zs.c revision 1.2 1 /* $NetBSD: zs.c,v 1.2 1996/05/12 20:46:33 oki Exp $ */
2
3 /*
4 * Copyright (c) 1992, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * This software was developed by the Computer Systems Engineering group
8 * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
9 * contributed to Berkeley.
10 *
11 * All advertising materials mentioning features or use of this software
12 * must display the following acknowledgement:
13 * This product includes software developed by the University of
14 * California, Lawrence Berkeley Laboratory.
15 *
16 * Redistribution and use in source and binary forms, with or without
17 * modification, are permitted provided that the following conditions
18 * are met:
19 * 1. Redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer.
21 * 2. Redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution.
24 * 3. All advertising materials mentioning features or use of this software
25 * must display the following acknowledgement:
26 * This product includes software developed by the University of
27 * California, Berkeley and its contributors.
28 * 4. Neither the name of the University nor the names of its contributors
29 * may be used to endorse or promote products derived from this software
30 * without specific prior written permission.
31 *
32 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
33 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
34 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
35 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
36 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
37 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
38 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
39 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
40 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
41 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
42 * SUCH DAMAGE.
43 *
44 * @(#)zs.c 8.1 (Berkeley) 7/19/93
45 */
46
47 /*
48 * Zilog Z8530 (ZSCC) driver.
49 *
50 * Runs two tty ports (ttya and ttyb) on zs0,
51 * and runs a keyboard and mouse on zs1.
52 *
53 * This driver knows far too much about chip to usage mappings.
54 */
55 #include "zs.h"
56 #if NZS > 0
57
58 #include <sys/param.h>
59 #include <sys/systm.h>
60 #include <sys/proc.h>
61 #include <sys/device.h>
62 #include <sys/conf.h>
63 #include <sys/file.h>
64 #include <sys/ioctl.h>
65 #include <sys/tty.h>
66 #include <sys/time.h>
67 #include <sys/kernel.h>
68 #include <sys/syslog.h>
69
70 #include <machine/cpu.h>
71
72 #include <x68k/x68k/iodevice.h>
73 #include <dev/ic/z8530reg.h>
74 #include <x68k/dev/zsvar.h>
75
76 #ifdef KGDB
77 #include <machine/remote-sl.h>
78 #endif
79
80 #define ZSMAJOR 12 /* XXX */
81
82 #define ZS_MOUSE 1 /* XXX */
83
84 #define PCLK (5*1000*1000) /* PCLK pin input clock rate */
85
86 #if 0
87 /*
88 * Select software interrupt bit based on TTY ipl.
89 */
90 #if PIL_TTY == 1
91 # define IE_ZSSOFT IE_L1
92 #elif PIL_TTY == 4
93 # define IE_ZSSOFT IE_L4
94 #elif PIL_TTY == 6
95 # define IE_ZSSOFT IE_L6
96 #else
97 # error "no suitable software interrupt bit"
98 #endif
99 #endif
100
101 /*
102 * Software state per found chip. This would be called `zs_softc',
103 * but the previous driver had a rather different zs_softc....
104 */
105 struct zs_softc {
106 struct device zi_dev; /* base device */
107 volatile struct zsdevice *zi_zs;/* chip registers */
108 struct zs_chanstate zi_cs[2]; /* channel A and B software state */
109 };
110
111 struct tty *zs_tty[NZS * 2]; /* XXX should be dynamic */
112
113 /* Definition of the driver for autoconfig. */
114 static int zsmatch __P((struct device *, void *, void *));
115 static void zsattach __P((struct device *, struct device *, void *));
116
117 struct cfattach zs_ca = {
118 sizeof(struct zs_softc), zsmatch, zsattach
119 };
120
121 struct cfdriver zs_cd = {
122 NULL, "zs", DV_TTY, NULL, 0
123 };
124
125 #ifdef x68k
126 static struct zs_chanstate *zsms;
127 void zs_msmodem __P((int));
128 #endif
129
130 /* Interrupt handlers. */
131 void zshard __P((int));
132 int zssoft __P((void *));
133
134 struct zs_chanstate *zslist;
135
136 /* Routines called from other code. */
137 static void zsiopen __P((struct tty *));
138 static void zsiclose __P((struct tty *));
139 static void zsstart __P((struct tty *));
140 int zsstop __P((struct tty *, int));
141 static int zsparam __P((struct tty *, struct termios *));
142 static int zshwiflow __P((struct tty *, int));
143
144 /* Routines purely local to this driver. */
145 static int zs_getspeed __P((volatile struct zschan *));
146 #ifdef KGDB
147 static void zs_reset __P((volatile struct zschan *, int, int));
148 #endif
149 static void zs_modem __P((struct zs_chanstate *, int));
150 static void zs_loadchannelregs __P((volatile struct zschan *, u_char *));
151 static void zsabort __P((void));
152
153 /* Console stuff. */
154 static struct tty *zs_ctty; /* console `struct tty *' */
155 static int zs_consin = -1, zs_consout = -1;
156 static void zscnputc __P((int)); /* console putc function */
157 static volatile struct zschan *zs_conschan;
158 static struct tty *zs_checkcons __P((struct zs_softc *, int, struct zs_chanstate *));
159
160 #ifdef KGDB
161 /* KGDB stuff. Must reboot to change zs_kgdbunit. */
162 extern int kgdb_dev, kgdb_rate;
163 static int zs_kgdb_savedspeed;
164 static void zs_checkkgdb __P((int, struct zs_chanstate *, struct tty *));
165 #endif
166
167 static volatile struct zsdevice *findzs __P((int));
168 static volatile struct zsdevice *zsaddr[NZS]; /* XXX, but saves work */
169
170 int zshardscope;
171 int zsshortcuts; /* number of "shortcut" software interrupts */
172
173 static u_char
174 zs_read(zc, reg)
175 volatile struct zschan *zc;
176 u_char reg;
177 {
178 u_char val;
179
180 zc->zc_csr = reg;
181 ZS_DELAY();
182 val = zc->zc_csr;
183 ZS_DELAY();
184 return val;
185 }
186
187 static u_char
188 zs_write(zc, reg, val)
189 volatile struct zschan *zc;
190 u_char reg, val;
191 {
192 zc->zc_csr = reg;
193 ZS_DELAY();
194 zc->zc_csr = val;
195 ZS_DELAY();
196 return val;
197 }
198
199 /*
200 * find zs address for x68k architecture
201 */
202 static volatile struct zsdevice *
203 findzs(zs)
204 int zs;
205 {
206 if (zs == 0)
207 return &IODEVbase->io_inscc;
208 if (1 <= zs && zs <= 4)
209 return &(IODEVbase->io_exscc)[zs - 1];
210 /* none */
211 return 0;
212 }
213
214 /*
215 * Match slave number to zs unit number, so that misconfiguration will
216 * not set up the keyboard as ttya, etc.
217 */
218 static int
219 zsmatch(parent, match, aux)
220 struct device *parent;
221 void *match, *aux;
222 {
223 struct cfdata *cfp = match;
224 volatile void *addr;
225
226 if(strcmp("zs", aux) || (addr = findzs(cfp->cf_unit)) == 0)
227 return(0);
228 if (badaddr(addr))
229 return 0;
230 return(1);
231 }
232
233 /*
234 * Attach a found zs.
235 *
236 * USE ROM PROPERTIES port-a-ignore-cd AND port-b-ignore-cd FOR
237 * SOFT CARRIER, AND keyboard PROPERTY FOR KEYBOARD/MOUSE?
238 */
239 static void
240 zsattach(parent, dev, aux)
241 struct device *parent;
242 struct device *dev;
243 void *aux;
244 {
245 register int zs = dev->dv_unit, unit;
246 register struct zs_softc *zi;
247 register struct zs_chanstate *cs;
248 register volatile struct zsdevice *addr;
249 register struct tty *tp, *ctp;
250 register struct confargs *ca = aux;
251 int pri;
252
253 if ((addr = zsaddr[zs]) == NULL)
254 addr = zsaddr[zs] = findzs(zs);
255 printf(" (%s)\n", zs ? "external" : "onboard");
256 zi = (struct zs_softc *)dev;
257 zi->zi_zs = addr;
258 unit = zs * 2;
259 cs = zi->zi_cs;
260 cs->cs_ttyp = tp = ttymalloc();
261
262 /* link into interrupt list with order (A,B) (B=A+1) */
263 cs[0].cs_next = &cs[1];
264 cs[1].cs_next = zslist;
265 zslist = cs;
266
267 cs->cs_unit = unit;
268 cs->cs_speed = zs_getspeed(&addr->zs_chan[ZS_CHAN_A]);
269 cs->cs_zc = &addr->zs_chan[ZS_CHAN_A];
270 tp->t_dev = makedev(ZSMAJOR, unit);
271 tp->t_oproc = zsstart;
272 tp->t_param = zsparam;
273 tp->t_hwiflow = zshwiflow;
274 if ((ctp = zs_checkcons(zi, unit, cs)) != NULL)
275 cs->cs_ttyp = tp = ctp;
276 #ifdef KGDB
277 if (ctp == NULL)
278 zs_checkkgdb(unit, cs, tp);
279 #endif
280 #ifdef sun
281 if (unit == ZS_KBD) {
282 /*
283 * Keyboard: tell /dev/kbd driver how to talk to us.
284 */
285 tp->t_ispeed = tp->t_ospeed = cs->cs_speed;
286 tp->t_cflag = CS8;
287 kbd_serial(tp, zsiopen, zsiclose);
288 cs->cs_conk = 1; /* do L1-A processing */
289 }
290 #endif
291 ZS_WRITE(cs->cs_zc, 2, 0x70 + zs); /* XXX interrupt vector */
292 unit++;
293 cs++;
294 cs->cs_ttyp = tp = ttymalloc();
295 cs->cs_unit = unit;
296 cs->cs_speed = zs_getspeed(&addr->zs_chan[ZS_CHAN_B]);
297 cs->cs_zc = &addr->zs_chan[ZS_CHAN_B];
298 tp->t_dev = makedev(ZSMAJOR, unit);
299 tp->t_oproc = zsstart;
300 tp->t_param = zsparam;
301 if (unit != ZS_MOUSE)
302 tp->t_hwiflow = zshwiflow;
303 if ((ctp = zs_checkcons(zi, unit, cs)) != NULL)
304 cs->cs_ttyp = tp = ctp;
305 #ifdef KGDB
306 if (ctp == NULL)
307 zs_checkkgdb(unit, cs, tp);
308 #endif
309 if (unit == ZS_MOUSE) {
310 /*
311 * Mouse: tell /dev/mouse driver how to talk to us.
312 */
313 tp->t_ispeed = tp->t_ospeed = cs->cs_speed;
314 tp->t_cflag = CS8 | CSTOPB;
315 ms_serial(tp, zsiopen, zsiclose);
316 #ifdef x68k
317 zsms = cs;
318 #endif
319 }
320 }
321
322 #ifdef KGDB
323 /*
324 * Put a channel in a known state. Interrupts may be left disabled
325 * or enabled, as desired.
326 */
327 static void
328 zs_reset(zc, inten, speed)
329 volatile struct zschan *zc;
330 int inten, speed;
331 {
332 int tconst;
333 static u_char reg[16] = {
334 0,
335 0,
336 0,
337 ZSWR3_RX_8 | ZSWR3_RX_ENABLE,
338 ZSWR4_CLK_X16 | ZSWR4_ONESB | ZSWR4_EVENP,
339 ZSWR5_TX_8 | ZSWR5_TX_ENABLE,
340 0,
341 0,
342 0,
343 0,
344 ZSWR10_NRZ,
345 ZSWR11_TXCLK_BAUD | ZSWR11_RXCLK_BAUD,
346 0,
347 0,
348 ZSWR14_BAUD_FROM_PCLK | ZSWR14_BAUD_ENA,
349 ZSWR15_BREAK_IE | ZSWR15_DCD_IE,
350 };
351
352 reg[9] = inten ? ZSWR9_MASTER_IE | ZSWR9_NO_VECTOR : ZSWR9_NO_VECTOR;
353 tconst = BPS_TO_TCONST(PCLK / 16, speed);
354 reg[12] = tconst;
355 reg[13] = tconst >> 8;
356 zs_loadchannelregs(zc, reg);
357 }
358 #endif
359
360 /*
361 * Declare the given tty (which is in fact &cons) as a console input
362 * or output. This happens before the zs chip is attached; the hookup
363 * is finished later, in zs_setcons() below.
364 *
365 * This is used only for ports a and b. The console keyboard is decoded
366 * independently (we always send unit-2 input to /dev/kbd, which will
367 * direct it to /dev/console if appropriate).
368 */
369 void
370 zsconsole(tp, unit, out, fnstop)
371 register struct tty *tp;
372 register int unit;
373 int out;
374 int (**fnstop) __P((struct tty *, int));
375 {
376 int zs;
377 volatile struct zsdevice *addr;
378
379 if (out) {
380 zs_consout = unit;
381 zs = unit >> 1;
382 if ((addr = zsaddr[zs]) == NULL)
383 addr = zsaddr[zs] = findzs(zs);
384 zs_conschan = (unit & 1) == 0 ? &addr->zs_chan[ZS_CHAN_A] :
385 &addr->zs_chan[ZS_CHAN_B];
386 v_putc = zscnputc;
387 } else
388 zs_consin = unit;
389 if(fnstop)
390 *fnstop = &zsstop;
391 zs_ctty = tp;
392 }
393
394 /*
395 * Polled console output putchar.
396 */
397 static void
398 zscnputc(c)
399 int c;
400 {
401 register volatile struct zschan *zc = zs_conschan;
402 register int s;
403
404 if (c == '\n')
405 zscnputc('\r');
406 /*
407 * Must block output interrupts (i.e., raise to >= splzs) without
408 * lowering current ipl. Need a better way.
409 */
410 s = splhigh();
411 #ifdef SUN4C /* XXX */
412 if (CPU_ISSUN4C && s <= (12 << 8))
413 (void) splzs();
414 #endif
415 while ((zc->zc_csr & ZSRR0_TX_READY) == 0)
416 ZS_DELAY();
417 zc->zc_data = c;
418 ZS_DELAY();
419 splx(s);
420 }
421
422 /*
423 * Set up the given unit as console input, output, both, or neither, as
424 * needed. Return console tty if it is to receive console input.
425 */
426 static struct tty *
427 zs_checkcons(zi, unit, cs)
428 struct zs_softc *zi;
429 int unit;
430 struct zs_chanstate *cs;
431 {
432 register struct tty *tp;
433 char *i, *o;
434
435 if ((tp = zs_ctty) == NULL) /* XXX */
436 return (0);
437 i = zs_consin == unit ? "input" : NULL;
438 o = zs_consout == unit ? "output" : NULL;
439 if (i == NULL && o == NULL)
440 return (0);
441
442 /* rewire the minor device (gack) */
443 tp->t_dev = makedev(major(tp->t_dev), unit);
444
445 /*
446 * Rewire input and/or output. Note that baud rate reflects
447 * input settings, not output settings, but we can do no better
448 * if the console is split across two ports.
449 *
450 * XXX split consoles don't work anyway -- this needs to be
451 * thrown away and redone
452 */
453 if (i) {
454 tp->t_param = zsparam;
455 tp->t_ispeed = tp->t_ospeed = cs->cs_speed;
456 tp->t_cflag = CS8;
457 ttsetwater(tp);
458 }
459 if (o) {
460 tp->t_oproc = zsstart;
461 }
462 printf("%s%c: console %s\n",
463 zi->zi_dev.dv_xname, (unit & 1) + 'a', i ? (o ? "i/o" : i) : o);
464 cs->cs_consio = 1;
465 cs->cs_brkabort = 1;
466 return (tp);
467 }
468
469 #ifdef KGDB
470 /*
471 * The kgdb zs port, if any, was altered at boot time (see zs_kgdb_init).
472 * Pick up the current speed and character size and restore the original
473 * speed.
474 */
475 static void
476 zs_checkkgdb(unit, cs, tp)
477 int unit;
478 struct zs_chanstate *cs;
479 struct tty *tp;
480 {
481
482 if (kgdb_dev == makedev(ZSMAJOR, unit)) {
483 tp->t_ispeed = tp->t_ospeed = kgdb_rate;
484 tp->t_cflag = CS8;
485 cs->cs_kgdb = 1;
486 cs->cs_speed = zs_kgdb_savedspeed;
487 (void) zsparam(tp, &tp->t_termios);
488 }
489 }
490 #endif
491
492 /*
493 * Compute the current baud rate given a ZSCC channel.
494 */
495 static int
496 zs_getspeed(zc)
497 register volatile struct zschan *zc;
498 {
499 register int tconst;
500
501 tconst = ZS_READ(zc, 12);
502 tconst |= ZS_READ(zc, 13) << 8;
503 return (TCONST_TO_BPS(PCLK / 16, tconst));
504 }
505
506
507 /*
508 * Do an internal open.
509 */
510 static void
511 zsiopen(tp)
512 struct tty *tp;
513 {
514
515 (void) zsparam(tp, &tp->t_termios);
516 ttsetwater(tp);
517 tp->t_state = TS_ISOPEN | TS_CARR_ON;
518 }
519
520 /*
521 * Do an internal close. Eventually we should shut off the chip when both
522 * ports on it are closed.
523 */
524 static void
525 zsiclose(tp)
526 struct tty *tp;
527 {
528
529 ttylclose(tp, 0); /* ??? */
530 ttyclose(tp); /* ??? */
531 tp->t_state = 0;
532 }
533
534
535 /*
536 * Open a zs serial port. This interface may not be used to open
537 * the keyboard and mouse ports. (XXX)
538 */
539 int
540 zsopen(dev, flags, mode, p)
541 dev_t dev;
542 int flags;
543 int mode;
544 struct proc *p;
545 {
546 register struct tty *tp;
547 register struct zs_chanstate *cs;
548 struct zs_softc *zi;
549 int unit = minor(dev), zs = unit >> 1, error, s;
550
551 if (zs >= zs_cd.cd_ndevs || (zi = zs_cd.cd_devs[zs]) == NULL ||
552 unit == ZS_MOUSE)
553 return (ENXIO);
554 if (zi->zi_zs == NULL)
555 return (ENXIO);
556 cs = &zi->zi_cs[unit & 1];
557 if (cs->cs_consio)
558 return (ENXIO); /* ??? */
559 tp = cs->cs_ttyp;
560 s = spltty();
561 if ((tp->t_state & TS_ISOPEN) == 0) {
562 ttychars(tp);
563 if (tp->t_ispeed == 0) {
564 tp->t_iflag = TTYDEF_IFLAG;
565 tp->t_oflag = TTYDEF_OFLAG;
566 tp->t_cflag = TTYDEF_CFLAG;
567 tp->t_lflag = TTYDEF_LFLAG;
568 tp->t_ispeed = tp->t_ospeed = cs->cs_speed;
569 }
570 (void) zsparam(tp, &tp->t_termios);
571 ttsetwater(tp);
572 } else if (tp->t_state & TS_XCLUDE && p->p_ucred->cr_uid != 0) {
573 splx(s);
574 return (EBUSY);
575 }
576 error = 0;
577 for (;;) {
578 register int rr0;
579
580 /* loop, turning on the device, until carrier present */
581 zs_modem(cs, 1);
582 /* May never get status intr if carrier already on. -gwr */
583 rr0 = cs->cs_zc->zc_csr;
584 ZS_DELAY();
585 if ((rr0 & ZSRR0_DCD) || cs->cs_softcar)
586 tp->t_state |= TS_CARR_ON;
587 if (flags & O_NONBLOCK || tp->t_cflag & CLOCAL ||
588 tp->t_state & TS_CARR_ON)
589 break;
590 tp->t_state |= TS_WOPEN;
591 error = ttysleep(tp, (caddr_t)&tp->t_rawq, TTIPRI | PCATCH,
592 ttopen, 0);
593 if (error) {
594 if (!(tp->t_state & TS_ISOPEN)) {
595 zs_modem(cs, 0);
596 tp->t_state &= ~TS_WOPEN;
597 ttwakeup(tp);
598 }
599 splx(s);
600 return error;
601 }
602 }
603 splx(s);
604 if (error == 0)
605 error = linesw[tp->t_line].l_open(dev, tp);
606 if (error)
607 zs_modem(cs, 0);
608 return (error);
609 }
610
611 /*
612 * Close a zs serial port.
613 */
614 int
615 zsclose(dev, flags, mode, p)
616 dev_t dev;
617 int flags;
618 int mode;
619 struct proc *p;
620 {
621 register struct zs_chanstate *cs;
622 register struct tty *tp;
623 struct zs_softc *zi;
624 int unit = minor(dev), s;
625
626 zi = zs_cd.cd_devs[unit >> 1];
627 cs = &zi->zi_cs[unit & 1];
628 tp = cs->cs_ttyp;
629 linesw[tp->t_line].l_close(tp, flags);
630 if (tp->t_cflag & HUPCL || tp->t_state & TS_WOPEN ||
631 (tp->t_state & TS_ISOPEN) == 0) {
632 zs_modem(cs, 0);
633 /* hold low for 1 second */
634 (void) tsleep((caddr_t)cs, TTIPRI, ttclos, hz);
635 }
636 if (cs->cs_creg[5] & ZSWR5_BREAK)
637 {
638 s = splzs();
639 cs->cs_preg[5] &= ~ZSWR5_BREAK;
640 cs->cs_creg[5] &= ~ZSWR5_BREAK;
641 ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
642 splx(s);
643 }
644 ttyclose(tp);
645 #ifdef KGDB
646 /* Reset the speed if we're doing kgdb on this port */
647 if (cs->cs_kgdb) {
648 tp->t_ispeed = tp->t_ospeed = kgdb_rate;
649 (void) zsparam(tp, &tp->t_termios);
650 }
651 #endif
652 return (0);
653 }
654
655 /*
656 * Read/write zs serial port.
657 */
658 int
659 zsread(dev, uio, flags)
660 dev_t dev;
661 struct uio *uio;
662 int flags;
663 {
664 register struct zs_chanstate *cs;
665 register struct zs_softc *zi;
666 register struct tty *tp;
667 int unit = minor(dev);
668
669 zi = zs_cd.cd_devs[unit >> 1];
670 cs = &zi->zi_cs[unit & 1];
671 tp = cs->cs_ttyp;
672
673 return (linesw[tp->t_line].l_read(tp, uio, flags));
674
675 }
676
677 int
678 zswrite(dev, uio, flags)
679 dev_t dev;
680 struct uio *uio;
681 int flags;
682 {
683 register struct zs_chanstate *cs;
684 register struct zs_softc *zi;
685 register struct tty *tp;
686 int unit = minor(dev);
687
688 zi = zs_cd.cd_devs[unit >> 1];
689 cs = &zi->zi_cs[unit & 1];
690 tp = cs->cs_ttyp;
691
692 return (linesw[tp->t_line].l_write(tp, uio, flags));
693 }
694
695 struct tty *
696 zstty(dev)
697 dev_t dev;
698 {
699 register struct zs_chanstate *cs;
700 register struct zs_softc *zi;
701 int unit = minor(dev);
702
703 zi = zs_cd.cd_devs[unit >> 1];
704 cs = &zi->zi_cs[unit & 1];
705
706 return (cs->cs_ttyp);
707
708 }
709
710 /*
711 * ZS hardware interrupt. Scan all ZS channels. NB: we know here that
712 * channels are kept in (A,B) pairs.
713 *
714 * Do just a little, then get out; set a software interrupt if more
715 * work is needed.
716 *
717 * We deliberately ignore the vectoring Zilog gives us, and match up
718 * only the number of `reset interrupt under service' operations, not
719 * the order.
720 */
721 /* ARGSUSED */
722 void
723 zshard(intrarg)
724 int intrarg;
725 {
726 register struct zs_chanstate *a;
727 #define b (a + 1)
728 register volatile struct zschan *zc;
729 register int rr3, intflags = 0, v, i;
730 static int zsrint __P((struct zs_chanstate *, volatile struct zschan *));
731 static int zsxint __P((struct zs_chanstate *, volatile struct zschan *));
732 static int zssint __P((struct zs_chanstate *, volatile struct zschan *));
733
734 {
735 a = &((struct zs_softc*)zs_cd.cd_devs[(intrarg >> 2) & 0x0f])->zi_cs[0];
736 rr3 = ZS_READ(a->cs_zc, 3);
737 if (rr3 & (ZSRR3_IP_A_RX|ZSRR3_IP_A_TX|ZSRR3_IP_A_STAT)) {
738 intflags |= 2;
739 zc = a->cs_zc;
740 i = a->cs_rbput;
741 if (rr3 & ZSRR3_IP_A_RX && (v = zsrint(a, zc)) != 0) {
742 a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
743 intflags |= 1;
744 }
745 if (rr3 & ZSRR3_IP_A_TX && (v = zsxint(a, zc)) != 0) {
746 a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
747 intflags |= 1;
748 intflags |= 4;
749 }
750 if (rr3 & ZSRR3_IP_A_STAT && (v = zssint(a, zc)) != 0) {
751 a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
752 intflags |= 1;
753 }
754 a->cs_rbput = i;
755 }
756 if (rr3 & (ZSRR3_IP_B_RX|ZSRR3_IP_B_TX|ZSRR3_IP_B_STAT)) {
757 intflags |= 2;
758 zc = b->cs_zc;
759 i = b->cs_rbput;
760 if (rr3 & ZSRR3_IP_B_RX && (v = zsrint(b, zc)) != 0) {
761 b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
762 intflags |= 1;
763 }
764 if (rr3 & ZSRR3_IP_B_TX && (v = zsxint(b, zc)) != 0) {
765 b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
766 intflags |= 1;
767 intflags |= 4;
768 }
769 if (rr3 & ZSRR3_IP_B_STAT && (v = zssint(b, zc)) != 0) {
770 b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
771 intflags |= 1;
772 }
773 b->cs_rbput = i;
774 }
775 }
776 #undef b
777 if (intflags & 1) {
778 #if defined(SUN4C) || defined(SUN4M)
779 if (CPU_ISSUN4M || CPU_ISSUN4C) {
780 /* XXX -- but this will go away when zshard moves to locore.s */
781 struct clockframe *p = intrarg;
782
783 if ((p->psr & PSR_PIL) < (PIL_TTY << 8)) {
784 zsshortcuts++;
785 (void) spltty();
786 if (zshardscope) {
787 LED_ON;
788 LED_OFF;
789 }
790 return (zssoft(intrarg));
791 }
792 }
793 #endif
794 #if x68k
795 #define PSL_TTY PSL_IPL4 /* XXX */
796 if (((intrarg >> 16) & PSL_IPL) < PSL_TTY) {
797 zsshortcuts++;
798 (void) spltty();
799 zssoft(0/*intrarg*/);
800 return;
801 }
802 setsoftserial();
803 #else
804 ienab_bis(IE_ZSSOFT);
805 #endif
806 }
807 }
808
809 static int
810 zsrint(cs, zc)
811 register struct zs_chanstate *cs;
812 register volatile struct zschan *zc;
813 {
814 register int c = zc->zc_data;
815
816 ZS_DELAY();
817 #ifndef x68k
818 if (cs->cs_conk) {
819 register struct conk_state *conk = &zsconk_state;
820
821 /*
822 * Check here for console abort function, so that we
823 * can abort even when interrupts are locking up the
824 * machine.
825 */
826 if (c == KBD_RESET) {
827 conk->conk_id = 1; /* ignore next byte */
828 conk->conk_l1 = 0;
829 } else if (conk->conk_id)
830 conk->conk_id = 0; /* stop ignoring bytes */
831 else if (c == KBD_L1)
832 conk->conk_l1 = 1; /* L1 went down */
833 else if (c == (KBD_L1|KBD_UP))
834 conk->conk_l1 = 0; /* L1 went up */
835 else if (c == KBD_A && conk->conk_l1) {
836 zsabort();
837 conk->conk_l1 = 0; /* we never see the up */
838 goto clearit; /* eat the A after L1-A */
839 }
840 }
841 #endif
842 #ifdef KGDB
843 if (c == FRAME_START && cs->cs_kgdb &&
844 (cs->cs_ttyp->t_state & TS_ISOPEN) == 0) {
845 zskgdb(cs->cs_unit);
846 goto clearit;
847 }
848 #endif
849 /* compose receive character and status */
850 c <<= 8;
851 c |= ZS_READ(zc, 1);
852
853 /* clear receive error & interrupt condition */
854 zc->zc_csr = ZSWR0_RESET_ERRORS;
855 ZS_DELAY();
856 zc->zc_csr = ZSWR0_CLR_INTR;
857 ZS_DELAY();
858
859 return (ZRING_MAKE(ZRING_RINT, c));
860
861 clearit:
862 zc->zc_csr = ZSWR0_RESET_ERRORS;
863 ZS_DELAY();
864 zc->zc_csr = ZSWR0_CLR_INTR;
865 ZS_DELAY();
866 return (0);
867 }
868
869 static int
870 zsxint(cs, zc)
871 register struct zs_chanstate *cs;
872 register volatile struct zschan *zc;
873 {
874 register int i = cs->cs_tbc;
875
876 if (i == 0) {
877 zc->zc_csr = ZSWR0_RESET_TXINT;
878 ZS_DELAY();
879 zc->zc_csr = ZSWR0_CLR_INTR;
880 ZS_DELAY();
881 return (ZRING_MAKE(ZRING_XINT, 0));
882 }
883 cs->cs_tbc = i - 1;
884 zc->zc_data = *cs->cs_tba++;
885 ZS_DELAY();
886 zc->zc_csr = ZSWR0_CLR_INTR;
887 ZS_DELAY();
888 return (0);
889 }
890
891 static int
892 zssint(cs, zc)
893 register struct zs_chanstate *cs;
894 register volatile struct zschan *zc;
895 {
896 register int rr0;
897
898 rr0 = zc->zc_csr;
899 ZS_DELAY();
900 zc->zc_csr = ZSWR0_RESET_STATUS;
901 ZS_DELAY();
902 zc->zc_csr = ZSWR0_CLR_INTR;
903 ZS_DELAY();
904 /*
905 * The chip's hardware flow control is, as noted in zsreg.h,
906 * busted---if the DCD line goes low the chip shuts off the
907 * receiver (!). If we want hardware CTS flow control but do
908 * not have it, and carrier is now on, turn HFC on; if we have
909 * HFC now but carrier has gone low, turn it off.
910 */
911 if (rr0 & ZSRR0_DCD) {
912 if (cs->cs_ttyp->t_cflag & CCTS_OFLOW &&
913 (cs->cs_creg[3] & ZSWR3_HFC) == 0) {
914 cs->cs_creg[3] |= ZSWR3_HFC;
915 ZS_WRITE(zc, 3, cs->cs_creg[3]);
916 }
917 } else {
918 if (cs->cs_creg[3] & ZSWR3_HFC) {
919 cs->cs_creg[3] &= ~ZSWR3_HFC;
920 ZS_WRITE(zc, 3, cs->cs_creg[3]);
921 }
922 }
923 if ((rr0 & ZSRR0_BREAK) && cs->cs_brkabort) {
924 #ifdef SUN4
925 /*
926 * XXX This might not be necessary. Test and
927 * delete if it isn't.
928 */
929 if (CPU_ISSUN4) {
930 while (zc->zc_csr & ZSRR0_BREAK)
931 ZS_DELAY();
932 }
933 #endif
934 zsabort();
935 return (0);
936 }
937 return (ZRING_MAKE(ZRING_SINT, rr0));
938 }
939
940 static void
941 zsabort()
942 {
943
944 #ifdef DDB
945 Debugger();
946 #else
947 printf("stopping on keyboard abort\n");
948 #ifndef x68k
949 callrom();
950 #endif
951 #endif
952 }
953
954 #ifdef KGDB
955 /*
956 * KGDB framing character received: enter kernel debugger. This probably
957 * should time out after a few seconds to avoid hanging on spurious input.
958 */
959 void
960 zskgdb(unit)
961 int unit;
962 {
963
964 printf("zs%d%c: kgdb interrupt\n", unit >> 1, (unit & 1) + 'a');
965 kgdb_connect(1);
966 }
967 #endif
968
969 /*
970 * Print out a ring or fifo overrun error message.
971 */
972 static void
973 zsoverrun(unit, ptime, what)
974 int unit;
975 long *ptime;
976 char *what;
977 {
978
979 if (*ptime != time.tv_sec) {
980 *ptime = time.tv_sec;
981 log(LOG_WARNING, "zs%d%c: %s overrun\n", unit >> 1,
982 (unit & 1) + 'a', what);
983 }
984 }
985
986 /*
987 * ZS software interrupt. Scan all channels for deferred interrupts.
988 */
989 int
990 zssoft(arg)
991 void *arg;
992 {
993 register struct zs_chanstate *cs;
994 register volatile struct zschan *zc;
995 register struct linesw *line;
996 register struct tty *tp;
997 register int get, n, c, cc, unit, s;
998 int retval = 0;
999
1000 for (cs = zslist; cs != NULL; cs = cs->cs_next) {
1001 get = cs->cs_rbget;
1002 again:
1003 n = cs->cs_rbput; /* atomic */
1004 if (get == n) /* nothing more on this line */
1005 continue;
1006 retval = 1;
1007 unit = cs->cs_unit; /* set up to handle interrupts */
1008 zc = cs->cs_zc;
1009 tp = cs->cs_ttyp;
1010 line = &linesw[tp->t_line];
1011 /*
1012 * Compute the number of interrupts in the receive ring.
1013 * If the count is overlarge, we lost some events, and
1014 * must advance to the first valid one. It may get
1015 * overwritten if more data are arriving, but this is
1016 * too expensive to check and gains nothing (we already
1017 * lost out; all we can do at this point is trade one
1018 * kind of loss for another).
1019 */
1020 n -= get;
1021 if (n > ZLRB_RING_SIZE) {
1022 zsoverrun(unit, &cs->cs_rotime, "ring");
1023 get += n - ZLRB_RING_SIZE;
1024 n = ZLRB_RING_SIZE;
1025 }
1026 while (--n >= 0) {
1027 /* race to keep ahead of incoming interrupts */
1028 c = cs->cs_rbuf[get++ & ZLRB_RING_MASK];
1029 switch (ZRING_TYPE(c)) {
1030
1031 case ZRING_RINT:
1032 c = ZRING_VALUE(c);
1033 if (c & ZSRR1_DO)
1034 zsoverrun(unit, &cs->cs_fotime, "fifo");
1035 cc = c >> 8;
1036 if (c & ZSRR1_FE)
1037 cc |= TTY_FE;
1038 if (c & ZSRR1_PE)
1039 cc |= TTY_PE;
1040 /*
1041 * this should be done through
1042 * bstreams XXX gag choke
1043 */
1044 else if (unit == ZS_MOUSE)
1045 ms_rint(cc);
1046 else
1047 line->l_rint(cc, tp);
1048 break;
1049
1050 case ZRING_XINT:
1051 /*
1052 * Transmit done: change registers and resume,
1053 * or clear BUSY.
1054 */
1055 if (cs->cs_heldchange) {
1056 s = splzs();
1057 c = zc->zc_csr;
1058 ZS_DELAY();
1059 if ((c & ZSRR0_DCD) == 0)
1060 cs->cs_preg[3] &= ~ZSWR3_HFC;
1061 bcopy((caddr_t)cs->cs_preg,
1062 (caddr_t)cs->cs_creg, 16);
1063 zs_loadchannelregs(zc, cs->cs_creg);
1064 splx(s);
1065 cs->cs_heldchange = 0;
1066 if (cs->cs_heldtbc &&
1067 (tp->t_state & TS_TTSTOP) == 0) {
1068 cs->cs_tbc = cs->cs_heldtbc - 1;
1069 zc->zc_data = *cs->cs_tba++;
1070 ZS_DELAY();
1071 goto again;
1072 }
1073 }
1074 tp->t_state &= ~TS_BUSY;
1075 if (tp->t_state & TS_FLUSH)
1076 tp->t_state &= ~TS_FLUSH;
1077 else
1078 ndflush(&tp->t_outq,
1079 cs->cs_tba - (caddr_t)tp->t_outq.c_cf);
1080 line->l_start(tp);
1081 break;
1082
1083 case ZRING_SINT:
1084 /*
1085 * Status line change. HFC bit is run in
1086 * hardware interrupt, to avoid locking
1087 * at splzs here.
1088 */
1089 c = ZRING_VALUE(c);
1090 if ((c ^ cs->cs_rr0) & ZSRR0_DCD) {
1091 cc = (c & ZSRR0_DCD) != 0;
1092 if (line->l_modem(tp, cc) == 0)
1093 zs_modem(cs, cc);
1094 }
1095 cs->cs_rr0 = c;
1096 break;
1097
1098 default:
1099 log(LOG_ERR, "zs%d%c: bad ZRING_TYPE (%x)\n",
1100 unit >> 1, (unit & 1) + 'a', c);
1101 break;
1102 }
1103 }
1104 cs->cs_rbget = get;
1105 goto again;
1106 }
1107 return (retval);
1108 }
1109
1110 int
1111 zsioctl(dev, cmd, data, flag, p)
1112 dev_t dev;
1113 u_long cmd;
1114 caddr_t data;
1115 int flag;
1116 struct proc *p;
1117 {
1118 int unit = minor(dev);
1119 struct zs_softc *zi = zs_cd.cd_devs[unit >> 1];
1120 register struct zs_chanstate *cs = &zi->zi_cs[unit & 1];
1121 register struct tty *tp = cs->cs_ttyp;
1122 register int error, s;
1123
1124 error = linesw[tp->t_line].l_ioctl(tp, cmd, data, flag, p);
1125 if (error >= 0)
1126 return (error);
1127 error = ttioctl(tp, cmd, data, flag, p);
1128 if (error >= 0)
1129 return (error);
1130
1131 switch (cmd) {
1132 case TIOCSBRK:
1133 s = splzs();
1134 cs->cs_preg[5] |= ZSWR5_BREAK;
1135 cs->cs_creg[5] |= ZSWR5_BREAK;
1136 ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
1137 splx(s);
1138 break;
1139 case TIOCCBRK:
1140 s = splzs();
1141 cs->cs_preg[5] &= ~ZSWR5_BREAK;
1142 cs->cs_creg[5] &= ~ZSWR5_BREAK;
1143 ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
1144 splx(s);
1145 break;
1146 case TIOCGFLAGS: {
1147 int bits = 0;
1148
1149 if (cs->cs_softcar)
1150 bits |= TIOCFLAG_SOFTCAR;
1151 if (cs->cs_creg[15] & ZSWR15_DCD_IE)
1152 bits |= TIOCFLAG_CLOCAL;
1153 if (cs->cs_creg[3] & ZSWR3_HFC)
1154 bits |= TIOCFLAG_CRTSCTS;
1155 *(int *)data = bits;
1156 break;
1157 }
1158 case TIOCSFLAGS: {
1159 int userbits, driverbits = 0;
1160
1161 error = suser(p->p_ucred, &p->p_acflag);
1162 if (error != 0)
1163 return (EPERM);
1164
1165 userbits = *(int *)data;
1166
1167 /*
1168 * can have `local' or `softcar', and `rtscts' or `mdmbuf'
1169 # defaulting to software flow control.
1170 */
1171 if (userbits & TIOCFLAG_SOFTCAR && userbits & TIOCFLAG_CLOCAL)
1172 return(EINVAL);
1173 if (userbits & TIOCFLAG_MDMBUF) /* don't support this (yet?) */
1174 return(ENXIO);
1175
1176 s = splzs();
1177 if ((userbits & TIOCFLAG_SOFTCAR) || cs->cs_consio) {
1178 cs->cs_softcar = 1; /* turn on softcar */
1179 cs->cs_preg[15] &= ~ZSWR15_DCD_IE; /* turn off dcd */
1180 cs->cs_creg[15] &= ~ZSWR15_DCD_IE;
1181 ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
1182 } else if (userbits & TIOCFLAG_CLOCAL) {
1183 cs->cs_softcar = 0; /* turn off softcar */
1184 cs->cs_preg[15] |= ZSWR15_DCD_IE; /* turn on dcd */
1185 cs->cs_creg[15] |= ZSWR15_DCD_IE;
1186 ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
1187 tp->t_termios.c_cflag |= CLOCAL;
1188 }
1189 if (userbits & TIOCFLAG_CRTSCTS) {
1190 cs->cs_preg[15] |= ZSWR15_CTS_IE;
1191 cs->cs_creg[15] |= ZSWR15_CTS_IE;
1192 ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
1193 cs->cs_preg[3] |= ZSWR3_HFC;
1194 cs->cs_creg[3] |= ZSWR3_HFC;
1195 ZS_WRITE(cs->cs_zc, 3, cs->cs_creg[3]);
1196 tp->t_termios.c_cflag |= CRTSCTS;
1197 } else {
1198 /* no mdmbuf, so we must want software flow control */
1199 cs->cs_preg[15] &= ~ZSWR15_CTS_IE;
1200 cs->cs_creg[15] &= ~ZSWR15_CTS_IE;
1201 ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
1202 cs->cs_preg[3] &= ~ZSWR3_HFC;
1203 cs->cs_creg[3] &= ~ZSWR3_HFC;
1204 ZS_WRITE(cs->cs_zc, 3, cs->cs_creg[3]);
1205 tp->t_termios.c_cflag &= ~CRTSCTS;
1206 }
1207 splx(s);
1208 break;
1209 }
1210 case TIOCSDTR:
1211 zs_modem(cs, 1);
1212 break;
1213 case TIOCCDTR:
1214 zs_modem(cs, 0);
1215 break;
1216 case TIOCMSET:
1217 case TIOCMBIS:
1218 case TIOCMBIC:
1219 case TIOCMGET:
1220 default:
1221 return (ENOTTY);
1222 }
1223 return (0);
1224 }
1225
1226 /*
1227 * Start or restart transmission.
1228 */
1229 static void
1230 zsstart(tp)
1231 register struct tty *tp;
1232 {
1233 register struct zs_chanstate *cs;
1234 register int s, nch;
1235 int unit = minor(tp->t_dev);
1236 struct zs_softc *zi = zs_cd.cd_devs[unit >> 1];
1237
1238 cs = &zi->zi_cs[unit & 1];
1239 s = spltty();
1240
1241 /*
1242 * If currently active or delaying, no need to do anything.
1243 */
1244 if (tp->t_state & (TS_TIMEOUT | TS_BUSY | TS_TTSTOP))
1245 goto out;
1246
1247 /*
1248 * If there are sleepers, and output has drained below low
1249 * water mark, awaken.
1250 */
1251 if (tp->t_outq.c_cc <= tp->t_lowat) {
1252 if (tp->t_state & TS_ASLEEP) {
1253 tp->t_state &= ~TS_ASLEEP;
1254 wakeup((caddr_t)&tp->t_outq);
1255 }
1256 selwakeup(&tp->t_wsel);
1257 }
1258
1259 nch = ndqb(&tp->t_outq, 0); /* XXX */
1260 if (nch) {
1261 register char *p = tp->t_outq.c_cf;
1262
1263 /* mark busy, enable tx done interrupts, & send first byte */
1264 tp->t_state |= TS_BUSY;
1265 (void) splzs();
1266 cs->cs_preg[1] |= ZSWR1_TIE;
1267 cs->cs_creg[1] |= ZSWR1_TIE;
1268 ZS_WRITE(cs->cs_zc, 1, cs->cs_creg[1]);
1269 cs->cs_zc->zc_data = *p;
1270 ZS_DELAY();
1271 cs->cs_tba = p + 1;
1272 cs->cs_tbc = nch - 1;
1273 } else {
1274 /*
1275 * Nothing to send, turn off transmit done interrupts.
1276 * This is useful if something is doing polled output.
1277 */
1278 (void) splzs();
1279 cs->cs_preg[1] &= ~ZSWR1_TIE;
1280 cs->cs_creg[1] &= ~ZSWR1_TIE;
1281 ZS_WRITE(cs->cs_zc, 1, cs->cs_creg[1]);
1282 }
1283 out:
1284 splx(s);
1285 }
1286
1287 /*
1288 * Stop output, e.g., for ^S or output flush.
1289 */
1290 int
1291 zsstop(tp, flag)
1292 register struct tty *tp;
1293 int flag;
1294 {
1295 register struct zs_chanstate *cs;
1296 register int s, unit = minor(tp->t_dev);
1297 struct zs_softc *zi = zs_cd.cd_devs[unit >> 1];
1298
1299 cs = &zi->zi_cs[unit & 1];
1300 s = splzs();
1301 if (tp->t_state & TS_BUSY) {
1302 /*
1303 * Device is transmitting; must stop it.
1304 */
1305 cs->cs_tbc = 0;
1306 if ((tp->t_state & TS_TTSTOP) == 0)
1307 tp->t_state |= TS_FLUSH;
1308 }
1309 splx(s);
1310 }
1311
1312 /*
1313 * Set ZS tty parameters from termios.
1314 *
1315 * This routine makes use of the fact that only registers
1316 * 1, 3, 4, 5, 9, 10, 11, 12, 13, 14, and 15 are written.
1317 */
1318 static int
1319 zsparam(tp, t)
1320 register struct tty *tp;
1321 register struct termios *t;
1322 {
1323 int unit = minor(tp->t_dev);
1324 struct zs_softc *zi = zs_cd.cd_devs[unit >> 1];
1325 register struct zs_chanstate *cs = &zi->zi_cs[unit & 1];
1326 register int tmp, tmp5, cflag, s;
1327
1328 /*
1329 * Because PCLK is only run at 5 MHz, the fastest we
1330 * can go is 51200 baud (this corresponds to TC=1).
1331 * This is somewhat unfortunate as there is no real
1332 * reason we should not be able to handle higher rates.
1333 */
1334 tmp = t->c_ospeed;
1335 if (tmp < 0 || (t->c_ispeed && t->c_ispeed != tmp))
1336 return (EINVAL);
1337 if (tmp == 0) {
1338 /* stty 0 => drop DTR and RTS */
1339 zs_modem(cs, 0);
1340 return (0);
1341 }
1342 tmp = BPS_TO_TCONST(PCLK / 16, tmp);
1343 if (tmp < 2)
1344 return (EINVAL);
1345
1346 cflag = t->c_cflag;
1347 tp->t_ispeed = tp->t_ospeed = TCONST_TO_BPS(PCLK / 16, tmp);
1348 tp->t_cflag = cflag;
1349
1350 /*
1351 * Block interrupts so that state will not
1352 * be altered until we are done setting it up.
1353 */
1354 s = splzs();
1355 cs->cs_preg[12] = tmp;
1356 cs->cs_preg[13] = tmp >> 8;
1357 cs->cs_preg[1] = ZSWR1_RIE | ZSWR1_TIE | ZSWR1_SIE;
1358 switch (cflag & CSIZE) {
1359 case CS5:
1360 tmp = ZSWR3_RX_5;
1361 tmp5 = ZSWR5_TX_5;
1362 break;
1363 case CS6:
1364 tmp = ZSWR3_RX_6;
1365 tmp5 = ZSWR5_TX_6;
1366 break;
1367 case CS7:
1368 tmp = ZSWR3_RX_7;
1369 tmp5 = ZSWR5_TX_7;
1370 break;
1371 case CS8:
1372 default:
1373 tmp = ZSWR3_RX_8;
1374 tmp5 = ZSWR5_TX_8;
1375 break;
1376 }
1377
1378 /*
1379 * Output hardware flow control on the chip is horrendous: if
1380 * carrier detect drops, the receiver is disabled. Hence we
1381 * can only do this when the carrier is on.
1382 */
1383 tmp |= ZSWR3_RX_ENABLE;
1384 if (cflag & CCTS_OFLOW) {
1385 if (cs->cs_zc->zc_csr & ZSRR0_DCD)
1386 tmp |= ZSWR3_HFC;
1387 ZS_DELAY();
1388 }
1389 cs->cs_preg[3] = tmp;
1390 cs->cs_preg[5] = tmp5 | ZSWR5_TX_ENABLE | ZSWR5_DTR | ZSWR5_RTS;
1391
1392 tmp = ZSWR4_CLK_X16 | (cflag & CSTOPB ? ZSWR4_TWOSB : ZSWR4_ONESB);
1393 if ((cflag & PARODD) == 0)
1394 tmp |= ZSWR4_EVENP;
1395 if (cflag & PARENB)
1396 tmp |= ZSWR4_PARENB;
1397 cs->cs_preg[4] = tmp;
1398 cs->cs_preg[9] = ZSWR9_MASTER_IE /*| ZSWR9_NO_VECTOR*/;
1399 cs->cs_preg[10] = ZSWR10_NRZ;
1400 cs->cs_preg[11] = ZSWR11_TXCLK_BAUD | ZSWR11_RXCLK_BAUD;
1401 cs->cs_preg[14] = ZSWR14_BAUD_FROM_PCLK | ZSWR14_BAUD_ENA;
1402 cs->cs_preg[15] = ZSWR15_BREAK_IE | ZSWR15_DCD_IE;
1403
1404 /*
1405 * If nothing is being transmitted, set up new current values,
1406 * else mark them as pending.
1407 */
1408 if (cs->cs_heldchange == 0) {
1409 if (cs->cs_ttyp->t_state & TS_BUSY) {
1410 cs->cs_heldtbc = cs->cs_tbc;
1411 cs->cs_tbc = 0;
1412 cs->cs_heldchange = 1;
1413 } else {
1414 bcopy((caddr_t)cs->cs_preg, (caddr_t)cs->cs_creg, 16);
1415 zs_loadchannelregs(cs->cs_zc, cs->cs_creg);
1416 }
1417 }
1418 splx(s);
1419 return (0);
1420 }
1421
1422 /*
1423 * Raise or lower modem control (DTR/RTS) signals. If a character is
1424 * in transmission, the change is deferred.
1425 */
1426 static void
1427 zs_modem(cs, onoff)
1428 struct zs_chanstate *cs;
1429 int onoff;
1430 {
1431 int s, bis, and;
1432
1433 if (onoff) {
1434 bis = ZSWR5_DTR | ZSWR5_RTS;
1435 and = ~0;
1436 } else {
1437 bis = 0;
1438 and = ~(ZSWR5_DTR | ZSWR5_RTS);
1439 }
1440 s = splzs();
1441 cs->cs_preg[5] = (cs->cs_preg[5] | bis) & and;
1442 if (cs->cs_heldchange == 0) {
1443 if (cs->cs_ttyp->t_state & TS_BUSY) {
1444 cs->cs_heldtbc = cs->cs_tbc;
1445 cs->cs_tbc = 0;
1446 cs->cs_heldchange = 1;
1447 } else {
1448 cs->cs_creg[5] = (cs->cs_creg[5] | bis) & and;
1449 ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
1450 }
1451 }
1452 splx(s);
1453 }
1454
1455 /*
1456 * Hardware flow (RTS) control.
1457 */
1458 static int
1459 zshwiflow(tp, flag)
1460 struct tty *tp;
1461 int flag;
1462 {
1463 int unit = minor(tp->t_dev);
1464 struct zs_softc *zi = zs_cd.cd_devs[unit >> 1];
1465 register struct zs_chanstate *cs = &zi->zi_cs[unit & 1];
1466 int s;
1467
1468 #if 0
1469 printf ("zshwiflow %d\n", flag);
1470 #endif
1471 s = splzs();
1472 if (flag) {
1473 cs->cs_preg[5] &= ~ZSWR5_RTS;
1474 cs->cs_creg[5] &= ~ZSWR5_RTS;
1475 ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
1476 } else {
1477 cs->cs_preg[5] |= ZSWR5_RTS;
1478 cs->cs_creg[5] |= ZSWR5_RTS;
1479 ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
1480 }
1481 splx(s);
1482 return 1;
1483 }
1484
1485 /*
1486 * Write the given register set to the given zs channel in the proper order.
1487 * The channel must not be transmitting at the time. The receiver will
1488 * be disabled for the time it takes to write all the registers.
1489 */
1490 static void
1491 zs_loadchannelregs(zc, reg)
1492 volatile struct zschan *zc;
1493 u_char *reg;
1494 {
1495 int i;
1496
1497 zc->zc_csr = ZSM_RESET_ERR; /* reset error condition */
1498 ZS_DELAY();
1499 i = zc->zc_data; /* drain fifo */
1500 ZS_DELAY();
1501 i = zc->zc_data;
1502 ZS_DELAY();
1503 i = zc->zc_data;
1504 ZS_DELAY();
1505 ZS_WRITE(zc, 4, reg[4]);
1506 ZS_WRITE(zc, 10, reg[10]);
1507 ZS_WRITE(zc, 3, reg[3] & ~ZSWR3_RX_ENABLE);
1508 ZS_WRITE(zc, 5, reg[5] & ~ZSWR5_TX_ENABLE);
1509 ZS_WRITE(zc, 1, reg[1]);
1510 ZS_WRITE(zc, 9, reg[9]);
1511 ZS_WRITE(zc, 11, reg[11]);
1512 ZS_WRITE(zc, 12, reg[12]);
1513 ZS_WRITE(zc, 13, reg[13]);
1514 ZS_WRITE(zc, 14, reg[14]);
1515 ZS_WRITE(zc, 15, reg[15]);
1516 ZS_WRITE(zc, 3, reg[3]);
1517 ZS_WRITE(zc, 5, reg[5]);
1518 }
1519
1520 #ifdef x68k
1521 void
1522 zs_msmodem(onoff)
1523 int onoff;
1524 {
1525 if (zsms != NULL) {
1526 zs_modem(zsms, onoff);
1527 while(!(mfp.tsr & MFP_TSR_BE))
1528 /* XXX wait */ ;
1529 mfp.udr = 0x40 | (onoff ? 0 : 1);
1530 }
1531 }
1532 #endif
1533
1534 #ifdef KGDB
1535 /*
1536 * Get a character from the given kgdb channel. Called at splhigh().
1537 */
1538 static int
1539 zs_kgdb_getc(arg)
1540 void *arg;
1541 {
1542 register volatile struct zschan *zc = (volatile struct zschan *)arg;
1543
1544 while ((zc->zc_csr & ZSRR0_RX_READY) == 0)
1545 ZS_DELAY();
1546 return (zc->zc_data);
1547 }
1548
1549 /*
1550 * Put a character to the given kgdb channel. Called at splhigh().
1551 */
1552 static void
1553 zs_kgdb_putc(arg, c)
1554 void *arg;
1555 int c;
1556 {
1557 register volatile struct zschan *zc = (volatile struct zschan *)arg;
1558
1559 while ((zc->zc_csr & ZSRR0_TX_READY) == 0)
1560 ZS_DELAY();
1561 zc->zc_data = c;
1562 ZS_DELAY();
1563 }
1564
1565 /*
1566 * Set up for kgdb; called at boot time before configuration.
1567 * KGDB interrupts will be enabled later when zs0 is configured.
1568 */
1569 void
1570 zs_kgdb_init()
1571 {
1572 volatile struct zsdevice *addr;
1573 volatile struct zschan *zc;
1574 int unit, zs;
1575
1576 if (major(kgdb_dev) != ZSMAJOR)
1577 return;
1578 unit = minor(kgdb_dev);
1579 zs = unit >> 1;
1580 if ((addr = zsaddr[zs]) == NULL)
1581 addr = zsaddr[zs] = findzs(zs);
1582 unit &= 1;
1583 zc = unit == 0 ? &addr->zs_chan[ZS_CHAN_A] : &addr->zs_chan[ZS_CHAN_B];
1584 zs_kgdb_savedspeed = zs_getspeed(zc);
1585 printf("zs_kgdb_init: attaching zs%d%c at %d baud\n",
1586 zs, unit + 'a', kgdb_rate);
1587 zs_reset(zc, 1, kgdb_rate);
1588 kgdb_attach(zs_kgdb_getc, zs_kgdb_putc, (void *)zc);
1589 }
1590 #endif /* KGDB */
1591 #endif
1592