ite.c revision 1.2 1 1.2 oki /* $NetBSD: ite.c,v 1.2 1996/05/21 15:32:18 oki Exp $ */
2 1.1 oki
3 1.1 oki /*
4 1.1 oki * Copyright (c) 1988 University of Utah.
5 1.1 oki * Copyright (c) 1990 The Regents of the University of California.
6 1.1 oki * All rights reserved.
7 1.1 oki *
8 1.1 oki * This code is derived from software contributed to Berkeley by
9 1.1 oki * the Systems Programming Group of the University of Utah Computer
10 1.1 oki * Science Department.
11 1.1 oki *
12 1.1 oki * Redistribution and use in source and binary forms, with or without
13 1.1 oki * modification, are permitted provided that the following conditions
14 1.1 oki * are met:
15 1.1 oki * 1. Redistributions of source code must retain the above copyright
16 1.1 oki * notice, this list of conditions and the following disclaimer.
17 1.1 oki * 2. Redistributions in binary form must reproduce the above copyright
18 1.1 oki * notice, this list of conditions and the following disclaimer in the
19 1.1 oki * documentation and/or other materials provided with the distribution.
20 1.1 oki * 3. All advertising materials mentioning features or use of this software
21 1.1 oki * must display the following acknowledgement:
22 1.1 oki * This product includes software developed by the University of
23 1.1 oki * California, Berkeley and its contributors.
24 1.1 oki * 4. Neither the name of the University nor the names of its contributors
25 1.1 oki * may be used to endorse or promote products derived from this software
26 1.1 oki * without specific prior written permission.
27 1.1 oki *
28 1.1 oki * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29 1.1 oki * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30 1.1 oki * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31 1.1 oki * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32 1.1 oki * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33 1.1 oki * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34 1.1 oki * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35 1.1 oki * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36 1.1 oki * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37 1.1 oki * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38 1.1 oki * SUCH DAMAGE.
39 1.1 oki *
40 1.1 oki * from: Utah $Hdr: ite.c 1.1 90/07/09$
41 1.1 oki *
42 1.1 oki * @(#)ite.c 7.6 (Berkeley) 5/16/91
43 1.1 oki */
44 1.1 oki
45 1.1 oki /*
46 1.1 oki * ite - bitmaped terminal.
47 1.1 oki * Supports VT200, a few terminal features will be unavailable until
48 1.1 oki * the system actually probes the device (i.e. not after consinit())
49 1.1 oki */
50 1.1 oki
51 1.1 oki #include "ite.h"
52 1.1 oki #if NITE > 0
53 1.1 oki
54 1.1 oki #include "bell.h"
55 1.1 oki
56 1.1 oki #include <sys/param.h>
57 1.1 oki #include <sys/conf.h>
58 1.1 oki #include <sys/proc.h>
59 1.1 oki #include <sys/ioctl.h>
60 1.1 oki #include <sys/tty.h>
61 1.1 oki #include <sys/systm.h>
62 1.1 oki #include <sys/device.h>
63 1.1 oki #include <sys/malloc.h>
64 1.1 oki #include <machine/kbio.h>
65 1.1 oki
66 1.1 oki #include <x68k/dev/grfioctl.h>
67 1.1 oki #include <x68k/dev/grfvar.h>
68 1.1 oki #include <x68k/dev/itevar.h>
69 1.1 oki #include <x68k/dev/kbdmap.h>
70 1.1 oki
71 1.1 oki #include <x68k/x68k/iodevice.h>
72 1.1 oki #include <x68k/dev/iteioctl.h>
73 1.1 oki
74 1.1 oki #define SUBR_CNPROBE(min) itesw[min].ite_cnprobe(min)
75 1.1 oki #define SUBR_INIT(ip) ip->isw->ite_init(ip)
76 1.1 oki #define SUBR_DEINIT(ip) ip->isw->ite_deinit(ip)
77 1.1 oki #define SUBR_PUTC(ip,c,dy,dx,m) ip->isw->ite_putc(ip,c,dy,dx,m)
78 1.1 oki #define SUBR_CURSOR(ip,flg) ip->isw->ite_cursor(ip,flg)
79 1.1 oki #define SUBR_CLEAR(ip,sy,sx,h,w) ip->isw->ite_clear(ip,sy,sx,h,w)
80 1.1 oki #define SUBR_SCROLL(ip,sy,sx,count,dir) \
81 1.1 oki ip->isw->ite_scroll(ip,sy,sx,count,dir)
82 1.1 oki
83 1.1 oki struct consdev;
84 1.1 oki
85 1.1 oki static void iteprecheckwrap __P((struct ite_softc *ip));
86 1.1 oki static void itecheckwrap __P((struct ite_softc *ip));
87 1.1 oki static void repeat_handler __P((void *arg));
88 1.1 oki static int ite_argnum __P((struct ite_softc *ip));
89 1.1 oki static int ite_zargnum __P((struct ite_softc *ip));
90 1.1 oki static void ite_sendstr __P((struct ite_softc *ip, char *str));
91 1.1 oki inline static int atoi __P((const char *cp));
92 1.1 oki inline static char *index __P((const char *cp, char ch));
93 1.1 oki void ite_reset __P((struct ite_softc *ip));
94 1.1 oki
95 1.1 oki struct itesw itesw[] = {
96 1.1 oki 0, view_init, view_deinit, 0,
97 1.1 oki 0, 0, 0,
98 1.1 oki };
99 1.1 oki int nitesw = sizeof(itesw) / sizeof(itesw[0]);
100 1.1 oki
101 1.1 oki /*
102 1.1 oki * # of chars are output in a single itestart() call.
103 1.1 oki * If this is too big, user processes will be blocked out for
104 1.1 oki * long periods of time while we are emptying the queue in itestart().
105 1.1 oki * If it is too small, console output will be very ragged.
106 1.1 oki */
107 1.1 oki #define ITEBURST 64
108 1.1 oki
109 1.1 oki int nite = NITE;
110 1.1 oki struct tty *ite_tty[NITE];
111 1.1 oki struct ite_softc *kbd_ite = NULL;
112 1.1 oki struct ite_softc con_itesoftc;
113 1.1 oki
114 1.1 oki struct tty *kbd_tty = NULL;
115 1.1 oki
116 1.1 oki int start_repeat_timeo = 20; /* /100: initial timeout till pressed key repeats */
117 1.1 oki int next_repeat_timeo = 3; /* /100: timeout when repeating for next char */
118 1.1 oki
119 1.1 oki u_char cons_tabs[MAX_TABS];
120 1.1 oki
121 1.1 oki int kbd_init;
122 1.1 oki
123 1.1 oki void itestart __P((struct tty *tp));
124 1.1 oki
125 1.1 oki void iteputchar __P((int c, struct ite_softc *ip));
126 1.1 oki void ite_putstr __P((const u_char * s, int len, dev_t dev));
127 1.1 oki
128 1.1 oki void iteattach __P((struct device *, struct device *, void *));
129 1.1 oki int itematch __P((struct device *, void *, void *));
130 1.1 oki
131 1.1 oki struct cfattach ite_ca = {
132 1.1 oki sizeof(struct ite_softc), itematch, iteattach
133 1.1 oki };
134 1.1 oki
135 1.1 oki struct cfdriver ite_cd = {
136 1.1 oki NULL, "ite", DV_DULL, NULL, 0
137 1.1 oki };
138 1.1 oki
139 1.1 oki int
140 1.1 oki itematch(pdp, match, auxp)
141 1.1 oki struct device *pdp;
142 1.1 oki void *match, *auxp;
143 1.1 oki {
144 1.1 oki struct cfdata *cdp = match;
145 1.1 oki struct grf_softc *gp;
146 1.1 oki int maj;
147 1.1 oki
148 1.1 oki gp = auxp;
149 1.1 oki
150 1.1 oki /* ite0 should be at grf0 XXX */
151 1.1 oki if(cdp->cf_unit != gp->g_device.dv_unit)
152 1.1 oki return(0);
153 1.1 oki
154 1.1 oki #if 0
155 1.1 oki /*
156 1.1 oki * all that our mask allows (more than enough no one
157 1.1 oki * has > 32 monitors for text consoles on one machine)
158 1.1 oki */
159 1.1 oki if (cdp->cf_unit >= sizeof(ite_confunits) * NBBY)
160 1.1 oki return(0);
161 1.1 oki /*
162 1.1 oki * XXX
163 1.1 oki * normally this would be done in attach, however
164 1.1 oki * during early init we do not have a device pointer
165 1.1 oki * and thus no unit number.
166 1.1 oki */
167 1.1 oki for(maj = 0; maj < nchrdev; maj++)
168 1.1 oki if (cdevsw[maj].d_open == iteopen)
169 1.1 oki break;
170 1.1 oki gp->g_itedev = makedev(maj, cdp->cf_unit);
171 1.1 oki #endif
172 1.1 oki return(1);
173 1.1 oki }
174 1.1 oki
175 1.1 oki /*
176 1.1 oki * iteinit() is the standard entry point for initialization of
177 1.1 oki * an ite device, it is also called from ite_cninit().
178 1.1 oki */
179 1.1 oki void
180 1.1 oki iteattach(pdp, dp, auxp)
181 1.1 oki struct device *pdp, *dp;
182 1.1 oki void *auxp;
183 1.1 oki {
184 1.1 oki struct ite_softc *ip;
185 1.1 oki struct grf_softc *gp;
186 1.1 oki
187 1.1 oki gp = (struct grf_softc *)auxp;
188 1.1 oki if (dp) {
189 1.1 oki ip = (struct ite_softc *)dp;
190 1.1 oki if(con_itesoftc.grf != NULL
191 1.1 oki /*&& con_itesoftc.grf->g_unit == gp->g_unit*/) {
192 1.1 oki /*
193 1.1 oki * console reinit copy params over.
194 1.1 oki * and console always gets keyboard
195 1.1 oki */
196 1.1 oki bcopy(&con_itesoftc.grf, &ip->grf,
197 1.1 oki (char *)&ip[1] - (char *)&ip->grf);
198 1.1 oki con_itesoftc.grf = NULL;
199 1.1 oki kbd_ite = ip;
200 1.1 oki }
201 1.1 oki ip->grf = gp;
202 1.1 oki iteinit(ip->device.dv_unit); /* XXX */
203 1.1 oki printf(": rows %d cols %d", ip->rows, ip->cols);
204 1.1 oki if (kbd_ite == NULL)
205 1.1 oki kbd_ite = ip;
206 1.1 oki printf("\n");
207 1.1 oki } else {
208 1.1 oki if (con_itesoftc.grf != NULL)
209 1.1 oki return;
210 1.1 oki con_itesoftc.grf = gp;
211 1.1 oki con_itesoftc.tabs = cons_tabs;
212 1.1 oki }
213 1.1 oki }
214 1.1 oki
215 1.1 oki struct ite_softc *
216 1.1 oki getitesp(dev)
217 1.1 oki dev_t dev;
218 1.1 oki {
219 1.1 oki extern int x68k_realconfig;
220 1.1 oki
221 1.1 oki if (x68k_realconfig && con_itesoftc.grf == NULL)
222 1.1 oki return(ite_cd.cd_devs[UNIT(dev)]);
223 1.1 oki
224 1.1 oki if (con_itesoftc.grf == NULL)
225 1.1 oki panic("no ite_softc for console");
226 1.1 oki return(&con_itesoftc);
227 1.1 oki }
228 1.1 oki
229 1.1 oki void
230 1.1 oki iteinit(dev)
231 1.1 oki dev_t dev;
232 1.1 oki {
233 1.1 oki struct ite_softc *ip;
234 1.1 oki
235 1.1 oki ip = getitesp(dev);
236 1.1 oki
237 1.1 oki if (ip->flags & ITE_INITED)
238 1.1 oki return;
239 1.1 oki bcopy(&ascii_kbdmap, &kbdmap, sizeof(struct kbdmap));
240 1.1 oki
241 1.1 oki ip->curx = 0;
242 1.1 oki ip->cury = 0;
243 1.1 oki ip->cursorx = 0;
244 1.1 oki ip->cursory = 0;
245 1.1 oki
246 1.1 oki ip->isw = &itesw[ip->device.dv_unit]; /* XXX */
247 1.1 oki SUBR_INIT(ip);
248 1.1 oki SUBR_CURSOR(ip, DRAW_CURSOR);
249 1.1 oki if (!ip->tabs)
250 1.1 oki ip->tabs = malloc(MAX_TABS*sizeof(u_char), M_DEVBUF, M_WAITOK);
251 1.1 oki ite_reset(ip);
252 1.1 oki ip->flags |= ITE_INITED;
253 1.1 oki }
254 1.1 oki
255 1.1 oki /*
256 1.1 oki * Perform functions necessary to setup device as a terminal emulator.
257 1.1 oki */
258 1.2 oki int
259 1.1 oki iteon(dev, flag)
260 1.1 oki dev_t dev;
261 1.1 oki int flag;
262 1.1 oki {
263 1.1 oki int unit = UNIT(dev);
264 1.1 oki struct ite_softc *ip = getitesp(unit);
265 1.1 oki
266 1.1 oki if (unit < 0 || unit >= NITE || (ip->flags&ITE_ALIVE) == 0)
267 1.1 oki return(ENXIO);
268 1.1 oki /* force ite active, overriding graphics mode */
269 1.1 oki if (flag & 1) {
270 1.1 oki ip->flags |= ITE_ACTIVE;
271 1.1 oki ip->flags &= ~(ITE_INGRF|ITE_INITED);
272 1.1 oki }
273 1.1 oki /* leave graphics mode */
274 1.1 oki if (flag & 2) {
275 1.1 oki ip->flags &= ~ITE_INGRF;
276 1.1 oki if ((ip->flags & ITE_ACTIVE) == 0)
277 1.1 oki return(0);
278 1.1 oki }
279 1.1 oki ip->flags |= ITE_ACTIVE;
280 1.1 oki if (ip->flags & ITE_INGRF)
281 1.1 oki return(0);
282 1.1 oki iteinit(dev);
283 1.1 oki return(0);
284 1.1 oki }
285 1.1 oki
286 1.1 oki /*
287 1.1 oki * "Shut down" device as terminal emulator.
288 1.1 oki * Note that we do not deinit the console device unless forced.
289 1.1 oki * Deinit'ing the console every time leads to a very active
290 1.1 oki * screen when processing /etc/rc.
291 1.1 oki */
292 1.2 oki void
293 1.1 oki iteoff(dev, flag)
294 1.1 oki dev_t dev;
295 1.1 oki int flag;
296 1.1 oki {
297 1.1 oki register struct ite_softc *ip = getitesp(dev);
298 1.1 oki
299 1.1 oki if (flag & 2)
300 1.1 oki ip->flags |= ITE_INGRF;
301 1.1 oki
302 1.1 oki if ((ip->flags & ITE_ACTIVE) == 0)
303 1.1 oki return;
304 1.1 oki if ((flag & 1) ||
305 1.1 oki (ip->flags & (ITE_INGRF|ITE_ISCONS|ITE_INITED)) == ITE_INITED)
306 1.1 oki SUBR_DEINIT(ip);
307 1.1 oki
308 1.1 oki /*
309 1.1 oki * XXX When the system is rebooted with "reboot", init(8)
310 1.1 oki * kills the last process to have the console open.
311 1.1 oki * If we don't revent the the ITE_ACTIVE bit from being
312 1.1 oki * cleared, we will never see messages printed during
313 1.1 oki * the process of rebooting.
314 1.1 oki */
315 1.1 oki if ((flag & 2) == 0 && (ip->flags & ITE_ISCONS) == 0)
316 1.1 oki ip->flags &= ~ITE_ACTIVE;
317 1.1 oki }
318 1.1 oki
319 1.1 oki /*
320 1.1 oki * standard entry points to the device.
321 1.1 oki */
322 1.1 oki
323 1.1 oki /* ARGSUSED */
324 1.1 oki int
325 1.1 oki iteopen(dev, mode, devtype, p)
326 1.1 oki dev_t dev;
327 1.1 oki int mode, devtype;
328 1.1 oki struct proc *p;
329 1.1 oki {
330 1.1 oki int unit = UNIT(dev);
331 1.1 oki register struct tty *tp;
332 1.1 oki register struct ite_softc *ip;
333 1.1 oki register int error;
334 1.1 oki int first = 0;
335 1.1 oki
336 1.1 oki ip = getitesp(dev);
337 1.1 oki if (!ite_tty[unit])
338 1.1 oki tp = ite_tty[unit] = ttymalloc();
339 1.1 oki else
340 1.1 oki tp = ite_tty[unit];
341 1.1 oki if ((tp->t_state&(TS_ISOPEN|TS_XCLUDE)) == (TS_ISOPEN|TS_XCLUDE)
342 1.1 oki && p->p_ucred->cr_uid != 0)
343 1.1 oki return (EBUSY);
344 1.1 oki if ((ip->flags & ITE_ACTIVE) == 0) {
345 1.1 oki error = iteon(dev, 0);
346 1.1 oki if (error)
347 1.1 oki return (error);
348 1.1 oki first = 1;
349 1.1 oki }
350 1.1 oki tp->t_oproc = itestart;
351 1.1 oki tp->t_param = NULL;
352 1.1 oki tp->t_dev = dev;
353 1.1 oki if ((tp->t_state&TS_ISOPEN) == 0) {
354 1.1 oki ttychars(tp);
355 1.1 oki tp->t_iflag = TTYDEF_IFLAG;
356 1.1 oki tp->t_oflag = TTYDEF_OFLAG;
357 1.1 oki tp->t_cflag = TTYDEF_CFLAG;
358 1.1 oki tp->t_lflag = TTYDEF_LFLAG;
359 1.1 oki tp->t_ispeed = tp->t_ospeed = TTYDEF_SPEED;
360 1.1 oki tp->t_state = TS_ISOPEN|TS_CARR_ON;
361 1.1 oki ttsetwater(tp);
362 1.1 oki }
363 1.1 oki error = (*linesw[tp->t_line].l_open)(dev, tp);
364 1.1 oki if (error == 0) {
365 1.1 oki tp->t_winsize.ws_row = ip->rows;
366 1.1 oki tp->t_winsize.ws_col = ip->cols;
367 1.1 oki if (!kbd_init) {
368 1.1 oki kbd_init = 1;
369 1.1 oki kbdenable();
370 1.1 oki }
371 1.1 oki } else if (first)
372 1.1 oki iteoff(dev, 0);
373 1.1 oki return (error);
374 1.1 oki }
375 1.1 oki
376 1.1 oki /*ARGSUSED*/
377 1.1 oki int
378 1.1 oki iteclose(dev, flag, mode, p)
379 1.1 oki dev_t dev;
380 1.1 oki int flag, mode;
381 1.1 oki struct proc *p;
382 1.1 oki {
383 1.1 oki register struct tty *tp = ite_tty[UNIT(dev)];
384 1.1 oki
385 1.1 oki (*linesw[tp->t_line].l_close)(tp, flag);
386 1.1 oki ttyclose(tp);
387 1.1 oki iteoff(dev, 0);
388 1.1 oki #if 0
389 1.1 oki ttyfree(tp);
390 1.1 oki ite_tty[UNIT(dev)] = (struct tty *)0;
391 1.1 oki #endif
392 1.1 oki return(0);
393 1.1 oki }
394 1.1 oki
395 1.1 oki int
396 1.1 oki iteread(dev, uio, flag)
397 1.1 oki dev_t dev;
398 1.1 oki struct uio *uio;
399 1.1 oki int flag;
400 1.1 oki {
401 1.1 oki register struct tty *tp = ite_tty[UNIT(dev)];
402 1.1 oki
403 1.1 oki return ((*linesw[tp->t_line].l_read)(tp, uio, flag));
404 1.1 oki }
405 1.1 oki
406 1.1 oki int
407 1.1 oki itewrite(dev, uio, flag)
408 1.1 oki dev_t dev;
409 1.1 oki struct uio *uio;
410 1.1 oki int flag;
411 1.1 oki {
412 1.1 oki register struct tty *tp = ite_tty[UNIT(dev)];
413 1.1 oki
414 1.1 oki return ((*linesw[tp->t_line].l_write)(tp, uio, flag));
415 1.1 oki }
416 1.1 oki
417 1.1 oki struct tty *
418 1.1 oki itetty(dev)
419 1.1 oki dev_t dev;
420 1.1 oki {
421 1.1 oki
422 1.1 oki return (ite_tty[UNIT(dev)]);
423 1.1 oki }
424 1.1 oki
425 1.1 oki int
426 1.1 oki iteioctl(dev, cmd, addr, flag, p)
427 1.1 oki dev_t dev;
428 1.1 oki u_long cmd;
429 1.1 oki caddr_t addr;
430 1.1 oki int flag;
431 1.1 oki struct proc *p;
432 1.1 oki {
433 1.1 oki struct iterepeat *irp;
434 1.1 oki register struct tty *tp = ite_tty[UNIT(dev)];
435 1.1 oki int error;
436 1.1 oki
437 1.1 oki error = (*linesw[tp->t_line].l_ioctl)(tp, cmd, addr, flag, p);
438 1.1 oki if (error >= 0)
439 1.1 oki return (error);
440 1.1 oki error = ttioctl(tp, cmd, addr, flag, p);
441 1.1 oki if (error >= 0)
442 1.1 oki return (error);
443 1.1 oki
444 1.1 oki switch (cmd) {
445 1.1 oki case ITEIOCSKMAP:
446 1.1 oki if (addr == 0)
447 1.1 oki return(EFAULT);
448 1.1 oki bcopy(addr, &kbdmap, sizeof(struct kbdmap));
449 1.1 oki return(0);
450 1.1 oki
451 1.1 oki case ITEIOCGKMAP:
452 1.1 oki if (addr == NULL)
453 1.1 oki return(EFAULT);
454 1.1 oki bcopy(&kbdmap, addr, sizeof(struct kbdmap));
455 1.1 oki return(0);
456 1.1 oki
457 1.1 oki case ITEIOCGREPT:
458 1.1 oki irp = (struct iterepeat *)addr;
459 1.1 oki irp->start = start_repeat_timeo;
460 1.1 oki irp->next = next_repeat_timeo;
461 1.1 oki
462 1.1 oki case ITEIOCSREPT:
463 1.1 oki irp = (struct iterepeat *)addr;
464 1.1 oki if (irp->start < ITEMINREPEAT && irp->next < ITEMINREPEAT)
465 1.1 oki return(EINVAL);
466 1.1 oki start_repeat_timeo = irp->start;
467 1.1 oki next_repeat_timeo = irp->next;
468 1.1 oki #if x68k
469 1.1 oki case ITELOADFONT:
470 1.1 oki if (addr) {
471 1.1 oki bcopy(addr, kern_font, 4096 /*sizeof (kernel_font)*/);
472 1.1 oki return 0;
473 1.1 oki } else
474 1.1 oki return EFAULT;
475 1.1 oki
476 1.1 oki case ITETVCTRL:
477 1.1 oki if (addr && *(u_char *)addr < 0x40) {
478 1.1 oki while(!(mfp.tsr & 0x80)) ;
479 1.1 oki mfp.udr = *(u_char *)addr;
480 1.1 oki return 0;
481 1.1 oki } else
482 1.1 oki return EFAULT;
483 1.1 oki #endif
484 1.1 oki }
485 1.1 oki return (ENOTTY);
486 1.1 oki }
487 1.1 oki
488 1.1 oki void
489 1.1 oki itestart(tp)
490 1.1 oki register struct tty *tp;
491 1.1 oki {
492 1.1 oki struct clist *rbp;
493 1.1 oki struct ite_softc *ip;
494 1.1 oki u_char buf[ITEBURST];
495 1.1 oki int s, len, n;
496 1.1 oki
497 1.1 oki ip = getitesp(tp->t_dev);
498 1.1 oki /*
499 1.1 oki * (Potentially) lower priority. We only need to protect ourselves
500 1.1 oki * from keyboard interrupts since that is all that can affect the
501 1.1 oki * state of our tty (kernel printf doesn't go through this routine).
502 1.1 oki */
503 1.1 oki s = spltty();
504 1.1 oki if (tp->t_state & (TS_TIMEOUT | TS_BUSY | TS_TTSTOP))
505 1.1 oki goto out;
506 1.1 oki tp->t_state |= TS_BUSY;
507 1.1 oki rbp = &tp->t_outq;
508 1.1 oki len = q_to_b(rbp, buf, ITEBURST);
509 1.1 oki /*splx(s);*/
510 1.1 oki
511 1.1 oki /* Here is a really good place to implement pre/jumpscroll() */
512 1.1 oki ite_putstr(buf, len, tp->t_dev);
513 1.1 oki
514 1.1 oki /*s = spltty();*/
515 1.1 oki tp->t_state &= ~TS_BUSY;
516 1.1 oki /* we have characters remaining. */
517 1.1 oki if (rbp->c_cc) {
518 1.1 oki tp->t_state |= TS_TIMEOUT;
519 1.1 oki timeout(ttrstrt, (caddr_t)tp, 1);
520 1.1 oki }
521 1.1 oki /* wakeup we are below */
522 1.1 oki if (rbp->c_cc <= tp->t_lowat) {
523 1.1 oki if (tp->t_state & TS_ASLEEP) {
524 1.1 oki tp->t_state &= ~TS_ASLEEP;
525 1.1 oki wakeup((caddr_t)rbp);
526 1.1 oki }
527 1.1 oki selwakeup(&tp->t_wsel);
528 1.1 oki }
529 1.1 oki out:
530 1.1 oki splx(s);
531 1.1 oki }
532 1.1 oki
533 1.1 oki /* XXX called after changes made in underlying grf layer. */
534 1.1 oki /* I want to nuke this */
535 1.1 oki void
536 1.1 oki ite_reinit(dev)
537 1.1 oki dev_t dev;
538 1.1 oki {
539 1.1 oki struct ite_softc *ip;
540 1.1 oki
541 1.1 oki ip = getitesp(dev);
542 1.1 oki ip->flags &= ~ITE_INITED;
543 1.1 oki iteinit(dev);
544 1.1 oki }
545 1.1 oki
546 1.1 oki void
547 1.1 oki ite_reset(ip)
548 1.1 oki struct ite_softc *ip;
549 1.1 oki {
550 1.1 oki int i;
551 1.1 oki
552 1.1 oki ip->curx = 0;
553 1.1 oki ip->cury = 0;
554 1.1 oki ip->attribute = 0;
555 1.1 oki ip->save_curx = 0;
556 1.1 oki ip->save_cury = 0;
557 1.1 oki ip->save_attribute = 0;
558 1.1 oki ip->ap = ip->argbuf;
559 1.1 oki ip->emul_level = EMUL_VT300_8;
560 1.1 oki ip->eightbit_C1 = 0;
561 1.1 oki ip->top_margin = 0;
562 1.1 oki ip->bottom_margin = ip->rows - 1;
563 1.1 oki ip->inside_margins = 0; /* origin mode == absolute */
564 1.1 oki ip->linefeed_newline = 0;
565 1.1 oki ip->auto_wrap = 1;
566 1.1 oki ip->cursor_appmode = 0;
567 1.1 oki ip->keypad_appmode = 0;
568 1.1 oki ip->imode = 0;
569 1.1 oki ip->key_repeat = 1;
570 1.1 oki ip->G0 = CSET_ASCII;
571 1.1 oki ip->G1 = CSET_JIS1983;
572 1.1 oki ip->G2 = CSET_JISKANA;
573 1.1 oki ip->G3 = CSET_JIS1990;
574 1.1 oki ip->GL = &ip->G0;
575 1.1 oki ip->GR = &ip->G1;
576 1.1 oki ip->save_GL = 0;
577 1.1 oki ip->save_char = 0;
578 1.1 oki ip->fgcolor = 7;
579 1.1 oki ip->bgcolor = 0;
580 1.1 oki for (i = 0; i < ip->cols; i++)
581 1.1 oki ip->tabs[i] = ((i & 7) == 0);
582 1.1 oki /* XXX clear screen */
583 1.1 oki SUBR_CLEAR(ip, 0, 0, ip->rows, ip->cols);
584 1.1 oki attrclr(ip, 0, 0, ip->rows, ip->cols);
585 1.1 oki }
586 1.1 oki
587 1.1 oki /* Used in console at startup only */
588 1.1 oki int
589 1.1 oki itecnfilter(c, caller)
590 1.1 oki u_char c;
591 1.1 oki enum caller caller;
592 1.1 oki {
593 1.1 oki struct tty *kbd_tty;
594 1.1 oki static u_char mod = 0;
595 1.1 oki struct key key;
596 1.1 oki u_char code, up, mask;
597 1.1 oki int s, i;
598 1.1 oki
599 1.1 oki up = c & 0x80 ? 1 : 0;
600 1.1 oki c &= 0x7f;
601 1.1 oki code = 0;
602 1.1 oki
603 1.1 oki s = spltty();
604 1.1 oki
605 1.1 oki mask = 0;
606 1.1 oki if (c >= KBD_LEFT_ALT && !(c >= 0x63 && c <= 0x6c)) { /* 0x63: F1, 0x6c:F10 */
607 1.1 oki switch (c) {
608 1.1 oki case KBD_LEFT_SHIFT:
609 1.1 oki mask = KBD_MOD_SHIFT;
610 1.1 oki break;
611 1.1 oki
612 1.1 oki case KBD_LEFT_ALT:
613 1.1 oki mask = KBD_MOD_LALT;
614 1.1 oki break;
615 1.1 oki
616 1.1 oki case KBD_RIGHT_ALT:
617 1.1 oki mask = KBD_MOD_RALT;
618 1.1 oki break;
619 1.1 oki
620 1.1 oki case KBD_LEFT_META:
621 1.1 oki mask = KBD_MOD_LMETA;
622 1.1 oki break;
623 1.1 oki
624 1.1 oki case KBD_RIGHT_META:
625 1.1 oki mask = KBD_MOD_RMETA;
626 1.1 oki break;
627 1.1 oki
628 1.1 oki case KBD_CAPS_LOCK:
629 1.1 oki /*
630 1.1 oki * capslock already behaves `right', don't need to
631 1.1 oki * keep track of the state in here.
632 1.1 oki */
633 1.1 oki mask = KBD_MOD_CAPS;
634 1.1 oki break;
635 1.1 oki
636 1.1 oki case KBD_CTRL:
637 1.1 oki mask = KBD_MOD_CTRL;
638 1.1 oki break;
639 1.1 oki
640 1.1 oki case KBD_RECONNECT:
641 1.1 oki /* ite got 0xff */
642 1.1 oki if (up)
643 1.1 oki kbd_setLED();
644 1.1 oki break;
645 1.1 oki }
646 1.1 oki if (mask & KBD_MOD_CAPS) {
647 1.1 oki if (!up) {
648 1.1 oki mod ^= KBD_MOD_CAPS;
649 1.1 oki kbdled ^= LED_CAPS_LOCK;
650 1.1 oki kbd_setLED();
651 1.1 oki }
652 1.1 oki } else if (up)
653 1.1 oki mod &= ~mask;
654 1.1 oki else mod |= mask;
655 1.1 oki splx (s);
656 1.1 oki return -1;
657 1.1 oki }
658 1.1 oki
659 1.1 oki if (up) {
660 1.1 oki splx(s);
661 1.1 oki return -1;
662 1.1 oki }
663 1.1 oki
664 1.1 oki /* translate modifiers */
665 1.1 oki if (mod & KBD_MOD_SHIFT) {
666 1.1 oki if (mod & KBD_MOD_ALT)
667 1.1 oki key = kbdmap.alt_shift_keys[c];
668 1.1 oki else
669 1.1 oki key = kbdmap.shift_keys[c];
670 1.1 oki } else if (mod & KBD_MOD_ALT)
671 1.1 oki key = kbdmap.alt_keys[c];
672 1.1 oki else {
673 1.1 oki key = kbdmap.keys[c];
674 1.1 oki /* if CAPS and key is CAPable (no pun intended) */
675 1.1 oki if ((mod & KBD_MOD_CAPS) && (key.mode & KBD_MODE_CAPS))
676 1.1 oki key = kbdmap.shift_keys[c];
677 1.1 oki }
678 1.1 oki code = key.code;
679 1.1 oki
680 1.1 oki /* if string return */
681 1.1 oki if (key.mode & (KBD_MODE_STRING | KBD_MODE_KPAD)) {
682 1.1 oki splx(s);
683 1.1 oki return -1;
684 1.1 oki }
685 1.1 oki /* handle dead keys */
686 1.1 oki if (key.mode & KBD_MODE_DEAD) {
687 1.1 oki splx(s);
688 1.1 oki return -1;
689 1.1 oki }
690 1.1 oki if (mod & KBD_MOD_CTRL)
691 1.1 oki code &= 0x1f;
692 1.1 oki if (mod & KBD_MOD_META)
693 1.1 oki code |= 0x80;
694 1.1 oki
695 1.1 oki /* do console mapping. */
696 1.1 oki code = code == '\r' ? '\n' : code;
697 1.1 oki
698 1.1 oki splx(s);
699 1.1 oki return (code);
700 1.1 oki }
701 1.1 oki
702 1.1 oki /* And now the old stuff. */
703 1.1 oki
704 1.1 oki /* these are used to implement repeating keys.. */
705 1.1 oki static u_char last_char = 0;
706 1.1 oki static u_char tout_pending = 0;
707 1.1 oki
708 1.1 oki /*ARGSUSED*/
709 1.1 oki static void
710 1.1 oki repeat_handler (arg)
711 1.1 oki void *arg;
712 1.1 oki {
713 1.1 oki tout_pending = 0;
714 1.1 oki if (last_char)
715 1.1 oki add_sicallback(ite_filter, last_char, ITEFILT_REPEATER);
716 1.1 oki }
717 1.1 oki
718 1.1 oki inline static void
719 1.1 oki itesendch (ch)
720 1.1 oki int ch;
721 1.1 oki {
722 1.1 oki (*linesw[kbd_tty->t_line].l_rint)(ch, kbd_tty);
723 1.1 oki }
724 1.1 oki
725 1.1 oki
726 1.1 oki void
727 1.1 oki ite_filter(c, caller)
728 1.1 oki u_char c;
729 1.1 oki enum caller caller;
730 1.1 oki {
731 1.1 oki static u_short mod = 0;
732 1.1 oki register unsigned char code, *str;
733 1.1 oki u_short up, mask;
734 1.1 oki struct key key;
735 1.1 oki int s, i;
736 1.1 oki
737 1.1 oki if (!kbd_ite)
738 1.1 oki return;
739 1.1 oki kbd_tty = ite_tty[kbd_ite->device.dv_unit];
740 1.1 oki
741 1.1 oki /* have to make sure we're at spltty in here */
742 1.1 oki s = spltty ();
743 1.1 oki
744 1.1 oki #if 0 /* XXX? x68k */
745 1.1 oki /* keyboard interrupts come at priority 2, while softint-
746 1.1 oki generated keyboard-repeat interrupts come at level 1.
747 1.1 oki So, to not allow a key-up event to get thru before
748 1.1 oki a repeat for the key-down, we remove any outstanding
749 1.1 oki callout requests.. */
750 1.1 oki rem_sicallback (ite_filter);
751 1.1 oki #endif
752 1.1 oki
753 1.1 oki up = c & 0x80 ? 1 : 0;
754 1.1 oki c &= 0x7f;
755 1.1 oki code = 0;
756 1.1 oki
757 1.1 oki mask = 0;
758 1.1 oki if (c >= KBD_LEFT_ALT &&
759 1.1 oki !(c >= 0x63 && c <= 0x6c)) { /* 0x63: F1, 0x6c:F10 */
760 1.1 oki switch (c) {
761 1.1 oki case KBD_LEFT_SHIFT:
762 1.1 oki mask = KBD_MOD_SHIFT;
763 1.1 oki break;
764 1.1 oki
765 1.1 oki case KBD_LEFT_ALT:
766 1.1 oki mask = KBD_MOD_LALT;
767 1.1 oki break;
768 1.1 oki
769 1.1 oki case KBD_RIGHT_ALT:
770 1.1 oki mask = KBD_MOD_RALT;
771 1.1 oki break;
772 1.1 oki
773 1.1 oki case KBD_LEFT_META:
774 1.1 oki mask = KBD_MOD_LMETA;
775 1.1 oki break;
776 1.1 oki
777 1.1 oki case KBD_RIGHT_META:
778 1.1 oki mask = KBD_MOD_RMETA;
779 1.1 oki break;
780 1.1 oki
781 1.1 oki case KBD_CAPS_LOCK:
782 1.1 oki /*
783 1.1 oki * capslock already behaves `right', don't need to keep
784 1.1 oki * track of the state in here.
785 1.1 oki */
786 1.1 oki mask = KBD_MOD_CAPS;
787 1.1 oki break;
788 1.1 oki
789 1.1 oki case KBD_CTRL:
790 1.1 oki mask = KBD_MOD_CTRL;
791 1.1 oki break;
792 1.1 oki
793 1.1 oki case KBD_OPT1:
794 1.1 oki mask = KBD_MOD_OPT1;
795 1.1 oki break;
796 1.1 oki
797 1.1 oki case KBD_OPT2:
798 1.1 oki mask = KBD_MOD_OPT2;
799 1.1 oki break;
800 1.1 oki
801 1.1 oki case KBD_RECONNECT:
802 1.1 oki if (up) { /* ite got 0xff */
803 1.1 oki kbd_setLED();
804 1.1 oki }
805 1.1 oki break;
806 1.1 oki }
807 1.1 oki
808 1.1 oki if (mask & KBD_MOD_CAPS) {
809 1.1 oki if (!up) {
810 1.1 oki mod ^= KBD_MOD_CAPS;
811 1.1 oki kbdled ^= LED_CAPS_LOCK;
812 1.1 oki kbd_setLED();
813 1.1 oki }
814 1.1 oki } else if (up) {
815 1.1 oki mod &= ~mask;
816 1.1 oki } else mod |= mask;
817 1.1 oki
818 1.1 oki /*
819 1.1 oki * these keys should not repeat, so it's the Right Thing
820 1.1 oki * dealing with repeaters only after this block.
821 1.1 oki */
822 1.1 oki
823 1.1 oki /*
824 1.1 oki * return even if it wasn't a modifier key, the other
825 1.1 oki * codes up here are either special (like reset warning),
826 1.1 oki * or not yet defined
827 1.1 oki */
828 1.1 oki splx (s);
829 1.1 oki return;
830 1.1 oki }
831 1.1 oki
832 1.1 oki /*
833 1.1 oki * no matter which character we're repeating, stop it if we
834 1.1 oki * get a key-up event. I think this is the same thing amigados does.
835 1.1 oki */
836 1.1 oki if (up) {
837 1.1 oki if (tout_pending) {
838 1.1 oki untimeout (repeat_handler, 0);
839 1.1 oki tout_pending = 0;
840 1.1 oki last_char = 0;
841 1.1 oki }
842 1.1 oki splx (s);
843 1.1 oki return;
844 1.1 oki } else if (tout_pending && last_char != c) {
845 1.1 oki /*
846 1.1 oki * not the same character remove the repeater and continue
847 1.1 oki * to process this key. -ch
848 1.1 oki */
849 1.1 oki untimeout (repeat_handler, 0);
850 1.1 oki tout_pending = 0;
851 1.1 oki last_char = 0;
852 1.1 oki }
853 1.1 oki
854 1.1 oki /*
855 1.1 oki * intercept LAlt-LMeta-F1 here to switch back to original ascii-keymap.
856 1.1 oki * this should probably be configurable..
857 1.1 oki */
858 1.1 oki if (mod == (KBD_MOD_LALT|KBD_MOD_LMETA) && c == 0x50) {
859 1.1 oki bcopy (&ascii_kbdmap, &kbdmap, sizeof (struct kbdmap));
860 1.1 oki splx (s);
861 1.1 oki return;
862 1.1 oki }
863 1.1 oki
864 1.1 oki /* translate modifiers */
865 1.1 oki if (mod & KBD_MOD_SHIFT) {
866 1.1 oki if (mod & KBD_MOD_ALT)
867 1.1 oki key = kbdmap.alt_shift_keys[c];
868 1.1 oki else
869 1.1 oki key = kbdmap.shift_keys[c];
870 1.1 oki } else if (mod & KBD_MOD_ALT)
871 1.1 oki key = kbdmap.alt_keys[c];
872 1.1 oki else {
873 1.1 oki key = kbdmap.keys[c];
874 1.1 oki /* if CAPS and key is CAPable (no pun intended) */
875 1.1 oki if ((mod & KBD_MOD_CAPS) && (key.mode & KBD_MODE_CAPS))
876 1.1 oki key = kbdmap.shift_keys[c];
877 1.1 oki else if ((mod & KBD_MOD_OPT2) && (key.mode & KBD_MODE_KPAD))
878 1.1 oki key = kbdmap.shift_keys[c];
879 1.1 oki }
880 1.1 oki code = key.code;
881 1.1 oki
882 1.1 oki /*
883 1.1 oki * arrange to repeat the keystroke. By doing this at the level of scan-codes,
884 1.1 oki * we can have function keys, and keys that send strings, repeat too. This
885 1.1 oki * also entitles an additional overhead, since we have to do the conversion
886 1.1 oki * each time, but I guess that's ok.
887 1.1 oki */
888 1.1 oki if (!tout_pending && caller == ITEFILT_TTY && kbd_ite->key_repeat) {
889 1.1 oki tout_pending = 1;
890 1.1 oki last_char = c;
891 1.1 oki timeout (repeat_handler, 0, start_repeat_timeo);
892 1.1 oki } else if (!tout_pending && caller == ITEFILT_REPEATER &&
893 1.1 oki kbd_ite->key_repeat) {
894 1.1 oki tout_pending = 1;
895 1.1 oki last_char = c;
896 1.1 oki timeout (repeat_handler, 0, next_repeat_timeo);
897 1.1 oki }
898 1.1 oki
899 1.1 oki /* handle dead keys */
900 1.1 oki if (key.mode & KBD_MODE_DEAD) {
901 1.1 oki splx (s);
902 1.1 oki return;
903 1.1 oki }
904 1.1 oki /* if not string, apply META and CTRL modifiers */
905 1.1 oki if (! (key.mode & KBD_MODE_STRING)
906 1.1 oki && (!(key.mode & KBD_MODE_KPAD) ||
907 1.1 oki (kbd_ite && !kbd_ite->keypad_appmode))) {
908 1.1 oki if ((mod & KBD_MOD_CTRL) &&
909 1.1 oki (code == ' ' || (code >= '@' && code <= 'z')))
910 1.1 oki code &= 0x1f;
911 1.1 oki if (mod & KBD_MOD_META)
912 1.1 oki code |= 0x80;
913 1.1 oki } else if ((key.mode & KBD_MODE_KPAD) &&
914 1.1 oki (kbd_ite && kbd_ite->keypad_appmode)) {
915 1.1 oki static char *in = "0123456789-+.\r()/*";
916 1.1 oki static char *out = "pqrstuvwxymlnMPQRS";
917 1.1 oki char *cp = index (in, code);
918 1.1 oki
919 1.1 oki /*
920 1.1 oki * keypad-appmode sends SS3 followed by the above
921 1.1 oki * translated character
922 1.1 oki */
923 1.1 oki (*linesw[kbd_tty->t_line].l_rint) (27, kbd_tty);
924 1.1 oki (*linesw[kbd_tty->t_line].l_rint) ('O', kbd_tty);
925 1.1 oki (*linesw[kbd_tty->t_line].l_rint) (out[cp - in], kbd_tty);
926 1.1 oki splx(s);
927 1.1 oki return;
928 1.1 oki } else {
929 1.1 oki /* *NO* I don't like this.... */
930 1.1 oki static u_char app_cursor[] =
931 1.1 oki {
932 1.1 oki 3, 27, 'O', 'A',
933 1.1 oki 3, 27, 'O', 'B',
934 1.1 oki 3, 27, 'O', 'C',
935 1.1 oki 3, 27, 'O', 'D'};
936 1.1 oki
937 1.1 oki str = kbdmap.strings + code;
938 1.1 oki /*
939 1.1 oki * if this is a cursor key, AND it has the default
940 1.1 oki * keymap setting, AND we're in app-cursor mode, switch
941 1.1 oki * to the above table. This is *nasty* !
942 1.1 oki */
943 1.1 oki if (c >= 0x3b && c <= 0x3e && kbd_ite->cursor_appmode
944 1.1 oki && !bcmp(str, "\x03\x1b[", 3) &&
945 1.1 oki index("ABCD", str[3]))
946 1.1 oki str = app_cursor + 4 * (str[3] - 'A');
947 1.1 oki
948 1.1 oki /*
949 1.1 oki * using a length-byte instead of 0-termination allows
950 1.1 oki * to embed \0 into strings, although this is not used
951 1.1 oki * in the default keymap
952 1.1 oki */
953 1.1 oki for (i = *str++; i; i--)
954 1.1 oki (*linesw[kbd_tty->t_line].l_rint) (*str++, kbd_tty);
955 1.1 oki splx(s);
956 1.1 oki return;
957 1.1 oki }
958 1.1 oki (*linesw[kbd_tty->t_line].l_rint)(code, kbd_tty);
959 1.1 oki
960 1.1 oki splx(s);
961 1.1 oki return;
962 1.1 oki }
963 1.1 oki
964 1.1 oki /* helper functions, makes the code below more readable */
965 1.1 oki inline static void
966 1.1 oki ite_sendstr (ip, str)
967 1.1 oki struct ite_softc *ip;
968 1.1 oki char *str;
969 1.1 oki {
970 1.1 oki while (*str)
971 1.1 oki itesendch (*str++);
972 1.1 oki }
973 1.1 oki
974 1.1 oki inline static void
975 1.1 oki alignment_display(ip)
976 1.1 oki struct ite_softc *ip;
977 1.1 oki {
978 1.1 oki int i, j;
979 1.1 oki
980 1.1 oki for (j = 0; j < ip->rows; j++)
981 1.1 oki for (i = 0; i < ip->cols; i++)
982 1.1 oki SUBR_PUTC(ip, 'E', j, i, ATTR_NOR);
983 1.1 oki attrclr(ip, 0, 0, ip->rows, ip->cols);
984 1.1 oki }
985 1.1 oki
986 1.1 oki inline static void
987 1.1 oki snap_cury(ip)
988 1.1 oki struct ite_softc *ip;
989 1.1 oki {
990 1.1 oki if (ip->inside_margins) {
991 1.1 oki if (ip->cury < ip->top_margin)
992 1.1 oki ip->cury = ip->top_margin;
993 1.1 oki if (ip->cury > ip->bottom_margin)
994 1.1 oki ip->cury = ip->bottom_margin;
995 1.1 oki }
996 1.1 oki }
997 1.1 oki
998 1.1 oki inline static void
999 1.1 oki ite_dnchar(ip, n)
1000 1.1 oki struct ite_softc *ip;
1001 1.1 oki int n;
1002 1.1 oki {
1003 1.1 oki n = min(n, ip->cols - ip->curx);
1004 1.1 oki if (n < ip->cols - ip->curx) {
1005 1.1 oki SUBR_SCROLL(ip, ip->cury, ip->curx + n, n, SCROLL_LEFT);
1006 1.1 oki attrmov(ip, ip->cury, ip->curx + n, ip->cury, ip->curx,
1007 1.1 oki 1, ip->cols - ip->curx - n);
1008 1.1 oki attrclr(ip, ip->cury, ip->cols - n, 1, n);
1009 1.1 oki }
1010 1.1 oki while (n-- > 0)
1011 1.1 oki SUBR_PUTC(ip, ' ', ip->cury, ip->cols - n - 1, ATTR_NOR);
1012 1.1 oki }
1013 1.1 oki
1014 1.1 oki static void
1015 1.1 oki ite_inchar(ip, n)
1016 1.1 oki struct ite_softc *ip;
1017 1.1 oki int n;
1018 1.1 oki {
1019 1.1 oki int c = ip->save_char;
1020 1.1 oki ip->save_char = 0;
1021 1.1 oki n = min(n, ip->cols - ip->curx);
1022 1.1 oki if (n < ip->cols - ip->curx) {
1023 1.1 oki SUBR_SCROLL(ip, ip->cury, ip->curx, n, SCROLL_RIGHT);
1024 1.1 oki attrmov(ip, ip->cury, ip->curx, ip->cury, ip->curx + n,
1025 1.1 oki 1, ip->cols - ip->curx - n);
1026 1.1 oki attrclr(ip, ip->cury, ip->curx, 1, n);
1027 1.1 oki }
1028 1.1 oki while (n--)
1029 1.1 oki SUBR_PUTC(ip, ' ', ip->cury, ip->curx + n, ATTR_NOR);
1030 1.1 oki ip->save_char = c;
1031 1.1 oki }
1032 1.1 oki
1033 1.1 oki inline static void
1034 1.1 oki ite_clrtoeol(ip)
1035 1.1 oki struct ite_softc *ip;
1036 1.1 oki {
1037 1.1 oki int y = ip->cury, x = ip->curx;
1038 1.1 oki if (ip->cols - x > 0) {
1039 1.1 oki SUBR_CLEAR(ip, y, x, 1, ip->cols - x);
1040 1.1 oki attrclr(ip, y, x, 1, ip->cols - x);
1041 1.1 oki }
1042 1.1 oki }
1043 1.1 oki
1044 1.1 oki inline static void
1045 1.1 oki ite_clrtobol(ip)
1046 1.1 oki struct ite_softc *ip;
1047 1.1 oki {
1048 1.1 oki int y = ip->cury, x = min(ip->curx + 1, ip->cols);
1049 1.1 oki SUBR_CLEAR(ip, y, 0, 1, x);
1050 1.1 oki attrclr(ip, y, 0, 1, x);
1051 1.1 oki }
1052 1.1 oki
1053 1.1 oki inline static void
1054 1.1 oki ite_clrline(ip)
1055 1.1 oki struct ite_softc *ip;
1056 1.1 oki {
1057 1.1 oki int y = ip->cury;
1058 1.1 oki SUBR_CLEAR(ip, y, 0, 1, ip->cols);
1059 1.1 oki attrclr(ip, y, 0, 1, ip->cols);
1060 1.1 oki }
1061 1.1 oki
1062 1.1 oki inline static void
1063 1.1 oki ite_clrtoeos(ip)
1064 1.1 oki struct ite_softc *ip;
1065 1.1 oki {
1066 1.1 oki ite_clrtoeol(ip);
1067 1.1 oki if (ip->cury < ip->rows - 1) {
1068 1.1 oki SUBR_CLEAR(ip, ip->cury + 1, 0, ip->rows - 1 - ip->cury, ip->cols);
1069 1.1 oki attrclr(ip, ip->cury, 0, ip->rows - ip->cury, ip->cols);
1070 1.1 oki }
1071 1.1 oki }
1072 1.1 oki
1073 1.1 oki inline static void
1074 1.1 oki ite_clrtobos(ip)
1075 1.1 oki struct ite_softc *ip;
1076 1.1 oki {
1077 1.1 oki ite_clrtobol(ip);
1078 1.1 oki if (ip->cury > 0) {
1079 1.1 oki SUBR_CLEAR(ip, 0, 0, ip->cury, ip->cols);
1080 1.1 oki attrclr(ip, 0, 0, ip->cury, ip->cols);
1081 1.1 oki }
1082 1.1 oki }
1083 1.1 oki
1084 1.1 oki inline static void
1085 1.1 oki ite_clrscreen(ip)
1086 1.1 oki struct ite_softc *ip;
1087 1.1 oki {
1088 1.1 oki SUBR_CLEAR(ip, 0, 0, ip->rows, ip->cols);
1089 1.1 oki attrclr(ip, 0, 0, ip->rows, ip->cols);
1090 1.1 oki }
1091 1.1 oki
1092 1.1 oki
1093 1.1 oki
1094 1.1 oki inline static void
1095 1.1 oki ite_dnline(ip, n)
1096 1.1 oki struct ite_softc *ip;
1097 1.1 oki int n;
1098 1.1 oki {
1099 1.1 oki /*
1100 1.1 oki * interesting.. if the cursor is outside the scrolling
1101 1.1 oki * region, this command is simply ignored..
1102 1.1 oki */
1103 1.1 oki if (ip->cury < ip->top_margin || ip->cury > ip->bottom_margin)
1104 1.1 oki return;
1105 1.1 oki
1106 1.1 oki n = min(n, ip->bottom_margin + 1 - ip->cury);
1107 1.1 oki if (n <= ip->bottom_margin - ip->cury) {
1108 1.1 oki SUBR_SCROLL(ip, ip->cury + n, 0, n, SCROLL_UP);
1109 1.1 oki attrmov(ip, ip->cury + n, 0, ip->cury, 0,
1110 1.1 oki ip->bottom_margin + 1 - ip->cury - n, ip->cols);
1111 1.1 oki }
1112 1.1 oki SUBR_CLEAR(ip, ip->bottom_margin - n + 1, 0, n, ip->cols);
1113 1.1 oki attrclr(ip, ip->bottom_margin - n + 1, 0, n, ip->cols);
1114 1.1 oki }
1115 1.1 oki
1116 1.1 oki inline static void
1117 1.1 oki ite_inline(ip, n)
1118 1.1 oki struct ite_softc *ip;
1119 1.1 oki int n;
1120 1.1 oki {
1121 1.1 oki /*
1122 1.1 oki * interesting.. if the cursor is outside the scrolling
1123 1.1 oki * region, this command is simply ignored..
1124 1.1 oki */
1125 1.1 oki if (ip->cury < ip->top_margin || ip->cury > ip->bottom_margin)
1126 1.1 oki return;
1127 1.1 oki
1128 1.1 oki if (n <= 0)
1129 1.1 oki n = 1;
1130 1.1 oki else n = min(n, ip->bottom_margin + 1 - ip->cury);
1131 1.1 oki if (n <= ip->bottom_margin - ip->cury) {
1132 1.1 oki SUBR_SCROLL(ip, ip->cury, 0, n, SCROLL_DOWN);
1133 1.1 oki attrmov(ip, ip->cury, 0, ip->cury + n, 0,
1134 1.1 oki ip->bottom_margin + 1 - ip->cury - n, ip->cols);
1135 1.1 oki }
1136 1.1 oki SUBR_CLEAR(ip, ip->cury, 0, n, ip->cols);
1137 1.1 oki attrclr(ip, ip->cury, 0, n, ip->cols);
1138 1.1 oki ip->curx = 0;
1139 1.1 oki }
1140 1.1 oki
1141 1.1 oki inline static void
1142 1.1 oki ite_index (ip)
1143 1.1 oki struct ite_softc *ip;
1144 1.1 oki {
1145 1.1 oki ++ip->cury;
1146 1.1 oki if ((ip->cury == ip->bottom_margin+1) || (ip->cury == ip->rows)) {
1147 1.1 oki ip->cury--;
1148 1.1 oki SUBR_SCROLL(ip, ip->top_margin + 1, 0, 1, SCROLL_UP);
1149 1.1 oki ite_clrline(ip);
1150 1.1 oki }
1151 1.1 oki /*clr_attr(ip, ATTR_INV);*/
1152 1.1 oki }
1153 1.1 oki
1154 1.1 oki inline static void
1155 1.1 oki ite_lf (ip)
1156 1.1 oki struct ite_softc *ip;
1157 1.1 oki {
1158 1.1 oki ++ip->cury;
1159 1.1 oki if (ip->cury > ip->bottom_margin) {
1160 1.1 oki ip->cury--;
1161 1.1 oki SUBR_SCROLL(ip, ip->top_margin + 1, 0, 1, SCROLL_UP);
1162 1.1 oki ite_clrline(ip);
1163 1.1 oki }
1164 1.1 oki /* SUBR_CURSOR(ip, MOVE_CURSOR);*/
1165 1.1 oki /*clr_attr(ip, ATTR_INV);*/
1166 1.1 oki /* reset character set ... thanks for mohta. */
1167 1.1 oki ip->G0 = CSET_ASCII;
1168 1.1 oki ip->G1 = CSET_JIS1983;
1169 1.1 oki ip->G2 = CSET_JISKANA;
1170 1.1 oki ip->G3 = CSET_JIS1990;
1171 1.1 oki ip->GL = &ip->G0;
1172 1.1 oki ip->GR = &ip->G1;
1173 1.1 oki ip->save_GL = 0;
1174 1.1 oki ip->save_char = 0;
1175 1.1 oki }
1176 1.1 oki
1177 1.1 oki inline static void
1178 1.1 oki ite_crlf (ip)
1179 1.1 oki struct ite_softc *ip;
1180 1.1 oki {
1181 1.1 oki ip->curx = 0;
1182 1.1 oki ite_lf (ip);
1183 1.1 oki }
1184 1.1 oki
1185 1.1 oki inline static void
1186 1.1 oki ite_cr (ip)
1187 1.1 oki struct ite_softc *ip;
1188 1.1 oki {
1189 1.1 oki if (ip->curx) {
1190 1.1 oki ip->curx = 0;
1191 1.1 oki }
1192 1.1 oki }
1193 1.1 oki
1194 1.1 oki inline static void
1195 1.1 oki ite_rlf (ip)
1196 1.1 oki struct ite_softc *ip;
1197 1.1 oki {
1198 1.1 oki ip->cury--;
1199 1.1 oki if ((ip->cury < 0) || (ip->cury == ip->top_margin - 1)) {
1200 1.1 oki ip->cury++;
1201 1.1 oki SUBR_SCROLL(ip, ip->top_margin, 0, 1, SCROLL_DOWN);
1202 1.1 oki ite_clrline(ip);
1203 1.1 oki }
1204 1.1 oki clr_attr(ip, ATTR_INV);
1205 1.1 oki }
1206 1.1 oki
1207 1.1 oki inline static int
1208 1.1 oki atoi (cp)
1209 1.1 oki const char *cp;
1210 1.1 oki {
1211 1.1 oki int n;
1212 1.1 oki
1213 1.1 oki for (n = 0; *cp && *cp >= '0' && *cp <= '9'; cp++)
1214 1.1 oki n = n * 10 + *cp - '0';
1215 1.1 oki return n;
1216 1.1 oki }
1217 1.1 oki
1218 1.1 oki inline static char *
1219 1.1 oki index(cp, ch)
1220 1.1 oki const char *cp;
1221 1.1 oki char ch;
1222 1.1 oki {
1223 1.1 oki while (*cp && *cp != ch)
1224 1.1 oki cp++;
1225 1.1 oki return *cp ? (char *) cp : 0;
1226 1.1 oki }
1227 1.1 oki
1228 1.1 oki inline static int
1229 1.1 oki ite_argnum (ip)
1230 1.1 oki struct ite_softc *ip;
1231 1.1 oki {
1232 1.1 oki char ch;
1233 1.1 oki int n;
1234 1.1 oki
1235 1.1 oki /* convert argument string into number */
1236 1.1 oki if (ip->ap == ip->argbuf)
1237 1.1 oki return 1;
1238 1.1 oki ch = *ip->ap;
1239 1.1 oki *ip->ap = 0;
1240 1.1 oki n = atoi (ip->argbuf);
1241 1.1 oki *ip->ap = ch;
1242 1.1 oki
1243 1.1 oki return n;
1244 1.1 oki }
1245 1.1 oki
1246 1.1 oki inline static int
1247 1.1 oki ite_zargnum (ip)
1248 1.1 oki struct ite_softc *ip;
1249 1.1 oki {
1250 1.1 oki char ch;
1251 1.1 oki int n;
1252 1.1 oki
1253 1.1 oki /* convert argument string into number */
1254 1.1 oki if (ip->ap == ip->argbuf)
1255 1.1 oki return 0;
1256 1.1 oki ch = *ip->ap;
1257 1.1 oki *ip->ap = 0; /* terminate string */
1258 1.1 oki n = atoi (ip->argbuf);
1259 1.1 oki *ip->ap = ch;
1260 1.1 oki
1261 1.1 oki return n; /* don't "n ? n : 1" here, <CSI>0m != <CSI>1m ! */
1262 1.1 oki }
1263 1.1 oki
1264 1.1 oki void
1265 1.1 oki ite_putstr(s, len, dev)
1266 1.1 oki const u_char *s;
1267 1.1 oki int len;
1268 1.1 oki dev_t dev;
1269 1.1 oki {
1270 1.1 oki struct ite_softc *ip;
1271 1.1 oki int i;
1272 1.1 oki
1273 1.1 oki ip = getitesp(dev);
1274 1.1 oki
1275 1.1 oki /* XXX avoid problems */
1276 1.1 oki if ((ip->flags & (ITE_ACTIVE|ITE_INGRF)) != ITE_ACTIVE)
1277 1.1 oki return;
1278 1.1 oki
1279 1.1 oki SUBR_CURSOR(ip, START_CURSOROPT);
1280 1.1 oki for (i = 0; i < len; i++)
1281 1.1 oki if (s[i])
1282 1.1 oki iteputchar(s[i], ip);
1283 1.1 oki SUBR_CURSOR(ip, END_CURSOROPT);
1284 1.1 oki }
1285 1.1 oki
1286 1.1 oki void
1287 1.1 oki iteputchar(c, ip)
1288 1.1 oki register int c;
1289 1.1 oki struct ite_softc *ip;
1290 1.1 oki {
1291 1.1 oki struct tty *kbd_tty;
1292 1.1 oki int n, x, y;
1293 1.1 oki char *cp;
1294 1.1 oki
1295 1.1 oki kbd_tty = ite_tty[kbd_ite->device.dv_unit];
1296 1.1 oki
1297 1.1 oki if (c >= 0x20 && ip->escape) {
1298 1.1 oki switch (ip->escape) {
1299 1.1 oki
1300 1.1 oki case ESC:
1301 1.1 oki switch (c) {
1302 1.1 oki /* first 7bit equivalents for the 8bit control characters */
1303 1.1 oki
1304 1.1 oki case 'D':
1305 1.1 oki c = IND;
1306 1.1 oki ip->escape = 0;
1307 1.1 oki break; /* and fall into the next switch below (same for all `break') */
1308 1.1 oki
1309 1.1 oki case 'E':
1310 1.1 oki /* next line */
1311 1.1 oki c = NEL;
1312 1.1 oki ip->escape = 0;
1313 1.1 oki break;
1314 1.1 oki
1315 1.1 oki case 'H':
1316 1.1 oki /* set TAB at current col */
1317 1.1 oki c = HTS;
1318 1.1 oki ip->escape = 0;
1319 1.1 oki break;
1320 1.1 oki
1321 1.1 oki case 'M':
1322 1.1 oki /* reverse index */
1323 1.1 oki c = RI;
1324 1.1 oki ip->escape = 0;
1325 1.1 oki break;
1326 1.1 oki
1327 1.1 oki case 'N':
1328 1.1 oki /* single shift G2 */
1329 1.1 oki c = SS2;
1330 1.1 oki ip->escape = 0;
1331 1.1 oki break;
1332 1.1 oki
1333 1.1 oki case 'O':
1334 1.1 oki /* single shift G3 */
1335 1.1 oki c = SS3;
1336 1.1 oki ip->escape = 0;
1337 1.1 oki break;
1338 1.1 oki
1339 1.1 oki case 'P':
1340 1.1 oki /* DCS detected */
1341 1.1 oki c = DCS;
1342 1.1 oki ip->escape = 0;
1343 1.1 oki break;
1344 1.1 oki
1345 1.1 oki case '[':
1346 1.1 oki c = CSI;
1347 1.1 oki ip->escape = 0;
1348 1.1 oki break;
1349 1.1 oki
1350 1.1 oki case '\\':
1351 1.1 oki /* String Terminator */
1352 1.1 oki c = ST;
1353 1.1 oki ip->escape = 0;
1354 1.1 oki break;
1355 1.1 oki
1356 1.1 oki case ']':
1357 1.1 oki c = OSC;
1358 1.1 oki ip->escape = 0;
1359 1.1 oki break;
1360 1.1 oki
1361 1.1 oki case '^':
1362 1.1 oki c = PM;
1363 1.1 oki ip->escape = 0;
1364 1.1 oki break;
1365 1.1 oki
1366 1.1 oki case '_':
1367 1.1 oki c = APC;
1368 1.1 oki ip->escape = 0;
1369 1.1 oki break;
1370 1.1 oki
1371 1.1 oki
1372 1.1 oki /* introduces 7/8bit control */
1373 1.1 oki case ' ':
1374 1.1 oki /* can be followed by either F or G */
1375 1.1 oki ip->escape = ' ';
1376 1.1 oki break;
1377 1.1 oki
1378 1.1 oki
1379 1.1 oki /* a lot of character set selections, not yet used...
1380 1.1 oki 94-character sets: */
1381 1.1 oki case '(': /* G0 */
1382 1.1 oki case ')': /* G1 */
1383 1.1 oki ip->escape = c;
1384 1.1 oki return;
1385 1.1 oki
1386 1.1 oki case '*': /* G2 */
1387 1.1 oki case '+': /* G3 */
1388 1.1 oki case 'B': /* ASCII */
1389 1.1 oki case 'A': /* ISO latin 1 */
1390 1.1 oki case '<': /* user preferred suplemental */
1391 1.1 oki case '0': /* dec special graphics */
1392 1.1 oki
1393 1.1 oki /* 96-character sets: */
1394 1.1 oki case '-': /* G1 */
1395 1.1 oki case '.': /* G2 */
1396 1.1 oki case '/': /* G3 */
1397 1.1 oki
1398 1.1 oki /* national character sets: */
1399 1.1 oki case '4': /* dutch */
1400 1.1 oki case '5':
1401 1.1 oki case 'C': /* finnish */
1402 1.1 oki case 'R': /* french */
1403 1.1 oki case 'Q': /* french canadian */
1404 1.1 oki case 'K': /* german */
1405 1.1 oki case 'Y': /* italian */
1406 1.1 oki case '6': /* norwegian/danish */
1407 1.1 oki /* note: %5 and %6 are not supported (two chars..) */
1408 1.1 oki
1409 1.1 oki ip->escape = 0;
1410 1.1 oki /* just ignore for now */
1411 1.1 oki return;
1412 1.1 oki
1413 1.1 oki /* 94-multibyte character sets designate */
1414 1.1 oki case '$':
1415 1.1 oki ip->escape = '$';
1416 1.1 oki return;
1417 1.1 oki
1418 1.1 oki /* locking shift modes */
1419 1.1 oki case '`':
1420 1.1 oki ip->GR = &ip->G1;
1421 1.1 oki ip->escape = 0;
1422 1.1 oki return;
1423 1.1 oki
1424 1.1 oki case 'n':
1425 1.1 oki ip->GL = &ip->G2;
1426 1.1 oki ip->escape = 0;
1427 1.1 oki return;
1428 1.1 oki
1429 1.1 oki case '}':
1430 1.1 oki ip->GR = &ip->G2;
1431 1.1 oki ip->escape = 0;
1432 1.1 oki return;
1433 1.1 oki
1434 1.1 oki case 'o':
1435 1.1 oki ip->GL = &ip->G3;
1436 1.1 oki ip->escape = 0;
1437 1.1 oki return;
1438 1.1 oki
1439 1.1 oki case '|':
1440 1.1 oki ip->GR = &ip->G3;
1441 1.1 oki ip->escape = 0;
1442 1.1 oki return;
1443 1.1 oki
1444 1.1 oki case '~':
1445 1.1 oki ip->GR = &ip->G1;
1446 1.1 oki ip->escape = 0;
1447 1.1 oki return;
1448 1.1 oki
1449 1.1 oki /* font width/height control */
1450 1.1 oki case '#':
1451 1.1 oki ip->escape = '#';
1452 1.1 oki return;
1453 1.1 oki
1454 1.1 oki case 'c':
1455 1.1 oki /* hard terminal reset .. */
1456 1.1 oki ite_reset (ip);
1457 1.1 oki SUBR_CURSOR(ip, MOVE_CURSOR);
1458 1.1 oki ip->escape = 0;
1459 1.1 oki return;
1460 1.1 oki
1461 1.1 oki
1462 1.1 oki case '7':
1463 1.1 oki /* save cursor */
1464 1.1 oki ip->save_curx = ip->curx;
1465 1.1 oki ip->save_cury = ip->cury;
1466 1.1 oki ip->save_attribute = ip->attribute;
1467 1.1 oki ip->sc_om = ip->inside_margins;
1468 1.1 oki ip->sc_G0 = ip->G0;
1469 1.1 oki ip->sc_G1 = ip->G1;
1470 1.1 oki ip->sc_G2 = ip->G2;
1471 1.1 oki ip->sc_G3 = ip->G3;
1472 1.1 oki ip->sc_GL = ip->GL;
1473 1.1 oki ip->sc_GR = ip->GR;
1474 1.1 oki ip->escape = 0;
1475 1.1 oki return;
1476 1.1 oki
1477 1.1 oki case '8':
1478 1.1 oki /* restore cursor */
1479 1.1 oki ip->curx = ip->save_curx;
1480 1.1 oki ip->cury = ip->save_cury;
1481 1.1 oki ip->attribute = ip->save_attribute;
1482 1.1 oki ip->inside_margins = ip->sc_om;
1483 1.1 oki ip->G0 = ip->sc_G0;
1484 1.1 oki ip->G1 = ip->sc_G1;
1485 1.1 oki ip->G2 = ip->sc_G2;
1486 1.1 oki ip->G3 = ip->sc_G3;
1487 1.1 oki ip->GL = ip->sc_GL;
1488 1.1 oki ip->GR = ip->sc_GR;
1489 1.1 oki SUBR_CURSOR(ip, MOVE_CURSOR);
1490 1.1 oki ip->escape = 0;
1491 1.1 oki return;
1492 1.1 oki
1493 1.1 oki case '=':
1494 1.1 oki /* keypad application mode */
1495 1.1 oki ip->keypad_appmode = 1;
1496 1.1 oki ip->escape = 0;
1497 1.1 oki return;
1498 1.1 oki
1499 1.1 oki case '>':
1500 1.1 oki /* keypad numeric mode */
1501 1.1 oki ip->keypad_appmode = 0;
1502 1.1 oki ip->escape = 0;
1503 1.1 oki return;
1504 1.1 oki
1505 1.1 oki case 'Z': /* request ID */
1506 1.1 oki if (ip->emul_level == EMUL_VT100)
1507 1.1 oki ite_sendstr (ip, "\033[61;0c"); /* XXX not clean */
1508 1.1 oki else
1509 1.1 oki ite_sendstr (ip, "\033[63;0c"); /* XXX not clean */
1510 1.1 oki ip->escape = 0;
1511 1.1 oki return;
1512 1.1 oki
1513 1.1 oki /* default catch all for not recognized ESC sequences */
1514 1.1 oki default:
1515 1.1 oki ip->escape = 0;
1516 1.1 oki return;
1517 1.1 oki }
1518 1.1 oki break;
1519 1.1 oki
1520 1.1 oki
1521 1.1 oki case '(': /* designate G0 */
1522 1.1 oki switch (c) {
1523 1.1 oki case 'B': /* USASCII */
1524 1.1 oki ip->G0 = CSET_ASCII;
1525 1.1 oki ip->escape = 0;
1526 1.1 oki return;
1527 1.1 oki case 'I':
1528 1.1 oki ip->G0 = CSET_JISKANA;
1529 1.1 oki ip->escape = 0;
1530 1.1 oki return;
1531 1.1 oki case 'J':
1532 1.1 oki ip->G0 = CSET_JISROMA;
1533 1.1 oki ip->escape = 0;
1534 1.1 oki return;
1535 1.1 oki case 'A': /* British or ISO-Latin-1 */
1536 1.1 oki case 'H': /* Swedish */
1537 1.1 oki case 'K': /* German */
1538 1.1 oki case 'R': /* French */
1539 1.1 oki case 'Y': /* Italian */
1540 1.1 oki case 'Z': /* Spanish */
1541 1.1 oki default:
1542 1.1 oki /* not supported */
1543 1.1 oki ip->escape = 0;
1544 1.1 oki return;
1545 1.1 oki }
1546 1.1 oki
1547 1.1 oki case ')': /* designate G1 */
1548 1.1 oki ip->escape = 0;
1549 1.1 oki return;
1550 1.1 oki
1551 1.1 oki case '$': /* 94-multibyte character set */
1552 1.1 oki switch (c) {
1553 1.1 oki case '@':
1554 1.1 oki ip->G0 = CSET_JIS1978;
1555 1.1 oki ip->escape = 0;
1556 1.1 oki return;
1557 1.1 oki case 'B':
1558 1.1 oki ip->G0 = CSET_JIS1983;
1559 1.1 oki ip->escape = 0;
1560 1.1 oki return;
1561 1.1 oki case 'D':
1562 1.1 oki ip->G0 = CSET_JIS1990;
1563 1.1 oki ip->escape = 0;
1564 1.1 oki return;
1565 1.1 oki default:
1566 1.1 oki /* not supported */
1567 1.1 oki ip->escape = 0;
1568 1.1 oki return;
1569 1.1 oki }
1570 1.1 oki
1571 1.1 oki case ' ':
1572 1.1 oki switch (c) {
1573 1.1 oki case 'F':
1574 1.1 oki ip->eightbit_C1 = 0;
1575 1.1 oki ip->escape = 0;
1576 1.1 oki return;
1577 1.1 oki
1578 1.1 oki case 'G':
1579 1.1 oki ip->eightbit_C1 = 1;
1580 1.1 oki ip->escape = 0;
1581 1.1 oki return;
1582 1.1 oki
1583 1.1 oki default:
1584 1.1 oki /* not supported */
1585 1.1 oki ip->escape = 0;
1586 1.1 oki return;
1587 1.1 oki }
1588 1.1 oki break;
1589 1.1 oki
1590 1.1 oki case '#':
1591 1.1 oki switch (c) {
1592 1.1 oki case '5':
1593 1.1 oki /* single height, single width */
1594 1.1 oki ip->escape = 0;
1595 1.1 oki return;
1596 1.1 oki
1597 1.1 oki case '6':
1598 1.1 oki /* double width, single height */
1599 1.1 oki ip->escape = 0;
1600 1.1 oki return;
1601 1.1 oki
1602 1.1 oki case '3':
1603 1.1 oki /* top half */
1604 1.1 oki ip->escape = 0;
1605 1.1 oki return;
1606 1.1 oki
1607 1.1 oki case '4':
1608 1.1 oki /* bottom half */
1609 1.1 oki ip->escape = 0;
1610 1.1 oki return;
1611 1.1 oki
1612 1.1 oki case '8':
1613 1.1 oki /* screen alignment pattern... */
1614 1.1 oki alignment_display (ip);
1615 1.1 oki ip->escape = 0;
1616 1.1 oki return;
1617 1.1 oki
1618 1.1 oki default:
1619 1.1 oki ip->escape = 0;
1620 1.1 oki return;
1621 1.1 oki }
1622 1.1 oki break;
1623 1.1 oki
1624 1.1 oki
1625 1.1 oki
1626 1.1 oki case CSI:
1627 1.1 oki /* the biggie... */
1628 1.1 oki switch (c) {
1629 1.1 oki case '0': case '1': case '2': case '3': case '4':
1630 1.1 oki case '5': case '6': case '7': case '8': case '9':
1631 1.1 oki case ';': case '\"': case '$': case '>':
1632 1.1 oki if (ip->ap < ip->argbuf + MAX_ARGSIZE)
1633 1.1 oki *ip->ap++ = c;
1634 1.1 oki return;
1635 1.1 oki
1636 1.1 oki case 'p':
1637 1.1 oki *ip->ap = 0;
1638 1.1 oki if (!strncmp(ip->argbuf, "61\"", 3))
1639 1.1 oki ip->emul_level = EMUL_VT100;
1640 1.1 oki else if (!strncmp(ip->argbuf, "63;1\"", 5)
1641 1.1 oki || !strncmp(ip->argbuf, "62;1\"", 5))
1642 1.1 oki ip->emul_level = EMUL_VT300_7;
1643 1.1 oki else
1644 1.1 oki ip->emul_level = EMUL_VT300_8;
1645 1.1 oki ip->escape = 0;
1646 1.1 oki return;
1647 1.1 oki
1648 1.1 oki
1649 1.1 oki case '?':
1650 1.1 oki *ip->ap = 0;
1651 1.1 oki ip->escape = '?';
1652 1.1 oki ip->ap = ip->argbuf;
1653 1.1 oki return;
1654 1.1 oki
1655 1.1 oki
1656 1.1 oki case 'c':
1657 1.1 oki /* device attributes */
1658 1.1 oki *ip->ap = 0;
1659 1.1 oki if (ip->argbuf[0] == '>') {
1660 1.1 oki ite_sendstr (ip, "\033[>24;0;0;0c");
1661 1.1 oki } else
1662 1.1 oki switch (ite_zargnum(ip)) {
1663 1.1 oki case 0:
1664 1.1 oki /* primary DA request, send primary DA response */
1665 1.1 oki if (ip->emul_level == EMUL_VT100)
1666 1.1 oki ite_sendstr (ip, "\033[?1;1c");
1667 1.1 oki else
1668 1.1 oki ite_sendstr (ip, "\033[63;0c");
1669 1.1 oki break;
1670 1.1 oki }
1671 1.1 oki ip->escape = 0;
1672 1.1 oki return;
1673 1.1 oki
1674 1.1 oki case 'n':
1675 1.1 oki switch (ite_zargnum(ip)) {
1676 1.1 oki case 5:
1677 1.1 oki ite_sendstr (ip, "\033[0n"); /* no malfunction */
1678 1.1 oki break;
1679 1.1 oki case 6:
1680 1.1 oki /* cursor position report */
1681 1.1 oki sprintf (ip->argbuf, "\033[%d;%dR",
1682 1.1 oki ip->cury + 1, ip->curx + 1);
1683 1.1 oki ite_sendstr (ip, ip->argbuf);
1684 1.1 oki break;
1685 1.1 oki }
1686 1.1 oki ip->escape = 0;
1687 1.1 oki return;
1688 1.1 oki
1689 1.1 oki
1690 1.1 oki case 'x':
1691 1.1 oki switch (ite_zargnum(ip)) {
1692 1.1 oki case 0:
1693 1.1 oki /* Fake some terminal parameters. */
1694 1.1 oki ite_sendstr (ip, "\033[2;1;1;112;112;1;0x");
1695 1.1 oki break;
1696 1.1 oki case 1:
1697 1.1 oki ite_sendstr (ip, "\033[3;1;1;112;112;1;0x");
1698 1.1 oki break;
1699 1.1 oki }
1700 1.1 oki ip->escape = 0;
1701 1.1 oki return;
1702 1.1 oki
1703 1.1 oki
1704 1.1 oki case 'g':
1705 1.1 oki /* clear tabs */
1706 1.1 oki switch (ite_zargnum(ip)) {
1707 1.1 oki case 0:
1708 1.1 oki if (ip->curx < ip->cols)
1709 1.1 oki ip->tabs[ip->curx] = 0;
1710 1.1 oki break;
1711 1.1 oki case 3:
1712 1.1 oki for (n = 0; n < ip->cols; n++)
1713 1.1 oki ip->tabs[n] = 0;
1714 1.1 oki break;
1715 1.1 oki
1716 1.1 oki default:
1717 1.1 oki /* ignore */
1718 1.1 oki break;
1719 1.1 oki }
1720 1.1 oki ip->escape = 0;
1721 1.1 oki return;
1722 1.1 oki
1723 1.1 oki
1724 1.1 oki case 'h': /* set mode */
1725 1.1 oki case 'l': /* reset mode */
1726 1.1 oki n = ite_zargnum (ip);
1727 1.1 oki switch (n) {
1728 1.1 oki case 4:
1729 1.1 oki ip->imode = (c == 'h'); /* insert/replace mode */
1730 1.1 oki break;
1731 1.1 oki case 20:
1732 1.1 oki ip->linefeed_newline = (c == 'h');
1733 1.1 oki break;
1734 1.1 oki }
1735 1.1 oki ip->escape = 0;
1736 1.1 oki return;
1737 1.1 oki
1738 1.1 oki
1739 1.1 oki case 'M':
1740 1.1 oki /* delete line */
1741 1.1 oki ite_dnline (ip, ite_argnum (ip));
1742 1.1 oki ip->escape = 0;
1743 1.1 oki return;
1744 1.1 oki
1745 1.1 oki
1746 1.1 oki case 'L':
1747 1.1 oki /* insert line */
1748 1.1 oki ite_inline (ip, ite_argnum (ip));
1749 1.1 oki ip->escape = 0;
1750 1.1 oki return;
1751 1.1 oki
1752 1.1 oki
1753 1.1 oki case 'P':
1754 1.1 oki /* delete char */
1755 1.1 oki ite_dnchar (ip, ite_argnum (ip));
1756 1.1 oki ip->escape = 0;
1757 1.1 oki return;
1758 1.1 oki
1759 1.1 oki
1760 1.1 oki case '@':
1761 1.1 oki /* insert char(s) */
1762 1.1 oki ite_inchar (ip, ite_argnum (ip));
1763 1.1 oki ip->escape = 0;
1764 1.1 oki return;
1765 1.1 oki
1766 1.1 oki case '!':
1767 1.1 oki /* soft terminal reset */
1768 1.1 oki ip->escape = 0; /* XXX */
1769 1.1 oki return;
1770 1.1 oki
1771 1.1 oki case 'G':
1772 1.1 oki /* this one was *not* in my vt320 manual but in
1773 1.1 oki a vt320 termcap entry.. who is right?
1774 1.1 oki It's supposed to set the horizontal cursor position. */
1775 1.1 oki *ip->ap = 0;
1776 1.1 oki x = atoi (ip->argbuf);
1777 1.1 oki if (x) x--;
1778 1.1 oki ip->curx = min(x, ip->cols - 1);
1779 1.1 oki ip->escape = 0;
1780 1.1 oki SUBR_CURSOR(ip, MOVE_CURSOR);
1781 1.1 oki clr_attr (ip, ATTR_INV);
1782 1.1 oki return;
1783 1.1 oki
1784 1.1 oki
1785 1.1 oki case 'd':
1786 1.1 oki /* same thing here, this one's for setting the absolute
1787 1.1 oki vertical cursor position. Not documented... */
1788 1.1 oki *ip->ap = 0;
1789 1.1 oki y = atoi (ip->argbuf);
1790 1.1 oki if (y) y--;
1791 1.1 oki if (ip->inside_margins)
1792 1.1 oki y += ip->top_margin;
1793 1.1 oki ip->cury = min(y, ip->rows - 1);
1794 1.1 oki ip->escape = 0;
1795 1.1 oki snap_cury(ip);
1796 1.1 oki SUBR_CURSOR(ip, MOVE_CURSOR);
1797 1.1 oki clr_attr (ip, ATTR_INV);
1798 1.1 oki return;
1799 1.1 oki
1800 1.1 oki
1801 1.1 oki case 'H':
1802 1.1 oki case 'f':
1803 1.1 oki *ip->ap = 0;
1804 1.1 oki y = atoi (ip->argbuf);
1805 1.1 oki x = 0;
1806 1.1 oki cp = index (ip->argbuf, ';');
1807 1.1 oki if (cp)
1808 1.1 oki x = atoi (cp + 1);
1809 1.1 oki if (x) x--;
1810 1.1 oki if (y) y--;
1811 1.1 oki if (ip->inside_margins)
1812 1.1 oki y += ip->top_margin;
1813 1.1 oki ip->cury = min(y, ip->rows - 1);
1814 1.1 oki ip->curx = min(x, ip->cols - 1);
1815 1.1 oki ip->escape = 0;
1816 1.1 oki snap_cury(ip);
1817 1.1 oki SUBR_CURSOR(ip, MOVE_CURSOR);
1818 1.1 oki /*clr_attr (ip, ATTR_INV);*/
1819 1.1 oki return;
1820 1.1 oki
1821 1.1 oki case 'A':
1822 1.1 oki /* cursor up */
1823 1.1 oki n = ite_argnum (ip);
1824 1.1 oki n = ip->cury - (n ? n : 1);
1825 1.1 oki if (n < 0) n = 0;
1826 1.1 oki if (ip->inside_margins)
1827 1.1 oki n = max(ip->top_margin, n);
1828 1.1 oki else if (n == ip->top_margin - 1)
1829 1.1 oki /* allow scrolling outside region, but don't scroll out
1830 1.1 oki of active region without explicit CUP */
1831 1.1 oki n = ip->top_margin;
1832 1.1 oki ip->cury = n;
1833 1.1 oki ip->escape = 0;
1834 1.1 oki SUBR_CURSOR(ip, MOVE_CURSOR);
1835 1.1 oki clr_attr (ip, ATTR_INV);
1836 1.1 oki return;
1837 1.1 oki
1838 1.1 oki case 'B':
1839 1.1 oki /* cursor down */
1840 1.1 oki n = ite_argnum (ip);
1841 1.1 oki n = ip->cury + (n ? n : 1);
1842 1.1 oki n = min(ip->rows - 1, n);
1843 1.1 oki #if 0
1844 1.1 oki if (ip->inside_margins)
1845 1.1 oki #endif
1846 1.1 oki n = min(ip->bottom_margin, n);
1847 1.1 oki #if 0
1848 1.1 oki else if (n == ip->bottom_margin + 1)
1849 1.1 oki /* allow scrolling outside region, but don't scroll out
1850 1.1 oki of active region without explicit CUP */
1851 1.1 oki n = ip->bottom_margin;
1852 1.1 oki #endif
1853 1.1 oki ip->cury = n;
1854 1.1 oki ip->escape = 0;
1855 1.1 oki SUBR_CURSOR(ip, MOVE_CURSOR);
1856 1.1 oki clr_attr (ip, ATTR_INV);
1857 1.1 oki return;
1858 1.1 oki
1859 1.1 oki case 'C':
1860 1.1 oki /* cursor forward */
1861 1.1 oki n = ite_argnum (ip);
1862 1.1 oki n = n ? n : 1;
1863 1.1 oki ip->curx = min(ip->curx + n, ip->cols - 1);
1864 1.1 oki ip->escape = 0;
1865 1.1 oki SUBR_CURSOR(ip, MOVE_CURSOR);
1866 1.1 oki clr_attr (ip, ATTR_INV);
1867 1.1 oki return;
1868 1.1 oki
1869 1.1 oki case 'D':
1870 1.1 oki /* cursor backward */
1871 1.1 oki n = ite_argnum (ip);
1872 1.1 oki n = n ? n : 1;
1873 1.1 oki n = ip->curx - n;
1874 1.1 oki ip->curx = n >= 0 ? n : 0;
1875 1.1 oki ip->escape = 0;
1876 1.1 oki SUBR_CURSOR(ip, MOVE_CURSOR);
1877 1.1 oki clr_attr (ip, ATTR_INV);
1878 1.1 oki return;
1879 1.1 oki
1880 1.1 oki
1881 1.1 oki case 'J':
1882 1.1 oki /* erase screen */
1883 1.1 oki *ip->ap = 0;
1884 1.1 oki n = ite_zargnum (ip);
1885 1.1 oki if (n == 0)
1886 1.1 oki ite_clrtoeos(ip);
1887 1.1 oki else if (n == 1)
1888 1.1 oki ite_clrtobos(ip);
1889 1.1 oki else if (n == 2)
1890 1.1 oki ite_clrscreen(ip);
1891 1.1 oki ip->escape = 0;
1892 1.1 oki return;
1893 1.1 oki
1894 1.1 oki
1895 1.1 oki case 'K':
1896 1.1 oki /* erase line */
1897 1.1 oki n = ite_zargnum (ip);
1898 1.1 oki if (n == 0)
1899 1.1 oki ite_clrtoeol(ip);
1900 1.1 oki else if (n == 1)
1901 1.1 oki ite_clrtobol(ip);
1902 1.1 oki else if (n == 2)
1903 1.1 oki ite_clrline(ip);
1904 1.1 oki ip->escape = 0;
1905 1.1 oki return;
1906 1.1 oki
1907 1.1 oki case 'S':
1908 1.1 oki /* scroll up */
1909 1.1 oki n = ite_zargnum (ip);
1910 1.1 oki if (n <= 0)
1911 1.1 oki n = 1;
1912 1.1 oki else if (n > ip->rows-1)
1913 1.1 oki n = ip->rows-1;
1914 1.1 oki SUBR_SCROLL(ip, ip->rows-1, 0, n, SCROLL_UP);
1915 1.1 oki ip->escape = 0;
1916 1.1 oki return;
1917 1.1 oki
1918 1.1 oki case 'T':
1919 1.1 oki /* scroll down */
1920 1.1 oki n = ite_zargnum (ip);
1921 1.1 oki if (n <= 0)
1922 1.1 oki n = 1;
1923 1.1 oki else if (n > ip->rows-1)
1924 1.1 oki n = ip->rows-1;
1925 1.1 oki SUBR_SCROLL(ip, 0, 0, n, SCROLL_DOWN);
1926 1.1 oki ip->escape = 0;
1927 1.1 oki return;
1928 1.1 oki
1929 1.1 oki case 'X':
1930 1.1 oki /* erase character */
1931 1.1 oki n = ite_argnum(ip) - 1;
1932 1.1 oki n = min(n, ip->cols - 1 - ip->curx);
1933 1.1 oki for (; n >= 0; n--) {
1934 1.1 oki attrclr(ip, ip->cury, ip->curx + n, 1, 1);
1935 1.1 oki SUBR_PUTC(ip, ' ', ip->cury, ip->curx + n, ATTR_NOR);
1936 1.1 oki }
1937 1.1 oki ip->escape = 0;
1938 1.1 oki return;
1939 1.1 oki
1940 1.1 oki
1941 1.1 oki case '}': case '`':
1942 1.1 oki /* status line control */
1943 1.1 oki ip->escape = 0;
1944 1.1 oki return;
1945 1.1 oki
1946 1.1 oki case 'r':
1947 1.1 oki /* set scrolling region */
1948 1.1 oki ip->escape = 0;
1949 1.1 oki *ip->ap = 0;
1950 1.1 oki x = atoi (ip->argbuf);
1951 1.1 oki x = x ? x : 1;
1952 1.1 oki y = ip->rows;
1953 1.1 oki cp = index (ip->argbuf, ';');
1954 1.1 oki if (cp) {
1955 1.1 oki y = atoi (cp + 1);
1956 1.1 oki y = y ? y : ip->rows;
1957 1.1 oki }
1958 1.1 oki if (y <= x)
1959 1.1 oki return;
1960 1.1 oki x--;
1961 1.1 oki y--;
1962 1.1 oki ip->top_margin = min(x, ip->rows - 2);
1963 1.1 oki ip->bottom_margin = min(y, ip->rows - 1);
1964 1.1 oki if (ip->inside_margins) {
1965 1.1 oki ip->cury = ip->top_margin;
1966 1.1 oki } else
1967 1.1 oki ip->cury = 0;
1968 1.1 oki ip->curx = 0;
1969 1.1 oki return;
1970 1.1 oki
1971 1.1 oki
1972 1.1 oki case 'm':
1973 1.1 oki /* big attribute setter/resetter */
1974 1.1 oki {
1975 1.1 oki char *cp;
1976 1.1 oki *ip->ap = 0;
1977 1.1 oki /* kludge to make CSIm work (== CSI0m) */
1978 1.1 oki if (ip->ap == ip->argbuf)
1979 1.1 oki ip->ap++;
1980 1.1 oki for (cp = ip->argbuf; cp < ip->ap; ) {
1981 1.1 oki switch (*cp) {
1982 1.1 oki case 0:
1983 1.1 oki case '0':
1984 1.1 oki clr_attr (ip, ATTR_ALL);
1985 1.1 oki ip->fgcolor = 7;
1986 1.1 oki ip->bgcolor = 0;
1987 1.1 oki cp++;
1988 1.1 oki break;
1989 1.1 oki
1990 1.1 oki case '1':
1991 1.1 oki set_attr (ip, ATTR_BOLD);
1992 1.1 oki cp++;
1993 1.1 oki break;
1994 1.1 oki
1995 1.1 oki case '2':
1996 1.1 oki switch (cp[1]) {
1997 1.1 oki case '2':
1998 1.1 oki clr_attr (ip, ATTR_BOLD);
1999 1.1 oki cp += 2;
2000 1.1 oki break;
2001 1.1 oki
2002 1.1 oki case '4':
2003 1.1 oki clr_attr (ip, ATTR_UL);
2004 1.1 oki cp += 2;
2005 1.1 oki break;
2006 1.1 oki
2007 1.1 oki case '5':
2008 1.1 oki clr_attr (ip, ATTR_BLINK);
2009 1.1 oki cp += 2;
2010 1.1 oki break;
2011 1.1 oki
2012 1.1 oki case '7':
2013 1.1 oki clr_attr (ip, ATTR_INV);
2014 1.1 oki cp += 2;
2015 1.1 oki break;
2016 1.1 oki
2017 1.1 oki default:
2018 1.1 oki cp++;
2019 1.1 oki break;
2020 1.1 oki }
2021 1.1 oki break;
2022 1.1 oki
2023 1.1 oki case '3':
2024 1.1 oki switch (cp[1]) {
2025 1.1 oki case '0': case '1': case '2': case '3':
2026 1.1 oki case '4': case '5': case '6': case '7':
2027 1.1 oki /* foreground colors */
2028 1.1 oki ip->fgcolor = cp[1] - '0';
2029 1.1 oki cp += 2;
2030 1.1 oki break;
2031 1.1 oki default:
2032 1.1 oki cp++;
2033 1.1 oki break;
2034 1.1 oki }
2035 1.1 oki break;
2036 1.1 oki
2037 1.1 oki case '4':
2038 1.1 oki switch (cp[1]) {
2039 1.1 oki case '0': case '1': case '2': case '3':
2040 1.1 oki case '4': case '5': case '6': case '7':
2041 1.1 oki /* background colors */
2042 1.1 oki ip->bgcolor = cp[1] - '0';
2043 1.1 oki cp += 2;
2044 1.1 oki break;
2045 1.1 oki default:
2046 1.1 oki set_attr (ip, ATTR_UL);
2047 1.1 oki cp++;
2048 1.1 oki break;
2049 1.1 oki }
2050 1.1 oki break;
2051 1.1 oki
2052 1.1 oki case '5':
2053 1.1 oki set_attr (ip, ATTR_BLINK);
2054 1.1 oki cp++;
2055 1.1 oki break;
2056 1.1 oki
2057 1.1 oki case '7':
2058 1.1 oki set_attr (ip, ATTR_INV);
2059 1.1 oki cp++;
2060 1.1 oki break;
2061 1.1 oki
2062 1.1 oki default:
2063 1.1 oki cp++;
2064 1.1 oki break;
2065 1.1 oki }
2066 1.1 oki }
2067 1.1 oki
2068 1.1 oki }
2069 1.1 oki ip->escape = 0;
2070 1.1 oki return;
2071 1.1 oki
2072 1.1 oki
2073 1.1 oki case 'u':
2074 1.1 oki /* DECRQTSR */
2075 1.1 oki ite_sendstr (ip, "\033P\033\\");
2076 1.1 oki ip->escape = 0;
2077 1.1 oki return;
2078 1.1 oki
2079 1.1 oki default:
2080 1.1 oki ip->escape = 0;
2081 1.1 oki return;
2082 1.1 oki }
2083 1.1 oki break;
2084 1.1 oki
2085 1.1 oki
2086 1.1 oki
2087 1.1 oki case '?': /* CSI ? */
2088 1.1 oki switch (c) {
2089 1.1 oki case '0': case '1': case '2': case '3': case '4':
2090 1.1 oki case '5': case '6': case '7': case '8': case '9':
2091 1.1 oki case ';': case '\"': case '$':
2092 1.1 oki /* Don't fill the last character; it's needed. */
2093 1.1 oki /* XXX yeah, where ?? */
2094 1.1 oki if (ip->ap < ip->argbuf + MAX_ARGSIZE - 1)
2095 1.1 oki *ip->ap++ = c;
2096 1.1 oki return;
2097 1.1 oki
2098 1.1 oki
2099 1.1 oki case 'n':
2100 1.1 oki /* Terminal Reports */
2101 1.1 oki *ip->ap = 0;
2102 1.1 oki if (ip->ap == &ip->argbuf[2]) {
2103 1.1 oki if (!strncmp(ip->argbuf, "15", 2))
2104 1.1 oki /* printer status: no printer */
2105 1.1 oki ite_sendstr (ip, "\033[13n");
2106 1.1 oki
2107 1.1 oki else if (!strncmp(ip->argbuf, "25", 2))
2108 1.1 oki /* udk status */
2109 1.1 oki ite_sendstr (ip, "\033[20n");
2110 1.1 oki
2111 1.1 oki else if (!strncmp(ip->argbuf, "26", 2))
2112 1.1 oki /* keyboard dialect: US */
2113 1.1 oki ite_sendstr (ip, "\033[27;1n");
2114 1.1 oki }
2115 1.1 oki ip->escape = 0;
2116 1.1 oki return;
2117 1.1 oki
2118 1.1 oki
2119 1.1 oki case 'h': /* set dec private modes */
2120 1.1 oki case 'l': /* reset dec private modes */
2121 1.1 oki n = ite_zargnum (ip);
2122 1.1 oki switch (n) {
2123 1.1 oki case 1:
2124 1.1 oki /* CKM - cursor key mode */
2125 1.1 oki ip->cursor_appmode = (c == 'h');
2126 1.1 oki break;
2127 1.1 oki
2128 1.1 oki case 3:
2129 1.1 oki /* 132/80 columns (132 == 'h') */
2130 1.1 oki break;
2131 1.1 oki
2132 1.1 oki case 4: /* smooth scroll */
2133 1.1 oki break;
2134 1.1 oki
2135 1.1 oki case 5:
2136 1.1 oki /* light background (=='h') /dark background(=='l') */
2137 1.1 oki break;
2138 1.1 oki
2139 1.1 oki case 6: /* origin mode */
2140 1.1 oki ip->inside_margins = (c == 'h');
2141 1.1 oki #if 0
2142 1.1 oki ip->curx = 0;
2143 1.1 oki ip->cury = ip->inside_margins ? ip->top_margin : 0;
2144 1.1 oki SUBR_CURSOR(ip, MOVE_CURSOR);
2145 1.1 oki #endif
2146 1.1 oki break;
2147 1.1 oki
2148 1.1 oki case 7: /* auto wraparound */
2149 1.1 oki ip->auto_wrap = (c == 'h');
2150 1.1 oki break;
2151 1.1 oki
2152 1.1 oki case 8: /* keyboard repeat */
2153 1.1 oki ip->key_repeat = (c == 'h');
2154 1.1 oki break;
2155 1.1 oki
2156 1.1 oki case 20: /* newline mode */
2157 1.1 oki ip->linefeed_newline = (c == 'h');
2158 1.1 oki break;
2159 1.1 oki
2160 1.1 oki case 25: /* cursor on/off */
2161 1.1 oki SUBR_CURSOR(ip, (c == 'h') ? DRAW_CURSOR : ERASE_CURSOR);
2162 1.1 oki break;
2163 1.1 oki }
2164 1.1 oki ip->escape = 0;
2165 1.1 oki return;
2166 1.1 oki
2167 1.1 oki case 'K':
2168 1.1 oki /* selective erase in line */
2169 1.1 oki case 'J':
2170 1.1 oki /* selective erase in display */
2171 1.1 oki
2172 1.1 oki default:
2173 1.1 oki ip->escape = 0;
2174 1.1 oki return;
2175 1.1 oki }
2176 1.1 oki break;
2177 1.1 oki
2178 1.1 oki
2179 1.1 oki default:
2180 1.1 oki ip->escape = 0;
2181 1.1 oki return;
2182 1.1 oki }
2183 1.1 oki }
2184 1.1 oki
2185 1.1 oki switch (c) {
2186 1.1 oki case 0x00: /* NUL */
2187 1.1 oki case 0x01: /* SOH */
2188 1.1 oki case 0x02: /* STX */
2189 1.1 oki case 0x03: /* ETX */
2190 1.1 oki case 0x04: /* EOT */
2191 1.1 oki case 0x05: /* ENQ */
2192 1.1 oki case 0x06: /* ACK */
2193 1.1 oki break;
2194 1.1 oki
2195 1.1 oki case BEL:
2196 1.1 oki #if NBELL > 0
2197 1.1 oki if (kbd_tty && ite_tty[kbd_ite->device.dv_unit] == kbd_tty)
2198 1.1 oki opm_bell();
2199 1.1 oki #endif
2200 1.1 oki break;
2201 1.1 oki
2202 1.1 oki case BS:
2203 1.1 oki if (--ip->curx < 0)
2204 1.1 oki ip->curx = 0;
2205 1.1 oki else
2206 1.1 oki SUBR_CURSOR(ip, MOVE_CURSOR);
2207 1.1 oki break;
2208 1.1 oki
2209 1.1 oki case HT:
2210 1.1 oki for (n = ip->curx + 1; n < ip->cols; n++) {
2211 1.1 oki if (ip->tabs[n]) {
2212 1.1 oki ip->curx = n;
2213 1.1 oki SUBR_CURSOR(ip, MOVE_CURSOR);
2214 1.1 oki break;
2215 1.1 oki }
2216 1.1 oki }
2217 1.1 oki break;
2218 1.1 oki
2219 1.1 oki case VT: /* VT is treated like LF */
2220 1.1 oki case FF: /* so is FF */
2221 1.1 oki case LF:
2222 1.1 oki /* cr->crlf distinction is done here, on output,
2223 1.1 oki not on input! */
2224 1.1 oki if (ip->linefeed_newline)
2225 1.1 oki ite_crlf (ip);
2226 1.1 oki else
2227 1.1 oki ite_lf (ip);
2228 1.1 oki break;
2229 1.1 oki
2230 1.1 oki case CR:
2231 1.1 oki ite_cr (ip);
2232 1.1 oki break;
2233 1.1 oki
2234 1.1 oki
2235 1.1 oki case SO:
2236 1.1 oki ip->GL = &ip->G1;
2237 1.1 oki break;
2238 1.1 oki
2239 1.1 oki case SI:
2240 1.1 oki ip->GL = &ip->G0;
2241 1.1 oki break;
2242 1.1 oki
2243 1.1 oki case 0x10: /* DLE */
2244 1.1 oki case 0x11: /* DC1/XON */
2245 1.1 oki case 0x12: /* DC2 */
2246 1.1 oki case 0x13: /* DC3/XOFF */
2247 1.1 oki case 0x14: /* DC4 */
2248 1.1 oki case 0x15: /* NAK */
2249 1.1 oki case 0x16: /* SYN */
2250 1.1 oki case 0x17: /* ETB */
2251 1.1 oki break;
2252 1.1 oki
2253 1.1 oki case CAN:
2254 1.1 oki ip->escape = 0; /* cancel any escape sequence in progress */
2255 1.1 oki break;
2256 1.1 oki
2257 1.1 oki case 0x19: /* EM */
2258 1.1 oki break;
2259 1.1 oki
2260 1.1 oki case SUB:
2261 1.1 oki ip->escape = 0; /* dito, but see below */
2262 1.1 oki /* should also display a reverse question mark!! */
2263 1.1 oki break;
2264 1.1 oki
2265 1.1 oki case ESC:
2266 1.1 oki ip->escape = ESC;
2267 1.1 oki break;
2268 1.1 oki
2269 1.1 oki case 0x1c: /* FS */
2270 1.1 oki case 0x1d: /* GS */
2271 1.1 oki case 0x1e: /* RS */
2272 1.1 oki case 0x1f: /* US */
2273 1.1 oki break;
2274 1.1 oki
2275 1.1 oki /* now it gets weird.. 8bit control sequences.. */
2276 1.1 oki case IND: /* index: move cursor down, scroll */
2277 1.1 oki ite_index (ip);
2278 1.1 oki break;
2279 1.1 oki
2280 1.1 oki case NEL: /* next line. next line, first pos. */
2281 1.1 oki ite_crlf (ip);
2282 1.1 oki break;
2283 1.1 oki
2284 1.1 oki case HTS: /* set horizontal tab */
2285 1.1 oki if (ip->curx < ip->cols)
2286 1.1 oki ip->tabs[ip->curx] = 1;
2287 1.1 oki break;
2288 1.1 oki
2289 1.1 oki case RI: /* reverse index */
2290 1.1 oki ite_rlf (ip);
2291 1.1 oki break;
2292 1.1 oki
2293 1.1 oki case SS2: /* go into G2 for one character */
2294 1.1 oki ip->save_GL = ip->GR; /* GL XXX EUC */
2295 1.1 oki ip->GR = &ip->G2; /* GL XXX */
2296 1.1 oki break;
2297 1.1 oki
2298 1.1 oki case SS3: /* go into G3 for one character */
2299 1.1 oki ip->save_GL = ip->GR; /* GL XXX EUC */
2300 1.1 oki ip->GR = &ip->G3; /* GL XXX */
2301 1.1 oki break;
2302 1.1 oki
2303 1.1 oki case DCS: /* device control string introducer */
2304 1.1 oki ip->escape = DCS;
2305 1.1 oki ip->ap = ip->argbuf;
2306 1.1 oki break;
2307 1.1 oki
2308 1.1 oki case CSI: /* control sequence introducer */
2309 1.1 oki ip->escape = CSI;
2310 1.1 oki ip->ap = ip->argbuf;
2311 1.1 oki break;
2312 1.1 oki
2313 1.1 oki case ST: /* string terminator */
2314 1.1 oki /* ignore, if not used as terminator */
2315 1.1 oki break;
2316 1.1 oki
2317 1.1 oki case OSC: /* introduces OS command. Ignore everything upto ST */
2318 1.1 oki ip->escape = OSC;
2319 1.1 oki break;
2320 1.1 oki
2321 1.1 oki case PM: /* privacy message, ignore everything upto ST */
2322 1.1 oki ip->escape = PM;
2323 1.1 oki break;
2324 1.1 oki
2325 1.1 oki case APC: /* application program command, ignore everything upto ST */
2326 1.1 oki ip->escape = APC;
2327 1.1 oki break;
2328 1.1 oki
2329 1.1 oki case DEL:
2330 1.1 oki break;
2331 1.1 oki
2332 1.1 oki default:
2333 1.1 oki if (!ip->save_char && (*((c & 0x80) ? ip->GR : ip->GL) & CSET_MULTI)) {
2334 1.1 oki ip->save_char = c;
2335 1.1 oki break;
2336 1.1 oki }
2337 1.1 oki if (ip->imode)
2338 1.1 oki ite_inchar(ip, ip->save_char ? 2 : 1);
2339 1.1 oki iteprecheckwrap(ip);
2340 1.1 oki #ifdef DO_WEIRD_ATTRIBUTES
2341 1.1 oki if ((ip->attribute & ATTR_INV) || attrtest(ip, ATTR_INV)) {
2342 1.1 oki attrset(ip, ATTR_INV);
2343 1.1 oki SUBR_PUTC(ip, c, ip->cury, ip->curx, ATTR_INV);
2344 1.1 oki }
2345 1.1 oki else
2346 1.1 oki SUBR_PUTC(ip, c, ip->cury, ip->curx, ATTR_NOR);
2347 1.1 oki #else
2348 1.1 oki SUBR_PUTC(ip, c, ip->cury, ip->curx, ip->attribute);
2349 1.1 oki #endif
2350 1.1 oki /* SUBR_CURSOR(ip, DRAW_CURSOR);*/
2351 1.1 oki itecheckwrap(ip);
2352 1.1 oki if (ip->save_char) {
2353 1.1 oki itecheckwrap(ip);
2354 1.1 oki ip->save_char = 0;
2355 1.1 oki }
2356 1.1 oki if (ip->save_GL) {
2357 1.1 oki /*
2358 1.1 oki * reset single shift
2359 1.1 oki */
2360 1.1 oki ip->GR = ip->save_GL;
2361 1.1 oki ip->save_GL = 0;
2362 1.1 oki }
2363 1.1 oki break;
2364 1.1 oki }
2365 1.1 oki }
2366 1.1 oki
2367 1.1 oki static void
2368 1.1 oki iteprecheckwrap(ip)
2369 1.1 oki struct ite_softc *ip;
2370 1.1 oki {
2371 1.1 oki if (ip->auto_wrap && ip->curx + (ip->save_char ? 1 : 0) == ip->cols) {
2372 1.1 oki ip->curx = 0;
2373 1.1 oki clr_attr(ip, ATTR_INV);
2374 1.1 oki if (++ip->cury >= ip->bottom_margin + 1) {
2375 1.1 oki ip->cury = ip->bottom_margin;
2376 1.1 oki /*SUBR_CURSOR(ip, MOVE_CURSOR);*/
2377 1.1 oki SUBR_SCROLL(ip, ip->top_margin + 1, 0, 1, SCROLL_UP);
2378 1.1 oki ite_clrtoeol(ip);
2379 1.1 oki } /*else
2380 1.1 oki SUBR_CURSOR(ip, MOVE_CURSOR);*/
2381 1.1 oki }
2382 1.1 oki }
2383 1.1 oki
2384 1.1 oki static void
2385 1.1 oki itecheckwrap(ip)
2386 1.1 oki struct ite_softc *ip;
2387 1.1 oki {
2388 1.1 oki #if 0
2389 1.1 oki if (++ip->curx == ip->cols) {
2390 1.1 oki if (ip->auto_wrap) {
2391 1.1 oki ip->curx = 0;
2392 1.1 oki clr_attr(ip, ATTR_INV);
2393 1.1 oki if (++ip->cury >= ip->bottom_margin + 1) {
2394 1.1 oki ip->cury = ip->bottom_margin;
2395 1.1 oki SUBR_CURSOR(ip, MOVE_CURSOR);
2396 1.1 oki SUBR_SCROLL(ip, ip->top_margin + 1, 0, 1, SCROLL_UP);
2397 1.1 oki ite_clrtoeol(ip);
2398 1.1 oki return;
2399 1.1 oki }
2400 1.1 oki } else
2401 1.1 oki /* stay there if no autowrap.. */
2402 1.1 oki ip->curx--;
2403 1.1 oki }
2404 1.1 oki #else
2405 1.1 oki if (ip->curx < ip->cols) {
2406 1.1 oki ip->curx++;
2407 1.1 oki /*SUBR_CURSOR(ip, MOVE_CURSOR);*/
2408 1.1 oki }
2409 1.1 oki #endif
2410 1.1 oki }
2411 1.1 oki
2412 1.1 oki #endif
2413 1.1 oki
2414 1.1 oki /*
2415 1.1 oki * Console functions
2416 1.1 oki */
2417 1.1 oki #include <dev/cons.h>
2418 1.1 oki
2419 1.1 oki /*
2420 1.1 oki * Return a priority in consdev->cn_pri field highest wins. This function
2421 1.1 oki * is called before any devices have been probed.
2422 1.1 oki */
2423 1.1 oki void
2424 1.1 oki itecnprobe(cd)
2425 1.1 oki struct consdev *cd;
2426 1.1 oki {
2427 1.2 oki int maj;
2428 1.1 oki
2429 1.1 oki /*
2430 1.1 oki * bring graphics layer up.
2431 1.1 oki */
2432 1.1 oki config_console();
2433 1.1 oki
2434 1.1 oki /* locate the major number */
2435 1.1 oki for (maj = 0; maj < nchrdev; maj++)
2436 1.1 oki if (cdevsw[maj].d_open == iteopen)
2437 1.1 oki break;
2438 1.1 oki
2439 1.1 oki /*
2440 1.1 oki * return priority of the best ite (already picked from attach)
2441 1.1 oki * or CN_DEAD.
2442 1.1 oki */
2443 1.1 oki if (con_itesoftc.grf == NULL)
2444 1.1 oki cd->cn_pri = CN_DEAD;
2445 1.1 oki else {
2446 1.1 oki con_itesoftc.flags = (ITE_ALIVE|ITE_CONSOLE);
2447 1.1 oki con_itesoftc.isw = &itesw[0]; /* XXX */
2448 1.1 oki cd->cn_pri = CN_INTERNAL;
2449 1.1 oki cd->cn_dev = makedev(maj, 0); /* XXX */
2450 1.1 oki }
2451 1.1 oki
2452 1.1 oki }
2453 1.1 oki
2454 1.1 oki void
2455 1.1 oki itecninit(cd)
2456 1.1 oki struct consdev *cd;
2457 1.1 oki {
2458 1.1 oki struct ite_softc *ip;
2459 1.1 oki
2460 1.1 oki ip = getitesp(cd->cn_dev);
2461 1.1 oki iteinit(cd->cn_dev); /* init console unit */
2462 1.1 oki ip->flags |= ITE_ACTIVE | ITE_ISCONS;
2463 1.1 oki }
2464 1.1 oki
2465 1.1 oki /*
2466 1.1 oki * itecnfinish() is called in ite_init() when the device is
2467 1.1 oki * being probed in the normal fasion, thus we can finish setting
2468 1.1 oki * up this ite now that the system is more functional.
2469 1.1 oki */
2470 1.1 oki void
2471 1.1 oki itecnfinish(ip)
2472 1.1 oki struct ite_softc *ip;
2473 1.1 oki {
2474 1.1 oki static int done;
2475 1.1 oki
2476 1.1 oki if (done)
2477 1.1 oki return;
2478 1.1 oki done = 1;
2479 1.1 oki }
2480 1.1 oki
2481 1.1 oki /*ARGSUSED*/
2482 1.1 oki int
2483 1.1 oki itecngetc(dev)
2484 1.1 oki dev_t dev;
2485 1.1 oki {
2486 1.1 oki register int c;
2487 1.1 oki
2488 1.1 oki /* XXX this should be moved */
2489 1.1 oki if (!kbd_init) {
2490 1.1 oki kbd_init = 1;
2491 1.1 oki kbdenable();
2492 1.1 oki }
2493 1.1 oki do {
2494 1.1 oki c = kbdgetcn();
2495 1.1 oki c = itecnfilter(c, ITEFILT_CONSOLE);
2496 1.1 oki } while (c == -1);
2497 1.1 oki return (c);
2498 1.1 oki }
2499 1.1 oki
2500 1.1 oki void
2501 1.1 oki itecnputc(dev, c)
2502 1.1 oki dev_t dev;
2503 1.1 oki int c;
2504 1.1 oki {
2505 1.1 oki static int paniced = 0;
2506 1.1 oki struct ite_softc *ip = getitesp(dev);
2507 1.1 oki char ch = c;
2508 1.1 oki
2509 1.1 oki if (panicstr && !paniced &&
2510 1.1 oki (ip->flags & (ITE_ACTIVE|ITE_INGRF)) != ITE_ACTIVE) {
2511 1.1 oki (void) iteon(dev, 3);
2512 1.1 oki paniced = 1;
2513 1.1 oki }
2514 1.1 oki ite_putstr(&ch, 1, dev);
2515 1.1 oki }
2516