zs.c revision 1.32 1 /* $NetBSD: zs.c,v 1.32 2007/05/12 06:31:19 isaki Exp $ */
2
3 /*-
4 * Copyright (c) 1998 Minoura Makoto
5 * Copyright (c) 1996 The NetBSD Foundation, Inc.
6 * All rights reserved.
7 *
8 * This code is derived from software contributed to The NetBSD Foundation
9 * by Gordon W. Ross.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 /*
41 * Zilog Z8530 Dual UART driver (machine-dependent part)
42 *
43 * X68k uses one Z8530 built-in. Channel A is for RS-232C serial port;
44 * while channel B is dedicated to the mouse.
45 * Extra Z8530's can be installed for serial ports. This driver
46 * supports up to 5 chips including the built-in one.
47 */
48
49 #include <sys/cdefs.h>
50 __KERNEL_RCSID(0, "$NetBSD: zs.c,v 1.32 2007/05/12 06:31:19 isaki Exp $");
51
52 #include <sys/param.h>
53 #include <sys/systm.h>
54 #include <sys/conf.h>
55 #include <sys/device.h>
56 #include <sys/file.h>
57 #include <sys/ioctl.h>
58 #include <sys/kernel.h>
59 #include <sys/proc.h>
60 #include <sys/tty.h>
61 #include <sys/time.h>
62 #include <sys/syslog.h>
63
64 #include <machine/cpu.h>
65 #include <machine/bus.h>
66 #include <arch/x68k/dev/intiovar.h>
67 #include <machine/z8530var.h>
68
69 #include <dev/ic/z8530reg.h>
70
71 #include "zsc.h" /* NZSC */
72 #include "opt_zsc.h"
73 #ifndef ZSCN_SPEED
74 #define ZSCN_SPEED 9600
75 #endif
76 #include "zstty.h"
77
78
79 extern void Debugger(void);
80
81 /*
82 * Some warts needed by z8530tty.c -
83 * The default parity REALLY needs to be the same as the PROM uses,
84 * or you can not see messages done with printf during boot-up...
85 */
86 int zs_def_cflag = (CREAD | CS8 | HUPCL);
87 int zscn_def_cflag = (CREAD | CS8 | HUPCL);
88
89 /*
90 * X68k provides a 5.0 MHz clock to the ZS chips.
91 */
92 #define PCLK (5 * 1000 * 1000) /* PCLK pin input clock rate */
93
94
95 /* Default physical addresses. */
96 #define ZS_MAXDEV 5
97 static bus_addr_t zs_physaddr[ZS_MAXDEV] = {
98 0x00e98000,
99 0x00eafc00,
100 0x00eafc10,
101 0x00eafc20,
102 0x00eafc30
103 };
104
105 static u_char zs_init_reg[16] = {
106 0, /* 0: CMD (reset, etc.) */
107 0, /* 1: No interrupts yet. */
108 0x70, /* 2: XXX: IVECT */
109 ZSWR3_RX_8 | ZSWR3_RX_ENABLE,
110 ZSWR4_CLK_X16 | ZSWR4_ONESB | ZSWR4_EVENP,
111 ZSWR5_TX_8 | ZSWR5_TX_ENABLE,
112 0, /* 6: TXSYNC/SYNCLO */
113 0, /* 7: RXSYNC/SYNCHI */
114 0, /* 8: alias for data port */
115 ZSWR9_MASTER_IE,
116 ZSWR10_NRZ, /*10: Misc. TX/RX control bits */
117 ZSWR11_TXCLK_BAUD | ZSWR11_RXCLK_BAUD,
118 ((PCLK/32)/9600)-2, /*12: BAUDLO (default=9600) */
119 0, /*13: BAUDHI (default=9600) */
120 ZSWR14_BAUD_ENA | ZSWR14_BAUD_FROM_PCLK,
121 ZSWR15_BREAK_IE,
122 };
123
124 static volatile struct zschan *conschan = 0;
125
126
127 /****************************************************************
128 * Autoconfig
129 ****************************************************************/
130
131 /* Definition of the driver for autoconfig. */
132 static int zs_match(struct device *, struct cfdata *, void *);
133 static void zs_attach(struct device *, struct device *, void *);
134 static int zs_print(void *, const char *name);
135
136 CFATTACH_DECL(zsc, sizeof(struct zsc_softc),
137 zs_match, zs_attach, NULL, NULL);
138
139 extern struct cfdriver zsc_cd;
140
141 static int zshard(void *);
142 static int zs_get_speed(struct zs_chanstate *);
143
144
145 /*
146 * Is the zs chip present?
147 */
148 static int
149 zs_match(struct device *parent, struct cfdata *cf, void *aux)
150 {
151 struct intio_attach_args *ia = aux;
152 struct zsdevice *zsaddr = (void *)ia->ia_addr;
153 int i;
154
155 if (strcmp(ia->ia_name, "zsc") != 0)
156 return 0;
157
158 for (i = 0; i < ZS_MAXDEV; i++)
159 if (zsaddr == (void *)zs_physaddr[i]) /* XXX */
160 break;
161
162 ia->ia_size = 8;
163 if (intio_map_allocate_region(parent, ia, INTIO_MAP_TESTONLY))
164 return 0;
165
166 if (zsaddr != (void *)zs_physaddr[i])
167 return 0;
168 if (badaddr(INTIO_ADDR(zsaddr)))
169 return 0;
170
171 return (1);
172 }
173
174 /*
175 * Attach a found zs.
176 */
177 static void
178 zs_attach(struct device *parent, struct device *self, void *aux)
179 {
180 struct zsc_softc *zsc = (void *)self;
181 struct intio_attach_args *ia = aux;
182 struct zsc_attach_args zsc_args;
183 volatile struct zschan *zc;
184 struct zs_chanstate *cs;
185 int r, s, zs_unit, channel;
186
187 zs_unit = device_unit(&zsc->zsc_dev);
188 zsc->zsc_addr = (void *)ia->ia_addr;
189
190 ia->ia_size = 8;
191 r = intio_map_allocate_region(parent, ia, INTIO_MAP_ALLOCATE);
192 #ifdef DIAGNOSTIC
193 if (r)
194 panic("zs: intio IO map corruption");
195 #endif
196
197 printf("\n");
198
199 /*
200 * Initialize software state for each channel.
201 */
202 for (channel = 0; channel < 2; channel++) {
203 struct device *child;
204
205 zsc_args.channel = channel;
206 zsc_args.hwflags = 0;
207 cs = &zsc->zsc_cs_store[channel];
208 zsc->zsc_cs[channel] = cs;
209
210 simple_lock_init(&cs->cs_lock);
211 cs->cs_channel = channel;
212 cs->cs_private = NULL;
213 cs->cs_ops = &zsops_null;
214 cs->cs_brg_clk = PCLK / 16;
215
216 if (channel == 0)
217 zc = (volatile void *)INTIO_ADDR(&zsc->zsc_addr->zs_chan_a);
218 else
219 zc = (volatile void *)INTIO_ADDR(&zsc->zsc_addr->zs_chan_b);
220 cs->cs_reg_csr = &zc->zc_csr;
221 cs->cs_reg_data = &zc->zc_data;
222
223 zs_init_reg[2] = ia->ia_intr;
224 memcpy(cs->cs_creg, zs_init_reg, 16);
225 memcpy(cs->cs_preg, zs_init_reg, 16);
226
227 if (zc == conschan) {
228 zsc_args.hwflags |= ZS_HWFLAG_CONSOLE;
229 cs->cs_defspeed = zs_get_speed(cs);
230 cs->cs_defcflag = zscn_def_cflag;
231 } else {
232 cs->cs_defspeed = 9600;
233 cs->cs_defcflag = zs_def_cflag;
234 }
235
236 /* Make these correspond to cs_defcflag (-crtscts) */
237 cs->cs_rr0_dcd = ZSRR0_DCD;
238 cs->cs_rr0_cts = 0;
239 cs->cs_wr5_dtr = ZSWR5_DTR | ZSWR5_RTS;
240 cs->cs_wr5_rts = 0;
241
242 /*
243 * Clear the master interrupt enable.
244 * The INTENA is common to both channels,
245 * so just do it on the A channel.
246 */
247 if (channel == 0) {
248 s = splzs();
249 zs_write_reg(cs, 9, 0);
250 splx(s);
251 }
252
253 /*
254 * Look for a child driver for this channel.
255 * The child attach will setup the hardware.
256 */
257 child = config_found(self, (void *)&zsc_args, zs_print);
258 #if ZSTTY > 0
259 if (zc == conschan &&
260 ((child && strcmp(child->dv_xname, "zstty0")) ||
261 child == NULL)) /* XXX */
262 panic("zs_attach: console device mismatch");
263 #endif
264 if (child == NULL) {
265 /* No sub-driver. Just reset it. */
266 u_char reset = (channel == 0) ?
267 ZSWR9_A_RESET : ZSWR9_B_RESET;
268 s = splzs();
269 zs_write_reg(cs, 9, reset);
270 splx(s);
271 }
272 }
273
274 /*
275 * Now safe to install interrupt handlers.
276 */
277 if (intio_intr_establish(ia->ia_intr, "zs", zshard, zsc))
278 panic("zs_attach: interrupt vector busy");
279 zsc->zsc_softintr_cookie = softintr_establish(IPL_SOFTSERIAL,
280 (void (*)(void *))zsc_intr_soft, zsc);
281 /* XXX; evcnt_attach() ? */
282
283 /*
284 * Set the master interrupt enable and interrupt vector.
285 * (common to both channels, do it on A)
286 */
287 cs = zsc->zsc_cs[0];
288 s = splzs();
289 /* interrupt vector */
290 zs_write_reg(cs, 2, ia->ia_intr);
291 /* master interrupt control (enable) */
292 zs_write_reg(cs, 9, zs_init_reg[9]);
293 splx(s);
294 }
295
296 static int
297 zs_print(void *aux, const char *name)
298 {
299 struct zsc_attach_args *args = aux;
300
301 if (name != NULL)
302 aprint_normal("%s: ", name);
303
304 if (args->channel != -1)
305 aprint_normal(" channel %d", args->channel);
306
307 return UNCONF;
308 }
309
310
311 /*
312 * For x68k-port, we don't use autovectored interrupt.
313 * We do not need to look at all of the zs chips.
314 */
315 static int
316 zshard(void *arg)
317 {
318 struct zsc_softc *zsc = arg;
319 int rval;
320 int s;
321
322 /*
323 * Actually, zs hardware ipl is 5.
324 * Here we disable all interrupts to shorten the zshard
325 * handling time. Otherwise, too many characters are
326 * dropped.
327 */
328 s = splhigh();
329 rval = zsc_intr_hard(zsc);
330
331 /* We are at splzs here, so no need to lock. */
332 if (zsc->zsc_cs[0]->cs_softreq || zsc->zsc_cs[1]->cs_softreq)
333 softintr_schedule(zsc->zsc_softintr_cookie);
334
335 return (rval);
336 }
337
338 /*
339 * Compute the current baud rate given a ZS channel.
340 */
341 static int
342 zs_get_speed(struct zs_chanstate *cs)
343 {
344 int tconst;
345
346 tconst = zs_read_reg(cs, 12);
347 tconst |= zs_read_reg(cs, 13) << 8;
348 return (TCONST_TO_BPS(cs->cs_brg_clk, tconst));
349 }
350
351 /*
352 * MD functions for setting the baud rate and control modes.
353 */
354 int
355 zs_set_speed(struct zs_chanstate *cs, int bps /* bits per second */)
356 {
357 int tconst, real_bps;
358
359 if (bps == 0)
360 return (0);
361
362 #ifdef DIAGNOSTIC
363 if (cs->cs_brg_clk == 0)
364 panic("zs_set_speed");
365 #endif
366
367 tconst = BPS_TO_TCONST(cs->cs_brg_clk, bps);
368 if (tconst < 0)
369 return (EINVAL);
370
371 /* Convert back to make sure we can do it. */
372 real_bps = TCONST_TO_BPS(cs->cs_brg_clk, tconst);
373
374 #if 0 /* XXX */
375 /* XXX - Allow some tolerance here? */
376 if (real_bps != bps)
377 return (EINVAL);
378 #else
379 /*
380 * Since our PCLK has somewhat strange value,
381 * we have to allow tolerance here.
382 */
383 if (BPS_TO_TCONST(cs->cs_brg_clk, real_bps) != tconst)
384 return (EINVAL);
385 #endif
386
387 cs->cs_preg[12] = tconst;
388 cs->cs_preg[13] = tconst >> 8;
389
390 /* Caller will stuff the pending registers. */
391 return (0);
392 }
393
394 int
395 zs_set_modes(struct zs_chanstate *cs, int cflag /* bits per second */)
396 {
397 int s;
398
399 /*
400 * Output hardware flow control on the chip is horrendous:
401 * if carrier detect drops, the receiver is disabled, and if
402 * CTS drops, the transmitter is stoped IN MID CHARACTER!
403 * Therefore, NEVER set the HFC bit, and instead use the
404 * status interrupt to detect CTS changes.
405 */
406 s = splzs();
407 cs->cs_rr0_pps = 0;
408 if ((cflag & (CLOCAL | MDMBUF)) != 0) {
409 cs->cs_rr0_dcd = 0;
410 if ((cflag & MDMBUF) == 0)
411 cs->cs_rr0_pps = ZSRR0_DCD;
412 } else
413 cs->cs_rr0_dcd = ZSRR0_DCD;
414 if ((cflag & CRTSCTS) != 0) {
415 cs->cs_wr5_dtr = ZSWR5_DTR;
416 cs->cs_wr5_rts = ZSWR5_RTS;
417 cs->cs_rr0_cts = ZSRR0_CTS;
418 } else if ((cflag & MDMBUF) != 0) {
419 cs->cs_wr5_dtr = 0;
420 cs->cs_wr5_rts = ZSWR5_DTR;
421 cs->cs_rr0_cts = ZSRR0_DCD;
422 } else {
423 cs->cs_wr5_dtr = ZSWR5_DTR | ZSWR5_RTS;
424 cs->cs_wr5_rts = 0;
425 cs->cs_rr0_cts = 0;
426 }
427 splx(s);
428
429 /* Caller will stuff the pending registers. */
430 return (0);
431 }
432
433
434 /*
435 * Read or write the chip with suitable delays.
436 */
437
438 u_char
439 zs_read_reg(struct zs_chanstate *cs, u_char reg)
440 {
441 u_char val;
442
443 *cs->cs_reg_csr = reg;
444 ZS_DELAY();
445 val = *cs->cs_reg_csr;
446 ZS_DELAY();
447 return val;
448 }
449
450 void
451 zs_write_reg(struct zs_chanstate *cs, u_char reg, u_char val)
452 {
453 *cs->cs_reg_csr = reg;
454 ZS_DELAY();
455 *cs->cs_reg_csr = val;
456 ZS_DELAY();
457 }
458
459 u_char
460 zs_read_csr(struct zs_chanstate *cs)
461 {
462 u_char val;
463
464 val = *cs->cs_reg_csr;
465 ZS_DELAY();
466 return val;
467 }
468
469 void
470 zs_write_csr(struct zs_chanstate *cs, u_char val)
471 {
472 *cs->cs_reg_csr = val;
473 ZS_DELAY();
474 }
475
476 u_char
477 zs_read_data(struct zs_chanstate *cs)
478 {
479 u_char val;
480
481 val = *cs->cs_reg_data;
482 ZS_DELAY();
483 return val;
484 }
485
486 void
487 zs_write_data(struct zs_chanstate *cs, u_char val)
488 {
489 *cs->cs_reg_data = val;
490 ZS_DELAY();
491 }
492
493
494 static struct zs_chanstate zscn_cs;
495
496 /****************************************************************
497 * Console support functions (x68k specific!)
498 * Note: this code is allowed to know about the layout of
499 * the chip registers, and uses that to keep things simple.
500 * XXX - I think I like the mvme167 code better. -gwr
501 ****************************************************************/
502
503 /*
504 * Handle user request to enter kernel debugger.
505 */
506 void
507 zs_abort(struct zs_chanstate *cs)
508 {
509 int rr0;
510
511 /* Wait for end of break to avoid PROM abort. */
512 /* XXX - Limit the wait? */
513 do {
514 rr0 = *cs->cs_reg_csr;
515 ZS_DELAY();
516 } while (rr0 & ZSRR0_BREAK);
517
518 #ifdef DDB
519 Debugger();
520 #else
521 printf("BREAK!!\n");
522 #endif
523 }
524
525
526 #if NZSTTY > 0
527
528 #include <dev/cons.h>
529 cons_decl(zs);
530
531 static int zs_getc(void);
532 static void zs_putc(int);
533
534 /*
535 * Polled input char.
536 */
537 static int
538 zs_getc(void)
539 {
540 int s, c, rr0;
541
542 s = splzs();
543 /* Wait for a character to arrive. */
544 do {
545 rr0 = zs_read_csr(&zscn_cs);
546 } while ((rr0 & ZSRR0_RX_READY) == 0);
547
548 c = zs_read_data(&zscn_cs);
549 splx(s);
550
551 /*
552 * This is used by the kd driver to read scan codes,
553 * so don't translate '\r' ==> '\n' here...
554 */
555 return (c);
556 }
557
558 /*
559 * Polled output char.
560 */
561 static void
562 zs_putc(int c)
563 {
564 int s, rr0;
565
566 s = splzs();
567 /* Wait for transmitter to become ready. */
568 do {
569 rr0 = zs_read_csr(&zscn_cs);
570 } while ((rr0 & ZSRR0_TX_READY) == 0);
571
572 zs_write_data(&zscn_cs, c);
573 splx(s);
574 }
575
576 void
577 zscninit(struct consdev *cn)
578 {
579 volatile struct zschan *cnchan = (volatile void *)INTIO_ADDR(ZSCN_PHYSADDR);
580 int s;
581
582 memset(&zscn_cs, 0, sizeof(struct zs_chanstate));
583 zscn_cs.cs_reg_csr = &cnchan->zc_csr;
584 zscn_cs.cs_reg_data = &cnchan->zc_data;
585 zscn_cs.cs_channel = 0;
586 zscn_cs.cs_brg_clk = PCLK / 16;
587 memcpy(zscn_cs.cs_preg, zs_init_reg, 16);
588 zscn_cs.cs_preg[4] = ZSWR4_CLK_X16 | ZSWR4_ONESB; /* XXX */
589 zscn_cs.cs_preg[9] = 0;
590 zs_set_speed(&zscn_cs, ZSCN_SPEED);
591 s = splzs();
592 zs_loadchannelregs(&zscn_cs);
593 splx(s);
594 conschan = cnchan;
595 }
596
597 /*
598 * Polled console input putchar.
599 */
600 int
601 zscngetc(dev_t dev)
602 {
603 return (zs_getc());
604 }
605
606 /*
607 * Polled console output putchar.
608 */
609 void
610 zscnputc(dev_t dev, int c)
611 {
612 zs_putc(c);
613 }
614
615 void
616 zscnprobe(struct consdev *cd)
617 {
618 int maj;
619 extern const struct cdevsw zstty_cdevsw;
620
621 /* locate the major number */
622 maj = cdevsw_lookup_major(&zstty_cdevsw);
623 /* XXX: minor number is 0 */
624
625 if (maj == -1)
626 cd->cn_pri = CN_DEAD;
627 else {
628 #ifdef ZSCONSOLE
629 cd->cn_pri = CN_REMOTE; /* higher than ITE (CN_INTERNAL) */
630 #else
631 cd->cn_pri = CN_NORMAL;
632 #endif
633 cd->cn_dev = makedev(maj, 0);
634 }
635 }
636
637 void
638 zscnpollc(dev_t dev, int on)
639 {
640 }
641
642 #endif
643