Home | History | Annotate | Line # | Download | only in libsa
sun2.c revision 1.4
      1 /*	$NetBSD: sun2.c,v 1.4 2002/05/23 03:50:37 nathanw Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1998 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Gordon W. Ross and Matthew Fredette.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  * 3. All advertising materials mentioning features or use of this software
     19  *    must display the following acknowledgement:
     20  *        This product includes software developed by the NetBSD
     21  *        Foundation, Inc. and its contributors.
     22  * 4. Neither the name of The NetBSD Foundation nor the names of its
     23  *    contributors may be used to endorse or promote products derived
     24  *    from this software without specific prior written permission.
     25  *
     26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36  * POSSIBILITY OF SUCH DAMAGE.
     37  */
     38 
     39 /*
     40  * Standalone functions specific to the Sun2.
     41  */
     42 
     43 /* Need to avoid conflicts on these: */
     44 #define get_pte sun2_get_pte
     45 #define set_pte sun2_set_pte
     46 #define get_segmap sun2_get_segmap
     47 #define set_segmap sun2_set_segmap
     48 
     49 /*
     50  * We need to get the sun2 NBSG definition, even if we're
     51  * building this with a different sun68k target.
     52  */
     53 #include <arch/sun2/include/param.h>
     54 
     55 #include <sys/param.h>
     56 #include <machine/idprom.h>
     57 #include <machine/mon.h>
     58 
     59 #include <arch/sun2/include/pte.h>
     60 #include <arch/sun2/sun2/control.h>
     61 #ifdef notyet
     62 #include <arch/sun3/sun3/vme.h>
     63 #else
     64 #define VME16_BASE MBIO_BASE
     65 #define VME16_MASK MBIO_MASK
     66 #endif
     67 #include <arch/sun2/sun2/mbmem.h>
     68 #include <arch/sun2/sun2/mbio.h>
     69 
     70 #include <stand.h>
     71 
     72 #include "libsa.h"
     73 #include "dvma.h"
     74 #include "saio.h"	/* enum MAPTYPES */
     75 
     76 #define OBIO_MASK 0xFFFFFF
     77 
     78 u_int	get_pte __P((vaddr_t va));
     79 void	set_pte __P((vaddr_t va, u_int pte));
     80 char *	dvma2_alloc  __P((int len));
     81 void	dvma2_free  __P((char *dvma, int len));
     82 char *	dvma2_mapin  __P((char *pkt, int len));
     83 void	dvma2_mapout  __P((char *dmabuf, int len));
     84 char *	dev2_mapin  __P((int type, u_long addr, int len));
     85 
     86 struct mapinfo {
     87 	int maptype;
     88 	int pgtype;
     89 	u_int base;
     90 	u_int mask;
     91 };
     92 
     93 #ifdef	notyet
     94 struct mapinfo
     95 sun2_mapinfo[MAP__NTYPES] = {
     96 	/* On-board memory, I/O */
     97 	{ MAP_MAINMEM,   PGT_OBMEM,   0,          ~0 },
     98 	{ MAP_OBIO,      PGT_OBIO,    0,          OBIO_MASK },
     99 	/* Multibus memory, I/O */
    100 	{ MAP_MBMEM,     PGT_MBMEM, MBMEM_BASE, MBMEM_MASK },
    101 	{ MAP_MBIO,      PGT_MBIO,  MBIO_BASE, MBIO_MASK },
    102 	/* VME A16 */
    103 	{ MAP_VME16A16D, PGT_VME_D16, VME16_BASE, VME16_MASK },
    104 	{ MAP_VME16A32D, 0, 0, 0 },
    105 	/* VME A24 */
    106 	{ MAP_VME24A16D, 0, 0, 0 },
    107 	{ MAP_VME24A32D, 0, 0, 0 },
    108 	/* VME A32 */
    109 	{ MAP_VME32A16D, 0, 0, 0 },
    110 	{ MAP_VME32A32D, 0, 0, 0 },
    111 };
    112 #endif
    113 
    114 /* The virtual address we will use for PROM device mappings. */
    115 int sun2_devmap = SUN3_MONSHORTSEG;
    116 
    117 char *
    118 dev2_mapin(maptype, physaddr, length)
    119 	int maptype;
    120 	u_long physaddr;
    121 	int length;
    122 {
    123 #ifdef	notyet
    124 	u_int i, pa, pte, pgva, va;
    125 
    126 	if ((sun2_devmap + length) > SUN3_MONSHORTPAGE)
    127 		panic("dev2_mapin: length=%d\n", length);
    128 
    129 	for (i = 0; i < MAP__NTYPES; i++)
    130 		if (sun2_mapinfo[i].maptype == maptype)
    131 			goto found;
    132 	panic("dev2_mapin: bad maptype");
    133 found:
    134 
    135 	if (physaddr & ~(sun2_mapinfo[i].mask))
    136 		panic("dev2_mapin: bad address");
    137 	pa = sun2_mapinfo[i].base += physaddr;
    138 
    139 	pte = PA_PGNUM(pa) | PG_PERM |
    140 		sun2_mapinfo[i].pgtype;
    141 
    142 	va = pgva = sun2_devmap;
    143 	do {
    144 		set_pte(pgva, pte);
    145 		pgva += NBPG;
    146 		pte += 1;
    147 		length -= NBPG;
    148 	} while (length > 0);
    149 	sun2_devmap = pgva;
    150 	va += (physaddr & PGOFSET);
    151 
    152 #ifdef	DEBUG_PROM
    153 	if (debug)
    154 		printf("dev2_mapin: va=0x%x pte=0x%x\n",
    155 			   va, get_pte(va));
    156 #endif
    157 	return ((char*)va);
    158 #else
    159 	panic("dev2_mapin");
    160 	return(NULL);
    161 #endif
    162 }
    163 
    164 /*****************************************************************
    165  * DVMA support
    166  */
    167 
    168 /*
    169  * The easiest way to deal with the need for DVMA mappings is to
    170  * create a DVMA alias mapping of the entire address range used by
    171  * the boot program.  That way, dvma_mapin can just compute the
    172  * DVMA alias address, and dvma_mapout does nothing.
    173  *
    174  * Note that this assumes that standalone programs will do I/O
    175  * operations only within range (SA_MIN_VA .. SA_MAX_VA) checked.
    176  */
    177 
    178 #define DVMA_BASE 0x00f00000
    179 #define DVMA_MAPLEN  0x38000	/* 256K - 32K (save MONSHORTSEG) */
    180 
    181 #define SA_MIN_VA	0x220000
    182 #define SA_MAX_VA	(SA_MIN_VA + DVMA_MAPLEN)
    183 
    184 /* This points to the end of the free DVMA space. */
    185 u_int dvma2_end = DVMA_BASE + DVMA_MAPLEN;
    186 
    187 void
    188 dvma2_init()
    189 {
    190 	int segva, dmava, sme;
    191 
    192 	segva = SA_MIN_VA;
    193 	dmava = DVMA_BASE;
    194 
    195 	while (segva < SA_MAX_VA) {
    196 		sme = get_segmap(segva);
    197 		set_segmap(dmava, sme);
    198 		segva += NBSG;
    199 		dmava += NBSG;
    200 	}
    201 }
    202 
    203 /* Convert a local address to a DVMA address. */
    204 char *
    205 dvma2_mapin(char *addr, int len)
    206 {
    207 	int va = (int)addr;
    208 
    209 	/* Make sure the address is in the DVMA map. */
    210 	if ((va < SA_MIN_VA) || (va >= SA_MAX_VA))
    211 		panic("dvma2_mapin: 0x%x outside 0x%x..0x%x\n",
    212 		    va, SA_MIN_VA, SA_MAX_VA);
    213 
    214 	va -= SA_MIN_VA;
    215 	va += DVMA_BASE;
    216 
    217 	return ((char *) va);
    218 }
    219 
    220 /* Destroy a DVMA address alias. */
    221 void
    222 dvma2_mapout(char *addr, int len)
    223 {
    224 	int va = (int)addr;
    225 
    226 	/* Make sure the address is in the DVMA map. */
    227 	if ((va < DVMA_BASE) || (va >= (DVMA_BASE + DVMA_MAPLEN)))
    228 		panic("dvma2_mapout");
    229 }
    230 
    231 char *
    232 dvma2_alloc(int len)
    233 {
    234 	len = m68k_round_page(len);
    235 	dvma2_end -= len;
    236 	return((char*)dvma2_end);
    237 }
    238 
    239 void
    240 dvma2_free(char *dvma, int len)
    241 {
    242 	/* not worth the trouble */
    243 }
    244 
    245 /*****************************************************************
    246  * Control space stuff...
    247  */
    248 
    249 u_int
    250 get_pte(va)
    251 	vaddr_t va;
    252 {
    253 	u_int pte;
    254 
    255 	pte = get_control_word(CONTROL_ADDR_BUILD(PGMAP_BASE, va));
    256 	if (pte & PG_VALID) {
    257 		/*
    258 		 * This clears bit 30 (the kernel readable bit, which
    259 		 * should always be set), bit 28 (which should always
    260 		 * be set) and bit 26 (the user writable bit, which we
    261 		 * always have tracking the kernel writable bit).  In
    262 		 * the protection, this leaves bit 29 (the kernel
    263 		 * writable bit) and bit 27 (the user readable bit).
    264 		 * See pte2.h for more about this hack.
    265 		 */
    266 		pte &= ~(0x54000000);
    267 		/*
    268 		 * Flip bit 27 (the user readable bit) to become bit
    269 		 * 27 (the PG_SYSTEM bit).
    270 		 */
    271 		pte ^= (PG_SYSTEM);
    272 	}
    273 	return (pte);
    274 }
    275 
    276 void
    277 set_pte(va, pte)
    278 	vaddr_t va;
    279 	u_int pte;
    280 {
    281 	if (pte & PG_VALID) {
    282 		/* Clear bit 26 (the user writable bit).  */
    283 		pte &= (~0x04000000);
    284 		/*
    285 		 * Flip bit 27 (the PG_SYSTEM bit) to become bit 27
    286 		 * (the user readable bit).
    287 		 */
    288 		pte ^= (PG_SYSTEM);
    289 		/*
    290 		 * Always set bits 30 (the kernel readable bit) and
    291 		 * bit 28, and set bit 26 (the user writable bit) iff
    292 		 * bit 29 (the kernel writable bit) is set *and* bit
    293 		 * 27 (the user readable bit) is set.  This latter bit
    294 		 * of logic is expressed in the bizarre second term
    295 		 * below, chosen because it needs no branches.
    296 		 */
    297 #if (PG_WRITE >> 2) != PG_SYSTEM
    298 #error	"PG_WRITE and PG_SYSTEM definitions don't match!"
    299 #endif
    300 		pte |= 0x50000000
    301 		    | ((((pte & PG_WRITE) >> 2) & pte) >> 1);
    302 	}
    303 	set_control_word(CONTROL_ADDR_BUILD(PGMAP_BASE, va), pte);
    304 }
    305 
    306 int
    307 get_segmap(va)
    308 	vaddr_t va;
    309 {
    310 	va = CONTROL_ADDR_BUILD(SEGMAP_BASE, va);
    311 	return (get_control_byte(va));
    312 }
    313 
    314 void
    315 set_segmap(va, sme)
    316 	vaddr_t va;
    317 	int sme;
    318 {
    319 	va = CONTROL_ADDR_BUILD(SEGMAP_BASE, va);
    320 	set_control_byte(va, sme);
    321 }
    322 
    323 /*
    324  * Copy the IDPROM contents into the passed buffer.
    325  * The caller (idprom.c) will do the checksum.
    326  */
    327 void
    328 sun2_getidprom(u_char *dst)
    329 {
    330 	vaddr_t src;	/* control space address */
    331 	int len, x;
    332 
    333 	src = IDPROM_BASE;
    334 	len = sizeof(struct idprom);
    335 	do {
    336 		x = get_control_byte(src);
    337 		src += NBPG;
    338 		*dst++ = x;
    339 	} while (--len > 0);
    340 }
    341 
    342 /*****************************************************************
    343  * Init our function pointers, etc.
    344  */
    345 
    346 /*
    347  * For booting, the PROM in fredette's Sun 2/120 doesn't map
    348  * much main memory, and what is mapped is mapped strangely.
    349  * Low virtual memory is mapped like:
    350  *
    351  * 0x000000 - 0x0bffff virtual -> 0x000000 - 0x0bffff physical
    352  * 0x0c0000 - 0x0fffff virtual -> invalid
    353  * 0x100000 - 0x13ffff virtual -> 0x0c0000 - 0x0fffff physical
    354  * 0x200800 - 0x3fffff virtual -> 0x200800 - 0x3fffff physical
    355  *
    356  * I think the SunOS authors wanted to load kernels starting at
    357  * physical zero, and assumed that kernels would be less
    358  * than 768K (0x0c0000) long.  Also, the PROM maps physical
    359  * 0x0c0000 - 0x0fffff into DVMA space, so we can't take the
    360  * easy road and just add more mappings to use that physical
    361  * memory while loading (the PROM might do DMA there).
    362  *
    363  * What we do, then, is assume a 4MB machine (you'll really
    364  * need that to run NetBSD at all anyways), and we map two
    365  * chunks of physical and virtual space:
    366  *
    367  * 0x400000 - 0x4bffff virtual -> 0x000000 - 0x0bffff physical
    368  * 0x4c0000 - 0x600000 virtual -> 0x2c0000 - 0x3fffff physical
    369  *
    370  * And then we load starting at virtual 0x400000.  We will do
    371  * all of this mapping just by copying PMEGs.
    372  *
    373  * After the load is done, but before we enter the kernel, we're
    374  * done with the PROM, so we copy the part of the kernel that
    375  * got loaded at physical 0x2c0000 down to physical 0x0c0000.
    376  * This can't just be a PMEG copy; we've actually got to move
    377  * bytes in physical memory.
    378  *
    379  * These two chunks of physical and virtual space are defined
    380  * in macros below.  Some of the macros are only for completeness:
    381  */
    382 #define MEM_CHUNK0_SIZE			(0x0c0000)
    383 #define MEM_CHUNK0_LOAD_PHYS		(0x000000)
    384 #define MEM_CHUNK0_LOAD_VIRT		(0x400000)
    385 #define MEM_CHUNK0_LOAD_VIRT_PROM	MEM_CHUNK0_LOAD_PHYS
    386 #define MEM_CHUNK0_COPY_PHYS		MEM_CHUNK0_LOAD_PHYS
    387 #define MEM_CHUNK0_COPY_VIRT		MEM_CHUNK0_COPY_PHYS
    388 
    389 #define MEM_CHUNK1_SIZE			(0x140000)
    390 #define MEM_CHUNK1_LOAD_PHYS		(0x2c0000)
    391 #define MEM_CHUNK1_LOAD_VIRT		(MEM_CHUNK0_LOAD_VIRT + MEM_CHUNK0_SIZE)
    392 #define MEM_CHUNK1_LOAD_VIRT_PROM	MEM_CHUNK1_LOAD_PHYS
    393 #define MEM_CHUNK1_COPY_PHYS		(MEM_CHUNK0_LOAD_PHYS + MEM_CHUNK0_SIZE)
    394 #define MEM_CHUNK1_COPY_VIRT		MEM_CHUNK1_COPY_PHYS
    395 
    396 /* Maps memory for loading. */
    397 u_long
    398 sun2_map_mem_load()
    399 {
    400 	vaddr_t off;
    401 
    402 	/* Map chunk zero for loading. */
    403 	for(off = 0; off < MEM_CHUNK0_SIZE; off += NBSG)
    404 		set_segmap(MEM_CHUNK0_LOAD_VIRT + off,
    405 			   get_segmap(MEM_CHUNK0_LOAD_VIRT_PROM + off));
    406 
    407 	/* Map chunk one for loading. */
    408 	for(off = 0; off < MEM_CHUNK1_SIZE; off += NBSG)
    409 		set_segmap(MEM_CHUNK1_LOAD_VIRT + off,
    410 			   get_segmap(MEM_CHUNK1_LOAD_VIRT_PROM + off));
    411 
    412 	/* Tell our caller where in virtual space to load. */
    413 	return MEM_CHUNK0_LOAD_VIRT;
    414 }
    415 
    416 /* Remaps memory for running. */
    417 void *
    418 sun2_map_mem_run(entry)
    419 	void *entry;
    420 {
    421 	vaddr_t off, off_end;
    422 	int sme;
    423 	u_int pte;
    424 
    425 	/* Chunk zero is already mapped and copied. */
    426 
    427 	/* Chunk one needs to be mapped and copied. */
    428 	pte = (get_pte(0) & ~PG_FRAME);
    429 	for(off = 0; off < MEM_CHUNK1_SIZE; ) {
    430 
    431 		/*
    432 		 * We use the PMEG immediately before the
    433 		 * segment we're copying in the PROM virtual
    434 		 * mapping of the chunk.  If this is the first
    435 		 * segment, this is the PMEG the PROM used to
    436 		 * map 0x2b8000 virtual to 0x2b8000 physical,
    437 		 * which I'll assume is unused.  For the second
    438 		 * and subsequent segments, this will be the
    439 		 * PMEG used to map the previous segment, which
    440 		 * is now (since we already copied it) unused.
    441 		 */
    442 		sme = get_segmap((MEM_CHUNK1_LOAD_VIRT_PROM + off) - NBSG);
    443 		set_segmap(MEM_CHUNK1_COPY_VIRT + off, sme);
    444 
    445 		/* Set the PTEs in this new PMEG. */
    446 		for(off_end = off + NBSG; off < off_end; off += NBPG)
    447 			set_pte(MEM_CHUNK1_COPY_VIRT + off,
    448 				pte | PA_PGNUM(MEM_CHUNK1_COPY_PHYS + off));
    449 
    450 		/* Copy this segment. */
    451 		bcopy((caddr_t)(MEM_CHUNK1_LOAD_VIRT + (off - NBSG)),
    452 		      (caddr_t)(MEM_CHUNK1_COPY_VIRT + (off - NBSG)),
    453 		      NBSG);
    454 	}
    455 
    456 	/* Tell our caller where in virtual space to enter. */
    457 	return ((caddr_t)entry) - MEM_CHUNK0_LOAD_VIRT;
    458 }
    459 
    460 void
    461 sun2_init()
    462 {
    463 	/* Set the function pointers. */
    464 	dev_mapin_p   = dev2_mapin;
    465 	dvma_alloc_p  = dvma2_alloc;
    466 	dvma_free_p   = dvma2_free;
    467 	dvma_mapin_p  = dvma2_mapin;
    468 	dvma_mapout_p = dvma2_mapout;
    469 
    470 	/* Prepare DVMA segment. */
    471 	dvma2_init();
    472 }
    473