Home | History | Annotate | Line # | Download | only in sun3x
pmap.c revision 1.85
      1 /*	$NetBSD: pmap.c,v 1.85 2004/05/16 15:44:10 wiz Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1996, 1997 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jeremy Cooper.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  * 3. All advertising materials mentioning features or use of this software
     19  *    must display the following acknowledgement:
     20  *        This product includes software developed by the NetBSD
     21  *        Foundation, Inc. and its contributors.
     22  * 4. Neither the name of The NetBSD Foundation nor the names of its
     23  *    contributors may be used to endorse or promote products derived
     24  *    from this software without specific prior written permission.
     25  *
     26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36  * POSSIBILITY OF SUCH DAMAGE.
     37  */
     38 
     39 /*
     40  * XXX These comments aren't quite accurate.  Need to change.
     41  * The sun3x uses the MC68851 Memory Management Unit, which is built
     42  * into the CPU.  The 68851 maps virtual to physical addresses using
     43  * a multi-level table lookup, which is stored in the very memory that
     44  * it maps.  The number of levels of lookup is configurable from one
     45  * to four.  In this implementation, we use three, named 'A' through 'C'.
     46  *
     47  * The MMU translates virtual addresses into physical addresses by
     48  * traversing these tables in a process called a 'table walk'.  The most
     49  * significant 7 bits of the Virtual Address ('VA') being translated are
     50  * used as an index into the level A table, whose base in physical memory
     51  * is stored in a special MMU register, the 'CPU Root Pointer' or CRP.  The
     52  * address found at that index in the A table is used as the base
     53  * address for the next table, the B table.  The next six bits of the VA are
     54  * used as an index into the B table, which in turn gives the base address
     55  * of the third and final C table.
     56  *
     57  * The next six bits of the VA are used as an index into the C table to
     58  * locate a Page Table Entry (PTE).  The PTE is a physical address in memory
     59  * to which the remaining 13 bits of the VA are added, producing the
     60  * mapped physical address.
     61  *
     62  * To map the entire memory space in this manner would require 2114296 bytes
     63  * of page tables per process - quite expensive.  Instead we will
     64  * allocate a fixed but considerably smaller space for the page tables at
     65  * the time the VM system is initialized.  When the pmap code is asked by
     66  * the kernel to map a VA to a PA, it allocates tables as needed from this
     67  * pool.  When there are no more tables in the pool, tables are stolen
     68  * from the oldest mapped entries in the tree.  This is only possible
     69  * because all memory mappings are stored in the kernel memory map
     70  * structures, independent of the pmap structures.  A VA which references
     71  * one of these invalidated maps will cause a page fault.  The kernel
     72  * will determine that the page fault was caused by a task using a valid
     73  * VA, but for some reason (which does not concern it), that address was
     74  * not mapped.  It will ask the pmap code to re-map the entry and then
     75  * it will resume executing the faulting task.
     76  *
     77  * In this manner the most efficient use of the page table space is
     78  * achieved.  Tasks which do not execute often will have their tables
     79  * stolen and reused by tasks which execute more frequently.  The best
     80  * size for the page table pool will probably be determined by
     81  * experimentation.
     82  *
     83  * You read all of the comments so far.  Good for you.
     84  * Now go play!
     85  */
     86 
     87 /*** A Note About the 68851 Address Translation Cache
     88  * The MC68851 has a 64 entry cache, called the Address Translation Cache
     89  * or 'ATC'.  This cache stores the most recently used page descriptors
     90  * accessed by the MMU when it does translations.  Using a marker called a
     91  * 'task alias' the MMU can store the descriptors from 8 different table
     92  * spaces concurrently.  The task alias is associated with the base
     93  * address of the level A table of that address space.  When an address
     94  * space is currently active (the CRP currently points to its A table)
     95  * the only cached descriptors that will be obeyed are ones which have a
     96  * matching task alias of the current space associated with them.
     97  *
     98  * Since the cache is always consulted before any table lookups are done,
     99  * it is important that it accurately reflect the state of the MMU tables.
    100  * Whenever a change has been made to a table that has been loaded into
    101  * the MMU, the code must be sure to flush any cached entries that are
    102  * affected by the change.  These instances are documented in the code at
    103  * various points.
    104  */
    105 /*** A Note About the Note About the 68851 Address Translation Cache
    106  * 4 months into this code I discovered that the sun3x does not have
    107  * a MC68851 chip. Instead, it has a version of this MMU that is part of the
    108  * the 68030 CPU.
    109  * All though it behaves very similarly to the 68851, it only has 1 task
    110  * alias and a 22 entry cache.  So sadly (or happily), the first paragraph
    111  * of the previous note does not apply to the sun3x pmap.
    112  */
    113 
    114 #include <sys/cdefs.h>
    115 __KERNEL_RCSID(0, "$NetBSD: pmap.c,v 1.85 2004/05/16 15:44:10 wiz Exp $");
    116 
    117 #include "opt_ddb.h"
    118 #include "opt_pmap_debug.h"
    119 
    120 #include <sys/param.h>
    121 #include <sys/systm.h>
    122 #include <sys/proc.h>
    123 #include <sys/malloc.h>
    124 #include <sys/pool.h>
    125 #include <sys/user.h>
    126 #include <sys/queue.h>
    127 #include <sys/kcore.h>
    128 
    129 #include <uvm/uvm.h>
    130 
    131 #include <machine/cpu.h>
    132 #include <machine/kcore.h>
    133 #include <machine/mon.h>
    134 #include <machine/pmap.h>
    135 #include <machine/pte.h>
    136 #include <machine/vmparam.h>
    137 #include <m68k/cacheops.h>
    138 
    139 #include <sun3/sun3/cache.h>
    140 #include <sun3/sun3/machdep.h>
    141 
    142 #include "pmap_pvt.h"
    143 
    144 /* XXX - What headers declare these? */
    145 extern struct pcb *curpcb;
    146 extern int physmem;
    147 
    148 /* Defined in locore.s */
    149 extern char kernel_text[];
    150 
    151 /* Defined by the linker */
    152 extern char etext[], edata[], end[];
    153 extern char *esym;	/* DDB */
    154 
    155 /*************************** DEBUGGING DEFINITIONS ***********************
    156  * Macros, preprocessor defines and variables used in debugging can make *
    157  * code hard to read.  Anything used exclusively for debugging purposes  *
    158  * is defined here to avoid having such mess scattered around the file.  *
    159  *************************************************************************/
    160 #ifdef	PMAP_DEBUG
    161 /*
    162  * To aid the debugging process, macros should be expanded into smaller steps
    163  * that accomplish the same goal, yet provide convenient places for placing
    164  * breakpoints.  When this code is compiled with PMAP_DEBUG mode defined, the
    165  * 'INLINE' keyword is defined to an empty string.  This way, any function
    166  * defined to be a 'static INLINE' will become 'outlined' and compiled as
    167  * a separate function, which is much easier to debug.
    168  */
    169 #define	INLINE	/* nothing */
    170 
    171 /*
    172  * It is sometimes convenient to watch the activity of a particular table
    173  * in the system.  The following variables are used for that purpose.
    174  */
    175 a_tmgr_t *pmap_watch_atbl = 0;
    176 b_tmgr_t *pmap_watch_btbl = 0;
    177 c_tmgr_t *pmap_watch_ctbl = 0;
    178 
    179 int pmap_debug = 0;
    180 #define DPRINT(args) if (pmap_debug) printf args
    181 
    182 #else	/********** Stuff below is defined if NOT debugging **************/
    183 
    184 #define	INLINE	inline
    185 #define DPRINT(args)  /* nada */
    186 
    187 #endif	/* PMAP_DEBUG */
    188 /*********************** END OF DEBUGGING DEFINITIONS ********************/
    189 
    190 /*** Management Structure - Memory Layout
    191  * For every MMU table in the sun3x pmap system there must be a way to
    192  * manage it; we must know which process is using it, what other tables
    193  * depend on it, and whether or not it contains any locked pages.  This
    194  * is solved by the creation of 'table management'  or 'tmgr'
    195  * structures.  One for each MMU table in the system.
    196  *
    197  *                        MAP OF MEMORY USED BY THE PMAP SYSTEM
    198  *
    199  *      towards lower memory
    200  * kernAbase -> +-------------------------------------------------------+
    201  *              | Kernel     MMU A level table                          |
    202  * kernBbase -> +-------------------------------------------------------+
    203  *              | Kernel     MMU B level tables                         |
    204  * kernCbase -> +-------------------------------------------------------+
    205  *              |                                                       |
    206  *              | Kernel     MMU C level tables                         |
    207  *              |                                                       |
    208  * mmuCbase  -> +-------------------------------------------------------+
    209  *              | User       MMU C level tables                         |
    210  * mmuAbase  -> +-------------------------------------------------------+
    211  *              |                                                       |
    212  *              | User       MMU A level tables                         |
    213  *              |                                                       |
    214  * mmuBbase  -> +-------------------------------------------------------+
    215  *              | User       MMU B level tables                         |
    216  * tmgrAbase -> +-------------------------------------------------------+
    217  *              |  TMGR A level table structures                        |
    218  * tmgrBbase -> +-------------------------------------------------------+
    219  *              |  TMGR B level table structures                        |
    220  * tmgrCbase -> +-------------------------------------------------------+
    221  *              |  TMGR C level table structures                        |
    222  * pvbase    -> +-------------------------------------------------------+
    223  *              |  Physical to Virtual mapping table (list heads)       |
    224  * pvebase   -> +-------------------------------------------------------+
    225  *              |  Physical to Virtual mapping table (list elements)    |
    226  *              |                                                       |
    227  *              +-------------------------------------------------------+
    228  *      towards higher memory
    229  *
    230  * For every A table in the MMU A area, there will be a corresponding
    231  * a_tmgr structure in the TMGR A area.  The same will be true for
    232  * the B and C tables.  This arrangement will make it easy to find the
    233  * controling tmgr structure for any table in the system by use of
    234  * (relatively) simple macros.
    235  */
    236 
    237 /*
    238  * Global variables for storing the base addresses for the areas
    239  * labeled above.
    240  */
    241 static vaddr_t  	kernAphys;
    242 static mmu_long_dte_t	*kernAbase;
    243 static mmu_short_dte_t	*kernBbase;
    244 static mmu_short_pte_t	*kernCbase;
    245 static mmu_short_pte_t	*mmuCbase;
    246 static mmu_short_dte_t	*mmuBbase;
    247 static mmu_long_dte_t	*mmuAbase;
    248 static a_tmgr_t		*Atmgrbase;
    249 static b_tmgr_t		*Btmgrbase;
    250 static c_tmgr_t		*Ctmgrbase;
    251 static pv_t 		*pvbase;
    252 static pv_elem_t	*pvebase;
    253 struct pmap 		kernel_pmap;
    254 
    255 /*
    256  * This holds the CRP currently loaded into the MMU.
    257  */
    258 struct mmu_rootptr kernel_crp;
    259 
    260 /*
    261  * Just all around global variables.
    262  */
    263 static TAILQ_HEAD(a_pool_head_struct, a_tmgr_struct) a_pool;
    264 static TAILQ_HEAD(b_pool_head_struct, b_tmgr_struct) b_pool;
    265 static TAILQ_HEAD(c_pool_head_struct, c_tmgr_struct) c_pool;
    266 
    267 
    268 /*
    269  * Flags used to mark the safety/availability of certain operations or
    270  * resources.
    271  */
    272 static boolean_t bootstrap_alloc_enabled = FALSE; /*Safe to use pmap_bootstrap_alloc().*/
    273 int tmp_vpages_inuse;	/* Temporary virtual pages are in use */
    274 
    275 /*
    276  * XXX:  For now, retain the traditional variables that were
    277  * used in the old pmap/vm interface (without NONCONTIG).
    278  */
    279 /* Kernel virtual address space available: */
    280 vaddr_t	virtual_avail, virtual_end;
    281 /* Physical address space available: */
    282 paddr_t	avail_start, avail_end;
    283 
    284 /* This keep track of the end of the contiguously mapped range. */
    285 vaddr_t virtual_contig_end;
    286 
    287 /* Physical address used by pmap_next_page() */
    288 paddr_t avail_next;
    289 
    290 /* These are used by pmap_copy_page(), etc. */
    291 vaddr_t tmp_vpages[2];
    292 
    293 /* memory pool for pmap structures */
    294 struct pool	pmap_pmap_pool;
    295 
    296 /*
    297  * The 3/80 is the only member of the sun3x family that has non-contiguous
    298  * physical memory.  Memory is divided into 4 banks which are physically
    299  * locatable on the system board.  Although the size of these banks varies
    300  * with the size of memory they contain, their base addresses are
    301  * permenently fixed.  The following structure, which describes these
    302  * banks, is initialized by pmap_bootstrap() after it reads from a similar
    303  * structure provided by the ROM Monitor.
    304  *
    305  * For the other machines in the sun3x architecture which do have contiguous
    306  * RAM, this list will have only one entry, which will describe the entire
    307  * range of available memory.
    308  */
    309 struct pmap_physmem_struct avail_mem[SUN3X_NPHYS_RAM_SEGS];
    310 u_int total_phys_mem;
    311 
    312 /*************************************************************************/
    313 
    314 /*
    315  * XXX - Should "tune" these based on statistics.
    316  *
    317  * My first guess about the relative numbers of these needed is
    318  * based on the fact that a "typical" process will have several
    319  * pages mapped at low virtual addresses (text, data, bss), then
    320  * some mapped shared libraries, and then some stack pages mapped
    321  * near the high end of the VA space.  Each process can use only
    322  * one A table, and most will use only two B tables (maybe three)
    323  * and probably about four C tables.  Therefore, the first guess
    324  * at the relative numbers of these needed is 1:2:4 -gwr
    325  *
    326  * The number of C tables needed is closely related to the amount
    327  * of physical memory available plus a certain amount attributable
    328  * to the use of double mappings.  With a few simulation statistics
    329  * we can find a reasonably good estimation of this unknown value.
    330  * Armed with that and the above ratios, we have a good idea of what
    331  * is needed at each level. -j
    332  *
    333  * Note: It is not physical memory memory size, but the total mapped
    334  * virtual space required by the combined working sets of all the
    335  * currently _runnable_ processes.  (Sleeping ones don't count.)
    336  * The amount of physical memory should be irrelevant. -gwr
    337  */
    338 #ifdef	FIXED_NTABLES
    339 #define NUM_A_TABLES	16
    340 #define NUM_B_TABLES	32
    341 #define NUM_C_TABLES	64
    342 #else
    343 unsigned int	NUM_A_TABLES, NUM_B_TABLES, NUM_C_TABLES;
    344 #endif	/* FIXED_NTABLES */
    345 
    346 /*
    347  * This determines our total virtual mapping capacity.
    348  * Yes, it is a FIXED value so we can pre-allocate.
    349  */
    350 #define NUM_USER_PTES	(NUM_C_TABLES * MMU_C_TBL_SIZE)
    351 
    352 /*
    353  * The size of the Kernel Virtual Address Space (KVAS)
    354  * for purposes of MMU table allocation is -KERNBASE
    355  * (length from KERNBASE to 0xFFFFffff)
    356  */
    357 #define	KVAS_SIZE		(-KERNBASE)
    358 
    359 /* Numbers of kernel MMU tables to support KVAS_SIZE. */
    360 #define KERN_B_TABLES	(KVAS_SIZE >> MMU_TIA_SHIFT)
    361 #define KERN_C_TABLES	(KVAS_SIZE >> MMU_TIB_SHIFT)
    362 #define	NUM_KERN_PTES	(KVAS_SIZE >> MMU_TIC_SHIFT)
    363 
    364 /*************************** MISCELANEOUS MACROS *************************/
    365 #define pmap_lock(pmap) simple_lock(&pmap->pm_lock)
    366 #define pmap_unlock(pmap) simple_unlock(&pmap->pm_lock)
    367 #define pmap_add_ref(pmap) ++pmap->pm_refcount
    368 #define pmap_del_ref(pmap) --pmap->pm_refcount
    369 #define pmap_refcount(pmap) pmap->pm_refcount
    370 
    371 void *pmap_bootstrap_alloc(int);
    372 
    373 static INLINE void *mmu_ptov __P((paddr_t));
    374 static INLINE paddr_t mmu_vtop __P((void *));
    375 
    376 #if	0
    377 static INLINE a_tmgr_t * mmuA2tmgr __P((mmu_long_dte_t *));
    378 #endif /* 0 */
    379 static INLINE b_tmgr_t * mmuB2tmgr __P((mmu_short_dte_t *));
    380 static INLINE c_tmgr_t * mmuC2tmgr __P((mmu_short_pte_t *));
    381 
    382 static INLINE pv_t *pa2pv __P((paddr_t));
    383 static INLINE int   pteidx __P((mmu_short_pte_t *));
    384 static INLINE pmap_t current_pmap __P((void));
    385 
    386 /*
    387  * We can always convert between virtual and physical addresses
    388  * for anything in the range [KERNBASE ... avail_start] because
    389  * that range is GUARANTEED to be mapped linearly.
    390  * We rely heavily upon this feature!
    391  */
    392 static INLINE void *
    393 mmu_ptov(pa)
    394 	paddr_t pa;
    395 {
    396 	vaddr_t va;
    397 
    398 	va = (pa + KERNBASE);
    399 #ifdef	PMAP_DEBUG
    400 	if ((va < KERNBASE) || (va >= virtual_contig_end))
    401 		panic("mmu_ptov");
    402 #endif
    403 	return ((void*)va);
    404 }
    405 
    406 static INLINE paddr_t
    407 mmu_vtop(vva)
    408 	void *vva;
    409 {
    410 	vaddr_t va;
    411 
    412 	va = (vaddr_t)vva;
    413 #ifdef	PMAP_DEBUG
    414 	if ((va < KERNBASE) || (va >= virtual_contig_end))
    415 		panic("mmu_vtop");
    416 #endif
    417 	return (va - KERNBASE);
    418 }
    419 
    420 /*
    421  * These macros map MMU tables to their corresponding manager structures.
    422  * They are needed quite often because many of the pointers in the pmap
    423  * system reference MMU tables and not the structures that control them.
    424  * There needs to be a way to find one when given the other and these
    425  * macros do so by taking advantage of the memory layout described above.
    426  * Here's a quick step through the first macro, mmuA2tmgr():
    427  *
    428  * 1) find the offset of the given MMU A table from the base of its table
    429  *    pool (table - mmuAbase).
    430  * 2) convert this offset into a table index by dividing it by the
    431  *    size of one MMU 'A' table. (sizeof(mmu_long_dte_t) * MMU_A_TBL_SIZE)
    432  * 3) use this index to select the corresponding 'A' table manager
    433  *    structure from the 'A' table manager pool (Atmgrbase[index]).
    434  */
    435 /*  This function is not currently used. */
    436 #if	0
    437 static INLINE a_tmgr_t *
    438 mmuA2tmgr(mmuAtbl)
    439 	mmu_long_dte_t *mmuAtbl;
    440 {
    441 	int idx;
    442 
    443 	/* Which table is this in? */
    444 	idx = (mmuAtbl - mmuAbase) / MMU_A_TBL_SIZE;
    445 #ifdef	PMAP_DEBUG
    446 	if ((idx < 0) || (idx >= NUM_A_TABLES))
    447 		panic("mmuA2tmgr");
    448 #endif
    449 	return (&Atmgrbase[idx]);
    450 }
    451 #endif	/* 0 */
    452 
    453 static INLINE b_tmgr_t *
    454 mmuB2tmgr(mmuBtbl)
    455 	mmu_short_dte_t *mmuBtbl;
    456 {
    457 	int idx;
    458 
    459 	/* Which table is this in? */
    460 	idx = (mmuBtbl - mmuBbase) / MMU_B_TBL_SIZE;
    461 #ifdef	PMAP_DEBUG
    462 	if ((idx < 0) || (idx >= NUM_B_TABLES))
    463 		panic("mmuB2tmgr");
    464 #endif
    465 	return (&Btmgrbase[idx]);
    466 }
    467 
    468 /* mmuC2tmgr			INTERNAL
    469  **
    470  * Given a pte known to belong to a C table, return the address of
    471  * that table's management structure.
    472  */
    473 static INLINE c_tmgr_t *
    474 mmuC2tmgr(mmuCtbl)
    475 	mmu_short_pte_t *mmuCtbl;
    476 {
    477 	int idx;
    478 
    479 	/* Which table is this in? */
    480 	idx = (mmuCtbl - mmuCbase) / MMU_C_TBL_SIZE;
    481 #ifdef	PMAP_DEBUG
    482 	if ((idx < 0) || (idx >= NUM_C_TABLES))
    483 		panic("mmuC2tmgr");
    484 #endif
    485 	return (&Ctmgrbase[idx]);
    486 }
    487 
    488 /* This is now a function call below.
    489  * #define pa2pv(pa) \
    490  *	(&pvbase[(unsigned long)\
    491  *		m68k_btop(pa)\
    492  *	])
    493  */
    494 
    495 /* pa2pv			INTERNAL
    496  **
    497  * Return the pv_list_head element which manages the given physical
    498  * address.
    499  */
    500 static INLINE pv_t *
    501 pa2pv(pa)
    502 	paddr_t pa;
    503 {
    504 	struct pmap_physmem_struct *bank;
    505 	int idx;
    506 
    507 	bank = &avail_mem[0];
    508 	while (pa >= bank->pmem_end)
    509 		bank = bank->pmem_next;
    510 
    511 	pa -= bank->pmem_start;
    512 	idx = bank->pmem_pvbase + m68k_btop(pa);
    513 #ifdef	PMAP_DEBUG
    514 	if ((idx < 0) || (idx >= physmem))
    515 		panic("pa2pv");
    516 #endif
    517 	return &pvbase[idx];
    518 }
    519 
    520 /* pteidx			INTERNAL
    521  **
    522  * Return the index of the given PTE within the entire fixed table of
    523  * PTEs.
    524  */
    525 static INLINE int
    526 pteidx(pte)
    527 	mmu_short_pte_t *pte;
    528 {
    529 	return (pte - kernCbase);
    530 }
    531 
    532 /*
    533  * This just offers a place to put some debugging checks,
    534  * and reduces the number of places "curlwp" appears...
    535  */
    536 static INLINE pmap_t
    537 current_pmap()
    538 {
    539 	struct vmspace *vm;
    540 	struct vm_map *map;
    541 	pmap_t	pmap;
    542 
    543 	if (curlwp == NULL)
    544 		pmap = &kernel_pmap;
    545 	else {
    546 		vm = curproc->p_vmspace;
    547 		map = &vm->vm_map;
    548 		pmap = vm_map_pmap(map);
    549 	}
    550 
    551 	return (pmap);
    552 }
    553 
    554 
    555 /*************************** FUNCTION DEFINITIONS ************************
    556  * These appear here merely for the compiler to enforce type checking on *
    557  * all function calls.                                                   *
    558  *************************************************************************/
    559 
    560 /** Internal functions
    561  ** Most functions used only within this module are defined in
    562  **   pmap_pvt.h (why not here if used only here?)
    563  **/
    564 static void pmap_page_upload __P((void));
    565 
    566 /** Interface functions
    567  ** - functions required by the Mach VM Pmap interface, with MACHINE_CONTIG
    568  **   defined.
    569  **/
    570 void pmap_pinit __P((pmap_t));
    571 void pmap_release __P((pmap_t));
    572 
    573 /********************************** CODE ********************************
    574  * Functions that are called from other parts of the kernel are labeled *
    575  * as 'INTERFACE' functions.  Functions that are only called from       *
    576  * within the pmap module are labeled as 'INTERNAL' functions.          *
    577  * Functions that are internal, but are not (currently) used at all are *
    578  * labeled 'INTERNAL_X'.                                                *
    579  ************************************************************************/
    580 
    581 /* pmap_bootstrap			INTERNAL
    582  **
    583  * Initializes the pmap system.  Called at boot time from
    584  * locore2.c:_vm_init()
    585  *
    586  * Reminder: having a pmap_bootstrap_alloc() and also having the VM
    587  *           system implement pmap_steal_memory() is redundant.
    588  *           Don't release this code without removing one or the other!
    589  */
    590 void
    591 pmap_bootstrap(nextva)
    592 	vaddr_t nextva;
    593 {
    594 	struct physmemory *membank;
    595 	struct pmap_physmem_struct *pmap_membank;
    596 	vaddr_t va, eva;
    597 	paddr_t pa;
    598 	int b, c, i, j;	/* running table counts */
    599 	int size, resvmem;
    600 
    601 	/*
    602 	 * This function is called by __bootstrap after it has
    603 	 * determined the type of machine and made the appropriate
    604 	 * patches to the ROM vectors (XXX- I don't quite know what I meant
    605 	 * by that.)  It allocates and sets up enough of the pmap system
    606 	 * to manage the kernel's address space.
    607 	 */
    608 
    609 	/*
    610 	 * Determine the range of kernel virtual and physical
    611 	 * space available. Note that we ABSOLUTELY DEPEND on
    612 	 * the fact that the first bank of memory (4MB) is
    613 	 * mapped linearly to KERNBASE (which we guaranteed in
    614 	 * the first instructions of locore.s).
    615 	 * That is plenty for our bootstrap work.
    616 	 */
    617 	virtual_avail = m68k_round_page(nextva);
    618 	virtual_contig_end = KERNBASE + 0x400000; /* +4MB */
    619 	virtual_end = VM_MAX_KERNEL_ADDRESS;
    620 	/* Don't need avail_start til later. */
    621 
    622 	/* We may now call pmap_bootstrap_alloc(). */
    623 	bootstrap_alloc_enabled = TRUE;
    624 
    625 	/*
    626 	 * This is a somewhat unwrapped loop to deal with
    627 	 * copying the PROM's 'phsymem' banks into the pmap's
    628 	 * banks.  The following is always assumed:
    629 	 * 1. There is always at least one bank of memory.
    630 	 * 2. There is always a last bank of memory, and its
    631 	 *    pmem_next member must be set to NULL.
    632 	 */
    633 	membank = romVectorPtr->v_physmemory;
    634 	pmap_membank = avail_mem;
    635 	total_phys_mem = 0;
    636 
    637 	for (;;) { /* break on !membank */
    638 		pmap_membank->pmem_start = membank->address;
    639 		pmap_membank->pmem_end = membank->address + membank->size;
    640 		total_phys_mem += membank->size;
    641 		membank = membank->next;
    642 		if (!membank)
    643 			break;
    644 		/* This silly syntax arises because pmap_membank
    645 		 * is really a pre-allocated array, but it is put into
    646 		 * use as a linked list.
    647 		 */
    648 		pmap_membank->pmem_next = pmap_membank + 1;
    649 		pmap_membank = pmap_membank->pmem_next;
    650 	}
    651 	/* This is the last element. */
    652 	pmap_membank->pmem_next = NULL;
    653 
    654 	/*
    655 	 * Note: total_phys_mem, physmem represent
    656 	 * actual physical memory, including that
    657 	 * reserved for the PROM monitor.
    658 	 */
    659 	physmem = btoc(total_phys_mem);
    660 
    661 	/*
    662 	 * Avail_end is set to the first byte of physical memory
    663 	 * after the end of the last bank.  We use this only to
    664 	 * determine if a physical address is "managed" memory.
    665 	 * This address range should be reduced to prevent the
    666 	 * physical pages needed by the PROM monitor from being used
    667 	 * in the VM system.
    668 	 */
    669 	resvmem = total_phys_mem - *(romVectorPtr->memoryAvail);
    670 	resvmem = m68k_round_page(resvmem);
    671 	avail_end = pmap_membank->pmem_end - resvmem;
    672 
    673 	/*
    674 	 * First allocate enough kernel MMU tables to map all
    675 	 * of kernel virtual space from KERNBASE to 0xFFFFFFFF.
    676 	 * Note: All must be aligned on 256 byte boundaries.
    677 	 * Start with the level-A table (one of those).
    678 	 */
    679 	size = sizeof(mmu_long_dte_t) * MMU_A_TBL_SIZE;
    680 	kernAbase = pmap_bootstrap_alloc(size);
    681 	memset(kernAbase, 0, size);
    682 
    683 	/* Now the level-B kernel tables... */
    684 	size = sizeof(mmu_short_dte_t) * MMU_B_TBL_SIZE * KERN_B_TABLES;
    685 	kernBbase = pmap_bootstrap_alloc(size);
    686 	memset(kernBbase, 0, size);
    687 
    688 	/* Now the level-C kernel tables... */
    689 	size = sizeof(mmu_short_pte_t) * MMU_C_TBL_SIZE * KERN_C_TABLES;
    690 	kernCbase = pmap_bootstrap_alloc(size);
    691 	memset(kernCbase, 0, size);
    692 	/*
    693 	 * Note: In order for the PV system to work correctly, the kernel
    694 	 * and user-level C tables must be allocated contiguously.
    695 	 * Nothing should be allocated between here and the allocation of
    696 	 * mmuCbase below.  XXX: Should do this as one allocation, and
    697 	 * then compute a pointer for mmuCbase instead of this...
    698 	 *
    699 	 * Allocate user MMU tables.
    700 	 * These must be contiguous with the preceding.
    701 	 */
    702 
    703 #ifndef	FIXED_NTABLES
    704 	/*
    705 	 * The number of user-level C tables that should be allocated is
    706 	 * related to the size of physical memory.  In general, there should
    707 	 * be enough tables to map four times the amount of available RAM.
    708 	 * The extra amount is needed because some table space is wasted by
    709 	 * fragmentation.
    710 	 */
    711 	NUM_C_TABLES = (total_phys_mem * 4) / (MMU_C_TBL_SIZE * MMU_PAGE_SIZE);
    712 	NUM_B_TABLES = NUM_C_TABLES / 2;
    713 	NUM_A_TABLES = NUM_B_TABLES / 2;
    714 #endif	/* !FIXED_NTABLES */
    715 
    716 	size = sizeof(mmu_short_pte_t) * MMU_C_TBL_SIZE	* NUM_C_TABLES;
    717 	mmuCbase = pmap_bootstrap_alloc(size);
    718 
    719 	size = sizeof(mmu_short_dte_t) * MMU_B_TBL_SIZE	* NUM_B_TABLES;
    720 	mmuBbase = pmap_bootstrap_alloc(size);
    721 
    722 	size = sizeof(mmu_long_dte_t) * MMU_A_TBL_SIZE * NUM_A_TABLES;
    723 	mmuAbase = pmap_bootstrap_alloc(size);
    724 
    725 	/*
    726 	 * Fill in the never-changing part of the kernel tables.
    727 	 * For simplicity, the kernel's mappings will be editable as a
    728 	 * flat array of page table entries at kernCbase.  The
    729 	 * higher level 'A' and 'B' tables must be initialized to point
    730 	 * to this lower one.
    731 	 */
    732 	b = c = 0;
    733 
    734 	/*
    735 	 * Invalidate all mappings below KERNBASE in the A table.
    736 	 * This area has already been zeroed out, but it is good
    737 	 * practice to explicitly show that we are interpreting
    738 	 * it as a list of A table descriptors.
    739 	 */
    740 	for (i = 0; i < MMU_TIA(KERNBASE); i++) {
    741 		kernAbase[i].addr.raw = 0;
    742 	}
    743 
    744 	/*
    745 	 * Set up the kernel A and B tables so that they will reference the
    746 	 * correct spots in the contiguous table of PTEs allocated for the
    747 	 * kernel's virtual memory space.
    748 	 */
    749 	for (i = MMU_TIA(KERNBASE); i < MMU_A_TBL_SIZE; i++) {
    750 		kernAbase[i].attr.raw =
    751 			MMU_LONG_DTE_LU | MMU_LONG_DTE_SUPV | MMU_DT_SHORT;
    752 		kernAbase[i].addr.raw = mmu_vtop(&kernBbase[b]);
    753 
    754 		for (j=0; j < MMU_B_TBL_SIZE; j++) {
    755 			kernBbase[b + j].attr.raw = mmu_vtop(&kernCbase[c])
    756 				| MMU_DT_SHORT;
    757 			c += MMU_C_TBL_SIZE;
    758 		}
    759 		b += MMU_B_TBL_SIZE;
    760 	}
    761 
    762 	pmap_alloc_usermmu();	/* Allocate user MMU tables.        */
    763 	pmap_alloc_usertmgr();	/* Allocate user MMU table managers.*/
    764 	pmap_alloc_pv();	/* Allocate physical->virtual map.  */
    765 
    766 	/*
    767 	 * We are now done with pmap_bootstrap_alloc().  Round up
    768 	 * `virtual_avail' to the nearest page, and set the flag
    769 	 * to prevent use of pmap_bootstrap_alloc() hereafter.
    770 	 */
    771 	pmap_bootstrap_aalign(PAGE_SIZE);
    772 	bootstrap_alloc_enabled = FALSE;
    773 
    774 	/*
    775 	 * Now that we are done with pmap_bootstrap_alloc(), we
    776 	 * must save the virtual and physical addresses of the
    777 	 * end of the linearly mapped range, which are stored in
    778 	 * virtual_contig_end and avail_start, respectively.
    779 	 * These variables will never change after this point.
    780 	 */
    781 	virtual_contig_end = virtual_avail;
    782 	avail_start = virtual_avail - KERNBASE;
    783 
    784 	/*
    785 	 * `avail_next' is a running pointer used by pmap_next_page() to
    786 	 * keep track of the next available physical page to be handed
    787 	 * to the VM system during its initialization, in which it
    788 	 * asks for physical pages, one at a time.
    789 	 */
    790 	avail_next = avail_start;
    791 
    792 	/*
    793 	 * Now allocate some virtual addresses, but not the physical pages
    794 	 * behind them.  Note that virtual_avail is already page-aligned.
    795 	 *
    796 	 * tmp_vpages[] is an array of two virtual pages used for temporary
    797 	 * kernel mappings in the pmap module to facilitate various physical
    798 	 * address-oritented operations.
    799 	 */
    800 	tmp_vpages[0] = virtual_avail;
    801 	virtual_avail += PAGE_SIZE;
    802 	tmp_vpages[1] = virtual_avail;
    803 	virtual_avail += PAGE_SIZE;
    804 
    805 	/** Initialize the PV system **/
    806 	pmap_init_pv();
    807 
    808 	/*
    809 	 * Fill in the kernel_pmap structure and kernel_crp.
    810 	 */
    811 	kernAphys = mmu_vtop(kernAbase);
    812 	kernel_pmap.pm_a_tmgr = NULL;
    813 	kernel_pmap.pm_a_phys = kernAphys;
    814 	kernel_pmap.pm_refcount = 1; /* always in use */
    815 	simple_lock_init(&kernel_pmap.pm_lock);
    816 
    817 	kernel_crp.rp_attr = MMU_LONG_DTE_LU | MMU_DT_LONG;
    818 	kernel_crp.rp_addr = kernAphys;
    819 
    820 	/*
    821 	 * Now pmap_enter_kernel() may be used safely and will be
    822 	 * the main interface used hereafter to modify the kernel's
    823 	 * virtual address space.  Note that since we are still running
    824 	 * under the PROM's address table, none of these table modifications
    825 	 * actually take effect until pmap_takeover_mmu() is called.
    826 	 *
    827 	 * Note: Our tables do NOT have the PROM linear mappings!
    828 	 * Only the mappings created here exist in our tables, so
    829 	 * remember to map anything we expect to use.
    830 	 */
    831 	va = (vaddr_t)KERNBASE;
    832 	pa = 0;
    833 
    834 	/*
    835 	 * The first page of the kernel virtual address space is the msgbuf
    836 	 * page.  The page attributes (data, non-cached) are set here, while
    837 	 * the address is assigned to this global pointer in cpu_startup().
    838 	 * It is non-cached, mostly due to paranoia.
    839 	 */
    840 	pmap_enter_kernel(va, pa|PMAP_NC, VM_PROT_ALL);
    841 	va += PAGE_SIZE; pa += PAGE_SIZE;
    842 
    843 	/* Next page is used as the temporary stack. */
    844 	pmap_enter_kernel(va, pa, VM_PROT_ALL);
    845 	va += PAGE_SIZE; pa += PAGE_SIZE;
    846 
    847 	/*
    848 	 * Map all of the kernel's text segment as read-only and cacheable.
    849 	 * (Cacheable is implied by default).  Unfortunately, the last bytes
    850 	 * of kernel text and the first bytes of kernel data will often be
    851 	 * sharing the same page.  Therefore, the last page of kernel text
    852 	 * has to be mapped as read/write, to accomodate the data.
    853 	 */
    854 	eva = m68k_trunc_page((vaddr_t)etext);
    855 	for (; va < eva; va += PAGE_SIZE, pa += PAGE_SIZE)
    856 		pmap_enter_kernel(va, pa, VM_PROT_READ|VM_PROT_EXECUTE);
    857 
    858 	/*
    859 	 * Map all of the kernel's data as read/write and cacheable.
    860 	 * This includes: data, BSS, symbols, and everything in the
    861 	 * contiguous memory used by pmap_bootstrap_alloc()
    862 	 */
    863 	for (; pa < avail_start; va += PAGE_SIZE, pa += PAGE_SIZE)
    864 		pmap_enter_kernel(va, pa, VM_PROT_READ|VM_PROT_WRITE);
    865 
    866 	/*
    867 	 * At this point we are almost ready to take over the MMU.  But first
    868 	 * we must save the PROM's address space in our map, as we call its
    869 	 * routines and make references to its data later in the kernel.
    870 	 */
    871 	pmap_bootstrap_copyprom();
    872 	pmap_takeover_mmu();
    873 	pmap_bootstrap_setprom();
    874 
    875 	/* Notify the VM system of our page size. */
    876 	uvmexp.pagesize = PAGE_SIZE;
    877 	uvm_setpagesize();
    878 
    879 	pmap_page_upload();
    880 }
    881 
    882 
    883 /* pmap_alloc_usermmu			INTERNAL
    884  **
    885  * Called from pmap_bootstrap() to allocate MMU tables that will
    886  * eventually be used for user mappings.
    887  */
    888 void
    889 pmap_alloc_usermmu()
    890 {
    891 	/* XXX: Moved into caller. */
    892 }
    893 
    894 /* pmap_alloc_pv			INTERNAL
    895  **
    896  * Called from pmap_bootstrap() to allocate the physical
    897  * to virtual mapping list.  Each physical page of memory
    898  * in the system has a corresponding element in this list.
    899  */
    900 void
    901 pmap_alloc_pv()
    902 {
    903 	int	i;
    904 	unsigned int	total_mem;
    905 
    906 	/*
    907 	 * Allocate a pv_head structure for every page of physical
    908 	 * memory that will be managed by the system.  Since memory on
    909 	 * the 3/80 is non-contiguous, we cannot arrive at a total page
    910 	 * count by subtraction of the lowest available address from the
    911 	 * highest, but rather we have to step through each memory
    912 	 * bank and add the number of pages in each to the total.
    913 	 *
    914 	 * At this time we also initialize the offset of each bank's
    915 	 * starting pv_head within the pv_head list so that the physical
    916 	 * memory state routines (pmap_is_referenced(),
    917 	 * pmap_is_modified(), et al.) can quickly find coresponding
    918 	 * pv_heads in spite of the non-contiguity.
    919 	 */
    920 	total_mem = 0;
    921 	for (i = 0; i < SUN3X_NPHYS_RAM_SEGS; i++) {
    922 		avail_mem[i].pmem_pvbase = m68k_btop(total_mem);
    923 		total_mem += avail_mem[i].pmem_end -
    924 			avail_mem[i].pmem_start;
    925 		if (avail_mem[i].pmem_next == NULL)
    926 			break;
    927 	}
    928 	pvbase = (pv_t *) pmap_bootstrap_alloc(sizeof(pv_t) *
    929 		m68k_btop(total_phys_mem));
    930 }
    931 
    932 /* pmap_alloc_usertmgr			INTERNAL
    933  **
    934  * Called from pmap_bootstrap() to allocate the structures which
    935  * facilitate management of user MMU tables.  Each user MMU table
    936  * in the system has one such structure associated with it.
    937  */
    938 void
    939 pmap_alloc_usertmgr()
    940 {
    941 	/* Allocate user MMU table managers */
    942 	/* It would be a lot simpler to just make these BSS, but */
    943 	/* we may want to change their size at boot time... -j */
    944 	Atmgrbase = (a_tmgr_t *) pmap_bootstrap_alloc(sizeof(a_tmgr_t)
    945 		* NUM_A_TABLES);
    946 	Btmgrbase = (b_tmgr_t *) pmap_bootstrap_alloc(sizeof(b_tmgr_t)
    947 		* NUM_B_TABLES);
    948 	Ctmgrbase = (c_tmgr_t *) pmap_bootstrap_alloc(sizeof(c_tmgr_t)
    949 		* NUM_C_TABLES);
    950 
    951 	/*
    952 	 * Allocate PV list elements for the physical to virtual
    953 	 * mapping system.
    954 	 */
    955 	pvebase = (pv_elem_t *) pmap_bootstrap_alloc(
    956 		sizeof(pv_elem_t) * (NUM_USER_PTES + NUM_KERN_PTES));
    957 }
    958 
    959 /* pmap_bootstrap_copyprom()			INTERNAL
    960  **
    961  * Copy the PROM mappings into our own tables.  Note, we
    962  * can use physical addresses until __bootstrap returns.
    963  */
    964 void
    965 pmap_bootstrap_copyprom()
    966 {
    967 	struct sunromvec *romp;
    968 	int *mon_ctbl;
    969 	mmu_short_pte_t *kpte;
    970 	int i, len;
    971 
    972 	romp = romVectorPtr;
    973 
    974 	/*
    975 	 * Copy the mappings in SUN3X_MON_KDB_BASE...SUN3X_MONEND
    976 	 * Note: mon_ctbl[0] maps SUN3X_MON_KDB_BASE
    977 	 */
    978 	mon_ctbl = *romp->monptaddr;
    979 	i = m68k_btop(SUN3X_MON_KDB_BASE - KERNBASE);
    980 	kpte = &kernCbase[i];
    981 	len = m68k_btop(SUN3X_MONEND - SUN3X_MON_KDB_BASE);
    982 
    983 	for (i = 0; i < len; i++) {
    984 		kpte[i].attr.raw = mon_ctbl[i];
    985 	}
    986 
    987 	/*
    988 	 * Copy the mappings at MON_DVMA_BASE (to the end).
    989 	 * Note, in here, mon_ctbl[0] maps MON_DVMA_BASE.
    990 	 * Actually, we only want the last page, which the
    991 	 * PROM has set up for use by the "ie" driver.
    992 	 * (The i82686 needs its SCP there.)
    993 	 * If we copy all the mappings, pmap_enter_kernel
    994 	 * may complain about finding valid PTEs that are
    995 	 * not recorded in our PV lists...
    996 	 */
    997 	mon_ctbl = *romp->shadowpteaddr;
    998 	i = m68k_btop(SUN3X_MON_DVMA_BASE - KERNBASE);
    999 	kpte = &kernCbase[i];
   1000 	len = m68k_btop(SUN3X_MON_DVMA_SIZE);
   1001 	for (i = (len-1); i < len; i++) {
   1002 		kpte[i].attr.raw = mon_ctbl[i];
   1003 	}
   1004 }
   1005 
   1006 /* pmap_takeover_mmu			INTERNAL
   1007  **
   1008  * Called from pmap_bootstrap() after it has copied enough of the
   1009  * PROM mappings into the kernel map so that we can use our own
   1010  * MMU table.
   1011  */
   1012 void
   1013 pmap_takeover_mmu()
   1014 {
   1015 
   1016 	loadcrp(&kernel_crp);
   1017 }
   1018 
   1019 /* pmap_bootstrap_setprom()			INTERNAL
   1020  **
   1021  * Set the PROM mappings so it can see kernel space.
   1022  * Note that physical addresses are used here, which
   1023  * we can get away with because this runs with the
   1024  * low 1GB set for transparent translation.
   1025  */
   1026 void
   1027 pmap_bootstrap_setprom()
   1028 {
   1029 	mmu_long_dte_t *mon_dte;
   1030 	extern struct mmu_rootptr mon_crp;
   1031 	int i;
   1032 
   1033 	mon_dte = (mmu_long_dte_t *) mon_crp.rp_addr;
   1034 	for (i = MMU_TIA(KERNBASE); i < MMU_TIA(KERN_END); i++) {
   1035 		mon_dte[i].attr.raw = kernAbase[i].attr.raw;
   1036 		mon_dte[i].addr.raw = kernAbase[i].addr.raw;
   1037 	}
   1038 }
   1039 
   1040 
   1041 /* pmap_init			INTERFACE
   1042  **
   1043  * Called at the end of vm_init() to set up the pmap system to go
   1044  * into full time operation.  All initialization of kernel_pmap
   1045  * should be already done by now, so this should just do things
   1046  * needed for user-level pmaps to work.
   1047  */
   1048 void
   1049 pmap_init()
   1050 {
   1051 	/** Initialize the manager pools **/
   1052 	TAILQ_INIT(&a_pool);
   1053 	TAILQ_INIT(&b_pool);
   1054 	TAILQ_INIT(&c_pool);
   1055 
   1056 	/**************************************************************
   1057 	 * Initialize all tmgr structures and MMU tables they manage. *
   1058 	 **************************************************************/
   1059 	/** Initialize A tables **/
   1060 	pmap_init_a_tables();
   1061 	/** Initialize B tables **/
   1062 	pmap_init_b_tables();
   1063 	/** Initialize C tables **/
   1064 	pmap_init_c_tables();
   1065 
   1066 	/** Initialize the pmap pools **/
   1067 	pool_init(&pmap_pmap_pool, sizeof(struct pmap), 0, 0, 0, "pmappl",
   1068 	    &pool_allocator_nointr);
   1069 }
   1070 
   1071 /* pmap_init_a_tables()			INTERNAL
   1072  **
   1073  * Initializes all A managers, their MMU A tables, and inserts
   1074  * them into the A manager pool for use by the system.
   1075  */
   1076 void
   1077 pmap_init_a_tables()
   1078 {
   1079 	int i;
   1080 	a_tmgr_t *a_tbl;
   1081 
   1082 	for (i=0; i < NUM_A_TABLES; i++) {
   1083 		/* Select the next available A manager from the pool */
   1084 		a_tbl = &Atmgrbase[i];
   1085 
   1086 		/*
   1087 		 * Clear its parent entry.  Set its wired and valid
   1088 		 * entry count to zero.
   1089 		 */
   1090 		a_tbl->at_parent = NULL;
   1091 		a_tbl->at_wcnt = a_tbl->at_ecnt = 0;
   1092 
   1093 		/* Assign it the next available MMU A table from the pool */
   1094 		a_tbl->at_dtbl = &mmuAbase[i * MMU_A_TBL_SIZE];
   1095 
   1096 		/*
   1097 		 * Initialize the MMU A table with the table in the `proc0',
   1098 		 * or kernel, mapping.  This ensures that every process has
   1099 		 * the kernel mapped in the top part of its address space.
   1100 		 */
   1101 		memcpy(a_tbl->at_dtbl, kernAbase, MMU_A_TBL_SIZE *
   1102 			sizeof(mmu_long_dte_t));
   1103 
   1104 		/*
   1105 		 * Finally, insert the manager into the A pool,
   1106 		 * making it ready to be used by the system.
   1107 		 */
   1108 		TAILQ_INSERT_TAIL(&a_pool, a_tbl, at_link);
   1109     }
   1110 }
   1111 
   1112 /* pmap_init_b_tables()			INTERNAL
   1113  **
   1114  * Initializes all B table managers, their MMU B tables, and
   1115  * inserts them into the B manager pool for use by the system.
   1116  */
   1117 void
   1118 pmap_init_b_tables()
   1119 {
   1120 	int i,j;
   1121 	b_tmgr_t *b_tbl;
   1122 
   1123 	for (i=0; i < NUM_B_TABLES; i++) {
   1124 		/* Select the next available B manager from the pool */
   1125 		b_tbl = &Btmgrbase[i];
   1126 
   1127 		b_tbl->bt_parent = NULL;	/* clear its parent,  */
   1128 		b_tbl->bt_pidx = 0;		/* parent index,      */
   1129 		b_tbl->bt_wcnt = 0;		/* wired entry count, */
   1130 		b_tbl->bt_ecnt = 0;		/* valid entry count. */
   1131 
   1132 		/* Assign it the next available MMU B table from the pool */
   1133 		b_tbl->bt_dtbl = &mmuBbase[i * MMU_B_TBL_SIZE];
   1134 
   1135 		/* Invalidate every descriptor in the table */
   1136 		for (j=0; j < MMU_B_TBL_SIZE; j++)
   1137 			b_tbl->bt_dtbl[j].attr.raw = MMU_DT_INVALID;
   1138 
   1139 		/* Insert the manager into the B pool */
   1140 		TAILQ_INSERT_TAIL(&b_pool, b_tbl, bt_link);
   1141 	}
   1142 }
   1143 
   1144 /* pmap_init_c_tables()			INTERNAL
   1145  **
   1146  * Initializes all C table managers, their MMU C tables, and
   1147  * inserts them into the C manager pool for use by the system.
   1148  */
   1149 void
   1150 pmap_init_c_tables()
   1151 {
   1152 	int i,j;
   1153 	c_tmgr_t *c_tbl;
   1154 
   1155 	for (i=0; i < NUM_C_TABLES; i++) {
   1156 		/* Select the next available C manager from the pool */
   1157 		c_tbl = &Ctmgrbase[i];
   1158 
   1159 		c_tbl->ct_parent = NULL;	/* clear its parent,  */
   1160 		c_tbl->ct_pidx = 0;		/* parent index,      */
   1161 		c_tbl->ct_wcnt = 0;		/* wired entry count, */
   1162 		c_tbl->ct_ecnt = 0;		/* valid entry count, */
   1163 		c_tbl->ct_pmap = NULL;		/* parent pmap,       */
   1164 		c_tbl->ct_va = 0;		/* base of managed range */
   1165 
   1166 		/* Assign it the next available MMU C table from the pool */
   1167 		c_tbl->ct_dtbl = &mmuCbase[i * MMU_C_TBL_SIZE];
   1168 
   1169 		for (j=0; j < MMU_C_TBL_SIZE; j++)
   1170 			c_tbl->ct_dtbl[j].attr.raw = MMU_DT_INVALID;
   1171 
   1172 		TAILQ_INSERT_TAIL(&c_pool, c_tbl, ct_link);
   1173 	}
   1174 }
   1175 
   1176 /* pmap_init_pv()			INTERNAL
   1177  **
   1178  * Initializes the Physical to Virtual mapping system.
   1179  */
   1180 void
   1181 pmap_init_pv()
   1182 {
   1183 	int	i;
   1184 
   1185 	/* Initialize every PV head. */
   1186 	for (i = 0; i < m68k_btop(total_phys_mem); i++) {
   1187 		pvbase[i].pv_idx = PVE_EOL;	/* Indicate no mappings */
   1188 		pvbase[i].pv_flags = 0;		/* Zero out page flags  */
   1189 	}
   1190 }
   1191 
   1192 /* get_a_table			INTERNAL
   1193  **
   1194  * Retrieve and return a level A table for use in a user map.
   1195  */
   1196 a_tmgr_t *
   1197 get_a_table()
   1198 {
   1199 	a_tmgr_t *tbl;
   1200 	pmap_t pmap;
   1201 
   1202 	/* Get the top A table in the pool */
   1203 	tbl = a_pool.tqh_first;
   1204 	if (tbl == NULL) {
   1205 		/*
   1206 		 * XXX - Instead of panicking here and in other get_x_table
   1207 		 * functions, we do have the option of sleeping on the head of
   1208 		 * the table pool.  Any function which updates the table pool
   1209 		 * would then issue a wakeup() on the head, thus waking up any
   1210 		 * processes waiting for a table.
   1211 		 *
   1212 		 * Actually, the place to sleep would be when some process
   1213 		 * asks for a "wired" mapping that would run us short of
   1214 		 * mapping resources.  This design DEPENDS on always having
   1215 		 * some mapping resources in the pool for stealing, so we
   1216 		 * must make sure we NEVER let the pool become empty. -gwr
   1217 		 */
   1218 		panic("get_a_table: out of A tables.");
   1219 	}
   1220 
   1221 	TAILQ_REMOVE(&a_pool, tbl, at_link);
   1222 	/*
   1223 	 * If the table has a non-null parent pointer then it is in use.
   1224 	 * Forcibly abduct it from its parent and clear its entries.
   1225 	 * No re-entrancy worries here.  This table would not be in the
   1226 	 * table pool unless it was available for use.
   1227 	 *
   1228 	 * Note that the second argument to free_a_table() is FALSE.  This
   1229 	 * indicates that the table should not be relinked into the A table
   1230 	 * pool.  That is a job for the function that called us.
   1231 	 */
   1232 	if (tbl->at_parent) {
   1233 		pmap = tbl->at_parent;
   1234 		free_a_table(tbl, FALSE);
   1235 		pmap->pm_a_tmgr = NULL;
   1236 		pmap->pm_a_phys = kernAphys;
   1237 	}
   1238 	return tbl;
   1239 }
   1240 
   1241 /* get_b_table			INTERNAL
   1242  **
   1243  * Return a level B table for use.
   1244  */
   1245 b_tmgr_t *
   1246 get_b_table()
   1247 {
   1248 	b_tmgr_t *tbl;
   1249 
   1250 	/* See 'get_a_table' for comments. */
   1251 	tbl = b_pool.tqh_first;
   1252 	if (tbl == NULL)
   1253 		panic("get_b_table: out of B tables.");
   1254 	TAILQ_REMOVE(&b_pool, tbl, bt_link);
   1255 	if (tbl->bt_parent) {
   1256 		tbl->bt_parent->at_dtbl[tbl->bt_pidx].attr.raw = MMU_DT_INVALID;
   1257 		tbl->bt_parent->at_ecnt--;
   1258 		free_b_table(tbl, FALSE);
   1259 	}
   1260 	return tbl;
   1261 }
   1262 
   1263 /* get_c_table			INTERNAL
   1264  **
   1265  * Return a level C table for use.
   1266  */
   1267 c_tmgr_t *
   1268 get_c_table()
   1269 {
   1270 	c_tmgr_t *tbl;
   1271 
   1272 	/* See 'get_a_table' for comments */
   1273 	tbl = c_pool.tqh_first;
   1274 	if (tbl == NULL)
   1275 		panic("get_c_table: out of C tables.");
   1276 	TAILQ_REMOVE(&c_pool, tbl, ct_link);
   1277 	if (tbl->ct_parent) {
   1278 		tbl->ct_parent->bt_dtbl[tbl->ct_pidx].attr.raw = MMU_DT_INVALID;
   1279 		tbl->ct_parent->bt_ecnt--;
   1280 		free_c_table(tbl, FALSE);
   1281 	}
   1282 	return tbl;
   1283 }
   1284 
   1285 /*
   1286  * The following 'free_table' and 'steal_table' functions are called to
   1287  * detach tables from their current obligations (parents and children) and
   1288  * prepare them for reuse in another mapping.
   1289  *
   1290  * Free_table is used when the calling function will handle the fate
   1291  * of the parent table, such as returning it to the free pool when it has
   1292  * no valid entries.  Functions that do not want to handle this should
   1293  * call steal_table, in which the parent table's descriptors and entry
   1294  * count are automatically modified when this table is removed.
   1295  */
   1296 
   1297 /* free_a_table			INTERNAL
   1298  **
   1299  * Unmaps the given A table and all child tables from their current
   1300  * mappings.  Returns the number of pages that were invalidated.
   1301  * If 'relink' is true, the function will return the table to the head
   1302  * of the available table pool.
   1303  *
   1304  * Cache note: The MC68851 will automatically flush all
   1305  * descriptors derived from a given A table from its
   1306  * Automatic Translation Cache (ATC) if we issue a
   1307  * 'PFLUSHR' instruction with the base address of the
   1308  * table.  This function should do, and does so.
   1309  * Note note: We are using an MC68030 - there is no
   1310  * PFLUSHR.
   1311  */
   1312 int
   1313 free_a_table(a_tbl, relink)
   1314 	a_tmgr_t *a_tbl;
   1315 	boolean_t relink;
   1316 {
   1317 	int i, removed_cnt;
   1318 	mmu_long_dte_t	*dte;
   1319 	mmu_short_dte_t *dtbl;
   1320 	b_tmgr_t	*tmgr;
   1321 
   1322 	/*
   1323 	 * Flush the ATC cache of all cached descriptors derived
   1324 	 * from this table.
   1325 	 * Sun3x does not use 68851's cached table feature
   1326 	 * flush_atc_crp(mmu_vtop(a_tbl->dte));
   1327 	 */
   1328 
   1329 	/*
   1330 	 * Remove any pending cache flushes that were designated
   1331 	 * for the pmap this A table belongs to.
   1332 	 * a_tbl->parent->atc_flushq[0] = 0;
   1333 	 * Not implemented in sun3x.
   1334 	 */
   1335 
   1336 	/*
   1337 	 * All A tables in the system should retain a map for the
   1338 	 * kernel. If the table contains any valid descriptors
   1339 	 * (other than those for the kernel area), invalidate them all,
   1340 	 * stopping short of the kernel's entries.
   1341 	 */
   1342 	removed_cnt = 0;
   1343 	if (a_tbl->at_ecnt) {
   1344 		dte = a_tbl->at_dtbl;
   1345 		for (i=0; i < MMU_TIA(KERNBASE); i++) {
   1346 			/*
   1347 			 * If a table entry points to a valid B table, free
   1348 			 * it and its children.
   1349 			 */
   1350 			if (MMU_VALID_DT(dte[i])) {
   1351 				/*
   1352 				 * The following block does several things,
   1353 				 * from innermost expression to the
   1354 				 * outermost:
   1355 				 * 1) It extracts the base (cc 1996)
   1356 				 *    address of the B table pointed
   1357 				 *    to in the A table entry dte[i].
   1358 				 * 2) It converts this base address into
   1359 				 *    the virtual address it can be
   1360 				 *    accessed with. (all MMU tables point
   1361 				 *    to physical addresses.)
   1362 				 * 3) It finds the corresponding manager
   1363 				 *    structure which manages this MMU table.
   1364 				 * 4) It frees the manager structure.
   1365 				 *    (This frees the MMU table and all
   1366 				 *    child tables. See 'free_b_table' for
   1367 				 *    details.)
   1368 				 */
   1369 				dtbl = mmu_ptov(dte[i].addr.raw);
   1370 				tmgr = mmuB2tmgr(dtbl);
   1371 				removed_cnt += free_b_table(tmgr, TRUE);
   1372 				dte[i].attr.raw = MMU_DT_INVALID;
   1373 			}
   1374 		}
   1375 		a_tbl->at_ecnt = 0;
   1376 	}
   1377 	if (relink) {
   1378 		a_tbl->at_parent = NULL;
   1379 		TAILQ_REMOVE(&a_pool, a_tbl, at_link);
   1380 		TAILQ_INSERT_HEAD(&a_pool, a_tbl, at_link);
   1381 	}
   1382 	return removed_cnt;
   1383 }
   1384 
   1385 /* free_b_table			INTERNAL
   1386  **
   1387  * Unmaps the given B table and all its children from their current
   1388  * mappings.  Returns the number of pages that were invalidated.
   1389  * (For comments, see 'free_a_table()').
   1390  */
   1391 int
   1392 free_b_table(b_tbl, relink)
   1393 	b_tmgr_t *b_tbl;
   1394 	boolean_t relink;
   1395 {
   1396 	int i, removed_cnt;
   1397 	mmu_short_dte_t *dte;
   1398 	mmu_short_pte_t	*dtbl;
   1399 	c_tmgr_t	*tmgr;
   1400 
   1401 	removed_cnt = 0;
   1402 	if (b_tbl->bt_ecnt) {
   1403 		dte = b_tbl->bt_dtbl;
   1404 		for (i=0; i < MMU_B_TBL_SIZE; i++) {
   1405 			if (MMU_VALID_DT(dte[i])) {
   1406 				dtbl = mmu_ptov(MMU_DTE_PA(dte[i]));
   1407 				tmgr = mmuC2tmgr(dtbl);
   1408 				removed_cnt += free_c_table(tmgr, TRUE);
   1409 				dte[i].attr.raw = MMU_DT_INVALID;
   1410 			}
   1411 		}
   1412 		b_tbl->bt_ecnt = 0;
   1413 	}
   1414 
   1415 	if (relink) {
   1416 		b_tbl->bt_parent = NULL;
   1417 		TAILQ_REMOVE(&b_pool, b_tbl, bt_link);
   1418 		TAILQ_INSERT_HEAD(&b_pool, b_tbl, bt_link);
   1419 	}
   1420 	return removed_cnt;
   1421 }
   1422 
   1423 /* free_c_table			INTERNAL
   1424  **
   1425  * Unmaps the given C table from use and returns it to the pool for
   1426  * re-use.  Returns the number of pages that were invalidated.
   1427  *
   1428  * This function preserves any physical page modification information
   1429  * contained in the page descriptors within the C table by calling
   1430  * 'pmap_remove_pte().'
   1431  */
   1432 int
   1433 free_c_table(c_tbl, relink)
   1434 	c_tmgr_t *c_tbl;
   1435 	boolean_t relink;
   1436 {
   1437 	int i, removed_cnt;
   1438 
   1439 	removed_cnt = 0;
   1440 	if (c_tbl->ct_ecnt) {
   1441 		for (i=0; i < MMU_C_TBL_SIZE; i++) {
   1442 			if (MMU_VALID_DT(c_tbl->ct_dtbl[i])) {
   1443 				pmap_remove_pte(&c_tbl->ct_dtbl[i]);
   1444 				removed_cnt++;
   1445 			}
   1446 		}
   1447 		c_tbl->ct_ecnt = 0;
   1448 	}
   1449 
   1450 	if (relink) {
   1451 		c_tbl->ct_parent = NULL;
   1452 		TAILQ_REMOVE(&c_pool, c_tbl, ct_link);
   1453 		TAILQ_INSERT_HEAD(&c_pool, c_tbl, ct_link);
   1454 	}
   1455 	return removed_cnt;
   1456 }
   1457 
   1458 
   1459 /* pmap_remove_pte			INTERNAL
   1460  **
   1461  * Unmap the given pte and preserve any page modification
   1462  * information by transfering it to the pv head of the
   1463  * physical page it maps to.  This function does not update
   1464  * any reference counts because it is assumed that the calling
   1465  * function will do so.
   1466  */
   1467 void
   1468 pmap_remove_pte(pte)
   1469 	mmu_short_pte_t *pte;
   1470 {
   1471 	u_short     pv_idx, targ_idx;
   1472 	paddr_t     pa;
   1473 	pv_t       *pv;
   1474 
   1475 	pa = MMU_PTE_PA(*pte);
   1476 	if (is_managed(pa)) {
   1477 		pv = pa2pv(pa);
   1478 		targ_idx = pteidx(pte);	/* Index of PTE being removed    */
   1479 
   1480 		/*
   1481 		 * If the PTE being removed is the first (or only) PTE in
   1482 		 * the list of PTEs currently mapped to this page, remove the
   1483 		 * PTE by changing the index found on the PV head.  Otherwise
   1484 		 * a linear search through the list will have to be executed
   1485 		 * in order to find the PVE which points to the PTE being
   1486 		 * removed, so that it may be modified to point to its new
   1487 		 * neighbor.
   1488 		 */
   1489 
   1490 		pv_idx = pv->pv_idx;	/* Index of first PTE in PV list */
   1491 		if (pv_idx == targ_idx) {
   1492 			pv->pv_idx = pvebase[targ_idx].pve_next;
   1493 		} else {
   1494 
   1495 			/*
   1496 			 * Find the PV element pointing to the target
   1497 			 * element.  Note: may have pv_idx==PVE_EOL
   1498 			 */
   1499 
   1500 			for (;;) {
   1501 				if (pv_idx == PVE_EOL) {
   1502 					goto pv_not_found;
   1503 				}
   1504 				if (pvebase[pv_idx].pve_next == targ_idx)
   1505 					break;
   1506 				pv_idx = pvebase[pv_idx].pve_next;
   1507 			}
   1508 
   1509 			/*
   1510 			 * At this point, pv_idx is the index of the PV
   1511 			 * element just before the target element in the list.
   1512 			 * Unlink the target.
   1513 			 */
   1514 
   1515 			pvebase[pv_idx].pve_next = pvebase[targ_idx].pve_next;
   1516 		}
   1517 
   1518 		/*
   1519 		 * Save the mod/ref bits of the pte by simply
   1520 		 * ORing the entire pte onto the pv_flags member
   1521 		 * of the pv structure.
   1522 		 * There is no need to use a separate bit pattern
   1523 		 * for usage information on the pv head than that
   1524 		 * which is used on the MMU ptes.
   1525 		 */
   1526 
   1527 pv_not_found:
   1528 		pv->pv_flags |= (u_short) pte->attr.raw;
   1529 	}
   1530 	pte->attr.raw = MMU_DT_INVALID;
   1531 }
   1532 
   1533 /* pmap_stroll			INTERNAL
   1534  **
   1535  * Retrieve the addresses of all table managers involved in the mapping of
   1536  * the given virtual address.  If the table walk completed successfully,
   1537  * return TRUE.  If it was only partially successful, return FALSE.
   1538  * The table walk performed by this function is important to many other
   1539  * functions in this module.
   1540  *
   1541  * Note: This function ought to be easier to read.
   1542  */
   1543 boolean_t
   1544 pmap_stroll(pmap, va, a_tbl, b_tbl, c_tbl, pte, a_idx, b_idx, pte_idx)
   1545 	pmap_t pmap;
   1546 	vaddr_t va;
   1547 	a_tmgr_t **a_tbl;
   1548 	b_tmgr_t **b_tbl;
   1549 	c_tmgr_t **c_tbl;
   1550 	mmu_short_pte_t **pte;
   1551 	int *a_idx, *b_idx, *pte_idx;
   1552 {
   1553 	mmu_long_dte_t *a_dte;   /* A: long descriptor table          */
   1554 	mmu_short_dte_t *b_dte;  /* B: short descriptor table         */
   1555 
   1556 	if (pmap == pmap_kernel())
   1557 		return FALSE;
   1558 
   1559 	/* Does the given pmap have its own A table? */
   1560 	*a_tbl = pmap->pm_a_tmgr;
   1561 	if (*a_tbl == NULL)
   1562 		return FALSE; /* No.  Return unknown. */
   1563 	/* Does the A table have a valid B table
   1564 	 * under the corresponding table entry?
   1565 	 */
   1566 	*a_idx = MMU_TIA(va);
   1567 	a_dte = &((*a_tbl)->at_dtbl[*a_idx]);
   1568 	if (!MMU_VALID_DT(*a_dte))
   1569 		return FALSE; /* No. Return unknown. */
   1570 	/* Yes. Extract B table from the A table. */
   1571 	*b_tbl = mmuB2tmgr(mmu_ptov(a_dte->addr.raw));
   1572 	/* Does the B table have a valid C table
   1573 	 * under the corresponding table entry?
   1574 	 */
   1575 	*b_idx = MMU_TIB(va);
   1576 	b_dte = &((*b_tbl)->bt_dtbl[*b_idx]);
   1577 	if (!MMU_VALID_DT(*b_dte))
   1578 		return FALSE; /* No. Return unknown. */
   1579 	/* Yes. Extract C table from the B table. */
   1580 	*c_tbl = mmuC2tmgr(mmu_ptov(MMU_DTE_PA(*b_dte)));
   1581 	*pte_idx = MMU_TIC(va);
   1582 	*pte = &((*c_tbl)->ct_dtbl[*pte_idx]);
   1583 
   1584 	return	TRUE;
   1585 }
   1586 
   1587 /* pmap_enter			INTERFACE
   1588  **
   1589  * Called by the kernel to map a virtual address
   1590  * to a physical address in the given process map.
   1591  *
   1592  * Note: this function should apply an exclusive lock
   1593  * on the pmap system for its duration.  (it certainly
   1594  * would save my hair!!)
   1595  * This function ought to be easier to read.
   1596  */
   1597 int
   1598 pmap_enter(pmap, va, pa, prot, flags)
   1599 	pmap_t	pmap;
   1600 	vaddr_t va;
   1601 	paddr_t pa;
   1602 	vm_prot_t prot;
   1603 	int flags;
   1604 {
   1605 	boolean_t insert, managed; /* Marks the need for PV insertion.*/
   1606 	u_short nidx;            /* PV list index                     */
   1607 	int mapflags;            /* Flags for the mapping (see NOTE1) */
   1608 	u_int a_idx, b_idx, pte_idx; /* table indices                 */
   1609 	a_tmgr_t *a_tbl;         /* A: long descriptor table manager  */
   1610 	b_tmgr_t *b_tbl;         /* B: short descriptor table manager */
   1611 	c_tmgr_t *c_tbl;         /* C: short page table manager       */
   1612 	mmu_long_dte_t *a_dte;   /* A: long descriptor table          */
   1613 	mmu_short_dte_t *b_dte;  /* B: short descriptor table         */
   1614 	mmu_short_pte_t *c_pte;  /* C: short page descriptor table    */
   1615 	pv_t      *pv;           /* pv list head                      */
   1616 	boolean_t wired;         /* is the mapping to be wired?       */
   1617 	enum {NONE, NEWA, NEWB, NEWC} llevel; /* used at end   */
   1618 
   1619 	if (pmap == pmap_kernel()) {
   1620 		pmap_enter_kernel(va, pa, prot);
   1621 		return 0;
   1622 	}
   1623 
   1624 	/*
   1625 	 * Determine if the mapping should be wired.
   1626 	 */
   1627 	wired = ((flags & PMAP_WIRED) != 0);
   1628 
   1629 	/*
   1630 	 * NOTE1:
   1631 	 *
   1632 	 * On November 13, 1999, someone changed the pmap_enter() API such
   1633 	 * that it now accepts a 'flags' argument.  This new argument
   1634 	 * contains bit-flags for the architecture-independent (UVM) system to
   1635 	 * use in signalling certain mapping requirements to the architecture-
   1636 	 * dependent (pmap) system.  The argument it replaces, 'wired', is now
   1637 	 * one of the flags within it.
   1638 	 *
   1639 	 * In addition to flags signaled by the architecture-independent
   1640 	 * system, parts of the architecture-dependent section of the sun3x
   1641 	 * kernel pass their own flags in the lower, unused bits of the
   1642 	 * physical address supplied to this function.  These flags are
   1643 	 * extracted and stored in the temporary variable 'mapflags'.
   1644 	 *
   1645 	 * Extract sun3x specific flags from the physical address.
   1646 	 */
   1647 	mapflags  = (pa & ~MMU_PAGE_MASK);
   1648 	pa       &= MMU_PAGE_MASK;
   1649 
   1650 	/*
   1651 	 * Determine if the physical address being mapped is on-board RAM.
   1652 	 * Any other area of the address space is likely to belong to a
   1653 	 * device and hence it would be disasterous to cache its contents.
   1654 	 */
   1655 	if ((managed = is_managed(pa)) == FALSE)
   1656 		mapflags |= PMAP_NC;
   1657 
   1658 	/*
   1659 	 * For user mappings we walk along the MMU tables of the given
   1660 	 * pmap, reaching a PTE which describes the virtual page being
   1661 	 * mapped or changed.  If any level of the walk ends in an invalid
   1662 	 * entry, a table must be allocated and the entry must be updated
   1663 	 * to point to it.
   1664 	 * There is a bit of confusion as to whether this code must be
   1665 	 * re-entrant.  For now we will assume it is.  To support
   1666 	 * re-entrancy we must unlink tables from the table pool before
   1667 	 * we assume we may use them.  Tables are re-linked into the pool
   1668 	 * when we are finished with them at the end of the function.
   1669 	 * But I don't feel like doing that until we have proof that this
   1670 	 * needs to be re-entrant.
   1671 	 * 'llevel' records which tables need to be relinked.
   1672 	 */
   1673 	llevel = NONE;
   1674 
   1675 	/*
   1676 	 * Step 1 - Retrieve the A table from the pmap.  If it has no
   1677 	 * A table, allocate a new one from the available pool.
   1678 	 */
   1679 
   1680 	a_tbl = pmap->pm_a_tmgr;
   1681 	if (a_tbl == NULL) {
   1682 		/*
   1683 		 * This pmap does not currently have an A table.  Allocate
   1684 		 * a new one.
   1685 		 */
   1686 		a_tbl = get_a_table();
   1687 		a_tbl->at_parent = pmap;
   1688 
   1689 		/*
   1690 		 * Assign this new A table to the pmap, and calculate its
   1691 		 * physical address so that loadcrp() can be used to make
   1692 		 * the table active.
   1693 		 */
   1694 		pmap->pm_a_tmgr = a_tbl;
   1695 		pmap->pm_a_phys = mmu_vtop(a_tbl->at_dtbl);
   1696 
   1697 		/*
   1698 		 * If the process receiving a new A table is the current
   1699 		 * process, we are responsible for setting the MMU so that
   1700 		 * it becomes the current address space.  This only adds
   1701 		 * new mappings, so no need to flush anything.
   1702 		 */
   1703 		if (pmap == current_pmap()) {
   1704 			kernel_crp.rp_addr = pmap->pm_a_phys;
   1705 			loadcrp(&kernel_crp);
   1706 		}
   1707 
   1708 		if (!wired)
   1709 			llevel = NEWA;
   1710 	} else {
   1711 		/*
   1712 		 * Use the A table already allocated for this pmap.
   1713 		 * Unlink it from the A table pool if necessary.
   1714 		 */
   1715 		if (wired && !a_tbl->at_wcnt)
   1716 			TAILQ_REMOVE(&a_pool, a_tbl, at_link);
   1717 	}
   1718 
   1719 	/*
   1720 	 * Step 2 - Walk into the B table.  If there is no valid B table,
   1721 	 * allocate one.
   1722 	 */
   1723 
   1724 	a_idx = MMU_TIA(va);            /* Calculate the TIA of the VA. */
   1725 	a_dte = &a_tbl->at_dtbl[a_idx]; /* Retrieve descriptor from table */
   1726 	if (MMU_VALID_DT(*a_dte)) {     /* Is the descriptor valid? */
   1727 		/* The descriptor is valid.  Use the B table it points to. */
   1728 		/*************************************
   1729 		 *               a_idx               *
   1730 		 *                 v                 *
   1731 		 * a_tbl -> +-+-+-+-+-+-+-+-+-+-+-+- *
   1732 		 *          | | | | | | | | | | | |  *
   1733 		 *          +-+-+-+-+-+-+-+-+-+-+-+- *
   1734 		 *                 |                 *
   1735 		 *                 \- b_tbl -> +-+-  *
   1736 		 *                             | |   *
   1737 		 *                             +-+-  *
   1738 		 *************************************/
   1739 		b_dte = mmu_ptov(a_dte->addr.raw);
   1740 		b_tbl = mmuB2tmgr(b_dte);
   1741 
   1742 		/*
   1743 		 * If the requested mapping must be wired, but this table
   1744 		 * being used to map it is not, the table must be removed
   1745 		 * from the available pool and its wired entry count
   1746 		 * incremented.
   1747 		 */
   1748 		if (wired && !b_tbl->bt_wcnt) {
   1749 			TAILQ_REMOVE(&b_pool, b_tbl, bt_link);
   1750 			a_tbl->at_wcnt++;
   1751 		}
   1752 	} else {
   1753 		/* The descriptor is invalid.  Allocate a new B table. */
   1754 		b_tbl = get_b_table();
   1755 
   1756 		/* Point the parent A table descriptor to this new B table. */
   1757 		a_dte->addr.raw = mmu_vtop(b_tbl->bt_dtbl);
   1758 		a_dte->attr.raw = MMU_LONG_DTE_LU | MMU_DT_SHORT;
   1759 		a_tbl->at_ecnt++; /* Update parent's valid entry count */
   1760 
   1761 		/* Create the necessary back references to the parent table */
   1762 		b_tbl->bt_parent = a_tbl;
   1763 		b_tbl->bt_pidx = a_idx;
   1764 
   1765 		/*
   1766 		 * If this table is to be wired, make sure the parent A table
   1767 		 * wired count is updated to reflect that it has another wired
   1768 		 * entry.
   1769 		 */
   1770 		if (wired)
   1771 			a_tbl->at_wcnt++;
   1772 		else if (llevel == NONE)
   1773 			llevel = NEWB;
   1774 	}
   1775 
   1776 	/*
   1777 	 * Step 3 - Walk into the C table, if there is no valid C table,
   1778 	 * allocate one.
   1779 	 */
   1780 
   1781 	b_idx = MMU_TIB(va);            /* Calculate the TIB of the VA */
   1782 	b_dte = &b_tbl->bt_dtbl[b_idx]; /* Retrieve descriptor from table */
   1783 	if (MMU_VALID_DT(*b_dte)) {     /* Is the descriptor valid? */
   1784 		/* The descriptor is valid.  Use the C table it points to. */
   1785 		/**************************************
   1786 		 *               c_idx                *
   1787 		 * |                v                 *
   1788 		 * \- b_tbl -> +-+-+-+-+-+-+-+-+-+-+- *
   1789 		 *             | | | | | | | | | | |  *
   1790 		 *             +-+-+-+-+-+-+-+-+-+-+- *
   1791 		 *                  |                 *
   1792 		 *                  \- c_tbl -> +-+-- *
   1793 		 *                              | | | *
   1794 		 *                              +-+-- *
   1795 		 **************************************/
   1796 		c_pte = mmu_ptov(MMU_PTE_PA(*b_dte));
   1797 		c_tbl = mmuC2tmgr(c_pte);
   1798 
   1799 		/* If mapping is wired and table is not */
   1800 		if (wired && !c_tbl->ct_wcnt) {
   1801 			TAILQ_REMOVE(&c_pool, c_tbl, ct_link);
   1802 			b_tbl->bt_wcnt++;
   1803 		}
   1804 	} else {
   1805 		/* The descriptor is invalid.  Allocate a new C table. */
   1806 		c_tbl = get_c_table();
   1807 
   1808 		/* Point the parent B table descriptor to this new C table. */
   1809 		b_dte->attr.raw = mmu_vtop(c_tbl->ct_dtbl);
   1810 		b_dte->attr.raw |= MMU_DT_SHORT;
   1811 		b_tbl->bt_ecnt++; /* Update parent's valid entry count */
   1812 
   1813 		/* Create the necessary back references to the parent table */
   1814 		c_tbl->ct_parent = b_tbl;
   1815 		c_tbl->ct_pidx = b_idx;
   1816 		/*
   1817 		 * Store the pmap and base virtual managed address for faster
   1818 		 * retrieval in the PV functions.
   1819 		 */
   1820 		c_tbl->ct_pmap = pmap;
   1821 		c_tbl->ct_va = (va & (MMU_TIA_MASK|MMU_TIB_MASK));
   1822 
   1823 		/*
   1824 		 * If this table is to be wired, make sure the parent B table
   1825 		 * wired count is updated to reflect that it has another wired
   1826 		 * entry.
   1827 		 */
   1828 		if (wired)
   1829 			b_tbl->bt_wcnt++;
   1830 		else if (llevel == NONE)
   1831 			llevel = NEWC;
   1832 	}
   1833 
   1834 	/*
   1835 	 * Step 4 - Deposit a page descriptor (PTE) into the appropriate
   1836 	 * slot of the C table, describing the PA to which the VA is mapped.
   1837 	 */
   1838 
   1839 	pte_idx = MMU_TIC(va);
   1840 	c_pte = &c_tbl->ct_dtbl[pte_idx];
   1841 	if (MMU_VALID_DT(*c_pte)) { /* Is the entry currently valid? */
   1842 		/*
   1843 		 * The PTE is currently valid.  This particular call
   1844 		 * is just a synonym for one (or more) of the following
   1845 		 * operations:
   1846 		 *     change protection of a page
   1847 		 *     change wiring status of a page
   1848 		 *     remove the mapping of a page
   1849 		 *
   1850 		 * XXX - Semi critical: This code should unwire the PTE
   1851 		 * and, possibly, associated parent tables if this is a
   1852 		 * change wiring operation.  Currently it does not.
   1853 		 *
   1854 		 * This may be ok if pmap_unwire() is the only
   1855 		 * interface used to UNWIRE a page.
   1856 		 */
   1857 
   1858 		/* First check if this is a wiring operation. */
   1859 		if (wired && (c_pte->attr.raw & MMU_SHORT_PTE_WIRED)) {
   1860 			/*
   1861 			 * The PTE is already wired.  To prevent it from being
   1862 			 * counted as a new wiring operation, reset the 'wired'
   1863 			 * variable.
   1864 			 */
   1865 			wired = FALSE;
   1866 		}
   1867 
   1868 		/* Is the new address the same as the old? */
   1869 		if (MMU_PTE_PA(*c_pte) == pa) {
   1870 			/*
   1871 			 * Yes, mark that it does not need to be reinserted
   1872 			 * into the PV list.
   1873 			 */
   1874 			insert = FALSE;
   1875 
   1876 			/*
   1877 			 * Clear all but the modified, referenced and wired
   1878 			 * bits on the PTE.
   1879 			 */
   1880 			c_pte->attr.raw &= (MMU_SHORT_PTE_M
   1881 				| MMU_SHORT_PTE_USED | MMU_SHORT_PTE_WIRED);
   1882 		} else {
   1883 			/* No, remove the old entry */
   1884 			pmap_remove_pte(c_pte);
   1885 			insert = TRUE;
   1886 		}
   1887 
   1888 		/*
   1889 		 * TLB flush is only necessary if modifying current map.
   1890 		 * However, in pmap_enter(), the pmap almost always IS
   1891 		 * the current pmap, so don't even bother to check.
   1892 		 */
   1893 		TBIS(va);
   1894 	} else {
   1895 		/*
   1896 		 * The PTE is invalid.  Increment the valid entry count in
   1897 		 * the C table manager to reflect the addition of a new entry.
   1898 		 */
   1899 		c_tbl->ct_ecnt++;
   1900 
   1901 		/* XXX - temporarily make sure the PTE is cleared. */
   1902 		c_pte->attr.raw = 0;
   1903 
   1904 		/* It will also need to be inserted into the PV list. */
   1905 		insert = TRUE;
   1906 	}
   1907 
   1908 	/*
   1909 	 * If page is changing from unwired to wired status, set an unused bit
   1910 	 * within the PTE to indicate that it is wired.  Also increment the
   1911 	 * wired entry count in the C table manager.
   1912 	 */
   1913 	if (wired) {
   1914 		c_pte->attr.raw |= MMU_SHORT_PTE_WIRED;
   1915 		c_tbl->ct_wcnt++;
   1916 	}
   1917 
   1918 	/*
   1919 	 * Map the page, being careful to preserve modify/reference/wired
   1920 	 * bits.  At this point it is assumed that the PTE either has no bits
   1921 	 * set, or if there are set bits, they are only modified, reference or
   1922 	 * wired bits.  If not, the following statement will cause erratic
   1923 	 * behavior.
   1924 	 */
   1925 #ifdef	PMAP_DEBUG
   1926 	if (c_pte->attr.raw & ~(MMU_SHORT_PTE_M |
   1927 		MMU_SHORT_PTE_USED | MMU_SHORT_PTE_WIRED)) {
   1928 		printf("pmap_enter: junk left in PTE at %p\n", c_pte);
   1929 		Debugger();
   1930 	}
   1931 #endif
   1932 	c_pte->attr.raw |= ((u_long) pa | MMU_DT_PAGE);
   1933 
   1934 	/*
   1935 	 * If the mapping should be read-only, set the write protect
   1936 	 * bit in the PTE.
   1937 	 */
   1938 	if (!(prot & VM_PROT_WRITE))
   1939 		c_pte->attr.raw |= MMU_SHORT_PTE_WP;
   1940 
   1941 	/*
   1942 	 * If the mapping should be cache inhibited (indicated by the flag
   1943 	 * bits found on the lower order of the physical address.)
   1944 	 * mark the PTE as a cache inhibited page.
   1945 	 */
   1946 	if (mapflags & PMAP_NC)
   1947 		c_pte->attr.raw |= MMU_SHORT_PTE_CI;
   1948 
   1949 	/*
   1950 	 * If the physical address being mapped is managed by the PV
   1951 	 * system then link the pte into the list of pages mapped to that
   1952 	 * address.
   1953 	 */
   1954 	if (insert && managed) {
   1955 		pv = pa2pv(pa);
   1956 		nidx = pteidx(c_pte);
   1957 
   1958 		pvebase[nidx].pve_next = pv->pv_idx;
   1959 		pv->pv_idx = nidx;
   1960 	}
   1961 
   1962 	/* Move any allocated tables back into the active pool. */
   1963 
   1964 	switch (llevel) {
   1965 		case NEWA:
   1966 			TAILQ_INSERT_TAIL(&a_pool, a_tbl, at_link);
   1967 			/* FALLTHROUGH */
   1968 		case NEWB:
   1969 			TAILQ_INSERT_TAIL(&b_pool, b_tbl, bt_link);
   1970 			/* FALLTHROUGH */
   1971 		case NEWC:
   1972 			TAILQ_INSERT_TAIL(&c_pool, c_tbl, ct_link);
   1973 			/* FALLTHROUGH */
   1974 		default:
   1975 			break;
   1976 	}
   1977 
   1978 	return 0;
   1979 }
   1980 
   1981 /* pmap_enter_kernel			INTERNAL
   1982  **
   1983  * Map the given virtual address to the given physical address within the
   1984  * kernel address space.  This function exists because the kernel map does
   1985  * not do dynamic table allocation.  It consists of a contiguous array of ptes
   1986  * and can be edited directly without the need to walk through any tables.
   1987  *
   1988  * XXX: "Danger, Will Robinson!"
   1989  * Note that the kernel should never take a fault on any page
   1990  * between [ KERNBASE .. virtual_avail ] and this is checked in
   1991  * trap.c for kernel-mode MMU faults.  This means that mappings
   1992  * created in that range must be implicily wired. -gwr
   1993  */
   1994 void
   1995 pmap_enter_kernel(va, pa, prot)
   1996 	vaddr_t va;
   1997 	paddr_t pa;
   1998 	vm_prot_t   prot;
   1999 {
   2000 	boolean_t       was_valid, insert;
   2001 	u_short         pte_idx;
   2002 	int             flags;
   2003 	mmu_short_pte_t *pte;
   2004 	pv_t            *pv;
   2005 	paddr_t     old_pa;
   2006 
   2007 	flags = (pa & ~MMU_PAGE_MASK);
   2008 	pa &= MMU_PAGE_MASK;
   2009 
   2010 	if (is_managed(pa))
   2011 		insert = TRUE;
   2012 	else
   2013 		insert = FALSE;
   2014 
   2015 	/*
   2016 	 * Calculate the index of the PTE being modified.
   2017 	 */
   2018 	pte_idx = (u_long) m68k_btop(va - KERNBASE);
   2019 
   2020 	/* This array is traditionally named "Sysmap" */
   2021 	pte = &kernCbase[pte_idx];
   2022 
   2023 	if (MMU_VALID_DT(*pte)) {
   2024 		was_valid = TRUE;
   2025 		/*
   2026 		 * If the PTE already maps a different
   2027 		 * physical address, umap and pv_unlink.
   2028 		 */
   2029 		old_pa = MMU_PTE_PA(*pte);
   2030 		if (pa != old_pa)
   2031 			pmap_remove_pte(pte);
   2032 		else {
   2033 		    /*
   2034 		     * Old PA and new PA are the same.  No need to
   2035 		     * relink the mapping within the PV list.
   2036 		     */
   2037 		     insert = FALSE;
   2038 
   2039 		    /*
   2040 		     * Save any mod/ref bits on the PTE.
   2041 		     */
   2042 		    pte->attr.raw &= (MMU_SHORT_PTE_USED|MMU_SHORT_PTE_M);
   2043 		}
   2044 	} else {
   2045 		pte->attr.raw = MMU_DT_INVALID;
   2046 		was_valid = FALSE;
   2047 	}
   2048 
   2049 	/*
   2050 	 * Map the page.  Being careful to preserve modified/referenced bits
   2051 	 * on the PTE.
   2052 	 */
   2053 	pte->attr.raw |= (pa | MMU_DT_PAGE);
   2054 
   2055 	if (!(prot & VM_PROT_WRITE)) /* If access should be read-only */
   2056 		pte->attr.raw |= MMU_SHORT_PTE_WP;
   2057 	if (flags & PMAP_NC)
   2058 		pte->attr.raw |= MMU_SHORT_PTE_CI;
   2059 	if (was_valid)
   2060 		TBIS(va);
   2061 
   2062 	/*
   2063 	 * Insert the PTE into the PV system, if need be.
   2064 	 */
   2065 	if (insert) {
   2066 		pv = pa2pv(pa);
   2067 		pvebase[pte_idx].pve_next = pv->pv_idx;
   2068 		pv->pv_idx = pte_idx;
   2069 	}
   2070 }
   2071 
   2072 void
   2073 pmap_kenter_pa(va, pa, prot)
   2074 	vaddr_t va;
   2075 	paddr_t pa;
   2076 	vm_prot_t prot;
   2077 {
   2078 	mmu_short_pte_t	*pte;
   2079 
   2080 	/* This array is traditionally named "Sysmap" */
   2081 	pte = &kernCbase[(u_long)m68k_btop(va - KERNBASE)];
   2082 
   2083 	KASSERT(!MMU_VALID_DT(*pte));
   2084 	pte->attr.raw = MMU_DT_INVALID | MMU_DT_PAGE | (pa & MMU_PAGE_MASK);
   2085 	if (!(prot & VM_PROT_WRITE))
   2086 		pte->attr.raw |= MMU_SHORT_PTE_WP;
   2087 }
   2088 
   2089 void
   2090 pmap_kremove(va, len)
   2091 	vaddr_t va;
   2092 	vsize_t len;
   2093 {
   2094 	int idx, eidx;
   2095 
   2096 #ifdef	PMAP_DEBUG
   2097 	if ((sva & PGOFSET) || (eva & PGOFSET))
   2098 		panic("pmap_kremove: alignment");
   2099 #endif
   2100 
   2101 	idx  = m68k_btop(va - KERNBASE);
   2102 	eidx = m68k_btop(va + len - KERNBASE);
   2103 
   2104 	while (idx < eidx) {
   2105 		kernCbase[idx++].attr.raw = MMU_DT_INVALID;
   2106 		TBIS(va);
   2107 		va += PAGE_SIZE;
   2108 	}
   2109 }
   2110 
   2111 /* pmap_map			INTERNAL
   2112  **
   2113  * Map a contiguous range of physical memory into a contiguous range of
   2114  * the kernel virtual address space.
   2115  *
   2116  * Used for device mappings and early mapping of the kernel text/data/bss.
   2117  * Returns the first virtual address beyond the end of the range.
   2118  */
   2119 vaddr_t
   2120 pmap_map(va, pa, endpa, prot)
   2121 	vaddr_t	va;
   2122 	paddr_t	pa;
   2123 	paddr_t	endpa;
   2124 	int		prot;
   2125 {
   2126 	int sz;
   2127 
   2128 	sz = endpa - pa;
   2129 	do {
   2130 		pmap_enter_kernel(va, pa, prot);
   2131 		va += PAGE_SIZE;
   2132 		pa += PAGE_SIZE;
   2133 		sz -= PAGE_SIZE;
   2134 	} while (sz > 0);
   2135 	pmap_update(pmap_kernel());
   2136 	return(va);
   2137 }
   2138 
   2139 /* pmap_protect			INTERFACE
   2140  **
   2141  * Apply the given protection to the given virtual address range within
   2142  * the given map.
   2143  *
   2144  * It is ok for the protection applied to be stronger than what is
   2145  * specified.  We use this to our advantage when the given map has no
   2146  * mapping for the virtual address.  By skipping a page when this
   2147  * is discovered, we are effectively applying a protection of VM_PROT_NONE,
   2148  * and therefore do not need to map the page just to apply a protection
   2149  * code.  Only pmap_enter() needs to create new mappings if they do not exist.
   2150  *
   2151  * XXX - This function could be speeded up by using pmap_stroll() for inital
   2152  *       setup, and then manual scrolling in the for() loop.
   2153  */
   2154 void
   2155 pmap_protect(pmap, startva, endva, prot)
   2156 	pmap_t pmap;
   2157 	vaddr_t startva, endva;
   2158 	vm_prot_t prot;
   2159 {
   2160 	boolean_t iscurpmap;
   2161 	int a_idx, b_idx, c_idx;
   2162 	a_tmgr_t *a_tbl;
   2163 	b_tmgr_t *b_tbl;
   2164 	c_tmgr_t *c_tbl;
   2165 	mmu_short_pte_t *pte;
   2166 
   2167 	if (pmap == pmap_kernel()) {
   2168 		pmap_protect_kernel(startva, endva, prot);
   2169 		return;
   2170 	}
   2171 
   2172 	/*
   2173 	 * In this particular pmap implementation, there are only three
   2174 	 * types of memory protection: 'all' (read/write/execute),
   2175 	 * 'read-only' (read/execute) and 'none' (no mapping.)
   2176 	 * It is not possible for us to treat 'executable' as a separate
   2177 	 * protection type.  Therefore, protection requests that seek to
   2178 	 * remove execute permission while retaining read or write, and those
   2179 	 * that make little sense (write-only for example) are ignored.
   2180 	 */
   2181 	switch (prot) {
   2182 		case VM_PROT_NONE:
   2183 			/*
   2184 			 * A request to apply the protection code of
   2185 			 * 'VM_PROT_NONE' is a synonym for pmap_remove().
   2186 			 */
   2187 			pmap_remove(pmap, startva, endva);
   2188 			return;
   2189 		case	VM_PROT_EXECUTE:
   2190 		case	VM_PROT_READ:
   2191 		case	VM_PROT_READ|VM_PROT_EXECUTE:
   2192 			/* continue */
   2193 			break;
   2194 		case	VM_PROT_WRITE:
   2195 		case	VM_PROT_WRITE|VM_PROT_READ:
   2196 		case	VM_PROT_WRITE|VM_PROT_EXECUTE:
   2197 		case	VM_PROT_ALL:
   2198 			/* None of these should happen in a sane system. */
   2199 			return;
   2200 	}
   2201 
   2202 	/*
   2203 	 * If the pmap has no A table, it has no mappings and therefore
   2204 	 * there is nothing to protect.
   2205 	 */
   2206 	if ((a_tbl = pmap->pm_a_tmgr) == NULL)
   2207 		return;
   2208 
   2209 	a_idx = MMU_TIA(startva);
   2210 	b_idx = MMU_TIB(startva);
   2211 	c_idx = MMU_TIC(startva);
   2212 	b_tbl = (b_tmgr_t *) c_tbl = NULL;
   2213 
   2214 	iscurpmap = (pmap == current_pmap());
   2215 	while (startva < endva) {
   2216 		if (b_tbl || MMU_VALID_DT(a_tbl->at_dtbl[a_idx])) {
   2217 		  if (b_tbl == NULL) {
   2218 		    b_tbl = (b_tmgr_t *) a_tbl->at_dtbl[a_idx].addr.raw;
   2219 		    b_tbl = mmu_ptov((vaddr_t)b_tbl);
   2220 		    b_tbl = mmuB2tmgr((mmu_short_dte_t *)b_tbl);
   2221 		  }
   2222 		  if (c_tbl || MMU_VALID_DT(b_tbl->bt_dtbl[b_idx])) {
   2223 		    if (c_tbl == NULL) {
   2224 		      c_tbl = (c_tmgr_t *) MMU_DTE_PA(b_tbl->bt_dtbl[b_idx]);
   2225 		      c_tbl = mmu_ptov((vaddr_t)c_tbl);
   2226 		      c_tbl = mmuC2tmgr((mmu_short_pte_t *)c_tbl);
   2227 		    }
   2228 		    if (MMU_VALID_DT(c_tbl->ct_dtbl[c_idx])) {
   2229 		      pte = &c_tbl->ct_dtbl[c_idx];
   2230 		      /* make the mapping read-only */
   2231 		      pte->attr.raw |= MMU_SHORT_PTE_WP;
   2232 		      /*
   2233 		       * If we just modified the current address space,
   2234 		       * flush any translations for the modified page from
   2235 		       * the translation cache and any data from it in the
   2236 		       * data cache.
   2237 		       */
   2238 		      if (iscurpmap)
   2239 		          TBIS(startva);
   2240 		    }
   2241 		    startva += PAGE_SIZE;
   2242 
   2243 		    if (++c_idx >= MMU_C_TBL_SIZE) { /* exceeded C table? */
   2244 		      c_tbl = NULL;
   2245 		      c_idx = 0;
   2246 		      if (++b_idx >= MMU_B_TBL_SIZE) { /* exceeded B table? */
   2247 		        b_tbl = NULL;
   2248 		        b_idx = 0;
   2249 		      }
   2250 		    }
   2251 		  } else { /* C table wasn't valid */
   2252 		    c_tbl = NULL;
   2253 		    c_idx = 0;
   2254 		    startva += MMU_TIB_RANGE;
   2255 		    if (++b_idx >= MMU_B_TBL_SIZE) { /* exceeded B table? */
   2256 		      b_tbl = NULL;
   2257 		      b_idx = 0;
   2258 		    }
   2259 		  } /* C table */
   2260 		} else { /* B table wasn't valid */
   2261 		  b_tbl = NULL;
   2262 		  b_idx = 0;
   2263 		  startva += MMU_TIA_RANGE;
   2264 		  a_idx++;
   2265 		} /* B table */
   2266 	}
   2267 }
   2268 
   2269 /* pmap_protect_kernel			INTERNAL
   2270  **
   2271  * Apply the given protection code to a kernel address range.
   2272  */
   2273 void
   2274 pmap_protect_kernel(startva, endva, prot)
   2275 	vaddr_t startva, endva;
   2276 	vm_prot_t prot;
   2277 {
   2278 	vaddr_t va;
   2279 	mmu_short_pte_t *pte;
   2280 
   2281 	pte = &kernCbase[(unsigned long) m68k_btop(startva - KERNBASE)];
   2282 	for (va = startva; va < endva; va += PAGE_SIZE, pte++) {
   2283 		if (MMU_VALID_DT(*pte)) {
   2284 		    switch (prot) {
   2285 		        case VM_PROT_ALL:
   2286 		            break;
   2287 		        case VM_PROT_EXECUTE:
   2288 		        case VM_PROT_READ:
   2289 		        case VM_PROT_READ|VM_PROT_EXECUTE:
   2290 		            pte->attr.raw |= MMU_SHORT_PTE_WP;
   2291 		            break;
   2292 		        case VM_PROT_NONE:
   2293 		            /* this is an alias for 'pmap_remove_kernel' */
   2294 		            pmap_remove_pte(pte);
   2295 		            break;
   2296 		        default:
   2297 		            break;
   2298 		    }
   2299 		    /*
   2300 		     * since this is the kernel, immediately flush any cached
   2301 		     * descriptors for this address.
   2302 		     */
   2303 		    TBIS(va);
   2304 		}
   2305 	}
   2306 }
   2307 
   2308 /* pmap_unwire				INTERFACE
   2309  **
   2310  * Clear the wired attribute of the specified page.
   2311  *
   2312  * This function is called from vm_fault.c to unwire
   2313  * a mapping.
   2314  */
   2315 void
   2316 pmap_unwire(pmap, va)
   2317 	pmap_t pmap;
   2318 	vaddr_t va;
   2319 {
   2320 	int a_idx, b_idx, c_idx;
   2321 	a_tmgr_t *a_tbl;
   2322 	b_tmgr_t *b_tbl;
   2323 	c_tmgr_t *c_tbl;
   2324 	mmu_short_pte_t *pte;
   2325 
   2326 	/* Kernel mappings always remain wired. */
   2327 	if (pmap == pmap_kernel())
   2328 		return;
   2329 
   2330 	/*
   2331 	 * Walk through the tables.  If the walk terminates without
   2332 	 * a valid PTE then the address wasn't wired in the first place.
   2333 	 * Return immediately.
   2334 	 */
   2335 	if (pmap_stroll(pmap, va, &a_tbl, &b_tbl, &c_tbl, &pte, &a_idx,
   2336 		&b_idx, &c_idx) == FALSE)
   2337 		return;
   2338 
   2339 
   2340 	/* Is the PTE wired?  If not, return. */
   2341 	if (!(pte->attr.raw & MMU_SHORT_PTE_WIRED))
   2342 		return;
   2343 
   2344 	/* Remove the wiring bit. */
   2345 	pte->attr.raw &= ~(MMU_SHORT_PTE_WIRED);
   2346 
   2347 	/*
   2348 	 * Decrement the wired entry count in the C table.
   2349 	 * If it reaches zero the following things happen:
   2350 	 * 1. The table no longer has any wired entries and is considered
   2351 	 *    unwired.
   2352 	 * 2. It is placed on the available queue.
   2353 	 * 3. The parent table's wired entry count is decremented.
   2354 	 * 4. If it reaches zero, this process repeats at step 1 and
   2355 	 *    stops at after reaching the A table.
   2356 	 */
   2357 	if (--c_tbl->ct_wcnt == 0) {
   2358 		TAILQ_INSERT_TAIL(&c_pool, c_tbl, ct_link);
   2359 		if (--b_tbl->bt_wcnt == 0) {
   2360 			TAILQ_INSERT_TAIL(&b_pool, b_tbl, bt_link);
   2361 			if (--a_tbl->at_wcnt == 0) {
   2362 				TAILQ_INSERT_TAIL(&a_pool, a_tbl, at_link);
   2363 			}
   2364 		}
   2365 	}
   2366 }
   2367 
   2368 /* pmap_copy				INTERFACE
   2369  **
   2370  * Copy the mappings of a range of addresses in one pmap, into
   2371  * the destination address of another.
   2372  *
   2373  * This routine is advisory.  Should we one day decide that MMU tables
   2374  * may be shared by more than one pmap, this function should be used to
   2375  * link them together.  Until that day however, we do nothing.
   2376  */
   2377 void
   2378 pmap_copy(pmap_a, pmap_b, dst, len, src)
   2379 	pmap_t pmap_a, pmap_b;
   2380 	vaddr_t dst;
   2381 	vsize_t len;
   2382 	vaddr_t src;
   2383 {
   2384 	/* not implemented. */
   2385 }
   2386 
   2387 /* pmap_copy_page			INTERFACE
   2388  **
   2389  * Copy the contents of one physical page into another.
   2390  *
   2391  * This function makes use of two virtual pages allocated in pmap_bootstrap()
   2392  * to map the two specified physical pages into the kernel address space.
   2393  *
   2394  * Note: We could use the transparent translation registers to make the
   2395  * mappings.  If we do so, be sure to disable interrupts before using them.
   2396  */
   2397 void
   2398 pmap_copy_page(srcpa, dstpa)
   2399 	paddr_t srcpa, dstpa;
   2400 {
   2401 	vaddr_t srcva, dstva;
   2402 	int s;
   2403 
   2404 	srcva = tmp_vpages[0];
   2405 	dstva = tmp_vpages[1];
   2406 
   2407 	s = splvm();
   2408 #ifdef DIAGNOSTIC
   2409 	if (tmp_vpages_inuse++)
   2410 		panic("pmap_copy_page: temporary vpages are in use.");
   2411 #endif
   2412 
   2413 	/* Map pages as non-cacheable to avoid cache polution? */
   2414 	pmap_kenter_pa(srcva, srcpa, VM_PROT_READ);
   2415 	pmap_kenter_pa(dstva, dstpa, VM_PROT_READ|VM_PROT_WRITE);
   2416 
   2417 	/* Hand-optimized version of bcopy(src, dst, PAGE_SIZE) */
   2418 	copypage((char *) srcva, (char *) dstva);
   2419 
   2420 	pmap_kremove(srcva, PAGE_SIZE);
   2421 	pmap_kremove(dstva, PAGE_SIZE);
   2422 
   2423 #ifdef DIAGNOSTIC
   2424 	--tmp_vpages_inuse;
   2425 #endif
   2426 	splx(s);
   2427 }
   2428 
   2429 /* pmap_zero_page			INTERFACE
   2430  **
   2431  * Zero the contents of the specified physical page.
   2432  *
   2433  * Uses one of the virtual pages allocated in pmap_boostrap()
   2434  * to map the specified page into the kernel address space.
   2435  */
   2436 void
   2437 pmap_zero_page(dstpa)
   2438 	paddr_t dstpa;
   2439 {
   2440 	vaddr_t dstva;
   2441 	int s;
   2442 
   2443 	dstva = tmp_vpages[1];
   2444 	s = splvm();
   2445 #ifdef DIAGNOSTIC
   2446 	if (tmp_vpages_inuse++)
   2447 		panic("pmap_zero_page: temporary vpages are in use.");
   2448 #endif
   2449 
   2450 	/* The comments in pmap_copy_page() above apply here also. */
   2451 	pmap_kenter_pa(dstva, dstpa, VM_PROT_READ|VM_PROT_WRITE);
   2452 
   2453 	/* Hand-optimized version of bzero(ptr, PAGE_SIZE) */
   2454 	zeropage((char *) dstva);
   2455 
   2456 	pmap_kremove(dstva, PAGE_SIZE);
   2457 #ifdef DIAGNOSTIC
   2458 	--tmp_vpages_inuse;
   2459 #endif
   2460 	splx(s);
   2461 }
   2462 
   2463 /* pmap_collect			INTERFACE
   2464  **
   2465  * Called from the VM system when we are about to swap out
   2466  * the process using this pmap.  This should give up any
   2467  * resources held here, including all its MMU tables.
   2468  */
   2469 void
   2470 pmap_collect(pmap)
   2471 	pmap_t pmap;
   2472 {
   2473 	/* XXX - todo... */
   2474 }
   2475 
   2476 /* pmap_create			INTERFACE
   2477  **
   2478  * Create and return a pmap structure.
   2479  */
   2480 pmap_t
   2481 pmap_create()
   2482 {
   2483 	pmap_t	pmap;
   2484 
   2485 	pmap = pool_get(&pmap_pmap_pool, PR_WAITOK);
   2486 	pmap_pinit(pmap);
   2487 	return pmap;
   2488 }
   2489 
   2490 /* pmap_pinit			INTERNAL
   2491  **
   2492  * Initialize a pmap structure.
   2493  */
   2494 void
   2495 pmap_pinit(pmap)
   2496 	pmap_t pmap;
   2497 {
   2498 	memset(pmap, 0, sizeof(struct pmap));
   2499 	pmap->pm_a_tmgr = NULL;
   2500 	pmap->pm_a_phys = kernAphys;
   2501 	pmap->pm_refcount = 1;
   2502 	simple_lock_init(&pmap->pm_lock);
   2503 }
   2504 
   2505 /* pmap_release				INTERFACE
   2506  **
   2507  * Release any resources held by the given pmap.
   2508  *
   2509  * This is the reverse analog to pmap_pinit.  It does not
   2510  * necessarily mean for the pmap structure to be deallocated,
   2511  * as in pmap_destroy.
   2512  */
   2513 void
   2514 pmap_release(pmap)
   2515 	pmap_t pmap;
   2516 {
   2517 	/*
   2518 	 * As long as the pmap contains no mappings,
   2519 	 * which always should be the case whenever
   2520 	 * this function is called, there really should
   2521 	 * be nothing to do.
   2522 	 */
   2523 #ifdef	PMAP_DEBUG
   2524 	if (pmap == pmap_kernel())
   2525 		panic("pmap_release: kernel pmap");
   2526 #endif
   2527 	/*
   2528 	 * XXX - If this pmap has an A table, give it back.
   2529 	 * The pmap SHOULD be empty by now, and pmap_remove
   2530 	 * should have already given back the A table...
   2531 	 * However, I see:  pmap->pm_a_tmgr->at_ecnt == 1
   2532 	 * at this point, which means some mapping was not
   2533 	 * removed when it should have been. -gwr
   2534 	 */
   2535 	if (pmap->pm_a_tmgr != NULL) {
   2536 		/* First make sure we are not using it! */
   2537 		if (kernel_crp.rp_addr == pmap->pm_a_phys) {
   2538 			kernel_crp.rp_addr = kernAphys;
   2539 			loadcrp(&kernel_crp);
   2540 		}
   2541 #ifdef	PMAP_DEBUG /* XXX - todo! */
   2542 		/* XXX - Now complain... */
   2543 		printf("pmap_release: still have table\n");
   2544 		Debugger();
   2545 #endif
   2546 		free_a_table(pmap->pm_a_tmgr, TRUE);
   2547 		pmap->pm_a_tmgr = NULL;
   2548 		pmap->pm_a_phys = kernAphys;
   2549 	}
   2550 }
   2551 
   2552 /* pmap_reference			INTERFACE
   2553  **
   2554  * Increment the reference count of a pmap.
   2555  */
   2556 void
   2557 pmap_reference(pmap)
   2558 	pmap_t pmap;
   2559 {
   2560 	pmap_lock(pmap);
   2561 	pmap_add_ref(pmap);
   2562 	pmap_unlock(pmap);
   2563 }
   2564 
   2565 /* pmap_dereference			INTERNAL
   2566  **
   2567  * Decrease the reference count on the given pmap
   2568  * by one and return the current count.
   2569  */
   2570 int
   2571 pmap_dereference(pmap)
   2572 	pmap_t pmap;
   2573 {
   2574 	int rtn;
   2575 
   2576 	pmap_lock(pmap);
   2577 	rtn = pmap_del_ref(pmap);
   2578 	pmap_unlock(pmap);
   2579 
   2580 	return rtn;
   2581 }
   2582 
   2583 /* pmap_destroy			INTERFACE
   2584  **
   2585  * Decrement a pmap's reference count and delete
   2586  * the pmap if it becomes zero.  Will be called
   2587  * only after all mappings have been removed.
   2588  */
   2589 void
   2590 pmap_destroy(pmap)
   2591 	pmap_t pmap;
   2592 {
   2593 	if (pmap_dereference(pmap) == 0) {
   2594 		pmap_release(pmap);
   2595 		pool_put(&pmap_pmap_pool, pmap);
   2596 	}
   2597 }
   2598 
   2599 /* pmap_is_referenced			INTERFACE
   2600  **
   2601  * Determine if the given physical page has been
   2602  * referenced (read from [or written to.])
   2603  */
   2604 boolean_t
   2605 pmap_is_referenced(pg)
   2606 	struct vm_page *pg;
   2607 {
   2608 	paddr_t   pa = VM_PAGE_TO_PHYS(pg);
   2609 	pv_t      *pv;
   2610 	int       idx;
   2611 
   2612 	/*
   2613 	 * Check the flags on the pv head.  If they are set,
   2614 	 * return immediately.  Otherwise a search must be done.
   2615 	 */
   2616 
   2617 	pv = pa2pv(pa);
   2618 	if (pv->pv_flags & PV_FLAGS_USED)
   2619 		return TRUE;
   2620 
   2621 	/*
   2622 	 * Search through all pv elements pointing
   2623 	 * to this page and query their reference bits
   2624 	 */
   2625 
   2626 	for (idx = pv->pv_idx; idx != PVE_EOL; idx = pvebase[idx].pve_next) {
   2627 		if (MMU_PTE_USED(kernCbase[idx])) {
   2628 			return TRUE;
   2629 		}
   2630 	}
   2631 	return FALSE;
   2632 }
   2633 
   2634 /* pmap_is_modified			INTERFACE
   2635  **
   2636  * Determine if the given physical page has been
   2637  * modified (written to.)
   2638  */
   2639 boolean_t
   2640 pmap_is_modified(pg)
   2641 	struct vm_page *pg;
   2642 {
   2643 	paddr_t   pa = VM_PAGE_TO_PHYS(pg);
   2644 	pv_t      *pv;
   2645 	int       idx;
   2646 
   2647 	/* see comments in pmap_is_referenced() */
   2648 	pv = pa2pv(pa);
   2649 	if (pv->pv_flags & PV_FLAGS_MDFY)
   2650 		return TRUE;
   2651 
   2652 	for (idx = pv->pv_idx;
   2653 		 idx != PVE_EOL;
   2654 		 idx = pvebase[idx].pve_next) {
   2655 
   2656 		if (MMU_PTE_MODIFIED(kernCbase[idx])) {
   2657 			return TRUE;
   2658 		}
   2659 	}
   2660 
   2661 	return FALSE;
   2662 }
   2663 
   2664 /* pmap_page_protect			INTERFACE
   2665  **
   2666  * Applies the given protection to all mappings to the given
   2667  * physical page.
   2668  */
   2669 void
   2670 pmap_page_protect(pg, prot)
   2671 	struct vm_page *pg;
   2672 	vm_prot_t prot;
   2673 {
   2674 	paddr_t   pa = VM_PAGE_TO_PHYS(pg);
   2675 	pv_t      *pv;
   2676 	int       idx;
   2677 	vaddr_t va;
   2678 	struct mmu_short_pte_struct *pte;
   2679 	c_tmgr_t  *c_tbl;
   2680 	pmap_t    pmap, curpmap;
   2681 
   2682 	curpmap = current_pmap();
   2683 	pv = pa2pv(pa);
   2684 
   2685 	for (idx = pv->pv_idx; idx != PVE_EOL; idx = pvebase[idx].pve_next) {
   2686 		pte = &kernCbase[idx];
   2687 		switch (prot) {
   2688 			case VM_PROT_ALL:
   2689 				/* do nothing */
   2690 				break;
   2691 			case VM_PROT_EXECUTE:
   2692 			case VM_PROT_READ:
   2693 			case VM_PROT_READ|VM_PROT_EXECUTE:
   2694 				/*
   2695 				 * Determine the virtual address mapped by
   2696 				 * the PTE and flush ATC entries if necessary.
   2697 				 */
   2698 				va = pmap_get_pteinfo(idx, &pmap, &c_tbl);
   2699 				pte->attr.raw |= MMU_SHORT_PTE_WP;
   2700 				if (pmap == curpmap || pmap == pmap_kernel())
   2701 					TBIS(va);
   2702 				break;
   2703 			case VM_PROT_NONE:
   2704 				/* Save the mod/ref bits. */
   2705 				pv->pv_flags |= pte->attr.raw;
   2706 				/* Invalidate the PTE. */
   2707 				pte->attr.raw = MMU_DT_INVALID;
   2708 
   2709 				/*
   2710 				 * Update table counts.  And flush ATC entries
   2711 				 * if necessary.
   2712 				 */
   2713 				va = pmap_get_pteinfo(idx, &pmap, &c_tbl);
   2714 
   2715 				/*
   2716 				 * If the PTE belongs to the kernel map,
   2717 				 * be sure to flush the page it maps.
   2718 				 */
   2719 				if (pmap == pmap_kernel()) {
   2720 					TBIS(va);
   2721 				} else {
   2722 					/*
   2723 					 * The PTE belongs to a user map.
   2724 					 * update the entry count in the C
   2725 					 * table to which it belongs and flush
   2726 					 * the ATC if the mapping belongs to
   2727 					 * the current pmap.
   2728 					 */
   2729 					c_tbl->ct_ecnt--;
   2730 					if (pmap == curpmap)
   2731 						TBIS(va);
   2732 				}
   2733 				break;
   2734 			default:
   2735 				break;
   2736 		}
   2737 	}
   2738 
   2739 	/*
   2740 	 * If the protection code indicates that all mappings to the page
   2741 	 * be removed, truncate the PV list to zero entries.
   2742 	 */
   2743 	if (prot == VM_PROT_NONE)
   2744 		pv->pv_idx = PVE_EOL;
   2745 }
   2746 
   2747 /* pmap_get_pteinfo		INTERNAL
   2748  **
   2749  * Called internally to find the pmap and virtual address within that
   2750  * map to which the pte at the given index maps.  Also includes the PTE's C
   2751  * table manager.
   2752  *
   2753  * Returns the pmap in the argument provided, and the virtual address
   2754  * by return value.
   2755  */
   2756 vaddr_t
   2757 pmap_get_pteinfo(idx, pmap, tbl)
   2758 	u_int idx;
   2759 	pmap_t *pmap;
   2760 	c_tmgr_t **tbl;
   2761 {
   2762 	vaddr_t     va = 0;
   2763 
   2764 	/*
   2765 	 * Determine if the PTE is a kernel PTE or a user PTE.
   2766 	 */
   2767 	if (idx >= NUM_KERN_PTES) {
   2768 		/*
   2769 		 * The PTE belongs to a user mapping.
   2770 		 */
   2771 		/* XXX: Would like an inline for this to validate idx... */
   2772 		*tbl = &Ctmgrbase[(idx - NUM_KERN_PTES) / MMU_C_TBL_SIZE];
   2773 
   2774 		*pmap = (*tbl)->ct_pmap;
   2775 		/*
   2776 		 * To find the va to which the PTE maps, we first take
   2777 		 * the table's base virtual address mapping which is stored
   2778 		 * in ct_va.  We then increment this address by a page for
   2779 		 * every slot skipped until we reach the PTE.
   2780 		 */
   2781 		va =    (*tbl)->ct_va;
   2782 		va += m68k_ptob(idx % MMU_C_TBL_SIZE);
   2783 	} else {
   2784 		/*
   2785 		 * The PTE belongs to the kernel map.
   2786 		 */
   2787 		*pmap = pmap_kernel();
   2788 
   2789 		va = m68k_ptob(idx);
   2790 		va += KERNBASE;
   2791 	}
   2792 
   2793 	return va;
   2794 }
   2795 
   2796 /* pmap_clear_modify			INTERFACE
   2797  **
   2798  * Clear the modification bit on the page at the specified
   2799  * physical address.
   2800  *
   2801  */
   2802 boolean_t
   2803 pmap_clear_modify(pg)
   2804 	struct vm_page *pg;
   2805 {
   2806 	paddr_t pa = VM_PAGE_TO_PHYS(pg);
   2807 	boolean_t rv;
   2808 
   2809 	rv = pmap_is_modified(pg);
   2810 	pmap_clear_pv(pa, PV_FLAGS_MDFY);
   2811 	return rv;
   2812 }
   2813 
   2814 /* pmap_clear_reference			INTERFACE
   2815  **
   2816  * Clear the referenced bit on the page at the specified
   2817  * physical address.
   2818  */
   2819 boolean_t
   2820 pmap_clear_reference(pg)
   2821 	struct vm_page *pg;
   2822 {
   2823 	paddr_t pa = VM_PAGE_TO_PHYS(pg);
   2824 	boolean_t rv;
   2825 
   2826 	rv = pmap_is_referenced(pg);
   2827 	pmap_clear_pv(pa, PV_FLAGS_USED);
   2828 	return rv;
   2829 }
   2830 
   2831 /* pmap_clear_pv			INTERNAL
   2832  **
   2833  * Clears the specified flag from the specified physical address.
   2834  * (Used by pmap_clear_modify() and pmap_clear_reference().)
   2835  *
   2836  * Flag is one of:
   2837  *   PV_FLAGS_MDFY - Page modified bit.
   2838  *   PV_FLAGS_USED - Page used (referenced) bit.
   2839  *
   2840  * This routine must not only clear the flag on the pv list
   2841  * head.  It must also clear the bit on every pte in the pv
   2842  * list associated with the address.
   2843  */
   2844 void
   2845 pmap_clear_pv(pa, flag)
   2846 	paddr_t pa;
   2847 	int flag;
   2848 {
   2849 	pv_t      *pv;
   2850 	int       idx;
   2851 	vaddr_t   va;
   2852 	pmap_t          pmap;
   2853 	mmu_short_pte_t *pte;
   2854 	c_tmgr_t        *c_tbl;
   2855 
   2856 	pv = pa2pv(pa);
   2857 	pv->pv_flags &= ~(flag);
   2858 	for (idx = pv->pv_idx; idx != PVE_EOL; idx = pvebase[idx].pve_next) {
   2859 		pte = &kernCbase[idx];
   2860 		pte->attr.raw &= ~(flag);
   2861 
   2862 		/*
   2863 		 * The MC68030 MMU will not set the modified or
   2864 		 * referenced bits on any MMU tables for which it has
   2865 		 * a cached descriptor with its modify bit set.  To insure
   2866 		 * that it will modify these bits on the PTE during the next
   2867 		 * time it is written to or read from, we must flush it from
   2868 		 * the ATC.
   2869 		 *
   2870 		 * Ordinarily it is only necessary to flush the descriptor
   2871 		 * if it is used in the current address space.  But since I
   2872 		 * am not sure that there will always be a notion of
   2873 		 * 'the current address space' when this function is called,
   2874 		 * I will skip the test and always flush the address.  It
   2875 		 * does no harm.
   2876 		 */
   2877 
   2878 		va = pmap_get_pteinfo(idx, &pmap, &c_tbl);
   2879 		TBIS(va);
   2880 	}
   2881 }
   2882 
   2883 /* pmap_extract			INTERFACE
   2884  **
   2885  * Return the physical address mapped by the virtual address
   2886  * in the specified pmap.
   2887  *
   2888  * Note: this function should also apply an exclusive lock
   2889  * on the pmap system during its duration.
   2890  */
   2891 boolean_t
   2892 pmap_extract(pmap, va, pap)
   2893 	pmap_t pmap;
   2894 	vaddr_t va;
   2895 	paddr_t *pap;
   2896 {
   2897 	int a_idx, b_idx, pte_idx;
   2898 	a_tmgr_t	*a_tbl;
   2899 	b_tmgr_t	*b_tbl;
   2900 	c_tmgr_t	*c_tbl;
   2901 	mmu_short_pte_t	*c_pte;
   2902 
   2903 	if (pmap == pmap_kernel())
   2904 		return pmap_extract_kernel(va, pap);
   2905 
   2906 	if (pmap_stroll(pmap, va, &a_tbl, &b_tbl, &c_tbl,
   2907 		&c_pte, &a_idx, &b_idx, &pte_idx) == FALSE)
   2908 		return FALSE;
   2909 
   2910 	if (!MMU_VALID_DT(*c_pte))
   2911 		return FALSE;
   2912 
   2913 	if (pap != NULL)
   2914 		*pap = MMU_PTE_PA(*c_pte);
   2915 	return (TRUE);
   2916 }
   2917 
   2918 /* pmap_extract_kernel		INTERNAL
   2919  **
   2920  * Extract a translation from the kernel address space.
   2921  */
   2922 boolean_t
   2923 pmap_extract_kernel(va, pap)
   2924 	vaddr_t va;
   2925 	paddr_t *pap;
   2926 {
   2927 	mmu_short_pte_t *pte;
   2928 
   2929 	pte = &kernCbase[(u_int) m68k_btop(va - KERNBASE)];
   2930 	if (!MMU_VALID_DT(*pte))
   2931 		return (FALSE);
   2932 	if (pap != NULL)
   2933 		*pap = MMU_PTE_PA(*pte);
   2934 	return (TRUE);
   2935 }
   2936 
   2937 /* pmap_remove_kernel		INTERNAL
   2938  **
   2939  * Remove the mapping of a range of virtual addresses from the kernel map.
   2940  * The arguments are already page-aligned.
   2941  */
   2942 void
   2943 pmap_remove_kernel(sva, eva)
   2944 	vaddr_t sva;
   2945 	vaddr_t eva;
   2946 {
   2947 	int idx, eidx;
   2948 
   2949 #ifdef	PMAP_DEBUG
   2950 	if ((sva & PGOFSET) || (eva & PGOFSET))
   2951 		panic("pmap_remove_kernel: alignment");
   2952 #endif
   2953 
   2954 	idx  = m68k_btop(sva - KERNBASE);
   2955 	eidx = m68k_btop(eva - KERNBASE);
   2956 
   2957 	while (idx < eidx) {
   2958 		pmap_remove_pte(&kernCbase[idx++]);
   2959 		TBIS(sva);
   2960 		sva += PAGE_SIZE;
   2961 	}
   2962 }
   2963 
   2964 /* pmap_remove			INTERFACE
   2965  **
   2966  * Remove the mapping of a range of virtual addresses from the given pmap.
   2967  *
   2968  * If the range contains any wired entries, this function will probably create
   2969  * disaster.
   2970  */
   2971 void
   2972 pmap_remove(pmap, start, end)
   2973 	pmap_t pmap;
   2974 	vaddr_t start;
   2975 	vaddr_t end;
   2976 {
   2977 
   2978 	if (pmap == pmap_kernel()) {
   2979 		pmap_remove_kernel(start, end);
   2980 		return;
   2981 	}
   2982 
   2983 	/*
   2984 	 * If the pmap doesn't have an A table of its own, it has no mappings
   2985 	 * that can be removed.
   2986 	 */
   2987 	if (pmap->pm_a_tmgr == NULL)
   2988 		return;
   2989 
   2990 	/*
   2991 	 * Remove the specified range from the pmap.  If the function
   2992 	 * returns true, the operation removed all the valid mappings
   2993 	 * in the pmap and freed its A table.  If this happened to the
   2994 	 * currently loaded pmap, the MMU root pointer must be reloaded
   2995 	 * with the default 'kernel' map.
   2996 	 */
   2997 	if (pmap_remove_a(pmap->pm_a_tmgr, start, end)) {
   2998 		if (kernel_crp.rp_addr == pmap->pm_a_phys) {
   2999 			kernel_crp.rp_addr = kernAphys;
   3000 			loadcrp(&kernel_crp);
   3001 			/* will do TLB flush below */
   3002 		}
   3003 		pmap->pm_a_tmgr = NULL;
   3004 		pmap->pm_a_phys = kernAphys;
   3005 	}
   3006 
   3007 	/*
   3008 	 * If we just modified the current address space,
   3009 	 * make sure to flush the MMU cache.
   3010 	 *
   3011 	 * XXX - this could be an unecessarily large flush.
   3012 	 * XXX - Could decide, based on the size of the VA range
   3013 	 * to be removed, whether to flush "by pages" or "all".
   3014 	 */
   3015 	if (pmap == current_pmap())
   3016 		TBIAU();
   3017 }
   3018 
   3019 /* pmap_remove_a			INTERNAL
   3020  **
   3021  * This is function number one in a set of three that removes a range
   3022  * of memory in the most efficient manner by removing the highest possible
   3023  * tables from the memory space.  This particular function attempts to remove
   3024  * as many B tables as it can, delegating the remaining fragmented ranges to
   3025  * pmap_remove_b().
   3026  *
   3027  * If the removal operation results in an empty A table, the function returns
   3028  * TRUE.
   3029  *
   3030  * It's ugly but will do for now.
   3031  */
   3032 boolean_t
   3033 pmap_remove_a(a_tbl, start, end)
   3034 	a_tmgr_t *a_tbl;
   3035 	vaddr_t start;
   3036 	vaddr_t end;
   3037 {
   3038 	boolean_t empty;
   3039 	int idx;
   3040 	vaddr_t nstart, nend;
   3041 	b_tmgr_t *b_tbl;
   3042 	mmu_long_dte_t  *a_dte;
   3043 	mmu_short_dte_t *b_dte;
   3044 
   3045 	/*
   3046 	 * The following code works with what I call a 'granularity
   3047 	 * reduction algorithim'.  A range of addresses will always have
   3048 	 * the following properties, which are classified according to
   3049 	 * how the range relates to the size of the current granularity
   3050 	 * - an A table entry:
   3051 	 *
   3052 	 *            1 2       3 4
   3053 	 * -+---+---+---+---+---+---+---+-
   3054 	 * -+---+---+---+---+---+---+---+-
   3055 	 *
   3056 	 * A range will always start on a granularity boundary, illustrated
   3057 	 * by '+' signs in the table above, or it will start at some point
   3058 	 * inbetween a granularity boundary, as illustrated by point 1.
   3059 	 * The first step in removing a range of addresses is to remove the
   3060 	 * range between 1 and 2, the nearest granularity boundary.  This
   3061 	 * job is handled by the section of code governed by the
   3062 	 * 'if (start < nstart)' statement.
   3063 	 *
   3064 	 * A range will always encompass zero or more intergral granules,
   3065 	 * illustrated by points 2 and 3.  Integral granules are easy to
   3066 	 * remove.  The removal of these granules is the second step, and
   3067 	 * is handled by the code block 'if (nstart < nend)'.
   3068 	 *
   3069 	 * Lastly, a range will always end on a granularity boundary,
   3070 	 * ill. by point 3, or it will fall just beyond one, ill. by point
   3071 	 * 4.  The last step involves removing this range and is handled by
   3072 	 * the code block 'if (nend < end)'.
   3073 	 */
   3074 	nstart = MMU_ROUND_UP_A(start);
   3075 	nend = MMU_ROUND_A(end);
   3076 
   3077 	if (start < nstart) {
   3078 		/*
   3079 		 * This block is executed if the range starts between
   3080 		 * a granularity boundary.
   3081 		 *
   3082 		 * First find the DTE which is responsible for mapping
   3083 		 * the start of the range.
   3084 		 */
   3085 		idx = MMU_TIA(start);
   3086 		a_dte = &a_tbl->at_dtbl[idx];
   3087 
   3088 		/*
   3089 		 * If the DTE is valid then delegate the removal of the sub
   3090 		 * range to pmap_remove_b(), which can remove addresses at
   3091 		 * a finer granularity.
   3092 		 */
   3093 		if (MMU_VALID_DT(*a_dte)) {
   3094 			b_dte = mmu_ptov(a_dte->addr.raw);
   3095 			b_tbl = mmuB2tmgr(b_dte);
   3096 
   3097 			/*
   3098 			 * The sub range to be removed starts at the start
   3099 			 * of the full range we were asked to remove, and ends
   3100 			 * at the greater of:
   3101 			 * 1. The end of the full range, -or-
   3102 			 * 2. The end of the full range, rounded down to the
   3103 			 *    nearest granularity boundary.
   3104 			 */
   3105 			if (end < nstart)
   3106 				empty = pmap_remove_b(b_tbl, start, end);
   3107 			else
   3108 				empty = pmap_remove_b(b_tbl, start, nstart);
   3109 
   3110 			/*
   3111 			 * If the removal resulted in an empty B table,
   3112 			 * invalidate the DTE that points to it and decrement
   3113 			 * the valid entry count of the A table.
   3114 			 */
   3115 			if (empty) {
   3116 				a_dte->attr.raw = MMU_DT_INVALID;
   3117 				a_tbl->at_ecnt--;
   3118 			}
   3119 		}
   3120 		/*
   3121 		 * If the DTE is invalid, the address range is already non-
   3122 		 * existent and can simply be skipped.
   3123 		 */
   3124 	}
   3125 	if (nstart < nend) {
   3126 		/*
   3127 		 * This block is executed if the range spans a whole number
   3128 		 * multiple of granules (A table entries.)
   3129 		 *
   3130 		 * First find the DTE which is responsible for mapping
   3131 		 * the start of the first granule involved.
   3132 		 */
   3133 		idx = MMU_TIA(nstart);
   3134 		a_dte = &a_tbl->at_dtbl[idx];
   3135 
   3136 		/*
   3137 		 * Remove entire sub-granules (B tables) one at a time,
   3138 		 * until reaching the end of the range.
   3139 		 */
   3140 		for (; nstart < nend; a_dte++, nstart += MMU_TIA_RANGE)
   3141 			if (MMU_VALID_DT(*a_dte)) {
   3142 				/*
   3143 				 * Find the B table manager for the
   3144 				 * entry and free it.
   3145 				 */
   3146 				b_dte = mmu_ptov(a_dte->addr.raw);
   3147 				b_tbl = mmuB2tmgr(b_dte);
   3148 				free_b_table(b_tbl, TRUE);
   3149 
   3150 				/*
   3151 				 * Invalidate the DTE that points to the
   3152 				 * B table and decrement the valid entry
   3153 				 * count of the A table.
   3154 				 */
   3155 				a_dte->attr.raw = MMU_DT_INVALID;
   3156 				a_tbl->at_ecnt--;
   3157 			}
   3158 	}
   3159 	if (nend < end) {
   3160 		/*
   3161 		 * This block is executed if the range ends beyond a
   3162 		 * granularity boundary.
   3163 		 *
   3164 		 * First find the DTE which is responsible for mapping
   3165 		 * the start of the nearest (rounded down) granularity
   3166 		 * boundary.
   3167 		 */
   3168 		idx = MMU_TIA(nend);
   3169 		a_dte = &a_tbl->at_dtbl[idx];
   3170 
   3171 		/*
   3172 		 * If the DTE is valid then delegate the removal of the sub
   3173 		 * range to pmap_remove_b(), which can remove addresses at
   3174 		 * a finer granularity.
   3175 		 */
   3176 		if (MMU_VALID_DT(*a_dte)) {
   3177 			/*
   3178 			 * Find the B table manager for the entry
   3179 			 * and hand it to pmap_remove_b() along with
   3180 			 * the sub range.
   3181 			 */
   3182 			b_dte = mmu_ptov(a_dte->addr.raw);
   3183 			b_tbl = mmuB2tmgr(b_dte);
   3184 
   3185 			empty = pmap_remove_b(b_tbl, nend, end);
   3186 
   3187 			/*
   3188 			 * If the removal resulted in an empty B table,
   3189 			 * invalidate the DTE that points to it and decrement
   3190 			 * the valid entry count of the A table.
   3191 			 */
   3192 			if (empty) {
   3193 				a_dte->attr.raw = MMU_DT_INVALID;
   3194 				a_tbl->at_ecnt--;
   3195 			}
   3196 		}
   3197 	}
   3198 
   3199 	/*
   3200 	 * If there are no more entries in the A table, release it
   3201 	 * back to the available pool and return TRUE.
   3202 	 */
   3203 	if (a_tbl->at_ecnt == 0) {
   3204 		a_tbl->at_parent = NULL;
   3205 		TAILQ_REMOVE(&a_pool, a_tbl, at_link);
   3206 		TAILQ_INSERT_HEAD(&a_pool, a_tbl, at_link);
   3207 		empty = TRUE;
   3208 	} else {
   3209 		empty = FALSE;
   3210 	}
   3211 
   3212 	return empty;
   3213 }
   3214 
   3215 /* pmap_remove_b			INTERNAL
   3216  **
   3217  * Remove a range of addresses from an address space, trying to remove entire
   3218  * C tables if possible.
   3219  *
   3220  * If the operation results in an empty B table, the function returns TRUE.
   3221  */
   3222 boolean_t
   3223 pmap_remove_b(b_tbl, start, end)
   3224 	b_tmgr_t *b_tbl;
   3225 	vaddr_t start;
   3226 	vaddr_t end;
   3227 {
   3228 	boolean_t empty;
   3229 	int idx;
   3230 	vaddr_t nstart, nend, rstart;
   3231 	c_tmgr_t *c_tbl;
   3232 	mmu_short_dte_t  *b_dte;
   3233 	mmu_short_pte_t  *c_dte;
   3234 
   3235 
   3236 	nstart = MMU_ROUND_UP_B(start);
   3237 	nend = MMU_ROUND_B(end);
   3238 
   3239 	if (start < nstart) {
   3240 		idx = MMU_TIB(start);
   3241 		b_dte = &b_tbl->bt_dtbl[idx];
   3242 		if (MMU_VALID_DT(*b_dte)) {
   3243 			c_dte = mmu_ptov(MMU_DTE_PA(*b_dte));
   3244 			c_tbl = mmuC2tmgr(c_dte);
   3245 			if (end < nstart)
   3246 				empty = pmap_remove_c(c_tbl, start, end);
   3247 			else
   3248 				empty = pmap_remove_c(c_tbl, start, nstart);
   3249 			if (empty) {
   3250 				b_dte->attr.raw = MMU_DT_INVALID;
   3251 				b_tbl->bt_ecnt--;
   3252 			}
   3253 		}
   3254 	}
   3255 	if (nstart < nend) {
   3256 		idx = MMU_TIB(nstart);
   3257 		b_dte = &b_tbl->bt_dtbl[idx];
   3258 		rstart = nstart;
   3259 		while (rstart < nend) {
   3260 			if (MMU_VALID_DT(*b_dte)) {
   3261 				c_dte = mmu_ptov(MMU_DTE_PA(*b_dte));
   3262 				c_tbl = mmuC2tmgr(c_dte);
   3263 				free_c_table(c_tbl, TRUE);
   3264 				b_dte->attr.raw = MMU_DT_INVALID;
   3265 				b_tbl->bt_ecnt--;
   3266 			}
   3267 			b_dte++;
   3268 			rstart += MMU_TIB_RANGE;
   3269 		}
   3270 	}
   3271 	if (nend < end) {
   3272 		idx = MMU_TIB(nend);
   3273 		b_dte = &b_tbl->bt_dtbl[idx];
   3274 		if (MMU_VALID_DT(*b_dte)) {
   3275 			c_dte = mmu_ptov(MMU_DTE_PA(*b_dte));
   3276 			c_tbl = mmuC2tmgr(c_dte);
   3277 			empty = pmap_remove_c(c_tbl, nend, end);
   3278 			if (empty) {
   3279 				b_dte->attr.raw = MMU_DT_INVALID;
   3280 				b_tbl->bt_ecnt--;
   3281 			}
   3282 		}
   3283 	}
   3284 
   3285 	if (b_tbl->bt_ecnt == 0) {
   3286 		b_tbl->bt_parent = NULL;
   3287 		TAILQ_REMOVE(&b_pool, b_tbl, bt_link);
   3288 		TAILQ_INSERT_HEAD(&b_pool, b_tbl, bt_link);
   3289 		empty = TRUE;
   3290 	} else {
   3291 		empty = FALSE;
   3292 	}
   3293 
   3294 	return empty;
   3295 }
   3296 
   3297 /* pmap_remove_c			INTERNAL
   3298  **
   3299  * Remove a range of addresses from the given C table.
   3300  */
   3301 boolean_t
   3302 pmap_remove_c(c_tbl, start, end)
   3303 	c_tmgr_t *c_tbl;
   3304 	vaddr_t start;
   3305 	vaddr_t end;
   3306 {
   3307 	boolean_t empty;
   3308 	int idx;
   3309 	mmu_short_pte_t *c_pte;
   3310 
   3311 	idx = MMU_TIC(start);
   3312 	c_pte = &c_tbl->ct_dtbl[idx];
   3313 	for (;start < end; start += MMU_PAGE_SIZE, c_pte++) {
   3314 		if (MMU_VALID_DT(*c_pte)) {
   3315 			pmap_remove_pte(c_pte);
   3316 			c_tbl->ct_ecnt--;
   3317 		}
   3318 	}
   3319 
   3320 	if (c_tbl->ct_ecnt == 0) {
   3321 		c_tbl->ct_parent = NULL;
   3322 		TAILQ_REMOVE(&c_pool, c_tbl, ct_link);
   3323 		TAILQ_INSERT_HEAD(&c_pool, c_tbl, ct_link);
   3324 		empty = TRUE;
   3325 	} else {
   3326 		empty = FALSE;
   3327 	}
   3328 
   3329 	return empty;
   3330 }
   3331 
   3332 /* is_managed				INTERNAL
   3333  **
   3334  * Determine if the given physical address is managed by the PV system.
   3335  * Note that this logic assumes that no one will ask for the status of
   3336  * addresses which lie in-between the memory banks on the 3/80.  If they
   3337  * do so, it will falsely report that it is managed.
   3338  *
   3339  * Note: A "managed" address is one that was reported to the VM system as
   3340  * a "usable page" during system startup.  As such, the VM system expects the
   3341  * pmap module to keep an accurate track of the useage of those pages.
   3342  * Any page not given to the VM system at startup does not exist (as far as
   3343  * the VM system is concerned) and is therefore "unmanaged."  Examples are
   3344  * those pages which belong to the ROM monitor and the memory allocated before
   3345  * the VM system was started.
   3346  */
   3347 boolean_t
   3348 is_managed(pa)
   3349 	paddr_t pa;
   3350 {
   3351 	if (pa >= avail_start && pa < avail_end)
   3352 		return TRUE;
   3353 	else
   3354 		return FALSE;
   3355 }
   3356 
   3357 /* pmap_bootstrap_alloc			INTERNAL
   3358  **
   3359  * Used internally for memory allocation at startup when malloc is not
   3360  * available.  This code will fail once it crosses the first memory
   3361  * bank boundary on the 3/80.  Hopefully by then however, the VM system
   3362  * will be in charge of allocation.
   3363  */
   3364 void *
   3365 pmap_bootstrap_alloc(size)
   3366 	int size;
   3367 {
   3368 	void *rtn;
   3369 
   3370 #ifdef	PMAP_DEBUG
   3371 	if (bootstrap_alloc_enabled == FALSE) {
   3372 		mon_printf("pmap_bootstrap_alloc: disabled\n");
   3373 		sunmon_abort();
   3374 	}
   3375 #endif
   3376 
   3377 	rtn = (void *) virtual_avail;
   3378 	virtual_avail += size;
   3379 
   3380 #ifdef	PMAP_DEBUG
   3381 	if (virtual_avail > virtual_contig_end) {
   3382 		mon_printf("pmap_bootstrap_alloc: out of mem\n");
   3383 		sunmon_abort();
   3384 	}
   3385 #endif
   3386 
   3387 	return rtn;
   3388 }
   3389 
   3390 /* pmap_bootstap_aalign			INTERNAL
   3391  **
   3392  * Used to insure that the next call to pmap_bootstrap_alloc() will
   3393  * return a chunk of memory aligned to the specified size.
   3394  *
   3395  * Note: This function will only support alignment sizes that are powers
   3396  * of two.
   3397  */
   3398 void
   3399 pmap_bootstrap_aalign(size)
   3400 	int size;
   3401 {
   3402 	int off;
   3403 
   3404 	off = virtual_avail & (size - 1);
   3405 	if (off) {
   3406 		(void) pmap_bootstrap_alloc(size - off);
   3407 	}
   3408 }
   3409 
   3410 /* pmap_pa_exists
   3411  **
   3412  * Used by the /dev/mem driver to see if a given PA is memory
   3413  * that can be mapped.  (The PA is not in a hole.)
   3414  */
   3415 int
   3416 pmap_pa_exists(pa)
   3417 	paddr_t pa;
   3418 {
   3419 	int i;
   3420 
   3421 	for (i = 0; i < SUN3X_NPHYS_RAM_SEGS; i++) {
   3422 		if ((pa >= avail_mem[i].pmem_start) &&
   3423 			(pa <  avail_mem[i].pmem_end))
   3424 			return (1);
   3425 		if (avail_mem[i].pmem_next == NULL)
   3426 			break;
   3427 	}
   3428 	return (0);
   3429 }
   3430 
   3431 /* Called only from locore.s and pmap.c */
   3432 void	_pmap_switch __P((pmap_t pmap));
   3433 
   3434 /*
   3435  * _pmap_switch			INTERNAL
   3436  *
   3437  * This is called by locore.s:cpu_switch() when it is
   3438  * switching to a new process.  Load new translations.
   3439  * Note: done in-line by locore.s unless PMAP_DEBUG
   3440  *
   3441  * Note that we do NOT allocate a context here, but
   3442  * share the "kernel only" context until we really
   3443  * need our own context for user-space mappings in
   3444  * pmap_enter_user().  [ s/context/mmu A table/ ]
   3445  */
   3446 void
   3447 _pmap_switch(pmap)
   3448 	pmap_t pmap;
   3449 {
   3450 	u_long rootpa;
   3451 
   3452 	/*
   3453 	 * Only do reload/flush if we have to.
   3454 	 * Note that if the old and new process
   3455 	 * were BOTH using the "null" context,
   3456 	 * then this will NOT flush the TLB.
   3457 	 */
   3458 	rootpa = pmap->pm_a_phys;
   3459 	if (kernel_crp.rp_addr != rootpa) {
   3460 		DPRINT(("pmap_activate(%p)\n", pmap));
   3461 		kernel_crp.rp_addr = rootpa;
   3462 		loadcrp(&kernel_crp);
   3463 		TBIAU();
   3464 	}
   3465 }
   3466 
   3467 /*
   3468  * Exported version of pmap_activate().  This is called from the
   3469  * machine-independent VM code when a process is given a new pmap.
   3470  * If (p == curlwp) do like cpu_switch would do; otherwise just
   3471  * take this as notification that the process has a new pmap.
   3472  */
   3473 void
   3474 pmap_activate(l)
   3475 	struct lwp *l;
   3476 {
   3477 	if (l->l_proc == curproc) {
   3478 		_pmap_switch(l->l_proc->p_vmspace->vm_map.pmap);
   3479 	}
   3480 }
   3481 
   3482 /*
   3483  * pmap_deactivate			INTERFACE
   3484  **
   3485  * This is called to deactivate the specified process's address space.
   3486  */
   3487 void
   3488 pmap_deactivate(l)
   3489 struct lwp *l;
   3490 {
   3491 	/* Nothing to do. */
   3492 }
   3493 
   3494 /*
   3495  * Fill in the sun3x-specific part of the kernel core header
   3496  * for dumpsys().  (See machdep.c for the rest.)
   3497  */
   3498 void
   3499 pmap_kcore_hdr(sh)
   3500 	struct sun3x_kcore_hdr *sh;
   3501 {
   3502 	u_long spa, len;
   3503 	int i;
   3504 
   3505 	sh->pg_frame = MMU_SHORT_PTE_BASEADDR;
   3506 	sh->pg_valid = MMU_DT_PAGE;
   3507 	sh->contig_end = virtual_contig_end;
   3508 	sh->kernCbase = (u_long)kernCbase;
   3509 	for (i = 0; i < SUN3X_NPHYS_RAM_SEGS; i++) {
   3510 		spa = avail_mem[i].pmem_start;
   3511 		spa = m68k_trunc_page(spa);
   3512 		len = avail_mem[i].pmem_end - spa;
   3513 		len = m68k_round_page(len);
   3514 		sh->ram_segs[i].start = spa;
   3515 		sh->ram_segs[i].size  = len;
   3516 	}
   3517 }
   3518 
   3519 
   3520 /* pmap_virtual_space			INTERFACE
   3521  **
   3522  * Return the current available range of virtual addresses in the
   3523  * arguuments provided.  Only really called once.
   3524  */
   3525 void
   3526 pmap_virtual_space(vstart, vend)
   3527 	vaddr_t *vstart, *vend;
   3528 {
   3529 	*vstart = virtual_avail;
   3530 	*vend = virtual_end;
   3531 }
   3532 
   3533 /*
   3534  * Provide memory to the VM system.
   3535  *
   3536  * Assume avail_start is always in the
   3537  * first segment as pmap_bootstrap does.
   3538  */
   3539 static void
   3540 pmap_page_upload()
   3541 {
   3542 	paddr_t	a, b;	/* memory range */
   3543 	int i;
   3544 
   3545 	/* Supply the memory in segments. */
   3546 	for (i = 0; i < SUN3X_NPHYS_RAM_SEGS; i++) {
   3547 		a = atop(avail_mem[i].pmem_start);
   3548 		b = atop(avail_mem[i].pmem_end);
   3549 		if (i == 0)
   3550 			a = atop(avail_start);
   3551 		if (avail_mem[i].pmem_end > avail_end)
   3552 			b = atop(avail_end);
   3553 
   3554 		uvm_page_physload(a, b, a, b, VM_FREELIST_DEFAULT);
   3555 
   3556 		if (avail_mem[i].pmem_next == NULL)
   3557 			break;
   3558 	}
   3559 }
   3560 
   3561 /* pmap_count			INTERFACE
   3562  **
   3563  * Return the number of resident (valid) pages in the given pmap.
   3564  *
   3565  * Note:  If this function is handed the kernel map, it will report
   3566  * that it has no mappings.  Hopefully the VM system won't ask for kernel
   3567  * map statistics.
   3568  */
   3569 segsz_t
   3570 pmap_count(pmap, type)
   3571 	pmap_t pmap;
   3572 	int    type;
   3573 {
   3574 	u_int     count;
   3575 	int       a_idx, b_idx;
   3576 	a_tmgr_t *a_tbl;
   3577 	b_tmgr_t *b_tbl;
   3578 	c_tmgr_t *c_tbl;
   3579 
   3580 	/*
   3581 	 * If the pmap does not have its own A table manager, it has no
   3582 	 * valid entires.
   3583 	 */
   3584 	if (pmap->pm_a_tmgr == NULL)
   3585 		return 0;
   3586 
   3587 	a_tbl = pmap->pm_a_tmgr;
   3588 
   3589 	count = 0;
   3590 	for (a_idx = 0; a_idx < MMU_TIA(KERNBASE); a_idx++) {
   3591 	    if (MMU_VALID_DT(a_tbl->at_dtbl[a_idx])) {
   3592 	        b_tbl = mmuB2tmgr(mmu_ptov(a_tbl->at_dtbl[a_idx].addr.raw));
   3593 	        for (b_idx = 0; b_idx < MMU_B_TBL_SIZE; b_idx++) {
   3594 	            if (MMU_VALID_DT(b_tbl->bt_dtbl[b_idx])) {
   3595 	                c_tbl = mmuC2tmgr(
   3596 	                    mmu_ptov(MMU_DTE_PA(b_tbl->bt_dtbl[b_idx])));
   3597 	                if (type == 0)
   3598 	                    /*
   3599 	                     * A resident entry count has been requested.
   3600 	                     */
   3601 	                    count += c_tbl->ct_ecnt;
   3602 	                else
   3603 	                    /*
   3604 	                     * A wired entry count has been requested.
   3605 	                     */
   3606 	                    count += c_tbl->ct_wcnt;
   3607 	            }
   3608 	        }
   3609 	    }
   3610 	}
   3611 
   3612 	return count;
   3613 }
   3614 
   3615 /************************ SUN3 COMPATIBILITY ROUTINES ********************
   3616  * The following routines are only used by DDB for tricky kernel text    *
   3617  * text operations in db_memrw.c.  They are provided for sun3            *
   3618  * compatibility.                                                        *
   3619  *************************************************************************/
   3620 /* get_pte			INTERNAL
   3621  **
   3622  * Return the page descriptor the describes the kernel mapping
   3623  * of the given virtual address.
   3624  */
   3625 extern u_long ptest_addr __P((u_long));	/* XXX: locore.s */
   3626 u_int
   3627 get_pte(va)
   3628 	vaddr_t va;
   3629 {
   3630 	u_long pte_pa;
   3631 	mmu_short_pte_t *pte;
   3632 
   3633 	/* Get the physical address of the PTE */
   3634 	pte_pa = ptest_addr(va & ~PGOFSET);
   3635 
   3636 	/* Convert to a virtual address... */
   3637 	pte = (mmu_short_pte_t *) (KERNBASE + pte_pa);
   3638 
   3639 	/* Make sure it is in our level-C tables... */
   3640 	if ((pte < kernCbase) ||
   3641 		(pte >= &mmuCbase[NUM_USER_PTES]))
   3642 		return 0;
   3643 
   3644 	/* ... and just return its contents. */
   3645 	return (pte->attr.raw);
   3646 }
   3647 
   3648 
   3649 /* set_pte			INTERNAL
   3650  **
   3651  * Set the page descriptor that describes the kernel mapping
   3652  * of the given virtual address.
   3653  */
   3654 void
   3655 set_pte(va, pte)
   3656 	vaddr_t va;
   3657 	u_int pte;
   3658 {
   3659 	u_long idx;
   3660 
   3661 	if (va < KERNBASE)
   3662 		return;
   3663 
   3664 	idx = (unsigned long) m68k_btop(va - KERNBASE);
   3665 	kernCbase[idx].attr.raw = pte;
   3666 	TBIS(va);
   3667 }
   3668 
   3669 /*
   3670  *	Routine:        pmap_procwr
   3671  *
   3672  *	Function:
   3673  *		Synchronize caches corresponding to [addr, addr+len) in p.
   3674  */
   3675 void
   3676 pmap_procwr(p, va, len)
   3677 	struct proc	*p;
   3678 	vaddr_t		va;
   3679 	size_t		len;
   3680 {
   3681 	(void)cachectl1(0x80000004, va, len, p);
   3682 }
   3683 
   3684 
   3685 #ifdef	PMAP_DEBUG
   3686 /************************** DEBUGGING ROUTINES **************************
   3687  * The following routines are meant to be an aid to debugging the pmap  *
   3688  * system.  They are callable from the DDB command line and should be   *
   3689  * prepared to be handed unstable or incomplete states of the system.   *
   3690  ************************************************************************/
   3691 
   3692 /* pv_list
   3693  **
   3694  * List all pages found on the pv list for the given physical page.
   3695  * To avoid endless loops, the listing will stop at the end of the list
   3696  * or after 'n' entries - whichever comes first.
   3697  */
   3698 void
   3699 pv_list(pa, n)
   3700 	paddr_t pa;
   3701 	int n;
   3702 {
   3703 	int  idx;
   3704 	vaddr_t va;
   3705 	pv_t *pv;
   3706 	c_tmgr_t *c_tbl;
   3707 	pmap_t pmap;
   3708 
   3709 	pv = pa2pv(pa);
   3710 	idx = pv->pv_idx;
   3711 	for (; idx != PVE_EOL && n > 0; idx = pvebase[idx].pve_next, n--) {
   3712 		va = pmap_get_pteinfo(idx, &pmap, &c_tbl);
   3713 		printf("idx %d, pmap 0x%x, va 0x%x, c_tbl %x\n",
   3714 			idx, (u_int) pmap, (u_int) va, (u_int) c_tbl);
   3715 	}
   3716 }
   3717 #endif	/* PMAP_DEBUG */
   3718 
   3719 #ifdef NOT_YET
   3720 /* and maybe not ever */
   3721 /************************** LOW-LEVEL ROUTINES **************************
   3722  * These routines will eventually be re-written into assembly and placed*
   3723  * in locore.s.  They are here now as stubs so that the pmap module can *
   3724  * be linked as a standalone user program for testing.                  *
   3725  ************************************************************************/
   3726 /* flush_atc_crp			INTERNAL
   3727  **
   3728  * Flush all page descriptors derived from the given CPU Root Pointer
   3729  * (CRP), or 'A' table as it is known here, from the 68851's automatic
   3730  * cache.
   3731  */
   3732 void
   3733 flush_atc_crp(a_tbl)
   3734 {
   3735 	mmu_long_rp_t rp;
   3736 
   3737 	/* Create a temporary root table pointer that points to the
   3738 	 * given A table.
   3739 	 */
   3740 	rp.attr.raw = ~MMU_LONG_RP_LU;
   3741 	rp.addr.raw = (unsigned int) a_tbl;
   3742 
   3743 	mmu_pflushr(&rp);
   3744 	/* mmu_pflushr:
   3745 	 * 	movel   sp(4)@,a0
   3746 	 * 	pflushr a0@
   3747 	 *	rts
   3748 	 */
   3749 }
   3750 #endif /* NOT_YET */
   3751