mba.c revision 1.20 1 1.20 matt /* $NetBSD: mba.c,v 1.20 2000/06/04 06:16:55 matt Exp $ */
2 1.1 ragge /*
3 1.3 ragge * Copyright (c) 1994, 1996 Ludd, University of Lule}, Sweden.
4 1.1 ragge * All rights reserved.
5 1.1 ragge *
6 1.1 ragge * Redistribution and use in source and binary forms, with or without
7 1.1 ragge * modification, are permitted provided that the following conditions
8 1.1 ragge * are met:
9 1.1 ragge * 1. Redistributions of source code must retain the above copyright
10 1.1 ragge * notice, this list of conditions and the following disclaimer.
11 1.1 ragge * 2. Redistributions in binary form must reproduce the above copyright
12 1.1 ragge * notice, this list of conditions and the following disclaimer in the
13 1.1 ragge * documentation and/or other materials provided with the distribution.
14 1.1 ragge * 3. All advertising materials mentioning features or use of this software
15 1.1 ragge * must display the following acknowledgement:
16 1.3 ragge * This product includes software developed at Ludd, University of
17 1.3 ragge * Lule}, Sweden and its contributors.
18 1.1 ragge * 4. The name of the author may not be used to endorse or promote products
19 1.1 ragge * derived from this software without specific prior written permission
20 1.1 ragge *
21 1.1 ragge * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
22 1.1 ragge * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
23 1.1 ragge * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
24 1.1 ragge * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
25 1.1 ragge * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
26 1.1 ragge * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
27 1.1 ragge * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
28 1.1 ragge * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
29 1.1 ragge * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
30 1.1 ragge * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
31 1.1 ragge */
32 1.1 ragge
33 1.3 ragge /*
34 1.3 ragge * Simple massbus drive routine.
35 1.3 ragge * TODO:
36 1.3 ragge * Autoconfig new devices 'on the fly'.
37 1.3 ragge * More intelligent way to handle different interrupts.
38 1.3 ragge */
39 1.3 ragge
40 1.3 ragge #include <sys/param.h>
41 1.6 ragge #include <sys/systm.h>
42 1.3 ragge #include <sys/device.h>
43 1.3 ragge #include <sys/queue.h>
44 1.3 ragge #include <sys/buf.h>
45 1.3 ragge #include <sys/proc.h>
46 1.3 ragge
47 1.3 ragge #include <vm/vm.h>
48 1.3 ragge #include <vm/vm_kern.h>
49 1.3 ragge
50 1.3 ragge #include <machine/trap.h>
51 1.3 ragge #include <machine/scb.h>
52 1.3 ragge #include <machine/nexus.h>
53 1.3 ragge #include <machine/pte.h>
54 1.3 ragge #include <machine/pcb.h>
55 1.4 ragge #include <machine/sid.h>
56 1.14 ragge #include <machine/cpu.h>
57 1.1 ragge
58 1.3 ragge #include <vax/mba/mbareg.h>
59 1.3 ragge #include <vax/mba/mbavar.h>
60 1.1 ragge
61 1.16 matt #include "opt_vax750.h"
62 1.16 matt
63 1.3 ragge struct mbaunit mbaunit[] = {
64 1.6 ragge {MBADT_RP04, "rp04", MB_RP},
65 1.6 ragge {MBADT_RP05, "rp05", MB_RP},
66 1.6 ragge {MBADT_RP06, "rp06", MB_RP},
67 1.6 ragge {MBADT_RP07, "rp07", MB_RP},
68 1.6 ragge {MBADT_RM02, "rm02", MB_RP},
69 1.6 ragge {MBADT_RM03, "rm03", MB_RP},
70 1.6 ragge {MBADT_RM05, "rm05", MB_RP},
71 1.6 ragge {MBADT_RM80, "rm80", MB_RP},
72 1.6 ragge {0, 0, 0}
73 1.3 ragge };
74 1.3 ragge
75 1.13 ragge int mbamatch __P((struct device *, struct cfdata *, void *));
76 1.3 ragge void mbaattach __P((struct device *, struct device *, void *));
77 1.18 matt void mbaintr __P((void *));
78 1.8 cgd int mbaprint __P((void *, const char *));
79 1.3 ragge void mbaqueue __P((struct mba_device *));
80 1.3 ragge void mbastart __P((struct mba_softc *));
81 1.3 ragge void mbamapregs __P((struct mba_softc *));
82 1.3 ragge
83 1.7 ragge struct cfattach mba_cmi_ca = {
84 1.7 ragge sizeof(struct mba_softc), mbamatch, mbaattach
85 1.7 ragge };
86 1.7 ragge
87 1.7 ragge struct cfattach mba_sbi_ca = {
88 1.5 ragge sizeof(struct mba_softc), mbamatch, mbaattach
89 1.3 ragge };
90 1.11 thorpej
91 1.12 ragge extern struct cfdriver mba_cd;
92 1.1 ragge
93 1.3 ragge /*
94 1.3 ragge * Look if this is a massbuss adapter.
95 1.3 ragge */
96 1.3 ragge int
97 1.13 ragge mbamatch(parent, cf, aux)
98 1.3 ragge struct device *parent;
99 1.13 ragge struct cfdata *cf;
100 1.13 ragge void *aux;
101 1.3 ragge {
102 1.3 ragge struct sbi_attach_args *sa = (struct sbi_attach_args *)aux;
103 1.1 ragge
104 1.3 ragge if ((cf->cf_loc[0] != sa->nexnum) && (cf->cf_loc[0] > -1 ))
105 1.3 ragge return 0;
106 1.1 ragge
107 1.3 ragge if (sa->type == NEX_MBA)
108 1.3 ragge return 1;
109 1.1 ragge
110 1.3 ragge return 0;
111 1.3 ragge }
112 1.1 ragge
113 1.3 ragge /*
114 1.3 ragge * Attach the found massbuss adapter. Setup its interrupt vectors,
115 1.3 ragge * reset it and go searching for drives on it.
116 1.3 ragge */
117 1.3 ragge void
118 1.3 ragge mbaattach(parent, self, aux)
119 1.3 ragge struct device *parent, *self;
120 1.3 ragge void *aux;
121 1.3 ragge {
122 1.3 ragge struct mba_softc *sc = (void *)self;
123 1.3 ragge struct sbi_attach_args *sa = (struct sbi_attach_args *)aux;
124 1.3 ragge volatile struct mba_regs *mbar = (struct mba_regs *)sa->nexaddr;
125 1.3 ragge struct mba_attach_args ma;
126 1.3 ragge int i, j;
127 1.3 ragge
128 1.10 christos printf("\n");
129 1.3 ragge /*
130 1.3 ragge * Set up interrupt vectors for this MBA.
131 1.3 ragge */
132 1.18 matt sc->sc_dsp = idsptch;
133 1.18 matt sc->sc_dsp.pushlarg = sc;
134 1.18 matt sc->sc_dsp.hoppaddr = mbaintr;
135 1.20 matt sc->sc_dsp.ev = &sc->sc_intrcnt;
136 1.3 ragge scb->scb_nexvec[0][sa->nexnum] = scb->scb_nexvec[1][sa->nexnum] =
137 1.3 ragge scb->scb_nexvec[2][sa->nexnum] = scb->scb_nexvec[3][sa->nexnum] =
138 1.3 ragge &sc->sc_dsp;
139 1.20 matt evcnt_attach(&sc->sc_dev, "intr", &sc->sc_intrcnt);
140 1.3 ragge
141 1.4 ragge sc->sc_physnr = sa->nexnum - 8; /* MBA's have TR between 8 - 11... */
142 1.16 matt #if VAX750
143 1.7 ragge if (vax_cputype == VAX_750)
144 1.4 ragge sc->sc_physnr += 4; /* ...but not on 11/750 */
145 1.4 ragge #endif
146 1.3 ragge sc->sc_first = 0;
147 1.3 ragge sc->sc_last = (void *)&sc->sc_first;
148 1.3 ragge sc->sc_mbareg = (struct mba_regs *)mbar;
149 1.3 ragge mbar->mba_cr = MBACR_INIT; /* Reset adapter */
150 1.3 ragge mbar->mba_cr = MBACR_IE; /* Enable interrupts */
151 1.3 ragge
152 1.3 ragge for (i = 0; i < MAXMBADEV; i++) {
153 1.3 ragge sc->sc_state = SC_AUTOCONF;
154 1.3 ragge if ((mbar->mba_md[i].md_ds & MBADS_DPR) == 0)
155 1.3 ragge continue;
156 1.3 ragge /* We have a drive, ok. */
157 1.3 ragge ma.unit = i;
158 1.3 ragge ma.type = mbar->mba_md[i].md_dt & 0777;
159 1.3 ragge j = 0;
160 1.3 ragge while (mbaunit[j++].nr)
161 1.3 ragge if (mbaunit[j].nr == ma.type)
162 1.3 ragge break;
163 1.3 ragge ma.devtyp = mbaunit[j].devtyp;
164 1.3 ragge ma.name = mbaunit[j].name;
165 1.3 ragge config_found(&sc->sc_dev, (void *)&ma, mbaprint);
166 1.1 ragge }
167 1.1 ragge }
168 1.1 ragge
169 1.1 ragge /*
170 1.3 ragge * We got an interrupt. Check type of interrupt and call the specific
171 1.3 ragge * device interrupt handling routine.
172 1.1 ragge */
173 1.3 ragge void
174 1.3 ragge mbaintr(mba)
175 1.18 matt void *mba;
176 1.3 ragge {
177 1.18 matt struct mba_softc *sc = mba;
178 1.3 ragge volatile struct mba_regs *mr = sc->sc_mbareg;
179 1.3 ragge struct mba_device *md;
180 1.3 ragge struct buf *bp;
181 1.6 ragge int itype, attn, anr;
182 1.3 ragge
183 1.3 ragge itype = mr->mba_sr;
184 1.3 ragge mr->mba_sr = itype; /* Write back to clear bits */
185 1.3 ragge
186 1.3 ragge attn = mr->mba_md[0].md_as & 0xff;
187 1.3 ragge mr->mba_md[0].md_as = attn;
188 1.3 ragge
189 1.3 ragge if (sc->sc_state == SC_AUTOCONF)
190 1.3 ragge return; /* During autoconfig */
191 1.3 ragge
192 1.3 ragge md = sc->sc_first;
193 1.17 thorpej bp = BUFQ_FIRST(&md->md_q);
194 1.3 ragge /*
195 1.3 ragge * A data-transfer interrupt. Current operation is finished,
196 1.3 ragge * call that device's finish routine to see what to do next.
197 1.3 ragge */
198 1.3 ragge if (sc->sc_state == SC_ACTIVE) {
199 1.3 ragge
200 1.3 ragge sc->sc_state = SC_IDLE;
201 1.3 ragge switch ((*md->md_finish)(md, itype, &attn)) {
202 1.3 ragge
203 1.3 ragge case XFER_FINISH:
204 1.3 ragge /*
205 1.3 ragge * Transfer is finished. Take buffer of drive
206 1.3 ragge * queue, and take drive of adapter queue.
207 1.3 ragge * If more to transfer, start the adapter again
208 1.3 ragge * by calling mbastart().
209 1.3 ragge */
210 1.17 thorpej BUFQ_REMOVE(&md->md_q, bp);
211 1.3 ragge sc->sc_first = md->md_back;
212 1.3 ragge md->md_back = 0;
213 1.3 ragge if (sc->sc_first == 0)
214 1.3 ragge sc->sc_last = (void *)&sc->sc_first;
215 1.3 ragge
216 1.17 thorpej if (BUFQ_FIRST(&md->md_q) != NULL) {
217 1.3 ragge sc->sc_last->md_back = md;
218 1.3 ragge sc->sc_last = md;
219 1.3 ragge }
220 1.3 ragge
221 1.3 ragge bp->b_resid = 0;
222 1.3 ragge biodone(bp);
223 1.3 ragge if (sc->sc_first)
224 1.3 ragge mbastart(sc);
225 1.3 ragge break;
226 1.3 ragge
227 1.3 ragge case XFER_RESTART:
228 1.3 ragge /*
229 1.3 ragge * Something went wrong with the transfer. Try again.
230 1.3 ragge */
231 1.3 ragge mbastart(sc);
232 1.3 ragge break;
233 1.3 ragge }
234 1.3 ragge }
235 1.1 ragge
236 1.3 ragge while (attn) {
237 1.3 ragge anr = ffs(attn) - 1;
238 1.3 ragge attn &= ~(1 << anr);
239 1.3 ragge if (sc->sc_md[anr]->md_attn == 0)
240 1.3 ragge panic("Should check for new MBA device %d", anr);
241 1.3 ragge (*sc->sc_md[anr]->md_attn)(sc->sc_md[anr]);
242 1.3 ragge }
243 1.3 ragge }
244 1.3 ragge
245 1.3 ragge int
246 1.3 ragge mbaprint(aux, mbaname)
247 1.3 ragge void *aux;
248 1.8 cgd const char *mbaname;
249 1.3 ragge {
250 1.3 ragge struct mba_attach_args *ma = aux;
251 1.3 ragge
252 1.3 ragge if (mbaname) {
253 1.3 ragge if (ma->name)
254 1.10 christos printf("%s", ma->name);
255 1.3 ragge else
256 1.10 christos printf("device type %o", ma->type);
257 1.10 christos printf(" at %s", mbaname);
258 1.3 ragge }
259 1.10 christos printf(" drive %d", ma->unit);
260 1.3 ragge return (ma->name ? UNCONF : UNSUPP);
261 1.3 ragge }
262 1.1 ragge
263 1.1 ragge /*
264 1.3 ragge * A device calls mbaqueue() when it wants to get on the adapter queue.
265 1.3 ragge * Called at splbio(). If the adapter is inactive, start it.
266 1.1 ragge */
267 1.3 ragge void
268 1.3 ragge mbaqueue(md)
269 1.3 ragge struct mba_device *md;
270 1.3 ragge {
271 1.3 ragge struct mba_softc *sc = md->md_mba;
272 1.3 ragge int i = (int)sc->sc_first;
273 1.3 ragge
274 1.3 ragge sc->sc_last->md_back = md;
275 1.3 ragge sc->sc_last = md;
276 1.3 ragge
277 1.3 ragge if (i == 0)
278 1.3 ragge mbastart(sc);
279 1.3 ragge }
280 1.3 ragge
281 1.1 ragge /*
282 1.3 ragge * Start activity on (idling) adapter. Calls mbamapregs() to setup
283 1.3 ragge * for dma transfer, then the unit-specific start routine.
284 1.1 ragge */
285 1.3 ragge void
286 1.3 ragge mbastart(sc)
287 1.3 ragge struct mba_softc *sc;
288 1.3 ragge {
289 1.3 ragge struct mba_device *md = sc->sc_first;
290 1.3 ragge volatile struct mba_regs *mr = sc->sc_mbareg;
291 1.17 thorpej struct buf *bp = BUFQ_FIRST(&md->md_q);
292 1.3 ragge
293 1.17 thorpej disk_reallymapin(BUFQ_FIRST(&md->md_q), sc->sc_mbareg->mba_map,
294 1.17 thorpej 0, PG_V);
295 1.3 ragge
296 1.3 ragge sc->sc_state = SC_ACTIVE;
297 1.19 thorpej mr->mba_var = ((u_int)bp->b_data & VAX_PGOFSET);
298 1.3 ragge mr->mba_bc = (~bp->b_bcount) + 1;
299 1.3 ragge (*md->md_start)(md); /* machine-dependent start */
300 1.3 ragge }
301