sun2.c revision 1.3 1 /* $NetBSD: sun2.c,v 1.3 2001/12/15 23:02:34 fredette Exp $ */
2
3 /*-
4 * Copyright (c) 1998 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Gordon W. Ross and Matthew Fredette.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Standalone functions specific to the Sun2.
41 */
42
43 /* Need to avoid conflicts on these: */
44 #define get_pte sun2_get_pte
45 #define set_pte sun2_set_pte
46 #define get_segmap sun2_get_segmap
47 #define set_segmap sun2_set_segmap
48
49 #include <sys/param.h>
50 #include <machine/idprom.h>
51 #include <machine/mon.h>
52
53 #include <arch/sun2/include/pte.h>
54 #include <arch/sun2/sun2/control.h>
55 #ifdef notyet
56 #include <arch/sun3/sun3/vme.h>
57 #else
58 #define VME16_BASE MBIO_BASE
59 #define VME16_MASK MBIO_MASK
60 #endif
61 #include <arch/sun2/sun2/mbmem.h>
62 #include <arch/sun2/sun2/mbio.h>
63
64 #include <stand.h>
65
66 #include "libsa.h"
67 #include "dvma.h"
68 #include "saio.h" /* enum MAPTYPES */
69
70 #define OBIO_MASK 0xFFFFFF
71
72 u_int get_pte __P((vaddr_t va));
73 void set_pte __P((vaddr_t va, u_int pte));
74 char * dvma2_alloc __P((int len));
75 void dvma2_free __P((char *dvma, int len));
76 char * dvma2_mapin __P((char *pkt, int len));
77 void dvma2_mapout __P((char *dmabuf, int len));
78 char * dev2_mapin __P((int type, u_long addr, int len));
79
80 struct mapinfo {
81 int maptype;
82 int pgtype;
83 u_int base;
84 u_int mask;
85 };
86
87 #ifdef notyet
88 struct mapinfo
89 sun2_mapinfo[MAP__NTYPES] = {
90 /* On-board memory, I/O */
91 { MAP_MAINMEM, PGT_OBMEM, 0, ~0 },
92 { MAP_OBIO, PGT_OBIO, 0, OBIO_MASK },
93 /* Multibus memory, I/O */
94 { MAP_MBMEM, PGT_MBMEM, MBMEM_BASE, MBMEM_MASK },
95 { MAP_MBIO, PGT_MBIO, MBIO_BASE, MBIO_MASK },
96 /* VME A16 */
97 { MAP_VME16A16D, PGT_VME_D16, VME16_BASE, VME16_MASK },
98 { MAP_VME16A32D, 0, 0, 0 },
99 /* VME A24 */
100 { MAP_VME24A16D, 0, 0, 0 },
101 { MAP_VME24A32D, 0, 0, 0 },
102 /* VME A32 */
103 { MAP_VME32A16D, 0, 0, 0 },
104 { MAP_VME32A32D, 0, 0, 0 },
105 };
106 #endif
107
108 /* The virtual address we will use for PROM device mappings. */
109 int sun2_devmap = SUN3_MONSHORTSEG;
110
111 char *
112 dev2_mapin(maptype, physaddr, length)
113 int maptype;
114 u_long physaddr;
115 int length;
116 {
117 #ifdef notyet
118 u_int i, pa, pte, pgva, va;
119
120 if ((sun2_devmap + length) > SUN3_MONSHORTPAGE)
121 panic("dev2_mapin: length=%d\n", length);
122
123 for (i = 0; i < MAP__NTYPES; i++)
124 if (sun2_mapinfo[i].maptype == maptype)
125 goto found;
126 panic("dev2_mapin: bad maptype");
127 found:
128
129 if (physaddr & ~(sun2_mapinfo[i].mask))
130 panic("dev2_mapin: bad address");
131 pa = sun2_mapinfo[i].base += physaddr;
132
133 pte = PA_PGNUM(pa) | PG_PERM |
134 sun2_mapinfo[i].pgtype;
135
136 va = pgva = sun2_devmap;
137 do {
138 set_pte(pgva, pte);
139 pgva += NBPG;
140 pte += 1;
141 length -= NBPG;
142 } while (length > 0);
143 sun2_devmap = pgva;
144 va += (physaddr & PGOFSET);
145
146 #ifdef DEBUG_PROM
147 if (debug)
148 printf("dev2_mapin: va=0x%x pte=0x%x\n",
149 va, get_pte(va));
150 #endif
151 return ((char*)va);
152 #else
153 panic("dev2_mapin");
154 return(NULL);
155 #endif
156 }
157
158 /*****************************************************************
159 * DVMA support
160 */
161
162 /*
163 * The easiest way to deal with the need for DVMA mappings is to
164 * create a DVMA alias mapping of the entire address range used by
165 * the boot program. That way, dvma_mapin can just compute the
166 * DVMA alias address, and dvma_mapout does nothing.
167 *
168 * Note that this assumes that standalone programs will do I/O
169 * operations only within range (SA_MIN_VA .. SA_MAX_VA) checked.
170 */
171
172 #define DVMA_BASE 0x00f00000
173 #define DVMA_MAPLEN 0x38000 /* 256K - 32K (save MONSHORTSEG) */
174
175 #define SA_MIN_VA 0x220000
176 #define SA_MAX_VA (SA_MIN_VA + DVMA_MAPLEN)
177
178 /* This points to the end of the free DVMA space. */
179 u_int dvma2_end = DVMA_BASE + DVMA_MAPLEN;
180
181 void
182 dvma2_init()
183 {
184 int segva, dmava, sme;
185
186 segva = SA_MIN_VA;
187 dmava = DVMA_BASE;
188
189 while (segva < SA_MAX_VA) {
190 sme = get_segmap(segva);
191 set_segmap(dmava, sme);
192 segva += NBSG;
193 dmava += NBSG;
194 }
195 }
196
197 /* Convert a local address to a DVMA address. */
198 char *
199 dvma2_mapin(char *addr, int len)
200 {
201 int va = (int)addr;
202
203 /* Make sure the address is in the DVMA map. */
204 if ((va < SA_MIN_VA) || (va >= SA_MAX_VA))
205 panic("dvma2_mapin: 0x%x outside 0x%x..0x%x\n",
206 va, SA_MIN_VA, SA_MAX_VA);
207
208 va -= SA_MIN_VA;
209 va += DVMA_BASE;
210
211 return ((char *) va);
212 }
213
214 /* Destroy a DVMA address alias. */
215 void
216 dvma2_mapout(char *addr, int len)
217 {
218 int va = (int)addr;
219
220 /* Make sure the address is in the DVMA map. */
221 if ((va < DVMA_BASE) || (va >= (DVMA_BASE + DVMA_MAPLEN)))
222 panic("dvma2_mapout");
223 }
224
225 char *
226 dvma2_alloc(int len)
227 {
228 len = m68k_round_page(len);
229 dvma2_end -= len;
230 return((char*)dvma2_end);
231 }
232
233 void
234 dvma2_free(char *dvma, int len)
235 {
236 /* not worth the trouble */
237 }
238
239 /*****************************************************************
240 * Control space stuff...
241 */
242
243 u_int
244 get_pte(va)
245 vaddr_t va;
246 {
247 u_int pte;
248
249 pte = get_control_word(CONTROL_ADDR_BUILD(PGMAP_BASE, va));
250 if (pte & PG_VALID) {
251 /*
252 * This clears bit 30 (the kernel readable bit, which
253 * should always be set), bit 28 (which should always
254 * be set) and bit 26 (the user writable bit, which we
255 * always have tracking the kernel writable bit). In
256 * the protection, this leaves bit 29 (the kernel
257 * writable bit) and bit 27 (the user readable bit).
258 * See pte2.h for more about this hack.
259 */
260 pte &= ~(0x54000000);
261 /*
262 * Flip bit 27 (the user readable bit) to become bit
263 * 27 (the PG_SYSTEM bit).
264 */
265 pte ^= (PG_SYSTEM);
266 }
267 return (pte);
268 }
269
270 void
271 set_pte(va, pte)
272 vaddr_t va;
273 u_int pte;
274 {
275 if (pte & PG_VALID) {
276 /* Clear bit 26 (the user writable bit). */
277 pte &= (~0x04000000);
278 /*
279 * Flip bit 27 (the PG_SYSTEM bit) to become bit 27
280 * (the user readable bit).
281 */
282 pte ^= (PG_SYSTEM);
283 /*
284 * Always set bits 30 (the kernel readable bit) and
285 * bit 28, and set bit 26 (the user writable bit) iff
286 * bit 29 (the kernel writable bit) is set *and* bit
287 * 27 (the user readable bit) is set. This latter bit
288 * of logic is expressed in the bizarre second term
289 * below, chosen because it needs no branches.
290 */
291 #if (PG_WRITE >> 2) != PG_SYSTEM
292 #error "PG_WRITE and PG_SYSTEM definitions don't match!"
293 #endif
294 pte |= 0x50000000
295 | ((((pte & PG_WRITE) >> 2) & pte) >> 1);
296 }
297 set_control_word(CONTROL_ADDR_BUILD(PGMAP_BASE, va), pte);
298 }
299
300 int
301 get_segmap(va)
302 vaddr_t va;
303 {
304 va = CONTROL_ADDR_BUILD(SEGMAP_BASE, va);
305 return (get_control_byte(va));
306 }
307
308 void
309 set_segmap(va, sme)
310 vaddr_t va;
311 int sme;
312 {
313 va = CONTROL_ADDR_BUILD(SEGMAP_BASE, va);
314 set_control_byte(va, sme);
315 }
316
317 /*
318 * Copy the IDPROM contents into the passed buffer.
319 * The caller (idprom.c) will do the checksum.
320 */
321 void
322 sun2_getidprom(u_char *dst)
323 {
324 vaddr_t src; /* control space address */
325 int len, x;
326
327 src = IDPROM_BASE;
328 len = sizeof(struct idprom);
329 do {
330 x = get_control_byte(src);
331 src += NBPG;
332 *dst++ = x;
333 } while (--len > 0);
334 }
335
336 /*****************************************************************
337 * Init our function pointers, etc.
338 */
339
340 /*
341 * For booting, the PROM in fredette's Sun 2/120 doesn't map
342 * much main memory, and what is mapped is mapped strangely.
343 * Low virtual memory is mapped like:
344 *
345 * 0x000000 - 0x0bffff virtual -> 0x000000 - 0x0bffff physical
346 * 0x0c0000 - 0x0fffff virtual -> invalid
347 * 0x100000 - 0x13ffff virtual -> 0x0c0000 - 0x0fffff physical
348 * 0x200800 - 0x3fffff virtual -> 0x200800 - 0x3fffff physical
349 *
350 * I think the SunOS authors wanted to load kernels starting at
351 * physical zero, and assumed that kernels would be less
352 * than 768K (0x0c0000) long. Also, the PROM maps physical
353 * 0x0c0000 - 0x0fffff into DVMA space, so we can't take the
354 * easy road and just add more mappings to use that physical
355 * memory while loading (the PROM might do DMA there).
356 *
357 * What we do, then, is assume a 4MB machine (you'll really
358 * need that to run NetBSD at all anyways), and we map two
359 * chunks of physical and virtual space:
360 *
361 * 0x400000 - 0x4bffff virtual -> 0x000000 - 0x0bffff physical
362 * 0x4c0000 - 0x600000 virtual -> 0x2c0000 - 0x3fffff physical
363 *
364 * And then we load starting at virtual 0x400000. We will do
365 * all of this mapping just by copying PMEGs.
366 *
367 * After the load is done, but before we enter the kernel, we're
368 * done with the PROM, so we copy the part of the kernel that
369 * got loaded at physical 0x2c0000 down to physical 0x0c0000.
370 * This can't just be a PMEG copy; we've actually got to move
371 * bytes in physical memory.
372 *
373 * These two chunks of physical and virtual space are defined
374 * in macros below. Some of the macros are only for completeness:
375 */
376 #define MEM_CHUNK0_SIZE (0x0c0000)
377 #define MEM_CHUNK0_LOAD_PHYS (0x000000)
378 #define MEM_CHUNK0_LOAD_VIRT (0x400000)
379 #define MEM_CHUNK0_LOAD_VIRT_PROM MEM_CHUNK0_LOAD_PHYS
380 #define MEM_CHUNK0_COPY_PHYS MEM_CHUNK0_LOAD_PHYS
381 #define MEM_CHUNK0_COPY_VIRT MEM_CHUNK0_COPY_PHYS
382
383 #define MEM_CHUNK1_SIZE (0x140000)
384 #define MEM_CHUNK1_LOAD_PHYS (0x2c0000)
385 #define MEM_CHUNK1_LOAD_VIRT (MEM_CHUNK0_LOAD_VIRT + MEM_CHUNK0_SIZE)
386 #define MEM_CHUNK1_LOAD_VIRT_PROM MEM_CHUNK1_LOAD_PHYS
387 #define MEM_CHUNK1_COPY_PHYS (MEM_CHUNK0_LOAD_PHYS + MEM_CHUNK0_SIZE)
388 #define MEM_CHUNK1_COPY_VIRT MEM_CHUNK1_COPY_PHYS
389
390 /* Maps memory for loading. */
391 u_long
392 sun2_map_mem_load()
393 {
394 vaddr_t off;
395
396 /* Map chunk zero for loading. */
397 for(off = 0; off < MEM_CHUNK0_SIZE; off += NBSG)
398 set_segmap(MEM_CHUNK0_LOAD_VIRT + off,
399 get_segmap(MEM_CHUNK0_LOAD_VIRT_PROM + off));
400
401 /* Map chunk one for loading. */
402 for(off = 0; off < MEM_CHUNK1_SIZE; off += NBSG)
403 set_segmap(MEM_CHUNK1_LOAD_VIRT + off,
404 get_segmap(MEM_CHUNK1_LOAD_VIRT_PROM + off));
405
406 /* Tell our caller where in virtual space to load. */
407 return MEM_CHUNK0_LOAD_VIRT;
408 }
409
410 /* Remaps memory for running. */
411 void *
412 sun2_map_mem_run(entry)
413 void *entry;
414 {
415 vaddr_t off, off_end;
416 int sme;
417 u_int pte;
418
419 /* Chunk zero is already mapped and copied. */
420
421 /* Chunk one needs to be mapped and copied. */
422 pte = (get_pte(0) & ~PG_FRAME);
423 for(off = 0; off < MEM_CHUNK1_SIZE; ) {
424
425 /*
426 * We use the PMEG immediately before the
427 * segment we're copying in the PROM virtual
428 * mapping of the chunk. If this is the first
429 * segment, this is the PMEG the PROM used to
430 * map 0x2b8000 virtual to 0x2b8000 physical,
431 * which I'll assume is unused. For the second
432 * and subsequent segments, this will be the
433 * PMEG used to map the previous segment, which
434 * is now (since we already copied it) unused.
435 */
436 sme = get_segmap((MEM_CHUNK1_LOAD_VIRT_PROM + off) - NBSG);
437 set_segmap(MEM_CHUNK1_COPY_VIRT + off, sme);
438
439 /* Set the PTEs in this new PMEG. */
440 for(off_end = off + NBSG; off < off_end; off += NBPG)
441 set_pte(MEM_CHUNK1_COPY_VIRT + off,
442 pte | PA_PGNUM(MEM_CHUNK1_COPY_PHYS + off));
443
444 /* Copy this segment. */
445 bcopy((caddr_t)(MEM_CHUNK1_LOAD_VIRT + (off - NBSG)),
446 (caddr_t)(MEM_CHUNK1_COPY_VIRT + (off - NBSG)),
447 NBSG);
448 }
449
450 /* Tell our caller where in virtual space to enter. */
451 return ((caddr_t)entry) - MEM_CHUNK0_LOAD_VIRT;
452 }
453
454 void
455 sun2_init()
456 {
457 /* Set the function pointers. */
458 dev_mapin_p = dev2_mapin;
459 dvma_alloc_p = dvma2_alloc;
460 dvma_free_p = dvma2_free;
461 dvma_mapin_p = dvma2_mapin;
462 dvma_mapout_p = dvma2_mapout;
463
464 /* Prepare DVMA segment. */
465 dvma2_init();
466 }
467