zs.c revision 1.1 1 /* $NetBSD: zs.c,v 1.1 1996/05/05 12:17:06 oki Exp $ */
2
3 /*
4 * Copyright (c) 1992, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * This software was developed by the Computer Systems Engineering group
8 * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
9 * contributed to Berkeley.
10 *
11 * All advertising materials mentioning features or use of this software
12 * must display the following acknowledgement:
13 * This product includes software developed by the University of
14 * California, Lawrence Berkeley Laboratory.
15 *
16 * Redistribution and use in source and binary forms, with or without
17 * modification, are permitted provided that the following conditions
18 * are met:
19 * 1. Redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer.
21 * 2. Redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution.
24 * 3. All advertising materials mentioning features or use of this software
25 * must display the following acknowledgement:
26 * This product includes software developed by the University of
27 * California, Berkeley and its contributors.
28 * 4. Neither the name of the University nor the names of its contributors
29 * may be used to endorse or promote products derived from this software
30 * without specific prior written permission.
31 *
32 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
33 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
34 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
35 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
36 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
37 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
38 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
39 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
40 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
41 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
42 * SUCH DAMAGE.
43 *
44 * @(#)zs.c 8.1 (Berkeley) 7/19/93
45 */
46
47 /*
48 * Zilog Z8530 (ZSCC) driver.
49 *
50 * Runs two tty ports (ttya and ttyb) on zs0,
51 * and runs a keyboard and mouse on zs1.
52 *
53 * This driver knows far too much about chip to usage mappings.
54 */
55 #include "zs.h"
56 #if NZS > 0
57
58 #include <sys/param.h>
59 #include <sys/systm.h>
60 #include <sys/proc.h>
61 #include <sys/device.h>
62 #include <sys/conf.h>
63 #include <sys/file.h>
64 #include <sys/ioctl.h>
65 #include <sys/tty.h>
66 #include <sys/time.h>
67 #include <sys/kernel.h>
68 #include <sys/syslog.h>
69
70 #include <machine/cpu.h>
71
72 #include <x68k/x68k/iodevice.h>
73 #include <dev/ic/z8530reg.h>
74 #include <x68k/dev/zsvar.h>
75
76 #ifdef KGDB
77 #include <machine/remote-sl.h>
78 #endif
79
80 #define ZSMAJOR 12 /* XXX */
81
82 #define ZS_MOUSE 1 /* XXX */
83
84 #define PCLK (5*1000*1000) /* PCLK pin input clock rate */
85
86 #if 0
87 /*
88 * Select software interrupt bit based on TTY ipl.
89 */
90 #if PIL_TTY == 1
91 # define IE_ZSSOFT IE_L1
92 #elif PIL_TTY == 4
93 # define IE_ZSSOFT IE_L4
94 #elif PIL_TTY == 6
95 # define IE_ZSSOFT IE_L6
96 #else
97 # error "no suitable software interrupt bit"
98 #endif
99 #endif
100
101 /*
102 * Software state per found chip. This would be called `zs_softc',
103 * but the previous driver had a rather different zs_softc....
104 */
105 struct zs_softc {
106 struct device zi_dev; /* base device */
107 volatile struct zsdevice *zi_zs;/* chip registers */
108 struct zs_chanstate zi_cs[2]; /* channel A and B software state */
109 };
110
111 struct tty *zs_tty[NZS * 2]; /* XXX should be dynamic */
112
113 /* Definition of the driver for autoconfig. */
114 static int zsmatch __P((struct device *, void *, void *));
115 static void zsattach __P((struct device *, struct device *, void *));
116
117 struct cfattach zs_ca = {
118 sizeof(struct zs_softc), zsmatch, zsattach
119 };
120
121 struct cfdriver zs_cd = {
122 NULL, "zs", DV_TTY, NULL, 0
123 };
124
125 #ifdef x68k
126 static struct zs_chanstate *zsms;
127 void zs_msmodem __P((int));
128 #endif
129
130 /* Interrupt handlers. */
131 void zshard __P((int));
132 int zssoft __P((void *));
133
134 struct zs_chanstate *zslist;
135
136 /* Routines called from other code. */
137 static void zsiopen __P((struct tty *));
138 static void zsiclose __P((struct tty *));
139 static void zsstart __P((struct tty *));
140 int zsstop __P((struct tty *, int));
141 static int zsparam __P((struct tty *, struct termios *));
142 static int zshwiflow __P((struct tty *, int));
143
144 /* Routines purely local to this driver. */
145 static int zs_getspeed __P((volatile struct zschan *));
146 #ifdef KGDB
147 static void zs_reset __P((volatile struct zschan *, int, int));
148 #endif
149 static void zs_modem __P((struct zs_chanstate *, int));
150 static void zs_loadchannelregs __P((volatile struct zschan *, u_char *));
151 static void zsabort __P((void));
152
153 /* Console stuff. */
154 static struct tty *zs_ctty; /* console `struct tty *' */
155 static int zs_consin = -1, zs_consout = -1;
156 static void zscnputc __P((int)); /* console putc function */
157 static volatile struct zschan *zs_conschan;
158 static struct tty *zs_checkcons __P((struct zs_softc *, int, struct zs_chanstate *));
159
160 #ifdef KGDB
161 /* KGDB stuff. Must reboot to change zs_kgdbunit. */
162 extern int kgdb_dev, kgdb_rate;
163 static int zs_kgdb_savedspeed;
164 static void zs_checkkgdb __P((int, struct zs_chanstate *, struct tty *));
165 #endif
166
167 static volatile struct zsdevice *findzs __P((int));
168 static volatile struct zsdevice *zsaddr[NZS]; /* XXX, but saves work */
169
170 int zshardscope;
171 int zsshortcuts; /* number of "shortcut" software interrupts */
172
173 static u_char
174 zs_read(zc, reg)
175 volatile struct zschan *zc;
176 u_char reg;
177 {
178 u_char val;
179
180 zc->zc_csr = reg;
181 ZS_DELAY();
182 val = zc->zc_csr;
183 ZS_DELAY();
184 return val;
185 }
186
187 static u_char
188 zs_write(zc, reg, val)
189 volatile struct zschan *zc;
190 u_char reg, val;
191 {
192 zc->zc_csr = reg;
193 ZS_DELAY();
194 zc->zc_csr = val;
195 ZS_DELAY();
196 return val;
197 }
198
199 /*
200 * find zs address for x68k architecture
201 */
202 static volatile struct zsdevice *
203 findzs(zs)
204 int zs;
205 {
206 if (zs == 0)
207 return &IODEVbase->io_inscc;
208 if (1 <= zs && zs <= 4)
209 return &(IODEVbase->io_exscc)[zs - 1];
210 /* none */
211 return 0;
212 }
213
214 /*
215 * Match slave number to zs unit number, so that misconfiguration will
216 * not set up the keyboard as ttya, etc.
217 */
218 static int
219 zsmatch(parent, match, aux)
220 struct device *parent;
221 void *match, *aux;
222 {
223 struct cfdata *cfp = match;
224 volatile void *addr;
225
226 if(strcmp("zs", aux) || (addr = findzs(cfp->cf_unit)) == 0)
227 return(0);
228 if (badaddr(addr))
229 return 0;
230 return(1);
231 }
232
233 /*
234 * Attach a found zs.
235 *
236 * USE ROM PROPERTIES port-a-ignore-cd AND port-b-ignore-cd FOR
237 * SOFT CARRIER, AND keyboard PROPERTY FOR KEYBOARD/MOUSE?
238 */
239 static void
240 zsattach(parent, dev, aux)
241 struct device *parent;
242 struct device *dev;
243 void *aux;
244 {
245 register int zs = dev->dv_unit, unit;
246 register struct zs_softc *zi;
247 register struct zs_chanstate *cs;
248 register volatile struct zsdevice *addr;
249 register struct tty *tp, *ctp;
250 register struct confargs *ca = aux;
251 int pri;
252
253 if ((addr = zsaddr[zs]) == NULL)
254 addr = zsaddr[zs] = findzs(zs);
255 printf(" (%s)\n", zs ? "external" : "onboard");
256 zi = (struct zs_softc *)dev;
257 zi->zi_zs = addr;
258 unit = zs * 2;
259 cs = zi->zi_cs;
260 cs->cs_ttyp = tp = ttymalloc();
261
262 /* link into interrupt list with order (A,B) (B=A+1) */
263 cs[0].cs_next = &cs[1];
264 cs[1].cs_next = zslist;
265 zslist = cs;
266
267 cs->cs_unit = unit;
268 cs->cs_speed = zs_getspeed(&addr->zs_chan[ZS_CHAN_A]);
269 cs->cs_zc = &addr->zs_chan[ZS_CHAN_A];
270 tp->t_dev = makedev(ZSMAJOR, unit);
271 tp->t_oproc = zsstart;
272 tp->t_param = zsparam;
273 tp->t_hwiflow = zshwiflow;
274 if ((ctp = zs_checkcons(zi, unit, cs)) != NULL)
275 cs->cs_ttyp = tp = ctp;
276 #ifdef KGDB
277 if (ctp == NULL)
278 zs_checkkgdb(unit, cs, tp);
279 #endif
280 #ifdef sun
281 if (unit == ZS_KBD) {
282 /*
283 * Keyboard: tell /dev/kbd driver how to talk to us.
284 */
285 tp->t_ispeed = tp->t_ospeed = cs->cs_speed;
286 tp->t_cflag = CS8;
287 kbd_serial(tp, zsiopen, zsiclose);
288 cs->cs_conk = 1; /* do L1-A processing */
289 }
290 #endif
291 ZS_WRITE(cs->cs_zc, 2, 0x70 + zs); /* XXX interrupt vector */
292 unit++;
293 cs++;
294 cs->cs_ttyp = tp = ttymalloc();
295 cs->cs_unit = unit;
296 cs->cs_speed = zs_getspeed(&addr->zs_chan[ZS_CHAN_B]);
297 cs->cs_zc = &addr->zs_chan[ZS_CHAN_B];
298 tp->t_dev = makedev(ZSMAJOR, unit);
299 tp->t_oproc = zsstart;
300 tp->t_param = zsparam;
301 tp->t_hwiflow = zshwiflow;
302 if ((ctp = zs_checkcons(zi, unit, cs)) != NULL)
303 cs->cs_ttyp = tp = ctp;
304 #ifdef KGDB
305 if (ctp == NULL)
306 zs_checkkgdb(unit, cs, tp);
307 #endif
308 if (unit == ZS_MOUSE) {
309 /*
310 * Mouse: tell /dev/mouse driver how to talk to us.
311 */
312 tp->t_ispeed = tp->t_ospeed = cs->cs_speed;
313 tp->t_cflag = CS8 | CSTOPB;
314 ms_serial(tp, zsiopen, zsiclose);
315 #ifdef x68k
316 zsms = cs;
317 #endif
318 }
319 }
320
321 #ifdef KGDB
322 /*
323 * Put a channel in a known state. Interrupts may be left disabled
324 * or enabled, as desired.
325 */
326 static void
327 zs_reset(zc, inten, speed)
328 volatile struct zschan *zc;
329 int inten, speed;
330 {
331 int tconst;
332 static u_char reg[16] = {
333 0,
334 0,
335 0,
336 ZSWR3_RX_8 | ZSWR3_RX_ENABLE,
337 ZSWR4_CLK_X16 | ZSWR4_ONESB | ZSWR4_EVENP,
338 ZSWR5_TX_8 | ZSWR5_TX_ENABLE,
339 0,
340 0,
341 0,
342 0,
343 ZSWR10_NRZ,
344 ZSWR11_TXCLK_BAUD | ZSWR11_RXCLK_BAUD,
345 0,
346 0,
347 ZSWR14_BAUD_FROM_PCLK | ZSWR14_BAUD_ENA,
348 ZSWR15_BREAK_IE | ZSWR15_DCD_IE,
349 };
350
351 reg[9] = inten ? ZSWR9_MASTER_IE | ZSWR9_NO_VECTOR : ZSWR9_NO_VECTOR;
352 tconst = BPS_TO_TCONST(PCLK / 16, speed);
353 reg[12] = tconst;
354 reg[13] = tconst >> 8;
355 zs_loadchannelregs(zc, reg);
356 }
357 #endif
358
359 /*
360 * Declare the given tty (which is in fact &cons) as a console input
361 * or output. This happens before the zs chip is attached; the hookup
362 * is finished later, in zs_setcons() below.
363 *
364 * This is used only for ports a and b. The console keyboard is decoded
365 * independently (we always send unit-2 input to /dev/kbd, which will
366 * direct it to /dev/console if appropriate).
367 */
368 void
369 zsconsole(tp, unit, out, fnstop)
370 register struct tty *tp;
371 register int unit;
372 int out;
373 int (**fnstop) __P((struct tty *, int));
374 {
375 int zs;
376 volatile struct zsdevice *addr;
377
378 if (out) {
379 zs_consout = unit;
380 zs = unit >> 1;
381 if ((addr = zsaddr[zs]) == NULL)
382 addr = zsaddr[zs] = findzs(zs);
383 zs_conschan = (unit & 1) == 0 ? &addr->zs_chan[ZS_CHAN_A] :
384 &addr->zs_chan[ZS_CHAN_B];
385 v_putc = zscnputc;
386 } else
387 zs_consin = unit;
388 if(fnstop)
389 *fnstop = &zsstop;
390 zs_ctty = tp;
391 }
392
393 /*
394 * Polled console output putchar.
395 */
396 static void
397 zscnputc(c)
398 int c;
399 {
400 register volatile struct zschan *zc = zs_conschan;
401 register int s;
402
403 if (c == '\n')
404 zscnputc('\r');
405 /*
406 * Must block output interrupts (i.e., raise to >= splzs) without
407 * lowering current ipl. Need a better way.
408 */
409 s = splhigh();
410 #ifdef SUN4C /* XXX */
411 if (CPU_ISSUN4C && s <= (12 << 8))
412 (void) splzs();
413 #endif
414 while ((zc->zc_csr & ZSRR0_TX_READY) == 0)
415 ZS_DELAY();
416 zc->zc_data = c;
417 ZS_DELAY();
418 splx(s);
419 }
420
421 /*
422 * Set up the given unit as console input, output, both, or neither, as
423 * needed. Return console tty if it is to receive console input.
424 */
425 static struct tty *
426 zs_checkcons(zi, unit, cs)
427 struct zs_softc *zi;
428 int unit;
429 struct zs_chanstate *cs;
430 {
431 register struct tty *tp;
432 char *i, *o;
433
434 if ((tp = zs_ctty) == NULL) /* XXX */
435 return (0);
436 i = zs_consin == unit ? "input" : NULL;
437 o = zs_consout == unit ? "output" : NULL;
438 if (i == NULL && o == NULL)
439 return (0);
440
441 /* rewire the minor device (gack) */
442 tp->t_dev = makedev(major(tp->t_dev), unit);
443
444 /*
445 * Rewire input and/or output. Note that baud rate reflects
446 * input settings, not output settings, but we can do no better
447 * if the console is split across two ports.
448 *
449 * XXX split consoles don't work anyway -- this needs to be
450 * thrown away and redone
451 */
452 if (i) {
453 tp->t_param = zsparam;
454 tp->t_ispeed = tp->t_ospeed = cs->cs_speed;
455 tp->t_cflag = CS8;
456 ttsetwater(tp);
457 }
458 if (o) {
459 tp->t_oproc = zsstart;
460 }
461 printf("%s%c: console %s\n",
462 zi->zi_dev.dv_xname, (unit & 1) + 'a', i ? (o ? "i/o" : i) : o);
463 cs->cs_consio = 1;
464 cs->cs_brkabort = 1;
465 return (tp);
466 }
467
468 #ifdef KGDB
469 /*
470 * The kgdb zs port, if any, was altered at boot time (see zs_kgdb_init).
471 * Pick up the current speed and character size and restore the original
472 * speed.
473 */
474 static void
475 zs_checkkgdb(unit, cs, tp)
476 int unit;
477 struct zs_chanstate *cs;
478 struct tty *tp;
479 {
480
481 if (kgdb_dev == makedev(ZSMAJOR, unit)) {
482 tp->t_ispeed = tp->t_ospeed = kgdb_rate;
483 tp->t_cflag = CS8;
484 cs->cs_kgdb = 1;
485 cs->cs_speed = zs_kgdb_savedspeed;
486 (void) zsparam(tp, &tp->t_termios);
487 }
488 }
489 #endif
490
491 /*
492 * Compute the current baud rate given a ZSCC channel.
493 */
494 static int
495 zs_getspeed(zc)
496 register volatile struct zschan *zc;
497 {
498 register int tconst;
499
500 tconst = ZS_READ(zc, 12);
501 tconst |= ZS_READ(zc, 13) << 8;
502 return (TCONST_TO_BPS(PCLK / 16, tconst));
503 }
504
505
506 /*
507 * Do an internal open.
508 */
509 static void
510 zsiopen(tp)
511 struct tty *tp;
512 {
513
514 (void) zsparam(tp, &tp->t_termios);
515 ttsetwater(tp);
516 tp->t_state = TS_ISOPEN | TS_CARR_ON;
517 }
518
519 /*
520 * Do an internal close. Eventually we should shut off the chip when both
521 * ports on it are closed.
522 */
523 static void
524 zsiclose(tp)
525 struct tty *tp;
526 {
527
528 ttylclose(tp, 0); /* ??? */
529 ttyclose(tp); /* ??? */
530 tp->t_state = 0;
531 }
532
533
534 /*
535 * Open a zs serial port. This interface may not be used to open
536 * the keyboard and mouse ports. (XXX)
537 */
538 int
539 zsopen(dev, flags, mode, p)
540 dev_t dev;
541 int flags;
542 int mode;
543 struct proc *p;
544 {
545 register struct tty *tp;
546 register struct zs_chanstate *cs;
547 struct zs_softc *zi;
548 int unit = minor(dev), zs = unit >> 1, error, s;
549
550 if (zs >= zs_cd.cd_ndevs || (zi = zs_cd.cd_devs[zs]) == NULL ||
551 unit == ZS_MOUSE)
552 return (ENXIO);
553 if (zi->zi_zs == NULL)
554 return (ENXIO);
555 cs = &zi->zi_cs[unit & 1];
556 if (cs->cs_consio)
557 return (ENXIO); /* ??? */
558 tp = cs->cs_ttyp;
559 s = spltty();
560 if ((tp->t_state & TS_ISOPEN) == 0) {
561 ttychars(tp);
562 if (tp->t_ispeed == 0) {
563 tp->t_iflag = TTYDEF_IFLAG;
564 tp->t_oflag = TTYDEF_OFLAG;
565 tp->t_cflag = TTYDEF_CFLAG;
566 tp->t_lflag = TTYDEF_LFLAG;
567 tp->t_ispeed = tp->t_ospeed = cs->cs_speed;
568 }
569 (void) zsparam(tp, &tp->t_termios);
570 ttsetwater(tp);
571 } else if (tp->t_state & TS_XCLUDE && p->p_ucred->cr_uid != 0) {
572 splx(s);
573 return (EBUSY);
574 }
575 error = 0;
576 for (;;) {
577 register int rr0;
578
579 /* loop, turning on the device, until carrier present */
580 zs_modem(cs, 1);
581 /* May never get status intr if carrier already on. -gwr */
582 rr0 = cs->cs_zc->zc_csr;
583 ZS_DELAY();
584 if ((rr0 & ZSRR0_DCD) || cs->cs_softcar)
585 tp->t_state |= TS_CARR_ON;
586 if (flags & O_NONBLOCK || tp->t_cflag & CLOCAL ||
587 tp->t_state & TS_CARR_ON)
588 break;
589 tp->t_state |= TS_WOPEN;
590 error = ttysleep(tp, (caddr_t)&tp->t_rawq, TTIPRI | PCATCH,
591 ttopen, 0);
592 if (error) {
593 if (!(tp->t_state & TS_ISOPEN)) {
594 zs_modem(cs, 0);
595 tp->t_state &= ~TS_WOPEN;
596 ttwakeup(tp);
597 }
598 splx(s);
599 return error;
600 }
601 }
602 splx(s);
603 if (error == 0)
604 error = linesw[tp->t_line].l_open(dev, tp);
605 if (error)
606 zs_modem(cs, 0);
607 return (error);
608 }
609
610 /*
611 * Close a zs serial port.
612 */
613 int
614 zsclose(dev, flags, mode, p)
615 dev_t dev;
616 int flags;
617 int mode;
618 struct proc *p;
619 {
620 register struct zs_chanstate *cs;
621 register struct tty *tp;
622 struct zs_softc *zi;
623 int unit = minor(dev), s;
624
625 zi = zs_cd.cd_devs[unit >> 1];
626 cs = &zi->zi_cs[unit & 1];
627 tp = cs->cs_ttyp;
628 linesw[tp->t_line].l_close(tp, flags);
629 if (tp->t_cflag & HUPCL || tp->t_state & TS_WOPEN ||
630 (tp->t_state & TS_ISOPEN) == 0) {
631 zs_modem(cs, 0);
632 /* hold low for 1 second */
633 (void) tsleep((caddr_t)cs, TTIPRI, ttclos, hz);
634 }
635 if (cs->cs_creg[5] & ZSWR5_BREAK)
636 {
637 s = splzs();
638 cs->cs_preg[5] &= ~ZSWR5_BREAK;
639 cs->cs_creg[5] &= ~ZSWR5_BREAK;
640 ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
641 splx(s);
642 }
643 ttyclose(tp);
644 #ifdef KGDB
645 /* Reset the speed if we're doing kgdb on this port */
646 if (cs->cs_kgdb) {
647 tp->t_ispeed = tp->t_ospeed = kgdb_rate;
648 (void) zsparam(tp, &tp->t_termios);
649 }
650 #endif
651 return (0);
652 }
653
654 /*
655 * Read/write zs serial port.
656 */
657 int
658 zsread(dev, uio, flags)
659 dev_t dev;
660 struct uio *uio;
661 int flags;
662 {
663 register struct zs_chanstate *cs;
664 register struct zs_softc *zi;
665 register struct tty *tp;
666 int unit = minor(dev);
667
668 zi = zs_cd.cd_devs[unit >> 1];
669 cs = &zi->zi_cs[unit & 1];
670 tp = cs->cs_ttyp;
671
672 return (linesw[tp->t_line].l_read(tp, uio, flags));
673
674 }
675
676 int
677 zswrite(dev, uio, flags)
678 dev_t dev;
679 struct uio *uio;
680 int flags;
681 {
682 register struct zs_chanstate *cs;
683 register struct zs_softc *zi;
684 register struct tty *tp;
685 int unit = minor(dev);
686
687 zi = zs_cd.cd_devs[unit >> 1];
688 cs = &zi->zi_cs[unit & 1];
689 tp = cs->cs_ttyp;
690
691 return (linesw[tp->t_line].l_write(tp, uio, flags));
692 }
693
694 struct tty *
695 zstty(dev)
696 dev_t dev;
697 {
698 register struct zs_chanstate *cs;
699 register struct zs_softc *zi;
700 int unit = minor(dev);
701
702 zi = zs_cd.cd_devs[unit >> 1];
703 cs = &zi->zi_cs[unit & 1];
704
705 return (cs->cs_ttyp);
706
707 }
708
709 /*
710 * ZS hardware interrupt. Scan all ZS channels. NB: we know here that
711 * channels are kept in (A,B) pairs.
712 *
713 * Do just a little, then get out; set a software interrupt if more
714 * work is needed.
715 *
716 * We deliberately ignore the vectoring Zilog gives us, and match up
717 * only the number of `reset interrupt under service' operations, not
718 * the order.
719 */
720 /* ARGSUSED */
721 void
722 zshard(intrarg)
723 int intrarg;
724 {
725 register struct zs_chanstate *a;
726 #define b (a + 1)
727 register volatile struct zschan *zc;
728 register int rr3, intflags = 0, v, i;
729 static int zsrint __P((struct zs_chanstate *, volatile struct zschan *));
730 static int zsxint __P((struct zs_chanstate *, volatile struct zschan *));
731 static int zssint __P((struct zs_chanstate *, volatile struct zschan *));
732
733 {
734 a = &((struct zs_softc*)zs_cd.cd_devs[(intrarg >> 2) & 0x0f])->zi_cs[0];
735 rr3 = ZS_READ(a->cs_zc, 3);
736 if (rr3 & (ZSRR3_IP_A_RX|ZSRR3_IP_A_TX|ZSRR3_IP_A_STAT)) {
737 intflags |= 2;
738 zc = a->cs_zc;
739 i = a->cs_rbput;
740 if (rr3 & ZSRR3_IP_A_RX && (v = zsrint(a, zc)) != 0) {
741 a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
742 intflags |= 1;
743 }
744 if (rr3 & ZSRR3_IP_A_TX && (v = zsxint(a, zc)) != 0) {
745 a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
746 intflags |= 1;
747 intflags |= 4;
748 }
749 if (rr3 & ZSRR3_IP_A_STAT && (v = zssint(a, zc)) != 0) {
750 a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
751 intflags |= 1;
752 }
753 a->cs_rbput = i;
754 }
755 if (rr3 & (ZSRR3_IP_B_RX|ZSRR3_IP_B_TX|ZSRR3_IP_B_STAT)) {
756 intflags |= 2;
757 zc = b->cs_zc;
758 i = b->cs_rbput;
759 if (rr3 & ZSRR3_IP_B_RX && (v = zsrint(b, zc)) != 0) {
760 b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
761 intflags |= 1;
762 }
763 if (rr3 & ZSRR3_IP_B_TX && (v = zsxint(b, zc)) != 0) {
764 b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
765 intflags |= 1;
766 intflags |= 4;
767 }
768 if (rr3 & ZSRR3_IP_B_STAT && (v = zssint(b, zc)) != 0) {
769 b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
770 intflags |= 1;
771 }
772 b->cs_rbput = i;
773 }
774 }
775 #undef b
776 if (intflags & 1) {
777 #if defined(SUN4C) || defined(SUN4M)
778 if (CPU_ISSUN4M || CPU_ISSUN4C) {
779 /* XXX -- but this will go away when zshard moves to locore.s */
780 struct clockframe *p = intrarg;
781
782 if ((p->psr & PSR_PIL) < (PIL_TTY << 8)) {
783 zsshortcuts++;
784 (void) spltty();
785 if (zshardscope) {
786 LED_ON;
787 LED_OFF;
788 }
789 return (zssoft(intrarg));
790 }
791 }
792 #endif
793 #if x68k
794 #define PSL_TTY PSL_IPL4 /* XXX */
795 if (((intrarg >> 16) & PSL_IPL) < PSL_TTY) {
796 zsshortcuts++;
797 (void) spltty();
798 zssoft(0/*intrarg*/);
799 return;
800 }
801 setsoftserial();
802 #else
803 ienab_bis(IE_ZSSOFT);
804 #endif
805 }
806 }
807
808 static int
809 zsrint(cs, zc)
810 register struct zs_chanstate *cs;
811 register volatile struct zschan *zc;
812 {
813 register int c = zc->zc_data;
814
815 ZS_DELAY();
816 #ifndef x68k
817 if (cs->cs_conk) {
818 register struct conk_state *conk = &zsconk_state;
819
820 /*
821 * Check here for console abort function, so that we
822 * can abort even when interrupts are locking up the
823 * machine.
824 */
825 if (c == KBD_RESET) {
826 conk->conk_id = 1; /* ignore next byte */
827 conk->conk_l1 = 0;
828 } else if (conk->conk_id)
829 conk->conk_id = 0; /* stop ignoring bytes */
830 else if (c == KBD_L1)
831 conk->conk_l1 = 1; /* L1 went down */
832 else if (c == (KBD_L1|KBD_UP))
833 conk->conk_l1 = 0; /* L1 went up */
834 else if (c == KBD_A && conk->conk_l1) {
835 zsabort();
836 conk->conk_l1 = 0; /* we never see the up */
837 goto clearit; /* eat the A after L1-A */
838 }
839 }
840 #endif
841 #ifdef KGDB
842 if (c == FRAME_START && cs->cs_kgdb &&
843 (cs->cs_ttyp->t_state & TS_ISOPEN) == 0) {
844 zskgdb(cs->cs_unit);
845 goto clearit;
846 }
847 #endif
848 /* compose receive character and status */
849 c <<= 8;
850 c |= ZS_READ(zc, 1);
851
852 /* clear receive error & interrupt condition */
853 zc->zc_csr = ZSWR0_RESET_ERRORS;
854 ZS_DELAY();
855 zc->zc_csr = ZSWR0_CLR_INTR;
856 ZS_DELAY();
857
858 return (ZRING_MAKE(ZRING_RINT, c));
859
860 clearit:
861 zc->zc_csr = ZSWR0_RESET_ERRORS;
862 ZS_DELAY();
863 zc->zc_csr = ZSWR0_CLR_INTR;
864 ZS_DELAY();
865 return (0);
866 }
867
868 static int
869 zsxint(cs, zc)
870 register struct zs_chanstate *cs;
871 register volatile struct zschan *zc;
872 {
873 register int i = cs->cs_tbc;
874
875 if (i == 0) {
876 zc->zc_csr = ZSWR0_RESET_TXINT;
877 ZS_DELAY();
878 zc->zc_csr = ZSWR0_CLR_INTR;
879 ZS_DELAY();
880 return (ZRING_MAKE(ZRING_XINT, 0));
881 }
882 cs->cs_tbc = i - 1;
883 zc->zc_data = *cs->cs_tba++;
884 ZS_DELAY();
885 zc->zc_csr = ZSWR0_CLR_INTR;
886 ZS_DELAY();
887 return (0);
888 }
889
890 static int
891 zssint(cs, zc)
892 register struct zs_chanstate *cs;
893 register volatile struct zschan *zc;
894 {
895 register int rr0;
896
897 rr0 = zc->zc_csr;
898 ZS_DELAY();
899 zc->zc_csr = ZSWR0_RESET_STATUS;
900 ZS_DELAY();
901 zc->zc_csr = ZSWR0_CLR_INTR;
902 ZS_DELAY();
903 /*
904 * The chip's hardware flow control is, as noted in zsreg.h,
905 * busted---if the DCD line goes low the chip shuts off the
906 * receiver (!). If we want hardware CTS flow control but do
907 * not have it, and carrier is now on, turn HFC on; if we have
908 * HFC now but carrier has gone low, turn it off.
909 */
910 if (rr0 & ZSRR0_DCD) {
911 if (cs->cs_ttyp->t_cflag & CCTS_OFLOW &&
912 (cs->cs_creg[3] & ZSWR3_HFC) == 0) {
913 cs->cs_creg[3] |= ZSWR3_HFC;
914 ZS_WRITE(zc, 3, cs->cs_creg[3]);
915 }
916 } else {
917 if (cs->cs_creg[3] & ZSWR3_HFC) {
918 cs->cs_creg[3] &= ~ZSWR3_HFC;
919 ZS_WRITE(zc, 3, cs->cs_creg[3]);
920 }
921 }
922 if ((rr0 & ZSRR0_BREAK) && cs->cs_brkabort) {
923 #ifdef SUN4
924 /*
925 * XXX This might not be necessary. Test and
926 * delete if it isn't.
927 */
928 if (CPU_ISSUN4) {
929 while (zc->zc_csr & ZSRR0_BREAK)
930 ZS_DELAY();
931 }
932 #endif
933 zsabort();
934 return (0);
935 }
936 return (ZRING_MAKE(ZRING_SINT, rr0));
937 }
938
939 static void
940 zsabort()
941 {
942
943 #ifdef DDB
944 Debugger();
945 #else
946 printf("stopping on keyboard abort\n");
947 #ifndef x68k
948 callrom();
949 #endif
950 #endif
951 }
952
953 #ifdef KGDB
954 /*
955 * KGDB framing character received: enter kernel debugger. This probably
956 * should time out after a few seconds to avoid hanging on spurious input.
957 */
958 void
959 zskgdb(unit)
960 int unit;
961 {
962
963 printf("zs%d%c: kgdb interrupt\n", unit >> 1, (unit & 1) + 'a');
964 kgdb_connect(1);
965 }
966 #endif
967
968 /*
969 * Print out a ring or fifo overrun error message.
970 */
971 static void
972 zsoverrun(unit, ptime, what)
973 int unit;
974 long *ptime;
975 char *what;
976 {
977
978 if (*ptime != time.tv_sec) {
979 *ptime = time.tv_sec;
980 log(LOG_WARNING, "zs%d%c: %s overrun\n", unit >> 1,
981 (unit & 1) + 'a', what);
982 }
983 }
984
985 /*
986 * ZS software interrupt. Scan all channels for deferred interrupts.
987 */
988 int
989 zssoft(arg)
990 void *arg;
991 {
992 register struct zs_chanstate *cs;
993 register volatile struct zschan *zc;
994 register struct linesw *line;
995 register struct tty *tp;
996 register int get, n, c, cc, unit, s;
997 int retval = 0;
998
999 for (cs = zslist; cs != NULL; cs = cs->cs_next) {
1000 get = cs->cs_rbget;
1001 again:
1002 n = cs->cs_rbput; /* atomic */
1003 if (get == n) /* nothing more on this line */
1004 continue;
1005 retval = 1;
1006 unit = cs->cs_unit; /* set up to handle interrupts */
1007 zc = cs->cs_zc;
1008 tp = cs->cs_ttyp;
1009 line = &linesw[tp->t_line];
1010 /*
1011 * Compute the number of interrupts in the receive ring.
1012 * If the count is overlarge, we lost some events, and
1013 * must advance to the first valid one. It may get
1014 * overwritten if more data are arriving, but this is
1015 * too expensive to check and gains nothing (we already
1016 * lost out; all we can do at this point is trade one
1017 * kind of loss for another).
1018 */
1019 n -= get;
1020 if (n > ZLRB_RING_SIZE) {
1021 zsoverrun(unit, &cs->cs_rotime, "ring");
1022 get += n - ZLRB_RING_SIZE;
1023 n = ZLRB_RING_SIZE;
1024 }
1025 while (--n >= 0) {
1026 /* race to keep ahead of incoming interrupts */
1027 c = cs->cs_rbuf[get++ & ZLRB_RING_MASK];
1028 switch (ZRING_TYPE(c)) {
1029
1030 case ZRING_RINT:
1031 c = ZRING_VALUE(c);
1032 if (c & ZSRR1_DO)
1033 zsoverrun(unit, &cs->cs_fotime, "fifo");
1034 cc = c >> 8;
1035 if (c & ZSRR1_FE)
1036 cc |= TTY_FE;
1037 if (c & ZSRR1_PE)
1038 cc |= TTY_PE;
1039 /*
1040 * this should be done through
1041 * bstreams XXX gag choke
1042 */
1043 else if (unit == ZS_MOUSE)
1044 ms_rint(cc);
1045 else
1046 line->l_rint(cc, tp);
1047 break;
1048
1049 case ZRING_XINT:
1050 /*
1051 * Transmit done: change registers and resume,
1052 * or clear BUSY.
1053 */
1054 if (cs->cs_heldchange) {
1055 s = splzs();
1056 c = zc->zc_csr;
1057 ZS_DELAY();
1058 if ((c & ZSRR0_DCD) == 0)
1059 cs->cs_preg[3] &= ~ZSWR3_HFC;
1060 bcopy((caddr_t)cs->cs_preg,
1061 (caddr_t)cs->cs_creg, 16);
1062 zs_loadchannelregs(zc, cs->cs_creg);
1063 splx(s);
1064 cs->cs_heldchange = 0;
1065 if (cs->cs_heldtbc &&
1066 (tp->t_state & TS_TTSTOP) == 0) {
1067 cs->cs_tbc = cs->cs_heldtbc - 1;
1068 zc->zc_data = *cs->cs_tba++;
1069 ZS_DELAY();
1070 goto again;
1071 }
1072 }
1073 tp->t_state &= ~TS_BUSY;
1074 if (tp->t_state & TS_FLUSH)
1075 tp->t_state &= ~TS_FLUSH;
1076 else
1077 ndflush(&tp->t_outq,
1078 cs->cs_tba - (caddr_t)tp->t_outq.c_cf);
1079 line->l_start(tp);
1080 break;
1081
1082 case ZRING_SINT:
1083 /*
1084 * Status line change. HFC bit is run in
1085 * hardware interrupt, to avoid locking
1086 * at splzs here.
1087 */
1088 c = ZRING_VALUE(c);
1089 if ((c ^ cs->cs_rr0) & ZSRR0_DCD) {
1090 cc = (c & ZSRR0_DCD) != 0;
1091 if (line->l_modem(tp, cc) == 0)
1092 zs_modem(cs, cc);
1093 }
1094 cs->cs_rr0 = c;
1095 break;
1096
1097 default:
1098 log(LOG_ERR, "zs%d%c: bad ZRING_TYPE (%x)\n",
1099 unit >> 1, (unit & 1) + 'a', c);
1100 break;
1101 }
1102 }
1103 cs->cs_rbget = get;
1104 goto again;
1105 }
1106 return (retval);
1107 }
1108
1109 int
1110 zsioctl(dev, cmd, data, flag, p)
1111 dev_t dev;
1112 u_long cmd;
1113 caddr_t data;
1114 int flag;
1115 struct proc *p;
1116 {
1117 int unit = minor(dev);
1118 struct zs_softc *zi = zs_cd.cd_devs[unit >> 1];
1119 register struct zs_chanstate *cs = &zi->zi_cs[unit & 1];
1120 register struct tty *tp = cs->cs_ttyp;
1121 register int error, s;
1122
1123 error = linesw[tp->t_line].l_ioctl(tp, cmd, data, flag, p);
1124 if (error >= 0)
1125 return (error);
1126 error = ttioctl(tp, cmd, data, flag, p);
1127 if (error >= 0)
1128 return (error);
1129
1130 switch (cmd) {
1131 case TIOCSBRK:
1132 s = splzs();
1133 cs->cs_preg[5] |= ZSWR5_BREAK;
1134 cs->cs_creg[5] |= ZSWR5_BREAK;
1135 ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
1136 splx(s);
1137 break;
1138 case TIOCCBRK:
1139 s = splzs();
1140 cs->cs_preg[5] &= ~ZSWR5_BREAK;
1141 cs->cs_creg[5] &= ~ZSWR5_BREAK;
1142 ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
1143 splx(s);
1144 break;
1145 case TIOCGFLAGS: {
1146 int bits = 0;
1147
1148 if (cs->cs_softcar)
1149 bits |= TIOCFLAG_SOFTCAR;
1150 if (cs->cs_creg[15] & ZSWR15_DCD_IE)
1151 bits |= TIOCFLAG_CLOCAL;
1152 if (cs->cs_creg[3] & ZSWR3_HFC)
1153 bits |= TIOCFLAG_CRTSCTS;
1154 *(int *)data = bits;
1155 break;
1156 }
1157 case TIOCSFLAGS: {
1158 int userbits, driverbits = 0;
1159
1160 error = suser(p->p_ucred, &p->p_acflag);
1161 if (error != 0)
1162 return (EPERM);
1163
1164 userbits = *(int *)data;
1165
1166 /*
1167 * can have `local' or `softcar', and `rtscts' or `mdmbuf'
1168 # defaulting to software flow control.
1169 */
1170 if (userbits & TIOCFLAG_SOFTCAR && userbits & TIOCFLAG_CLOCAL)
1171 return(EINVAL);
1172 if (userbits & TIOCFLAG_MDMBUF) /* don't support this (yet?) */
1173 return(ENXIO);
1174
1175 s = splzs();
1176 if ((userbits & TIOCFLAG_SOFTCAR) || cs->cs_consio) {
1177 cs->cs_softcar = 1; /* turn on softcar */
1178 cs->cs_preg[15] &= ~ZSWR15_DCD_IE; /* turn off dcd */
1179 cs->cs_creg[15] &= ~ZSWR15_DCD_IE;
1180 ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
1181 } else if (userbits & TIOCFLAG_CLOCAL) {
1182 cs->cs_softcar = 0; /* turn off softcar */
1183 cs->cs_preg[15] |= ZSWR15_DCD_IE; /* turn on dcd */
1184 cs->cs_creg[15] |= ZSWR15_DCD_IE;
1185 ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
1186 tp->t_termios.c_cflag |= CLOCAL;
1187 }
1188 if (userbits & TIOCFLAG_CRTSCTS) {
1189 cs->cs_preg[15] |= ZSWR15_CTS_IE;
1190 cs->cs_creg[15] |= ZSWR15_CTS_IE;
1191 ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
1192 cs->cs_preg[3] |= ZSWR3_HFC;
1193 cs->cs_creg[3] |= ZSWR3_HFC;
1194 ZS_WRITE(cs->cs_zc, 3, cs->cs_creg[3]);
1195 tp->t_termios.c_cflag |= CRTSCTS;
1196 } else {
1197 /* no mdmbuf, so we must want software flow control */
1198 cs->cs_preg[15] &= ~ZSWR15_CTS_IE;
1199 cs->cs_creg[15] &= ~ZSWR15_CTS_IE;
1200 ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
1201 cs->cs_preg[3] &= ~ZSWR3_HFC;
1202 cs->cs_creg[3] &= ~ZSWR3_HFC;
1203 ZS_WRITE(cs->cs_zc, 3, cs->cs_creg[3]);
1204 tp->t_termios.c_cflag &= ~CRTSCTS;
1205 }
1206 splx(s);
1207 break;
1208 }
1209 case TIOCSDTR:
1210 zs_modem(cs, 1);
1211 break;
1212 case TIOCCDTR:
1213 zs_modem(cs, 0);
1214 break;
1215 case TIOCMSET:
1216 case TIOCMBIS:
1217 case TIOCMBIC:
1218 case TIOCMGET:
1219 default:
1220 return (ENOTTY);
1221 }
1222 return (0);
1223 }
1224
1225 /*
1226 * Start or restart transmission.
1227 */
1228 static void
1229 zsstart(tp)
1230 register struct tty *tp;
1231 {
1232 register struct zs_chanstate *cs;
1233 register int s, nch;
1234 int unit = minor(tp->t_dev);
1235 struct zs_softc *zi = zs_cd.cd_devs[unit >> 1];
1236
1237 cs = &zi->zi_cs[unit & 1];
1238 s = spltty();
1239
1240 /*
1241 * If currently active or delaying, no need to do anything.
1242 */
1243 if (tp->t_state & (TS_TIMEOUT | TS_BUSY | TS_TTSTOP))
1244 goto out;
1245
1246 /*
1247 * If there are sleepers, and output has drained below low
1248 * water mark, awaken.
1249 */
1250 if (tp->t_outq.c_cc <= tp->t_lowat) {
1251 if (tp->t_state & TS_ASLEEP) {
1252 tp->t_state &= ~TS_ASLEEP;
1253 wakeup((caddr_t)&tp->t_outq);
1254 }
1255 selwakeup(&tp->t_wsel);
1256 }
1257
1258 nch = ndqb(&tp->t_outq, 0); /* XXX */
1259 if (nch) {
1260 register char *p = tp->t_outq.c_cf;
1261
1262 /* mark busy, enable tx done interrupts, & send first byte */
1263 tp->t_state |= TS_BUSY;
1264 (void) splzs();
1265 cs->cs_preg[1] |= ZSWR1_TIE;
1266 cs->cs_creg[1] |= ZSWR1_TIE;
1267 ZS_WRITE(cs->cs_zc, 1, cs->cs_creg[1]);
1268 cs->cs_zc->zc_data = *p;
1269 ZS_DELAY();
1270 cs->cs_tba = p + 1;
1271 cs->cs_tbc = nch - 1;
1272 } else {
1273 /*
1274 * Nothing to send, turn off transmit done interrupts.
1275 * This is useful if something is doing polled output.
1276 */
1277 (void) splzs();
1278 cs->cs_preg[1] &= ~ZSWR1_TIE;
1279 cs->cs_creg[1] &= ~ZSWR1_TIE;
1280 ZS_WRITE(cs->cs_zc, 1, cs->cs_creg[1]);
1281 }
1282 out:
1283 splx(s);
1284 }
1285
1286 /*
1287 * Stop output, e.g., for ^S or output flush.
1288 */
1289 int
1290 zsstop(tp, flag)
1291 register struct tty *tp;
1292 int flag;
1293 {
1294 register struct zs_chanstate *cs;
1295 register int s, unit = minor(tp->t_dev);
1296 struct zs_softc *zi = zs_cd.cd_devs[unit >> 1];
1297
1298 cs = &zi->zi_cs[unit & 1];
1299 s = splzs();
1300 if (tp->t_state & TS_BUSY) {
1301 /*
1302 * Device is transmitting; must stop it.
1303 */
1304 cs->cs_tbc = 0;
1305 if ((tp->t_state & TS_TTSTOP) == 0)
1306 tp->t_state |= TS_FLUSH;
1307 }
1308 splx(s);
1309 }
1310
1311 /*
1312 * Set ZS tty parameters from termios.
1313 *
1314 * This routine makes use of the fact that only registers
1315 * 1, 3, 4, 5, 9, 10, 11, 12, 13, 14, and 15 are written.
1316 */
1317 static int
1318 zsparam(tp, t)
1319 register struct tty *tp;
1320 register struct termios *t;
1321 {
1322 int unit = minor(tp->t_dev);
1323 struct zs_softc *zi = zs_cd.cd_devs[unit >> 1];
1324 register struct zs_chanstate *cs = &zi->zi_cs[unit & 1];
1325 register int tmp, tmp5, cflag, s;
1326
1327 /*
1328 * Because PCLK is only run at 5 MHz, the fastest we
1329 * can go is 51200 baud (this corresponds to TC=1).
1330 * This is somewhat unfortunate as there is no real
1331 * reason we should not be able to handle higher rates.
1332 */
1333 tmp = t->c_ospeed;
1334 if (tmp < 0 || (t->c_ispeed && t->c_ispeed != tmp))
1335 return (EINVAL);
1336 if (tmp == 0) {
1337 /* stty 0 => drop DTR and RTS */
1338 zs_modem(cs, 0);
1339 return (0);
1340 }
1341 tmp = BPS_TO_TCONST(PCLK / 16, tmp);
1342 if (tmp < 2)
1343 return (EINVAL);
1344
1345 cflag = t->c_cflag;
1346 tp->t_ispeed = tp->t_ospeed = TCONST_TO_BPS(PCLK / 16, tmp);
1347 tp->t_cflag = cflag;
1348
1349 /*
1350 * Block interrupts so that state will not
1351 * be altered until we are done setting it up.
1352 */
1353 s = splzs();
1354 cs->cs_preg[12] = tmp;
1355 cs->cs_preg[13] = tmp >> 8;
1356 cs->cs_preg[1] = ZSWR1_RIE | ZSWR1_TIE | ZSWR1_SIE;
1357 switch (cflag & CSIZE) {
1358 case CS5:
1359 tmp = ZSWR3_RX_5;
1360 tmp5 = ZSWR5_TX_5;
1361 break;
1362 case CS6:
1363 tmp = ZSWR3_RX_6;
1364 tmp5 = ZSWR5_TX_6;
1365 break;
1366 case CS7:
1367 tmp = ZSWR3_RX_7;
1368 tmp5 = ZSWR5_TX_7;
1369 break;
1370 case CS8:
1371 default:
1372 tmp = ZSWR3_RX_8;
1373 tmp5 = ZSWR5_TX_8;
1374 break;
1375 }
1376
1377 /*
1378 * Output hardware flow control on the chip is horrendous: if
1379 * carrier detect drops, the receiver is disabled. Hence we
1380 * can only do this when the carrier is on.
1381 */
1382 tmp |= ZSWR3_RX_ENABLE;
1383 if (cflag & CCTS_OFLOW) {
1384 if (cs->cs_zc->zc_csr & ZSRR0_DCD)
1385 tmp |= ZSWR3_HFC;
1386 ZS_DELAY();
1387 }
1388 cs->cs_preg[3] = tmp;
1389 cs->cs_preg[5] = tmp5 | ZSWR5_TX_ENABLE | ZSWR5_DTR | ZSWR5_RTS;
1390
1391 tmp = ZSWR4_CLK_X16 | (cflag & CSTOPB ? ZSWR4_TWOSB : ZSWR4_ONESB);
1392 if ((cflag & PARODD) == 0)
1393 tmp |= ZSWR4_EVENP;
1394 if (cflag & PARENB)
1395 tmp |= ZSWR4_PARENB;
1396 cs->cs_preg[4] = tmp;
1397 cs->cs_preg[9] = ZSWR9_MASTER_IE /*| ZSWR9_NO_VECTOR*/;
1398 cs->cs_preg[10] = ZSWR10_NRZ;
1399 cs->cs_preg[11] = ZSWR11_TXCLK_BAUD | ZSWR11_RXCLK_BAUD;
1400 cs->cs_preg[14] = ZSWR14_BAUD_FROM_PCLK | ZSWR14_BAUD_ENA;
1401 cs->cs_preg[15] = ZSWR15_BREAK_IE | ZSWR15_DCD_IE;
1402
1403 /*
1404 * If nothing is being transmitted, set up new current values,
1405 * else mark them as pending.
1406 */
1407 if (cs->cs_heldchange == 0) {
1408 if (cs->cs_ttyp->t_state & TS_BUSY) {
1409 cs->cs_heldtbc = cs->cs_tbc;
1410 cs->cs_tbc = 0;
1411 cs->cs_heldchange = 1;
1412 } else {
1413 bcopy((caddr_t)cs->cs_preg, (caddr_t)cs->cs_creg, 16);
1414 zs_loadchannelregs(cs->cs_zc, cs->cs_creg);
1415 }
1416 }
1417 splx(s);
1418 return (0);
1419 }
1420
1421 /*
1422 * Raise or lower modem control (DTR/RTS) signals. If a character is
1423 * in transmission, the change is deferred.
1424 */
1425 static void
1426 zs_modem(cs, onoff)
1427 struct zs_chanstate *cs;
1428 int onoff;
1429 {
1430 int s, bis, and;
1431
1432 if (onoff) {
1433 bis = ZSWR5_DTR | ZSWR5_RTS;
1434 and = ~0;
1435 } else {
1436 bis = 0;
1437 and = ~(ZSWR5_DTR | ZSWR5_RTS);
1438 }
1439 s = splzs();
1440 cs->cs_preg[5] = (cs->cs_preg[5] | bis) & and;
1441 if (cs->cs_heldchange == 0) {
1442 if (cs->cs_ttyp->t_state & TS_BUSY) {
1443 cs->cs_heldtbc = cs->cs_tbc;
1444 cs->cs_tbc = 0;
1445 cs->cs_heldchange = 1;
1446 } else {
1447 cs->cs_creg[5] = (cs->cs_creg[5] | bis) & and;
1448 ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
1449 }
1450 }
1451 splx(s);
1452 }
1453
1454 /*
1455 * Hardware flow (RTS) control.
1456 */
1457 static int
1458 zshwiflow(tp, flag)
1459 struct tty *tp;
1460 int flag;
1461 {
1462 int unit = minor(tp->t_dev);
1463 struct zs_softc *zi = zs_cd.cd_devs[unit >> 1];
1464 register struct zs_chanstate *cs = &zi->zi_cs[unit & 1];
1465 int s;
1466
1467 #if 0
1468 printf ("zshwiflow %d\n", flag);
1469 #endif
1470 s = splzs();
1471 if (flag) {
1472 cs->cs_preg[5] &= ~ZSWR5_RTS;
1473 cs->cs_creg[5] &= ~ZSWR5_RTS;
1474 ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
1475 } else {
1476 cs->cs_preg[5] |= ZSWR5_RTS;
1477 cs->cs_creg[5] |= ZSWR5_RTS;
1478 ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
1479 }
1480 splx(s);
1481 return 1;
1482 }
1483
1484 /*
1485 * Write the given register set to the given zs channel in the proper order.
1486 * The channel must not be transmitting at the time. The receiver will
1487 * be disabled for the time it takes to write all the registers.
1488 */
1489 static void
1490 zs_loadchannelregs(zc, reg)
1491 volatile struct zschan *zc;
1492 u_char *reg;
1493 {
1494 int i;
1495
1496 zc->zc_csr = ZSM_RESET_ERR; /* reset error condition */
1497 ZS_DELAY();
1498 i = zc->zc_data; /* drain fifo */
1499 ZS_DELAY();
1500 i = zc->zc_data;
1501 ZS_DELAY();
1502 i = zc->zc_data;
1503 ZS_DELAY();
1504 ZS_WRITE(zc, 4, reg[4]);
1505 ZS_WRITE(zc, 10, reg[10]);
1506 ZS_WRITE(zc, 3, reg[3] & ~ZSWR3_RX_ENABLE);
1507 ZS_WRITE(zc, 5, reg[5] & ~ZSWR5_TX_ENABLE);
1508 ZS_WRITE(zc, 1, reg[1]);
1509 ZS_WRITE(zc, 9, reg[9]);
1510 ZS_WRITE(zc, 11, reg[11]);
1511 ZS_WRITE(zc, 12, reg[12]);
1512 ZS_WRITE(zc, 13, reg[13]);
1513 ZS_WRITE(zc, 14, reg[14]);
1514 ZS_WRITE(zc, 15, reg[15]);
1515 ZS_WRITE(zc, 3, reg[3]);
1516 ZS_WRITE(zc, 5, reg[5]);
1517 }
1518
1519 #ifdef x68k
1520 void
1521 zs_msmodem(onoff)
1522 int onoff;
1523 {
1524 if (zsms != NULL) {
1525 zs_modem(zsms, onoff);
1526 while(!(mfp.tsr & MFP_TSR_BE))
1527 /* XXX wait */ ;
1528 mfp.udr = 0x40 | (onoff ? 0 : 1);
1529 }
1530 }
1531 #endif
1532
1533 #ifdef KGDB
1534 /*
1535 * Get a character from the given kgdb channel. Called at splhigh().
1536 */
1537 static int
1538 zs_kgdb_getc(arg)
1539 void *arg;
1540 {
1541 register volatile struct zschan *zc = (volatile struct zschan *)arg;
1542
1543 while ((zc->zc_csr & ZSRR0_RX_READY) == 0)
1544 ZS_DELAY();
1545 return (zc->zc_data);
1546 }
1547
1548 /*
1549 * Put a character to the given kgdb channel. Called at splhigh().
1550 */
1551 static void
1552 zs_kgdb_putc(arg, c)
1553 void *arg;
1554 int c;
1555 {
1556 register volatile struct zschan *zc = (volatile struct zschan *)arg;
1557
1558 while ((zc->zc_csr & ZSRR0_TX_READY) == 0)
1559 ZS_DELAY();
1560 zc->zc_data = c;
1561 ZS_DELAY();
1562 }
1563
1564 /*
1565 * Set up for kgdb; called at boot time before configuration.
1566 * KGDB interrupts will be enabled later when zs0 is configured.
1567 */
1568 void
1569 zs_kgdb_init()
1570 {
1571 volatile struct zsdevice *addr;
1572 volatile struct zschan *zc;
1573 int unit, zs;
1574
1575 if (major(kgdb_dev) != ZSMAJOR)
1576 return;
1577 unit = minor(kgdb_dev);
1578 zs = unit >> 1;
1579 if ((addr = zsaddr[zs]) == NULL)
1580 addr = zsaddr[zs] = findzs(zs);
1581 unit &= 1;
1582 zc = unit == 0 ? &addr->zs_chan[ZS_CHAN_A] : &addr->zs_chan[ZS_CHAN_B];
1583 zs_kgdb_savedspeed = zs_getspeed(zc);
1584 printf("zs_kgdb_init: attaching zs%d%c at %d baud\n",
1585 zs, unit + 'a', kgdb_rate);
1586 zs_reset(zc, 1, kgdb_rate);
1587 kgdb_attach(zs_kgdb_getc, zs_kgdb_putc, (void *)zc);
1588 }
1589 #endif /* KGDB */
1590 #endif
1591