBL_SIZE];
1162
1163 for (j=0; j < MMU_C_TBL_SIZE; j++)
1164 c_tbl->ct_dtbl[j].attr.raw = MMU_DT_INVALID;
1165
1166 TAILQ_INSERT_TAIL(&c_pool, c_tbl, ct_link);
1167 }
1168 }
1169
1170 /* pmap_init_pv() INTERNAL
1171 **
1172 * Initializes the Physical to Virtual mapping system.
1173 */
1174 void
1175 pmap_init_pv()
1176 {
1177 int i;
1178
1179 /* Initialize every PV head. */
1180 for (i = 0; i < m68k_btop(total_phys_mem); i++) {
1181 pvbase[i].pv_idx = PVE_EOL; /* Indicate no mappings */
1182 pvbase[i].pv_flags = 0; /* Zero out page flags */
1183 }
1184 }
1185
1186 /* get_a_table INTERNAL
1187 **
1188 * Retrieve and return a level A table for use in a user map.
1189 */
1190 a_tmgr_t *
1191 get_a_table()
1192 {
1193 a_tmgr_t *tbl;
1194 pmap_t pmap;
1195
1196 /* Get the top A table in the pool */
1197 tbl = a_pool.tqh_first;
1198 if (tbl == NULL) {
1199 /*
1200 * XXX - Instead of panicing here and in other get_x_table
1201 * functions, we do have the option of sleeping on the head of
1202 * the table pool. Any function which updates the table pool
1203 * would then issue a wakeup() on the head, thus waking up any
1204 * processes waiting for a table.
1205 *
1206 * Actually, the place to sleep would be when some process
1207 * asks for a "wired" mapping that would run us short of
1208 * mapping resources. This design DEPENDS on always having
1209 * some mapping resources in the pool for stealing, so we
1210 * must make sure we NEVER let the pool become empty. -gwr
1211 */
1212 panic("get_a_table: out of A tables.");
1213 }
1214
1215 TAILQ_REMOVE(&a_pool, tbl, at_link);
1216 /*
1217 * If the table has a non-null parent pointer then it is in use.
1218 * Forcibly abduct it from its parent and clear its entries.
1219 * No re-entrancy worries here. This table would not be in the
1220 * table pool unless it was available for use.
1221 *
1222 * Note that the second argument to free_a_table() is FALSE. This
1223 * indicates that the table should not be relinked into the A table
1224 * pool. That is a job for the function that called us.
1225 */
1226 if (tbl->at_parent) {
1227 pmap = tbl->at_parent;
1228 free_a_table(tbl, FALSE);
1229 pmap->pm_a_tmgr = NULL;
1230 pmap->pm_a_phys = kernAphys;
1231 }
1232 return tbl;
1233 }
1234
1235 /* get_b_table INTERNAL
1236 **
1237 * Return a level B table for use.
1238 */
1239 b_tmgr_t *
1240 get_b_table()
1241 {
1242 b_tmgr_t *tbl;
1243
1244 /* See 'get_a_table' for comments. */
1245 tbl = b_pool.tqh_first;
1246 if (tbl == NULL)
1247 panic("get_b_table: out of B tables.");
1248 TAILQ_REMOVE(&b_pool, tbl, bt_link);
1249 if (tbl->bt_parent) {
1250 tbl->bt_parent->at_dtbl[tbl->bt_pidx].attr.raw = MMU_DT_INVALID;
1251 tbl->bt_parent->at_ecnt--;
1252 free_b_table(tbl, FALSE);
1253 }
1254 return tbl;
1255 }
1256
1257 /* get_c_table INTERNAL
1258 **
1259 * Return a level C table for use.
1260 */
1261 c_tmgr_t *
1262 get_c_table()
1263 {
1264 c_tmgr_t *tbl;
1265
1266 /* See 'get_a_table' for comments */
1267 tbl = c_pool.tqh_first;
1268 if (tbl == NULL)
1269 panic("get_c_table: out of C tables.");
1270 TAILQ_REMOVE(&c_pool, tbl, ct_link);
1271 if (tbl->ct_parent) {
1272 tbl->ct_parent->bt_dtbl[tbl->ct_pidx].attr.raw = MMU_DT_INVALID;
1273 tbl->ct_parent->bt_ecnt--;
1274 free_c_table(tbl, FALSE);
1275 }
1276 return tbl;
1277 }
1278
1279 /*
1280 * The following 'free_table' and 'steal_table' functions are called to
1281 * detach tables from their current obligations (parents and children) and
1282 * prepare them for reuse in another mapping.
1283 *
1284 * Free_table is used when the calling function will handle the fate
1285 * of the parent table, such as returning it to the free pool when it has
1286 * no valid entries. Functions that do not want to handle this should
1287 * call steal_table, in which the parent table's descriptors and entry
1288 * count are automatically modified when this table is removed.
1289 */
1290
1291 /* free_a_table INTERNAL
1292 **
1293 * Unmaps the given A table and all child tables from their current
1294 * mappings. Returns the number of pages that were invalidated.
1295 * If 'relink' is true, the function will return the table to the head
1296 * of the available table pool.
1297 *
1298 * Cache note: The MC68851 will automatically flush all
1299 * descriptors derived from a given A table from its
1300 * Automatic Translation Cache (ATC) if we issue a
1301 * 'PFLUSHR' instruction with the base address of the
1302 * table. This function should do, and does so.
1303 * Note note: We are using an MC68030 - there is no
1304 * PFLUSHR.
1305 */
1306 int
1307 free_a_table(a_tbl, relink)
1308 a_tmgr_t *a_tbl;
1309 boolean_t relink;
1310 {
1311 int i, removed_cnt;
1312 mmu_long_dte_t *dte;
1313 mmu_short_dte_t *dtbl;
1314 b_tmgr_t *tmgr;
1315
1316 /*
1317 * Flush the ATC cache of all cached descriptors derived
1318 * from this table.
1319 * Sun3x does not use 68851's cached table feature
1320 * flush_atc_crp(mmu_vtop(a_tbl->dte));
1321 */
1322
1323 /*
1324 * Remove any pending cache flushes that were designated
1325 * for the pmap this A table belongs to.
1326 * a_tbl->parent->atc_flushq[0] = 0;
1327 * Not implemented in sun3x.
1328 */
1329
1330 /*
1331 * All A tables in the system should retain a map for the
1332 * kernel. If the table contains any valid descriptors
1333 * (other than those for the kernel area), invalidate them all,
1334 * stopping short of the kernel's entries.
1335 */
1336 removed_cnt = 0;
1337 if (a_tbl->at_ecnt) {
1338 dte = a_tbl->at_dtbl;
1339 for (i=0; i < MMU_TIA(KERNBASE); i++) {
1340 /*
1341 * If a table entry points to a valid B table, free
1342 * it and its children.
1343 */
1344 if (MMU_VALID_DT(dte[i])) {
1345 /*
1346 * The following block does several things,
1347 * from innermost expression to the
1348 * outermost:
1349 * 1) It extracts the base (cc 1996)
1350 * address of the B table pointed
1351 * to in the A table entry dte[i].
1352 * 2) It converts this base address into
1353 * the virtual address it can be
1354 * accessed with. (all MMU tables point
1355 * to physical addresses.)
1356 * 3) It finds the corresponding manager
1357 * structure which manages this MMU table.
1358 * 4) It frees the manager structure.
1359 * (This frees the MMU table and all
1360 * child tables. See 'free_b_table' for
1361 * details.)
1362 */
1363 dtbl = mmu_ptov(dte[i].addr.raw);
1364 tmgr = mmuB2tmgr(dtbl);
1365 removed_cnt += free_b_table(tmgr, TRUE);
1366 dte[i].attr.raw = MMU_DT_INVALID;
1367 }
1368 }
1369 a_tbl->at_ecnt = 0;
1370 }
1371 if (relink) {
1372 a_tbl->at_parent = NULL;
1373 TAILQ_REMOVE(&a_pool, a_tbl, at_link);
1374 TAILQ_INSERT_HEAD(&a_pool, a_tbl, at_link);
1375 }
1376 return removed_cnt;
1377 }
1378
1379 /* free_b_table INTERNAL
1380 **
1381 * Unmaps the given B table and all its children from their current
1382 * mappings. Returns the number of pages that were invalidated.
1383 * (For comments, see 'free_a_table()').
1384 */
1385 int
1386 free_b_table(b_tbl, relink)
1387 b_tmgr_t *b_tbl;
1388 boolean_t relink;
1389 {
1390 int i, removed_cnt;
1391 mmu_short_dte_t *dte;
1392 mmu_short_pte_t *dtbl;
1393 c_tmgr_t *tmgr;
1394
1395 removed_cnt = 0;
1396 if (b_tbl->bt_ecnt) {
1397 dte = b_tbl->bt_dtbl;
1398 for (i=0; i < MMU_B_TBL_SIZE; i++) {
1399 if (MMU_VALID_DT(dte[i])) {
1400 dtbl = mmu_ptov(MMU_DTE_PA(dte[i]));
1401 tmgr = mmuC2tmgr(dtbl);
1402 removed_cnt += free_c_table(tmgr, TRUE);
1403 dte[i].attr.raw = MMU_DT_INVALID;
1404 }
1405 }
1406 b_tbl->bt_ecnt = 0;
1407 }
1408
1409 if (relink) {
1410 b_tbl->bt_parent = NULL;
1411 TAILQ_REMOVE(&b_pool, b_tbl, bt_link);
1412 TAILQ_INSERT_HEAD(&b_pool, b_tbl, bt_link);
1413 }
1414 return removed_cnt;
1415 }
1416
1417 /* free_c_table INTERNAL
1418 **
1419 * Unmaps the given C table from use and returns it to the pool for
1420 * re-use. Returns the number of pages that were invalidated.
1421 *
1422 * This function preserves any physical page modification information
1423 * contained in the page descriptors within the C table by calling
1424 * 'pmap_remove_pte().'
1425 */
1426 int
1427 free_c_table(c_tbl, relink)
1428 c_tmgr_t *c_tbl;
1429 boolean_t relink;
1430 {
1431 int i, removed_cnt;
1432
1433 removed_cnt = 0;
1434 if (c_tbl->ct_ecnt) {
1435 for (i=0; i < MMU_C_TBL_SIZE; i++) {
1436 if (MMU_VALID_DT(c_tbl->ct_dtbl[i])) {
1437 pmap_remove_pte(&c_tbl->ct_dtbl[i]);
1438 removed_cnt++;
1439 }
1440 }
1441 c_tbl->ct_ecnt = 0;
1442 }
1443
1444 if (relink) {
1445 c_tbl->ct_parent = NULL;
1446 TAILQ_REMOVE(&c_pool, c_tbl, ct_link);
1447 TAILQ_INSERT_HEAD(&c_pool, c_tbl, ct_link);
1448 }
1449 return removed_cnt;
1450 }
1451
1452
1453 /* pmap_remove_pte INTERNAL
1454 **
1455 * Unmap the given pte and preserve any page modification
1456 * information by transfering it to the pv head of the
1457 * physical page it maps to. This function does not update
1458 * any reference counts because it is assumed that the calling
1459 * function will do so.
1460 */
1461 void
1462 pmap_remove_pte(pte)
1463 mmu_short_pte_t *pte;
1464 {
1465 u_short pv_idx, targ_idx;
1466 paddr_t pa;
1467 pv_t *pv;
1468
1469 pa = MMU_PTE_PA(*pte);
1470 if (is_managed(pa)) {
1471 pv = pa2pv(pa);
1472 targ_idx = pteidx(pte); /* Index of PTE being removed */
1473
1474 /*
1475 * If the PTE being removed is the first (or only) PTE in
1476 * the list of PTEs currently mapped to this page, remove the
1477 * PTE by changing the index found on the PV head. Otherwise
1478 * a linear search through the list will have to be executed
1479 * in order to find the PVE which points to the PTE being
1480 * removed, so that it may be modified to point to its new
1481 * neighbor.
1482 */
1483
1484 pv_idx = pv->pv_idx; /* Index of first PTE in PV list */
1485 if (pv_idx == targ_idx) {
1486 pv->pv_idx = pvebase[targ_idx].pve_next;
1487 } else {
1488
1489 /*
1490 * Find the PV element pointing to the target
1491 * element. Note: may have pv_idx==PVE_EOL
1492 */
1493
1494 for (;;) {
1495 if (pv_idx == PVE_EOL) {
1496 goto pv_not_found;
1497 }
1498 if (pvebase[pv_idx].pve_next == targ_idx)
1499 break;
1500 pv_idx = pvebase[pv_idx].pve_next;
1501 }
1502
1503 /*
1504 * At this point, pv_idx is the index of the PV
1505 * element just before the target element in the list.
1506 * Unlink the target.
1507 */
1508
1509 pvebase[pv_idx].pve_next = pvebase[targ_idx].pve_next;
1510 }
1511
1512 /*
1513 * Save the mod/ref bits of the pte by simply
1514 * ORing the entire pte onto the pv_flags member
1515 * of the pv structure.
1516 * There is no need to use a separate bit pattern
1517 * for usage information on the pv head than that
1518 * which is used on the MMU ptes.
1519 */
1520
1521 pv_not_found:
1522 pv->pv_flags |= (u_short) pte->attr.raw;
1523 }
1524 pte->attr.raw = MMU_DT_INVALID;
1525 }
1526
1527 /* pmap_stroll INTERNAL
1528 **
1529 * Retrieve the addresses of all table managers involved in the mapping of
1530 * the given virtual address. If the table walk completed successfully,
1531 * return TRUE. If it was only partially successful, return FALSE.
1532 * The table walk performed by this function is important to many other
1533 * functions in this module.
1534 *
1535 * Note: This function ought to be easier to read.
1536 */
1537 boolean_t
1538 pmap_stroll(pmap, va, a_tbl, b_tbl, c_tbl, pte, a_idx, b_idx, pte_idx)
1539 pmap_t pmap;
1540 vaddr_t va;
1541 a_tmgr_t **a_tbl;
1542 b_tmgr_t **b_tbl;
1543 c_tmgr_t **c_tbl;
1544 mmu_short_pte_t **pte;
1545 int *a_idx, *b_idx, *pte_idx;
1546 {
1547 mmu_long_dte_t *a_dte; /* A: long descriptor table */
1548 mmu_short_dte_t *b_dte; /* B: short descriptor table */
1549
1550 if (pmap == pmap_kernel())
1551 return FALSE;
1552
1553 /* Does the given pmap have its own A table? */
1554 *a_tbl = pmap->pm_a_tmgr;
1555 if (*a_tbl == NULL)
1556 return FALSE; /* No. Return unknown. */
1557 /* Does the A table have a valid B table
1558 * under the corresponding table entry?
1559 */
1560 *a_idx = MMU_TIA(va);
1561 a_dte = &((*a_tbl)->at_dtbl[*a_idx]);
1562 if (!MMU_VALID_DT(*a_dte))
1563 return FALSE; /* No. Return unknown. */
1564 /* Yes. Extract B table from the A table. */
1565 *b_tbl = mmuB2tmgr(mmu_ptov(a_dte->addr.raw));
1566 /* Does the B table have a valid C table
1567 * under the corresponding table entry?
1568 */
1569 *b_idx = MMU_TIB(va);
1570 b_dte = &((*b_tbl)->bt_dtbl[*b_idx]);
1571 if (!MMU_VALID_DT(*b_dte))
1572 return FALSE; /* No. Return unknown. */
1573 /* Yes. Extract C table from the B table. */
1574 *c_tbl = mmuC2tmgr(mmu_ptov(MMU_DTE_PA(*b_dte)));
1575 *pte_idx = MMU_TIC(va);
1576 *pte = &((*c_tbl)->ct_dtbl[*pte_idx]);
1577
1578 return TRUE;
1579 }
1580
1581 /* pmap_enter INTERFACE
1582 **
1583 * Called by the kernel to map a virtual address
1584 * to a physical address in the given process map.
1585 *
1586 * Note: this function should apply an exclusive lock
1587 * on the pmap system for its duration. (it certainly
1588 * would save my hair!!)
1589 * This function ought to be easier to read.
1590 */
1591 int
1592 pmap_enter(pmap, va, pa, prot, flags)
1593 pmap_t pmap;
1594 vaddr_t va;
1595 paddr_t pa;
1596 vm_prot_t prot;
1597 int flags;
1598 {
1599 boolean_t insert, managed; /* Marks the need for PV insertion.*/
1600 u_short nidx; /* PV list index */
1601 int mapflags; /* Flags for the mapping (see NOTE1) */
1602 u_int a_idx, b_idx, pte_idx; /* table indices */
1603 a_tmgr_t *a_tbl; /* A: long descriptor table manager */
1604 b_tmgr_t *b_tbl; /* B: short descriptor table manager */
1605 c_tmgr_t *c_tbl; /* C: short page table manager */
1606 mmu_long_dte_t *a_dte; /* A: long descriptor table */
1607 mmu_short_dte_t *b_dte; /* B: short descriptor table */
1608 mmu_short_pte_t *c_pte; /* C: short page descriptor table */
1609 pv_t *pv; /* pv list head */
1610 boolean_t wired; /* is the mapping to be wired? */
1611 enum {NONE, NEWA, NEWB, NEWC} llevel; /* used at end */
1612
1613 if (pmap == pmap_kernel()) {
1614 pmap_enter_kernel(va, pa, prot);
1615 return 0;
1616 }
1617
1618 /*
1619 * Determine if the mapping should be wired.
1620 */
1621 wired = ((flags & PMAP_WIRED) != 0);
1622
1623 /*
1624 * NOTE1:
1625 *
1626 * On November 13, 1999, someone changed the pmap_enter() API such
1627 * that it now accepts a 'flags' argument. This new argument
1628 * contains bit-flags for the architecture-independent (UVM) system to
1629 * use in signalling certain mapping requirements to the architecture-
1630 * dependent (pmap) system. The argument it replaces, 'wired', is now
1631 * one of the flags within it.
1632 *
1633 * In addition to flags signaled by the architecture-independent
1634 * system, parts of the architecture-dependent section of the sun3x
1635 * kernel pass their own flags in the lower, unused bits of the
1636 * physical address supplied to this function. These flags are
1637 * extracted and stored in the temporary variable 'mapflags'.
1638 *
1639 * Extract sun3x specific flags from the physical address.
1640 */
1641 mapflags = (pa & ~MMU_PAGE_MASK);
1642 pa &= MMU_PAGE_MASK;
1643
1644 /*
1645 * Determine if the physical address being mapped is on-board RAM.
1646 * Any other area of the address space is likely to belong to a
1647 * device and hence it would be disasterous to cache its contents.
1648 */
1649 if ((managed = is_managed(pa)) == FALSE)
1650 mapflags |= PMAP_NC;
1651
1652 /*
1653 * For user mappings we walk along the MMU tables of the given
1654 * pmap, reaching a PTE which describes the virtual page being
1655 * mapped or changed. If any level of the walk ends in an invalid
1656 * entry, a table must be allocated and the entry must be updated
1657 * to point to it.
1658 * There is a bit of confusion as to whether this code must be
1659 * re-entrant. For now we will assume it is. To support
1660 * re-entrancy we must unlink tables from the table pool before
1661 * we assume we may use them. Tables are re-linked into the pool
1662 * when we are finished with them at the end of the function.
1663 * But I don't feel like doing that until we have proof that this
1664 * needs to be re-entrant.
1665 * 'llevel' records which tables need to be relinked.
1666 */
1667 llevel = NONE;
1668
1669 /*
1670 * Step 1 - Retrieve the A table from the pmap. If it has no
1671 * A table, allocate a new one from the available pool.
1672 */
1673
1674 a_tbl = pmap->pm_a_tmgr;
1675 if (a_tbl == NULL) {
1676 /*
1677 * This pmap does not currently have an A table. Allocate
1678 * a new one.
1679 */
1680 a_tbl = get_a_table();
1681 a_tbl->at_parent = pmap;
1682
1683 /*
1684 * Assign this new A table to the pmap, and calculate its
1685 * physical address so that loadcrp() can be used to make
1686 * the table active.
1687 */
1688 pmap->pm_a_tmgr = a_tbl;
1689 pmap->pm_a_phys = mmu_vtop(a_tbl->at_dtbl);
1690
1691 /*
1692 * If the process receiving a new A table is the current
1693 * process, we are responsible for setting the MMU so that
1694 * it becomes the current address space. This only adds
1695 * new mappings, so no need to flush anything.
1696 */
1697 if (pmap == current_pmap()) {
1698 kernel_crp.rp_addr = pmap->pm_a_phys;
1699 loadcrp(&kernel_crp);
1700 }
1701
1702 if (!wired)
1703 llevel = NEWA;
1704 } else {
1705 /*
1706 * Use the A table already allocated for this pmap.
1707 * Unlink it from the A table pool if necessary.
1708 */
1709 if (wired && !a_tbl->at_wcnt)
1710 TAILQ_REMOVE(&a_pool, a_tbl, at_link);
1711 }
1712
1713 /*
1714 * Step 2 - Walk into the B table. If there is no valid B table,
1715 * allocate one.
1716 */
1717
1718 a_idx = MMU_TIA(va); /* Calculate the TIA of the VA. */
1719 a_dte = &a_tbl->at_dtbl[a_idx]; /* Retrieve descriptor from table */
1720 if (MMU_VALID_DT(*a_dte)) { /* Is the descriptor valid? */
1721 /* The descriptor is valid. Use the B table it points to. */
1722 /*************************************
1723 * a_idx *
1724 * v *
1725 * a_tbl -> +-+-+-+-+-+-+-+-+-+-+-+- *
1726 * | | | | | | | | | | | | *
1727 * +-+-+-+-+-+-+-+-+-+-+-+- *
1728 * | *
1729 * \- b_tbl -> +-+- *
1730 * | | *
1731 * +-+- *
1732 *************************************/
1733 b_dte = mmu_ptov(a_dte->addr.raw);
1734 b_tbl = mmuB2tmgr(b_dte);
1735
1736 /*
1737 * If the requested mapping must be wired, but this table
1738 * being used to map it is not, the table must be removed
1739 * from the available pool and its wired entry count
1740 * incremented.
1741 */
1742 if (wired && !b_tbl->bt_wcnt) {
1743 TAILQ_REMOVE(&b_pool, b_tbl, bt_link);
1744 a_tbl->at_wcnt++;
1745 }
1746 } else {
1747 /* The descriptor is invalid. Allocate a new B table. */
1748 b_tbl = get_b_table();
1749
1750 /* Point the parent A table descriptor to this new B table. */
1751 a_dte->addr.raw = mmu_vtop(b_tbl->bt_dtbl);
1752 a_dte->attr.raw = MMU_LONG_DTE_LU | MMU_DT_SHORT;
1753 a_tbl->at_ecnt++; /* Update parent's valid entry count */
1754
1755 /* Create the necessary back references to the parent table */
1756 b_tbl->bt_parent = a_tbl;
1757 b_tbl->bt_pidx = a_idx;
1758
1759 /*
1760 * If this table is to be wired, make sure the parent A table
1761 * wired count is updated to reflect that it has another wired
1762 * entry.
1763 */
1764 if (wired)
1765 a_tbl->at_wcnt++;
1766 else if (llevel == NONE)
1767 llevel = NEWB;
1768 }
1769
1770 /*
1771 * Step 3 - Walk into the C table, if there is no valid C table,
1772 * allocate one.
1773 */
1774
1775 b_idx = MMU_TIB(va); /* Calculate the TIB of the VA */
1776 b_dte = &b_tbl->bt_dtbl[b_idx]; /* Retrieve descriptor from table */
1777 if (MMU_VALID_DT(*b_dte)) { /* Is the descriptor valid? */
1778 /* The descriptor is valid. Use the C table it points to. */
1779 /**************************************
1780 * c_idx *
1781 * | v *
1782 * \- b_tbl -> +-+-+-+-+-+-+-+-+-+-+- *
1783 * | | | | | | | | | | | *
1784 * +-+-+-+-+-+-+-+-+-+-+- *
1785 * | *
1786 * \- c_tbl -> +-+-- *
1787 * | | | *
1788 * +-+-- *
1789 **************************************/
1790 c_pte = mmu_ptov(MMU_PTE_PA(*b_dte));
1791 c_tbl = mmuC2tmgr(c_pte);
1792
1793 /* If mapping is wired and table is not */
1794 if (wired && !c_tbl->ct_wcnt) {
1795 TAILQ_REMOVE(&c_pool, c_tbl, ct_link);
1796 b_tbl->bt_wcnt++;
1797 }
1798 } else {
1799 /* The descriptor is invalid. Allocate a new C table. */
1800 c_tbl = get_c_table();
1801
1802 /* Point the parent B table descriptor to this new C table. */
1803 b_dte->attr.raw = mmu_vtop(c_tbl->ct_dtbl);
1804 b_dte->attr.raw |= MMU_DT_SHORT;
1805 b_tbl->bt_ecnt++; /* Update parent's valid entry count */
1806
1807 /* Create the necessary back references to the parent table */
1808 c_tbl->ct_parent = b_tbl;
1809 c_tbl->ct_pidx = b_idx;
1810 /*
1811 * Store the pmap and base virtual managed address for faster
1812 * retrieval in the PV functions.
1813 */
1814 c_tbl->ct_pmap = pmap;
1815 c_tbl->ct_va = (va & (MMU_TIA_MASK|MMU_TIB_MASK));
1816
1817 /*
1818 * If this table is to be wired, make sure the parent B table
1819 * wired count is updated to reflect that it has another wired
1820 * entry.
1821 */
1822 if (wired)
1823 b_tbl->bt_wcnt++;
1824 else if (llevel == NONE)
1825 llevel = NEWC;
1826 }
1827
1828 /*
1829 * Step 4 - Deposit a page descriptor (PTE) into the appropriate
1830 * slot of the C table, describing the PA to which the VA is mapped.
1831 */
1832
1833 pte_idx = MMU_TIC(va);
1834 c_pte = &c_tbl->ct_dtbl[pte_idx];
1835 if (MMU_VALID_DT(*c_pte)) { /* Is the entry currently valid? */
1836 /*
1837 * The PTE is currently valid. This particular call
1838 * is just a synonym for one (or more) of the following
1839 * operations:
1840 * change protection of a page
1841 * change wiring status of a page
1842 * remove the mapping of a page
1843 *
1844 * XXX - Semi critical: This code should unwire the PTE
1845 * and, possibly, associated parent tables if this is a
1846 * change wiring operation. Currently it does not.
1847 *
1848 * This may be ok if pmap_unwire() is the only
1849 * interface used to UNWIRE a page.
1850 */
1851
1852 /* First check if this is a wiring operation. */
1853 if (wired && (c_pte->attr.raw & MMU_SHORT_PTE_WIRED)) {
1854 /*
1855 * The PTE is already wired. To prevent it from being
1856 * counted as a new wiring operation, reset the 'wired'
1857 * variable.
1858 */
1859 wired = FALSE;
1860 }
1861
1862 /* Is the new address the same as the old? */
1863 if (MMU_PTE_PA(*c_pte) == pa) {
1864 /*
1865 * Yes, mark that it does not need to be reinserted
1866 * into the PV list.
1867 */
1868 insert = FALSE;
1869
1870 /*
1871 * Clear all but the modified, referenced and wired
1872 * bits on the PTE.
1873 */
1874 c_pte->attr.raw &= (MMU_SHORT_PTE_M
1875 | MMU_SHORT_PTE_USED | MMU_SHORT_PTE_WIRED);
1876 } else {
1877 /* No, remove the old entry */
1878 pmap_remove_pte(c_pte);
1879 insert = TRUE;
1880 }
1881
1882 /*
1883 * TLB flush is only necessary if modifying current map.
1884 * However, in pmap_enter(), the pmap almost always IS
1885 * the current pmap, so don't even bother to check.
1886 */
1887 TBIS(va);
1888 } else {
1889 /*
1890 * The PTE is invalid. Increment the valid entry count in
1891 * the C table manager to reflect the addition of a new entry.
1892 */
1893 c_tbl->ct_ecnt++;
1894
1895 /* XXX - temporarily make sure the PTE is cleared. */
1896 c_pte->attr.raw = 0;
1897
1898 /* It will also need to be inserted into the PV list. */
1899 insert = TRUE;
1900 }
1901
1902 /*
1903 * If page is changing from unwired to wired status, set an unused bit
1904 * within the PTE to indicate that it is wired. Also increment the
1905 * wired entry count in the C table manager.
1906 */
1907 if (wired) {
1908 c_pte->attr.raw |= MMU_SHORT_PTE_WIRED;
1909 c_tbl->ct_wcnt++;
1910 }
1911
1912 /*
1913 * Map the page, being careful to preserve modify/reference/wired
1914 * bits. At this point it is assumed that the PTE either has no bits
1915 * set, or if there are set bits, they are only modified, reference or
1916 * wired bits. If not, the following statement will cause erratic
1917 * behavior.
1918 */
1919 #ifdef PMAP_DEBUG
1920 if (c_pte->attr.raw & ~(MMU_SHORT_PTE_M |
1921 MMU_SHORT_PTE_USED | MMU_SHORT_PTE_WIRED)) {
1922 printf("pmap_enter: junk left in PTE at %p\n", c_pte);
1923 Debugger();
1924 }
1925 #endif
1926 c_pte->attr.raw |= ((u_long) pa | MMU_DT_PAGE);
1927
1928 /*
1929 * If the mapping should be read-only, set the write protect
1930 * bit in the PTE.
1931 */
1932 if (!(prot & VM_PROT_WRITE))
1933 c_pte->attr.raw |= MMU_SHORT_PTE_WP;
1934
1935 /*
1936 * If the mapping should be cache inhibited (indicated by the flag
1937 * bits found on the lower order of the physical address.)
1938 * mark the PTE as a cache inhibited page.
1939 */
1940 if (mapflags & PMAP_NC)
1941 c_pte->attr.raw |= MMU_SHORT_PTE_CI;
1942
1943 /*
1944 * If the physical address being mapped is managed by the PV
1945 * system then link the pte into the list of pages mapped to that
1946 * address.
1947 */
1948 if (insert && managed) {
1949 pv = pa2pv(pa);
1950 nidx = pteidx(c_pte);
1951
1952 pvebase[nidx].pve_next = pv->pv_idx;
1953 pv->pv_idx = nidx;
1954 }
1955
1956 /* Move any allocated tables back into the active pool. */
1957
1958 switch (llevel) {
1959 case NEWA:
1960 TAILQ_INSERT_TAIL(&a_pool, a_tbl, at_link);
1961 /* FALLTHROUGH */
1962 case NEWB:
1963 TAILQ_INSERT_TAIL(&b_pool, b_tbl, bt_link);
1964 /* FALLTHROUGH */
1965 case NEWC:
1966 TAILQ_INSERT_TAIL(&c_pool, c_tbl, ct_link);
1967 /* FALLTHROUGH */
1968 default:
1969 break;
1970 }
1971
1972 return 0;
1973 }
1974
1975 /* pmap_enter_kernel INTERNAL
1976 **
1977 * Map the given virtual address to the given physical address within the
1978 * kernel address space. This function exists because the kernel map does
1979 * not do dynamic table allocation. It consists of a contiguous array of ptes
1980 * and can be edited directly without the need to walk through any tables.
1981 *
1982 * XXX: "Danger, Will Robinson!"
1983 * Note that the kernel should never take a fault on any page
1984 * between [ KERNBASE .. virtual_avail ] and this is checked in
1985 * trap.c for kernel-mode MMU faults. This means that mappings
1986 * created in that range must be implicily wired. -gwr
1987 */
1988 void
1989 pmap_enter_kernel(va, pa, prot)
1990 vaddr_t va;
1991 paddr_t pa;
1992 vm_prot_t prot;
1993 {
1994 boolean_t was_valid, insert;
1995 u_short pte_idx;
1996 int flags;
1997 mmu_short_pte_t *pte;
1998 pv_t *pv;
1999 paddr_t old_pa;
2000
2001 flags = (pa & ~MMU_PAGE_MASK);
2002 pa &= MMU_PAGE_MASK;
2003
2004 if (is_managed(pa))
2005 insert = TRUE;
2006 else
2007 insert = FALSE;
2008
2009 /*
2010 * Calculate the index of the PTE being modified.
2011 */
2012 pte_idx = (u_long) m68k_btop(va - KERNBASE);
2013
2014 /* This array is traditionally named "Sysmap" */
2015 pte = &kernCbase[pte_idx];
2016
2017 if (MMU_VALID_DT(*pte)) {
2018 was_valid = TRUE;
2019 /*
2020 * If the PTE already maps a different
2021 * physical address, umap and pv_unlink.
2022 */
2023 old_pa = MMU_PTE_PA(*pte);
2024 if (pa != old_pa)
2025 pmap_remove_pte(pte);
2026 else {
2027 /*
2028 * Old PA and new PA are the same. No need to
2029 * relink the mapping within the PV list.
2030 */
2031 insert = FALSE;
2032
2033 /*
2034 * Save any mod/ref bits on the PTE.
2035 */
2036 pte->attr.raw &= (MMU_SHORT_PTE_USED|MMU_SHORT_PTE_M);
2037 }
2038 } else {
2039 pte->attr.raw = MMU_DT_INVALID;
2040 was_valid = FALSE;
2041 }
2042
2043 /*
2044 * Map the page. Being careful to preserve modified/referenced bits
2045 * on the PTE.
2046 */
2047 pte->attr.raw |= (pa | MMU_DT_PAGE);
2048
2049 if (!(prot & VM_PROT_WRITE)) /* If access should be read-only */
2050 pte->attr.raw |= MMU_SHORT_PTE_WP;
2051 if (flags & PMAP_NC)
2052 pte->attr.raw |= MMU_SHORT_PTE_CI;
2053 if (was_valid)
2054 TBIS(va);
2055
2056 /*
2057 * Insert the PTE into the PV system, if need be.
2058 */
2059 if (insert) {
2060 pv = pa2pv(pa);
2061 pvebase[pte_idx].pve_next = pv->pv_idx;
2062 pv->pv_idx = pte_idx;
2063 }
2064 }
2065
2066 void
2067 pmap_kenter_pa(va, pa, prot)
2068 vaddr_t va;
2069 paddr_t pa;
2070 vm_prot_t prot;
2071 {
2072 mmu_short_pte_t *pte;
2073
2074 /* This array is traditionally named "Sysmap" */
2075 pte = &kernCbase[(u_long)m68k_btop(va - KERNBASE)];
2076
2077 KASSERT(!MMU_VALID_DT(*pte));
2078 pte->attr.raw = MMU_DT_INVALID | MMU_DT_PAGE | (pa & MMU_PAGE_MASK);
2079 if (!(prot & VM_PROT_WRITE))
2080 pte->attr.raw |= MMU_SHORT_PTE_WP;
2081 }
2082
2083 void
2084 pmap_kremove(va, len)
2085 vaddr_t va;
2086 vsize_t len;
2087 {
2088 int idx, eidx;
2089
2090 #ifdef PMAP_DEBUG
2091 if ((sva & PGOFSET) || (eva & PGOFSET))
2092 panic("pmap_kremove: alignment");
2093 #endif
2094
2095 idx = m68k_btop(va - KERNBASE);
2096 eidx = m68k_btop(va + len - KERNBASE);
2097
2098 while (idx < eidx) {
2099 kernCbase[idx++].attr.raw = MMU_DT_INVALID;
2100 TBIS(va);
2101 va += PAGE_SIZE;
2102 }
2103 }
2104
2105 /* pmap_map INTERNAL
2106 **
2107 * Map a contiguous range of physical memory into a contiguous range of
2108 * the kernel virtual address space.
2109 *
2110 * Used for device mappings and early mapping of the kernel text/data/bss.
2111 * Returns the first virtual address beyond the end of the range.
2112 */
2113 vaddr_t
2114 pmap_map(va, pa, endpa, prot)
2115 vaddr_t va;
2116 paddr_t pa;
2117 paddr_t endpa;
2118 int prot;
2119 {
2120 int sz;
2121
2122 sz = endpa - pa;
2123 do {
2124 pmap_enter_kernel(va, pa, prot);
2125 va += PAGE_SIZE;
2126 pa += PAGE_SIZE;
2127 sz -= PAGE_SIZE;
2128 } while (sz > 0);
2129 pmap_update(pmap_kernel());
2130 return(va);
2131 }
2132
2133 /* pmap_protect INTERFACE
2134 **
2135 * Apply the given protection to the given virtual address range within
2136 * the given map.
2137 *
2138 * It is ok for the protection applied to be stronger than what is
2139 * specified. We use this to our advantage when the given map has no
2140 * mapping for the virtual address. By skipping a page when this
2141 * is discovered, we are effectively applying a protection of VM_PROT_NONE,
2142 * and therefore do not need to map the page just to apply a protection
2143 * code. Only pmap_enter() needs to create new mappings if they do not exist.
2144 *
2145 * XXX - This function could be speeded up by using pmap_stroll() for inital
2146 * setup, and then manual scrolling in the for() loop.
2147 */
2148 void
2149 pmap_protect(pmap, startva, endva, prot)
2150 pmap_t pmap;
2151 vaddr_t startva, endva;
2152 vm_prot_t prot;
2153 {
2154 boolean_t iscurpmap;
2155 int a_idx, b_idx, c_idx;
2156 a_tmgr_t *a_tbl;
2157 b_tmgr_t *b_tbl;
2158 c_tmgr_t *c_tbl;
2159 mmu_short_pte_t *pte;
2160
2161 if (pmap == pmap_kernel()) {
2162 pmap_protect_kernel(startva, endva, prot);
2163 return;
2164 }
2165
2166 /*
2167 * In this particular pmap implementation, there are only three
2168 * types of memory protection: 'all' (read/write/execute),
2169 * 'read-only' (read/execute) and 'none' (no mapping.)
2170 * It is not possible for us to treat 'executable' as a separate
2171 * protection type. Therefore, protection requests that seek to
2172 * remove execute permission while retaining read or write, and those
2173 * that make little sense (write-only for example) are ignored.
2174 */
2175 switch (prot) {
2176 case VM_PROT_NONE:
2177 /*
2178 * A request to apply the protection code of
2179 * 'VM_PROT_NONE' is a synonym for pmap_remove().
2180 */
2181 pmap_remove(pmap, startva, endva);
2182 return;
2183 case VM_PROT_EXECUTE:
2184 case VM_PROT_READ:
2185 case VM_PROT_READ|VM_PROT_EXECUTE:
2186 /* continue */
2187 break;
2188 case VM_PROT_WRITE:
2189 case VM_PROT_WRITE|VM_PROT_READ:
2190 case VM_PROT_WRITE|VM_PROT_EXECUTE:
2191 case VM_PROT_ALL:
2192 /* None of these should happen in a sane system. */
2193 return;
2194 }
2195
2196 /*
2197 * If the pmap has no A table, it has no mappings and therefore
2198 * there is nothing to protect.
2199 */
2200 if ((a_tbl = pmap->pm_a_tmgr) == NULL)
2201 return;
2202
2203 a_idx = MMU_TIA(startva);
2204 b_idx = MMU_TIB(startva);
2205 c_idx = MMU_TIC(startva);
2206 b_tbl = (b_tmgr_t *) c_tbl = NULL;
2207
2208 iscurpmap = (pmap == current_pmap());
2209 while (startva < endva) {
2210 if (b_tbl || MMU_VALID_DT(a_tbl->at_dtbl[a_idx])) {
2211 if (b_tbl == NULL) {
2212 b_tbl = (b_tmgr_t *) a_tbl->at_dtbl[a_idx].addr.raw;
2213 b_tbl = mmu_ptov((vaddr_t)b_tbl);
2214 b_tbl = mmuB2tmgr((mmu_short_dte_t *)b_tbl);
2215 }
2216 if (c_tbl || MMU_VALID_DT(b_tbl->bt_dtbl[b_idx])) {
2217 if (c_tbl == NULL) {
2218 c_tbl = (c_tmgr_t *) MMU_DTE_PA(b_tbl->bt_dtbl[b_idx]);
2219 c_tbl = mmu_ptov((vaddr_t)c_tbl);
2220 c_tbl = mmuC2tmgr((mmu_short_pte_t *)c_tbl);
2221 }
2222 if (MMU_VALID_DT(c_tbl->ct_dtbl[c_idx])) {
2223 pte = &c_tbl->ct_dtbl[c_idx];
2224 /* make the mapping read-only */
2225 pte->attr.raw |= MMU_SHORT_PTE_WP;
2226 /*
2227 * If we just modified the current address space,
2228 * flush any translations for the modified page from
2229 * the translation cache and any data from it in the
2230 * data cache.
2231 */
2232 if (iscurpmap)
2233 TBIS(startva);
2234 }
2235 startva += PAGE_SIZE;
2236
2237 if (++c_idx >= MMU_C_TBL_SIZE) { /* exceeded C table? */
2238 c_tbl = NULL;
2239 c_idx = 0;
2240 if (++b_idx >= MMU_B_TBL_SIZE) { /* exceeded B table? */
2241 b_tbl = NULL;
2242 b_idx = 0;
2243 }
2244 }
2245 } else { /* C table wasn't valid */
2246 c_tbl = NULL;
2247 c_idx = 0;
2248 startva += MMU_TIB_RANGE;
2249 if (++b_idx >= MMU_B_TBL_SIZE) { /* exceeded B table? */
2250 b_tbl = NULL;
2251 b_idx = 0;
2252 }
2253 } /* C table */
2254 } else { /* B table wasn't valid */
2255 b_tbl = NULL;
2256 b_idx = 0;
2257 startva += MMU_TIA_RANGE;
2258 a_idx++;
2259 } /* B table */
2260 }
2261 }
2262
2263 /* pmap_protect_kernel INTERNAL
2264 **
2265 * Apply the given protection code to a kernel address range.
2266 */
2267 void
2268 pmap_protect_kernel(startva, endva, prot)
2269 vaddr_t startva, endva;
2270 vm_prot_t prot;
2271 {
2272 vaddr_t va;
2273 mmu_short_pte_t *pte;
2274
2275 pte = &kernCbase[(unsigned long) m68k_btop(startva - KERNBASE)];
2276 for (va = startva; va < endva; va += PAGE_SIZE, pte++) {
2277 if (MMU_VALID_DT(*pte)) {
2278 switch (prot) {
2279 case VM_PROT_ALL:
2280 break;
2281 case VM_PROT_EXECUTE:
2282 case VM_PROT_READ:
2283 case VM_PROT_READ|VM_PROT_EXECUTE:
2284 pte->attr.raw |= MMU_SHORT_PTE_WP;
2285 break;
2286 case VM_PROT_NONE:
2287 /* this is an alias for 'pmap_remove_kernel' */
2288 pmap_remove_pte(pte);
2289 break;
2290 default:
2291 break;
2292 }
2293 /*
2294 * since this is the kernel, immediately flush any cached
2295 * descriptors for this address.
2296 */
2297 TBIS(va);
2298 }
2299 }
2300 }
2301
2302 /* pmap_unwire INTERFACE
2303 **
2304 * Clear the wired attribute of the specified page.
2305 *
2306 * This function is called from vm_fault.c to unwire
2307 * a mapping.
2308 */
2309 void
2310 pmap_unwire(pmap, va)
2311 pmap_t pmap;
2312 vaddr_t va;
2313 {
2314 int a_idx, b_idx, c_idx;
2315 a_tmgr_t *a_tbl;
2316 b_tmgr_t *b_tbl;
2317 c_tmgr_t *c_tbl;
2318 mmu_short_pte_t *pte;
2319
2320 /* Kernel mappings always remain wired. */
2321 if (pmap == pmap_kernel())
2322 return;
2323
2324 /*
2325 * Walk through the tables. If the walk terminates without
2326 * a valid PTE then the address wasn't wired in the first place.
2327 * Return immediately.
2328 */
2329 if (pmap_stroll(pmap, va, &a_tbl, &b_tbl, &c_tbl, &pte, &a_idx,
2330 &b_idx, &c_idx) == FALSE)
2331 return;
2332
2333
2334 /* Is the PTE wired? If not, return. */
2335 if (!(pte->attr.raw & MMU_SHORT_PTE_WIRED))
2336 return;
2337
2338 /* Remove the wiring bit. */
2339 pte->attr.raw &= ~(MMU_SHORT_PTE_WIRED);
2340
2341 /*
2342 * Decrement the wired entry count in the C table.
2343 * If it reaches zero the following things happen:
2344 * 1. The table no longer has any wired entries and is considered
2345 * unwired.
2346 * 2. It is placed on the available queue.
2347 * 3. The parent table's wired entry count is decremented.
2348 * 4. If it reaches zero, this process repeats at step 1 and
2349 * stops at after reaching the A table.
2350 */
2351 if (--c_tbl->ct_wcnt == 0) {
2352 TAILQ_INSERT_TAIL(&c_pool, c_tbl, ct_link);
2353 if (--b_tbl->bt_wcnt == 0) {
2354 TAILQ_INSERT_TAIL(&b_pool, b_tbl, bt_link);
2355 if (--a_tbl->at_wcnt == 0) {
2356 TAILQ_INSERT_TAIL(&a_pool, a_tbl, at_link);
2357 }
2358 }
2359 }
2360 }
2361
2362 /* pmap_copy INTERFACE
2363 **
2364 * Copy the mappings of a range of addresses in one pmap, into
2365 * the destination address of another.
2366 *
2367 * This routine is advisory. Should we one day decide that MMU tables
2368 * may be shared by more than one pmap, this function should be used to
2369 * link them together. Until that day however, we do nothing.
2370 */
2371 void
2372 pmap_copy(pmap_a, pmap_b, dst, len, src)
2373 pmap_t pmap_a, pmap_b;
2374 vaddr_t dst;
2375 vsize_t len;
2376 vaddr_t src;
2377 {
2378 /* not implemented. */
2379 }
2380
2381 /* pmap_copy_page INTERFACE
2382 **
2383 * Copy the contents of one physical page into another.
2384 *
2385 * This function makes use of two virtual pages allocated in pmap_bootstrap()
2386 * to map the two specified physical pages into the kernel address space.
2387 *
2388 * Note: We could use the transparent translation registers to make the
2389 * mappings. If we do so, be sure to disable interrupts before using them.
2390 */
2391 void
2392 pmap_copy_page(srcpa, dstpa)
2393 paddr_t srcpa, dstpa;
2394 {
2395 vaddr_t srcva, dstva;
2396 int s;
2397
2398 srcva = tmp_vpages[0];
2399 dstva = tmp_vpages[1];
2400
2401 s = splvm();
2402 #ifdef DIAGNOSTIC
2403 if (tmp_vpages_inuse++)
2404 panic("pmap_copy_page: temporary vpages are in use.");
2405 #endif
2406
2407 /* Map pages as non-cacheable to avoid cache polution? */
2408 pmap_kenter_pa(srcva, srcpa, VM_PROT_READ);
2409 pmap_kenter_pa(dstva, dstpa, VM_PROT_READ|VM_PROT_WRITE);
2410
2411 /* Hand-optimized version of bcopy(src, dst, PAGE_SIZE) */
2412 copypage((char *) srcva, (char *) dstva);
2413
2414 pmap_kremove(srcva, PAGE_SIZE);
2415 pmap_kremove(dstva, PAGE_SIZE);
2416
2417 #ifdef DIAGNOSTIC
2418 --tmp_vpages_inuse;
2419 #endif
2420 splx(s);
2421 }
2422
2423 /* pmap_zero_page INTERFACE
2424 **
2425 * Zero the contents of the specified physical page.
2426 *
2427 * Uses one of the virtual pages allocated in pmap_boostrap()
2428 * to map the specified page into the kernel address space.
2429 */
2430 void
2431 pmap_zero_page(dstpa)
2432 paddr_t dstpa;
2433 {
2434 vaddr_t dstva;
2435 int s;
2436
2437 dstva = tmp_vpages[1];
2438 s = splvm();
2439 #ifdef DIAGNOSTIC
2440 if (tmp_vpages_inuse++)
2441 panic("pmap_zero_page: temporary vpages are in use.");
2442 #endif
2443
2444 /* The comments in pmap_copy_page() above apply here also. */
2445 pmap_kenter_pa(dstva, dstpa, VM_PROT_READ|VM_PROT_WRITE);
2446
2447 /* Hand-optimized version of bzero(ptr, PAGE_SIZE) */
2448 zeropage((char *) dstva);
2449
2450 pmap_kremove(dstva, PAGE_SIZE);
2451 #ifdef DIAGNOSTIC
2452 --tmp_vpages_inuse;
2453 #endif
2454 splx(s);
2455 }
2456
2457 /* pmap_collect INTERFACE
2458 **
2459 * Called from the VM system when we are about to swap out
2460 * the process using this pmap. This should give up any
2461 * resources held here, including all its MMU tables.
2462 */
2463 void
2464 pmap_collect(pmap)
2465 pmap_t pmap;
2466 {
2467 /* XXX - todo... */
2468 }
2469
2470 /* pmap_create INTERFACE
2471 **
2472 * Create and return a pmap structure.
2473 */
2474 pmap_t
2475 pmap_create()
2476 {
2477 pmap_t pmap;
2478
2479 pmap = pool_get(&pmap_pmap_pool, PR_WAITOK);
2480 pmap_pinit(pmap);
2481 return pmap;
2482 }
2483
2484 /* pmap_pinit INTERNAL
2485 **
2486 * Initialize a pmap structure.
2487 */
2488 void
2489 pmap_pinit(pmap)
2490 pmap_t pmap;
2491 {
2492 memset(pmap, 0, sizeof(struct pmap));
2493 pmap->pm_a_tmgr = NULL;
2494 pmap->pm_a_phys = kernAphys;
2495 pmap->pm_refcount = 1;
2496 simple_lock_init(&pmap->pm_lock);
2497 }
2498
2499 /* pmap_release INTERFACE
2500 **
2501 * Release any resources held by the given pmap.
2502 *
2503 * This is the reverse analog to pmap_pinit. It does not
2504 * necessarily mean for the pmap structure to be deallocated,
2505 * as in pmap_destroy.
2506 */
2507 void
2508 pmap_release(pmap)
2509 pmap_t pmap;
2510 {
2511 /*
2512 * As long as the pmap contains no mappings,
2513 * which always should be the case whenever
2514 * this function is called, there really should
2515 * be nothing to do.
2516 */
2517 #ifdef PMAP_DEBUG
2518 if (pmap == pmap_kernel())
2519 panic("pmap_release: kernel pmap");
2520 #endif
2521 /*
2522 * XXX - If this pmap has an A table, give it back.
2523 * The pmap SHOULD be empty by now, and pmap_remove
2524 * should have already given back the A table...
2525 * However, I see: pmap->pm_a_tmgr->at_ecnt == 1
2526 * at this point, which means some mapping was not
2527 * removed when it should have been. -gwr
2528 */
2529 if (pmap->pm_a_tmgr != NULL) {
2530 /* First make sure we are not using it! */
2531 if (kernel_crp.rp_addr == pmap->pm_a_phys) {
2532 kernel_crp.rp_addr = kernAphys;
2533 loadcrp(&kernel_crp);
2534 }
2535 #ifdef PMAP_DEBUG /* XXX - todo! */
2536 /* XXX - Now complain... */
2537 printf("pmap_release: still have table\n");
2538 Debugger();
2539 #endif
2540 free_a_table(pmap->pm_a_tmgr, TRUE);
2541 pmap->pm_a_tmgr = NULL;
2542 pmap->pm_a_phys = kernAphys;
2543 }
2544 }
2545
2546 /* pmap_reference INTERFACE
2547 **
2548 * Increment the reference count of a pmap.
2549 */
2550 void
2551 pmap_reference(pmap)
2552 pmap_t pmap;
2553 {
2554 pmap_lock(pmap);
2555 pmap_add_ref(pmap);
2556 pmap_unlock(pmap);
2557 }
2558
2559 /* pmap_dereference INTERNAL
2560 **
2561 * Decrease the reference count on the given pmap
2562 * by one and return the current count.
2563 */
2564 int
2565 pmap_dereference(pmap)
2566 pmap_t pmap;
2567 {
2568 int rtn;
2569
2570 pmap_lock(pmap);
2571 rtn = pmap_del_ref(pmap);
2572 pmap_unlock(pmap);
2573
2574 return rtn;
2575 }
2576
2577 /* pmap_destroy INTERFACE
2578 **
2579 * Decrement a pmap's reference count and delete
2580 * the pmap if it becomes zero. Will be called
2581 * only after all mappings have been removed.
2582 */
2583 void
2584 pmap_destroy(pmap)
2585 pmap_t pmap;
2586 {
2587 if (pmap_dereference(pmap) == 0) {
2588 pmap_release(pmap);
2589 pool_put(&pmap_pmap_pool, pmap);
2590 }
2591 }
2592
2593 /* pmap_is_referenced INTERFACE
2594 **
2595 * Determine if the given physical page has been
2596 * referenced (read from [or written to.])
2597 */
2598 boolean_t
2599 pmap_is_referenced(pg)
2600 struct vm_page *pg;
2601 {
2602 paddr_t pa = VM_PAGE_TO_PHYS(pg);
2603 pv_t *pv;
2604 int idx;
2605
2606 /*
2607 * Check the flags on the pv head. If they are set,
2608 * return immediately. Otherwise a search must be done.
2609 */
2610
2611 pv = pa2pv(pa);
2612 if (pv->pv_flags & PV_FLAGS_USED)
2613 return TRUE;
2614
2615 /*
2616 * Search through all pv elements pointing
2617 * to this page and query their reference bits
2618 */
2619
2620 for (idx = pv->pv_idx; idx != PVE_EOL; idx = pvebase[idx].pve_next) {
2621 if (MMU_PTE_USED(kernCbase[idx])) {
2622 return TRUE;
2623 }
2624 }
2625 return FALSE;
2626 }
2627
2628 /* pmap_is_modified INTERFACE
2629 **
2630 * Determine if the given physical page has been
2631 * modified (written to.)
2632 */
2633 boolean_t
2634 pmap_is_modified(pg)
2635 struct vm_page *pg;
2636 {
2637 paddr_t pa = VM_PAGE_TO_PHYS(pg);
2638 pv_t *pv;
2639 int idx;
2640
2641 /* see comments in pmap_is_referenced() */
2642 pv = pa2pv(pa);
2643 if (pv->pv_flags & PV_FLAGS_MDFY)
2644 return TRUE;
2645
2646 for (idx = pv->pv_idx;
2647 idx != PVE_EOL;
2648 idx = pvebase[idx].pve_next) {
2649
2650 if (MMU_PTE_MODIFIED(kernCbase[idx])) {
2651 return TRUE;
2652 }
2653 }
2654
2655 return FALSE;
2656 }
2657
2658 /* pmap_page_protect INTERFACE
2659 **
2660 * Applies the given protection to all mappings to the given
2661 * physical page.
2662 */
2663 void
2664 pmap_page_protect(pg, prot)
2665 struct vm_page *pg;
2666 vm_prot_t prot;
2667 {
2668 paddr_t pa = VM_PAGE_TO_PHYS(pg);
2669 pv_t *pv;
2670 int idx;
2671 vaddr_t va;
2672 struct mmu_short_pte_struct *pte;
2673 c_tmgr_t *c_tbl;
2674 pmap_t pmap, curpmap;
2675
2676 curpmap = current_pmap();
2677 pv = pa2pv(pa);
2678
2679 for (idx = pv->pv_idx; idx != PVE_EOL; idx = pvebase[idx].pve_next) {
2680 pte = &kernCbase[idx];
2681 switch (prot) {
2682 case VM_PROT_ALL:
2683 /* do nothing */
2684 break;
2685 case VM_PROT_EXECUTE:
2686 case VM_PROT_READ:
2687 case VM_PROT_READ|VM_PROT_EXECUTE:
2688 /*
2689 * Determine the virtual address mapped by
2690 * the PTE and flush ATC entries if necessary.
2691 */
2692 va = pmap_get_pteinfo(idx, &pmap, &c_tbl);
2693 pte->attr.raw |= MMU_SHORT_PTE_WP;
2694 if (pmap == curpmap || pmap == pmap_kernel())
2695 TBIS(va);
2696 break;
2697 case VM_PROT_NONE:
2698 /* Save the mod/ref bits. */
2699 pv->pv_flags |= pte->attr.raw;
2700 /* Invalidate the PTE. */
2701 pte->attr.raw = MMU_DT_INVALID;
2702
2703 /*
2704 * Update table counts. And flush ATC entries
2705 * if necessary.
2706 */
2707 va = pmap_get_pteinfo(idx, &pmap, &c_tbl);
2708
2709 /*
2710 * If the PTE belongs to the kernel map,
2711 * be sure to flush the page it maps.
2712 */
2713 if (pmap == pmap_kernel()) {
2714 TBIS(va);
2715 } else {
2716 /*
2717 * The PTE belongs to a user map.
2718 * update the entry count in the C
2719 * table to which it belongs and flush
2720 * the ATC if the mapping belongs to
2721 * the current pmap.
2722 */
2723 c_tbl->ct_ecnt--;
2724 if (pmap == curpmap)
2725 TBIS(va);
2726 }
2727 break;
2728 default:
2729 break;
2730 }
2731 }
2732
2733 /*
2734 * If the protection code indicates that all mappings to the page
2735 * be removed, truncate the PV list to zero entries.
2736 */
2737 if (prot == VM_PROT_NONE)
2738 pv->pv_idx = PVE_EOL;
2739 }
2740
2741 /* pmap_get_pteinfo INTERNAL
2742 **
2743 * Called internally to find the pmap and virtual address within that
2744 * map to which the pte at the given index maps. Also includes the PTE's C
2745 * table manager.
2746 *
2747 * Returns the pmap in the argument provided, and the virtual address
2748 * by return value.
2749 */
2750 vaddr_t
2751 pmap_get_pteinfo(idx, pmap, tbl)
2752 u_int idx;
2753 pmap_t *pmap;
2754 c_tmgr_t **tbl;
2755 {
2756 vaddr_t va = 0;
2757
2758 /*
2759 * Determine if the PTE is a kernel PTE or a user PTE.
2760 */
2761 if (idx >= NUM_KERN_PTES) {
2762 /*
2763 * The PTE belongs to a user mapping.
2764 */
2765 /* XXX: Would like an inline for this to validate idx... */
2766 *tbl = &Ctmgrbase[(idx - NUM_KERN_PTES) / MMU_C_TBL_SIZE];
2767
2768 *pmap = (*tbl)->ct_pmap;
2769 /*
2770 * To find the va to which the PTE maps, we first take
2771 * the table's base virtual address mapping which is stored
2772 * in ct_va. We then increment this address by a page for
2773 * every slot skipped until we reach the PTE.
2774 */
2775 va = (*tbl)->ct_va;
2776 va += m68k_ptob(idx % MMU_C_TBL_SIZE);
2777 } else {
2778 /*
2779 * The PTE belongs to the kernel map.
2780 */
2781 *pmap = pmap_kernel();
2782
2783 va = m68k_ptob(idx);
2784 va += KERNBASE;
2785 }
2786
2787 return va;
2788 }
2789
2790 /* pmap_clear_modify INTERFACE
2791 **
2792 * Clear the modification bit on the page at the specified
2793 * physical address.
2794 *
2795 */
2796 boolean_t
2797 pmap_clear_modify(pg)
2798 struct vm_page *pg;
2799 {
2800 paddr_t pa = VM_PAGE_TO_PHYS(pg);
2801 boolean_t rv;
2802
2803 rv = pmap_is_modified(pg);
2804 pmap_clear_pv(pa, PV_FLAGS_MDFY);
2805 return rv;
2806 }
2807
2808 /* pmap_clear_reference INTERFACE
2809 **
2810 * Clear the referenced bit on the page at the specified
2811 * physical address.
2812 */
2813 boolean_t
2814 pmap_clear_reference(pg)
2815 struct vm_page *pg;
2816 {
2817 paddr_t pa = VM_PAGE_TO_PHYS(pg);
2818 boolean_t rv;
2819
2820 rv = pmap_is_referenced(pg);
2821 pmap_clear_pv(pa, PV_FLAGS_USED);
2822 return rv;
2823 }
2824
2825 /* pmap_clear_pv INTERNAL
2826 **
2827 * Clears the specified flag from the specified physical address.
2828 * (Used by pmap_clear_modify() and pmap_clear_reference().)
2829 *
2830 * Flag is one of:
2831 * PV_FLAGS_MDFY - Page modified bit.
2832 * PV_FLAGS_USED - Page used (referenced) bit.
2833 *
2834 * This routine must not only clear the flag on the pv list
2835 * head. It must also clear the bit on every pte in the pv
2836 * list associated with the address.
2837 */
2838 void
2839 pmap_clear_pv(pa, flag)
2840 paddr_t pa;
2841 int flag;
2842 {
2843 pv_t *pv;
2844 int idx;
2845 vaddr_t va;
2846 pmap_t pmap;
2847 mmu_short_pte_t *pte;
2848 c_tmgr_t *c_tbl;
2849
2850 pv = pa2pv(pa);
2851 pv->pv_flags &= ~(flag);
2852 for (idx = pv->pv_idx; idx != PVE_EOL; idx = pvebase[idx].pve_next) {
2853 pte = &kernCbase[idx];
2854 pte->attr.raw &= ~(flag);
2855
2856 /*
2857 * The MC68030 MMU will not set the modified or
2858 * referenced bits on any MMU tables for which it has
2859 * a cached descriptor with its modify bit set. To insure
2860 * that it will modify these bits on the PTE during the next
2861 * time it is written to or read from, we must flush it from
2862 * the ATC.
2863 *
2864 * Ordinarily it is only necessary to flush the descriptor
2865 * if it is used in the current address space. But since I
2866 * am not sure that there will always be a notion of
2867 * 'the current address space' when this function is called,
2868 * I will skip the test and always flush the address. It
2869 * does no harm.
2870 */
2871
2872 va = pmap_get_pteinfo(idx, &pmap, &c_tbl);
2873 TBIS(va);
2874 }
2875 }
2876
2877 /* pmap_extract INTERFACE
2878 **
2879 * Return the physical address mapped by the virtual address
2880 * in the specified pmap.
2881 *
2882 * Note: this function should also apply an exclusive lock
2883 * on the pmap system during its duration.
2884 */
2885 boolean_t
2886 pmap_extract(pmap, va, pap)
2887 pmap_t pmap;
2888 vaddr_t va;
2889 paddr_t *pap;
2890 {
2891 int a_idx, b_idx, pte_idx;
2892 a_tmgr_t *a_tbl;
2893 b_tmgr_t *b_tbl;
2894 c_tmgr_t *c_tbl;
2895 mmu_short_pte_t *c_pte;
2896
2897 if (pmap == pmap_kernel())
2898 return pmap_extract_kernel(va, pap);
2899
2900 if (pmap_stroll(pmap, va, &a_tbl, &b_tbl, &c_tbl,
2901 &c_pte, &a_idx, &b_idx, &pte_idx) == FALSE)
2902 return FALSE;
2903
2904 if (!MMU_VALID_DT(*c_pte))
2905 return FALSE;
2906
2907 if (pap != NULL)
2908 *pap = MMU_PTE_PA(*c_pte);
2909 return (TRUE);
2910 }
2911
2912 /* pmap_extract_kernel INTERNAL
2913 **
2914 * Extract a translation from the kernel address space.
2915 */
2916 boolean_t
2917 pmap_extract_kernel(va, pap)
2918 vaddr_t va;
2919 paddr_t *pap;
2920 {
2921 mmu_short_pte_t *pte;
2922
2923 pte = &kernCbase[(u_int) m68k_btop(va - KERNBASE)];
2924 if (!MMU_VALID_DT(*pte))
2925 return (FALSE);
2926 if (pap != NULL)
2927 *pap = MMU_PTE_PA(*pte);
2928 return (TRUE);
2929 }
2930
2931 /* pmap_remove_kernel INTERNAL
2932 **
2933 * Remove the mapping of a range of virtual addresses from the kernel map.
2934 * The arguments are already page-aligned.
2935 */
2936 void
2937 pmap_remove_kernel(sva, eva)
2938 vaddr_t sva;
2939 vaddr_t eva;
2940 {
2941 int idx, eidx;
2942
2943 #ifdef PMAP_DEBUG
2944 if ((sva & PGOFSET) || (eva & PGOFSET))
2945 panic("pmap_remove_kernel: alignment");
2946 #endif
2947
2948 idx = m68k_btop(sva - KERNBASE);
2949 eidx = m68k_btop(eva - KERNBASE);
2950
2951 while (idx < eidx) {
2952 pmap_remove_pte(&kernCbase[idx++]);
2953 TBIS(sva);
2954 sva += PAGE_SIZE;
2955 }
2956 }
2957
2958 /* pmap_remove INTERFACE
2959 **
2960 * Remove the mapping of a range of virtual addresses from the given pmap.
2961 *
2962 * If the range contains any wired entries, this function will probably create
2963 * disaster.
2964 */
2965 void
2966 pmap_remove(pmap, start, end)
2967 pmap_t pmap;
2968 vaddr_t start;
2969 vaddr_t end;
2970 {
2971
2972 if (pmap == pmap_kernel()) {
2973 pmap_remove_kernel(start, end);
2974 return;
2975 }
2976
2977 /*
2978 * If the pmap doesn't have an A table of its own, it has no mappings
2979 * that can be removed.
2980 */
2981 if (pmap->pm_a_tmgr == NULL)
2982 return;
2983
2984 /*
2985 * Remove the specified range from the pmap. If the function
2986 * returns true, the operation removed all the valid mappings
2987 * in the pmap and freed its A table. If this happened to the
2988 * currently loaded pmap, the MMU root pointer must be reloaded
2989 * with the default 'kernel' map.
2990 */
2991 if (pmap_remove_a(pmap->pm_a_tmgr, start, end)) {
2992 if (kernel_crp.rp_addr == pmap->pm_a_phys) {
2993 kernel_crp.rp_addr = kernAphys;
2994 loadcrp(&kernel_crp);
2995 /* will do TLB flush below */
2996 }
2997 pmap->pm_a_tmgr = NULL;
2998 pmap->pm_a_phys = kernAphys;
2999 }
3000
3001 /*
3002 * If we just modified the current address space,
3003 * make sure to flush the MMU cache.
3004 *
3005 * XXX - this could be an unecessarily large flush.
3006 * XXX - Could decide, based on the size of the VA range
3007 * to be removed, whether to flush "by pages" or "all".
3008 */
3009 if (pmap == current_pmap())
3010 TBIAU();
3011 }
3012
3013 /* pmap_remove_a INTERNAL
3014 **
3015 * This is function number one in a set of three that removes a range
3016 * of memory in the most efficient manner by removing the highest possible
3017 * tables from the memory space. This particular function attempts to remove
3018 * as many B tables as it can, delegating the remaining fragmented ranges to
3019 * pmap_remove_b().
3020 *
3021 * If the removal operation results in an empty A table, the function returns
3022 * TRUE.
3023 *
3024 * It's ugly but will do for now.
3025 */
3026 boolean_t
3027 pmap_remove_a(a_tbl, start, end)
3028 a_tmgr_t *a_tbl;
3029 vaddr_t start;
3030 vaddr_t end;
3031 {
3032 boolean_t empty;
3033 int idx;
3034 vaddr_t nstart, nend;
3035 b_tmgr_t *b_tbl;
3036 mmu_long_dte_t *a_dte;
3037 mmu_short_dte_t *b_dte;
3038
3039 /*
3040 * The following code works with what I call a 'granularity
3041 * reduction algorithim'. A range of addresses will always have
3042 * the following properties, which are classified according to
3043 * how the range relates to the size of the current granularity
3044 * - an A table entry:
3045 *
3046 * 1 2 3 4
3047 * -+---+---+---+---+---+---+---+-
3048 * -+---+---+---+---+---+---+---+-
3049 *
3050 * A range will always start on a granularity boundary, illustrated
3051 * by '+' signs in the table above, or it will start at some point
3052 * inbetween a granularity boundary, as illustrated by point 1.
3053 * The first step in removing a range of addresses is to remove the
3054 * range between 1 and 2, the nearest granularity boundary. This
3055 * job is handled by the section of code governed by the
3056 * 'if (start < nstart)' statement.
3057 *
3058 * A range will always encompass zero or more intergral granules,
3059 * illustrated by points 2 and 3. Integral granules are easy to
3060 * remove. The removal of these granules is the second step, and
3061 * is handled by the code block 'if (nstart < nend)'.
3062 *
3063 * Lastly, a range will always end on a granularity boundary,
3064 * ill. by point 3, or it will fall just beyond one, ill. by point
3065 * 4. The last step involves removing this range and is handled by
3066 * the code block 'if (nend < end)'.
3067 */
3068 nstart = MMU_ROUND_UP_A(start);
3069 nend = MMU_ROUND_A(end);
3070
3071 if (start < nstart) {
3072 /*
3073 * This block is executed if the range starts between
3074 * a granularity boundary.
3075 *
3076 * First find the DTE which is responsible for mapping
3077 * the start of the range.
3078 */
3079 idx = MMU_TIA(start);
3080 a_dte = &a_tbl->at_dtbl[idx];
3081
3082 /*
3083 * If the DTE is valid then delegate the removal of the sub
3084 * range to pmap_remove_b(), which can remove addresses at
3085 * a finer granularity.
3086 */
3087 if (MMU_VALID_DT(*a_dte)) {
3088 b_dte = mmu_ptov(a_dte->addr.raw);
3089 b_tbl = mmuB2tmgr(b_dte);
3090
3091 /*
3092 * The sub range to be removed starts at the start
3093 * of the full range we were asked to remove, and ends
3094 * at the greater of:
3095 * 1. The end of the full range, -or-
3096 * 2. The end of the full range, rounded down to the
3097 * nearest granularity boundary.
3098 */
3099 if (end < nstart)
3100 empty = pmap_remove_b(b_tbl, start, end);
3101 else
3102 empty = pmap_remove_b(b_tbl, start, nstart);
3103
3104 /*
3105 * If the removal resulted in an empty B table,
3106 * invalidate the DTE that points to it and decrement
3107 * the valid entry count of the A table.
3108 */
3109 if (empty) {
3110 a_dte->attr.raw = MMU_DT_INVALID;
3111 a_tbl->at_ecnt--;
3112 }
3113 }
3114 /*
3115 * If the DTE is invalid, the address range is already non-
3116 * existent and can simply be skipped.
3117 */
3118 }
3119 if (nstart < nend) {
3120 /*
3121 * This block is executed if the range spans a whole number
3122 * multiple of granules (A table entries.)
3123 *
3124 * First find the DTE which is responsible for mapping
3125 * the start of the first granule involved.
3126 */
3127 idx = MMU_TIA(nstart);
3128 a_dte = &a_tbl->at_dtbl[idx];
3129
3130 /*
3131 * Remove entire sub-granules (B tables) one at a time,
3132 * until reaching the end of the range.
3133 */
3134 for (; nstart < nend; a_dte++, nstart += MMU_TIA_RANGE)
3135 if (MMU_VALID_DT(*a_dte)) {
3136 /*
3137 * Find the B table manager for the
3138 * entry and free it.
3139 */
3140 b_dte = mmu_ptov(a_dte->addr.raw);
3141 b_tbl = mmuB2tmgr(b_dte);
3142 free_b_table(b_tbl, TRUE);
3143
3144 /*
3145 * Invalidate the DTE that points to the
3146 * B table and decrement the valid entry
3147 * count of the A table.
3148 */
3149 a_dte->attr.raw = MMU_DT_INVALID;
3150 a_tbl->at_ecnt--;
3151 }
3152 }
3153 if (nend < end) {
3154 /*
3155 * This block is executed if the range ends beyond a
3156 * granularity boundary.
3157 *
3158 * First find the DTE which is responsible for mapping
3159 * the start of the nearest (rounded down) granularity
3160 * boundary.
3161 */
3162 idx = MMU_TIA(nend);
3163 a_dte = &a_tbl->at_dtbl[idx];
3164
3165 /*
3166 * If the DTE is valid then delegate the removal of the sub
3167 * range to pmap_remove_b(), which can remove addresses at
3168 * a finer granularity.
3169 */
3170 if (MMU_VALID_DT(*a_dte)) {
3171 /*
3172 * Find the B table manager for the entry
3173 * and hand it to pmap_remove_b() along with
3174 * the sub range.
3175 */
3176 b_dte = mmu_ptov(a_dte->addr.raw);
3177 b_tbl = mmuB2tmgr(b_dte);
3178
3179 empty = pmap_remove_b(b_tbl, nend, end);
3180
3181 /*
3182 * If the removal resulted in an empty B table,
3183 * invalidate the DTE that points to it and decrement
3184 * the valid entry count of the A table.
3185 */
3186 if (empty) {
3187 a_dte->attr.raw = MMU_DT_INVALID;
3188 a_tbl->at_ecnt--;
3189 }
3190 }
3191 }
3192
3193 /*
3194 * If there are no more entries in the A table, release it
3195 * back to the available pool and return TRUE.
3196 */
3197 if (a_tbl->at_ecnt == 0) {
3198 a_tbl->at_parent = NULL;
3199 TAILQ_REMOVE(&a_pool, a_tbl, at_link);
3200 TAILQ_INSERT_HEAD(&a_pool, a_tbl, at_link);
3201 empty = TRUE;
3202 } else {
3203 empty = FALSE;
3204 }
3205
3206 return empty;
3207 }
3208
3209 /* pmap_remove_b INTERNAL
3210 **
3211 * Remove a range of addresses from an address space, trying to remove entire
3212 * C tables if possible.
3213 *
3214 * If the operation results in an empty B table, the function returns TRUE.
3215 */
3216 boolean_t
3217 pmap_remove_b(b_tbl, start, end)
3218 b_tmgr_t *b_tbl;
3219 vaddr_t start;
3220 vaddr_t end;
3221 {
3222 boolean_t empty;
3223 int idx;
3224 vaddr_t nstart, nend, rstart;
3225 c_tmgr_t *c_tbl;
3226 mmu_short_dte_t *b_dte;
3227 mmu_short_pte_t *c_dte;
3228
3229
3230 nstart = MMU_ROUND_UP_B(start);
3231 nend = MMU_ROUND_B(end);
3232
3233 if (start < nstart) {
3234 idx = MMU_TIB(start);
3235 b_dte = &b_tbl->bt_dtbl[idx];
3236 if (MMU_VALID_DT(*b_dte)) {
3237 c_dte = mmu_ptov(MMU_DTE_PA(*b_dte));
3238 c_tbl = mmuC2tmgr(c_dte);
3239 if (end < nstart)
3240 empty = pmap_remove_c(c_tbl, start, end);
3241 else
3242 empty = pmap_remove_c(c_tbl, start, nstart);
3243 if (empty) {
3244 b_dte->attr.raw = MMU_DT_INVALID;
3245 b_tbl->bt_ecnt--;
3246 }
3247 }
3248 }
3249 if (nstart < nend) {
3250 idx = MMU_TIB(nstart);
3251 b_dte = &b_tbl->bt_dtbl[idx];
3252 rstart = nstart;
3253 while (rstart < nend) {
3254 if (MMU_VALID_DT(*b_dte)) {
3255 c_dte = mmu_ptov(MMU_DTE_PA(*b_dte));
3256 c_tbl = mmuC2tmgr(c_dte);
3257 free_c_table(c_tbl, TRUE);
3258 b_dte->attr.raw = MMU_DT_INVALID;
3259 b_tbl->bt_ecnt--;
3260 }
3261 b_dte++;
3262 rstart += MMU_TIB_RANGE;
3263 }
3264 }
3265 if (nend < end) {
3266 idx = MMU_TIB(nend);
3267 b_dte = &b_tbl->bt_dtbl[idx];
3268 if (MMU_VALID_DT(*b_dte)) {
3269 c_dte = mmu_ptov(MMU_DTE_PA(*b_dte));
3270 c_tbl = mmuC2tmgr(c_dte);
3271 empty = pmap_remove_c(c_tbl, nend, end);
3272 if (empty) {
3273 b_dte->attr.raw = MMU_DT_INVALID;
3274 b_tbl->bt_ecnt--;
3275 }
3276 }
3277 }
3278
3279 if (b_tbl->bt_ecnt == 0) {
3280 b_tbl->bt_parent = NULL;
3281 TAILQ_REMOVE(&b_pool, b_tbl, bt_link);
3282 TAILQ_INSERT_HEAD(&b_pool, b_tbl, bt_link);
3283 empty = TRUE;
3284 } else {
3285 empty = FALSE;
3286 }
3287
3288 return empty;
3289 }
3290
3291 /* pmap_remove_c INTERNAL
3292 **
3293 * Remove a range of addresses from the given C table.
3294 */
3295 boolean_t
3296 pmap_remove_c(c_tbl, start, end)
3297 c_tmgr_t *c_tbl;
3298 vaddr_t start;
3299 vaddr_t end;
3300 {
3301 boolean_t empty;
3302 int idx;
3303 mmu_short_pte_t *c_pte;
3304
3305 idx = MMU_TIC(start);
3306 c_pte = &c_tbl->ct_dtbl[idx];
3307 for (;start < end; start += MMU_PAGE_SIZE, c_pte++) {
3308 if (MMU_VALID_DT(*c_pte)) {
3309 pmap_remove_pte(c_pte);
3310 c_tbl->ct_ecnt--;
3311 }
3312 }
3313
3314 if (c_tbl->ct_ecnt == 0) {
3315 c_tbl->ct_parent = NULL;
3316 TAILQ_REMOVE(&c_pool, c_tbl, ct_link);
3317 TAILQ_INSERT_HEAD(&c_pool, c_tbl, ct_link);
3318 empty = TRUE;
3319 } else {
3320 empty = FALSE;
3321 }
3322
3323 return empty;
3324 }
3325
3326 /* is_managed INTERNAL
3327 **
3328 * Determine if the given physical address is managed by the PV system.
3329 * Note that this logic assumes that no one will ask for the status of
3330 * addresses which lie in-between the memory banks on the 3/80. If they
3331 * do so, it will falsely report that it is managed.
3332 *
3333 * Note: A "managed" address is one that was reported to the VM system as
3334 * a "usable page" during system startup. As such, the VM system expects the
3335 * pmap module to keep an accurate track of the useage of those pages.
3336 * Any page not given to the VM system at startup does not exist (as far as
3337 * the VM system is concerned) and is therefore "unmanaged." Examples are
3338 * those pages which belong to the ROM monitor and the memory allocated before
3339 * the VM system was started.
3340 */
3341 boolean_t
3342 is_managed(pa)
3343 paddr_t pa;
3344 {
3345 if (pa >= avail_start && pa < avail_end)
3346 return TRUE;
3347 else
3348 return FALSE;
3349 }
3350
3351 /* pmap_bootstrap_alloc INTERNAL
3352 **
3353 * Used internally for memory allocation at startup when malloc is not
3354 * available. This code will fail once it crosses the first memory
3355 * bank boundary on the 3/80. Hopefully by then however, the VM system
3356 * will be in charge of allocation.
3357 */
3358 void *
3359 pmap_bootstrap_alloc(size)
3360 int size;
3361 {
3362 void *rtn;
3363
3364 #ifdef PMAP_DEBUG
3365 if (bootstrap_alloc_enabled == FALSE) {
3366 mon_printf("pmap_bootstrap_alloc: disabled\n");
3367 sunmon_abort();
3368 }
3369 #endif
3370
3371 rtn = (void *) virtual_avail;
3372 virtual_avail += size;
3373
3374 #ifdef PMAP_DEBUG
3375 if (virtual_avail > virtual_contig_end) {
3376 mon_printf("pmap_bootstrap_alloc: out of mem\n");
3377 sunmon_abort();
3378 }
3379 #endif
3380
3381 return rtn;
3382 }
3383
3384 /* pmap_bootstap_aalign INTERNAL
3385 **
3386 * Used to insure that the next call to pmap_bootstrap_alloc() will
3387 * return a chunk of memory aligned to the specified size.
3388 *
3389 * Note: This function will only support alignment sizes that are powers
3390 * of two.
3391 */
3392 void
3393 pmap_bootstrap_aalign(size)
3394 int size;
3395 {
3396 int off;
3397
3398 off = virtual_avail & (size - 1);
3399 if (off) {
3400 (void) pmap_bootstrap_alloc(size - off);
3401 }
3402 }
3403
3404 /* pmap_pa_exists
3405 **
3406 * Used by the /dev/mem driver to see if a given PA is memory
3407 * that can be mapped. (The PA is not in a hole.)
3408 */
3409 int
3410 pmap_pa_exists(pa)
3411 paddr_t pa;
3412 {
3413 int i;
3414
3415 for (i = 0; i < SUN3X_NPHYS_RAM_SEGS; i++) {
3416 if ((pa >= avail_mem[i].pmem_start) &&
3417 (pa < avail_mem[i].pmem_end))
3418 return (1);
3419 if (avail_mem[i].pmem_next == NULL)
3420 break;
3421 }
3422 return (0);
3423 }
3424
3425 /* Called only from locore.s and pmap.c */
3426 void _pmap_switch __P((pmap_t pmap));
3427
3428 /*
3429 * _pmap_switch INTERNAL
3430 *
3431 * This is called by locore.s:cpu_switch() when it is
3432 * switching to a new process. Load new translations.
3433 * Note: done in-line by locore.s unless PMAP_DEBUG
3434 *
3435 * Note that we do NOT allocate a context here, but
3436 * share the "kernel only" context until we really
3437 * need our own context for user-space mappings in
3438 * pmap_enter_user(). [ s/context/mmu A table/ ]
3439 */
3440 void
3441 _pmap_switch(pmap)
3442 pmap_t pmap;
3443 {
3444 u_long rootpa;
3445
3446 /*
3447 * Only do reload/flush if we have to.
3448 * Note that if the old and new process
3449 * were BOTH using the "null" context,
3450 * then this will NOT flush the TLB.
3451 */
3452 rootpa = pmap->pm_a_phys;
3453 if (kernel_crp.rp_addr != rootpa) {
3454 DPRINT(("pmap_activate(%p)\n", pmap));
3455 kernel_crp.rp_addr = rootpa;
3456 loadcrp(&kernel_crp);
3457 TBIAU();
3458 }
3459 }
3460
3461 /*
3462 * Exported version of pmap_activate(). This is called from the
3463 * machine-independent VM code when a process is given a new pmap.
3464 * If (p == curlwp) do like cpu_switch would do; otherwise just
3465 * take this as notification that the process has a new pmap.
3466 */
3467 void
3468 pmap_activate(l)
3469 struct lwp *l;
3470 {
3471 if (l->l_proc == curproc) {
3472 _pmap_switch(l->l_proc->p_vmspace->vm_map.pmap);
3473 }
3474 }
3475
3476 /*
3477 * pmap_deactivate INTERFACE
3478 **
3479 * This is called to deactivate the specified process's address space.
3480 */
3481 void
3482 pmap_deactivate(l)
3483 struct lwp *l;
3484 {
3485 /* Nothing to do. */
3486 }
3487
3488 /*
3489 * Fill in the sun3x-specific part of the kernel core header
3490 * for dumpsys(). (See machdep.c for the rest.)
3491 */
3492 void
3493 pmap_kcore_hdr(sh)
3494 struct sun3x_kcore_hdr *sh;
3495 {
3496 u_long spa, len;
3497 int i;
3498
3499 sh->pg_frame = MMU_SHORT_PTE_BASEADDR;
3500 sh->pg_valid = MMU_DT_PAGE;
3501 sh->contig_end = virtual_contig_end;
3502 sh->kernCbase = (u_long)kernCbase;
3503 for (i = 0; i < SUN3X_NPHYS_RAM_SEGS; i++) {
3504 spa = avail_mem[i].pmem_start;
3505 spa = m68k_trunc_page(spa);
3506 len = avail_mem[i].pmem_end - spa;
3507 len = m68k_round_page(len);
3508 sh->ram_segs[i].start = spa;
3509 sh->ram_segs[i].size = len;
3510 }
3511 }
3512
3513
3514 /*
3515 * Provide memory to the VM system.
3516 *
3517 * Assume avail_start is always in the
3518 * first segment as pmap_bootstrap does.
3519 */
3520 static void
3521 pmap_page_upload()
3522 {
3523 paddr_t a, b; /* memory range */
3524 int i;
3525
3526 /* Supply the memory in segments. */
3527 for (i = 0; i < SUN3X_NPHYS_RAM_SEGS; i++) {
3528 a = atop(avail_mem[i].pmem_start);
3529 b = atop(avail_mem[i].pmem_end);
3530 if (i == 0)
3531 a = atop(avail_start);
3532 if (avail_mem[i].pmem_end > avail_end)
3533 b = atop(avail_end);
3534
3535 uvm_page_physload(a, b, a, b, VM_FREELIST_DEFAULT);
3536
3537 if (avail_mem[i].pmem_next == NULL)
3538 break;
3539 }
3540 }
3541
3542 /* pmap_count INTERFACE
3543 **
3544 * Return the number of resident (valid) pages in the given pmap.
3545 *
3546 * Note: If this function is handed the kernel map, it will report
3547 * that it has no mappings. Hopefully the VM system won't ask for kernel
3548 * map statistics.
3549 */
3550 segsz_t
3551 pmap_count(pmap, type)
3552 pmap_t pmap;
3553 int type;
3554 {
3555 u_int count;
3556 int a_idx, b_idx;
3557 a_tmgr_t *a_tbl;
3558 b_tmgr_t *b_tbl;
3559 c_tmgr_t *c_tbl;
3560
3561 /*
3562 * If the pmap does not have its own A table manager, it has no
3563 * valid entires.
3564 */
3565 if (pmap->pm_a_tmgr == NULL)
3566 return 0;
3567
3568 a_tbl = pmap->pm_a_tmgr;
3569
3570 count = 0;
3571 for (a_idx = 0; a_idx < MMU_TIA(KERNBASE); a_idx++) {
3572 if (MMU_VALID_DT(a_tbl->at_dtbl[a_idx])) {
3573 b_tbl = mmuB2tmgr(mmu_ptov(a_tbl->at_dtbl[a_idx].addr.raw));
3574 for (b_idx = 0; b_idx < MMU_B_TBL_SIZE; b_idx++) {
3575 if (MMU_VALID_DT(b_tbl->bt_dtbl[b_idx])) {
3576 c_tbl = mmuC2tmgr(
3577 mmu_ptov(MMU_DTE_PA(b_tbl->bt_dtbl[b_idx])));
3578 if (type == 0)
3579 /*
3580 * A resident entry count has been requested.
3581 */
3582 count += c_tbl->ct_ecnt;
3583 else
3584 /*
3585 * A wired entry count has been requested.
3586 */
3587 count += c_tbl->ct_wcnt;
3588 }
3589 }
3590 }
3591 }
3592
3593 return count;
3594 }
3595
3596 /************************ SUN3 COMPATIBILITY ROUTINES ********************
3597 * The following routines are only used by DDB for tricky kernel text *
3598 * text operations in db_memrw.c. They are provided for sun3 *
3599 * compatibility. *
3600 *************************************************************************/
3601 /* get_pte INTERNAL
3602 **
3603 * Return the page descriptor the describes the kernel mapping
3604 * of the given virtual address.
3605 */
3606 extern u_long ptest_addr __P((u_long)); /* XXX: locore.s */
3607 u_int
3608 get_pte(va)
3609 vaddr_t va;
3610 {
3611 u_long pte_pa;
3612 mmu_short_pte_t *pte;
3613
3614 /* Get the physical address of the PTE */
3615 pte_pa = ptest_addr(va & ~PGOFSET);
3616
3617 /* Convert to a virtual address... */
3618 pte = (mmu_short_pte_t *) (KERNBASE + pte_pa);
3619
3620 /* Make sure it is in our level-C tables... */
3621 if ((pte < kernCbase) ||
3622 (pte >= &mmuCbase[NUM_USER_PTES]))
3623 return 0;
3624
3625 /* ... and just return its contents. */
3626 return (pte->attr.raw);
3627 }
3628
3629
3630 /* set_pte INTERNAL
3631 **
3632 * Set the page descriptor that describes the kernel mapping
3633 * of the given virtual address.
3634 */
3635 void
3636 set_pte(va, pte)
3637 vaddr_t va;
3638 u_int pte;
3639 {
3640 u_long idx;
3641
3642 if (va < KERNBASE)
3643 return;
3644
3645 idx = (unsigned long) m68k_btop(va - KERNBASE);
3646 kernCbase[idx].attr.raw = pte;
3647 TBIS(va);
3648 }
3649
3650 /*
3651 * Routine: pmap_procwr
3652 *
3653 * Function:
3654 * Synchronize caches corresponding to [addr, addr+len) in p.
3655 */
3656 void
3657 pmap_procwr(p, va, len)
3658 struct proc *p;
3659 vaddr_t va;
3660 size_t len;
3661 {
3662 (void)cachectl1(0x80000004, va, len, p);
3663 }
3664
3665
3666 #ifdef PMAP_DEBUG
3667 /************************** DEBUGGING ROUTINES **************************
3668 * The following routines are meant to be an aid to debugging the pmap *
3669 * system. They are callable from the DDB command line and should be *
3670 * prepared to be handed unstable or incomplete states of the system. *
3671 ************************************************************************/
3672
3673 /* pv_list
3674 **
3675 * List all pages found on the pv list for the given physical page.
3676 * To avoid endless loops, the listing will stop at the end of the list
3677 * or after 'n' entries - whichever comes first.
3678 */
3679 void
3680 pv_list(pa, n)
3681 paddr_t pa;
3682 int n;
3683 {
3684 int idx;
3685 vaddr_t va;
3686 pv_t *pv;
3687 c_tmgr_t *c_tbl;
3688 pmap_t pmap;
3689
3690 pv = pa2pv(pa);
3691 idx = pv->pv_idx;
3692 for (; idx != PVE_EOL && n > 0; idx = pvebase[idx].pve_next, n--) {
3693 va = pmap_get_pteinfo(idx, &pmap, &c_tbl);
3694 printf("idx %d, pmap 0x%x, va 0x%x, c_tbl %x\n",
3695 idx, (u_int) pmap, (u_int) va, (u_int) c_tbl);
3696 }
3697 }
3698 #endif /* PMAP_DEBUG */
3699
3700 #ifdef NOT_YET
3701 /* and maybe not ever */
3702 /************************** LOW-LEVEL ROUTINES **************************
3703 * These routines will eventually be re-written into assembly and placed*
3704 * in locore.s. They are here now as stubs so that the pmap module can *
3705 * be linked as a standalone user program for testing. *
3706 ************************************************************************/
3707 /* flush_atc_crp INTERNAL
3708 **
3709 * Flush all page descriptors derived from the given CPU Root Pointer
3710 * (CRP), or 'A' table as it is known here, from the 68851's automatic
3711 * cache.
3712 */
3713 void
3714 flush_atc_crp(a_tbl)
3715 {
3716 mmu_long_rp_t rp;
3717
3718 /* Create a temporary root table pointer that points to the
3719 * given A table.
3720 */
3721 rp.attr.raw = ~MMU_LONG_RP_LU;
3722 rp.addr.raw = (unsigned int) a_tbl;
3723
3724 mmu_pflushr(&rp);
3725 /* mmu_pflushr:
3726 * movel sp(4)@,a0
3727 * pflushr a0@
3728 * rts
3729 */
3730 }
3731 #endif /* NOT_YET */
3732