mba.c revision 1.5 1 1.5 ragge /* $NetBSD: mba.c,v 1.5 1996/03/17 22:56:39 ragge Exp $ */
2 1.1 ragge /*
3 1.3 ragge * Copyright (c) 1994, 1996 Ludd, University of Lule}, Sweden.
4 1.1 ragge * All rights reserved.
5 1.1 ragge *
6 1.1 ragge * Redistribution and use in source and binary forms, with or without
7 1.1 ragge * modification, are permitted provided that the following conditions
8 1.1 ragge * are met:
9 1.1 ragge * 1. Redistributions of source code must retain the above copyright
10 1.1 ragge * notice, this list of conditions and the following disclaimer.
11 1.1 ragge * 2. Redistributions in binary form must reproduce the above copyright
12 1.1 ragge * notice, this list of conditions and the following disclaimer in the
13 1.1 ragge * documentation and/or other materials provided with the distribution.
14 1.1 ragge * 3. All advertising materials mentioning features or use of this software
15 1.1 ragge * must display the following acknowledgement:
16 1.3 ragge * This product includes software developed at Ludd, University of
17 1.3 ragge * Lule}, Sweden and its contributors.
18 1.1 ragge * 4. The name of the author may not be used to endorse or promote products
19 1.1 ragge * derived from this software without specific prior written permission
20 1.1 ragge *
21 1.1 ragge * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
22 1.1 ragge * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
23 1.1 ragge * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
24 1.1 ragge * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
25 1.1 ragge * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
26 1.1 ragge * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
27 1.1 ragge * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
28 1.1 ragge * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
29 1.1 ragge * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
30 1.1 ragge * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
31 1.1 ragge */
32 1.1 ragge
33 1.3 ragge /*
34 1.3 ragge * Simple massbus drive routine.
35 1.3 ragge * TODO:
36 1.3 ragge * Autoconfig new devices 'on the fly'.
37 1.3 ragge * More intelligent way to handle different interrupts.
38 1.3 ragge */
39 1.3 ragge
40 1.3 ragge #include <sys/param.h>
41 1.3 ragge #include <sys/device.h>
42 1.3 ragge #include <sys/queue.h>
43 1.3 ragge #include <sys/buf.h>
44 1.3 ragge #include <sys/proc.h>
45 1.3 ragge
46 1.3 ragge #include <vm/vm.h>
47 1.3 ragge #include <vm/vm_kern.h>
48 1.3 ragge
49 1.3 ragge #include <machine/trap.h>
50 1.3 ragge #include <machine/scb.h>
51 1.3 ragge #include <machine/nexus.h>
52 1.3 ragge #include <machine/pte.h>
53 1.3 ragge #include <machine/pcb.h>
54 1.4 ragge #include <machine/sid.h>
55 1.1 ragge
56 1.3 ragge #include <vax/mba/mbareg.h>
57 1.3 ragge #include <vax/mba/mbavar.h>
58 1.1 ragge
59 1.3 ragge struct mbaunit mbaunit[] = {
60 1.3 ragge MBADT_RP04, "rp04", MB_RP,
61 1.3 ragge MBADT_RP05, "rp05", MB_RP,
62 1.3 ragge MBADT_RP06, "rp06", MB_RP,
63 1.3 ragge MBADT_RP07, "rp07", MB_RP,
64 1.3 ragge MBADT_RM02, "rm02", MB_RP,
65 1.3 ragge MBADT_RM03, "rm03", MB_RP,
66 1.3 ragge MBADT_RM05, "rm05", MB_RP,
67 1.3 ragge MBADT_RM80, "rm80", MB_RP,
68 1.3 ragge 0, 0, 0
69 1.3 ragge };
70 1.3 ragge
71 1.3 ragge int mbamatch __P((struct device *, void *, void *));
72 1.3 ragge void mbaattach __P((struct device *, struct device *, void *));
73 1.3 ragge void mbaintr __P((int));
74 1.3 ragge int mbaprint __P((void *, char *));
75 1.3 ragge void mbaqueue __P((struct mba_device *));
76 1.3 ragge void mbastart __P((struct mba_softc *));
77 1.3 ragge void mbamapregs __P((struct mba_softc *));
78 1.3 ragge
79 1.5 ragge struct cfdriver mba_cd = {
80 1.5 ragge NULL, "mba", DV_DULL
81 1.5 ragge };
82 1.5 ragge
83 1.5 ragge struct cfattach mba_ca = {
84 1.5 ragge sizeof(struct mba_softc), mbamatch, mbaattach
85 1.3 ragge };
86 1.1 ragge
87 1.3 ragge /*
88 1.3 ragge * Look if this is a massbuss adapter.
89 1.3 ragge */
90 1.3 ragge int
91 1.3 ragge mbamatch(parent, match, aux)
92 1.3 ragge struct device *parent;
93 1.3 ragge void *match, *aux;
94 1.3 ragge {
95 1.3 ragge struct sbi_attach_args *sa = (struct sbi_attach_args *)aux;
96 1.3 ragge struct cfdata *cf = match;
97 1.1 ragge
98 1.3 ragge if ((cf->cf_loc[0] != sa->nexnum) && (cf->cf_loc[0] > -1 ))
99 1.3 ragge return 0;
100 1.1 ragge
101 1.3 ragge if (sa->type == NEX_MBA)
102 1.3 ragge return 1;
103 1.1 ragge
104 1.3 ragge return 0;
105 1.3 ragge }
106 1.1 ragge
107 1.3 ragge /*
108 1.3 ragge * Attach the found massbuss adapter. Setup its interrupt vectors,
109 1.3 ragge * reset it and go searching for drives on it.
110 1.3 ragge */
111 1.3 ragge void
112 1.3 ragge mbaattach(parent, self, aux)
113 1.3 ragge struct device *parent, *self;
114 1.3 ragge void *aux;
115 1.3 ragge {
116 1.3 ragge struct mba_softc *sc = (void *)self;
117 1.3 ragge struct sbi_attach_args *sa = (struct sbi_attach_args *)aux;
118 1.3 ragge volatile struct mba_regs *mbar = (struct mba_regs *)sa->nexaddr;
119 1.3 ragge struct mba_attach_args ma;
120 1.3 ragge extern struct ivec_dsp idsptch;
121 1.3 ragge int i, j;
122 1.3 ragge
123 1.3 ragge printf("\n");
124 1.3 ragge /*
125 1.3 ragge * Set up interrupt vectors for this MBA.
126 1.3 ragge */
127 1.3 ragge bcopy(&idsptch, &sc->sc_dsp, sizeof(struct ivec_dsp));
128 1.3 ragge scb->scb_nexvec[0][sa->nexnum] = scb->scb_nexvec[1][sa->nexnum] =
129 1.3 ragge scb->scb_nexvec[2][sa->nexnum] = scb->scb_nexvec[3][sa->nexnum] =
130 1.3 ragge &sc->sc_dsp;
131 1.3 ragge sc->sc_dsp.pushlarg = sc->sc_dev.dv_unit;
132 1.3 ragge sc->sc_dsp.hoppaddr = mbaintr;
133 1.3 ragge
134 1.4 ragge sc->sc_physnr = sa->nexnum - 8; /* MBA's have TR between 8 - 11... */
135 1.4 ragge #ifdef VAX750
136 1.4 ragge if (cpunumber == VAX_750)
137 1.4 ragge sc->sc_physnr += 4; /* ...but not on 11/750 */
138 1.4 ragge #endif
139 1.3 ragge sc->sc_first = 0;
140 1.3 ragge sc->sc_last = (void *)&sc->sc_first;
141 1.3 ragge sc->sc_mbareg = (struct mba_regs *)mbar;
142 1.3 ragge mbar->mba_cr = MBACR_INIT; /* Reset adapter */
143 1.3 ragge mbar->mba_cr = MBACR_IE; /* Enable interrupts */
144 1.3 ragge
145 1.3 ragge for (i = 0; i < MAXMBADEV; i++) {
146 1.3 ragge sc->sc_state = SC_AUTOCONF;
147 1.3 ragge if ((mbar->mba_md[i].md_ds & MBADS_DPR) == 0)
148 1.3 ragge continue;
149 1.3 ragge /* We have a drive, ok. */
150 1.3 ragge ma.unit = i;
151 1.3 ragge ma.type = mbar->mba_md[i].md_dt & 0777;
152 1.3 ragge j = 0;
153 1.3 ragge while (mbaunit[j++].nr)
154 1.3 ragge if (mbaunit[j].nr == ma.type)
155 1.3 ragge break;
156 1.3 ragge ma.devtyp = mbaunit[j].devtyp;
157 1.3 ragge ma.name = mbaunit[j].name;
158 1.3 ragge config_found(&sc->sc_dev, (void *)&ma, mbaprint);
159 1.1 ragge }
160 1.1 ragge }
161 1.1 ragge
162 1.1 ragge /*
163 1.3 ragge * We got an interrupt. Check type of interrupt and call the specific
164 1.3 ragge * device interrupt handling routine.
165 1.1 ragge */
166 1.3 ragge void
167 1.3 ragge mbaintr(mba)
168 1.3 ragge int mba;
169 1.3 ragge {
170 1.5 ragge struct mba_softc *sc = mba_cd.cd_devs[mba];
171 1.3 ragge volatile struct mba_regs *mr = sc->sc_mbareg;
172 1.3 ragge struct mba_device *md;
173 1.3 ragge struct buf *bp;
174 1.3 ragge int itype, attn, anr, serv = 0;
175 1.3 ragge
176 1.3 ragge itype = mr->mba_sr;
177 1.3 ragge mr->mba_sr = itype; /* Write back to clear bits */
178 1.3 ragge
179 1.3 ragge attn = mr->mba_md[0].md_as & 0xff;
180 1.3 ragge mr->mba_md[0].md_as = attn;
181 1.3 ragge
182 1.3 ragge if (sc->sc_state == SC_AUTOCONF)
183 1.3 ragge return; /* During autoconfig */
184 1.3 ragge
185 1.3 ragge md = sc->sc_first;
186 1.3 ragge bp = md->md_q.b_actf;
187 1.3 ragge /*
188 1.3 ragge * A data-transfer interrupt. Current operation is finished,
189 1.3 ragge * call that device's finish routine to see what to do next.
190 1.3 ragge */
191 1.3 ragge if (sc->sc_state == SC_ACTIVE) {
192 1.3 ragge
193 1.3 ragge sc->sc_state = SC_IDLE;
194 1.3 ragge switch ((*md->md_finish)(md, itype, &attn)) {
195 1.3 ragge
196 1.3 ragge case XFER_FINISH:
197 1.3 ragge /*
198 1.3 ragge * Transfer is finished. Take buffer of drive
199 1.3 ragge * queue, and take drive of adapter queue.
200 1.3 ragge * If more to transfer, start the adapter again
201 1.3 ragge * by calling mbastart().
202 1.3 ragge */
203 1.3 ragge md->md_q.b_actf = bp->b_actf;
204 1.3 ragge sc->sc_first = md->md_back;
205 1.3 ragge md->md_back = 0;
206 1.3 ragge if (sc->sc_first == 0)
207 1.3 ragge sc->sc_last = (void *)&sc->sc_first;
208 1.3 ragge
209 1.3 ragge if (md->md_q.b_actf) {
210 1.3 ragge sc->sc_last->md_back = md;
211 1.3 ragge sc->sc_last = md;
212 1.3 ragge }
213 1.3 ragge
214 1.3 ragge bp->b_resid = 0;
215 1.3 ragge biodone(bp);
216 1.3 ragge if (sc->sc_first)
217 1.3 ragge mbastart(sc);
218 1.3 ragge break;
219 1.3 ragge
220 1.3 ragge case XFER_RESTART:
221 1.3 ragge /*
222 1.3 ragge * Something went wrong with the transfer. Try again.
223 1.3 ragge */
224 1.3 ragge mbastart(sc);
225 1.3 ragge break;
226 1.3 ragge }
227 1.3 ragge }
228 1.1 ragge
229 1.3 ragge while (attn) {
230 1.3 ragge anr = ffs(attn) - 1;
231 1.3 ragge attn &= ~(1 << anr);
232 1.3 ragge if (sc->sc_md[anr]->md_attn == 0)
233 1.3 ragge panic("Should check for new MBA device %d", anr);
234 1.3 ragge (*sc->sc_md[anr]->md_attn)(sc->sc_md[anr]);
235 1.3 ragge }
236 1.3 ragge }
237 1.3 ragge
238 1.3 ragge int
239 1.3 ragge mbaprint(aux, mbaname)
240 1.3 ragge void *aux;
241 1.3 ragge char *mbaname;
242 1.3 ragge {
243 1.3 ragge struct mba_attach_args *ma = aux;
244 1.3 ragge
245 1.3 ragge if (mbaname) {
246 1.3 ragge if (ma->name)
247 1.3 ragge printf("%s", ma->name);
248 1.3 ragge else
249 1.3 ragge printf("device type %o", ma->type);
250 1.3 ragge printf(" at %s", mbaname);
251 1.3 ragge }
252 1.3 ragge printf(" drive %d", ma->unit);
253 1.3 ragge return (ma->name ? UNCONF : UNSUPP);
254 1.3 ragge }
255 1.1 ragge
256 1.1 ragge /*
257 1.3 ragge * A device calls mbaqueue() when it wants to get on the adapter queue.
258 1.3 ragge * Called at splbio(). If the adapter is inactive, start it.
259 1.1 ragge */
260 1.3 ragge void
261 1.3 ragge mbaqueue(md)
262 1.3 ragge struct mba_device *md;
263 1.3 ragge {
264 1.3 ragge struct mba_softc *sc = md->md_mba;
265 1.3 ragge int i = (int)sc->sc_first;
266 1.3 ragge
267 1.3 ragge sc->sc_last->md_back = md;
268 1.3 ragge sc->sc_last = md;
269 1.3 ragge
270 1.3 ragge if (i == 0)
271 1.3 ragge mbastart(sc);
272 1.3 ragge }
273 1.3 ragge
274 1.1 ragge /*
275 1.3 ragge * Start activity on (idling) adapter. Calls mbamapregs() to setup
276 1.3 ragge * for dma transfer, then the unit-specific start routine.
277 1.1 ragge */
278 1.3 ragge void
279 1.3 ragge mbastart(sc)
280 1.3 ragge struct mba_softc *sc;
281 1.3 ragge {
282 1.3 ragge struct mba_device *md = sc->sc_first;
283 1.3 ragge volatile struct mba_regs *mr = sc->sc_mbareg;
284 1.3 ragge struct buf *bp = md->md_q.b_actf;
285 1.3 ragge
286 1.3 ragge mbamapregs(sc);
287 1.3 ragge
288 1.3 ragge sc->sc_state = SC_ACTIVE;
289 1.3 ragge mr->mba_var = ((u_int)bp->b_un.b_addr & PGOFSET);
290 1.3 ragge mr->mba_bc = (~bp->b_bcount) + 1;
291 1.3 ragge (*md->md_start)(md); /* machine-dependent start */
292 1.3 ragge }
293 1.1 ragge
294 1.1 ragge /*
295 1.3 ragge * Setup map registers for a dma transfer.
296 1.3 ragge * This routine could be synced with the other adapter map routines!
297 1.1 ragge */
298 1.3 ragge void
299 1.3 ragge mbamapregs(sc)
300 1.3 ragge struct mba_softc *sc;
301 1.3 ragge {
302 1.3 ragge struct mba_device *md = sc->sc_first;
303 1.3 ragge volatile struct mba_regs *mr = sc->sc_mbareg;
304 1.3 ragge struct buf *bp = md->md_q.b_actf;
305 1.3 ragge struct pcb *pcb;
306 1.3 ragge pt_entry_t *pte;
307 1.3 ragge volatile pt_entry_t *io;
308 1.3 ragge int pfnum, npf, o, i;
309 1.3 ragge caddr_t addr;
310 1.3 ragge
311 1.3 ragge o = (int)bp->b_un.b_addr & PGOFSET;
312 1.3 ragge npf = btoc(bp->b_bcount + o) + 1;
313 1.3 ragge addr = bp->b_un.b_addr;
314 1.3 ragge
315 1.3 ragge /*
316 1.3 ragge * Get a pointer to the pte pointing out the first virtual address.
317 1.3 ragge * Use different ways in kernel and user space.
318 1.3 ragge */
319 1.3 ragge if ((bp->b_flags & B_PHYS) == 0) {
320 1.3 ragge pte = kvtopte(addr);
321 1.3 ragge } else {
322 1.3 ragge pcb = bp->b_proc->p_vmspace->vm_pmap.pm_pcb;
323 1.3 ragge pte = uvtopte(addr, pcb);
324 1.3 ragge }
325 1.3 ragge
326 1.3 ragge /*
327 1.3 ragge * When we are doing DMA to user space, be sure that all pages
328 1.3 ragge * we want to transfer to is mapped. WHY DO WE NEED THIS???
329 1.3 ragge * SHOULDN'T THEY ALWAYS BE MAPPED WHEN DOING THIS???
330 1.3 ragge */
331 1.3 ragge for (i = 0; i < (npf - 1); i++) {
332 1.3 ragge if ((pte + i)->pg_pfn == 0) {
333 1.3 ragge int rv;
334 1.3 ragge rv = vm_fault(&bp->b_proc->p_vmspace->vm_map,
335 1.3 ragge (unsigned)addr + i * NBPG,
336 1.3 ragge VM_PROT_READ|VM_PROT_WRITE, FALSE);
337 1.3 ragge if (rv)
338 1.3 ragge panic("MBA DMA to nonexistent page, %d", rv);
339 1.1 ragge }
340 1.1 ragge }
341 1.1 ragge
342 1.3 ragge io = &mr->mba_map[0];
343 1.3 ragge while (--npf > 0) {
344 1.3 ragge pfnum = pte->pg_pfn;
345 1.3 ragge if (pfnum == 0)
346 1.3 ragge panic("mba zero entry");
347 1.3 ragge pte++;
348 1.3 ragge *(int *)io++ = pfnum | PG_V;
349 1.3 ragge }
350 1.3 ragge *(int *)io = 0;
351 1.1 ragge }
352 1.1 ragge
353 1.1 ragge
354