Home | History | Annotate | Line # | Download | only in sun3x
pmap.c revision 1.94
      1 /*	$NetBSD: pmap.c,v 1.94 2007/02/21 22:59:54 thorpej Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1996, 1997 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jeremy Cooper.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  * 3. All advertising materials mentioning features or use of this software
     19  *    must display the following acknowledgement:
     20  *        This product includes software developed by the NetBSD
     21  *        Foundation, Inc. and its contributors.
     22  * 4. Neither the name of The NetBSD Foundation nor the names of its
     23  *    contributors may be used to endorse or promote products derived
     24  *    from this software without specific prior written permission.
     25  *
     26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36  * POSSIBILITY OF SUCH DAMAGE.
     37  */
     38 
     39 /*
     40  * XXX These comments aren't quite accurate.  Need to change.
     41  * The sun3x uses the MC68851 Memory Management Unit, which is built
     42  * into the CPU.  The 68851 maps virtual to physical addresses using
     43  * a multi-level table lookup, which is stored in the very memory that
     44  * it maps.  The number of levels of lookup is configurable from one
     45  * to four.  In this implementation, we use three, named 'A' through 'C'.
     46  *
     47  * The MMU translates virtual addresses into physical addresses by
     48  * traversing these tables in a process called a 'table walk'.  The most
     49  * significant 7 bits of the Virtual Address ('VA') being translated are
     50  * used as an index into the level A table, whose base in physical memory
     51  * is stored in a special MMU register, the 'CPU Root Pointer' or CRP.  The
     52  * address found at that index in the A table is used as the base
     53  * address for the next table, the B table.  The next six bits of the VA are
     54  * used as an index into the B table, which in turn gives the base address
     55  * of the third and final C table.
     56  *
     57  * The next six bits of the VA are used as an index into the C table to
     58  * locate a Page Table Entry (PTE).  The PTE is a physical address in memory
     59  * to which the remaining 13 bits of the VA are added, producing the
     60  * mapped physical address.
     61  *
     62  * To map the entire memory space in this manner would require 2114296 bytes
     63  * of page tables per process - quite expensive.  Instead we will
     64  * allocate a fixed but considerably smaller space for the page tables at
     65  * the time the VM system is initialized.  When the pmap code is asked by
     66  * the kernel to map a VA to a PA, it allocates tables as needed from this
     67  * pool.  When there are no more tables in the pool, tables are stolen
     68  * from the oldest mapped entries in the tree.  This is only possible
     69  * because all memory mappings are stored in the kernel memory map
     70  * structures, independent of the pmap structures.  A VA which references
     71  * one of these invalidated maps will cause a page fault.  The kernel
     72  * will determine that the page fault was caused by a task using a valid
     73  * VA, but for some reason (which does not concern it), that address was
     74  * not mapped.  It will ask the pmap code to re-map the entry and then
     75  * it will resume executing the faulting task.
     76  *
     77  * In this manner the most efficient use of the page table space is
     78  * achieved.  Tasks which do not execute often will have their tables
     79  * stolen and reused by tasks which execute more frequently.  The best
     80  * size for the page table pool will probably be determined by
     81  * experimentation.
     82  *
     83  * You read all of the comments so far.  Good for you.
     84  * Now go play!
     85  */
     86 
     87 /*** A Note About the 68851 Address Translation Cache
     88  * The MC68851 has a 64 entry cache, called the Address Translation Cache
     89  * or 'ATC'.  This cache stores the most recently used page descriptors
     90  * accessed by the MMU when it does translations.  Using a marker called a
     91  * 'task alias' the MMU can store the descriptors from 8 different table
     92  * spaces concurrently.  The task alias is associated with the base
     93  * address of the level A table of that address space.  When an address
     94  * space is currently active (the CRP currently points to its A table)
     95  * the only cached descriptors that will be obeyed are ones which have a
     96  * matching task alias of the current space associated with them.
     97  *
     98  * Since the cache is always consulted before any table lookups are done,
     99  * it is important that it accurately reflect the state of the MMU tables.
    100  * Whenever a change has been made to a table that has been loaded into
    101  * the MMU, the code must be sure to flush any cached entries that are
    102  * affected by the change.  These instances are documented in the code at
    103  * various points.
    104  */
    105 /*** A Note About the Note About the 68851 Address Translation Cache
    106  * 4 months into this code I discovered that the sun3x does not have
    107  * a MC68851 chip. Instead, it has a version of this MMU that is part of the
    108  * the 68030 CPU.
    109  * All though it behaves very similarly to the 68851, it only has 1 task
    110  * alias and a 22 entry cache.  So sadly (or happily), the first paragraph
    111  * of the previous note does not apply to the sun3x pmap.
    112  */
    113 
    114 #include <sys/cdefs.h>
    115 __KERNEL_RCSID(0, "$NetBSD: pmap.c,v 1.94 2007/02/21 22:59:54 thorpej Exp $");
    116 
    117 #include "opt_ddb.h"
    118 #include "opt_pmap_debug.h"
    119 
    120 #include <sys/param.h>
    121 #include <sys/systm.h>
    122 #include <sys/proc.h>
    123 #include <sys/malloc.h>
    124 #include <sys/pool.h>
    125 #include <sys/user.h>
    126 #include <sys/queue.h>
    127 #include <sys/kcore.h>
    128 
    129 #include <uvm/uvm.h>
    130 
    131 #include <machine/cpu.h>
    132 #include <machine/kcore.h>
    133 #include <machine/mon.h>
    134 #include <machine/pmap.h>
    135 #include <machine/pte.h>
    136 #include <machine/vmparam.h>
    137 #include <m68k/cacheops.h>
    138 
    139 #include <sun3/sun3/cache.h>
    140 #include <sun3/sun3/machdep.h>
    141 
    142 #include "pmap_pvt.h"
    143 
    144 /* XXX - What headers declare these? */
    145 extern struct pcb *curpcb;
    146 extern int physmem;
    147 
    148 /* Defined in locore.s */
    149 extern char kernel_text[];
    150 
    151 /* Defined by the linker */
    152 extern char etext[], edata[], end[];
    153 extern char *esym;	/* DDB */
    154 
    155 /*************************** DEBUGGING DEFINITIONS ***********************
    156  * Macros, preprocessor defines and variables used in debugging can make *
    157  * code hard to read.  Anything used exclusively for debugging purposes  *
    158  * is defined here to avoid having such mess scattered around the file.  *
    159  *************************************************************************/
    160 #ifdef	PMAP_DEBUG
    161 /*
    162  * To aid the debugging process, macros should be expanded into smaller steps
    163  * that accomplish the same goal, yet provide convenient places for placing
    164  * breakpoints.  When this code is compiled with PMAP_DEBUG mode defined, the
    165  * 'INLINE' keyword is defined to an empty string.  This way, any function
    166  * defined to be a 'static INLINE' will become 'outlined' and compiled as
    167  * a separate function, which is much easier to debug.
    168  */
    169 #define	INLINE	/* nothing */
    170 
    171 /*
    172  * It is sometimes convenient to watch the activity of a particular table
    173  * in the system.  The following variables are used for that purpose.
    174  */
    175 a_tmgr_t *pmap_watch_atbl = 0;
    176 b_tmgr_t *pmap_watch_btbl = 0;
    177 c_tmgr_t *pmap_watch_ctbl = 0;
    178 
    179 int pmap_debug = 0;
    180 #define DPRINT(args) if (pmap_debug) printf args
    181 
    182 #else	/********** Stuff below is defined if NOT debugging **************/
    183 
    184 #define	INLINE	inline
    185 #define DPRINT(args)  /* nada */
    186 
    187 #endif	/* PMAP_DEBUG */
    188 /*********************** END OF DEBUGGING DEFINITIONS ********************/
    189 
    190 /*** Management Structure - Memory Layout
    191  * For every MMU table in the sun3x pmap system there must be a way to
    192  * manage it; we must know which process is using it, what other tables
    193  * depend on it, and whether or not it contains any locked pages.  This
    194  * is solved by the creation of 'table management'  or 'tmgr'
    195  * structures.  One for each MMU table in the system.
    196  *
    197  *                        MAP OF MEMORY USED BY THE PMAP SYSTEM
    198  *
    199  *      towards lower memory
    200  * kernAbase -> +-------------------------------------------------------+
    201  *              | Kernel     MMU A level table                          |
    202  * kernBbase -> +-------------------------------------------------------+
    203  *              | Kernel     MMU B level tables                         |
    204  * kernCbase -> +-------------------------------------------------------+
    205  *              |                                                       |
    206  *              | Kernel     MMU C level tables                         |
    207  *              |                                                       |
    208  * mmuCbase  -> +-------------------------------------------------------+
    209  *              | User       MMU C level tables                         |
    210  * mmuAbase  -> +-------------------------------------------------------+
    211  *              |                                                       |
    212  *              | User       MMU A level tables                         |
    213  *              |                                                       |
    214  * mmuBbase  -> +-------------------------------------------------------+
    215  *              | User       MMU B level tables                         |
    216  * tmgrAbase -> +-------------------------------------------------------+
    217  *              |  TMGR A level table structures                        |
    218  * tmgrBbase -> +-------------------------------------------------------+
    219  *              |  TMGR B level table structures                        |
    220  * tmgrCbase -> +-------------------------------------------------------+
    221  *              |  TMGR C level table structures                        |
    222  * pvbase    -> +-------------------------------------------------------+
    223  *              |  Physical to Virtual mapping table (list heads)       |
    224  * pvebase   -> +-------------------------------------------------------+
    225  *              |  Physical to Virtual mapping table (list elements)    |
    226  *              |                                                       |
    227  *              +-------------------------------------------------------+
    228  *      towards higher memory
    229  *
    230  * For every A table in the MMU A area, there will be a corresponding
    231  * a_tmgr structure in the TMGR A area.  The same will be true for
    232  * the B and C tables.  This arrangement will make it easy to find the
    233  * controling tmgr structure for any table in the system by use of
    234  * (relatively) simple macros.
    235  */
    236 
    237 /*
    238  * Global variables for storing the base addresses for the areas
    239  * labeled above.
    240  */
    241 static vaddr_t  	kernAphys;
    242 static mmu_long_dte_t	*kernAbase;
    243 static mmu_short_dte_t	*kernBbase;
    244 static mmu_short_pte_t	*kernCbase;
    245 static mmu_short_pte_t	*mmuCbase;
    246 static mmu_short_dte_t	*mmuBbase;
    247 static mmu_long_dte_t	*mmuAbase;
    248 static a_tmgr_t		*Atmgrbase;
    249 static b_tmgr_t		*Btmgrbase;
    250 static c_tmgr_t		*Ctmgrbase;
    251 static pv_t 		*pvbase;
    252 static pv_elem_t	*pvebase;
    253 struct pmap 		kernel_pmap;
    254 
    255 /*
    256  * This holds the CRP currently loaded into the MMU.
    257  */
    258 struct mmu_rootptr kernel_crp;
    259 
    260 /*
    261  * Just all around global variables.
    262  */
    263 static TAILQ_HEAD(a_pool_head_struct, a_tmgr_struct) a_pool;
    264 static TAILQ_HEAD(b_pool_head_struct, b_tmgr_struct) b_pool;
    265 static TAILQ_HEAD(c_pool_head_struct, c_tmgr_struct) c_pool;
    266 
    267 
    268 /*
    269  * Flags used to mark the safety/availability of certain operations or
    270  * resources.
    271  */
    272 /* Safe to use pmap_bootstrap_alloc(). */
    273 static bool bootstrap_alloc_enabled = FALSE;
    274 /* Temporary virtual pages are in use */
    275 int tmp_vpages_inuse;
    276 
    277 /*
    278  * XXX:  For now, retain the traditional variables that were
    279  * used in the old pmap/vm interface (without NONCONTIG).
    280  */
    281 /* Kernel virtual address space available: */
    282 vaddr_t	virtual_avail, virtual_end;
    283 /* Physical address space available: */
    284 paddr_t	avail_start, avail_end;
    285 
    286 /* This keep track of the end of the contiguously mapped range. */
    287 vaddr_t virtual_contig_end;
    288 
    289 /* Physical address used by pmap_next_page() */
    290 paddr_t avail_next;
    291 
    292 /* These are used by pmap_copy_page(), etc. */
    293 vaddr_t tmp_vpages[2];
    294 
    295 /* memory pool for pmap structures */
    296 struct pool	pmap_pmap_pool;
    297 
    298 /*
    299  * The 3/80 is the only member of the sun3x family that has non-contiguous
    300  * physical memory.  Memory is divided into 4 banks which are physically
    301  * locatable on the system board.  Although the size of these banks varies
    302  * with the size of memory they contain, their base addresses are
    303  * permenently fixed.  The following structure, which describes these
    304  * banks, is initialized by pmap_bootstrap() after it reads from a similar
    305  * structure provided by the ROM Monitor.
    306  *
    307  * For the other machines in the sun3x architecture which do have contiguous
    308  * RAM, this list will have only one entry, which will describe the entire
    309  * range of available memory.
    310  */
    311 struct pmap_physmem_struct avail_mem[SUN3X_NPHYS_RAM_SEGS];
    312 u_int total_phys_mem;
    313 
    314 /*************************************************************************/
    315 
    316 /*
    317  * XXX - Should "tune" these based on statistics.
    318  *
    319  * My first guess about the relative numbers of these needed is
    320  * based on the fact that a "typical" process will have several
    321  * pages mapped at low virtual addresses (text, data, bss), then
    322  * some mapped shared libraries, and then some stack pages mapped
    323  * near the high end of the VA space.  Each process can use only
    324  * one A table, and most will use only two B tables (maybe three)
    325  * and probably about four C tables.  Therefore, the first guess
    326  * at the relative numbers of these needed is 1:2:4 -gwr
    327  *
    328  * The number of C tables needed is closely related to the amount
    329  * of physical memory available plus a certain amount attributable
    330  * to the use of double mappings.  With a few simulation statistics
    331  * we can find a reasonably good estimation of this unknown value.
    332  * Armed with that and the above ratios, we have a good idea of what
    333  * is needed at each level. -j
    334  *
    335  * Note: It is not physical memory memory size, but the total mapped
    336  * virtual space required by the combined working sets of all the
    337  * currently _runnable_ processes.  (Sleeping ones don't count.)
    338  * The amount of physical memory should be irrelevant. -gwr
    339  */
    340 #ifdef	FIXED_NTABLES
    341 #define NUM_A_TABLES	16
    342 #define NUM_B_TABLES	32
    343 #define NUM_C_TABLES	64
    344 #else
    345 unsigned int	NUM_A_TABLES, NUM_B_TABLES, NUM_C_TABLES;
    346 #endif	/* FIXED_NTABLES */
    347 
    348 /*
    349  * This determines our total virtual mapping capacity.
    350  * Yes, it is a FIXED value so we can pre-allocate.
    351  */
    352 #define NUM_USER_PTES	(NUM_C_TABLES * MMU_C_TBL_SIZE)
    353 
    354 /*
    355  * The size of the Kernel Virtual Address Space (KVAS)
    356  * for purposes of MMU table allocation is -KERNBASE
    357  * (length from KERNBASE to 0xFFFFffff)
    358  */
    359 #define	KVAS_SIZE		(-KERNBASE)
    360 
    361 /* Numbers of kernel MMU tables to support KVAS_SIZE. */
    362 #define KERN_B_TABLES	(KVAS_SIZE >> MMU_TIA_SHIFT)
    363 #define KERN_C_TABLES	(KVAS_SIZE >> MMU_TIB_SHIFT)
    364 #define	NUM_KERN_PTES	(KVAS_SIZE >> MMU_TIC_SHIFT)
    365 
    366 /*************************** MISCELANEOUS MACROS *************************/
    367 #define pmap_lock(pmap) simple_lock(&pmap->pm_lock)
    368 #define pmap_unlock(pmap) simple_unlock(&pmap->pm_lock)
    369 #define pmap_add_ref(pmap) ++pmap->pm_refcount
    370 #define pmap_del_ref(pmap) --pmap->pm_refcount
    371 #define pmap_refcount(pmap) pmap->pm_refcount
    372 
    373 void *pmap_bootstrap_alloc(int);
    374 
    375 static INLINE void *mmu_ptov(paddr_t);
    376 static INLINE paddr_t mmu_vtop(void *);
    377 
    378 #if	0
    379 static INLINE a_tmgr_t *mmuA2tmgr(mmu_long_dte_t *);
    380 #endif /* 0 */
    381 static INLINE b_tmgr_t *mmuB2tmgr(mmu_short_dte_t *);
    382 static INLINE c_tmgr_t *mmuC2tmgr(mmu_short_pte_t *);
    383 
    384 static INLINE pv_t *pa2pv(paddr_t);
    385 static INLINE int   pteidx(mmu_short_pte_t *);
    386 static INLINE pmap_t current_pmap(void);
    387 
    388 /*
    389  * We can always convert between virtual and physical addresses
    390  * for anything in the range [KERNBASE ... avail_start] because
    391  * that range is GUARANTEED to be mapped linearly.
    392  * We rely heavily upon this feature!
    393  */
    394 static INLINE void *
    395 mmu_ptov(paddr_t pa)
    396 {
    397 	vaddr_t va;
    398 
    399 	va = (pa + KERNBASE);
    400 #ifdef	PMAP_DEBUG
    401 	if ((va < KERNBASE) || (va >= virtual_contig_end))
    402 		panic("mmu_ptov");
    403 #endif
    404 	return (void *)va;
    405 }
    406 
    407 static INLINE paddr_t
    408 mmu_vtop(void *vva)
    409 {
    410 	vaddr_t va;
    411 
    412 	va = (vaddr_t)vva;
    413 #ifdef	PMAP_DEBUG
    414 	if ((va < KERNBASE) || (va >= virtual_contig_end))
    415 		panic("mmu_vtop");
    416 #endif
    417 	return va - KERNBASE;
    418 }
    419 
    420 /*
    421  * These macros map MMU tables to their corresponding manager structures.
    422  * They are needed quite often because many of the pointers in the pmap
    423  * system reference MMU tables and not the structures that control them.
    424  * There needs to be a way to find one when given the other and these
    425  * macros do so by taking advantage of the memory layout described above.
    426  * Here's a quick step through the first macro, mmuA2tmgr():
    427  *
    428  * 1) find the offset of the given MMU A table from the base of its table
    429  *    pool (table - mmuAbase).
    430  * 2) convert this offset into a table index by dividing it by the
    431  *    size of one MMU 'A' table. (sizeof(mmu_long_dte_t) * MMU_A_TBL_SIZE)
    432  * 3) use this index to select the corresponding 'A' table manager
    433  *    structure from the 'A' table manager pool (Atmgrbase[index]).
    434  */
    435 /*  This function is not currently used. */
    436 #if	0
    437 static INLINE a_tmgr_t *
    438 mmuA2tmgr(mmu_long_dte_t *mmuAtbl)
    439 {
    440 	int idx;
    441 
    442 	/* Which table is this in? */
    443 	idx = (mmuAtbl - mmuAbase) / MMU_A_TBL_SIZE;
    444 #ifdef	PMAP_DEBUG
    445 	if ((idx < 0) || (idx >= NUM_A_TABLES))
    446 		panic("mmuA2tmgr");
    447 #endif
    448 	return &Atmgrbase[idx];
    449 }
    450 #endif	/* 0 */
    451 
    452 static INLINE b_tmgr_t *
    453 mmuB2tmgr(mmu_short_dte_t *mmuBtbl)
    454 {
    455 	int idx;
    456 
    457 	/* Which table is this in? */
    458 	idx = (mmuBtbl - mmuBbase) / MMU_B_TBL_SIZE;
    459 #ifdef	PMAP_DEBUG
    460 	if ((idx < 0) || (idx >= NUM_B_TABLES))
    461 		panic("mmuB2tmgr");
    462 #endif
    463 	return &Btmgrbase[idx];
    464 }
    465 
    466 /* mmuC2tmgr			INTERNAL
    467  **
    468  * Given a pte known to belong to a C table, return the address of
    469  * that table's management structure.
    470  */
    471 static INLINE c_tmgr_t *
    472 mmuC2tmgr(mmu_short_pte_t *mmuCtbl)
    473 {
    474 	int idx;
    475 
    476 	/* Which table is this in? */
    477 	idx = (mmuCtbl - mmuCbase) / MMU_C_TBL_SIZE;
    478 #ifdef	PMAP_DEBUG
    479 	if ((idx < 0) || (idx >= NUM_C_TABLES))
    480 		panic("mmuC2tmgr");
    481 #endif
    482 	return &Ctmgrbase[idx];
    483 }
    484 
    485 /* This is now a function call below.
    486  * #define pa2pv(pa) \
    487  *	(&pvbase[(unsigned long)\
    488  *		m68k_btop(pa)\
    489  *	])
    490  */
    491 
    492 /* pa2pv			INTERNAL
    493  **
    494  * Return the pv_list_head element which manages the given physical
    495  * address.
    496  */
    497 static INLINE pv_t *
    498 pa2pv(paddr_t pa)
    499 {
    500 	struct pmap_physmem_struct *bank;
    501 	int idx;
    502 
    503 	bank = &avail_mem[0];
    504 	while (pa >= bank->pmem_end)
    505 		bank = bank->pmem_next;
    506 
    507 	pa -= bank->pmem_start;
    508 	idx = bank->pmem_pvbase + m68k_btop(pa);
    509 #ifdef	PMAP_DEBUG
    510 	if ((idx < 0) || (idx >= physmem))
    511 		panic("pa2pv");
    512 #endif
    513 	return &pvbase[idx];
    514 }
    515 
    516 /* pteidx			INTERNAL
    517  **
    518  * Return the index of the given PTE within the entire fixed table of
    519  * PTEs.
    520  */
    521 static INLINE int
    522 pteidx(mmu_short_pte_t *pte)
    523 {
    524 
    525 	return pte - kernCbase;
    526 }
    527 
    528 /*
    529  * This just offers a place to put some debugging checks,
    530  * and reduces the number of places "curlwp" appears...
    531  */
    532 static INLINE pmap_t
    533 current_pmap(void)
    534 {
    535 	struct vmspace *vm;
    536 	struct vm_map *map;
    537 	pmap_t	pmap;
    538 
    539 	if (curlwp == NULL)
    540 		pmap = &kernel_pmap;
    541 	else {
    542 		vm = curproc->p_vmspace;
    543 		map = &vm->vm_map;
    544 		pmap = vm_map_pmap(map);
    545 	}
    546 
    547 	return pmap;
    548 }
    549 
    550 
    551 /*************************** FUNCTION DEFINITIONS ************************
    552  * These appear here merely for the compiler to enforce type checking on *
    553  * all function calls.                                                   *
    554  *************************************************************************/
    555 
    556 /*
    557  * Internal functions
    558  */
    559 a_tmgr_t *get_a_table(void);
    560 b_tmgr_t *get_b_table(void);
    561 c_tmgr_t *get_c_table(void);
    562 int free_a_table(a_tmgr_t *, bool);
    563 int free_b_table(b_tmgr_t *, bool);
    564 int free_c_table(c_tmgr_t *, bool);
    565 
    566 void pmap_bootstrap_aalign(int);
    567 void pmap_alloc_usermmu(void);
    568 void pmap_alloc_usertmgr(void);
    569 void pmap_alloc_pv(void);
    570 void pmap_init_a_tables(void);
    571 void pmap_init_b_tables(void);
    572 void pmap_init_c_tables(void);
    573 void pmap_init_pv(void);
    574 void pmap_clear_pv(paddr_t, int);
    575 static INLINE bool is_managed(paddr_t);
    576 
    577 bool pmap_remove_a(a_tmgr_t *, vaddr_t, vaddr_t);
    578 bool pmap_remove_b(b_tmgr_t *, vaddr_t, vaddr_t);
    579 bool pmap_remove_c(c_tmgr_t *, vaddr_t, vaddr_t);
    580 void pmap_remove_pte(mmu_short_pte_t *);
    581 
    582 void pmap_enter_kernel(vaddr_t, paddr_t, vm_prot_t);
    583 static INLINE void pmap_remove_kernel(vaddr_t, vaddr_t);
    584 static INLINE void pmap_protect_kernel(vaddr_t, vaddr_t, vm_prot_t);
    585 static INLINE bool pmap_extract_kernel(vaddr_t, paddr_t *);
    586 vaddr_t pmap_get_pteinfo(u_int, pmap_t *, c_tmgr_t **);
    587 static INLINE int pmap_dereference(pmap_t);
    588 
    589 bool pmap_stroll(pmap_t, vaddr_t, a_tmgr_t **, b_tmgr_t **, c_tmgr_t **,
    590     mmu_short_pte_t **, int *, int *, int *);
    591 void pmap_bootstrap_copyprom(void);
    592 void pmap_takeover_mmu(void);
    593 void pmap_bootstrap_setprom(void);
    594 static void pmap_page_upload(void);
    595 
    596 #ifdef PMAP_DEBUG
    597 /* Debugging function definitions */
    598 void  pv_list(paddr_t, int);
    599 #endif /* PMAP_DEBUG */
    600 
    601 /** Interface functions
    602  ** - functions required by the Mach VM Pmap interface, with MACHINE_CONTIG
    603  **   defined.
    604  **   The new UVM doesn't require them so now INTERNAL.
    605  **/
    606 static INLINE void pmap_pinit(pmap_t);
    607 static INLINE void pmap_release(pmap_t);
    608 
    609 /********************************** CODE ********************************
    610  * Functions that are called from other parts of the kernel are labeled *
    611  * as 'INTERFACE' functions.  Functions that are only called from       *
    612  * within the pmap module are labeled as 'INTERNAL' functions.          *
    613  * Functions that are internal, but are not (currently) used at all are *
    614  * labeled 'INTERNAL_X'.                                                *
    615  ************************************************************************/
    616 
    617 /* pmap_bootstrap			INTERNAL
    618  **
    619  * Initializes the pmap system.  Called at boot time from
    620  * locore2.c:_vm_init()
    621  *
    622  * Reminder: having a pmap_bootstrap_alloc() and also having the VM
    623  *           system implement pmap_steal_memory() is redundant.
    624  *           Don't release this code without removing one or the other!
    625  */
    626 void
    627 pmap_bootstrap(vaddr_t nextva)
    628 {
    629 	struct physmemory *membank;
    630 	struct pmap_physmem_struct *pmap_membank;
    631 	vaddr_t va, eva;
    632 	paddr_t pa;
    633 	int b, c, i, j;	/* running table counts */
    634 	int size, resvmem;
    635 
    636 	/*
    637 	 * This function is called by __bootstrap after it has
    638 	 * determined the type of machine and made the appropriate
    639 	 * patches to the ROM vectors (XXX- I don't quite know what I meant
    640 	 * by that.)  It allocates and sets up enough of the pmap system
    641 	 * to manage the kernel's address space.
    642 	 */
    643 
    644 	/*
    645 	 * Determine the range of kernel virtual and physical
    646 	 * space available. Note that we ABSOLUTELY DEPEND on
    647 	 * the fact that the first bank of memory (4MB) is
    648 	 * mapped linearly to KERNBASE (which we guaranteed in
    649 	 * the first instructions of locore.s).
    650 	 * That is plenty for our bootstrap work.
    651 	 */
    652 	virtual_avail = m68k_round_page(nextva);
    653 	virtual_contig_end = KERNBASE + 0x400000; /* +4MB */
    654 	virtual_end = VM_MAX_KERNEL_ADDRESS;
    655 	/* Don't need avail_start til later. */
    656 
    657 	/* We may now call pmap_bootstrap_alloc(). */
    658 	bootstrap_alloc_enabled = TRUE;
    659 
    660 	/*
    661 	 * This is a somewhat unwrapped loop to deal with
    662 	 * copying the PROM's 'phsymem' banks into the pmap's
    663 	 * banks.  The following is always assumed:
    664 	 * 1. There is always at least one bank of memory.
    665 	 * 2. There is always a last bank of memory, and its
    666 	 *    pmem_next member must be set to NULL.
    667 	 */
    668 	membank = romVectorPtr->v_physmemory;
    669 	pmap_membank = avail_mem;
    670 	total_phys_mem = 0;
    671 
    672 	for (;;) { /* break on !membank */
    673 		pmap_membank->pmem_start = membank->address;
    674 		pmap_membank->pmem_end = membank->address + membank->size;
    675 		total_phys_mem += membank->size;
    676 		membank = membank->next;
    677 		if (!membank)
    678 			break;
    679 		/* This silly syntax arises because pmap_membank
    680 		 * is really a pre-allocated array, but it is put into
    681 		 * use as a linked list.
    682 		 */
    683 		pmap_membank->pmem_next = pmap_membank + 1;
    684 		pmap_membank = pmap_membank->pmem_next;
    685 	}
    686 	/* This is the last element. */
    687 	pmap_membank->pmem_next = NULL;
    688 
    689 	/*
    690 	 * Note: total_phys_mem, physmem represent
    691 	 * actual physical memory, including that
    692 	 * reserved for the PROM monitor.
    693 	 */
    694 	physmem = btoc(total_phys_mem);
    695 
    696 	/*
    697 	 * Avail_end is set to the first byte of physical memory
    698 	 * after the end of the last bank.  We use this only to
    699 	 * determine if a physical address is "managed" memory.
    700 	 * This address range should be reduced to prevent the
    701 	 * physical pages needed by the PROM monitor from being used
    702 	 * in the VM system.
    703 	 */
    704 	resvmem = total_phys_mem - *(romVectorPtr->memoryAvail);
    705 	resvmem = m68k_round_page(resvmem);
    706 	avail_end = pmap_membank->pmem_end - resvmem;
    707 
    708 	/*
    709 	 * First allocate enough kernel MMU tables to map all
    710 	 * of kernel virtual space from KERNBASE to 0xFFFFFFFF.
    711 	 * Note: All must be aligned on 256 byte boundaries.
    712 	 * Start with the level-A table (one of those).
    713 	 */
    714 	size = sizeof(mmu_long_dte_t) * MMU_A_TBL_SIZE;
    715 	kernAbase = pmap_bootstrap_alloc(size);
    716 	memset(kernAbase, 0, size);
    717 
    718 	/* Now the level-B kernel tables... */
    719 	size = sizeof(mmu_short_dte_t) * MMU_B_TBL_SIZE * KERN_B_TABLES;
    720 	kernBbase = pmap_bootstrap_alloc(size);
    721 	memset(kernBbase, 0, size);
    722 
    723 	/* Now the level-C kernel tables... */
    724 	size = sizeof(mmu_short_pte_t) * MMU_C_TBL_SIZE * KERN_C_TABLES;
    725 	kernCbase = pmap_bootstrap_alloc(size);
    726 	memset(kernCbase, 0, size);
    727 	/*
    728 	 * Note: In order for the PV system to work correctly, the kernel
    729 	 * and user-level C tables must be allocated contiguously.
    730 	 * Nothing should be allocated between here and the allocation of
    731 	 * mmuCbase below.  XXX: Should do this as one allocation, and
    732 	 * then compute a pointer for mmuCbase instead of this...
    733 	 *
    734 	 * Allocate user MMU tables.
    735 	 * These must be contiguous with the preceding.
    736 	 */
    737 
    738 #ifndef	FIXED_NTABLES
    739 	/*
    740 	 * The number of user-level C tables that should be allocated is
    741 	 * related to the size of physical memory.  In general, there should
    742 	 * be enough tables to map four times the amount of available RAM.
    743 	 * The extra amount is needed because some table space is wasted by
    744 	 * fragmentation.
    745 	 */
    746 	NUM_C_TABLES = (total_phys_mem * 4) / (MMU_C_TBL_SIZE * MMU_PAGE_SIZE);
    747 	NUM_B_TABLES = NUM_C_TABLES / 2;
    748 	NUM_A_TABLES = NUM_B_TABLES / 2;
    749 #endif	/* !FIXED_NTABLES */
    750 
    751 	size = sizeof(mmu_short_pte_t) * MMU_C_TBL_SIZE	* NUM_C_TABLES;
    752 	mmuCbase = pmap_bootstrap_alloc(size);
    753 
    754 	size = sizeof(mmu_short_dte_t) * MMU_B_TBL_SIZE	* NUM_B_TABLES;
    755 	mmuBbase = pmap_bootstrap_alloc(size);
    756 
    757 	size = sizeof(mmu_long_dte_t) * MMU_A_TBL_SIZE * NUM_A_TABLES;
    758 	mmuAbase = pmap_bootstrap_alloc(size);
    759 
    760 	/*
    761 	 * Fill in the never-changing part of the kernel tables.
    762 	 * For simplicity, the kernel's mappings will be editable as a
    763 	 * flat array of page table entries at kernCbase.  The
    764 	 * higher level 'A' and 'B' tables must be initialized to point
    765 	 * to this lower one.
    766 	 */
    767 	b = c = 0;
    768 
    769 	/*
    770 	 * Invalidate all mappings below KERNBASE in the A table.
    771 	 * This area has already been zeroed out, but it is good
    772 	 * practice to explicitly show that we are interpreting
    773 	 * it as a list of A table descriptors.
    774 	 */
    775 	for (i = 0; i < MMU_TIA(KERNBASE); i++) {
    776 		kernAbase[i].addr.raw = 0;
    777 	}
    778 
    779 	/*
    780 	 * Set up the kernel A and B tables so that they will reference the
    781 	 * correct spots in the contiguous table of PTEs allocated for the
    782 	 * kernel's virtual memory space.
    783 	 */
    784 	for (i = MMU_TIA(KERNBASE); i < MMU_A_TBL_SIZE; i++) {
    785 		kernAbase[i].attr.raw =
    786 		    MMU_LONG_DTE_LU | MMU_LONG_DTE_SUPV | MMU_DT_SHORT;
    787 		kernAbase[i].addr.raw = mmu_vtop(&kernBbase[b]);
    788 
    789 		for (j = 0; j < MMU_B_TBL_SIZE; j++) {
    790 			kernBbase[b + j].attr.raw =
    791 			    mmu_vtop(&kernCbase[c]) | MMU_DT_SHORT;
    792 			c += MMU_C_TBL_SIZE;
    793 		}
    794 		b += MMU_B_TBL_SIZE;
    795 	}
    796 
    797 	pmap_alloc_usermmu();	/* Allocate user MMU tables.        */
    798 	pmap_alloc_usertmgr();	/* Allocate user MMU table managers.*/
    799 	pmap_alloc_pv();	/* Allocate physical->virtual map.  */
    800 
    801 	/*
    802 	 * We are now done with pmap_bootstrap_alloc().  Round up
    803 	 * `virtual_avail' to the nearest page, and set the flag
    804 	 * to prevent use of pmap_bootstrap_alloc() hereafter.
    805 	 */
    806 	pmap_bootstrap_aalign(PAGE_SIZE);
    807 	bootstrap_alloc_enabled = FALSE;
    808 
    809 	/*
    810 	 * Now that we are done with pmap_bootstrap_alloc(), we
    811 	 * must save the virtual and physical addresses of the
    812 	 * end of the linearly mapped range, which are stored in
    813 	 * virtual_contig_end and avail_start, respectively.
    814 	 * These variables will never change after this point.
    815 	 */
    816 	virtual_contig_end = virtual_avail;
    817 	avail_start = virtual_avail - KERNBASE;
    818 
    819 	/*
    820 	 * `avail_next' is a running pointer used by pmap_next_page() to
    821 	 * keep track of the next available physical page to be handed
    822 	 * to the VM system during its initialization, in which it
    823 	 * asks for physical pages, one at a time.
    824 	 */
    825 	avail_next = avail_start;
    826 
    827 	/*
    828 	 * Now allocate some virtual addresses, but not the physical pages
    829 	 * behind them.  Note that virtual_avail is already page-aligned.
    830 	 *
    831 	 * tmp_vpages[] is an array of two virtual pages used for temporary
    832 	 * kernel mappings in the pmap module to facilitate various physical
    833 	 * address-oritented operations.
    834 	 */
    835 	tmp_vpages[0] = virtual_avail;
    836 	virtual_avail += PAGE_SIZE;
    837 	tmp_vpages[1] = virtual_avail;
    838 	virtual_avail += PAGE_SIZE;
    839 
    840 	/** Initialize the PV system **/
    841 	pmap_init_pv();
    842 
    843 	/*
    844 	 * Fill in the kernel_pmap structure and kernel_crp.
    845 	 */
    846 	kernAphys = mmu_vtop(kernAbase);
    847 	kernel_pmap.pm_a_tmgr = NULL;
    848 	kernel_pmap.pm_a_phys = kernAphys;
    849 	kernel_pmap.pm_refcount = 1; /* always in use */
    850 	simple_lock_init(&kernel_pmap.pm_lock);
    851 
    852 	kernel_crp.rp_attr = MMU_LONG_DTE_LU | MMU_DT_LONG;
    853 	kernel_crp.rp_addr = kernAphys;
    854 
    855 	/*
    856 	 * Now pmap_enter_kernel() may be used safely and will be
    857 	 * the main interface used hereafter to modify the kernel's
    858 	 * virtual address space.  Note that since we are still running
    859 	 * under the PROM's address table, none of these table modifications
    860 	 * actually take effect until pmap_takeover_mmu() is called.
    861 	 *
    862 	 * Note: Our tables do NOT have the PROM linear mappings!
    863 	 * Only the mappings created here exist in our tables, so
    864 	 * remember to map anything we expect to use.
    865 	 */
    866 	va = (vaddr_t)KERNBASE;
    867 	pa = 0;
    868 
    869 	/*
    870 	 * The first page of the kernel virtual address space is the msgbuf
    871 	 * page.  The page attributes (data, non-cached) are set here, while
    872 	 * the address is assigned to this global pointer in cpu_startup().
    873 	 * It is non-cached, mostly due to paranoia.
    874 	 */
    875 	pmap_enter_kernel(va, pa|PMAP_NC, VM_PROT_ALL);
    876 	va += PAGE_SIZE;
    877 	pa += PAGE_SIZE;
    878 
    879 	/* Next page is used as the temporary stack. */
    880 	pmap_enter_kernel(va, pa, VM_PROT_ALL);
    881 	va += PAGE_SIZE;
    882 	pa += PAGE_SIZE;
    883 
    884 	/*
    885 	 * Map all of the kernel's text segment as read-only and cacheable.
    886 	 * (Cacheable is implied by default).  Unfortunately, the last bytes
    887 	 * of kernel text and the first bytes of kernel data will often be
    888 	 * sharing the same page.  Therefore, the last page of kernel text
    889 	 * has to be mapped as read/write, to accommodate the data.
    890 	 */
    891 	eva = m68k_trunc_page((vaddr_t)etext);
    892 	for (; va < eva; va += PAGE_SIZE, pa += PAGE_SIZE)
    893 		pmap_enter_kernel(va, pa, VM_PROT_READ|VM_PROT_EXECUTE);
    894 
    895 	/*
    896 	 * Map all of the kernel's data as read/write and cacheable.
    897 	 * This includes: data, BSS, symbols, and everything in the
    898 	 * contiguous memory used by pmap_bootstrap_alloc()
    899 	 */
    900 	for (; pa < avail_start; va += PAGE_SIZE, pa += PAGE_SIZE)
    901 		pmap_enter_kernel(va, pa, VM_PROT_READ|VM_PROT_WRITE);
    902 
    903 	/*
    904 	 * At this point we are almost ready to take over the MMU.  But first
    905 	 * we must save the PROM's address space in our map, as we call its
    906 	 * routines and make references to its data later in the kernel.
    907 	 */
    908 	pmap_bootstrap_copyprom();
    909 	pmap_takeover_mmu();
    910 	pmap_bootstrap_setprom();
    911 
    912 	/* Notify the VM system of our page size. */
    913 	uvmexp.pagesize = PAGE_SIZE;
    914 	uvm_setpagesize();
    915 
    916 	pmap_page_upload();
    917 }
    918 
    919 
    920 /* pmap_alloc_usermmu			INTERNAL
    921  **
    922  * Called from pmap_bootstrap() to allocate MMU tables that will
    923  * eventually be used for user mappings.
    924  */
    925 void
    926 pmap_alloc_usermmu(void)
    927 {
    928 
    929 	/* XXX: Moved into caller. */
    930 }
    931 
    932 /* pmap_alloc_pv			INTERNAL
    933  **
    934  * Called from pmap_bootstrap() to allocate the physical
    935  * to virtual mapping list.  Each physical page of memory
    936  * in the system has a corresponding element in this list.
    937  */
    938 void
    939 pmap_alloc_pv(void)
    940 {
    941 	int	i;
    942 	unsigned int	total_mem;
    943 
    944 	/*
    945 	 * Allocate a pv_head structure for every page of physical
    946 	 * memory that will be managed by the system.  Since memory on
    947 	 * the 3/80 is non-contiguous, we cannot arrive at a total page
    948 	 * count by subtraction of the lowest available address from the
    949 	 * highest, but rather we have to step through each memory
    950 	 * bank and add the number of pages in each to the total.
    951 	 *
    952 	 * At this time we also initialize the offset of each bank's
    953 	 * starting pv_head within the pv_head list so that the physical
    954 	 * memory state routines (pmap_is_referenced(),
    955 	 * pmap_is_modified(), et al.) can quickly find coresponding
    956 	 * pv_heads in spite of the non-contiguity.
    957 	 */
    958 	total_mem = 0;
    959 	for (i = 0; i < SUN3X_NPHYS_RAM_SEGS; i++) {
    960 		avail_mem[i].pmem_pvbase = m68k_btop(total_mem);
    961 		total_mem += avail_mem[i].pmem_end - avail_mem[i].pmem_start;
    962 		if (avail_mem[i].pmem_next == NULL)
    963 			break;
    964 	}
    965 	pvbase = (pv_t *)pmap_bootstrap_alloc(sizeof(pv_t) *
    966 	    m68k_btop(total_phys_mem));
    967 }
    968 
    969 /* pmap_alloc_usertmgr			INTERNAL
    970  **
    971  * Called from pmap_bootstrap() to allocate the structures which
    972  * facilitate management of user MMU tables.  Each user MMU table
    973  * in the system has one such structure associated with it.
    974  */
    975 void
    976 pmap_alloc_usertmgr(void)
    977 {
    978 	/* Allocate user MMU table managers */
    979 	/* It would be a lot simpler to just make these BSS, but */
    980 	/* we may want to change their size at boot time... -j */
    981 	Atmgrbase =
    982 	    (a_tmgr_t *)pmap_bootstrap_alloc(sizeof(a_tmgr_t) * NUM_A_TABLES);
    983 	Btmgrbase =
    984 	    (b_tmgr_t *)pmap_bootstrap_alloc(sizeof(b_tmgr_t) * NUM_B_TABLES);
    985 	Ctmgrbase =
    986 	    (c_tmgr_t *)pmap_bootstrap_alloc(sizeof(c_tmgr_t) * NUM_C_TABLES);
    987 
    988 	/*
    989 	 * Allocate PV list elements for the physical to virtual
    990 	 * mapping system.
    991 	 */
    992 	pvebase = (pv_elem_t *)pmap_bootstrap_alloc(sizeof(pv_elem_t) *
    993 	    (NUM_USER_PTES + NUM_KERN_PTES));
    994 }
    995 
    996 /* pmap_bootstrap_copyprom()			INTERNAL
    997  **
    998  * Copy the PROM mappings into our own tables.  Note, we
    999  * can use physical addresses until __bootstrap returns.
   1000  */
   1001 void
   1002 pmap_bootstrap_copyprom(void)
   1003 {
   1004 	struct sunromvec *romp;
   1005 	int *mon_ctbl;
   1006 	mmu_short_pte_t *kpte;
   1007 	int i, len;
   1008 
   1009 	romp = romVectorPtr;
   1010 
   1011 	/*
   1012 	 * Copy the mappings in SUN3X_MON_KDB_BASE...SUN3X_MONEND
   1013 	 * Note: mon_ctbl[0] maps SUN3X_MON_KDB_BASE
   1014 	 */
   1015 	mon_ctbl = *romp->monptaddr;
   1016 	i = m68k_btop(SUN3X_MON_KDB_BASE - KERNBASE);
   1017 	kpte = &kernCbase[i];
   1018 	len = m68k_btop(SUN3X_MONEND - SUN3X_MON_KDB_BASE);
   1019 
   1020 	for (i = 0; i < len; i++) {
   1021 		kpte[i].attr.raw = mon_ctbl[i];
   1022 	}
   1023 
   1024 	/*
   1025 	 * Copy the mappings at MON_DVMA_BASE (to the end).
   1026 	 * Note, in here, mon_ctbl[0] maps MON_DVMA_BASE.
   1027 	 * Actually, we only want the last page, which the
   1028 	 * PROM has set up for use by the "ie" driver.
   1029 	 * (The i82686 needs its SCP there.)
   1030 	 * If we copy all the mappings, pmap_enter_kernel
   1031 	 * may complain about finding valid PTEs that are
   1032 	 * not recorded in our PV lists...
   1033 	 */
   1034 	mon_ctbl = *romp->shadowpteaddr;
   1035 	i = m68k_btop(SUN3X_MON_DVMA_BASE - KERNBASE);
   1036 	kpte = &kernCbase[i];
   1037 	len = m68k_btop(SUN3X_MON_DVMA_SIZE);
   1038 	for (i = (len - 1); i < len; i++) {
   1039 		kpte[i].attr.raw = mon_ctbl[i];
   1040 	}
   1041 }
   1042 
   1043 /* pmap_takeover_mmu			INTERNAL
   1044  **
   1045  * Called from pmap_bootstrap() after it has copied enough of the
   1046  * PROM mappings into the kernel map so that we can use our own
   1047  * MMU table.
   1048  */
   1049 void
   1050 pmap_takeover_mmu(void)
   1051 {
   1052 
   1053 	loadcrp(&kernel_crp);
   1054 }
   1055 
   1056 /* pmap_bootstrap_setprom()			INTERNAL
   1057  **
   1058  * Set the PROM mappings so it can see kernel space.
   1059  * Note that physical addresses are used here, which
   1060  * we can get away with because this runs with the
   1061  * low 1GB set for transparent translation.
   1062  */
   1063 void
   1064 pmap_bootstrap_setprom(void)
   1065 {
   1066 	mmu_long_dte_t *mon_dte;
   1067 	extern struct mmu_rootptr mon_crp;
   1068 	int i;
   1069 
   1070 	mon_dte = (mmu_long_dte_t *)mon_crp.rp_addr;
   1071 	for (i = MMU_TIA(KERNBASE); i < MMU_TIA(KERN_END); i++) {
   1072 		mon_dte[i].attr.raw = kernAbase[i].attr.raw;
   1073 		mon_dte[i].addr.raw = kernAbase[i].addr.raw;
   1074 	}
   1075 }
   1076 
   1077 
   1078 /* pmap_init			INTERFACE
   1079  **
   1080  * Called at the end of vm_init() to set up the pmap system to go
   1081  * into full time operation.  All initialization of kernel_pmap
   1082  * should be already done by now, so this should just do things
   1083  * needed for user-level pmaps to work.
   1084  */
   1085 void
   1086 pmap_init(void)
   1087 {
   1088 
   1089 	/** Initialize the manager pools **/
   1090 	TAILQ_INIT(&a_pool);
   1091 	TAILQ_INIT(&b_pool);
   1092 	TAILQ_INIT(&c_pool);
   1093 
   1094 	/**************************************************************
   1095 	 * Initialize all tmgr structures and MMU tables they manage. *
   1096 	 **************************************************************/
   1097 	/** Initialize A tables **/
   1098 	pmap_init_a_tables();
   1099 	/** Initialize B tables **/
   1100 	pmap_init_b_tables();
   1101 	/** Initialize C tables **/
   1102 	pmap_init_c_tables();
   1103 
   1104 	/** Initialize the pmap pools **/
   1105 	pool_init(&pmap_pmap_pool, sizeof(struct pmap), 0, 0, 0, "pmappl",
   1106 	    &pool_allocator_nointr);
   1107 }
   1108 
   1109 /* pmap_init_a_tables()			INTERNAL
   1110  **
   1111  * Initializes all A managers, their MMU A tables, and inserts
   1112  * them into the A manager pool for use by the system.
   1113  */
   1114 void
   1115 pmap_init_a_tables(void)
   1116 {
   1117 	int i;
   1118 	a_tmgr_t *a_tbl;
   1119 
   1120 	for (i = 0; i < NUM_A_TABLES; i++) {
   1121 		/* Select the next available A manager from the pool */
   1122 		a_tbl = &Atmgrbase[i];
   1123 
   1124 		/*
   1125 		 * Clear its parent entry.  Set its wired and valid
   1126 		 * entry count to zero.
   1127 		 */
   1128 		a_tbl->at_parent = NULL;
   1129 		a_tbl->at_wcnt = a_tbl->at_ecnt = 0;
   1130 
   1131 		/* Assign it the next available MMU A table from the pool */
   1132 		a_tbl->at_dtbl = &mmuAbase[i * MMU_A_TBL_SIZE];
   1133 
   1134 		/*
   1135 		 * Initialize the MMU A table with the table in the `proc0',
   1136 		 * or kernel, mapping.  This ensures that every process has
   1137 		 * the kernel mapped in the top part of its address space.
   1138 		 */
   1139 		memcpy(a_tbl->at_dtbl, kernAbase,
   1140 		    MMU_A_TBL_SIZE * sizeof(mmu_long_dte_t));
   1141 
   1142 		/*
   1143 		 * Finally, insert the manager into the A pool,
   1144 		 * making it ready to be used by the system.
   1145 		 */
   1146 		TAILQ_INSERT_TAIL(&a_pool, a_tbl, at_link);
   1147     }
   1148 }
   1149 
   1150 /* pmap_init_b_tables()			INTERNAL
   1151  **
   1152  * Initializes all B table managers, their MMU B tables, and
   1153  * inserts them into the B manager pool for use by the system.
   1154  */
   1155 void
   1156 pmap_init_b_tables(void)
   1157 {
   1158 	int i, j;
   1159 	b_tmgr_t *b_tbl;
   1160 
   1161 	for (i = 0; i < NUM_B_TABLES; i++) {
   1162 		/* Select the next available B manager from the pool */
   1163 		b_tbl = &Btmgrbase[i];
   1164 
   1165 		b_tbl->bt_parent = NULL;	/* clear its parent,  */
   1166 		b_tbl->bt_pidx = 0;		/* parent index,      */
   1167 		b_tbl->bt_wcnt = 0;		/* wired entry count, */
   1168 		b_tbl->bt_ecnt = 0;		/* valid entry count. */
   1169 
   1170 		/* Assign it the next available MMU B table from the pool */
   1171 		b_tbl->bt_dtbl = &mmuBbase[i * MMU_B_TBL_SIZE];
   1172 
   1173 		/* Invalidate every descriptor in the table */
   1174 		for (j = 0; j < MMU_B_TBL_SIZE; j++)
   1175 			b_tbl->bt_dtbl[j].attr.raw = MMU_DT_INVALID;
   1176 
   1177 		/* Insert the manager into the B pool */
   1178 		TAILQ_INSERT_TAIL(&b_pool, b_tbl, bt_link);
   1179 	}
   1180 }
   1181 
   1182 /* pmap_init_c_tables()			INTERNAL
   1183  **
   1184  * Initializes all C table managers, their MMU C tables, and
   1185  * inserts them into the C manager pool for use by the system.
   1186  */
   1187 void
   1188 pmap_init_c_tables(void)
   1189 {
   1190 	int i, j;
   1191 	c_tmgr_t *c_tbl;
   1192 
   1193 	for (i = 0; i < NUM_C_TABLES; i++) {
   1194 		/* Select the next available C manager from the pool */
   1195 		c_tbl = &Ctmgrbase[i];
   1196 
   1197 		c_tbl->ct_parent = NULL;	/* clear its parent,  */
   1198 		c_tbl->ct_pidx = 0;		/* parent index,      */
   1199 		c_tbl->ct_wcnt = 0;		/* wired entry count, */
   1200 		c_tbl->ct_ecnt = 0;		/* valid entry count, */
   1201 		c_tbl->ct_pmap = NULL;		/* parent pmap,       */
   1202 		c_tbl->ct_va = 0;		/* base of managed range */
   1203 
   1204 		/* Assign it the next available MMU C table from the pool */
   1205 		c_tbl->ct_dtbl = &mmuCbase[i * MMU_C_TBL_SIZE];
   1206 
   1207 		for (j = 0; j < MMU_C_TBL_SIZE; j++)
   1208 			c_tbl->ct_dtbl[j].attr.raw = MMU_DT_INVALID;
   1209 
   1210 		TAILQ_INSERT_TAIL(&c_pool, c_tbl, ct_link);
   1211 	}
   1212 }
   1213 
   1214 /* pmap_init_pv()			INTERNAL
   1215  **
   1216  * Initializes the Physical to Virtual mapping system.
   1217  */
   1218 void
   1219 pmap_init_pv(void)
   1220 {
   1221 	int i;
   1222 
   1223 	/* Initialize every PV head. */
   1224 	for (i = 0; i < m68k_btop(total_phys_mem); i++) {
   1225 		pvbase[i].pv_idx = PVE_EOL;	/* Indicate no mappings */
   1226 		pvbase[i].pv_flags = 0;		/* Zero out page flags  */
   1227 	}
   1228 }
   1229 
   1230 /* is_managed				INTERNAL
   1231  **
   1232  * Determine if the given physical address is managed by the PV system.
   1233  * Note that this logic assumes that no one will ask for the status of
   1234  * addresses which lie in-between the memory banks on the 3/80.  If they
   1235  * do so, it will falsely report that it is managed.
   1236  *
   1237  * Note: A "managed" address is one that was reported to the VM system as
   1238  * a "usable page" during system startup.  As such, the VM system expects the
   1239  * pmap module to keep an accurate track of the useage of those pages.
   1240  * Any page not given to the VM system at startup does not exist (as far as
   1241  * the VM system is concerned) and is therefore "unmanaged."  Examples are
   1242  * those pages which belong to the ROM monitor and the memory allocated before
   1243  * the VM system was started.
   1244  */
   1245 static INLINE bool
   1246 is_managed(paddr_t pa)
   1247 {
   1248 	if (pa >= avail_start && pa < avail_end)
   1249 		return TRUE;
   1250 	else
   1251 		return FALSE;
   1252 }
   1253 
   1254 /* get_a_table			INTERNAL
   1255  **
   1256  * Retrieve and return a level A table for use in a user map.
   1257  */
   1258 a_tmgr_t *
   1259 get_a_table(void)
   1260 {
   1261 	a_tmgr_t *tbl;
   1262 	pmap_t pmap;
   1263 
   1264 	/* Get the top A table in the pool */
   1265 	tbl = TAILQ_FIRST(&a_pool);
   1266 	if (tbl == NULL) {
   1267 		/*
   1268 		 * XXX - Instead of panicking here and in other get_x_table
   1269 		 * functions, we do have the option of sleeping on the head of
   1270 		 * the table pool.  Any function which updates the table pool
   1271 		 * would then issue a wakeup() on the head, thus waking up any
   1272 		 * processes waiting for a table.
   1273 		 *
   1274 		 * Actually, the place to sleep would be when some process
   1275 		 * asks for a "wired" mapping that would run us short of
   1276 		 * mapping resources.  This design DEPENDS on always having
   1277 		 * some mapping resources in the pool for stealing, so we
   1278 		 * must make sure we NEVER let the pool become empty. -gwr
   1279 		 */
   1280 		panic("get_a_table: out of A tables.");
   1281 	}
   1282 
   1283 	TAILQ_REMOVE(&a_pool, tbl, at_link);
   1284 	/*
   1285 	 * If the table has a non-null parent pointer then it is in use.
   1286 	 * Forcibly abduct it from its parent and clear its entries.
   1287 	 * No re-entrancy worries here.  This table would not be in the
   1288 	 * table pool unless it was available for use.
   1289 	 *
   1290 	 * Note that the second argument to free_a_table() is FALSE.  This
   1291 	 * indicates that the table should not be relinked into the A table
   1292 	 * pool.  That is a job for the function that called us.
   1293 	 */
   1294 	if (tbl->at_parent) {
   1295 		KASSERT(tbl->at_wcnt == 0);
   1296 		pmap = tbl->at_parent;
   1297 		free_a_table(tbl, FALSE);
   1298 		pmap->pm_a_tmgr = NULL;
   1299 		pmap->pm_a_phys = kernAphys;
   1300 	}
   1301 	return tbl;
   1302 }
   1303 
   1304 /* get_b_table			INTERNAL
   1305  **
   1306  * Return a level B table for use.
   1307  */
   1308 b_tmgr_t *
   1309 get_b_table(void)
   1310 {
   1311 	b_tmgr_t *tbl;
   1312 
   1313 	/* See 'get_a_table' for comments. */
   1314 	tbl = TAILQ_FIRST(&b_pool);
   1315 	if (tbl == NULL)
   1316 		panic("get_b_table: out of B tables.");
   1317 	TAILQ_REMOVE(&b_pool, tbl, bt_link);
   1318 	if (tbl->bt_parent) {
   1319 		KASSERT(tbl->bt_wcnt == 0);
   1320 		tbl->bt_parent->at_dtbl[tbl->bt_pidx].attr.raw = MMU_DT_INVALID;
   1321 		tbl->bt_parent->at_ecnt--;
   1322 		free_b_table(tbl, FALSE);
   1323 	}
   1324 	return tbl;
   1325 }
   1326 
   1327 /* get_c_table			INTERNAL
   1328  **
   1329  * Return a level C table for use.
   1330  */
   1331 c_tmgr_t *
   1332 get_c_table(void)
   1333 {
   1334 	c_tmgr_t *tbl;
   1335 
   1336 	/* See 'get_a_table' for comments */
   1337 	tbl = TAILQ_FIRST(&c_pool);
   1338 	if (tbl == NULL)
   1339 		panic("get_c_table: out of C tables.");
   1340 	TAILQ_REMOVE(&c_pool, tbl, ct_link);
   1341 	if (tbl->ct_parent) {
   1342 		KASSERT(tbl->ct_wcnt == 0);
   1343 		tbl->ct_parent->bt_dtbl[tbl->ct_pidx].attr.raw = MMU_DT_INVALID;
   1344 		tbl->ct_parent->bt_ecnt--;
   1345 		free_c_table(tbl, FALSE);
   1346 	}
   1347 	return tbl;
   1348 }
   1349 
   1350 /*
   1351  * The following 'free_table' and 'steal_table' functions are called to
   1352  * detach tables from their current obligations (parents and children) and
   1353  * prepare them for reuse in another mapping.
   1354  *
   1355  * Free_table is used when the calling function will handle the fate
   1356  * of the parent table, such as returning it to the free pool when it has
   1357  * no valid entries.  Functions that do not want to handle this should
   1358  * call steal_table, in which the parent table's descriptors and entry
   1359  * count are automatically modified when this table is removed.
   1360  */
   1361 
   1362 /* free_a_table			INTERNAL
   1363  **
   1364  * Unmaps the given A table and all child tables from their current
   1365  * mappings.  Returns the number of pages that were invalidated.
   1366  * If 'relink' is true, the function will return the table to the head
   1367  * of the available table pool.
   1368  *
   1369  * Cache note: The MC68851 will automatically flush all
   1370  * descriptors derived from a given A table from its
   1371  * Automatic Translation Cache (ATC) if we issue a
   1372  * 'PFLUSHR' instruction with the base address of the
   1373  * table.  This function should do, and does so.
   1374  * Note note: We are using an MC68030 - there is no
   1375  * PFLUSHR.
   1376  */
   1377 int
   1378 free_a_table(a_tmgr_t *a_tbl, bool relink)
   1379 {
   1380 	int i, removed_cnt;
   1381 	mmu_long_dte_t	*dte;
   1382 	mmu_short_dte_t *dtbl;
   1383 	b_tmgr_t	*b_tbl;
   1384 	uint8_t at_wired, bt_wired;
   1385 
   1386 	/*
   1387 	 * Flush the ATC cache of all cached descriptors derived
   1388 	 * from this table.
   1389 	 * Sun3x does not use 68851's cached table feature
   1390 	 * flush_atc_crp(mmu_vtop(a_tbl->dte));
   1391 	 */
   1392 
   1393 	/*
   1394 	 * Remove any pending cache flushes that were designated
   1395 	 * for the pmap this A table belongs to.
   1396 	 * a_tbl->parent->atc_flushq[0] = 0;
   1397 	 * Not implemented in sun3x.
   1398 	 */
   1399 
   1400 	/*
   1401 	 * All A tables in the system should retain a map for the
   1402 	 * kernel. If the table contains any valid descriptors
   1403 	 * (other than those for the kernel area), invalidate them all,
   1404 	 * stopping short of the kernel's entries.
   1405 	 */
   1406 	removed_cnt = 0;
   1407 	at_wired = a_tbl->at_wcnt;
   1408 	if (a_tbl->at_ecnt) {
   1409 		dte = a_tbl->at_dtbl;
   1410 		for (i = 0; i < MMU_TIA(KERNBASE); i++) {
   1411 			/*
   1412 			 * If a table entry points to a valid B table, free
   1413 			 * it and its children.
   1414 			 */
   1415 			if (MMU_VALID_DT(dte[i])) {
   1416 				/*
   1417 				 * The following block does several things,
   1418 				 * from innermost expression to the
   1419 				 * outermost:
   1420 				 * 1) It extracts the base (cc 1996)
   1421 				 *    address of the B table pointed
   1422 				 *    to in the A table entry dte[i].
   1423 				 * 2) It converts this base address into
   1424 				 *    the virtual address it can be
   1425 				 *    accessed with. (all MMU tables point
   1426 				 *    to physical addresses.)
   1427 				 * 3) It finds the corresponding manager
   1428 				 *    structure which manages this MMU table.
   1429 				 * 4) It frees the manager structure.
   1430 				 *    (This frees the MMU table and all
   1431 				 *    child tables. See 'free_b_table' for
   1432 				 *    details.)
   1433 				 */
   1434 				dtbl = mmu_ptov(dte[i].addr.raw);
   1435 				b_tbl = mmuB2tmgr(dtbl);
   1436 				bt_wired = b_tbl->bt_wcnt;
   1437 				removed_cnt += free_b_table(b_tbl, TRUE);
   1438 				if (bt_wired)
   1439 					a_tbl->at_wcnt--;
   1440 				dte[i].attr.raw = MMU_DT_INVALID;
   1441 			}
   1442 		}
   1443 		a_tbl->at_ecnt = 0;
   1444 	}
   1445 	KASSERT(a_tbl->at_wcnt == 0);
   1446 
   1447 	if (relink) {
   1448 		a_tbl->at_parent = NULL;
   1449 		if (!at_wired)
   1450 			TAILQ_REMOVE(&a_pool, a_tbl, at_link);
   1451 		TAILQ_INSERT_HEAD(&a_pool, a_tbl, at_link);
   1452 	}
   1453 	return removed_cnt;
   1454 }
   1455 
   1456 /* free_b_table			INTERNAL
   1457  **
   1458  * Unmaps the given B table and all its children from their current
   1459  * mappings.  Returns the number of pages that were invalidated.
   1460  * (For comments, see 'free_a_table()').
   1461  */
   1462 int
   1463 free_b_table(b_tmgr_t *b_tbl, bool relink)
   1464 {
   1465 	int i, removed_cnt;
   1466 	mmu_short_dte_t *dte;
   1467 	mmu_short_pte_t	*dtbl;
   1468 	c_tmgr_t	*c_tbl;
   1469 	uint8_t bt_wired, ct_wired;
   1470 
   1471 	removed_cnt = 0;
   1472 	bt_wired = b_tbl->bt_wcnt;
   1473 	if (b_tbl->bt_ecnt) {
   1474 		dte = b_tbl->bt_dtbl;
   1475 		for (i = 0; i < MMU_B_TBL_SIZE; i++) {
   1476 			if (MMU_VALID_DT(dte[i])) {
   1477 				dtbl = mmu_ptov(MMU_DTE_PA(dte[i]));
   1478 				c_tbl = mmuC2tmgr(dtbl);
   1479 				ct_wired = c_tbl->ct_wcnt;
   1480 				removed_cnt += free_c_table(c_tbl, TRUE);
   1481 				if (ct_wired)
   1482 					b_tbl->bt_wcnt--;
   1483 				dte[i].attr.raw = MMU_DT_INVALID;
   1484 			}
   1485 		}
   1486 		b_tbl->bt_ecnt = 0;
   1487 	}
   1488 	KASSERT(b_tbl->bt_wcnt == 0);
   1489 
   1490 	if (relink) {
   1491 		b_tbl->bt_parent = NULL;
   1492 		if (!bt_wired)
   1493 			TAILQ_REMOVE(&b_pool, b_tbl, bt_link);
   1494 		TAILQ_INSERT_HEAD(&b_pool, b_tbl, bt_link);
   1495 	}
   1496 	return removed_cnt;
   1497 }
   1498 
   1499 /* free_c_table			INTERNAL
   1500  **
   1501  * Unmaps the given C table from use and returns it to the pool for
   1502  * re-use.  Returns the number of pages that were invalidated.
   1503  *
   1504  * This function preserves any physical page modification information
   1505  * contained in the page descriptors within the C table by calling
   1506  * 'pmap_remove_pte().'
   1507  */
   1508 int
   1509 free_c_table(c_tmgr_t *c_tbl, bool relink)
   1510 {
   1511 	mmu_short_pte_t *c_pte;
   1512 	int i, removed_cnt;
   1513 	uint8_t ct_wired;
   1514 
   1515 	removed_cnt = 0;
   1516 	ct_wired = c_tbl->ct_wcnt;
   1517 	if (c_tbl->ct_ecnt) {
   1518 		for (i = 0; i < MMU_C_TBL_SIZE; i++) {
   1519 			c_pte = &c_tbl->ct_dtbl[i];
   1520 			if (MMU_VALID_DT(*c_pte)) {
   1521 				if (c_pte->attr.raw & MMU_SHORT_PTE_WIRED)
   1522 					c_tbl->ct_wcnt--;
   1523 				pmap_remove_pte(c_pte);
   1524 				removed_cnt++;
   1525 			}
   1526 		}
   1527 		c_tbl->ct_ecnt = 0;
   1528 	}
   1529 	KASSERT(c_tbl->ct_wcnt == 0);
   1530 
   1531 	if (relink) {
   1532 		c_tbl->ct_parent = NULL;
   1533 		if (!ct_wired)
   1534 			TAILQ_REMOVE(&c_pool, c_tbl, ct_link);
   1535 		TAILQ_INSERT_HEAD(&c_pool, c_tbl, ct_link);
   1536 	}
   1537 	return removed_cnt;
   1538 }
   1539 
   1540 
   1541 /* pmap_remove_pte			INTERNAL
   1542  **
   1543  * Unmap the given pte and preserve any page modification
   1544  * information by transfering it to the pv head of the
   1545  * physical page it maps to.  This function does not update
   1546  * any reference counts because it is assumed that the calling
   1547  * function will do so.
   1548  */
   1549 void
   1550 pmap_remove_pte(mmu_short_pte_t *pte)
   1551 {
   1552 	u_short     pv_idx, targ_idx;
   1553 	paddr_t     pa;
   1554 	pv_t       *pv;
   1555 
   1556 	pa = MMU_PTE_PA(*pte);
   1557 	if (is_managed(pa)) {
   1558 		pv = pa2pv(pa);
   1559 		targ_idx = pteidx(pte);	/* Index of PTE being removed    */
   1560 
   1561 		/*
   1562 		 * If the PTE being removed is the first (or only) PTE in
   1563 		 * the list of PTEs currently mapped to this page, remove the
   1564 		 * PTE by changing the index found on the PV head.  Otherwise
   1565 		 * a linear search through the list will have to be executed
   1566 		 * in order to find the PVE which points to the PTE being
   1567 		 * removed, so that it may be modified to point to its new
   1568 		 * neighbor.
   1569 		 */
   1570 
   1571 		pv_idx = pv->pv_idx;	/* Index of first PTE in PV list */
   1572 		if (pv_idx == targ_idx) {
   1573 			pv->pv_idx = pvebase[targ_idx].pve_next;
   1574 		} else {
   1575 
   1576 			/*
   1577 			 * Find the PV element pointing to the target
   1578 			 * element.  Note: may have pv_idx==PVE_EOL
   1579 			 */
   1580 
   1581 			for (;;) {
   1582 				if (pv_idx == PVE_EOL) {
   1583 					goto pv_not_found;
   1584 				}
   1585 				if (pvebase[pv_idx].pve_next == targ_idx)
   1586 					break;
   1587 				pv_idx = pvebase[pv_idx].pve_next;
   1588 			}
   1589 
   1590 			/*
   1591 			 * At this point, pv_idx is the index of the PV
   1592 			 * element just before the target element in the list.
   1593 			 * Unlink the target.
   1594 			 */
   1595 
   1596 			pvebase[pv_idx].pve_next = pvebase[targ_idx].pve_next;
   1597 		}
   1598 
   1599 		/*
   1600 		 * Save the mod/ref bits of the pte by simply
   1601 		 * ORing the entire pte onto the pv_flags member
   1602 		 * of the pv structure.
   1603 		 * There is no need to use a separate bit pattern
   1604 		 * for usage information on the pv head than that
   1605 		 * which is used on the MMU ptes.
   1606 		 */
   1607 
   1608  pv_not_found:
   1609 		pv->pv_flags |= (u_short) pte->attr.raw;
   1610 	}
   1611 	pte->attr.raw = MMU_DT_INVALID;
   1612 }
   1613 
   1614 /* pmap_stroll			INTERNAL
   1615  **
   1616  * Retrieve the addresses of all table managers involved in the mapping of
   1617  * the given virtual address.  If the table walk completed successfully,
   1618  * return TRUE.  If it was only partially successful, return FALSE.
   1619  * The table walk performed by this function is important to many other
   1620  * functions in this module.
   1621  *
   1622  * Note: This function ought to be easier to read.
   1623  */
   1624 bool
   1625 pmap_stroll(pmap_t pmap, vaddr_t va, a_tmgr_t **a_tbl, b_tmgr_t **b_tbl,
   1626     c_tmgr_t **c_tbl, mmu_short_pte_t **pte, int *a_idx, int *b_idx,
   1627     int *pte_idx)
   1628 {
   1629 	mmu_long_dte_t *a_dte;   /* A: long descriptor table          */
   1630 	mmu_short_dte_t *b_dte;  /* B: short descriptor table         */
   1631 
   1632 	if (pmap == pmap_kernel())
   1633 		return FALSE;
   1634 
   1635 	/* Does the given pmap have its own A table? */
   1636 	*a_tbl = pmap->pm_a_tmgr;
   1637 	if (*a_tbl == NULL)
   1638 		return FALSE; /* No.  Return unknown. */
   1639 	/* Does the A table have a valid B table
   1640 	 * under the corresponding table entry?
   1641 	 */
   1642 	*a_idx = MMU_TIA(va);
   1643 	a_dte = &((*a_tbl)->at_dtbl[*a_idx]);
   1644 	if (!MMU_VALID_DT(*a_dte))
   1645 		return FALSE; /* No. Return unknown. */
   1646 	/* Yes. Extract B table from the A table. */
   1647 	*b_tbl = mmuB2tmgr(mmu_ptov(a_dte->addr.raw));
   1648 	/*
   1649 	 * Does the B table have a valid C table
   1650 	 * under the corresponding table entry?
   1651 	 */
   1652 	*b_idx = MMU_TIB(va);
   1653 	b_dte = &((*b_tbl)->bt_dtbl[*b_idx]);
   1654 	if (!MMU_VALID_DT(*b_dte))
   1655 		return FALSE; /* No. Return unknown. */
   1656 	/* Yes. Extract C table from the B table. */
   1657 	*c_tbl = mmuC2tmgr(mmu_ptov(MMU_DTE_PA(*b_dte)));
   1658 	*pte_idx = MMU_TIC(va);
   1659 	*pte = &((*c_tbl)->ct_dtbl[*pte_idx]);
   1660 
   1661 	return TRUE;
   1662 }
   1663 
   1664 /* pmap_enter			INTERFACE
   1665  **
   1666  * Called by the kernel to map a virtual address
   1667  * to a physical address in the given process map.
   1668  *
   1669  * Note: this function should apply an exclusive lock
   1670  * on the pmap system for its duration.  (it certainly
   1671  * would save my hair!!)
   1672  * This function ought to be easier to read.
   1673  */
   1674 int
   1675 pmap_enter(pmap_t pmap, vaddr_t va, paddr_t pa, vm_prot_t prot, int flags)
   1676 {
   1677 	bool insert, managed; /* Marks the need for PV insertion.*/
   1678 	u_short nidx;            /* PV list index                     */
   1679 	int mapflags;            /* Flags for the mapping (see NOTE1) */
   1680 	u_int a_idx, b_idx, pte_idx; /* table indices                 */
   1681 	a_tmgr_t *a_tbl;         /* A: long descriptor table manager  */
   1682 	b_tmgr_t *b_tbl;         /* B: short descriptor table manager */
   1683 	c_tmgr_t *c_tbl;         /* C: short page table manager       */
   1684 	mmu_long_dte_t *a_dte;   /* A: long descriptor table          */
   1685 	mmu_short_dte_t *b_dte;  /* B: short descriptor table         */
   1686 	mmu_short_pte_t *c_pte;  /* C: short page descriptor table    */
   1687 	pv_t      *pv;           /* pv list head                      */
   1688 	bool wired;         /* is the mapping to be wired?       */
   1689 	enum {NONE, NEWA, NEWB, NEWC} llevel; /* used at end   */
   1690 
   1691 	if (pmap == pmap_kernel()) {
   1692 		pmap_enter_kernel(va, pa, prot);
   1693 		return 0;
   1694 	}
   1695 
   1696 	/*
   1697 	 * Determine if the mapping should be wired.
   1698 	 */
   1699 	wired = ((flags & PMAP_WIRED) != 0);
   1700 
   1701 	/*
   1702 	 * NOTE1:
   1703 	 *
   1704 	 * On November 13, 1999, someone changed the pmap_enter() API such
   1705 	 * that it now accepts a 'flags' argument.  This new argument
   1706 	 * contains bit-flags for the architecture-independent (UVM) system to
   1707 	 * use in signalling certain mapping requirements to the architecture-
   1708 	 * dependent (pmap) system.  The argument it replaces, 'wired', is now
   1709 	 * one of the flags within it.
   1710 	 *
   1711 	 * In addition to flags signaled by the architecture-independent
   1712 	 * system, parts of the architecture-dependent section of the sun3x
   1713 	 * kernel pass their own flags in the lower, unused bits of the
   1714 	 * physical address supplied to this function.  These flags are
   1715 	 * extracted and stored in the temporary variable 'mapflags'.
   1716 	 *
   1717 	 * Extract sun3x specific flags from the physical address.
   1718 	 */
   1719 	mapflags = (pa & ~MMU_PAGE_MASK);
   1720 	pa &= MMU_PAGE_MASK;
   1721 
   1722 	/*
   1723 	 * Determine if the physical address being mapped is on-board RAM.
   1724 	 * Any other area of the address space is likely to belong to a
   1725 	 * device and hence it would be disasterous to cache its contents.
   1726 	 */
   1727 	if ((managed = is_managed(pa)) == FALSE)
   1728 		mapflags |= PMAP_NC;
   1729 
   1730 	/*
   1731 	 * For user mappings we walk along the MMU tables of the given
   1732 	 * pmap, reaching a PTE which describes the virtual page being
   1733 	 * mapped or changed.  If any level of the walk ends in an invalid
   1734 	 * entry, a table must be allocated and the entry must be updated
   1735 	 * to point to it.
   1736 	 * There is a bit of confusion as to whether this code must be
   1737 	 * re-entrant.  For now we will assume it is.  To support
   1738 	 * re-entrancy we must unlink tables from the table pool before
   1739 	 * we assume we may use them.  Tables are re-linked into the pool
   1740 	 * when we are finished with them at the end of the function.
   1741 	 * But I don't feel like doing that until we have proof that this
   1742 	 * needs to be re-entrant.
   1743 	 * 'llevel' records which tables need to be relinked.
   1744 	 */
   1745 	llevel = NONE;
   1746 
   1747 	/*
   1748 	 * Step 1 - Retrieve the A table from the pmap.  If it has no
   1749 	 * A table, allocate a new one from the available pool.
   1750 	 */
   1751 
   1752 	a_tbl = pmap->pm_a_tmgr;
   1753 	if (a_tbl == NULL) {
   1754 		/*
   1755 		 * This pmap does not currently have an A table.  Allocate
   1756 		 * a new one.
   1757 		 */
   1758 		a_tbl = get_a_table();
   1759 		a_tbl->at_parent = pmap;
   1760 
   1761 		/*
   1762 		 * Assign this new A table to the pmap, and calculate its
   1763 		 * physical address so that loadcrp() can be used to make
   1764 		 * the table active.
   1765 		 */
   1766 		pmap->pm_a_tmgr = a_tbl;
   1767 		pmap->pm_a_phys = mmu_vtop(a_tbl->at_dtbl);
   1768 
   1769 		/*
   1770 		 * If the process receiving a new A table is the current
   1771 		 * process, we are responsible for setting the MMU so that
   1772 		 * it becomes the current address space.  This only adds
   1773 		 * new mappings, so no need to flush anything.
   1774 		 */
   1775 		if (pmap == current_pmap()) {
   1776 			kernel_crp.rp_addr = pmap->pm_a_phys;
   1777 			loadcrp(&kernel_crp);
   1778 		}
   1779 
   1780 		if (!wired)
   1781 			llevel = NEWA;
   1782 	} else {
   1783 		/*
   1784 		 * Use the A table already allocated for this pmap.
   1785 		 * Unlink it from the A table pool if necessary.
   1786 		 */
   1787 		if (wired && !a_tbl->at_wcnt)
   1788 			TAILQ_REMOVE(&a_pool, a_tbl, at_link);
   1789 	}
   1790 
   1791 	/*
   1792 	 * Step 2 - Walk into the B table.  If there is no valid B table,
   1793 	 * allocate one.
   1794 	 */
   1795 
   1796 	a_idx = MMU_TIA(va);            /* Calculate the TIA of the VA. */
   1797 	a_dte = &a_tbl->at_dtbl[a_idx]; /* Retrieve descriptor from table */
   1798 	if (MMU_VALID_DT(*a_dte)) {     /* Is the descriptor valid? */
   1799 		/* The descriptor is valid.  Use the B table it points to. */
   1800 		/*************************************
   1801 		 *               a_idx               *
   1802 		 *                 v                 *
   1803 		 * a_tbl -> +-+-+-+-+-+-+-+-+-+-+-+- *
   1804 		 *          | | | | | | | | | | | |  *
   1805 		 *          +-+-+-+-+-+-+-+-+-+-+-+- *
   1806 		 *                 |                 *
   1807 		 *                 \- b_tbl -> +-+-  *
   1808 		 *                             | |   *
   1809 		 *                             +-+-  *
   1810 		 *************************************/
   1811 		b_dte = mmu_ptov(a_dte->addr.raw);
   1812 		b_tbl = mmuB2tmgr(b_dte);
   1813 
   1814 		/*
   1815 		 * If the requested mapping must be wired, but this table
   1816 		 * being used to map it is not, the table must be removed
   1817 		 * from the available pool and its wired entry count
   1818 		 * incremented.
   1819 		 */
   1820 		if (wired && !b_tbl->bt_wcnt) {
   1821 			TAILQ_REMOVE(&b_pool, b_tbl, bt_link);
   1822 			a_tbl->at_wcnt++;
   1823 		}
   1824 	} else {
   1825 		/* The descriptor is invalid.  Allocate a new B table. */
   1826 		b_tbl = get_b_table();
   1827 
   1828 		/* Point the parent A table descriptor to this new B table. */
   1829 		a_dte->addr.raw = mmu_vtop(b_tbl->bt_dtbl);
   1830 		a_dte->attr.raw = MMU_LONG_DTE_LU | MMU_DT_SHORT;
   1831 		a_tbl->at_ecnt++; /* Update parent's valid entry count */
   1832 
   1833 		/* Create the necessary back references to the parent table */
   1834 		b_tbl->bt_parent = a_tbl;
   1835 		b_tbl->bt_pidx = a_idx;
   1836 
   1837 		/*
   1838 		 * If this table is to be wired, make sure the parent A table
   1839 		 * wired count is updated to reflect that it has another wired
   1840 		 * entry.
   1841 		 */
   1842 		if (wired)
   1843 			a_tbl->at_wcnt++;
   1844 		else if (llevel == NONE)
   1845 			llevel = NEWB;
   1846 	}
   1847 
   1848 	/*
   1849 	 * Step 3 - Walk into the C table, if there is no valid C table,
   1850 	 * allocate one.
   1851 	 */
   1852 
   1853 	b_idx = MMU_TIB(va);            /* Calculate the TIB of the VA */
   1854 	b_dte = &b_tbl->bt_dtbl[b_idx]; /* Retrieve descriptor from table */
   1855 	if (MMU_VALID_DT(*b_dte)) {     /* Is the descriptor valid? */
   1856 		/* The descriptor is valid.  Use the C table it points to. */
   1857 		/**************************************
   1858 		 *               c_idx                *
   1859 		 * |                v                 *
   1860 		 * \- b_tbl -> +-+-+-+-+-+-+-+-+-+-+- *
   1861 		 *             | | | | | | | | | | |  *
   1862 		 *             +-+-+-+-+-+-+-+-+-+-+- *
   1863 		 *                  |                 *
   1864 		 *                  \- c_tbl -> +-+-- *
   1865 		 *                              | | | *
   1866 		 *                              +-+-- *
   1867 		 **************************************/
   1868 		c_pte = mmu_ptov(MMU_PTE_PA(*b_dte));
   1869 		c_tbl = mmuC2tmgr(c_pte);
   1870 
   1871 		/* If mapping is wired and table is not */
   1872 		if (wired && !c_tbl->ct_wcnt) {
   1873 			TAILQ_REMOVE(&c_pool, c_tbl, ct_link);
   1874 			b_tbl->bt_wcnt++;
   1875 		}
   1876 	} else {
   1877 		/* The descriptor is invalid.  Allocate a new C table. */
   1878 		c_tbl = get_c_table();
   1879 
   1880 		/* Point the parent B table descriptor to this new C table. */
   1881 		b_dte->attr.raw = mmu_vtop(c_tbl->ct_dtbl);
   1882 		b_dte->attr.raw |= MMU_DT_SHORT;
   1883 		b_tbl->bt_ecnt++; /* Update parent's valid entry count */
   1884 
   1885 		/* Create the necessary back references to the parent table */
   1886 		c_tbl->ct_parent = b_tbl;
   1887 		c_tbl->ct_pidx = b_idx;
   1888 		/*
   1889 		 * Store the pmap and base virtual managed address for faster
   1890 		 * retrieval in the PV functions.
   1891 		 */
   1892 		c_tbl->ct_pmap = pmap;
   1893 		c_tbl->ct_va = (va & (MMU_TIA_MASK|MMU_TIB_MASK));
   1894 
   1895 		/*
   1896 		 * If this table is to be wired, make sure the parent B table
   1897 		 * wired count is updated to reflect that it has another wired
   1898 		 * entry.
   1899 		 */
   1900 		if (wired)
   1901 			b_tbl->bt_wcnt++;
   1902 		else if (llevel == NONE)
   1903 			llevel = NEWC;
   1904 	}
   1905 
   1906 	/*
   1907 	 * Step 4 - Deposit a page descriptor (PTE) into the appropriate
   1908 	 * slot of the C table, describing the PA to which the VA is mapped.
   1909 	 */
   1910 
   1911 	pte_idx = MMU_TIC(va);
   1912 	c_pte = &c_tbl->ct_dtbl[pte_idx];
   1913 	if (MMU_VALID_DT(*c_pte)) { /* Is the entry currently valid? */
   1914 		/*
   1915 		 * The PTE is currently valid.  This particular call
   1916 		 * is just a synonym for one (or more) of the following
   1917 		 * operations:
   1918 		 *     change protection of a page
   1919 		 *     change wiring status of a page
   1920 		 *     remove the mapping of a page
   1921 		 */
   1922 
   1923 		/* First check if this is a wiring operation. */
   1924 		if (c_pte->attr.raw & MMU_SHORT_PTE_WIRED) {
   1925 			/*
   1926 			 * The existing mapping is wired, so adjust wired
   1927 			 * entry count here. If new mapping is still wired,
   1928 			 * wired entry count will be incremented again later.
   1929 			 */
   1930 			c_tbl->ct_wcnt--;
   1931 			if (!wired) {
   1932 				/*
   1933 				 * The mapping of this PTE is being changed
   1934 				 * from wired to unwired.
   1935 				 * Adjust wired entry counts in each table and
   1936 				 * set llevel flag to put unwired tables back
   1937 				 * into the active pool.
   1938 				 */
   1939 				if (c_tbl->ct_wcnt == 0) {
   1940 					llevel = NEWC;
   1941 					if (--b_tbl->bt_wcnt == 0) {
   1942 						llevel = NEWB;
   1943 						if (--a_tbl->at_wcnt == 0) {
   1944 							llevel = NEWA;
   1945 						}
   1946 					}
   1947 				}
   1948 			}
   1949 		}
   1950 
   1951 		/* Is the new address the same as the old? */
   1952 		if (MMU_PTE_PA(*c_pte) == pa) {
   1953 			/*
   1954 			 * Yes, mark that it does not need to be reinserted
   1955 			 * into the PV list.
   1956 			 */
   1957 			insert = FALSE;
   1958 
   1959 			/*
   1960 			 * Clear all but the modified, referenced and wired
   1961 			 * bits on the PTE.
   1962 			 */
   1963 			c_pte->attr.raw &= (MMU_SHORT_PTE_M
   1964 			    | MMU_SHORT_PTE_USED | MMU_SHORT_PTE_WIRED);
   1965 		} else {
   1966 			/* No, remove the old entry */
   1967 			pmap_remove_pte(c_pte);
   1968 			insert = TRUE;
   1969 		}
   1970 
   1971 		/*
   1972 		 * TLB flush is only necessary if modifying current map.
   1973 		 * However, in pmap_enter(), the pmap almost always IS
   1974 		 * the current pmap, so don't even bother to check.
   1975 		 */
   1976 		TBIS(va);
   1977 	} else {
   1978 		/*
   1979 		 * The PTE is invalid.  Increment the valid entry count in
   1980 		 * the C table manager to reflect the addition of a new entry.
   1981 		 */
   1982 		c_tbl->ct_ecnt++;
   1983 
   1984 		/* XXX - temporarily make sure the PTE is cleared. */
   1985 		c_pte->attr.raw = 0;
   1986 
   1987 		/* It will also need to be inserted into the PV list. */
   1988 		insert = TRUE;
   1989 	}
   1990 
   1991 	/*
   1992 	 * If page is changing from unwired to wired status, set an unused bit
   1993 	 * within the PTE to indicate that it is wired.  Also increment the
   1994 	 * wired entry count in the C table manager.
   1995 	 */
   1996 	if (wired) {
   1997 		c_pte->attr.raw |= MMU_SHORT_PTE_WIRED;
   1998 		c_tbl->ct_wcnt++;
   1999 	}
   2000 
   2001 	/*
   2002 	 * Map the page, being careful to preserve modify/reference/wired
   2003 	 * bits.  At this point it is assumed that the PTE either has no bits
   2004 	 * set, or if there are set bits, they are only modified, reference or
   2005 	 * wired bits.  If not, the following statement will cause erratic
   2006 	 * behavior.
   2007 	 */
   2008 #ifdef	PMAP_DEBUG
   2009 	if (c_pte->attr.raw & ~(MMU_SHORT_PTE_M |
   2010 		MMU_SHORT_PTE_USED | MMU_SHORT_PTE_WIRED)) {
   2011 		printf("pmap_enter: junk left in PTE at %p\n", c_pte);
   2012 		Debugger();
   2013 	}
   2014 #endif
   2015 	c_pte->attr.raw |= ((u_long) pa | MMU_DT_PAGE);
   2016 
   2017 	/*
   2018 	 * If the mapping should be read-only, set the write protect
   2019 	 * bit in the PTE.
   2020 	 */
   2021 	if (!(prot & VM_PROT_WRITE))
   2022 		c_pte->attr.raw |= MMU_SHORT_PTE_WP;
   2023 
   2024 	/*
   2025 	 * Mark the PTE as used and/or modified as specified by the flags arg.
   2026 	 */
   2027 	if (flags & VM_PROT_ALL) {
   2028 		c_pte->attr.raw |= MMU_SHORT_PTE_USED;
   2029 		if (flags & VM_PROT_WRITE) {
   2030 			c_pte->attr.raw |= MMU_SHORT_PTE_M;
   2031 		}
   2032 	}
   2033 
   2034 	/*
   2035 	 * If the mapping should be cache inhibited (indicated by the flag
   2036 	 * bits found on the lower order of the physical address.)
   2037 	 * mark the PTE as a cache inhibited page.
   2038 	 */
   2039 	if (mapflags & PMAP_NC)
   2040 		c_pte->attr.raw |= MMU_SHORT_PTE_CI;
   2041 
   2042 	/*
   2043 	 * If the physical address being mapped is managed by the PV
   2044 	 * system then link the pte into the list of pages mapped to that
   2045 	 * address.
   2046 	 */
   2047 	if (insert && managed) {
   2048 		pv = pa2pv(pa);
   2049 		nidx = pteidx(c_pte);
   2050 
   2051 		pvebase[nidx].pve_next = pv->pv_idx;
   2052 		pv->pv_idx = nidx;
   2053 	}
   2054 
   2055 	/* Move any allocated or unwired tables back into the active pool. */
   2056 
   2057 	switch (llevel) {
   2058 		case NEWA:
   2059 			TAILQ_INSERT_TAIL(&a_pool, a_tbl, at_link);
   2060 			/* FALLTHROUGH */
   2061 		case NEWB:
   2062 			TAILQ_INSERT_TAIL(&b_pool, b_tbl, bt_link);
   2063 			/* FALLTHROUGH */
   2064 		case NEWC:
   2065 			TAILQ_INSERT_TAIL(&c_pool, c_tbl, ct_link);
   2066 			/* FALLTHROUGH */
   2067 		default:
   2068 			break;
   2069 	}
   2070 
   2071 	return 0;
   2072 }
   2073 
   2074 /* pmap_enter_kernel			INTERNAL
   2075  **
   2076  * Map the given virtual address to the given physical address within the
   2077  * kernel address space.  This function exists because the kernel map does
   2078  * not do dynamic table allocation.  It consists of a contiguous array of ptes
   2079  * and can be edited directly without the need to walk through any tables.
   2080  *
   2081  * XXX: "Danger, Will Robinson!"
   2082  * Note that the kernel should never take a fault on any page
   2083  * between [ KERNBASE .. virtual_avail ] and this is checked in
   2084  * trap.c for kernel-mode MMU faults.  This means that mappings
   2085  * created in that range must be implicily wired. -gwr
   2086  */
   2087 void
   2088 pmap_enter_kernel(vaddr_t va, paddr_t pa, vm_prot_t prot)
   2089 {
   2090 	bool       was_valid, insert;
   2091 	u_short         pte_idx;
   2092 	int             flags;
   2093 	mmu_short_pte_t *pte;
   2094 	pv_t            *pv;
   2095 	paddr_t     old_pa;
   2096 
   2097 	flags = (pa & ~MMU_PAGE_MASK);
   2098 	pa &= MMU_PAGE_MASK;
   2099 
   2100 	if (is_managed(pa))
   2101 		insert = TRUE;
   2102 	else
   2103 		insert = FALSE;
   2104 
   2105 	/*
   2106 	 * Calculate the index of the PTE being modified.
   2107 	 */
   2108 	pte_idx = (u_long)m68k_btop(va - KERNBASE);
   2109 
   2110 	/* This array is traditionally named "Sysmap" */
   2111 	pte = &kernCbase[pte_idx];
   2112 
   2113 	if (MMU_VALID_DT(*pte)) {
   2114 		was_valid = TRUE;
   2115 		/*
   2116 		 * If the PTE already maps a different
   2117 		 * physical address, umap and pv_unlink.
   2118 		 */
   2119 		old_pa = MMU_PTE_PA(*pte);
   2120 		if (pa != old_pa)
   2121 			pmap_remove_pte(pte);
   2122 		else {
   2123 		    /*
   2124 		     * Old PA and new PA are the same.  No need to
   2125 		     * relink the mapping within the PV list.
   2126 		     */
   2127 		     insert = FALSE;
   2128 
   2129 		    /*
   2130 		     * Save any mod/ref bits on the PTE.
   2131 		     */
   2132 		    pte->attr.raw &= (MMU_SHORT_PTE_USED|MMU_SHORT_PTE_M);
   2133 		}
   2134 	} else {
   2135 		pte->attr.raw = MMU_DT_INVALID;
   2136 		was_valid = FALSE;
   2137 	}
   2138 
   2139 	/*
   2140 	 * Map the page.  Being careful to preserve modified/referenced bits
   2141 	 * on the PTE.
   2142 	 */
   2143 	pte->attr.raw |= (pa | MMU_DT_PAGE);
   2144 
   2145 	if (!(prot & VM_PROT_WRITE)) /* If access should be read-only */
   2146 		pte->attr.raw |= MMU_SHORT_PTE_WP;
   2147 	if (flags & PMAP_NC)
   2148 		pte->attr.raw |= MMU_SHORT_PTE_CI;
   2149 	if (was_valid)
   2150 		TBIS(va);
   2151 
   2152 	/*
   2153 	 * Insert the PTE into the PV system, if need be.
   2154 	 */
   2155 	if (insert) {
   2156 		pv = pa2pv(pa);
   2157 		pvebase[pte_idx].pve_next = pv->pv_idx;
   2158 		pv->pv_idx = pte_idx;
   2159 	}
   2160 }
   2161 
   2162 void
   2163 pmap_kenter_pa(vaddr_t va, paddr_t pa, vm_prot_t prot)
   2164 {
   2165 	mmu_short_pte_t	*pte;
   2166 
   2167 	/* This array is traditionally named "Sysmap" */
   2168 	pte = &kernCbase[(u_long)m68k_btop(va - KERNBASE)];
   2169 
   2170 	KASSERT(!MMU_VALID_DT(*pte));
   2171 	pte->attr.raw = MMU_DT_INVALID | MMU_DT_PAGE | (pa & MMU_PAGE_MASK);
   2172 	if (!(prot & VM_PROT_WRITE))
   2173 		pte->attr.raw |= MMU_SHORT_PTE_WP;
   2174 }
   2175 
   2176 void
   2177 pmap_kremove(vaddr_t va, vsize_t len)
   2178 {
   2179 	int idx, eidx;
   2180 
   2181 #ifdef	PMAP_DEBUG
   2182 	if ((va & PGOFSET) || (len & PGOFSET))
   2183 		panic("pmap_kremove: alignment");
   2184 #endif
   2185 
   2186 	idx  = m68k_btop(va - KERNBASE);
   2187 	eidx = m68k_btop(va + len - KERNBASE);
   2188 
   2189 	while (idx < eidx) {
   2190 		kernCbase[idx++].attr.raw = MMU_DT_INVALID;
   2191 		TBIS(va);
   2192 		va += PAGE_SIZE;
   2193 	}
   2194 }
   2195 
   2196 /* pmap_map			INTERNAL
   2197  **
   2198  * Map a contiguous range of physical memory into a contiguous range of
   2199  * the kernel virtual address space.
   2200  *
   2201  * Used for device mappings and early mapping of the kernel text/data/bss.
   2202  * Returns the first virtual address beyond the end of the range.
   2203  */
   2204 vaddr_t
   2205 pmap_map(vaddr_t va, paddr_t pa, paddr_t endpa, int prot)
   2206 {
   2207 	int sz;
   2208 
   2209 	sz = endpa - pa;
   2210 	do {
   2211 		pmap_enter_kernel(va, pa, prot);
   2212 		va += PAGE_SIZE;
   2213 		pa += PAGE_SIZE;
   2214 		sz -= PAGE_SIZE;
   2215 	} while (sz > 0);
   2216 	pmap_update(pmap_kernel());
   2217 	return va;
   2218 }
   2219 
   2220 /* pmap_protect_kernel			INTERNAL
   2221  **
   2222  * Apply the given protection code to a kernel address range.
   2223  */
   2224 static INLINE void
   2225 pmap_protect_kernel(vaddr_t startva, vaddr_t endva, vm_prot_t prot)
   2226 {
   2227 	vaddr_t va;
   2228 	mmu_short_pte_t *pte;
   2229 
   2230 	pte = &kernCbase[(unsigned long) m68k_btop(startva - KERNBASE)];
   2231 	for (va = startva; va < endva; va += PAGE_SIZE, pte++) {
   2232 		if (MMU_VALID_DT(*pte)) {
   2233 		    switch (prot) {
   2234 		        case VM_PROT_ALL:
   2235 		            break;
   2236 		        case VM_PROT_EXECUTE:
   2237 		        case VM_PROT_READ:
   2238 		        case VM_PROT_READ|VM_PROT_EXECUTE:
   2239 		            pte->attr.raw |= MMU_SHORT_PTE_WP;
   2240 		            break;
   2241 		        case VM_PROT_NONE:
   2242 		            /* this is an alias for 'pmap_remove_kernel' */
   2243 		            pmap_remove_pte(pte);
   2244 		            break;
   2245 		        default:
   2246 		            break;
   2247 		    }
   2248 		    /*
   2249 		     * since this is the kernel, immediately flush any cached
   2250 		     * descriptors for this address.
   2251 		     */
   2252 		    TBIS(va);
   2253 		}
   2254 	}
   2255 }
   2256 
   2257 /* pmap_protect			INTERFACE
   2258  **
   2259  * Apply the given protection to the given virtual address range within
   2260  * the given map.
   2261  *
   2262  * It is ok for the protection applied to be stronger than what is
   2263  * specified.  We use this to our advantage when the given map has no
   2264  * mapping for the virtual address.  By skipping a page when this
   2265  * is discovered, we are effectively applying a protection of VM_PROT_NONE,
   2266  * and therefore do not need to map the page just to apply a protection
   2267  * code.  Only pmap_enter() needs to create new mappings if they do not exist.
   2268  *
   2269  * XXX - This function could be speeded up by using pmap_stroll() for inital
   2270  *       setup, and then manual scrolling in the for() loop.
   2271  */
   2272 void
   2273 pmap_protect(pmap_t pmap, vaddr_t startva, vaddr_t endva, vm_prot_t prot)
   2274 {
   2275 	bool iscurpmap;
   2276 	int a_idx, b_idx, c_idx;
   2277 	a_tmgr_t *a_tbl;
   2278 	b_tmgr_t *b_tbl;
   2279 	c_tmgr_t *c_tbl;
   2280 	mmu_short_pte_t *pte;
   2281 
   2282 	if (pmap == pmap_kernel()) {
   2283 		pmap_protect_kernel(startva, endva, prot);
   2284 		return;
   2285 	}
   2286 
   2287 	/*
   2288 	 * In this particular pmap implementation, there are only three
   2289 	 * types of memory protection: 'all' (read/write/execute),
   2290 	 * 'read-only' (read/execute) and 'none' (no mapping.)
   2291 	 * It is not possible for us to treat 'executable' as a separate
   2292 	 * protection type.  Therefore, protection requests that seek to
   2293 	 * remove execute permission while retaining read or write, and those
   2294 	 * that make little sense (write-only for example) are ignored.
   2295 	 */
   2296 	switch (prot) {
   2297 		case VM_PROT_NONE:
   2298 			/*
   2299 			 * A request to apply the protection code of
   2300 			 * 'VM_PROT_NONE' is a synonym for pmap_remove().
   2301 			 */
   2302 			pmap_remove(pmap, startva, endva);
   2303 			return;
   2304 		case	VM_PROT_EXECUTE:
   2305 		case	VM_PROT_READ:
   2306 		case	VM_PROT_READ|VM_PROT_EXECUTE:
   2307 			/* continue */
   2308 			break;
   2309 		case	VM_PROT_WRITE:
   2310 		case	VM_PROT_WRITE|VM_PROT_READ:
   2311 		case	VM_PROT_WRITE|VM_PROT_EXECUTE:
   2312 		case	VM_PROT_ALL:
   2313 			/* None of these should happen in a sane system. */
   2314 			return;
   2315 	}
   2316 
   2317 	/*
   2318 	 * If the pmap has no A table, it has no mappings and therefore
   2319 	 * there is nothing to protect.
   2320 	 */
   2321 	if ((a_tbl = pmap->pm_a_tmgr) == NULL)
   2322 		return;
   2323 
   2324 	a_idx = MMU_TIA(startva);
   2325 	b_idx = MMU_TIB(startva);
   2326 	c_idx = MMU_TIC(startva);
   2327 	b_tbl = NULL;
   2328 	c_tbl = NULL;
   2329 
   2330 	iscurpmap = (pmap == current_pmap());
   2331 	while (startva < endva) {
   2332 		if (b_tbl || MMU_VALID_DT(a_tbl->at_dtbl[a_idx])) {
   2333 		  if (b_tbl == NULL) {
   2334 		    b_tbl = (b_tmgr_t *) a_tbl->at_dtbl[a_idx].addr.raw;
   2335 		    b_tbl = mmu_ptov((vaddr_t)b_tbl);
   2336 		    b_tbl = mmuB2tmgr((mmu_short_dte_t *)b_tbl);
   2337 		  }
   2338 		  if (c_tbl || MMU_VALID_DT(b_tbl->bt_dtbl[b_idx])) {
   2339 		    if (c_tbl == NULL) {
   2340 		      c_tbl = (c_tmgr_t *) MMU_DTE_PA(b_tbl->bt_dtbl[b_idx]);
   2341 		      c_tbl = mmu_ptov((vaddr_t)c_tbl);
   2342 		      c_tbl = mmuC2tmgr((mmu_short_pte_t *)c_tbl);
   2343 		    }
   2344 		    if (MMU_VALID_DT(c_tbl->ct_dtbl[c_idx])) {
   2345 		      pte = &c_tbl->ct_dtbl[c_idx];
   2346 		      /* make the mapping read-only */
   2347 		      pte->attr.raw |= MMU_SHORT_PTE_WP;
   2348 		      /*
   2349 		       * If we just modified the current address space,
   2350 		       * flush any translations for the modified page from
   2351 		       * the translation cache and any data from it in the
   2352 		       * data cache.
   2353 		       */
   2354 		      if (iscurpmap)
   2355 		          TBIS(startva);
   2356 		    }
   2357 		    startva += PAGE_SIZE;
   2358 
   2359 		    if (++c_idx >= MMU_C_TBL_SIZE) { /* exceeded C table? */
   2360 		      c_tbl = NULL;
   2361 		      c_idx = 0;
   2362 		      if (++b_idx >= MMU_B_TBL_SIZE) { /* exceeded B table? */
   2363 		        b_tbl = NULL;
   2364 		        b_idx = 0;
   2365 		      }
   2366 		    }
   2367 		  } else { /* C table wasn't valid */
   2368 		    c_tbl = NULL;
   2369 		    c_idx = 0;
   2370 		    startva += MMU_TIB_RANGE;
   2371 		    if (++b_idx >= MMU_B_TBL_SIZE) { /* exceeded B table? */
   2372 		      b_tbl = NULL;
   2373 		      b_idx = 0;
   2374 		    }
   2375 		  } /* C table */
   2376 		} else { /* B table wasn't valid */
   2377 		  b_tbl = NULL;
   2378 		  b_idx = 0;
   2379 		  startva += MMU_TIA_RANGE;
   2380 		  a_idx++;
   2381 		} /* B table */
   2382 	}
   2383 }
   2384 
   2385 /* pmap_unwire				INTERFACE
   2386  **
   2387  * Clear the wired attribute of the specified page.
   2388  *
   2389  * This function is called from vm_fault.c to unwire
   2390  * a mapping.
   2391  */
   2392 void
   2393 pmap_unwire(pmap_t pmap, vaddr_t va)
   2394 {
   2395 	int a_idx, b_idx, c_idx;
   2396 	a_tmgr_t *a_tbl;
   2397 	b_tmgr_t *b_tbl;
   2398 	c_tmgr_t *c_tbl;
   2399 	mmu_short_pte_t *pte;
   2400 
   2401 	/* Kernel mappings always remain wired. */
   2402 	if (pmap == pmap_kernel())
   2403 		return;
   2404 
   2405 	/*
   2406 	 * Walk through the tables.  If the walk terminates without
   2407 	 * a valid PTE then the address wasn't wired in the first place.
   2408 	 * Return immediately.
   2409 	 */
   2410 	if (pmap_stroll(pmap, va, &a_tbl, &b_tbl, &c_tbl, &pte, &a_idx,
   2411 		&b_idx, &c_idx) == FALSE)
   2412 		return;
   2413 
   2414 
   2415 	/* Is the PTE wired?  If not, return. */
   2416 	if (!(pte->attr.raw & MMU_SHORT_PTE_WIRED))
   2417 		return;
   2418 
   2419 	/* Remove the wiring bit. */
   2420 	pte->attr.raw &= ~(MMU_SHORT_PTE_WIRED);
   2421 
   2422 	/*
   2423 	 * Decrement the wired entry count in the C table.
   2424 	 * If it reaches zero the following things happen:
   2425 	 * 1. The table no longer has any wired entries and is considered
   2426 	 *    unwired.
   2427 	 * 2. It is placed on the available queue.
   2428 	 * 3. The parent table's wired entry count is decremented.
   2429 	 * 4. If it reaches zero, this process repeats at step 1 and
   2430 	 *    stops at after reaching the A table.
   2431 	 */
   2432 	if (--c_tbl->ct_wcnt == 0) {
   2433 		TAILQ_INSERT_TAIL(&c_pool, c_tbl, ct_link);
   2434 		if (--b_tbl->bt_wcnt == 0) {
   2435 			TAILQ_INSERT_TAIL(&b_pool, b_tbl, bt_link);
   2436 			if (--a_tbl->at_wcnt == 0) {
   2437 				TAILQ_INSERT_TAIL(&a_pool, a_tbl, at_link);
   2438 			}
   2439 		}
   2440 	}
   2441 }
   2442 
   2443 /* pmap_copy				INTERFACE
   2444  **
   2445  * Copy the mappings of a range of addresses in one pmap, into
   2446  * the destination address of another.
   2447  *
   2448  * This routine is advisory.  Should we one day decide that MMU tables
   2449  * may be shared by more than one pmap, this function should be used to
   2450  * link them together.  Until that day however, we do nothing.
   2451  */
   2452 void
   2453 pmap_copy(pmap_t pmap_a, pmap_t pmap_b, vaddr_t dst, vsize_t len, vaddr_t src)
   2454 {
   2455 
   2456 	/* not implemented. */
   2457 }
   2458 
   2459 /* pmap_copy_page			INTERFACE
   2460  **
   2461  * Copy the contents of one physical page into another.
   2462  *
   2463  * This function makes use of two virtual pages allocated in pmap_bootstrap()
   2464  * to map the two specified physical pages into the kernel address space.
   2465  *
   2466  * Note: We could use the transparent translation registers to make the
   2467  * mappings.  If we do so, be sure to disable interrupts before using them.
   2468  */
   2469 void
   2470 pmap_copy_page(paddr_t srcpa, paddr_t dstpa)
   2471 {
   2472 	vaddr_t srcva, dstva;
   2473 	int s;
   2474 
   2475 	srcva = tmp_vpages[0];
   2476 	dstva = tmp_vpages[1];
   2477 
   2478 	s = splvm();
   2479 #ifdef DIAGNOSTIC
   2480 	if (tmp_vpages_inuse++)
   2481 		panic("pmap_copy_page: temporary vpages are in use.");
   2482 #endif
   2483 
   2484 	/* Map pages as non-cacheable to avoid cache polution? */
   2485 	pmap_kenter_pa(srcva, srcpa, VM_PROT_READ);
   2486 	pmap_kenter_pa(dstva, dstpa, VM_PROT_READ | VM_PROT_WRITE);
   2487 
   2488 	/* Hand-optimized version of bcopy(src, dst, PAGE_SIZE) */
   2489 	copypage((char *)srcva, (char *)dstva);
   2490 
   2491 	pmap_kremove(srcva, PAGE_SIZE);
   2492 	pmap_kremove(dstva, PAGE_SIZE);
   2493 
   2494 #ifdef DIAGNOSTIC
   2495 	--tmp_vpages_inuse;
   2496 #endif
   2497 	splx(s);
   2498 }
   2499 
   2500 /* pmap_zero_page			INTERFACE
   2501  **
   2502  * Zero the contents of the specified physical page.
   2503  *
   2504  * Uses one of the virtual pages allocated in pmap_boostrap()
   2505  * to map the specified page into the kernel address space.
   2506  */
   2507 void
   2508 pmap_zero_page(paddr_t dstpa)
   2509 {
   2510 	vaddr_t dstva;
   2511 	int s;
   2512 
   2513 	dstva = tmp_vpages[1];
   2514 	s = splvm();
   2515 #ifdef DIAGNOSTIC
   2516 	if (tmp_vpages_inuse++)
   2517 		panic("pmap_zero_page: temporary vpages are in use.");
   2518 #endif
   2519 
   2520 	/* The comments in pmap_copy_page() above apply here also. */
   2521 	pmap_kenter_pa(dstva, dstpa, VM_PROT_READ | VM_PROT_WRITE);
   2522 
   2523 	/* Hand-optimized version of bzero(ptr, PAGE_SIZE) */
   2524 	zeropage((char *)dstva);
   2525 
   2526 	pmap_kremove(dstva, PAGE_SIZE);
   2527 #ifdef DIAGNOSTIC
   2528 	--tmp_vpages_inuse;
   2529 #endif
   2530 	splx(s);
   2531 }
   2532 
   2533 /* pmap_collect			INTERFACE
   2534  **
   2535  * Called from the VM system when we are about to swap out
   2536  * the process using this pmap.  This should give up any
   2537  * resources held here, including all its MMU tables.
   2538  */
   2539 void
   2540 pmap_collect(pmap_t pmap)
   2541 {
   2542 
   2543 	/* XXX - todo... */
   2544 }
   2545 
   2546 /* pmap_pinit			INTERNAL
   2547  **
   2548  * Initialize a pmap structure.
   2549  */
   2550 static INLINE void
   2551 pmap_pinit(pmap_t pmap)
   2552 {
   2553 
   2554 	memset(pmap, 0, sizeof(struct pmap));
   2555 	pmap->pm_a_tmgr = NULL;
   2556 	pmap->pm_a_phys = kernAphys;
   2557 	pmap->pm_refcount = 1;
   2558 	simple_lock_init(&pmap->pm_lock);
   2559 }
   2560 
   2561 /* pmap_create			INTERFACE
   2562  **
   2563  * Create and return a pmap structure.
   2564  */
   2565 pmap_t
   2566 pmap_create(void)
   2567 {
   2568 	pmap_t	pmap;
   2569 
   2570 	pmap = pool_get(&pmap_pmap_pool, PR_WAITOK);
   2571 	pmap_pinit(pmap);
   2572 	return pmap;
   2573 }
   2574 
   2575 /* pmap_release				INTERNAL
   2576  **
   2577  * Release any resources held by the given pmap.
   2578  *
   2579  * This is the reverse analog to pmap_pinit.  It does not
   2580  * necessarily mean for the pmap structure to be deallocated,
   2581  * as in pmap_destroy.
   2582  */
   2583 static INLINE void
   2584 pmap_release(pmap_t pmap)
   2585 {
   2586 
   2587 	/*
   2588 	 * As long as the pmap contains no mappings,
   2589 	 * which always should be the case whenever
   2590 	 * this function is called, there really should
   2591 	 * be nothing to do.
   2592 	 */
   2593 #ifdef	PMAP_DEBUG
   2594 	if (pmap == pmap_kernel())
   2595 		panic("pmap_release: kernel pmap");
   2596 #endif
   2597 	/*
   2598 	 * XXX - If this pmap has an A table, give it back.
   2599 	 * The pmap SHOULD be empty by now, and pmap_remove
   2600 	 * should have already given back the A table...
   2601 	 * However, I see:  pmap->pm_a_tmgr->at_ecnt == 1
   2602 	 * at this point, which means some mapping was not
   2603 	 * removed when it should have been. -gwr
   2604 	 */
   2605 	if (pmap->pm_a_tmgr != NULL) {
   2606 		/* First make sure we are not using it! */
   2607 		if (kernel_crp.rp_addr == pmap->pm_a_phys) {
   2608 			kernel_crp.rp_addr = kernAphys;
   2609 			loadcrp(&kernel_crp);
   2610 		}
   2611 #ifdef	PMAP_DEBUG /* XXX - todo! */
   2612 		/* XXX - Now complain... */
   2613 		printf("pmap_release: still have table\n");
   2614 		Debugger();
   2615 #endif
   2616 		free_a_table(pmap->pm_a_tmgr, TRUE);
   2617 		pmap->pm_a_tmgr = NULL;
   2618 		pmap->pm_a_phys = kernAphys;
   2619 	}
   2620 }
   2621 
   2622 /* pmap_reference			INTERFACE
   2623  **
   2624  * Increment the reference count of a pmap.
   2625  */
   2626 void
   2627 pmap_reference(pmap_t pmap)
   2628 {
   2629 	pmap_lock(pmap);
   2630 	pmap_add_ref(pmap);
   2631 	pmap_unlock(pmap);
   2632 }
   2633 
   2634 /* pmap_dereference			INTERNAL
   2635  **
   2636  * Decrease the reference count on the given pmap
   2637  * by one and return the current count.
   2638  */
   2639 static INLINE int
   2640 pmap_dereference(pmap_t pmap)
   2641 {
   2642 	int rtn;
   2643 
   2644 	pmap_lock(pmap);
   2645 	rtn = pmap_del_ref(pmap);
   2646 	pmap_unlock(pmap);
   2647 
   2648 	return rtn;
   2649 }
   2650 
   2651 /* pmap_destroy			INTERFACE
   2652  **
   2653  * Decrement a pmap's reference count and delete
   2654  * the pmap if it becomes zero.  Will be called
   2655  * only after all mappings have been removed.
   2656  */
   2657 void
   2658 pmap_destroy(pmap_t pmap)
   2659 {
   2660 
   2661 	if (pmap_dereference(pmap) == 0) {
   2662 		pmap_release(pmap);
   2663 		pool_put(&pmap_pmap_pool, pmap);
   2664 	}
   2665 }
   2666 
   2667 /* pmap_is_referenced			INTERFACE
   2668  **
   2669  * Determine if the given physical page has been
   2670  * referenced (read from [or written to.])
   2671  */
   2672 bool
   2673 pmap_is_referenced(struct vm_page *pg)
   2674 {
   2675 	paddr_t   pa = VM_PAGE_TO_PHYS(pg);
   2676 	pv_t      *pv;
   2677 	int       idx;
   2678 
   2679 	/*
   2680 	 * Check the flags on the pv head.  If they are set,
   2681 	 * return immediately.  Otherwise a search must be done.
   2682 	 */
   2683 
   2684 	pv = pa2pv(pa);
   2685 	if (pv->pv_flags & PV_FLAGS_USED)
   2686 		return TRUE;
   2687 
   2688 	/*
   2689 	 * Search through all pv elements pointing
   2690 	 * to this page and query their reference bits
   2691 	 */
   2692 
   2693 	for (idx = pv->pv_idx; idx != PVE_EOL; idx = pvebase[idx].pve_next) {
   2694 		if (MMU_PTE_USED(kernCbase[idx])) {
   2695 			return TRUE;
   2696 		}
   2697 	}
   2698 	return FALSE;
   2699 }
   2700 
   2701 /* pmap_is_modified			INTERFACE
   2702  **
   2703  * Determine if the given physical page has been
   2704  * modified (written to.)
   2705  */
   2706 bool
   2707 pmap_is_modified(struct vm_page *pg)
   2708 {
   2709 	paddr_t   pa = VM_PAGE_TO_PHYS(pg);
   2710 	pv_t      *pv;
   2711 	int       idx;
   2712 
   2713 	/* see comments in pmap_is_referenced() */
   2714 	pv = pa2pv(pa);
   2715 	if (pv->pv_flags & PV_FLAGS_MDFY)
   2716 		return TRUE;
   2717 
   2718 	for (idx = pv->pv_idx;
   2719 		 idx != PVE_EOL;
   2720 		 idx = pvebase[idx].pve_next) {
   2721 
   2722 		if (MMU_PTE_MODIFIED(kernCbase[idx])) {
   2723 			return TRUE;
   2724 		}
   2725 	}
   2726 
   2727 	return FALSE;
   2728 }
   2729 
   2730 /* pmap_page_protect			INTERFACE
   2731  **
   2732  * Applies the given protection to all mappings to the given
   2733  * physical page.
   2734  */
   2735 void
   2736 pmap_page_protect(struct vm_page *pg, vm_prot_t prot)
   2737 {
   2738 	paddr_t   pa = VM_PAGE_TO_PHYS(pg);
   2739 	pv_t      *pv;
   2740 	int       idx;
   2741 	vaddr_t va;
   2742 	struct mmu_short_pte_struct *pte;
   2743 	c_tmgr_t  *c_tbl;
   2744 	pmap_t    pmap, curpmap;
   2745 
   2746 	curpmap = current_pmap();
   2747 	pv = pa2pv(pa);
   2748 
   2749 	for (idx = pv->pv_idx; idx != PVE_EOL; idx = pvebase[idx].pve_next) {
   2750 		pte = &kernCbase[idx];
   2751 		switch (prot) {
   2752 			case VM_PROT_ALL:
   2753 				/* do nothing */
   2754 				break;
   2755 			case VM_PROT_EXECUTE:
   2756 			case VM_PROT_READ:
   2757 			case VM_PROT_READ|VM_PROT_EXECUTE:
   2758 				/*
   2759 				 * Determine the virtual address mapped by
   2760 				 * the PTE and flush ATC entries if necessary.
   2761 				 */
   2762 				va = pmap_get_pteinfo(idx, &pmap, &c_tbl);
   2763 				pte->attr.raw |= MMU_SHORT_PTE_WP;
   2764 				if (pmap == curpmap || pmap == pmap_kernel())
   2765 					TBIS(va);
   2766 				break;
   2767 			case VM_PROT_NONE:
   2768 				/* Save the mod/ref bits. */
   2769 				pv->pv_flags |= pte->attr.raw;
   2770 				/* Invalidate the PTE. */
   2771 				pte->attr.raw = MMU_DT_INVALID;
   2772 
   2773 				/*
   2774 				 * Update table counts.  And flush ATC entries
   2775 				 * if necessary.
   2776 				 */
   2777 				va = pmap_get_pteinfo(idx, &pmap, &c_tbl);
   2778 
   2779 				/*
   2780 				 * If the PTE belongs to the kernel map,
   2781 				 * be sure to flush the page it maps.
   2782 				 */
   2783 				if (pmap == pmap_kernel()) {
   2784 					TBIS(va);
   2785 				} else {
   2786 					/*
   2787 					 * The PTE belongs to a user map.
   2788 					 * update the entry count in the C
   2789 					 * table to which it belongs and flush
   2790 					 * the ATC if the mapping belongs to
   2791 					 * the current pmap.
   2792 					 */
   2793 					c_tbl->ct_ecnt--;
   2794 					if (pmap == curpmap)
   2795 						TBIS(va);
   2796 				}
   2797 				break;
   2798 			default:
   2799 				break;
   2800 		}
   2801 	}
   2802 
   2803 	/*
   2804 	 * If the protection code indicates that all mappings to the page
   2805 	 * be removed, truncate the PV list to zero entries.
   2806 	 */
   2807 	if (prot == VM_PROT_NONE)
   2808 		pv->pv_idx = PVE_EOL;
   2809 }
   2810 
   2811 /* pmap_get_pteinfo		INTERNAL
   2812  **
   2813  * Called internally to find the pmap and virtual address within that
   2814  * map to which the pte at the given index maps.  Also includes the PTE's C
   2815  * table manager.
   2816  *
   2817  * Returns the pmap in the argument provided, and the virtual address
   2818  * by return value.
   2819  */
   2820 vaddr_t
   2821 pmap_get_pteinfo(u_int idx, pmap_t *pmap, c_tmgr_t **tbl)
   2822 {
   2823 	vaddr_t     va = 0;
   2824 
   2825 	/*
   2826 	 * Determine if the PTE is a kernel PTE or a user PTE.
   2827 	 */
   2828 	if (idx >= NUM_KERN_PTES) {
   2829 		/*
   2830 		 * The PTE belongs to a user mapping.
   2831 		 */
   2832 		/* XXX: Would like an inline for this to validate idx... */
   2833 		*tbl = &Ctmgrbase[(idx - NUM_KERN_PTES) / MMU_C_TBL_SIZE];
   2834 
   2835 		*pmap = (*tbl)->ct_pmap;
   2836 		/*
   2837 		 * To find the va to which the PTE maps, we first take
   2838 		 * the table's base virtual address mapping which is stored
   2839 		 * in ct_va.  We then increment this address by a page for
   2840 		 * every slot skipped until we reach the PTE.
   2841 		 */
   2842 		va = (*tbl)->ct_va;
   2843 		va += m68k_ptob(idx % MMU_C_TBL_SIZE);
   2844 	} else {
   2845 		/*
   2846 		 * The PTE belongs to the kernel map.
   2847 		 */
   2848 		*pmap = pmap_kernel();
   2849 
   2850 		va = m68k_ptob(idx);
   2851 		va += KERNBASE;
   2852 	}
   2853 
   2854 	return va;
   2855 }
   2856 
   2857 /* pmap_clear_modify			INTERFACE
   2858  **
   2859  * Clear the modification bit on the page at the specified
   2860  * physical address.
   2861  *
   2862  */
   2863 bool
   2864 pmap_clear_modify(struct vm_page *pg)
   2865 {
   2866 	paddr_t pa = VM_PAGE_TO_PHYS(pg);
   2867 	bool rv;
   2868 
   2869 	rv = pmap_is_modified(pg);
   2870 	pmap_clear_pv(pa, PV_FLAGS_MDFY);
   2871 	return rv;
   2872 }
   2873 
   2874 /* pmap_clear_reference			INTERFACE
   2875  **
   2876  * Clear the referenced bit on the page at the specified
   2877  * physical address.
   2878  */
   2879 bool
   2880 pmap_clear_reference(struct vm_page *pg)
   2881 {
   2882 	paddr_t pa = VM_PAGE_TO_PHYS(pg);
   2883 	bool rv;
   2884 
   2885 	rv = pmap_is_referenced(pg);
   2886 	pmap_clear_pv(pa, PV_FLAGS_USED);
   2887 	return rv;
   2888 }
   2889 
   2890 /* pmap_clear_pv			INTERNAL
   2891  **
   2892  * Clears the specified flag from the specified physical address.
   2893  * (Used by pmap_clear_modify() and pmap_clear_reference().)
   2894  *
   2895  * Flag is one of:
   2896  *   PV_FLAGS_MDFY - Page modified bit.
   2897  *   PV_FLAGS_USED - Page used (referenced) bit.
   2898  *
   2899  * This routine must not only clear the flag on the pv list
   2900  * head.  It must also clear the bit on every pte in the pv
   2901  * list associated with the address.
   2902  */
   2903 void
   2904 pmap_clear_pv(paddr_t pa, int flag)
   2905 {
   2906 	pv_t      *pv;
   2907 	int       idx;
   2908 	vaddr_t   va;
   2909 	pmap_t          pmap;
   2910 	mmu_short_pte_t *pte;
   2911 	c_tmgr_t        *c_tbl;
   2912 
   2913 	pv = pa2pv(pa);
   2914 	pv->pv_flags &= ~(flag);
   2915 	for (idx = pv->pv_idx; idx != PVE_EOL; idx = pvebase[idx].pve_next) {
   2916 		pte = &kernCbase[idx];
   2917 		pte->attr.raw &= ~(flag);
   2918 
   2919 		/*
   2920 		 * The MC68030 MMU will not set the modified or
   2921 		 * referenced bits on any MMU tables for which it has
   2922 		 * a cached descriptor with its modify bit set.  To insure
   2923 		 * that it will modify these bits on the PTE during the next
   2924 		 * time it is written to or read from, we must flush it from
   2925 		 * the ATC.
   2926 		 *
   2927 		 * Ordinarily it is only necessary to flush the descriptor
   2928 		 * if it is used in the current address space.  But since I
   2929 		 * am not sure that there will always be a notion of
   2930 		 * 'the current address space' when this function is called,
   2931 		 * I will skip the test and always flush the address.  It
   2932 		 * does no harm.
   2933 		 */
   2934 
   2935 		va = pmap_get_pteinfo(idx, &pmap, &c_tbl);
   2936 		TBIS(va);
   2937 	}
   2938 }
   2939 
   2940 /* pmap_extract_kernel		INTERNAL
   2941  **
   2942  * Extract a translation from the kernel address space.
   2943  */
   2944 static INLINE bool
   2945 pmap_extract_kernel(vaddr_t va, paddr_t *pap)
   2946 {
   2947 	mmu_short_pte_t *pte;
   2948 
   2949 	pte = &kernCbase[(u_int)m68k_btop(va - KERNBASE)];
   2950 	if (!MMU_VALID_DT(*pte))
   2951 		return FALSE;
   2952 	if (pap != NULL)
   2953 		*pap = MMU_PTE_PA(*pte);
   2954 	return TRUE;
   2955 }
   2956 
   2957 /* pmap_extract			INTERFACE
   2958  **
   2959  * Return the physical address mapped by the virtual address
   2960  * in the specified pmap.
   2961  *
   2962  * Note: this function should also apply an exclusive lock
   2963  * on the pmap system during its duration.
   2964  */
   2965 bool
   2966 pmap_extract(pmap_t pmap, vaddr_t va, paddr_t *pap)
   2967 {
   2968 	int a_idx, b_idx, pte_idx;
   2969 	a_tmgr_t	*a_tbl;
   2970 	b_tmgr_t	*b_tbl;
   2971 	c_tmgr_t	*c_tbl;
   2972 	mmu_short_pte_t	*c_pte;
   2973 
   2974 	if (pmap == pmap_kernel())
   2975 		return pmap_extract_kernel(va, pap);
   2976 
   2977 	if (pmap_stroll(pmap, va, &a_tbl, &b_tbl, &c_tbl,
   2978 		&c_pte, &a_idx, &b_idx, &pte_idx) == FALSE)
   2979 		return FALSE;
   2980 
   2981 	if (!MMU_VALID_DT(*c_pte))
   2982 		return FALSE;
   2983 
   2984 	if (pap != NULL)
   2985 		*pap = MMU_PTE_PA(*c_pte);
   2986 	return TRUE;
   2987 }
   2988 
   2989 /* pmap_remove_kernel		INTERNAL
   2990  **
   2991  * Remove the mapping of a range of virtual addresses from the kernel map.
   2992  * The arguments are already page-aligned.
   2993  */
   2994 static INLINE void
   2995 pmap_remove_kernel(vaddr_t sva, vaddr_t eva)
   2996 {
   2997 	int idx, eidx;
   2998 
   2999 #ifdef	PMAP_DEBUG
   3000 	if ((sva & PGOFSET) || (eva & PGOFSET))
   3001 		panic("pmap_remove_kernel: alignment");
   3002 #endif
   3003 
   3004 	idx  = m68k_btop(sva - KERNBASE);
   3005 	eidx = m68k_btop(eva - KERNBASE);
   3006 
   3007 	while (idx < eidx) {
   3008 		pmap_remove_pte(&kernCbase[idx++]);
   3009 		TBIS(sva);
   3010 		sva += PAGE_SIZE;
   3011 	}
   3012 }
   3013 
   3014 /* pmap_remove			INTERFACE
   3015  **
   3016  * Remove the mapping of a range of virtual addresses from the given pmap.
   3017  *
   3018  */
   3019 void
   3020 pmap_remove(pmap_t pmap, vaddr_t sva, vaddr_t eva)
   3021 {
   3022 
   3023 	if (pmap == pmap_kernel()) {
   3024 		pmap_remove_kernel(sva, eva);
   3025 		return;
   3026 	}
   3027 
   3028 	/*
   3029 	 * If the pmap doesn't have an A table of its own, it has no mappings
   3030 	 * that can be removed.
   3031 	 */
   3032 	if (pmap->pm_a_tmgr == NULL)
   3033 		return;
   3034 
   3035 	/*
   3036 	 * Remove the specified range from the pmap.  If the function
   3037 	 * returns true, the operation removed all the valid mappings
   3038 	 * in the pmap and freed its A table.  If this happened to the
   3039 	 * currently loaded pmap, the MMU root pointer must be reloaded
   3040 	 * with the default 'kernel' map.
   3041 	 */
   3042 	if (pmap_remove_a(pmap->pm_a_tmgr, sva, eva)) {
   3043 		if (kernel_crp.rp_addr == pmap->pm_a_phys) {
   3044 			kernel_crp.rp_addr = kernAphys;
   3045 			loadcrp(&kernel_crp);
   3046 			/* will do TLB flush below */
   3047 		}
   3048 		pmap->pm_a_tmgr = NULL;
   3049 		pmap->pm_a_phys = kernAphys;
   3050 	}
   3051 
   3052 	/*
   3053 	 * If we just modified the current address space,
   3054 	 * make sure to flush the MMU cache.
   3055 	 *
   3056 	 * XXX - this could be an unecessarily large flush.
   3057 	 * XXX - Could decide, based on the size of the VA range
   3058 	 * to be removed, whether to flush "by pages" or "all".
   3059 	 */
   3060 	if (pmap == current_pmap())
   3061 		TBIAU();
   3062 }
   3063 
   3064 /* pmap_remove_a			INTERNAL
   3065  **
   3066  * This is function number one in a set of three that removes a range
   3067  * of memory in the most efficient manner by removing the highest possible
   3068  * tables from the memory space.  This particular function attempts to remove
   3069  * as many B tables as it can, delegating the remaining fragmented ranges to
   3070  * pmap_remove_b().
   3071  *
   3072  * If the removal operation results in an empty A table, the function returns
   3073  * TRUE.
   3074  *
   3075  * It's ugly but will do for now.
   3076  */
   3077 bool
   3078 pmap_remove_a(a_tmgr_t *a_tbl, vaddr_t sva, vaddr_t eva)
   3079 {
   3080 	bool empty;
   3081 	int idx;
   3082 	vaddr_t nstart, nend;
   3083 	b_tmgr_t *b_tbl;
   3084 	mmu_long_dte_t  *a_dte;
   3085 	mmu_short_dte_t *b_dte;
   3086 	uint8_t at_wired, bt_wired;
   3087 
   3088 	/*
   3089 	 * The following code works with what I call a 'granularity
   3090 	 * reduction algorithim'.  A range of addresses will always have
   3091 	 * the following properties, which are classified according to
   3092 	 * how the range relates to the size of the current granularity
   3093 	 * - an A table entry:
   3094 	 *
   3095 	 *            1 2       3 4
   3096 	 * -+---+---+---+---+---+---+---+-
   3097 	 * -+---+---+---+---+---+---+---+-
   3098 	 *
   3099 	 * A range will always start on a granularity boundary, illustrated
   3100 	 * by '+' signs in the table above, or it will start at some point
   3101 	 * inbetween a granularity boundary, as illustrated by point 1.
   3102 	 * The first step in removing a range of addresses is to remove the
   3103 	 * range between 1 and 2, the nearest granularity boundary.  This
   3104 	 * job is handled by the section of code governed by the
   3105 	 * 'if (start < nstart)' statement.
   3106 	 *
   3107 	 * A range will always encompass zero or more intergral granules,
   3108 	 * illustrated by points 2 and 3.  Integral granules are easy to
   3109 	 * remove.  The removal of these granules is the second step, and
   3110 	 * is handled by the code block 'if (nstart < nend)'.
   3111 	 *
   3112 	 * Lastly, a range will always end on a granularity boundary,
   3113 	 * ill. by point 3, or it will fall just beyond one, ill. by point
   3114 	 * 4.  The last step involves removing this range and is handled by
   3115 	 * the code block 'if (nend < end)'.
   3116 	 */
   3117 	nstart = MMU_ROUND_UP_A(sva);
   3118 	nend = MMU_ROUND_A(eva);
   3119 
   3120 	at_wired = a_tbl->at_wcnt;
   3121 
   3122 	if (sva < nstart) {
   3123 		/*
   3124 		 * This block is executed if the range starts between
   3125 		 * a granularity boundary.
   3126 		 *
   3127 		 * First find the DTE which is responsible for mapping
   3128 		 * the start of the range.
   3129 		 */
   3130 		idx = MMU_TIA(sva);
   3131 		a_dte = &a_tbl->at_dtbl[idx];
   3132 
   3133 		/*
   3134 		 * If the DTE is valid then delegate the removal of the sub
   3135 		 * range to pmap_remove_b(), which can remove addresses at
   3136 		 * a finer granularity.
   3137 		 */
   3138 		if (MMU_VALID_DT(*a_dte)) {
   3139 			b_dte = mmu_ptov(a_dte->addr.raw);
   3140 			b_tbl = mmuB2tmgr(b_dte);
   3141 			bt_wired = b_tbl->bt_wcnt;
   3142 
   3143 			/*
   3144 			 * The sub range to be removed starts at the start
   3145 			 * of the full range we were asked to remove, and ends
   3146 			 * at the greater of:
   3147 			 * 1. The end of the full range, -or-
   3148 			 * 2. The end of the full range, rounded down to the
   3149 			 *    nearest granularity boundary.
   3150 			 */
   3151 			if (eva < nstart)
   3152 				empty = pmap_remove_b(b_tbl, sva, eva);
   3153 			else
   3154 				empty = pmap_remove_b(b_tbl, sva, nstart);
   3155 
   3156 			/*
   3157 			 * If the child table no longer has wired entries,
   3158 			 * decrement wired entry count.
   3159 			 */
   3160 			if (bt_wired && b_tbl->bt_wcnt == 0)
   3161 				a_tbl->at_wcnt--;
   3162 
   3163 			/*
   3164 			 * If the removal resulted in an empty B table,
   3165 			 * invalidate the DTE that points to it and decrement
   3166 			 * the valid entry count of the A table.
   3167 			 */
   3168 			if (empty) {
   3169 				a_dte->attr.raw = MMU_DT_INVALID;
   3170 				a_tbl->at_ecnt--;
   3171 			}
   3172 		}
   3173 		/*
   3174 		 * If the DTE is invalid, the address range is already non-
   3175 		 * existent and can simply be skipped.
   3176 		 */
   3177 	}
   3178 	if (nstart < nend) {
   3179 		/*
   3180 		 * This block is executed if the range spans a whole number
   3181 		 * multiple of granules (A table entries.)
   3182 		 *
   3183 		 * First find the DTE which is responsible for mapping
   3184 		 * the start of the first granule involved.
   3185 		 */
   3186 		idx = MMU_TIA(nstart);
   3187 		a_dte = &a_tbl->at_dtbl[idx];
   3188 
   3189 		/*
   3190 		 * Remove entire sub-granules (B tables) one at a time,
   3191 		 * until reaching the end of the range.
   3192 		 */
   3193 		for (; nstart < nend; a_dte++, nstart += MMU_TIA_RANGE)
   3194 			if (MMU_VALID_DT(*a_dte)) {
   3195 				/*
   3196 				 * Find the B table manager for the
   3197 				 * entry and free it.
   3198 				 */
   3199 				b_dte = mmu_ptov(a_dte->addr.raw);
   3200 				b_tbl = mmuB2tmgr(b_dte);
   3201 				bt_wired = b_tbl->bt_wcnt;
   3202 
   3203 				free_b_table(b_tbl, TRUE);
   3204 
   3205 				/*
   3206 				 * All child entries has been removed.
   3207 				 * If there were any wired entries in it,
   3208 				 * decrement wired entry count.
   3209 				 */
   3210 				if (bt_wired)
   3211 					a_tbl->at_wcnt--;
   3212 
   3213 				/*
   3214 				 * Invalidate the DTE that points to the
   3215 				 * B table and decrement the valid entry
   3216 				 * count of the A table.
   3217 				 */
   3218 				a_dte->attr.raw = MMU_DT_INVALID;
   3219 				a_tbl->at_ecnt--;
   3220 			}
   3221 	}
   3222 	if (nend < eva) {
   3223 		/*
   3224 		 * This block is executed if the range ends beyond a
   3225 		 * granularity boundary.
   3226 		 *
   3227 		 * First find the DTE which is responsible for mapping
   3228 		 * the start of the nearest (rounded down) granularity
   3229 		 * boundary.
   3230 		 */
   3231 		idx = MMU_TIA(nend);
   3232 		a_dte = &a_tbl->at_dtbl[idx];
   3233 
   3234 		/*
   3235 		 * If the DTE is valid then delegate the removal of the sub
   3236 		 * range to pmap_remove_b(), which can remove addresses at
   3237 		 * a finer granularity.
   3238 		 */
   3239 		if (MMU_VALID_DT(*a_dte)) {
   3240 			/*
   3241 			 * Find the B table manager for the entry
   3242 			 * and hand it to pmap_remove_b() along with
   3243 			 * the sub range.
   3244 			 */
   3245 			b_dte = mmu_ptov(a_dte->addr.raw);
   3246 			b_tbl = mmuB2tmgr(b_dte);
   3247 			bt_wired = b_tbl->bt_wcnt;
   3248 
   3249 			empty = pmap_remove_b(b_tbl, nend, eva);
   3250 
   3251 			/*
   3252 			 * If the child table no longer has wired entries,
   3253 			 * decrement wired entry count.
   3254 			 */
   3255 			if (bt_wired && b_tbl->bt_wcnt == 0)
   3256 				a_tbl->at_wcnt--;
   3257 			/*
   3258 			 * If the removal resulted in an empty B table,
   3259 			 * invalidate the DTE that points to it and decrement
   3260 			 * the valid entry count of the A table.
   3261 			 */
   3262 			if (empty) {
   3263 				a_dte->attr.raw = MMU_DT_INVALID;
   3264 				a_tbl->at_ecnt--;
   3265 			}
   3266 		}
   3267 	}
   3268 
   3269 	/*
   3270 	 * If there are no more entries in the A table, release it
   3271 	 * back to the available pool and return TRUE.
   3272 	 */
   3273 	if (a_tbl->at_ecnt == 0) {
   3274 		KASSERT(a_tbl->at_wcnt == 0);
   3275 		a_tbl->at_parent = NULL;
   3276 		if (!at_wired)
   3277 			TAILQ_REMOVE(&a_pool, a_tbl, at_link);
   3278 		TAILQ_INSERT_HEAD(&a_pool, a_tbl, at_link);
   3279 		empty = TRUE;
   3280 	} else {
   3281 		/*
   3282 		 * If the table doesn't have wired entries any longer
   3283 		 * but still has unwired entries, put it back into
   3284 		 * the available queue.
   3285 		 */
   3286 		if (at_wired && a_tbl->at_wcnt == 0)
   3287 			TAILQ_INSERT_TAIL(&a_pool, a_tbl, at_link);
   3288 		empty = FALSE;
   3289 	}
   3290 
   3291 	return empty;
   3292 }
   3293 
   3294 /* pmap_remove_b			INTERNAL
   3295  **
   3296  * Remove a range of addresses from an address space, trying to remove entire
   3297  * C tables if possible.
   3298  *
   3299  * If the operation results in an empty B table, the function returns TRUE.
   3300  */
   3301 bool
   3302 pmap_remove_b(b_tmgr_t *b_tbl, vaddr_t sva, vaddr_t eva)
   3303 {
   3304 	bool empty;
   3305 	int idx;
   3306 	vaddr_t nstart, nend, rstart;
   3307 	c_tmgr_t *c_tbl;
   3308 	mmu_short_dte_t  *b_dte;
   3309 	mmu_short_pte_t  *c_dte;
   3310 	uint8_t bt_wired, ct_wired;
   3311 
   3312 	nstart = MMU_ROUND_UP_B(sva);
   3313 	nend = MMU_ROUND_B(eva);
   3314 
   3315 	bt_wired = b_tbl->bt_wcnt;
   3316 
   3317 	if (sva < nstart) {
   3318 		idx = MMU_TIB(sva);
   3319 		b_dte = &b_tbl->bt_dtbl[idx];
   3320 		if (MMU_VALID_DT(*b_dte)) {
   3321 			c_dte = mmu_ptov(MMU_DTE_PA(*b_dte));
   3322 			c_tbl = mmuC2tmgr(c_dte);
   3323 			ct_wired = c_tbl->ct_wcnt;
   3324 
   3325 			if (eva < nstart)
   3326 				empty = pmap_remove_c(c_tbl, sva, eva);
   3327 			else
   3328 				empty = pmap_remove_c(c_tbl, sva, nstart);
   3329 
   3330 			/*
   3331 			 * If the child table no longer has wired entries,
   3332 			 * decrement wired entry count.
   3333 			 */
   3334 			if (ct_wired && c_tbl->ct_wcnt == 0)
   3335 				b_tbl->bt_wcnt--;
   3336 
   3337 			if (empty) {
   3338 				b_dte->attr.raw = MMU_DT_INVALID;
   3339 				b_tbl->bt_ecnt--;
   3340 			}
   3341 		}
   3342 	}
   3343 	if (nstart < nend) {
   3344 		idx = MMU_TIB(nstart);
   3345 		b_dte = &b_tbl->bt_dtbl[idx];
   3346 		rstart = nstart;
   3347 		while (rstart < nend) {
   3348 			if (MMU_VALID_DT(*b_dte)) {
   3349 				c_dte = mmu_ptov(MMU_DTE_PA(*b_dte));
   3350 				c_tbl = mmuC2tmgr(c_dte);
   3351 				ct_wired = c_tbl->ct_wcnt;
   3352 
   3353 				free_c_table(c_tbl, TRUE);
   3354 
   3355 				/*
   3356 				 * All child entries has been removed.
   3357 				 * If there were any wired entries in it,
   3358 				 * decrement wired entry count.
   3359 				 */
   3360 				if (ct_wired)
   3361 					b_tbl->bt_wcnt--;
   3362 
   3363 				b_dte->attr.raw = MMU_DT_INVALID;
   3364 				b_tbl->bt_ecnt--;
   3365 			}
   3366 			b_dte++;
   3367 			rstart += MMU_TIB_RANGE;
   3368 		}
   3369 	}
   3370 	if (nend < eva) {
   3371 		idx = MMU_TIB(nend);
   3372 		b_dte = &b_tbl->bt_dtbl[idx];
   3373 		if (MMU_VALID_DT(*b_dte)) {
   3374 			c_dte = mmu_ptov(MMU_DTE_PA(*b_dte));
   3375 			c_tbl = mmuC2tmgr(c_dte);
   3376 			ct_wired = c_tbl->ct_wcnt;
   3377 			empty = pmap_remove_c(c_tbl, nend, eva);
   3378 
   3379 			/*
   3380 			 * If the child table no longer has wired entries,
   3381 			 * decrement wired entry count.
   3382 			 */
   3383 			if (ct_wired && c_tbl->ct_wcnt == 0)
   3384 				b_tbl->bt_wcnt--;
   3385 
   3386 			if (empty) {
   3387 				b_dte->attr.raw = MMU_DT_INVALID;
   3388 				b_tbl->bt_ecnt--;
   3389 			}
   3390 		}
   3391 	}
   3392 
   3393 	if (b_tbl->bt_ecnt == 0) {
   3394 		KASSERT(b_tbl->bt_wcnt == 0);
   3395 		b_tbl->bt_parent = NULL;
   3396 		if (!bt_wired)
   3397 			TAILQ_REMOVE(&b_pool, b_tbl, bt_link);
   3398 		TAILQ_INSERT_HEAD(&b_pool, b_tbl, bt_link);
   3399 		empty = TRUE;
   3400 	} else {
   3401 		/*
   3402 		 * If the table doesn't have wired entries any longer
   3403 		 * but still has unwired entries, put it back into
   3404 		 * the available queue.
   3405 		 */
   3406 		if (bt_wired && b_tbl->bt_wcnt == 0)
   3407 			TAILQ_INSERT_TAIL(&b_pool, b_tbl, bt_link);
   3408 
   3409 		empty = FALSE;
   3410 	}
   3411 
   3412 	return empty;
   3413 }
   3414 
   3415 /* pmap_remove_c			INTERNAL
   3416  **
   3417  * Remove a range of addresses from the given C table.
   3418  */
   3419 bool
   3420 pmap_remove_c(c_tmgr_t *c_tbl, vaddr_t sva, vaddr_t eva)
   3421 {
   3422 	bool empty;
   3423 	int idx;
   3424 	mmu_short_pte_t *c_pte;
   3425 	uint8_t ct_wired;
   3426 
   3427 	ct_wired = c_tbl->ct_wcnt;
   3428 
   3429 	idx = MMU_TIC(sva);
   3430 	c_pte = &c_tbl->ct_dtbl[idx];
   3431 	for (; sva < eva; sva += MMU_PAGE_SIZE, c_pte++) {
   3432 		if (MMU_VALID_DT(*c_pte)) {
   3433 			if (c_pte->attr.raw & MMU_SHORT_PTE_WIRED)
   3434 				c_tbl->ct_wcnt--;
   3435 			pmap_remove_pte(c_pte);
   3436 			c_tbl->ct_ecnt--;
   3437 		}
   3438 	}
   3439 
   3440 	if (c_tbl->ct_ecnt == 0) {
   3441 		KASSERT(c_tbl->ct_wcnt == 0);
   3442 		c_tbl->ct_parent = NULL;
   3443 		if (!ct_wired)
   3444 			TAILQ_REMOVE(&c_pool, c_tbl, ct_link);
   3445 		TAILQ_INSERT_HEAD(&c_pool, c_tbl, ct_link);
   3446 		empty = TRUE;
   3447 	} else {
   3448 		/*
   3449 		 * If the table doesn't have wired entries any longer
   3450 		 * but still has unwired entries, put it back into
   3451 		 * the available queue.
   3452 		 */
   3453 		if (ct_wired && c_tbl->ct_wcnt == 0)
   3454 			TAILQ_INSERT_TAIL(&c_pool, c_tbl, ct_link);
   3455 		empty = FALSE;
   3456 	}
   3457 
   3458 	return empty;
   3459 }
   3460 
   3461 /* pmap_bootstrap_alloc			INTERNAL
   3462  **
   3463  * Used internally for memory allocation at startup when malloc is not
   3464  * available.  This code will fail once it crosses the first memory
   3465  * bank boundary on the 3/80.  Hopefully by then however, the VM system
   3466  * will be in charge of allocation.
   3467  */
   3468 void *
   3469 pmap_bootstrap_alloc(int size)
   3470 {
   3471 	void *rtn;
   3472 
   3473 #ifdef	PMAP_DEBUG
   3474 	if (bootstrap_alloc_enabled == FALSE) {
   3475 		mon_printf("pmap_bootstrap_alloc: disabled\n");
   3476 		sunmon_abort();
   3477 	}
   3478 #endif
   3479 
   3480 	rtn = (void *) virtual_avail;
   3481 	virtual_avail += size;
   3482 
   3483 #ifdef	PMAP_DEBUG
   3484 	if (virtual_avail > virtual_contig_end) {
   3485 		mon_printf("pmap_bootstrap_alloc: out of mem\n");
   3486 		sunmon_abort();
   3487 	}
   3488 #endif
   3489 
   3490 	return rtn;
   3491 }
   3492 
   3493 /* pmap_bootstap_aalign			INTERNAL
   3494  **
   3495  * Used to insure that the next call to pmap_bootstrap_alloc() will
   3496  * return a chunk of memory aligned to the specified size.
   3497  *
   3498  * Note: This function will only support alignment sizes that are powers
   3499  * of two.
   3500  */
   3501 void
   3502 pmap_bootstrap_aalign(int size)
   3503 {
   3504 	int off;
   3505 
   3506 	off = virtual_avail & (size - 1);
   3507 	if (off) {
   3508 		(void)pmap_bootstrap_alloc(size - off);
   3509 	}
   3510 }
   3511 
   3512 /* pmap_pa_exists
   3513  **
   3514  * Used by the /dev/mem driver to see if a given PA is memory
   3515  * that can be mapped.  (The PA is not in a hole.)
   3516  */
   3517 int
   3518 pmap_pa_exists(paddr_t pa)
   3519 {
   3520 	int i;
   3521 
   3522 	for (i = 0; i < SUN3X_NPHYS_RAM_SEGS; i++) {
   3523 		if ((pa >= avail_mem[i].pmem_start) &&
   3524 			(pa <  avail_mem[i].pmem_end))
   3525 			return 1;
   3526 		if (avail_mem[i].pmem_next == NULL)
   3527 			break;
   3528 	}
   3529 	return 0;
   3530 }
   3531 
   3532 /* Called only from locore.s and pmap.c */
   3533 void	_pmap_switch(pmap_t pmap);
   3534 
   3535 /*
   3536  * _pmap_switch			INTERNAL
   3537  *
   3538  * This is called by locore.s:cpu_switch() when it is
   3539  * switching to a new process.  Load new translations.
   3540  * Note: done in-line by locore.s unless PMAP_DEBUG
   3541  *
   3542  * Note that we do NOT allocate a context here, but
   3543  * share the "kernel only" context until we really
   3544  * need our own context for user-space mappings in
   3545  * pmap_enter_user().  [ s/context/mmu A table/ ]
   3546  */
   3547 void
   3548 _pmap_switch(pmap_t pmap)
   3549 {
   3550 	u_long rootpa;
   3551 
   3552 	/*
   3553 	 * Only do reload/flush if we have to.
   3554 	 * Note that if the old and new process
   3555 	 * were BOTH using the "null" context,
   3556 	 * then this will NOT flush the TLB.
   3557 	 */
   3558 	rootpa = pmap->pm_a_phys;
   3559 	if (kernel_crp.rp_addr != rootpa) {
   3560 		DPRINT(("pmap_activate(%p)\n", pmap));
   3561 		kernel_crp.rp_addr = rootpa;
   3562 		loadcrp(&kernel_crp);
   3563 		TBIAU();
   3564 	}
   3565 }
   3566 
   3567 /*
   3568  * Exported version of pmap_activate().  This is called from the
   3569  * machine-independent VM code when a process is given a new pmap.
   3570  * If (p == curlwp) do like cpu_switch would do; otherwise just
   3571  * take this as notification that the process has a new pmap.
   3572  */
   3573 void
   3574 pmap_activate(struct lwp *l)
   3575 {
   3576 
   3577 	if (l->l_proc == curproc) {
   3578 		_pmap_switch(l->l_proc->p_vmspace->vm_map.pmap);
   3579 	}
   3580 }
   3581 
   3582 /*
   3583  * pmap_deactivate			INTERFACE
   3584  **
   3585  * This is called to deactivate the specified process's address space.
   3586  */
   3587 void
   3588 pmap_deactivate(struct lwp *l)
   3589 {
   3590 
   3591 	/* Nothing to do. */
   3592 }
   3593 
   3594 /*
   3595  * Fill in the sun3x-specific part of the kernel core header
   3596  * for dumpsys().  (See machdep.c for the rest.)
   3597  */
   3598 void
   3599 pmap_kcore_hdr(struct sun3x_kcore_hdr *sh)
   3600 {
   3601 	u_long spa, len;
   3602 	int i;
   3603 
   3604 	sh->pg_frame = MMU_SHORT_PTE_BASEADDR;
   3605 	sh->pg_valid = MMU_DT_PAGE;
   3606 	sh->contig_end = virtual_contig_end;
   3607 	sh->kernCbase = (u_long)kernCbase;
   3608 	for (i = 0; i < SUN3X_NPHYS_RAM_SEGS; i++) {
   3609 		spa = avail_mem[i].pmem_start;
   3610 		spa = m68k_trunc_page(spa);
   3611 		len = avail_mem[i].pmem_end - spa;
   3612 		len = m68k_round_page(len);
   3613 		sh->ram_segs[i].start = spa;
   3614 		sh->ram_segs[i].size  = len;
   3615 	}
   3616 }
   3617 
   3618 
   3619 /* pmap_virtual_space			INTERFACE
   3620  **
   3621  * Return the current available range of virtual addresses in the
   3622  * arguuments provided.  Only really called once.
   3623  */
   3624 void
   3625 pmap_virtual_space(vaddr_t *vstart, vaddr_t *vend)
   3626 {
   3627 
   3628 	*vstart = virtual_avail;
   3629 	*vend = virtual_end;
   3630 }
   3631 
   3632 /*
   3633  * Provide memory to the VM system.
   3634  *
   3635  * Assume avail_start is always in the
   3636  * first segment as pmap_bootstrap does.
   3637  */
   3638 static void
   3639 pmap_page_upload(void)
   3640 {
   3641 	paddr_t	a, b;	/* memory range */
   3642 	int i;
   3643 
   3644 	/* Supply the memory in segments. */
   3645 	for (i = 0; i < SUN3X_NPHYS_RAM_SEGS; i++) {
   3646 		a = atop(avail_mem[i].pmem_start);
   3647 		b = atop(avail_mem[i].pmem_end);
   3648 		if (i == 0)
   3649 			a = atop(avail_start);
   3650 		if (avail_mem[i].pmem_end > avail_end)
   3651 			b = atop(avail_end);
   3652 
   3653 		uvm_page_physload(a, b, a, b, VM_FREELIST_DEFAULT);
   3654 
   3655 		if (avail_mem[i].pmem_next == NULL)
   3656 			break;
   3657 	}
   3658 }
   3659 
   3660 /* pmap_count			INTERFACE
   3661  **
   3662  * Return the number of resident (valid) pages in the given pmap.
   3663  *
   3664  * Note:  If this function is handed the kernel map, it will report
   3665  * that it has no mappings.  Hopefully the VM system won't ask for kernel
   3666  * map statistics.
   3667  */
   3668 segsz_t
   3669 pmap_count(pmap_t pmap, int type)
   3670 {
   3671 	u_int     count;
   3672 	int       a_idx, b_idx;
   3673 	a_tmgr_t *a_tbl;
   3674 	b_tmgr_t *b_tbl;
   3675 	c_tmgr_t *c_tbl;
   3676 
   3677 	/*
   3678 	 * If the pmap does not have its own A table manager, it has no
   3679 	 * valid entires.
   3680 	 */
   3681 	if (pmap->pm_a_tmgr == NULL)
   3682 		return 0;
   3683 
   3684 	a_tbl = pmap->pm_a_tmgr;
   3685 
   3686 	count = 0;
   3687 	for (a_idx = 0; a_idx < MMU_TIA(KERNBASE); a_idx++) {
   3688 	    if (MMU_VALID_DT(a_tbl->at_dtbl[a_idx])) {
   3689 	        b_tbl = mmuB2tmgr(mmu_ptov(a_tbl->at_dtbl[a_idx].addr.raw));
   3690 	        for (b_idx = 0; b_idx < MMU_B_TBL_SIZE; b_idx++) {
   3691 	            if (MMU_VALID_DT(b_tbl->bt_dtbl[b_idx])) {
   3692 	                c_tbl = mmuC2tmgr(
   3693 	                    mmu_ptov(MMU_DTE_PA(b_tbl->bt_dtbl[b_idx])));
   3694 	                if (type == 0)
   3695 	                    /*
   3696 	                     * A resident entry count has been requested.
   3697 	                     */
   3698 	                    count += c_tbl->ct_ecnt;
   3699 	                else
   3700 	                    /*
   3701 	                     * A wired entry count has been requested.
   3702 	                     */
   3703 	                    count += c_tbl->ct_wcnt;
   3704 	            }
   3705 	        }
   3706 	    }
   3707 	}
   3708 
   3709 	return count;
   3710 }
   3711 
   3712 /************************ SUN3 COMPATIBILITY ROUTINES ********************
   3713  * The following routines are only used by DDB for tricky kernel text    *
   3714  * text operations in db_memrw.c.  They are provided for sun3            *
   3715  * compatibility.                                                        *
   3716  *************************************************************************/
   3717 /* get_pte			INTERNAL
   3718  **
   3719  * Return the page descriptor the describes the kernel mapping
   3720  * of the given virtual address.
   3721  */
   3722 extern u_long ptest_addr(u_long);	/* XXX: locore.s */
   3723 u_int
   3724 get_pte(vaddr_t va)
   3725 {
   3726 	u_long pte_pa;
   3727 	mmu_short_pte_t *pte;
   3728 
   3729 	/* Get the physical address of the PTE */
   3730 	pte_pa = ptest_addr(va & ~PGOFSET);
   3731 
   3732 	/* Convert to a virtual address... */
   3733 	pte = (mmu_short_pte_t *) (KERNBASE + pte_pa);
   3734 
   3735 	/* Make sure it is in our level-C tables... */
   3736 	if ((pte < kernCbase) ||
   3737 		(pte >= &mmuCbase[NUM_USER_PTES]))
   3738 		return 0;
   3739 
   3740 	/* ... and just return its contents. */
   3741 	return (pte->attr.raw);
   3742 }
   3743 
   3744 
   3745 /* set_pte			INTERNAL
   3746  **
   3747  * Set the page descriptor that describes the kernel mapping
   3748  * of the given virtual address.
   3749  */
   3750 void
   3751 set_pte(vaddr_t va, u_int pte)
   3752 {
   3753 	u_long idx;
   3754 
   3755 	if (va < KERNBASE)
   3756 		return;
   3757 
   3758 	idx = (unsigned long) m68k_btop(va - KERNBASE);
   3759 	kernCbase[idx].attr.raw = pte;
   3760 	TBIS(va);
   3761 }
   3762 
   3763 /*
   3764  *	Routine:        pmap_procwr
   3765  *
   3766  *	Function:
   3767  *		Synchronize caches corresponding to [addr, addr+len) in p.
   3768  */
   3769 void
   3770 pmap_procwr(struct proc *p, vaddr_t va, size_t len)
   3771 {
   3772 
   3773 	(void)cachectl1(0x80000004, va, len, p);
   3774 }
   3775 
   3776 
   3777 #ifdef	PMAP_DEBUG
   3778 /************************** DEBUGGING ROUTINES **************************
   3779  * The following routines are meant to be an aid to debugging the pmap  *
   3780  * system.  They are callable from the DDB command line and should be   *
   3781  * prepared to be handed unstable or incomplete states of the system.   *
   3782  ************************************************************************/
   3783 
   3784 /* pv_list
   3785  **
   3786  * List all pages found on the pv list for the given physical page.
   3787  * To avoid endless loops, the listing will stop at the end of the list
   3788  * or after 'n' entries - whichever comes first.
   3789  */
   3790 void
   3791 pv_list(paddr_t pa, int n)
   3792 {
   3793 	int  idx;
   3794 	vaddr_t va;
   3795 	pv_t *pv;
   3796 	c_tmgr_t *c_tbl;
   3797 	pmap_t pmap;
   3798 
   3799 	pv = pa2pv(pa);
   3800 	idx = pv->pv_idx;
   3801 	for (; idx != PVE_EOL && n > 0; idx = pvebase[idx].pve_next, n--) {
   3802 		va = pmap_get_pteinfo(idx, &pmap, &c_tbl);
   3803 		printf("idx %d, pmap 0x%x, va 0x%x, c_tbl %x\n",
   3804 			idx, (u_int) pmap, (u_int) va, (u_int) c_tbl);
   3805 	}
   3806 }
   3807 #endif	/* PMAP_DEBUG */
   3808 
   3809 #ifdef NOT_YET
   3810 /* and maybe not ever */
   3811 /************************** LOW-LEVEL ROUTINES **************************
   3812  * These routines will eventually be re-written into assembly and placed*
   3813  * in locore.s.  They are here now as stubs so that the pmap module can *
   3814  * be linked as a standalone user program for testing.                  *
   3815  ************************************************************************/
   3816 /* flush_atc_crp			INTERNAL
   3817  **
   3818  * Flush all page descriptors derived from the given CPU Root Pointer
   3819  * (CRP), or 'A' table as it is known here, from the 68851's automatic
   3820  * cache.
   3821  */
   3822 void
   3823 flush_atc_crp(int a_tbl)
   3824 {
   3825 	mmu_long_rp_t rp;
   3826 
   3827 	/* Create a temporary root table pointer that points to the
   3828 	 * given A table.
   3829 	 */
   3830 	rp.attr.raw = ~MMU_LONG_RP_LU;
   3831 	rp.addr.raw = (unsigned int) a_tbl;
   3832 
   3833 	mmu_pflushr(&rp);
   3834 	/* mmu_pflushr:
   3835 	 * 	movel   sp(4)@,a0
   3836 	 * 	pflushr a0@
   3837 	 *	rts
   3838 	 */
   3839 }
   3840 #endif /* NOT_YET */
   3841