Home | History | Annotate | Line # | Download | only in libsa
sun2.c revision 1.9.8.1
      1 /*	$NetBSD: sun2.c,v 1.9.8.1 2009/01/19 13:16:57 skrll Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1998 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Gordon W. Ross and Matthew Fredette.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * Standalone functions specific to the Sun2.
     34  */
     35 
     36 /* Need to avoid conflicts on these: */
     37 #define get_pte sun2_get_pte
     38 #define set_pte sun2_set_pte
     39 #define get_segmap sun2_get_segmap
     40 #define set_segmap sun2_set_segmap
     41 
     42 /*
     43  * We need to get the sun2 NBSG definition, even if we're
     44  * building this with a different sun68k target.
     45  */
     46 #include <arch/sun2/include/param.h>
     47 
     48 #include <sys/param.h>
     49 #include <machine/idprom.h>
     50 #include <machine/mon.h>
     51 
     52 #include <arch/sun2/include/pte.h>
     53 #include <arch/sun2/sun2/control.h>
     54 #ifdef notyet
     55 #include <arch/sun3/sun3/vme.h>
     56 #else
     57 #define VME16_BASE MBIO_BASE
     58 #define VME16_MASK MBIO_MASK
     59 #endif
     60 #include <arch/sun2/sun2/mbmem.h>
     61 #include <arch/sun2/sun2/mbio.h>
     62 
     63 #include <stand.h>
     64 
     65 #include "libsa.h"
     66 #include "dvma.h"
     67 #include "saio.h"	/* enum MAPTYPES */
     68 
     69 #define OBIO_MASK 0xFFFFFF
     70 
     71 u_int	get_pte(vaddr_t);
     72 void	set_pte(vaddr_t, u_int);
     73 void	dvma2_init(void);
     74 char *	dvma2_alloc(int);
     75 void	dvma2_free(char *, int);
     76 char *	dvma2_mapin(char *, int);
     77 void	dvma2_mapout(char *, int);
     78 char *	dev2_mapin(int, u_long, int);
     79 
     80 struct mapinfo {
     81 	int maptype;
     82 	int pgtype;
     83 	u_int base;
     84 	u_int mask;
     85 };
     86 
     87 #ifdef	notyet
     88 struct mapinfo
     89 sun2_mapinfo[MAP__NTYPES] = {
     90 	/* On-board memory, I/O */
     91 	{ MAP_MAINMEM,   PGT_OBMEM,   0,          ~0 },
     92 	{ MAP_OBIO,      PGT_OBIO,    0,          OBIO_MASK },
     93 	/* Multibus memory, I/O */
     94 	{ MAP_MBMEM,     PGT_MBMEM, MBMEM_BASE, MBMEM_MASK },
     95 	{ MAP_MBIO,      PGT_MBIO,  MBIO_BASE, MBIO_MASK },
     96 	/* VME A16 */
     97 	{ MAP_VME16A16D, PGT_VME_D16, VME16_BASE, VME16_MASK },
     98 	{ MAP_VME16A32D, 0, 0, 0 },
     99 	/* VME A24 */
    100 	{ MAP_VME24A16D, 0, 0, 0 },
    101 	{ MAP_VME24A32D, 0, 0, 0 },
    102 	/* VME A32 */
    103 	{ MAP_VME32A16D, 0, 0, 0 },
    104 	{ MAP_VME32A32D, 0, 0, 0 },
    105 };
    106 #endif
    107 
    108 /* The virtual address we will use for PROM device mappings. */
    109 int sun2_devmap = SUN3_MONSHORTSEG;
    110 
    111 char *
    112 dev2_mapin(int maptype, u_long physaddr, int length)
    113 {
    114 #ifdef	notyet
    115 	u_int i, pa, pte, pgva, va;
    116 
    117 	if ((sun2_devmap + length) > SUN3_MONSHORTPAGE)
    118 		panic("dev2_mapin: length=%d", length);
    119 
    120 	for (i = 0; i < MAP__NTYPES; i++)
    121 		if (sun2_mapinfo[i].maptype == maptype)
    122 			goto found;
    123 	panic("dev2_mapin: bad maptype");
    124 found:
    125 
    126 	if (physaddr & ~(sun2_mapinfo[i].mask))
    127 		panic("dev2_mapin: bad address");
    128 	pa = sun2_mapinfo[i].base += physaddr;
    129 
    130 	pte = PA_PGNUM(pa) | PG_PERM |
    131 		sun2_mapinfo[i].pgtype;
    132 
    133 	va = pgva = sun2_devmap;
    134 	do {
    135 		set_pte(pgva, pte);
    136 		pgva += NBPG;
    137 		pte += 1;
    138 		length -= NBPG;
    139 	} while (length > 0);
    140 	sun2_devmap = pgva;
    141 	va += (physaddr & PGOFSET);
    142 
    143 #ifdef	DEBUG_PROM
    144 	if (debug)
    145 		printf("dev2_mapin: va=0x%x pte=0x%x\n",
    146 			   va, get_pte(va));
    147 #endif
    148 	return ((char*)va);
    149 #else
    150 	panic("dev2_mapin");
    151 	return(NULL);
    152 #endif
    153 }
    154 
    155 /*****************************************************************
    156  * DVMA support
    157  */
    158 
    159 /*
    160  * The easiest way to deal with the need for DVMA mappings is to
    161  * create a DVMA alias mapping of the entire address range used by
    162  * the boot program.  That way, dvma_mapin can just compute the
    163  * DVMA alias address, and dvma_mapout does nothing.
    164  *
    165  * Note that this assumes that standalone programs will do I/O
    166  * operations only within range (SA_MIN_VA .. SA_MAX_VA) checked.
    167  */
    168 
    169 #define DVMA_BASE 0x00f00000
    170 #define DVMA_MAPLEN  0x38000	/* 256K - 32K (save MONSHORTSEG) */
    171 
    172 #define SA_MIN_VA	0x220000
    173 #define SA_MAX_VA	(SA_MIN_VA + DVMA_MAPLEN)
    174 
    175 /* This points to the end of the free DVMA space. */
    176 u_int dvma2_end = DVMA_BASE + DVMA_MAPLEN;
    177 
    178 void
    179 dvma2_init(void)
    180 {
    181 	int segva, dmava, sme;
    182 
    183 	segva = SA_MIN_VA;
    184 	dmava = DVMA_BASE;
    185 
    186 	while (segva < SA_MAX_VA) {
    187 		sme = get_segmap(segva);
    188 		set_segmap(dmava, sme);
    189 		segva += NBSG;
    190 		dmava += NBSG;
    191 	}
    192 }
    193 
    194 /* Convert a local address to a DVMA address. */
    195 char *
    196 dvma2_mapin(char *addr, int len)
    197 {
    198 	int va = (int)addr;
    199 
    200 	/* Make sure the address is in the DVMA map. */
    201 	if ((va < SA_MIN_VA) || (va >= SA_MAX_VA))
    202 		panic("dvma2_mapin: 0x%x outside 0x%x..0x%x",
    203 		    va, SA_MIN_VA, SA_MAX_VA);
    204 
    205 	va -= SA_MIN_VA;
    206 	va += DVMA_BASE;
    207 
    208 	return ((char *) va);
    209 }
    210 
    211 /* Destroy a DVMA address alias. */
    212 void
    213 dvma2_mapout(char *addr, int len)
    214 {
    215 	int va = (int)addr;
    216 
    217 	/* Make sure the address is in the DVMA map. */
    218 	if ((va < DVMA_BASE) || (va >= (DVMA_BASE + DVMA_MAPLEN)))
    219 		panic("dvma2_mapout");
    220 }
    221 
    222 char *
    223 dvma2_alloc(int len)
    224 {
    225 	len = m68k_round_page(len);
    226 	dvma2_end -= len;
    227 	return((char*)dvma2_end);
    228 }
    229 
    230 void
    231 dvma2_free(char *dvma, int len)
    232 {
    233 	/* not worth the trouble */
    234 }
    235 
    236 /*****************************************************************
    237  * Control space stuff...
    238  */
    239 
    240 u_int
    241 get_pte(vaddr_t va)
    242 {
    243 	u_int pte;
    244 
    245 	pte = get_control_word(CONTROL_ADDR_BUILD(PGMAP_BASE, va));
    246 	if (pte & PG_VALID) {
    247 		/*
    248 		 * This clears bit 30 (the kernel readable bit, which
    249 		 * should always be set), bit 28 (which should always
    250 		 * be set) and bit 26 (the user writable bit, which we
    251 		 * always have tracking the kernel writable bit).  In
    252 		 * the protection, this leaves bit 29 (the kernel
    253 		 * writable bit) and bit 27 (the user readable bit).
    254 		 * See pte2.h for more about this hack.
    255 		 */
    256 		pte &= ~(0x54000000);
    257 		/*
    258 		 * Flip bit 27 (the user readable bit) to become bit
    259 		 * 27 (the PG_SYSTEM bit).
    260 		 */
    261 		pte ^= (PG_SYSTEM);
    262 	}
    263 	return (pte);
    264 }
    265 
    266 void
    267 set_pte(vaddr_t va, u_int pte)
    268 {
    269 	if (pte & PG_VALID) {
    270 		/* Clear bit 26 (the user writable bit).  */
    271 		pte &= (~0x04000000);
    272 		/*
    273 		 * Flip bit 27 (the PG_SYSTEM bit) to become bit 27
    274 		 * (the user readable bit).
    275 		 */
    276 		pte ^= (PG_SYSTEM);
    277 		/*
    278 		 * Always set bits 30 (the kernel readable bit) and
    279 		 * bit 28, and set bit 26 (the user writable bit) iff
    280 		 * bit 29 (the kernel writable bit) is set *and* bit
    281 		 * 27 (the user readable bit) is set.  This latter bit
    282 		 * of logic is expressed in the bizarre second term
    283 		 * below, chosen because it needs no branches.
    284 		 */
    285 #if (PG_WRITE >> 2) != PG_SYSTEM
    286 #error	"PG_WRITE and PG_SYSTEM definitions don't match!"
    287 #endif
    288 		pte |= 0x50000000
    289 		    | ((((pte & PG_WRITE) >> 2) & pte) >> 1);
    290 	}
    291 	set_control_word(CONTROL_ADDR_BUILD(PGMAP_BASE, va), pte);
    292 }
    293 
    294 int
    295 get_segmap(vaddr_t va)
    296 {
    297 	va = CONTROL_ADDR_BUILD(SEGMAP_BASE, va);
    298 	return (get_control_byte(va));
    299 }
    300 
    301 void
    302 set_segmap(vaddr_t va, int sme)
    303 {
    304 	va = CONTROL_ADDR_BUILD(SEGMAP_BASE, va);
    305 	set_control_byte(va, sme);
    306 }
    307 
    308 /*
    309  * Copy the IDPROM contents into the passed buffer.
    310  * The caller (idprom.c) will do the checksum.
    311  */
    312 void
    313 sun2_getidprom(u_char *dst)
    314 {
    315 	vaddr_t src;	/* control space address */
    316 	int len, x;
    317 
    318 	src = IDPROM_BASE;
    319 	len = sizeof(struct idprom);
    320 	do {
    321 		x = get_control_byte(src);
    322 		src += NBPG;
    323 		*dst++ = x;
    324 	} while (--len > 0);
    325 }
    326 
    327 /*****************************************************************
    328  * Init our function pointers, etc.
    329  */
    330 
    331 /*
    332  * For booting, the PROM in fredette's Sun 2/120 doesn't map
    333  * much main memory, and what is mapped is mapped strangely.
    334  * Low virtual memory is mapped like:
    335  *
    336  * 0x000000 - 0x0bffff virtual -> 0x000000 - 0x0bffff physical
    337  * 0x0c0000 - 0x0fffff virtual -> invalid
    338  * 0x100000 - 0x13ffff virtual -> 0x0c0000 - 0x0fffff physical
    339  * 0x200800 - 0x3fffff virtual -> 0x200800 - 0x3fffff physical
    340  *
    341  * I think the SunOS authors wanted to load kernels starting at
    342  * physical zero, and assumed that kernels would be less
    343  * than 768K (0x0c0000) long.  Also, the PROM maps physical
    344  * 0x0c0000 - 0x0fffff into DVMA space, so we can't take the
    345  * easy road and just add more mappings to use that physical
    346  * memory while loading (the PROM might do DMA there).
    347  *
    348  * What we do, then, is assume a 4MB machine (you'll really
    349  * need that to run NetBSD at all anyways), and we map two
    350  * chunks of physical and virtual space:
    351  *
    352  * 0x400000 - 0x4bffff virtual -> 0x000000 - 0x0bffff physical
    353  * 0x4c0000 - 0x600000 virtual -> 0x2c0000 - 0x3fffff physical
    354  *
    355  * And then we load starting at virtual 0x400000.  We will do
    356  * all of this mapping just by copying PMEGs.
    357  *
    358  * After the load is done, but before we enter the kernel, we're
    359  * done with the PROM, so we copy the part of the kernel that
    360  * got loaded at physical 0x2c0000 down to physical 0x0c0000.
    361  * This can't just be a PMEG copy; we've actually got to move
    362  * bytes in physical memory.
    363  *
    364  * These two chunks of physical and virtual space are defined
    365  * in macros below.  Some of the macros are only for completeness:
    366  */
    367 #define MEM_CHUNK0_SIZE			(0x0c0000)
    368 #define MEM_CHUNK0_LOAD_PHYS		(0x000000)
    369 #define MEM_CHUNK0_LOAD_VIRT		(0x400000)
    370 #define MEM_CHUNK0_LOAD_VIRT_PROM	MEM_CHUNK0_LOAD_PHYS
    371 #define MEM_CHUNK0_COPY_PHYS		MEM_CHUNK0_LOAD_PHYS
    372 #define MEM_CHUNK0_COPY_VIRT		MEM_CHUNK0_COPY_PHYS
    373 
    374 #define MEM_CHUNK1_SIZE			(0x140000)
    375 #define MEM_CHUNK1_LOAD_PHYS		(0x2c0000)
    376 #define MEM_CHUNK1_LOAD_VIRT		(MEM_CHUNK0_LOAD_VIRT + MEM_CHUNK0_SIZE)
    377 #define MEM_CHUNK1_LOAD_VIRT_PROM	MEM_CHUNK1_LOAD_PHYS
    378 #define MEM_CHUNK1_COPY_PHYS		(MEM_CHUNK0_LOAD_PHYS + MEM_CHUNK0_SIZE)
    379 #define MEM_CHUNK1_COPY_VIRT		MEM_CHUNK1_COPY_PHYS
    380 
    381 /* Maps memory for loading. */
    382 u_long
    383 sun2_map_mem_load(void)
    384 {
    385 	vaddr_t off;
    386 
    387 	/* Map chunk zero for loading. */
    388 	for(off = 0; off < MEM_CHUNK0_SIZE; off += NBSG)
    389 		set_segmap(MEM_CHUNK0_LOAD_VIRT + off,
    390 			   get_segmap(MEM_CHUNK0_LOAD_VIRT_PROM + off));
    391 
    392 	/* Map chunk one for loading. */
    393 	for(off = 0; off < MEM_CHUNK1_SIZE; off += NBSG)
    394 		set_segmap(MEM_CHUNK1_LOAD_VIRT + off,
    395 			   get_segmap(MEM_CHUNK1_LOAD_VIRT_PROM + off));
    396 
    397 	/* Tell our caller where in virtual space to load. */
    398 	return MEM_CHUNK0_LOAD_VIRT;
    399 }
    400 
    401 /* Remaps memory for running. */
    402 void *
    403 sun2_map_mem_run(void *entry)
    404 {
    405 	vaddr_t off, off_end;
    406 	int sme;
    407 	u_int pte;
    408 
    409 	/* Chunk zero is already mapped and copied. */
    410 
    411 	/* Chunk one needs to be mapped and copied. */
    412 	pte = (get_pte(0) & ~PG_FRAME);
    413 	for(off = 0; off < MEM_CHUNK1_SIZE; ) {
    414 
    415 		/*
    416 		 * We use the PMEG immediately before the
    417 		 * segment we're copying in the PROM virtual
    418 		 * mapping of the chunk.  If this is the first
    419 		 * segment, this is the PMEG the PROM used to
    420 		 * map 0x2b8000 virtual to 0x2b8000 physical,
    421 		 * which I'll assume is unused.  For the second
    422 		 * and subsequent segments, this will be the
    423 		 * PMEG used to map the previous segment, which
    424 		 * is now (since we already copied it) unused.
    425 		 */
    426 		sme = get_segmap((MEM_CHUNK1_LOAD_VIRT_PROM + off) - NBSG);
    427 		set_segmap(MEM_CHUNK1_COPY_VIRT + off, sme);
    428 
    429 		/* Set the PTEs in this new PMEG. */
    430 		for(off_end = off + NBSG; off < off_end; off += NBPG)
    431 			set_pte(MEM_CHUNK1_COPY_VIRT + off,
    432 				pte | PA_PGNUM(MEM_CHUNK1_COPY_PHYS + off));
    433 
    434 		/* Copy this segment. */
    435 		memcpy((void *)(MEM_CHUNK1_COPY_VIRT + (off - NBSG)),
    436 		       (void *)(MEM_CHUNK1_LOAD_VIRT + (off - NBSG)),
    437 		       NBSG);
    438 	}
    439 
    440 	/* Tell our caller where in virtual space to enter. */
    441 	return ((char *)entry) - MEM_CHUNK0_LOAD_VIRT;
    442 }
    443 
    444 void
    445 sun2_init(void)
    446 {
    447 	/* Set the function pointers. */
    448 	dev_mapin_p   = dev2_mapin;
    449 	dvma_alloc_p  = dvma2_alloc;
    450 	dvma_free_p   = dvma2_free;
    451 	dvma_mapin_p  = dvma2_mapin;
    452 	dvma_mapout_p = dvma2_mapout;
    453 
    454 	/* Prepare DVMA segment. */
    455 	dvma2_init();
    456 }
    457