sun2.c revision 1.6 1 /* $NetBSD: sun2.c,v 1.6 2005/01/22 15:36:11 chs Exp $ */
2
3 /*-
4 * Copyright (c) 1998 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Gordon W. Ross and Matthew Fredette.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Standalone functions specific to the Sun2.
41 */
42
43 /* Need to avoid conflicts on these: */
44 #define get_pte sun2_get_pte
45 #define set_pte sun2_set_pte
46 #define get_segmap sun2_get_segmap
47 #define set_segmap sun2_set_segmap
48
49 /*
50 * We need to get the sun2 NBSG definition, even if we're
51 * building this with a different sun68k target.
52 */
53 #include <arch/sun2/include/param.h>
54
55 #include <sys/param.h>
56 #include <machine/idprom.h>
57 #include <machine/mon.h>
58
59 #include <arch/sun2/include/pte.h>
60 #include <arch/sun2/sun2/control.h>
61 #ifdef notyet
62 #include <arch/sun3/sun3/vme.h>
63 #else
64 #define VME16_BASE MBIO_BASE
65 #define VME16_MASK MBIO_MASK
66 #endif
67 #include <arch/sun2/sun2/mbmem.h>
68 #include <arch/sun2/sun2/mbio.h>
69
70 #include <stand.h>
71
72 #include "libsa.h"
73 #include "dvma.h"
74 #include "saio.h" /* enum MAPTYPES */
75
76 #define OBIO_MASK 0xFFFFFF
77
78 u_int get_pte(vaddr_t);
79 void set_pte(vaddr_t, u_int);
80 char * dvma2_alloc(int);
81 void dvma2_free(char *, int);
82 char * dvma2_mapin(char *, int);
83 void dvma2_mapout(char *, int);
84 char * dev2_mapin(int, u_long, int);
85
86 struct mapinfo {
87 int maptype;
88 int pgtype;
89 u_int base;
90 u_int mask;
91 };
92
93 #ifdef notyet
94 struct mapinfo
95 sun2_mapinfo[MAP__NTYPES] = {
96 /* On-board memory, I/O */
97 { MAP_MAINMEM, PGT_OBMEM, 0, ~0 },
98 { MAP_OBIO, PGT_OBIO, 0, OBIO_MASK },
99 /* Multibus memory, I/O */
100 { MAP_MBMEM, PGT_MBMEM, MBMEM_BASE, MBMEM_MASK },
101 { MAP_MBIO, PGT_MBIO, MBIO_BASE, MBIO_MASK },
102 /* VME A16 */
103 { MAP_VME16A16D, PGT_VME_D16, VME16_BASE, VME16_MASK },
104 { MAP_VME16A32D, 0, 0, 0 },
105 /* VME A24 */
106 { MAP_VME24A16D, 0, 0, 0 },
107 { MAP_VME24A32D, 0, 0, 0 },
108 /* VME A32 */
109 { MAP_VME32A16D, 0, 0, 0 },
110 { MAP_VME32A32D, 0, 0, 0 },
111 };
112 #endif
113
114 /* The virtual address we will use for PROM device mappings. */
115 int sun2_devmap = SUN3_MONSHORTSEG;
116
117 char *
118 dev2_mapin(int maptype, u_long physaddr, int length)
119 {
120 #ifdef notyet
121 u_int i, pa, pte, pgva, va;
122
123 if ((sun2_devmap + length) > SUN3_MONSHORTPAGE)
124 panic("dev2_mapin: length=%d", length);
125
126 for (i = 0; i < MAP__NTYPES; i++)
127 if (sun2_mapinfo[i].maptype == maptype)
128 goto found;
129 panic("dev2_mapin: bad maptype");
130 found:
131
132 if (physaddr & ~(sun2_mapinfo[i].mask))
133 panic("dev2_mapin: bad address");
134 pa = sun2_mapinfo[i].base += physaddr;
135
136 pte = PA_PGNUM(pa) | PG_PERM |
137 sun2_mapinfo[i].pgtype;
138
139 va = pgva = sun2_devmap;
140 do {
141 set_pte(pgva, pte);
142 pgva += NBPG;
143 pte += 1;
144 length -= NBPG;
145 } while (length > 0);
146 sun2_devmap = pgva;
147 va += (physaddr & PGOFSET);
148
149 #ifdef DEBUG_PROM
150 if (debug)
151 printf("dev2_mapin: va=0x%x pte=0x%x\n",
152 va, get_pte(va));
153 #endif
154 return ((char*)va);
155 #else
156 panic("dev2_mapin");
157 return(NULL);
158 #endif
159 }
160
161 /*****************************************************************
162 * DVMA support
163 */
164
165 /*
166 * The easiest way to deal with the need for DVMA mappings is to
167 * create a DVMA alias mapping of the entire address range used by
168 * the boot program. That way, dvma_mapin can just compute the
169 * DVMA alias address, and dvma_mapout does nothing.
170 *
171 * Note that this assumes that standalone programs will do I/O
172 * operations only within range (SA_MIN_VA .. SA_MAX_VA) checked.
173 */
174
175 #define DVMA_BASE 0x00f00000
176 #define DVMA_MAPLEN 0x38000 /* 256K - 32K (save MONSHORTSEG) */
177
178 #define SA_MIN_VA 0x220000
179 #define SA_MAX_VA (SA_MIN_VA + DVMA_MAPLEN)
180
181 /* This points to the end of the free DVMA space. */
182 u_int dvma2_end = DVMA_BASE + DVMA_MAPLEN;
183
184 void
185 dvma2_init(void)
186 {
187 int segva, dmava, sme;
188
189 segva = SA_MIN_VA;
190 dmava = DVMA_BASE;
191
192 while (segva < SA_MAX_VA) {
193 sme = get_segmap(segva);
194 set_segmap(dmava, sme);
195 segva += NBSG;
196 dmava += NBSG;
197 }
198 }
199
200 /* Convert a local address to a DVMA address. */
201 char *
202 dvma2_mapin(char *addr, int len)
203 {
204 int va = (int)addr;
205
206 /* Make sure the address is in the DVMA map. */
207 if ((va < SA_MIN_VA) || (va >= SA_MAX_VA))
208 panic("dvma2_mapin: 0x%x outside 0x%x..0x%x",
209 va, SA_MIN_VA, SA_MAX_VA);
210
211 va -= SA_MIN_VA;
212 va += DVMA_BASE;
213
214 return ((char *) va);
215 }
216
217 /* Destroy a DVMA address alias. */
218 void
219 dvma2_mapout(char *addr, int len)
220 {
221 int va = (int)addr;
222
223 /* Make sure the address is in the DVMA map. */
224 if ((va < DVMA_BASE) || (va >= (DVMA_BASE + DVMA_MAPLEN)))
225 panic("dvma2_mapout");
226 }
227
228 char *
229 dvma2_alloc(int len)
230 {
231 len = m68k_round_page(len);
232 dvma2_end -= len;
233 return((char*)dvma2_end);
234 }
235
236 void
237 dvma2_free(char *dvma, int len)
238 {
239 /* not worth the trouble */
240 }
241
242 /*****************************************************************
243 * Control space stuff...
244 */
245
246 u_int
247 get_pte(vaddr_t va)
248 {
249 u_int pte;
250
251 pte = get_control_word(CONTROL_ADDR_BUILD(PGMAP_BASE, va));
252 if (pte & PG_VALID) {
253 /*
254 * This clears bit 30 (the kernel readable bit, which
255 * should always be set), bit 28 (which should always
256 * be set) and bit 26 (the user writable bit, which we
257 * always have tracking the kernel writable bit). In
258 * the protection, this leaves bit 29 (the kernel
259 * writable bit) and bit 27 (the user readable bit).
260 * See pte2.h for more about this hack.
261 */
262 pte &= ~(0x54000000);
263 /*
264 * Flip bit 27 (the user readable bit) to become bit
265 * 27 (the PG_SYSTEM bit).
266 */
267 pte ^= (PG_SYSTEM);
268 }
269 return (pte);
270 }
271
272 void
273 set_pte(vaddr_t va, u_int pte)
274 {
275 if (pte & PG_VALID) {
276 /* Clear bit 26 (the user writable bit). */
277 pte &= (~0x04000000);
278 /*
279 * Flip bit 27 (the PG_SYSTEM bit) to become bit 27
280 * (the user readable bit).
281 */
282 pte ^= (PG_SYSTEM);
283 /*
284 * Always set bits 30 (the kernel readable bit) and
285 * bit 28, and set bit 26 (the user writable bit) iff
286 * bit 29 (the kernel writable bit) is set *and* bit
287 * 27 (the user readable bit) is set. This latter bit
288 * of logic is expressed in the bizarre second term
289 * below, chosen because it needs no branches.
290 */
291 #if (PG_WRITE >> 2) != PG_SYSTEM
292 #error "PG_WRITE and PG_SYSTEM definitions don't match!"
293 #endif
294 pte |= 0x50000000
295 | ((((pte & PG_WRITE) >> 2) & pte) >> 1);
296 }
297 set_control_word(CONTROL_ADDR_BUILD(PGMAP_BASE, va), pte);
298 }
299
300 int
301 get_segmap(vaddr_t va)
302 {
303 va = CONTROL_ADDR_BUILD(SEGMAP_BASE, va);
304 return (get_control_byte(va));
305 }
306
307 void
308 set_segmap(vaddr_t va, int sme)
309 {
310 va = CONTROL_ADDR_BUILD(SEGMAP_BASE, va);
311 set_control_byte(va, sme);
312 }
313
314 /*
315 * Copy the IDPROM contents into the passed buffer.
316 * The caller (idprom.c) will do the checksum.
317 */
318 void
319 sun2_getidprom(u_char *dst)
320 {
321 vaddr_t src; /* control space address */
322 int len, x;
323
324 src = IDPROM_BASE;
325 len = sizeof(struct idprom);
326 do {
327 x = get_control_byte(src);
328 src += NBPG;
329 *dst++ = x;
330 } while (--len > 0);
331 }
332
333 /*****************************************************************
334 * Init our function pointers, etc.
335 */
336
337 /*
338 * For booting, the PROM in fredette's Sun 2/120 doesn't map
339 * much main memory, and what is mapped is mapped strangely.
340 * Low virtual memory is mapped like:
341 *
342 * 0x000000 - 0x0bffff virtual -> 0x000000 - 0x0bffff physical
343 * 0x0c0000 - 0x0fffff virtual -> invalid
344 * 0x100000 - 0x13ffff virtual -> 0x0c0000 - 0x0fffff physical
345 * 0x200800 - 0x3fffff virtual -> 0x200800 - 0x3fffff physical
346 *
347 * I think the SunOS authors wanted to load kernels starting at
348 * physical zero, and assumed that kernels would be less
349 * than 768K (0x0c0000) long. Also, the PROM maps physical
350 * 0x0c0000 - 0x0fffff into DVMA space, so we can't take the
351 * easy road and just add more mappings to use that physical
352 * memory while loading (the PROM might do DMA there).
353 *
354 * What we do, then, is assume a 4MB machine (you'll really
355 * need that to run NetBSD at all anyways), and we map two
356 * chunks of physical and virtual space:
357 *
358 * 0x400000 - 0x4bffff virtual -> 0x000000 - 0x0bffff physical
359 * 0x4c0000 - 0x600000 virtual -> 0x2c0000 - 0x3fffff physical
360 *
361 * And then we load starting at virtual 0x400000. We will do
362 * all of this mapping just by copying PMEGs.
363 *
364 * After the load is done, but before we enter the kernel, we're
365 * done with the PROM, so we copy the part of the kernel that
366 * got loaded at physical 0x2c0000 down to physical 0x0c0000.
367 * This can't just be a PMEG copy; we've actually got to move
368 * bytes in physical memory.
369 *
370 * These two chunks of physical and virtual space are defined
371 * in macros below. Some of the macros are only for completeness:
372 */
373 #define MEM_CHUNK0_SIZE (0x0c0000)
374 #define MEM_CHUNK0_LOAD_PHYS (0x000000)
375 #define MEM_CHUNK0_LOAD_VIRT (0x400000)
376 #define MEM_CHUNK0_LOAD_VIRT_PROM MEM_CHUNK0_LOAD_PHYS
377 #define MEM_CHUNK0_COPY_PHYS MEM_CHUNK0_LOAD_PHYS
378 #define MEM_CHUNK0_COPY_VIRT MEM_CHUNK0_COPY_PHYS
379
380 #define MEM_CHUNK1_SIZE (0x140000)
381 #define MEM_CHUNK1_LOAD_PHYS (0x2c0000)
382 #define MEM_CHUNK1_LOAD_VIRT (MEM_CHUNK0_LOAD_VIRT + MEM_CHUNK0_SIZE)
383 #define MEM_CHUNK1_LOAD_VIRT_PROM MEM_CHUNK1_LOAD_PHYS
384 #define MEM_CHUNK1_COPY_PHYS (MEM_CHUNK0_LOAD_PHYS + MEM_CHUNK0_SIZE)
385 #define MEM_CHUNK1_COPY_VIRT MEM_CHUNK1_COPY_PHYS
386
387 /* Maps memory for loading. */
388 u_long
389 sun2_map_mem_load(void)
390 {
391 vaddr_t off;
392
393 /* Map chunk zero for loading. */
394 for(off = 0; off < MEM_CHUNK0_SIZE; off += NBSG)
395 set_segmap(MEM_CHUNK0_LOAD_VIRT + off,
396 get_segmap(MEM_CHUNK0_LOAD_VIRT_PROM + off));
397
398 /* Map chunk one for loading. */
399 for(off = 0; off < MEM_CHUNK1_SIZE; off += NBSG)
400 set_segmap(MEM_CHUNK1_LOAD_VIRT + off,
401 get_segmap(MEM_CHUNK1_LOAD_VIRT_PROM + off));
402
403 /* Tell our caller where in virtual space to load. */
404 return MEM_CHUNK0_LOAD_VIRT;
405 }
406
407 /* Remaps memory for running. */
408 void *
409 sun2_map_mem_run(void *entry)
410 {
411 vaddr_t off, off_end;
412 int sme;
413 u_int pte;
414
415 /* Chunk zero is already mapped and copied. */
416
417 /* Chunk one needs to be mapped and copied. */
418 pte = (get_pte(0) & ~PG_FRAME);
419 for(off = 0; off < MEM_CHUNK1_SIZE; ) {
420
421 /*
422 * We use the PMEG immediately before the
423 * segment we're copying in the PROM virtual
424 * mapping of the chunk. If this is the first
425 * segment, this is the PMEG the PROM used to
426 * map 0x2b8000 virtual to 0x2b8000 physical,
427 * which I'll assume is unused. For the second
428 * and subsequent segments, this will be the
429 * PMEG used to map the previous segment, which
430 * is now (since we already copied it) unused.
431 */
432 sme = get_segmap((MEM_CHUNK1_LOAD_VIRT_PROM + off) - NBSG);
433 set_segmap(MEM_CHUNK1_COPY_VIRT + off, sme);
434
435 /* Set the PTEs in this new PMEG. */
436 for(off_end = off + NBSG; off < off_end; off += NBPG)
437 set_pte(MEM_CHUNK1_COPY_VIRT + off,
438 pte | PA_PGNUM(MEM_CHUNK1_COPY_PHYS + off));
439
440 /* Copy this segment. */
441 memcpy((caddr_t)(MEM_CHUNK1_COPY_VIRT + (off - NBSG)),
442 (caddr_t)(MEM_CHUNK1_LOAD_VIRT + (off - NBSG)),
443 NBSG);
444 }
445
446 /* Tell our caller where in virtual space to enter. */
447 return ((caddr_t)entry) - MEM_CHUNK0_LOAD_VIRT;
448 }
449
450 void
451 sun2_init(void)
452 {
453 /* Set the function pointers. */
454 dev_mapin_p = dev2_mapin;
455 dvma_alloc_p = dvma2_alloc;
456 dvma_free_p = dvma2_free;
457 dvma_mapin_p = dvma2_mapin;
458 dvma_mapout_p = dvma2_mapout;
459
460 /* Prepare DVMA segment. */
461 dvma2_init();
462 }
463