zs.c revision 1.17 1 /* $NetBSD: zs.c,v 1.17 1999/03/27 01:21:37 wrstuden Exp $ */
2
3 /*-
4 * Copyright (c) 1998 Minoura Makoto
5 * Copyright (c) 1996 The NetBSD Foundation, Inc.
6 * All rights reserved.
7 *
8 * This code is derived from software contributed to The NetBSD Foundation
9 * by Gordon W. Ross.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 /*
41 * Zilog Z8530 Dual UART driver (machine-dependent part)
42 *
43 * X68k uses one Z8530 built-in. Channel A is for RS-232C serial port;
44 * while channel B is dedicated to the mouse.
45 * Extra Z8530's can be installed for serial ports. This driver
46 * supports up to 5 chips including the built-in one.
47 */
48
49 #include <sys/param.h>
50 #include <sys/systm.h>
51 #include <sys/conf.h>
52 #include <sys/device.h>
53 #include <sys/file.h>
54 #include <sys/ioctl.h>
55 #include <sys/kernel.h>
56 #include <sys/proc.h>
57 #include <sys/tty.h>
58 #include <sys/time.h>
59 #include <sys/syslog.h>
60
61 #include <machine/cpu.h>
62 #include <machine/bus.h>
63 #include <arch/x68k/dev/intiovar.h>
64 #include <machine/z8530var.h>
65
66 #include <dev/ic/z8530reg.h>
67
68 #include "zsc.h" /* NZSC */
69 #include "opt_zsc.h"
70 #ifndef ZSCN_SPEED
71 #define ZSCN_SPEED 9600
72 #endif
73 #include "zstty.h"
74
75
76 extern void Debugger __P((void));
77
78 /*
79 * Some warts needed by z8530tty.c -
80 * The default parity REALLY needs to be the same as the PROM uses,
81 * or you can not see messages done with printf during boot-up...
82 */
83 int zs_def_cflag = (CREAD | CS8 | HUPCL);
84 int zscn_def_cflag = (CREAD | CS8 | HUPCL);
85 int zs_major = 12;
86
87 /*
88 * X68k provides a 5.0 MHz clock to the ZS chips.
89 */
90 #define PCLK (5 * 1000 * 1000) /* PCLK pin input clock rate */
91
92
93 /* Default physical addresses. */
94 #define ZS_MAXDEV 5
95 static bus_addr_t zs_physaddr[ZS_MAXDEV] = {
96 0x00e98000,
97 0x00eafc00,
98 0x00eafc10,
99 0x00eafc20,
100 0x00eafc30
101 };
102
103 static u_char zs_init_reg[16] = {
104 0, /* 0: CMD (reset, etc.) */
105 0, /* 1: No interrupts yet. */
106 0x70, /* 2: XXX: IVECT */
107 ZSWR3_RX_8 | ZSWR3_RX_ENABLE,
108 ZSWR4_CLK_X16 | ZSWR4_ONESB | ZSWR4_EVENP,
109 ZSWR5_TX_8 | ZSWR5_TX_ENABLE,
110 0, /* 6: TXSYNC/SYNCLO */
111 0, /* 7: RXSYNC/SYNCHI */
112 0, /* 8: alias for data port */
113 ZSWR9_MASTER_IE,
114 ZSWR10_NRZ, /*10: Misc. TX/RX control bits */
115 ZSWR11_TXCLK_BAUD | ZSWR11_RXCLK_BAUD,
116 ((PCLK/32)/9600)-2, /*12: BAUDLO (default=9600) */
117 0, /*13: BAUDHI (default=9600) */
118 ZSWR14_BAUD_ENA | ZSWR14_BAUD_FROM_PCLK,
119 ZSWR15_BREAK_IE,
120 };
121
122 static volatile struct zschan *conschan = 0;
123
124
125 /****************************************************************
126 * Autoconfig
127 ****************************************************************/
128
129 /* Definition of the driver for autoconfig. */
130 static int zs_match __P((struct device *, struct cfdata *, void *));
131 static void zs_attach __P((struct device *, struct device *, void *));
132 static int zs_print __P((void *, const char *name));
133
134 struct cfattach zsc_ca = {
135 sizeof(struct zsc_softc), zs_match, zs_attach
136 };
137
138 extern struct cfdriver zsc_cd;
139
140 static int zshard __P((void *));
141 int zssoft __P((void *));
142 static int zs_get_speed __P((struct zs_chanstate *));
143
144
145 /*
146 * Is the zs chip present?
147 */
148 static int
149 zs_match(parent, cf, aux)
150 struct device *parent;
151 struct cfdata *cf;
152 void *aux;
153 {
154 struct intio_attach_args *ia = aux;
155 struct zsdevice *zsaddr = (void*) ia->ia_addr;
156 int i;
157
158 if (strcmp (ia->ia_name, "zsc") != 0)
159 return 0;
160
161 for (i = 0; i < ZS_MAXDEV; i++)
162 if (zsaddr == (void*) zs_physaddr[i]) /* XXX */
163 break;
164
165 ia->ia_size = 8;
166 if (intio_map_allocate_region (parent, ia, INTIO_MAP_TESTONLY))
167 return 0;
168
169 if (zsaddr != (void*) zs_physaddr[i])
170 return 0;
171 if (badaddr((caddr_t)INTIO_ADDR(zsaddr)))
172 return 0;
173
174 return (1);
175 }
176
177 /*
178 * Attach a found zs.
179 */
180 static void
181 zs_attach(parent, self, aux)
182 struct device *parent;
183 struct device *self;
184 void *aux;
185 {
186 struct zsc_softc *zsc = (void *) self;
187 struct intio_attach_args *ia = aux;
188 struct zsc_attach_args zsc_args;
189 volatile struct zschan *zc;
190 struct zs_chanstate *cs;
191 int r, s, zs_unit, channel;
192
193 zs_unit = zsc->zsc_dev.dv_unit;
194 zsc->zsc_addr = (void*) ia->ia_addr;
195
196 ia->ia_size = 8;
197 r = intio_map_allocate_region (parent, ia, INTIO_MAP_ALLOCATE);
198 #ifdef DIAGNOSTIC
199 if (r)
200 panic ("zs: intio IO map corruption");
201 #endif
202
203 printf("\n");
204
205 /*
206 * Initialize software state for each channel.
207 */
208 for (channel = 0; channel < 2; channel++) {
209 struct device *child;
210
211 zsc_args.channel = channel;
212 zsc_args.hwflags = 0;
213 cs = &zsc->zsc_cs_store[channel];
214 zsc->zsc_cs[channel] = cs;
215
216 cs->cs_channel = channel;
217 cs->cs_private = NULL;
218 cs->cs_ops = &zsops_null;
219 cs->cs_brg_clk = PCLK / 16;
220
221 if (channel == 0)
222 zc = (void*) INTIO_ADDR(&zsc->zsc_addr->zs_chan_a);
223 else
224 zc = (void*) INTIO_ADDR(&zsc->zsc_addr->zs_chan_b);
225 cs->cs_reg_csr = &zc->zc_csr;
226 cs->cs_reg_data = &zc->zc_data;
227
228 zs_init_reg[2] = ia->ia_intr;
229 bcopy(zs_init_reg, cs->cs_creg, 16);
230 bcopy(zs_init_reg, cs->cs_preg, 16);
231
232 if (zc == conschan) {
233 zsc_args.hwflags |= ZS_HWFLAG_CONSOLE;
234 cs->cs_defspeed = zs_get_speed(cs);
235 cs->cs_defcflag = zscn_def_cflag;
236 } else {
237 cs->cs_defspeed = 9600;
238 cs->cs_defcflag = zs_def_cflag;
239 }
240
241 /* Make these correspond to cs_defcflag (-crtscts) */
242 cs->cs_rr0_dcd = ZSRR0_DCD;
243 cs->cs_rr0_cts = 0;
244 cs->cs_wr5_dtr = ZSWR5_DTR | ZSWR5_RTS;
245 cs->cs_wr5_rts = 0;
246
247 /*
248 * Clear the master interrupt enable.
249 * The INTENA is common to both channels,
250 * so just do it on the A channel.
251 */
252 if (channel == 0) {
253 s = splzs();
254 zs_write_reg(cs, 9, 0);
255 splx(s);
256 }
257
258 /*
259 * Look for a child driver for this channel.
260 * The child attach will setup the hardware.
261 */
262 child = config_found(self, (void *)&zsc_args, zs_print);
263 #if ZSTTY > 0
264 if (zc == conschan &&
265 ((child && strcmp (child->dv_xname, "zstty0")) ||
266 child == NULL)) /* XXX */
267 panic ("zs_attach: console device mismatch");
268 #endif
269 if (child == NULL) {
270 /* No sub-driver. Just reset it. */
271 u_char reset = (channel == 0) ?
272 ZSWR9_A_RESET : ZSWR9_B_RESET;
273 s = splzs();
274 zs_write_reg(cs, 9, reset);
275 splx(s);
276 }
277 }
278
279 /*
280 * Now safe to install interrupt handlers.
281 */
282 if (intio_intr_establish(ia->ia_intr, "zs", zshard, zsc))
283 panic("zs_attach: interrupt vector busy");
284 /* XXX; evcnt_attach() ? */
285
286 /*
287 * Set the master interrupt enable and interrupt vector.
288 * (common to both channels, do it on A)
289 */
290 cs = zsc->zsc_cs[0];
291 s = splzs();
292 /* interrupt vector */
293 zs_write_reg(cs, 2, ia->ia_intr);
294 /* master interrupt control (enable) */
295 zs_write_reg(cs, 9, zs_init_reg[9]);
296 splx(s);
297 }
298
299 static int
300 zs_print(aux, name)
301 void *aux;
302 const char *name;
303 {
304 struct zsc_attach_args *args = aux;
305
306 if (name != NULL)
307 printf("%s: ", name);
308
309 if (args->channel != -1)
310 printf(" channel %d", args->channel);
311
312 return UNCONF;
313 }
314
315
316 /*
317 * For x68k-port, we don't use autovectored interrupt.
318 * We do not need to look at all of the zs chips.
319 */
320 static int
321 zshard(arg)
322 void *arg;
323 {
324 register struct zsc_softc *zsc = arg;
325 register int rval;
326 int s;
327
328 /*
329 * Actually, zs hardware ipl is 5.
330 * Here we disable all interrupts to shorten the zshard
331 * handling time. Otherwise, too many characters are
332 * dropped.
333 */
334 s = splhigh();
335 rval = zsc_intr_hard(zsc);
336
337 /* We are at splzs here, so no need to lock. */
338 if (zsc->zsc_cs[0]->cs_softreq || zsc->zsc_cs[1]->cs_softreq)
339 setsoftserial();
340
341 return (rval);
342 }
343
344 /*
345 * Shared among the all chips. We have to look at all of them.
346 */
347 int
348 zssoft(arg)
349 void *arg;
350 {
351 register struct zsc_softc *zsc;
352 register int s, unit;
353
354 /* Make sure we call the tty layer at spltty. */
355 s = spltty();
356 for (unit = 0; unit < zsc_cd.cd_ndevs; unit++) {
357 zsc = zsc_cd.cd_devs[unit];
358 if (zsc == NULL)
359 continue;
360 (void) zsc_intr_soft(zsc);
361 }
362 splx(s);
363
364 return (1);
365 }
366
367
368 /*
369 * Compute the current baud rate given a ZS channel.
370 */
371 static int
372 zs_get_speed(cs)
373 struct zs_chanstate *cs;
374 {
375 int tconst;
376
377 tconst = zs_read_reg(cs, 12);
378 tconst |= zs_read_reg(cs, 13) << 8;
379 return (TCONST_TO_BPS(cs->cs_brg_clk, tconst));
380 }
381
382 /*
383 * MD functions for setting the baud rate and control modes.
384 */
385 int
386 zs_set_speed(cs, bps)
387 struct zs_chanstate *cs;
388 int bps; /* bits per second */
389 {
390 int tconst, real_bps;
391
392 if (bps == 0)
393 return (0);
394
395 #ifdef DIAGNOSTIC
396 if (cs->cs_brg_clk == 0)
397 panic("zs_set_speed");
398 #endif
399
400 tconst = BPS_TO_TCONST(cs->cs_brg_clk, bps);
401 if (tconst < 0)
402 return (EINVAL);
403
404 /* Convert back to make sure we can do it. */
405 real_bps = TCONST_TO_BPS(cs->cs_brg_clk, tconst);
406
407 #if 0 /* XXX */
408 /* XXX - Allow some tolerance here? */
409 if (real_bps != bps)
410 return (EINVAL);
411 #else
412 /*
413 * Since our PCLK has somewhat strange value,
414 * we have to allow tolerance here.
415 */
416 if (BPS_TO_TCONST(cs->cs_brg_clk, real_bps) != tconst)
417 return (EINVAL);
418 #endif
419
420 cs->cs_preg[12] = tconst;
421 cs->cs_preg[13] = tconst >> 8;
422
423 /* Caller will stuff the pending registers. */
424 return (0);
425 }
426
427 int
428 zs_set_modes(cs, cflag)
429 struct zs_chanstate *cs;
430 int cflag; /* bits per second */
431 {
432 int s;
433
434 /*
435 * Output hardware flow control on the chip is horrendous:
436 * if carrier detect drops, the receiver is disabled, and if
437 * CTS drops, the transmitter is stoped IN MID CHARACTER!
438 * Therefore, NEVER set the HFC bit, and instead use the
439 * status interrupt to detect CTS changes.
440 */
441 s = splzs();
442 cs->cs_rr0_pps = 0;
443 if ((cflag & (CLOCAL | MDMBUF)) != 0) {
444 cs->cs_rr0_dcd = 0;
445 if ((cflag & MDMBUF) == 0)
446 cs->cs_rr0_pps = ZSRR0_DCD;
447 } else
448 cs->cs_rr0_dcd = ZSRR0_DCD;
449 if ((cflag & CRTSCTS) != 0) {
450 cs->cs_wr5_dtr = ZSWR5_DTR;
451 cs->cs_wr5_rts = ZSWR5_RTS;
452 cs->cs_rr0_cts = ZSRR0_CTS;
453 } else if ((cflag & MDMBUF) != 0) {
454 cs->cs_wr5_dtr = 0;
455 cs->cs_wr5_rts = ZSWR5_DTR;
456 cs->cs_rr0_cts = ZSRR0_DCD;
457 } else {
458 cs->cs_wr5_dtr = ZSWR5_DTR | ZSWR5_RTS;
459 cs->cs_wr5_rts = 0;
460 cs->cs_rr0_cts = 0;
461 }
462 splx(s);
463
464 /* Caller will stuff the pending registers. */
465 return (0);
466 }
467
468
469 /*
470 * Read or write the chip with suitable delays.
471 */
472
473 u_char
474 zs_read_reg(cs, reg)
475 struct zs_chanstate *cs;
476 u_char reg;
477 {
478 u_char val;
479
480 *cs->cs_reg_csr = reg;
481 ZS_DELAY();
482 val = *cs->cs_reg_csr;
483 ZS_DELAY();
484 return val;
485 }
486
487 void
488 zs_write_reg(cs, reg, val)
489 struct zs_chanstate *cs;
490 u_char reg, val;
491 {
492 *cs->cs_reg_csr = reg;
493 ZS_DELAY();
494 *cs->cs_reg_csr = val;
495 ZS_DELAY();
496 }
497
498 u_char zs_read_csr(cs)
499 struct zs_chanstate *cs;
500 {
501 register u_char val;
502
503 val = *cs->cs_reg_csr;
504 ZS_DELAY();
505 return val;
506 }
507
508 void zs_write_csr(cs, val)
509 struct zs_chanstate *cs;
510 u_char val;
511 {
512 *cs->cs_reg_csr = val;
513 ZS_DELAY();
514 }
515
516 u_char zs_read_data(cs)
517 struct zs_chanstate *cs;
518 {
519 register u_char val;
520
521 val = *cs->cs_reg_data;
522 ZS_DELAY();
523 return val;
524 }
525
526 void zs_write_data(cs, val)
527 struct zs_chanstate *cs;
528 u_char val;
529 {
530 *cs->cs_reg_data = val;
531 ZS_DELAY();
532 }
533
534
535 static struct zs_chanstate zscn_cs;
536
537 /****************************************************************
538 * Console support functions (x68k specific!)
539 * Note: this code is allowed to know about the layout of
540 * the chip registers, and uses that to keep things simple.
541 * XXX - I think I like the mvme167 code better. -gwr
542 ****************************************************************/
543
544 /*
545 * Handle user request to enter kernel debugger.
546 */
547 void
548 zs_abort(cs)
549 struct zs_chanstate *cs;
550 {
551 int rr0;
552
553 /* Wait for end of break to avoid PROM abort. */
554 /* XXX - Limit the wait? */
555 do {
556 rr0 = *cs->cs_reg_csr;
557 ZS_DELAY();
558 } while (rr0 & ZSRR0_BREAK);
559
560 #ifdef DDB
561 Debugger();
562 #else
563 printf ("BREAK!!\n");
564 #endif
565 }
566
567
568 #if NZSTTY > 0
569
570 #include <dev/cons.h>
571 cons_decl(zs);
572
573 static int zs_getc __P((void));
574 static void zs_putc __P((int));
575
576 /*
577 * Polled input char.
578 */
579 static int
580 zs_getc(void)
581 {
582 register int s, c, rr0;
583
584 s = splzs();
585 /* Wait for a character to arrive. */
586 do {
587 rr0 = zs_read_csr(&zscn_cs);
588 } while ((rr0 & ZSRR0_RX_READY) == 0);
589
590 c = zs_read_data (&zscn_cs);
591 splx(s);
592
593 /*
594 * This is used by the kd driver to read scan codes,
595 * so don't translate '\r' ==> '\n' here...
596 */
597 return (c);
598 }
599
600 /*
601 * Polled output char.
602 */
603 static void
604 zs_putc(c)
605 int c;
606 {
607 register int s, rr0;
608
609 s = splzs();
610 /* Wait for transmitter to become ready. */
611 do {
612 rr0 = zs_read_csr (&zscn_cs);
613 } while ((rr0 & ZSRR0_TX_READY) == 0);
614
615 zs_write_data(&zscn_cs, c);
616 splx(s);
617 }
618
619 void
620 zscninit(cn)
621 struct consdev *cn;
622 {
623 volatile struct zschan *cnchan = (void*) INTIO_ADDR(ZSCN_PHYSADDR);
624 int s;
625
626 bzero (&zscn_cs, sizeof (struct zs_chanstate));
627 zscn_cs.cs_reg_csr = &cnchan->zc_csr;
628 zscn_cs.cs_reg_data = &cnchan->zc_data;
629 zscn_cs.cs_channel = 0;
630 zscn_cs.cs_brg_clk = PCLK / 16;
631 bcopy (zs_init_reg, zscn_cs.cs_preg, 16);
632 zscn_cs.cs_preg[4] = ZSWR4_CLK_X16 | ZSWR4_ONESB; /* XXX */
633 zscn_cs.cs_preg[9] = 0;
634 zs_set_speed(&zscn_cs, ZSCN_SPEED);
635 s = splzs();
636 zs_loadchannelregs(&zscn_cs);
637 splx(s);
638 conschan = cnchan;
639 }
640
641 /*
642 * Polled console input putchar.
643 */
644 int
645 zscngetc(dev)
646 dev_t dev;
647 {
648 return (zs_getc());
649 }
650
651 /*
652 * Polled console output putchar.
653 */
654 void
655 zscnputc(dev, c)
656 dev_t dev;
657 int c;
658 {
659 zs_putc(c);
660 }
661
662 extern int zsopen(dev_t, int, int, struct proc *);
663
664 void
665 zscnprobe(cd)
666 struct consdev *cd;
667 {
668 int maj;
669
670 /* locate the major number */
671 for (maj = 0; maj < nchrdev; maj++)
672 if (cdevsw[maj].d_open == zsopen)
673 break;
674 /* XXX: minor number is 0 */
675
676 if (cdevsw[maj].d_open != zsopen)
677 cd->cn_pri = CN_DEAD;
678 else {
679 #ifdef ZSCONSOLE
680 cd->cn_pri = CN_REMOTE; /* higher than ITE (CN_INTERNAL) */
681 #else
682 cd->cn_pri = CN_NORMAL;
683 #endif
684 cd->cn_dev = makedev(maj, 0);
685 }
686 }
687
688 void
689 zscnpollc(dev, on)
690 dev_t dev;
691 int on;
692 {
693 }
694
695 #endif
696