sun2.c revision 1.8.40.1 1 1.8.40.1 mjf /* $NetBSD: sun2.c,v 1.8.40.1 2008/06/02 13:22:47 mjf Exp $ */
2 1.1 fredette
3 1.1 fredette /*-
4 1.1 fredette * Copyright (c) 1998 The NetBSD Foundation, Inc.
5 1.1 fredette * All rights reserved.
6 1.1 fredette *
7 1.1 fredette * This code is derived from software contributed to The NetBSD Foundation
8 1.1 fredette * by Gordon W. Ross and Matthew Fredette.
9 1.1 fredette *
10 1.1 fredette * Redistribution and use in source and binary forms, with or without
11 1.1 fredette * modification, are permitted provided that the following conditions
12 1.1 fredette * are met:
13 1.1 fredette * 1. Redistributions of source code must retain the above copyright
14 1.1 fredette * notice, this list of conditions and the following disclaimer.
15 1.1 fredette * 2. Redistributions in binary form must reproduce the above copyright
16 1.1 fredette * notice, this list of conditions and the following disclaimer in the
17 1.1 fredette * documentation and/or other materials provided with the distribution.
18 1.1 fredette *
19 1.1 fredette * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 1.1 fredette * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 1.1 fredette * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 1.1 fredette * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 1.1 fredette * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 1.1 fredette * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 1.1 fredette * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 1.1 fredette * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 1.1 fredette * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 1.1 fredette * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 1.1 fredette * POSSIBILITY OF SUCH DAMAGE.
30 1.1 fredette */
31 1.1 fredette
32 1.1 fredette /*
33 1.1 fredette * Standalone functions specific to the Sun2.
34 1.1 fredette */
35 1.1 fredette
36 1.1 fredette /* Need to avoid conflicts on these: */
37 1.1 fredette #define get_pte sun2_get_pte
38 1.1 fredette #define set_pte sun2_set_pte
39 1.1 fredette #define get_segmap sun2_get_segmap
40 1.1 fredette #define set_segmap sun2_set_segmap
41 1.4 nathanw
42 1.4 nathanw /*
43 1.4 nathanw * We need to get the sun2 NBSG definition, even if we're
44 1.4 nathanw * building this with a different sun68k target.
45 1.4 nathanw */
46 1.4 nathanw #include <arch/sun2/include/param.h>
47 1.1 fredette
48 1.1 fredette #include <sys/param.h>
49 1.1 fredette #include <machine/idprom.h>
50 1.1 fredette #include <machine/mon.h>
51 1.1 fredette
52 1.1 fredette #include <arch/sun2/include/pte.h>
53 1.1 fredette #include <arch/sun2/sun2/control.h>
54 1.1 fredette #ifdef notyet
55 1.1 fredette #include <arch/sun3/sun3/vme.h>
56 1.1 fredette #else
57 1.1 fredette #define VME16_BASE MBIO_BASE
58 1.1 fredette #define VME16_MASK MBIO_MASK
59 1.1 fredette #endif
60 1.1 fredette #include <arch/sun2/sun2/mbmem.h>
61 1.1 fredette #include <arch/sun2/sun2/mbio.h>
62 1.1 fredette
63 1.1 fredette #include <stand.h>
64 1.1 fredette
65 1.1 fredette #include "libsa.h"
66 1.1 fredette #include "dvma.h"
67 1.1 fredette #include "saio.h" /* enum MAPTYPES */
68 1.1 fredette
69 1.1 fredette #define OBIO_MASK 0xFFFFFF
70 1.1 fredette
71 1.6 chs u_int get_pte(vaddr_t);
72 1.6 chs void set_pte(vaddr_t, u_int);
73 1.6 chs char * dvma2_alloc(int);
74 1.6 chs void dvma2_free(char *, int);
75 1.6 chs char * dvma2_mapin(char *, int);
76 1.6 chs void dvma2_mapout(char *, int);
77 1.6 chs char * dev2_mapin(int, u_long, int);
78 1.1 fredette
79 1.1 fredette struct mapinfo {
80 1.1 fredette int maptype;
81 1.1 fredette int pgtype;
82 1.1 fredette u_int base;
83 1.1 fredette u_int mask;
84 1.1 fredette };
85 1.1 fredette
86 1.1 fredette #ifdef notyet
87 1.1 fredette struct mapinfo
88 1.1 fredette sun2_mapinfo[MAP__NTYPES] = {
89 1.1 fredette /* On-board memory, I/O */
90 1.1 fredette { MAP_MAINMEM, PGT_OBMEM, 0, ~0 },
91 1.1 fredette { MAP_OBIO, PGT_OBIO, 0, OBIO_MASK },
92 1.1 fredette /* Multibus memory, I/O */
93 1.1 fredette { MAP_MBMEM, PGT_MBMEM, MBMEM_BASE, MBMEM_MASK },
94 1.1 fredette { MAP_MBIO, PGT_MBIO, MBIO_BASE, MBIO_MASK },
95 1.1 fredette /* VME A16 */
96 1.1 fredette { MAP_VME16A16D, PGT_VME_D16, VME16_BASE, VME16_MASK },
97 1.1 fredette { MAP_VME16A32D, 0, 0, 0 },
98 1.1 fredette /* VME A24 */
99 1.1 fredette { MAP_VME24A16D, 0, 0, 0 },
100 1.1 fredette { MAP_VME24A32D, 0, 0, 0 },
101 1.1 fredette /* VME A32 */
102 1.1 fredette { MAP_VME32A16D, 0, 0, 0 },
103 1.1 fredette { MAP_VME32A32D, 0, 0, 0 },
104 1.1 fredette };
105 1.1 fredette #endif
106 1.1 fredette
107 1.1 fredette /* The virtual address we will use for PROM device mappings. */
108 1.1 fredette int sun2_devmap = SUN3_MONSHORTSEG;
109 1.1 fredette
110 1.1 fredette char *
111 1.6 chs dev2_mapin(int maptype, u_long physaddr, int length)
112 1.1 fredette {
113 1.1 fredette #ifdef notyet
114 1.1 fredette u_int i, pa, pte, pgva, va;
115 1.1 fredette
116 1.1 fredette if ((sun2_devmap + length) > SUN3_MONSHORTPAGE)
117 1.5 provos panic("dev2_mapin: length=%d", length);
118 1.1 fredette
119 1.1 fredette for (i = 0; i < MAP__NTYPES; i++)
120 1.1 fredette if (sun2_mapinfo[i].maptype == maptype)
121 1.1 fredette goto found;
122 1.1 fredette panic("dev2_mapin: bad maptype");
123 1.1 fredette found:
124 1.1 fredette
125 1.1 fredette if (physaddr & ~(sun2_mapinfo[i].mask))
126 1.1 fredette panic("dev2_mapin: bad address");
127 1.1 fredette pa = sun2_mapinfo[i].base += physaddr;
128 1.1 fredette
129 1.1 fredette pte = PA_PGNUM(pa) | PG_PERM |
130 1.1 fredette sun2_mapinfo[i].pgtype;
131 1.1 fredette
132 1.1 fredette va = pgva = sun2_devmap;
133 1.1 fredette do {
134 1.1 fredette set_pte(pgva, pte);
135 1.1 fredette pgva += NBPG;
136 1.1 fredette pte += 1;
137 1.1 fredette length -= NBPG;
138 1.1 fredette } while (length > 0);
139 1.1 fredette sun2_devmap = pgva;
140 1.1 fredette va += (physaddr & PGOFSET);
141 1.1 fredette
142 1.1 fredette #ifdef DEBUG_PROM
143 1.1 fredette if (debug)
144 1.1 fredette printf("dev2_mapin: va=0x%x pte=0x%x\n",
145 1.1 fredette va, get_pte(va));
146 1.1 fredette #endif
147 1.1 fredette return ((char*)va);
148 1.1 fredette #else
149 1.1 fredette panic("dev2_mapin");
150 1.1 fredette return(NULL);
151 1.1 fredette #endif
152 1.1 fredette }
153 1.1 fredette
154 1.1 fredette /*****************************************************************
155 1.1 fredette * DVMA support
156 1.1 fredette */
157 1.1 fredette
158 1.1 fredette /*
159 1.1 fredette * The easiest way to deal with the need for DVMA mappings is to
160 1.1 fredette * create a DVMA alias mapping of the entire address range used by
161 1.1 fredette * the boot program. That way, dvma_mapin can just compute the
162 1.1 fredette * DVMA alias address, and dvma_mapout does nothing.
163 1.1 fredette *
164 1.1 fredette * Note that this assumes that standalone programs will do I/O
165 1.1 fredette * operations only within range (SA_MIN_VA .. SA_MAX_VA) checked.
166 1.1 fredette */
167 1.1 fredette
168 1.1 fredette #define DVMA_BASE 0x00f00000
169 1.1 fredette #define DVMA_MAPLEN 0x38000 /* 256K - 32K (save MONSHORTSEG) */
170 1.1 fredette
171 1.1 fredette #define SA_MIN_VA 0x220000
172 1.1 fredette #define SA_MAX_VA (SA_MIN_VA + DVMA_MAPLEN)
173 1.1 fredette
174 1.1 fredette /* This points to the end of the free DVMA space. */
175 1.1 fredette u_int dvma2_end = DVMA_BASE + DVMA_MAPLEN;
176 1.1 fredette
177 1.6 chs void
178 1.6 chs dvma2_init(void)
179 1.1 fredette {
180 1.1 fredette int segva, dmava, sme;
181 1.1 fredette
182 1.1 fredette segva = SA_MIN_VA;
183 1.1 fredette dmava = DVMA_BASE;
184 1.1 fredette
185 1.1 fredette while (segva < SA_MAX_VA) {
186 1.1 fredette sme = get_segmap(segva);
187 1.1 fredette set_segmap(dmava, sme);
188 1.1 fredette segva += NBSG;
189 1.1 fredette dmava += NBSG;
190 1.1 fredette }
191 1.1 fredette }
192 1.1 fredette
193 1.1 fredette /* Convert a local address to a DVMA address. */
194 1.1 fredette char *
195 1.1 fredette dvma2_mapin(char *addr, int len)
196 1.1 fredette {
197 1.1 fredette int va = (int)addr;
198 1.1 fredette
199 1.1 fredette /* Make sure the address is in the DVMA map. */
200 1.1 fredette if ((va < SA_MIN_VA) || (va >= SA_MAX_VA))
201 1.5 provos panic("dvma2_mapin: 0x%x outside 0x%x..0x%x",
202 1.1 fredette va, SA_MIN_VA, SA_MAX_VA);
203 1.1 fredette
204 1.1 fredette va -= SA_MIN_VA;
205 1.1 fredette va += DVMA_BASE;
206 1.1 fredette
207 1.1 fredette return ((char *) va);
208 1.1 fredette }
209 1.1 fredette
210 1.1 fredette /* Destroy a DVMA address alias. */
211 1.1 fredette void
212 1.1 fredette dvma2_mapout(char *addr, int len)
213 1.1 fredette {
214 1.1 fredette int va = (int)addr;
215 1.1 fredette
216 1.1 fredette /* Make sure the address is in the DVMA map. */
217 1.1 fredette if ((va < DVMA_BASE) || (va >= (DVMA_BASE + DVMA_MAPLEN)))
218 1.1 fredette panic("dvma2_mapout");
219 1.1 fredette }
220 1.1 fredette
221 1.1 fredette char *
222 1.1 fredette dvma2_alloc(int len)
223 1.1 fredette {
224 1.1 fredette len = m68k_round_page(len);
225 1.1 fredette dvma2_end -= len;
226 1.1 fredette return((char*)dvma2_end);
227 1.1 fredette }
228 1.1 fredette
229 1.1 fredette void
230 1.1 fredette dvma2_free(char *dvma, int len)
231 1.1 fredette {
232 1.1 fredette /* not worth the trouble */
233 1.1 fredette }
234 1.1 fredette
235 1.1 fredette /*****************************************************************
236 1.1 fredette * Control space stuff...
237 1.1 fredette */
238 1.1 fredette
239 1.1 fredette u_int
240 1.6 chs get_pte(vaddr_t va)
241 1.1 fredette {
242 1.1 fredette u_int pte;
243 1.1 fredette
244 1.1 fredette pte = get_control_word(CONTROL_ADDR_BUILD(PGMAP_BASE, va));
245 1.1 fredette if (pte & PG_VALID) {
246 1.1 fredette /*
247 1.1 fredette * This clears bit 30 (the kernel readable bit, which
248 1.1 fredette * should always be set), bit 28 (which should always
249 1.1 fredette * be set) and bit 26 (the user writable bit, which we
250 1.1 fredette * always have tracking the kernel writable bit). In
251 1.1 fredette * the protection, this leaves bit 29 (the kernel
252 1.1 fredette * writable bit) and bit 27 (the user readable bit).
253 1.1 fredette * See pte2.h for more about this hack.
254 1.1 fredette */
255 1.1 fredette pte &= ~(0x54000000);
256 1.1 fredette /*
257 1.1 fredette * Flip bit 27 (the user readable bit) to become bit
258 1.1 fredette * 27 (the PG_SYSTEM bit).
259 1.1 fredette */
260 1.1 fredette pte ^= (PG_SYSTEM);
261 1.1 fredette }
262 1.1 fredette return (pte);
263 1.1 fredette }
264 1.1 fredette
265 1.1 fredette void
266 1.6 chs set_pte(vaddr_t va, u_int pte)
267 1.1 fredette {
268 1.1 fredette if (pte & PG_VALID) {
269 1.1 fredette /* Clear bit 26 (the user writable bit). */
270 1.1 fredette pte &= (~0x04000000);
271 1.1 fredette /*
272 1.1 fredette * Flip bit 27 (the PG_SYSTEM bit) to become bit 27
273 1.1 fredette * (the user readable bit).
274 1.1 fredette */
275 1.1 fredette pte ^= (PG_SYSTEM);
276 1.1 fredette /*
277 1.1 fredette * Always set bits 30 (the kernel readable bit) and
278 1.1 fredette * bit 28, and set bit 26 (the user writable bit) iff
279 1.1 fredette * bit 29 (the kernel writable bit) is set *and* bit
280 1.1 fredette * 27 (the user readable bit) is set. This latter bit
281 1.1 fredette * of logic is expressed in the bizarre second term
282 1.1 fredette * below, chosen because it needs no branches.
283 1.1 fredette */
284 1.1 fredette #if (PG_WRITE >> 2) != PG_SYSTEM
285 1.1 fredette #error "PG_WRITE and PG_SYSTEM definitions don't match!"
286 1.1 fredette #endif
287 1.1 fredette pte |= 0x50000000
288 1.1 fredette | ((((pte & PG_WRITE) >> 2) & pte) >> 1);
289 1.1 fredette }
290 1.1 fredette set_control_word(CONTROL_ADDR_BUILD(PGMAP_BASE, va), pte);
291 1.1 fredette }
292 1.1 fredette
293 1.1 fredette int
294 1.6 chs get_segmap(vaddr_t va)
295 1.1 fredette {
296 1.1 fredette va = CONTROL_ADDR_BUILD(SEGMAP_BASE, va);
297 1.1 fredette return (get_control_byte(va));
298 1.1 fredette }
299 1.1 fredette
300 1.1 fredette void
301 1.6 chs set_segmap(vaddr_t va, int sme)
302 1.1 fredette {
303 1.1 fredette va = CONTROL_ADDR_BUILD(SEGMAP_BASE, va);
304 1.1 fredette set_control_byte(va, sme);
305 1.1 fredette }
306 1.1 fredette
307 1.1 fredette /*
308 1.1 fredette * Copy the IDPROM contents into the passed buffer.
309 1.1 fredette * The caller (idprom.c) will do the checksum.
310 1.1 fredette */
311 1.1 fredette void
312 1.1 fredette sun2_getidprom(u_char *dst)
313 1.1 fredette {
314 1.2 fredette vaddr_t src; /* control space address */
315 1.1 fredette int len, x;
316 1.1 fredette
317 1.1 fredette src = IDPROM_BASE;
318 1.1 fredette len = sizeof(struct idprom);
319 1.1 fredette do {
320 1.1 fredette x = get_control_byte(src);
321 1.1 fredette src += NBPG;
322 1.1 fredette *dst++ = x;
323 1.1 fredette } while (--len > 0);
324 1.1 fredette }
325 1.1 fredette
326 1.1 fredette /*****************************************************************
327 1.1 fredette * Init our function pointers, etc.
328 1.1 fredette */
329 1.1 fredette
330 1.3 fredette /*
331 1.3 fredette * For booting, the PROM in fredette's Sun 2/120 doesn't map
332 1.3 fredette * much main memory, and what is mapped is mapped strangely.
333 1.3 fredette * Low virtual memory is mapped like:
334 1.3 fredette *
335 1.3 fredette * 0x000000 - 0x0bffff virtual -> 0x000000 - 0x0bffff physical
336 1.3 fredette * 0x0c0000 - 0x0fffff virtual -> invalid
337 1.3 fredette * 0x100000 - 0x13ffff virtual -> 0x0c0000 - 0x0fffff physical
338 1.3 fredette * 0x200800 - 0x3fffff virtual -> 0x200800 - 0x3fffff physical
339 1.3 fredette *
340 1.3 fredette * I think the SunOS authors wanted to load kernels starting at
341 1.3 fredette * physical zero, and assumed that kernels would be less
342 1.3 fredette * than 768K (0x0c0000) long. Also, the PROM maps physical
343 1.3 fredette * 0x0c0000 - 0x0fffff into DVMA space, so we can't take the
344 1.3 fredette * easy road and just add more mappings to use that physical
345 1.3 fredette * memory while loading (the PROM might do DMA there).
346 1.3 fredette *
347 1.3 fredette * What we do, then, is assume a 4MB machine (you'll really
348 1.3 fredette * need that to run NetBSD at all anyways), and we map two
349 1.3 fredette * chunks of physical and virtual space:
350 1.3 fredette *
351 1.3 fredette * 0x400000 - 0x4bffff virtual -> 0x000000 - 0x0bffff physical
352 1.3 fredette * 0x4c0000 - 0x600000 virtual -> 0x2c0000 - 0x3fffff physical
353 1.3 fredette *
354 1.3 fredette * And then we load starting at virtual 0x400000. We will do
355 1.3 fredette * all of this mapping just by copying PMEGs.
356 1.3 fredette *
357 1.3 fredette * After the load is done, but before we enter the kernel, we're
358 1.3 fredette * done with the PROM, so we copy the part of the kernel that
359 1.3 fredette * got loaded at physical 0x2c0000 down to physical 0x0c0000.
360 1.3 fredette * This can't just be a PMEG copy; we've actually got to move
361 1.3 fredette * bytes in physical memory.
362 1.3 fredette *
363 1.3 fredette * These two chunks of physical and virtual space are defined
364 1.3 fredette * in macros below. Some of the macros are only for completeness:
365 1.3 fredette */
366 1.3 fredette #define MEM_CHUNK0_SIZE (0x0c0000)
367 1.3 fredette #define MEM_CHUNK0_LOAD_PHYS (0x000000)
368 1.3 fredette #define MEM_CHUNK0_LOAD_VIRT (0x400000)
369 1.3 fredette #define MEM_CHUNK0_LOAD_VIRT_PROM MEM_CHUNK0_LOAD_PHYS
370 1.3 fredette #define MEM_CHUNK0_COPY_PHYS MEM_CHUNK0_LOAD_PHYS
371 1.3 fredette #define MEM_CHUNK0_COPY_VIRT MEM_CHUNK0_COPY_PHYS
372 1.3 fredette
373 1.3 fredette #define MEM_CHUNK1_SIZE (0x140000)
374 1.3 fredette #define MEM_CHUNK1_LOAD_PHYS (0x2c0000)
375 1.3 fredette #define MEM_CHUNK1_LOAD_VIRT (MEM_CHUNK0_LOAD_VIRT + MEM_CHUNK0_SIZE)
376 1.3 fredette #define MEM_CHUNK1_LOAD_VIRT_PROM MEM_CHUNK1_LOAD_PHYS
377 1.3 fredette #define MEM_CHUNK1_COPY_PHYS (MEM_CHUNK0_LOAD_PHYS + MEM_CHUNK0_SIZE)
378 1.3 fredette #define MEM_CHUNK1_COPY_VIRT MEM_CHUNK1_COPY_PHYS
379 1.3 fredette
380 1.3 fredette /* Maps memory for loading. */
381 1.6 chs u_long
382 1.6 chs sun2_map_mem_load(void)
383 1.3 fredette {
384 1.3 fredette vaddr_t off;
385 1.3 fredette
386 1.3 fredette /* Map chunk zero for loading. */
387 1.3 fredette for(off = 0; off < MEM_CHUNK0_SIZE; off += NBSG)
388 1.3 fredette set_segmap(MEM_CHUNK0_LOAD_VIRT + off,
389 1.3 fredette get_segmap(MEM_CHUNK0_LOAD_VIRT_PROM + off));
390 1.3 fredette
391 1.3 fredette /* Map chunk one for loading. */
392 1.3 fredette for(off = 0; off < MEM_CHUNK1_SIZE; off += NBSG)
393 1.3 fredette set_segmap(MEM_CHUNK1_LOAD_VIRT + off,
394 1.3 fredette get_segmap(MEM_CHUNK1_LOAD_VIRT_PROM + off));
395 1.3 fredette
396 1.3 fredette /* Tell our caller where in virtual space to load. */
397 1.3 fredette return MEM_CHUNK0_LOAD_VIRT;
398 1.3 fredette }
399 1.3 fredette
400 1.3 fredette /* Remaps memory for running. */
401 1.3 fredette void *
402 1.6 chs sun2_map_mem_run(void *entry)
403 1.3 fredette {
404 1.3 fredette vaddr_t off, off_end;
405 1.3 fredette int sme;
406 1.3 fredette u_int pte;
407 1.3 fredette
408 1.3 fredette /* Chunk zero is already mapped and copied. */
409 1.3 fredette
410 1.3 fredette /* Chunk one needs to be mapped and copied. */
411 1.3 fredette pte = (get_pte(0) & ~PG_FRAME);
412 1.3 fredette for(off = 0; off < MEM_CHUNK1_SIZE; ) {
413 1.3 fredette
414 1.3 fredette /*
415 1.3 fredette * We use the PMEG immediately before the
416 1.3 fredette * segment we're copying in the PROM virtual
417 1.3 fredette * mapping of the chunk. If this is the first
418 1.3 fredette * segment, this is the PMEG the PROM used to
419 1.3 fredette * map 0x2b8000 virtual to 0x2b8000 physical,
420 1.3 fredette * which I'll assume is unused. For the second
421 1.3 fredette * and subsequent segments, this will be the
422 1.3 fredette * PMEG used to map the previous segment, which
423 1.3 fredette * is now (since we already copied it) unused.
424 1.3 fredette */
425 1.3 fredette sme = get_segmap((MEM_CHUNK1_LOAD_VIRT_PROM + off) - NBSG);
426 1.3 fredette set_segmap(MEM_CHUNK1_COPY_VIRT + off, sme);
427 1.3 fredette
428 1.3 fredette /* Set the PTEs in this new PMEG. */
429 1.3 fredette for(off_end = off + NBSG; off < off_end; off += NBPG)
430 1.3 fredette set_pte(MEM_CHUNK1_COPY_VIRT + off,
431 1.3 fredette pte | PA_PGNUM(MEM_CHUNK1_COPY_PHYS + off));
432 1.3 fredette
433 1.3 fredette /* Copy this segment. */
434 1.8 christos memcpy((void *)(MEM_CHUNK1_COPY_VIRT + (off - NBSG)),
435 1.8 christos (void *)(MEM_CHUNK1_LOAD_VIRT + (off - NBSG)),
436 1.6 chs NBSG);
437 1.3 fredette }
438 1.3 fredette
439 1.3 fredette /* Tell our caller where in virtual space to enter. */
440 1.8 christos return ((void *)entry) - MEM_CHUNK0_LOAD_VIRT;
441 1.3 fredette }
442 1.3 fredette
443 1.6 chs void
444 1.6 chs sun2_init(void)
445 1.1 fredette {
446 1.1 fredette /* Set the function pointers. */
447 1.1 fredette dev_mapin_p = dev2_mapin;
448 1.1 fredette dvma_alloc_p = dvma2_alloc;
449 1.1 fredette dvma_free_p = dvma2_free;
450 1.1 fredette dvma_mapin_p = dvma2_mapin;
451 1.1 fredette dvma_mapout_p = dvma2_mapout;
452 1.1 fredette
453 1.1 fredette /* Prepare DVMA segment. */
454 1.1 fredette dvma2_init();
455 1.1 fredette }
456