zs.c revision 1.4 1 /* $NetBSD: zs.c,v 1.4 1996/09/02 06:44:36 mycroft Exp $ */
2
3 /*
4 * Copyright (c) 1992, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * This software was developed by the Computer Systems Engineering group
8 * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
9 * contributed to Berkeley.
10 *
11 * All advertising materials mentioning features or use of this software
12 * must display the following acknowledgement:
13 * This product includes software developed by the University of
14 * California, Lawrence Berkeley Laboratory.
15 *
16 * Redistribution and use in source and binary forms, with or without
17 * modification, are permitted provided that the following conditions
18 * are met:
19 * 1. Redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer.
21 * 2. Redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution.
24 * 3. All advertising materials mentioning features or use of this software
25 * must display the following acknowledgement:
26 * This product includes software developed by the University of
27 * California, Berkeley and its contributors.
28 * 4. Neither the name of the University nor the names of its contributors
29 * may be used to endorse or promote products derived from this software
30 * without specific prior written permission.
31 *
32 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
33 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
34 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
35 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
36 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
37 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
38 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
39 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
40 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
41 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
42 * SUCH DAMAGE.
43 *
44 * @(#)zs.c 8.1 (Berkeley) 7/19/93
45 */
46
47 /*
48 * Zilog Z8530 (ZSCC) driver.
49 *
50 * Runs two tty ports (ttya and ttyb) on zs0,
51 * and runs a keyboard and mouse on zs1.
52 *
53 * This driver knows far too much about chip to usage mappings.
54 */
55 #include "zs.h"
56 #if NZS > 0
57
58 #include <sys/param.h>
59 #include <sys/systm.h>
60 #include <sys/proc.h>
61 #include <sys/device.h>
62 #include <sys/conf.h>
63 #include <sys/file.h>
64 #include <sys/ioctl.h>
65 #include <sys/tty.h>
66 #include <sys/time.h>
67 #include <sys/kernel.h>
68 #include <sys/syslog.h>
69
70 #include <machine/cpu.h>
71
72 #include <x68k/x68k/iodevice.h>
73 #include <dev/ic/z8530reg.h>
74 #include <x68k/dev/zsvar.h>
75
76 #ifdef KGDB
77 #include <machine/remote-sl.h>
78 #endif
79
80 #define ZSMAJOR 12 /* XXX */
81
82 #define ZS_MOUSE 1 /* XXX */
83
84 #define PCLK (5*1000*1000) /* PCLK pin input clock rate */
85
86 #if 0
87 /*
88 * Select software interrupt bit based on TTY ipl.
89 */
90 #if PIL_TTY == 1
91 # define IE_ZSSOFT IE_L1
92 #elif PIL_TTY == 4
93 # define IE_ZSSOFT IE_L4
94 #elif PIL_TTY == 6
95 # define IE_ZSSOFT IE_L6
96 #else
97 # error "no suitable software interrupt bit"
98 #endif
99 #endif
100
101 /*
102 * Software state per found chip. This would be called `zs_softc',
103 * but the previous driver had a rather different zs_softc....
104 */
105 struct zs_softc {
106 struct device zi_dev; /* base device */
107 volatile struct zsdevice *zi_zs;/* chip registers */
108 struct zs_chanstate zi_cs[2]; /* channel A and B software state */
109 };
110
111 struct tty *zs_tty[NZS * 2]; /* XXX should be dynamic */
112
113 /* Definition of the driver for autoconfig. */
114 static int zsmatch __P((struct device *, void *, void *));
115 static void zsattach __P((struct device *, struct device *, void *));
116
117 struct cfattach zs_ca = {
118 sizeof(struct zs_softc), zsmatch, zsattach
119 };
120
121 struct cfdriver zs_cd = {
122 NULL, "zs", DV_TTY, NULL, 0
123 };
124
125 #ifdef x68k
126 static struct zs_chanstate *zsms;
127 void zs_msmodem __P((int));
128 #endif
129
130 /* Interrupt handlers. */
131 void zshard __P((int));
132 int zssoft __P((void *));
133
134 struct zs_chanstate *zslist;
135
136 /* Routines called from other code. */
137 static void zsiopen __P((struct tty *));
138 static void zsiclose __P((struct tty *));
139 static void zsstart __P((struct tty *));
140 void zsstop __P((struct tty *, int));
141 static int zsparam __P((struct tty *, struct termios *));
142 static int zshwiflow __P((struct tty *, int));
143
144 /* Routines purely local to this driver. */
145 static int zs_getspeed __P((volatile struct zschan *));
146 #ifdef KGDB
147 static void zs_reset __P((volatile struct zschan *, int, int));
148 #endif
149 static void zs_modem __P((struct zs_chanstate *, int));
150 static void zs_loadchannelregs __P((volatile struct zschan *, u_char *));
151 static void zsabort __P((void));
152
153 /* Console stuff. */
154 static struct tty *zs_ctty; /* console `struct tty *' */
155 static int zs_consin = -1, zs_consout = -1;
156 static void zscnputc __P((int)); /* console putc function */
157 static volatile struct zschan *zs_conschan;
158 static struct tty *zs_checkcons __P((struct zs_softc *, int, struct zs_chanstate *));
159
160 #ifdef KGDB
161 /* KGDB stuff. Must reboot to change zs_kgdbunit. */
162 extern int kgdb_dev, kgdb_rate;
163 static int zs_kgdb_savedspeed;
164 static void zs_checkkgdb __P((int, struct zs_chanstate *, struct tty *));
165 #endif
166
167 static volatile struct zsdevice *findzs __P((int));
168 static volatile struct zsdevice *zsaddr[NZS]; /* XXX, but saves work */
169
170 int zshardscope;
171 int zsshortcuts; /* number of "shortcut" software interrupts */
172
173 static u_char
174 zs_read(zc, reg)
175 volatile struct zschan *zc;
176 u_char reg;
177 {
178 u_char val;
179
180 zc->zc_csr = reg;
181 ZS_DELAY();
182 val = zc->zc_csr;
183 ZS_DELAY();
184 return val;
185 }
186
187 static u_char
188 zs_write(zc, reg, val)
189 volatile struct zschan *zc;
190 u_char reg, val;
191 {
192 zc->zc_csr = reg;
193 ZS_DELAY();
194 zc->zc_csr = val;
195 ZS_DELAY();
196 return val;
197 }
198
199 /*
200 * find zs address for x68k architecture
201 */
202 static volatile struct zsdevice *
203 findzs(zs)
204 int zs;
205 {
206 if (zs == 0)
207 return &IODEVbase->io_inscc;
208 if (1 <= zs && zs <= 4)
209 return &(IODEVbase->io_exscc)[zs - 1];
210 /* none */
211 return 0;
212 }
213
214 /*
215 * Match slave number to zs unit number, so that misconfiguration will
216 * not set up the keyboard as ttya, etc.
217 */
218 static int
219 zsmatch(parent, match, aux)
220 struct device *parent;
221 void *match, *aux;
222 {
223 struct cfdata *cfp = match;
224 volatile void *addr;
225
226 if(strcmp("zs", aux) || (addr = findzs(cfp->cf_unit)) == 0)
227 return(0);
228 if (badaddr(addr))
229 return 0;
230 return(1);
231 }
232
233 /*
234 * Attach a found zs.
235 *
236 * USE ROM PROPERTIES port-a-ignore-cd AND port-b-ignore-cd FOR
237 * SOFT CARRIER, AND keyboard PROPERTY FOR KEYBOARD/MOUSE?
238 */
239 static void
240 zsattach(parent, dev, aux)
241 struct device *parent;
242 struct device *dev;
243 void *aux;
244 {
245 register int zs = dev->dv_unit, unit;
246 register struct zs_softc *zi;
247 register struct zs_chanstate *cs;
248 register volatile struct zsdevice *addr;
249 register struct tty *tp, *ctp;
250 register struct confargs *ca = aux;
251 int pri;
252
253 if ((addr = zsaddr[zs]) == NULL)
254 addr = zsaddr[zs] = findzs(zs);
255 printf(" (%s)\n", zs ? "external" : "onboard");
256 zi = (struct zs_softc *)dev;
257 zi->zi_zs = addr;
258 unit = zs * 2;
259 cs = zi->zi_cs;
260 cs->cs_ttyp = tp = ttymalloc();
261
262 /* link into interrupt list with order (A,B) (B=A+1) */
263 cs[0].cs_next = &cs[1];
264 cs[1].cs_next = zslist;
265 zslist = cs;
266
267 cs->cs_unit = unit;
268 cs->cs_speed = zs_getspeed(&addr->zs_chan[ZS_CHAN_A]);
269 cs->cs_zc = &addr->zs_chan[ZS_CHAN_A];
270 tp->t_dev = makedev(ZSMAJOR, unit);
271 tp->t_oproc = zsstart;
272 tp->t_param = zsparam;
273 tp->t_hwiflow = zshwiflow;
274 if ((ctp = zs_checkcons(zi, unit, cs)) != NULL)
275 cs->cs_ttyp = tp = ctp;
276 #ifdef KGDB
277 if (ctp == NULL)
278 zs_checkkgdb(unit, cs, tp);
279 #endif
280 #ifdef sun
281 if (unit == ZS_KBD) {
282 /*
283 * Keyboard: tell /dev/kbd driver how to talk to us.
284 */
285 tp->t_ispeed = tp->t_ospeed = cs->cs_speed;
286 tp->t_cflag = CS8;
287 kbd_serial(tp, zsiopen, zsiclose);
288 cs->cs_conk = 1; /* do L1-A processing */
289 }
290 #endif
291 if (tp != ctp)
292 tty_attach(tp);
293 ZS_WRITE(cs->cs_zc, 2, 0x70 + zs); /* XXX interrupt vector */
294 unit++;
295 cs++;
296 cs->cs_ttyp = tp = ttymalloc();
297 cs->cs_unit = unit;
298 cs->cs_speed = zs_getspeed(&addr->zs_chan[ZS_CHAN_B]);
299 cs->cs_zc = &addr->zs_chan[ZS_CHAN_B];
300 tp->t_dev = makedev(ZSMAJOR, unit);
301 tp->t_oproc = zsstart;
302 tp->t_param = zsparam;
303 if (unit != ZS_MOUSE)
304 tp->t_hwiflow = zshwiflow;
305 if ((ctp = zs_checkcons(zi, unit, cs)) != NULL)
306 cs->cs_ttyp = tp = ctp;
307 #ifdef KGDB
308 if (ctp == NULL)
309 zs_checkkgdb(unit, cs, tp);
310 #endif
311 if (unit == ZS_MOUSE) {
312 /*
313 * Mouse: tell /dev/mouse driver how to talk to us.
314 */
315 tp->t_ispeed = tp->t_ospeed = cs->cs_speed;
316 tp->t_cflag = CS8 | CSTOPB;
317 ms_serial(tp, zsiopen, zsiclose);
318 #ifdef x68k
319 zsms = cs;
320 #endif
321 } else {
322 if (tp != ctp)
323 tty_attach(tp);
324 }
325 }
326
327 #ifdef KGDB
328 /*
329 * Put a channel in a known state. Interrupts may be left disabled
330 * or enabled, as desired.
331 */
332 static void
333 zs_reset(zc, inten, speed)
334 volatile struct zschan *zc;
335 int inten, speed;
336 {
337 int tconst;
338 static u_char reg[16] = {
339 0,
340 0,
341 0,
342 ZSWR3_RX_8 | ZSWR3_RX_ENABLE,
343 ZSWR4_CLK_X16 | ZSWR4_ONESB | ZSWR4_EVENP,
344 ZSWR5_TX_8 | ZSWR5_TX_ENABLE,
345 0,
346 0,
347 0,
348 0,
349 ZSWR10_NRZ,
350 ZSWR11_TXCLK_BAUD | ZSWR11_RXCLK_BAUD,
351 0,
352 0,
353 ZSWR14_BAUD_FROM_PCLK | ZSWR14_BAUD_ENA,
354 ZSWR15_BREAK_IE | ZSWR15_DCD_IE,
355 };
356
357 reg[9] = inten ? ZSWR9_MASTER_IE | ZSWR9_NO_VECTOR : ZSWR9_NO_VECTOR;
358 tconst = BPS_TO_TCONST(PCLK / 16, speed);
359 reg[12] = tconst;
360 reg[13] = tconst >> 8;
361 zs_loadchannelregs(zc, reg);
362 }
363 #endif
364
365 /*
366 * Declare the given tty (which is in fact &cons) as a console input
367 * or output. This happens before the zs chip is attached; the hookup
368 * is finished later, in zs_setcons() below.
369 *
370 * This is used only for ports a and b. The console keyboard is decoded
371 * independently (we always send unit-2 input to /dev/kbd, which will
372 * direct it to /dev/console if appropriate).
373 */
374 void
375 zsconsole(tp, unit, out, fnstop)
376 register struct tty *tp;
377 register int unit;
378 int out;
379 void (**fnstop) __P((struct tty *, int));
380 {
381 int zs;
382 volatile struct zsdevice *addr;
383
384 if (out) {
385 zs_consout = unit;
386 zs = unit >> 1;
387 if ((addr = zsaddr[zs]) == NULL)
388 addr = zsaddr[zs] = findzs(zs);
389 zs_conschan = (unit & 1) == 0 ? &addr->zs_chan[ZS_CHAN_A] :
390 &addr->zs_chan[ZS_CHAN_B];
391 v_putc = zscnputc;
392 } else
393 zs_consin = unit;
394 if (fnstop)
395 *fnstop = &zsstop;
396 zs_ctty = tp;
397 }
398
399 /*
400 * Polled console output putchar.
401 */
402 static void
403 zscnputc(c)
404 int c;
405 {
406 register volatile struct zschan *zc = zs_conschan;
407 register int s;
408
409 if (c == '\n')
410 zscnputc('\r');
411 /*
412 * Must block output interrupts (i.e., raise to >= splzs) without
413 * lowering current ipl. Need a better way.
414 */
415 s = splhigh();
416 #ifdef SUN4C /* XXX */
417 if (CPU_ISSUN4C && s <= (12 << 8))
418 (void) splzs();
419 #endif
420 while ((zc->zc_csr & ZSRR0_TX_READY) == 0)
421 ZS_DELAY();
422 zc->zc_data = c;
423 ZS_DELAY();
424 splx(s);
425 }
426
427 /*
428 * Set up the given unit as console input, output, both, or neither, as
429 * needed. Return console tty if it is to receive console input.
430 */
431 static struct tty *
432 zs_checkcons(zi, unit, cs)
433 struct zs_softc *zi;
434 int unit;
435 struct zs_chanstate *cs;
436 {
437 register struct tty *tp;
438 char *i, *o;
439
440 if ((tp = zs_ctty) == NULL) /* XXX */
441 return (0);
442 i = zs_consin == unit ? "input" : NULL;
443 o = zs_consout == unit ? "output" : NULL;
444 if (i == NULL && o == NULL)
445 return (0);
446
447 /* rewire the minor device (gack) */
448 tp->t_dev = makedev(major(tp->t_dev), unit);
449
450 /*
451 * Rewire input and/or output. Note that baud rate reflects
452 * input settings, not output settings, but we can do no better
453 * if the console is split across two ports.
454 *
455 * XXX split consoles don't work anyway -- this needs to be
456 * thrown away and redone
457 */
458 if (i) {
459 tp->t_param = zsparam;
460 tp->t_ispeed = tp->t_ospeed = cs->cs_speed;
461 tp->t_cflag = CS8;
462 ttsetwater(tp);
463 }
464 if (o) {
465 tp->t_oproc = zsstart;
466 }
467 printf("%s%c: console %s\n",
468 zi->zi_dev.dv_xname, (unit & 1) + 'a', i ? (o ? "i/o" : i) : o);
469 cs->cs_consio = 1;
470 cs->cs_brkabort = 1;
471 return (tp);
472 }
473
474 #ifdef KGDB
475 /*
476 * The kgdb zs port, if any, was altered at boot time (see zs_kgdb_init).
477 * Pick up the current speed and character size and restore the original
478 * speed.
479 */
480 static void
481 zs_checkkgdb(unit, cs, tp)
482 int unit;
483 struct zs_chanstate *cs;
484 struct tty *tp;
485 {
486
487 if (kgdb_dev == makedev(ZSMAJOR, unit)) {
488 tp->t_ispeed = tp->t_ospeed = kgdb_rate;
489 tp->t_cflag = CS8;
490 cs->cs_kgdb = 1;
491 cs->cs_speed = zs_kgdb_savedspeed;
492 (void) zsparam(tp, &tp->t_termios);
493 }
494 }
495 #endif
496
497 /*
498 * Compute the current baud rate given a ZSCC channel.
499 */
500 static int
501 zs_getspeed(zc)
502 register volatile struct zschan *zc;
503 {
504 register int tconst;
505
506 tconst = ZS_READ(zc, 12);
507 tconst |= ZS_READ(zc, 13) << 8;
508 return (TCONST_TO_BPS(PCLK / 16, tconst));
509 }
510
511
512 /*
513 * Do an internal open.
514 */
515 static void
516 zsiopen(tp)
517 struct tty *tp;
518 {
519
520 (void) zsparam(tp, &tp->t_termios);
521 ttsetwater(tp);
522 tp->t_state = TS_ISOPEN | TS_CARR_ON;
523 }
524
525 /*
526 * Do an internal close. Eventually we should shut off the chip when both
527 * ports on it are closed.
528 */
529 static void
530 zsiclose(tp)
531 struct tty *tp;
532 {
533
534 ttylclose(tp, 0); /* ??? */
535 ttyclose(tp); /* ??? */
536 tp->t_state = 0;
537 }
538
539
540 /*
541 * Open a zs serial port. This interface may not be used to open
542 * the keyboard and mouse ports. (XXX)
543 */
544 int
545 zsopen(dev, flags, mode, p)
546 dev_t dev;
547 int flags;
548 int mode;
549 struct proc *p;
550 {
551 register struct tty *tp;
552 register struct zs_chanstate *cs;
553 struct zs_softc *zi;
554 int unit = minor(dev), zs = unit >> 1, error, s;
555
556 if (zs >= zs_cd.cd_ndevs || (zi = zs_cd.cd_devs[zs]) == NULL ||
557 unit == ZS_MOUSE)
558 return (ENXIO);
559 if (zi->zi_zs == NULL)
560 return (ENXIO);
561 cs = &zi->zi_cs[unit & 1];
562 if (cs->cs_consio)
563 return (ENXIO); /* ??? */
564 tp = cs->cs_ttyp;
565 s = spltty();
566 if ((tp->t_state & TS_ISOPEN) == 0) {
567 ttychars(tp);
568 if (tp->t_ispeed == 0) {
569 tp->t_iflag = TTYDEF_IFLAG;
570 tp->t_oflag = TTYDEF_OFLAG;
571 tp->t_cflag = TTYDEF_CFLAG;
572 tp->t_lflag = TTYDEF_LFLAG;
573 tp->t_ispeed = tp->t_ospeed = cs->cs_speed;
574 }
575 (void) zsparam(tp, &tp->t_termios);
576 ttsetwater(tp);
577 } else if (tp->t_state & TS_XCLUDE && p->p_ucred->cr_uid != 0) {
578 splx(s);
579 return (EBUSY);
580 }
581 error = 0;
582 for (;;) {
583 register int rr0;
584
585 /* loop, turning on the device, until carrier present */
586 zs_modem(cs, 1);
587 /* May never get status intr if carrier already on. -gwr */
588 rr0 = cs->cs_zc->zc_csr;
589 ZS_DELAY();
590 if ((rr0 & ZSRR0_DCD) || cs->cs_softcar)
591 tp->t_state |= TS_CARR_ON;
592 if (flags & O_NONBLOCK || tp->t_cflag & CLOCAL ||
593 tp->t_state & TS_CARR_ON)
594 break;
595 tp->t_state |= TS_WOPEN;
596 error = ttysleep(tp, (caddr_t)&tp->t_rawq, TTIPRI | PCATCH,
597 ttopen, 0);
598 if (error) {
599 if (!(tp->t_state & TS_ISOPEN)) {
600 zs_modem(cs, 0);
601 tp->t_state &= ~TS_WOPEN;
602 ttwakeup(tp);
603 }
604 splx(s);
605 return error;
606 }
607 }
608 splx(s);
609 if (error == 0)
610 error = linesw[tp->t_line].l_open(dev, tp);
611 if (error)
612 zs_modem(cs, 0);
613 return (error);
614 }
615
616 /*
617 * Close a zs serial port.
618 */
619 int
620 zsclose(dev, flags, mode, p)
621 dev_t dev;
622 int flags;
623 int mode;
624 struct proc *p;
625 {
626 register struct zs_chanstate *cs;
627 register struct tty *tp;
628 struct zs_softc *zi;
629 int unit = minor(dev), s;
630
631 zi = zs_cd.cd_devs[unit >> 1];
632 cs = &zi->zi_cs[unit & 1];
633 tp = cs->cs_ttyp;
634 linesw[tp->t_line].l_close(tp, flags);
635 if (tp->t_cflag & HUPCL || tp->t_state & TS_WOPEN ||
636 (tp->t_state & TS_ISOPEN) == 0) {
637 zs_modem(cs, 0);
638 /* hold low for 1 second */
639 (void) tsleep((caddr_t)cs, TTIPRI, ttclos, hz);
640 }
641 if (cs->cs_creg[5] & ZSWR5_BREAK)
642 {
643 s = splzs();
644 cs->cs_preg[5] &= ~ZSWR5_BREAK;
645 cs->cs_creg[5] &= ~ZSWR5_BREAK;
646 ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
647 splx(s);
648 }
649 ttyclose(tp);
650 #ifdef KGDB
651 /* Reset the speed if we're doing kgdb on this port */
652 if (cs->cs_kgdb) {
653 tp->t_ispeed = tp->t_ospeed = kgdb_rate;
654 (void) zsparam(tp, &tp->t_termios);
655 }
656 #endif
657 return (0);
658 }
659
660 /*
661 * Read/write zs serial port.
662 */
663 int
664 zsread(dev, uio, flags)
665 dev_t dev;
666 struct uio *uio;
667 int flags;
668 {
669 register struct zs_chanstate *cs;
670 register struct zs_softc *zi;
671 register struct tty *tp;
672 int unit = minor(dev);
673
674 zi = zs_cd.cd_devs[unit >> 1];
675 cs = &zi->zi_cs[unit & 1];
676 tp = cs->cs_ttyp;
677
678 return (linesw[tp->t_line].l_read(tp, uio, flags));
679
680 }
681
682 int
683 zswrite(dev, uio, flags)
684 dev_t dev;
685 struct uio *uio;
686 int flags;
687 {
688 register struct zs_chanstate *cs;
689 register struct zs_softc *zi;
690 register struct tty *tp;
691 int unit = minor(dev);
692
693 zi = zs_cd.cd_devs[unit >> 1];
694 cs = &zi->zi_cs[unit & 1];
695 tp = cs->cs_ttyp;
696
697 return (linesw[tp->t_line].l_write(tp, uio, flags));
698 }
699
700 struct tty *
701 zstty(dev)
702 dev_t dev;
703 {
704 register struct zs_chanstate *cs;
705 register struct zs_softc *zi;
706 int unit = minor(dev);
707
708 zi = zs_cd.cd_devs[unit >> 1];
709 cs = &zi->zi_cs[unit & 1];
710
711 return (cs->cs_ttyp);
712
713 }
714
715 /*
716 * ZS hardware interrupt. Scan all ZS channels. NB: we know here that
717 * channels are kept in (A,B) pairs.
718 *
719 * Do just a little, then get out; set a software interrupt if more
720 * work is needed.
721 *
722 * We deliberately ignore the vectoring Zilog gives us, and match up
723 * only the number of `reset interrupt under service' operations, not
724 * the order.
725 */
726 /* ARGSUSED */
727 void
728 zshard(intrarg)
729 int intrarg;
730 {
731 register struct zs_chanstate *a;
732 #define b (a + 1)
733 register volatile struct zschan *zc;
734 register int rr3, intflags = 0, v, i;
735 static int zsrint __P((struct zs_chanstate *, volatile struct zschan *));
736 static int zsxint __P((struct zs_chanstate *, volatile struct zschan *));
737 static int zssint __P((struct zs_chanstate *, volatile struct zschan *));
738
739 {
740 a = &((struct zs_softc*)zs_cd.cd_devs[(intrarg >> 2) & 0x0f])->zi_cs[0];
741 rr3 = ZS_READ(a->cs_zc, 3);
742 if (rr3 & (ZSRR3_IP_A_RX|ZSRR3_IP_A_TX|ZSRR3_IP_A_STAT)) {
743 intflags |= 2;
744 zc = a->cs_zc;
745 i = a->cs_rbput;
746 if (rr3 & ZSRR3_IP_A_RX && (v = zsrint(a, zc)) != 0) {
747 a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
748 intflags |= 1;
749 }
750 if (rr3 & ZSRR3_IP_A_TX && (v = zsxint(a, zc)) != 0) {
751 a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
752 intflags |= 1;
753 intflags |= 4;
754 }
755 if (rr3 & ZSRR3_IP_A_STAT && (v = zssint(a, zc)) != 0) {
756 a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
757 intflags |= 1;
758 }
759 a->cs_rbput = i;
760 }
761 if (rr3 & (ZSRR3_IP_B_RX|ZSRR3_IP_B_TX|ZSRR3_IP_B_STAT)) {
762 intflags |= 2;
763 zc = b->cs_zc;
764 i = b->cs_rbput;
765 if (rr3 & ZSRR3_IP_B_RX && (v = zsrint(b, zc)) != 0) {
766 b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
767 intflags |= 1;
768 }
769 if (rr3 & ZSRR3_IP_B_TX && (v = zsxint(b, zc)) != 0) {
770 b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
771 intflags |= 1;
772 intflags |= 4;
773 }
774 if (rr3 & ZSRR3_IP_B_STAT && (v = zssint(b, zc)) != 0) {
775 b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
776 intflags |= 1;
777 }
778 b->cs_rbput = i;
779 }
780 }
781 #undef b
782 if (intflags & 1) {
783 #if defined(SUN4C) || defined(SUN4M)
784 if (CPU_ISSUN4M || CPU_ISSUN4C) {
785 /* XXX -- but this will go away when zshard moves to locore.s */
786 struct clockframe *p = intrarg;
787
788 if ((p->psr & PSR_PIL) < (PIL_TTY << 8)) {
789 zsshortcuts++;
790 (void) spltty();
791 if (zshardscope) {
792 LED_ON;
793 LED_OFF;
794 }
795 return (zssoft(intrarg));
796 }
797 }
798 #endif
799 #if x68k
800 #define PSL_TTY PSL_IPL4 /* XXX */
801 if (((intrarg >> 16) & PSL_IPL) < PSL_TTY) {
802 zsshortcuts++;
803 (void) spltty();
804 zssoft(0/*intrarg*/);
805 return;
806 }
807 setsoftserial();
808 #else
809 ienab_bis(IE_ZSSOFT);
810 #endif
811 }
812 }
813
814 static int
815 zsrint(cs, zc)
816 register struct zs_chanstate *cs;
817 register volatile struct zschan *zc;
818 {
819 register int c = zc->zc_data;
820
821 ZS_DELAY();
822 #ifndef x68k
823 if (cs->cs_conk) {
824 register struct conk_state *conk = &zsconk_state;
825
826 /*
827 * Check here for console abort function, so that we
828 * can abort even when interrupts are locking up the
829 * machine.
830 */
831 if (c == KBD_RESET) {
832 conk->conk_id = 1; /* ignore next byte */
833 conk->conk_l1 = 0;
834 } else if (conk->conk_id)
835 conk->conk_id = 0; /* stop ignoring bytes */
836 else if (c == KBD_L1)
837 conk->conk_l1 = 1; /* L1 went down */
838 else if (c == (KBD_L1|KBD_UP))
839 conk->conk_l1 = 0; /* L1 went up */
840 else if (c == KBD_A && conk->conk_l1) {
841 zsabort();
842 conk->conk_l1 = 0; /* we never see the up */
843 goto clearit; /* eat the A after L1-A */
844 }
845 }
846 #endif
847 #ifdef KGDB
848 if (c == FRAME_START && cs->cs_kgdb &&
849 (cs->cs_ttyp->t_state & TS_ISOPEN) == 0) {
850 zskgdb(cs->cs_unit);
851 goto clearit;
852 }
853 #endif
854 /* compose receive character and status */
855 c <<= 8;
856 c |= ZS_READ(zc, 1);
857
858 /* clear receive error & interrupt condition */
859 zc->zc_csr = ZSWR0_RESET_ERRORS;
860 ZS_DELAY();
861 zc->zc_csr = ZSWR0_CLR_INTR;
862 ZS_DELAY();
863
864 return (ZRING_MAKE(ZRING_RINT, c));
865
866 clearit:
867 zc->zc_csr = ZSWR0_RESET_ERRORS;
868 ZS_DELAY();
869 zc->zc_csr = ZSWR0_CLR_INTR;
870 ZS_DELAY();
871 return (0);
872 }
873
874 static int
875 zsxint(cs, zc)
876 register struct zs_chanstate *cs;
877 register volatile struct zschan *zc;
878 {
879 register int i = cs->cs_tbc;
880
881 if (i == 0) {
882 zc->zc_csr = ZSWR0_RESET_TXINT;
883 ZS_DELAY();
884 zc->zc_csr = ZSWR0_CLR_INTR;
885 ZS_DELAY();
886 return (ZRING_MAKE(ZRING_XINT, 0));
887 }
888 cs->cs_tbc = i - 1;
889 zc->zc_data = *cs->cs_tba++;
890 ZS_DELAY();
891 zc->zc_csr = ZSWR0_CLR_INTR;
892 ZS_DELAY();
893 return (0);
894 }
895
896 static int
897 zssint(cs, zc)
898 register struct zs_chanstate *cs;
899 register volatile struct zschan *zc;
900 {
901 register int rr0;
902
903 rr0 = zc->zc_csr;
904 ZS_DELAY();
905 zc->zc_csr = ZSWR0_RESET_STATUS;
906 ZS_DELAY();
907 zc->zc_csr = ZSWR0_CLR_INTR;
908 ZS_DELAY();
909 /*
910 * The chip's hardware flow control is, as noted in zsreg.h,
911 * busted---if the DCD line goes low the chip shuts off the
912 * receiver (!). If we want hardware CTS flow control but do
913 * not have it, and carrier is now on, turn HFC on; if we have
914 * HFC now but carrier has gone low, turn it off.
915 */
916 if (rr0 & ZSRR0_DCD) {
917 if (cs->cs_ttyp->t_cflag & CCTS_OFLOW &&
918 (cs->cs_creg[3] & ZSWR3_HFC) == 0) {
919 cs->cs_creg[3] |= ZSWR3_HFC;
920 ZS_WRITE(zc, 3, cs->cs_creg[3]);
921 }
922 } else {
923 if (cs->cs_creg[3] & ZSWR3_HFC) {
924 cs->cs_creg[3] &= ~ZSWR3_HFC;
925 ZS_WRITE(zc, 3, cs->cs_creg[3]);
926 }
927 }
928 if ((rr0 & ZSRR0_BREAK) && cs->cs_brkabort) {
929 #ifdef SUN4
930 /*
931 * XXX This might not be necessary. Test and
932 * delete if it isn't.
933 */
934 if (CPU_ISSUN4) {
935 while (zc->zc_csr & ZSRR0_BREAK)
936 ZS_DELAY();
937 }
938 #endif
939 zsabort();
940 return (0);
941 }
942 return (ZRING_MAKE(ZRING_SINT, rr0));
943 }
944
945 static void
946 zsabort()
947 {
948
949 #ifdef DDB
950 Debugger();
951 #else
952 printf("stopping on keyboard abort\n");
953 #ifndef x68k
954 callrom();
955 #endif
956 #endif
957 }
958
959 #ifdef KGDB
960 /*
961 * KGDB framing character received: enter kernel debugger. This probably
962 * should time out after a few seconds to avoid hanging on spurious input.
963 */
964 void
965 zskgdb(unit)
966 int unit;
967 {
968
969 printf("zs%d%c: kgdb interrupt\n", unit >> 1, (unit & 1) + 'a');
970 kgdb_connect(1);
971 }
972 #endif
973
974 /*
975 * Print out a ring or fifo overrun error message.
976 */
977 static void
978 zsoverrun(unit, ptime, what)
979 int unit;
980 long *ptime;
981 char *what;
982 {
983
984 if (*ptime != time.tv_sec) {
985 *ptime = time.tv_sec;
986 log(LOG_WARNING, "zs%d%c: %s overrun\n", unit >> 1,
987 (unit & 1) + 'a', what);
988 }
989 }
990
991 /*
992 * ZS software interrupt. Scan all channels for deferred interrupts.
993 */
994 int
995 zssoft(arg)
996 void *arg;
997 {
998 register struct zs_chanstate *cs;
999 register volatile struct zschan *zc;
1000 register struct linesw *line;
1001 register struct tty *tp;
1002 register int get, n, c, cc, unit, s;
1003 int retval = 0;
1004
1005 for (cs = zslist; cs != NULL; cs = cs->cs_next) {
1006 get = cs->cs_rbget;
1007 again:
1008 n = cs->cs_rbput; /* atomic */
1009 if (get == n) /* nothing more on this line */
1010 continue;
1011 retval = 1;
1012 unit = cs->cs_unit; /* set up to handle interrupts */
1013 zc = cs->cs_zc;
1014 tp = cs->cs_ttyp;
1015 line = &linesw[tp->t_line];
1016 /*
1017 * Compute the number of interrupts in the receive ring.
1018 * If the count is overlarge, we lost some events, and
1019 * must advance to the first valid one. It may get
1020 * overwritten if more data are arriving, but this is
1021 * too expensive to check and gains nothing (we already
1022 * lost out; all we can do at this point is trade one
1023 * kind of loss for another).
1024 */
1025 n -= get;
1026 if (n > ZLRB_RING_SIZE) {
1027 zsoverrun(unit, &cs->cs_rotime, "ring");
1028 get += n - ZLRB_RING_SIZE;
1029 n = ZLRB_RING_SIZE;
1030 }
1031 while (--n >= 0) {
1032 /* race to keep ahead of incoming interrupts */
1033 c = cs->cs_rbuf[get++ & ZLRB_RING_MASK];
1034 switch (ZRING_TYPE(c)) {
1035
1036 case ZRING_RINT:
1037 c = ZRING_VALUE(c);
1038 if (c & ZSRR1_DO)
1039 zsoverrun(unit, &cs->cs_fotime, "fifo");
1040 cc = c >> 8;
1041 if (c & ZSRR1_FE)
1042 cc |= TTY_FE;
1043 if (c & ZSRR1_PE)
1044 cc |= TTY_PE;
1045 /*
1046 * this should be done through
1047 * bstreams XXX gag choke
1048 */
1049 else if (unit == ZS_MOUSE)
1050 ms_rint(cc);
1051 else
1052 line->l_rint(cc, tp);
1053 break;
1054
1055 case ZRING_XINT:
1056 /*
1057 * Transmit done: change registers and resume,
1058 * or clear BUSY.
1059 */
1060 if (cs->cs_heldchange) {
1061 s = splzs();
1062 c = zc->zc_csr;
1063 ZS_DELAY();
1064 if ((c & ZSRR0_DCD) == 0)
1065 cs->cs_preg[3] &= ~ZSWR3_HFC;
1066 bcopy((caddr_t)cs->cs_preg,
1067 (caddr_t)cs->cs_creg, 16);
1068 zs_loadchannelregs(zc, cs->cs_creg);
1069 splx(s);
1070 cs->cs_heldchange = 0;
1071 if (cs->cs_heldtbc &&
1072 (tp->t_state & TS_TTSTOP) == 0) {
1073 cs->cs_tbc = cs->cs_heldtbc - 1;
1074 zc->zc_data = *cs->cs_tba++;
1075 ZS_DELAY();
1076 goto again;
1077 }
1078 }
1079 tp->t_state &= ~TS_BUSY;
1080 if (tp->t_state & TS_FLUSH)
1081 tp->t_state &= ~TS_FLUSH;
1082 else
1083 ndflush(&tp->t_outq,
1084 cs->cs_tba - (caddr_t)tp->t_outq.c_cf);
1085 line->l_start(tp);
1086 break;
1087
1088 case ZRING_SINT:
1089 /*
1090 * Status line change. HFC bit is run in
1091 * hardware interrupt, to avoid locking
1092 * at splzs here.
1093 */
1094 c = ZRING_VALUE(c);
1095 if ((c ^ cs->cs_rr0) & ZSRR0_DCD) {
1096 cc = (c & ZSRR0_DCD) != 0;
1097 if (line->l_modem(tp, cc) == 0)
1098 zs_modem(cs, cc);
1099 }
1100 cs->cs_rr0 = c;
1101 break;
1102
1103 default:
1104 log(LOG_ERR, "zs%d%c: bad ZRING_TYPE (%x)\n",
1105 unit >> 1, (unit & 1) + 'a', c);
1106 break;
1107 }
1108 }
1109 cs->cs_rbget = get;
1110 goto again;
1111 }
1112 return (retval);
1113 }
1114
1115 int
1116 zsioctl(dev, cmd, data, flag, p)
1117 dev_t dev;
1118 u_long cmd;
1119 caddr_t data;
1120 int flag;
1121 struct proc *p;
1122 {
1123 int unit = minor(dev);
1124 struct zs_softc *zi = zs_cd.cd_devs[unit >> 1];
1125 register struct zs_chanstate *cs = &zi->zi_cs[unit & 1];
1126 register struct tty *tp = cs->cs_ttyp;
1127 register int error, s;
1128
1129 error = linesw[tp->t_line].l_ioctl(tp, cmd, data, flag, p);
1130 if (error >= 0)
1131 return (error);
1132 error = ttioctl(tp, cmd, data, flag, p);
1133 if (error >= 0)
1134 return (error);
1135
1136 switch (cmd) {
1137 case TIOCSBRK:
1138 s = splzs();
1139 cs->cs_preg[5] |= ZSWR5_BREAK;
1140 cs->cs_creg[5] |= ZSWR5_BREAK;
1141 ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
1142 splx(s);
1143 break;
1144 case TIOCCBRK:
1145 s = splzs();
1146 cs->cs_preg[5] &= ~ZSWR5_BREAK;
1147 cs->cs_creg[5] &= ~ZSWR5_BREAK;
1148 ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
1149 splx(s);
1150 break;
1151 case TIOCGFLAGS: {
1152 int bits = 0;
1153
1154 if (cs->cs_softcar)
1155 bits |= TIOCFLAG_SOFTCAR;
1156 if (cs->cs_creg[15] & ZSWR15_DCD_IE)
1157 bits |= TIOCFLAG_CLOCAL;
1158 if (cs->cs_creg[3] & ZSWR3_HFC)
1159 bits |= TIOCFLAG_CRTSCTS;
1160 *(int *)data = bits;
1161 break;
1162 }
1163 case TIOCSFLAGS: {
1164 int userbits, driverbits = 0;
1165
1166 error = suser(p->p_ucred, &p->p_acflag);
1167 if (error != 0)
1168 return (EPERM);
1169
1170 userbits = *(int *)data;
1171
1172 /*
1173 * can have `local' or `softcar', and `rtscts' or `mdmbuf'
1174 # defaulting to software flow control.
1175 */
1176 if (userbits & TIOCFLAG_SOFTCAR && userbits & TIOCFLAG_CLOCAL)
1177 return(EINVAL);
1178 if (userbits & TIOCFLAG_MDMBUF) /* don't support this (yet?) */
1179 return(ENXIO);
1180
1181 s = splzs();
1182 if ((userbits & TIOCFLAG_SOFTCAR) || cs->cs_consio) {
1183 cs->cs_softcar = 1; /* turn on softcar */
1184 cs->cs_preg[15] &= ~ZSWR15_DCD_IE; /* turn off dcd */
1185 cs->cs_creg[15] &= ~ZSWR15_DCD_IE;
1186 ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
1187 } else if (userbits & TIOCFLAG_CLOCAL) {
1188 cs->cs_softcar = 0; /* turn off softcar */
1189 cs->cs_preg[15] |= ZSWR15_DCD_IE; /* turn on dcd */
1190 cs->cs_creg[15] |= ZSWR15_DCD_IE;
1191 ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
1192 tp->t_termios.c_cflag |= CLOCAL;
1193 }
1194 if (userbits & TIOCFLAG_CRTSCTS) {
1195 cs->cs_preg[15] |= ZSWR15_CTS_IE;
1196 cs->cs_creg[15] |= ZSWR15_CTS_IE;
1197 ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
1198 cs->cs_preg[3] |= ZSWR3_HFC;
1199 cs->cs_creg[3] |= ZSWR3_HFC;
1200 ZS_WRITE(cs->cs_zc, 3, cs->cs_creg[3]);
1201 tp->t_termios.c_cflag |= CRTSCTS;
1202 } else {
1203 /* no mdmbuf, so we must want software flow control */
1204 cs->cs_preg[15] &= ~ZSWR15_CTS_IE;
1205 cs->cs_creg[15] &= ~ZSWR15_CTS_IE;
1206 ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
1207 cs->cs_preg[3] &= ~ZSWR3_HFC;
1208 cs->cs_creg[3] &= ~ZSWR3_HFC;
1209 ZS_WRITE(cs->cs_zc, 3, cs->cs_creg[3]);
1210 tp->t_termios.c_cflag &= ~CRTSCTS;
1211 }
1212 splx(s);
1213 break;
1214 }
1215 case TIOCSDTR:
1216 zs_modem(cs, 1);
1217 break;
1218 case TIOCCDTR:
1219 zs_modem(cs, 0);
1220 break;
1221 case TIOCMSET:
1222 case TIOCMBIS:
1223 case TIOCMBIC:
1224 case TIOCMGET:
1225 default:
1226 return (ENOTTY);
1227 }
1228 return (0);
1229 }
1230
1231 /*
1232 * Start or restart transmission.
1233 */
1234 static void
1235 zsstart(tp)
1236 register struct tty *tp;
1237 {
1238 register struct zs_chanstate *cs;
1239 register int s, nch;
1240 int unit = minor(tp->t_dev);
1241 struct zs_softc *zi = zs_cd.cd_devs[unit >> 1];
1242
1243 cs = &zi->zi_cs[unit & 1];
1244 s = spltty();
1245
1246 /*
1247 * If currently active or delaying, no need to do anything.
1248 */
1249 if (tp->t_state & (TS_TIMEOUT | TS_BUSY | TS_TTSTOP))
1250 goto out;
1251
1252 /*
1253 * If there are sleepers, and output has drained below low
1254 * water mark, awaken.
1255 */
1256 if (tp->t_outq.c_cc <= tp->t_lowat) {
1257 if (tp->t_state & TS_ASLEEP) {
1258 tp->t_state &= ~TS_ASLEEP;
1259 wakeup((caddr_t)&tp->t_outq);
1260 }
1261 selwakeup(&tp->t_wsel);
1262 }
1263
1264 nch = ndqb(&tp->t_outq, 0); /* XXX */
1265 if (nch) {
1266 register char *p = tp->t_outq.c_cf;
1267
1268 /* mark busy, enable tx done interrupts, & send first byte */
1269 tp->t_state |= TS_BUSY;
1270 (void) splzs();
1271 cs->cs_preg[1] |= ZSWR1_TIE;
1272 cs->cs_creg[1] |= ZSWR1_TIE;
1273 ZS_WRITE(cs->cs_zc, 1, cs->cs_creg[1]);
1274 cs->cs_zc->zc_data = *p;
1275 ZS_DELAY();
1276 cs->cs_tba = p + 1;
1277 cs->cs_tbc = nch - 1;
1278 } else {
1279 /*
1280 * Nothing to send, turn off transmit done interrupts.
1281 * This is useful if something is doing polled output.
1282 */
1283 (void) splzs();
1284 cs->cs_preg[1] &= ~ZSWR1_TIE;
1285 cs->cs_creg[1] &= ~ZSWR1_TIE;
1286 ZS_WRITE(cs->cs_zc, 1, cs->cs_creg[1]);
1287 }
1288 out:
1289 splx(s);
1290 }
1291
1292 /*
1293 * Stop output, e.g., for ^S or output flush.
1294 */
1295 void
1296 zsstop(tp, flag)
1297 register struct tty *tp;
1298 int flag;
1299 {
1300 register struct zs_chanstate *cs;
1301 register int s, unit = minor(tp->t_dev);
1302 struct zs_softc *zi = zs_cd.cd_devs[unit >> 1];
1303
1304 cs = &zi->zi_cs[unit & 1];
1305 s = splzs();
1306 if (tp->t_state & TS_BUSY) {
1307 /*
1308 * Device is transmitting; must stop it.
1309 */
1310 cs->cs_tbc = 0;
1311 if ((tp->t_state & TS_TTSTOP) == 0)
1312 tp->t_state |= TS_FLUSH;
1313 }
1314 splx(s);
1315 }
1316
1317 /*
1318 * Set ZS tty parameters from termios.
1319 *
1320 * This routine makes use of the fact that only registers
1321 * 1, 3, 4, 5, 9, 10, 11, 12, 13, 14, and 15 are written.
1322 */
1323 static int
1324 zsparam(tp, t)
1325 register struct tty *tp;
1326 register struct termios *t;
1327 {
1328 int unit = minor(tp->t_dev);
1329 struct zs_softc *zi = zs_cd.cd_devs[unit >> 1];
1330 register struct zs_chanstate *cs = &zi->zi_cs[unit & 1];
1331 register int tmp, tmp5, cflag, s;
1332
1333 /*
1334 * Because PCLK is only run at 5 MHz, the fastest we
1335 * can go is 51200 baud (this corresponds to TC=1).
1336 * This is somewhat unfortunate as there is no real
1337 * reason we should not be able to handle higher rates.
1338 */
1339 tmp = t->c_ospeed;
1340 if (tmp < 0 || (t->c_ispeed && t->c_ispeed != tmp))
1341 return (EINVAL);
1342 if (tmp == 0) {
1343 /* stty 0 => drop DTR and RTS */
1344 zs_modem(cs, 0);
1345 return (0);
1346 }
1347 tmp = BPS_TO_TCONST(PCLK / 16, tmp);
1348 if (tmp < 2)
1349 return (EINVAL);
1350
1351 cflag = t->c_cflag;
1352 tp->t_ispeed = tp->t_ospeed = TCONST_TO_BPS(PCLK / 16, tmp);
1353 tp->t_cflag = cflag;
1354
1355 /*
1356 * Block interrupts so that state will not
1357 * be altered until we are done setting it up.
1358 */
1359 s = splzs();
1360 cs->cs_preg[12] = tmp;
1361 cs->cs_preg[13] = tmp >> 8;
1362 cs->cs_preg[1] = ZSWR1_RIE | ZSWR1_TIE | ZSWR1_SIE;
1363 switch (cflag & CSIZE) {
1364 case CS5:
1365 tmp = ZSWR3_RX_5;
1366 tmp5 = ZSWR5_TX_5;
1367 break;
1368 case CS6:
1369 tmp = ZSWR3_RX_6;
1370 tmp5 = ZSWR5_TX_6;
1371 break;
1372 case CS7:
1373 tmp = ZSWR3_RX_7;
1374 tmp5 = ZSWR5_TX_7;
1375 break;
1376 case CS8:
1377 default:
1378 tmp = ZSWR3_RX_8;
1379 tmp5 = ZSWR5_TX_8;
1380 break;
1381 }
1382
1383 /*
1384 * Output hardware flow control on the chip is horrendous: if
1385 * carrier detect drops, the receiver is disabled. Hence we
1386 * can only do this when the carrier is on.
1387 */
1388 tmp |= ZSWR3_RX_ENABLE;
1389 if (cflag & CCTS_OFLOW) {
1390 if (cs->cs_zc->zc_csr & ZSRR0_DCD)
1391 tmp |= ZSWR3_HFC;
1392 ZS_DELAY();
1393 }
1394 cs->cs_preg[3] = tmp;
1395 cs->cs_preg[5] = tmp5 | ZSWR5_TX_ENABLE | ZSWR5_DTR | ZSWR5_RTS;
1396
1397 tmp = ZSWR4_CLK_X16 | (cflag & CSTOPB ? ZSWR4_TWOSB : ZSWR4_ONESB);
1398 if ((cflag & PARODD) == 0)
1399 tmp |= ZSWR4_EVENP;
1400 if (cflag & PARENB)
1401 tmp |= ZSWR4_PARENB;
1402 cs->cs_preg[4] = tmp;
1403 cs->cs_preg[9] = ZSWR9_MASTER_IE /*| ZSWR9_NO_VECTOR*/;
1404 cs->cs_preg[10] = ZSWR10_NRZ;
1405 cs->cs_preg[11] = ZSWR11_TXCLK_BAUD | ZSWR11_RXCLK_BAUD;
1406 cs->cs_preg[14] = ZSWR14_BAUD_FROM_PCLK | ZSWR14_BAUD_ENA;
1407 cs->cs_preg[15] = ZSWR15_BREAK_IE | ZSWR15_DCD_IE;
1408
1409 /*
1410 * If nothing is being transmitted, set up new current values,
1411 * else mark them as pending.
1412 */
1413 if (cs->cs_heldchange == 0) {
1414 if (cs->cs_ttyp->t_state & TS_BUSY) {
1415 cs->cs_heldtbc = cs->cs_tbc;
1416 cs->cs_tbc = 0;
1417 cs->cs_heldchange = 1;
1418 } else {
1419 bcopy((caddr_t)cs->cs_preg, (caddr_t)cs->cs_creg, 16);
1420 zs_loadchannelregs(cs->cs_zc, cs->cs_creg);
1421 }
1422 }
1423 splx(s);
1424 return (0);
1425 }
1426
1427 /*
1428 * Raise or lower modem control (DTR/RTS) signals. If a character is
1429 * in transmission, the change is deferred.
1430 */
1431 static void
1432 zs_modem(cs, onoff)
1433 struct zs_chanstate *cs;
1434 int onoff;
1435 {
1436 int s, bis, and;
1437
1438 if (onoff) {
1439 bis = ZSWR5_DTR | ZSWR5_RTS;
1440 and = ~0;
1441 } else {
1442 bis = 0;
1443 and = ~(ZSWR5_DTR | ZSWR5_RTS);
1444 }
1445 s = splzs();
1446 cs->cs_preg[5] = (cs->cs_preg[5] | bis) & and;
1447 if (cs->cs_heldchange == 0) {
1448 if (cs->cs_ttyp->t_state & TS_BUSY) {
1449 cs->cs_heldtbc = cs->cs_tbc;
1450 cs->cs_tbc = 0;
1451 cs->cs_heldchange = 1;
1452 } else {
1453 cs->cs_creg[5] = (cs->cs_creg[5] | bis) & and;
1454 ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
1455 }
1456 }
1457 splx(s);
1458 }
1459
1460 /*
1461 * Hardware flow (RTS) control.
1462 */
1463 static int
1464 zshwiflow(tp, flag)
1465 struct tty *tp;
1466 int flag;
1467 {
1468 int unit = minor(tp->t_dev);
1469 struct zs_softc *zi = zs_cd.cd_devs[unit >> 1];
1470 register struct zs_chanstate *cs = &zi->zi_cs[unit & 1];
1471 int s;
1472
1473 #if 0
1474 printf ("zshwiflow %d\n", flag);
1475 #endif
1476 s = splzs();
1477 if (flag) {
1478 cs->cs_preg[5] &= ~ZSWR5_RTS;
1479 cs->cs_creg[5] &= ~ZSWR5_RTS;
1480 ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
1481 } else {
1482 cs->cs_preg[5] |= ZSWR5_RTS;
1483 cs->cs_creg[5] |= ZSWR5_RTS;
1484 ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
1485 }
1486 splx(s);
1487 return 1;
1488 }
1489
1490 /*
1491 * Write the given register set to the given zs channel in the proper order.
1492 * The channel must not be transmitting at the time. The receiver will
1493 * be disabled for the time it takes to write all the registers.
1494 */
1495 static void
1496 zs_loadchannelregs(zc, reg)
1497 volatile struct zschan *zc;
1498 u_char *reg;
1499 {
1500 int i;
1501
1502 zc->zc_csr = ZSM_RESET_ERR; /* reset error condition */
1503 ZS_DELAY();
1504 i = zc->zc_data; /* drain fifo */
1505 ZS_DELAY();
1506 i = zc->zc_data;
1507 ZS_DELAY();
1508 i = zc->zc_data;
1509 ZS_DELAY();
1510 ZS_WRITE(zc, 4, reg[4]);
1511 ZS_WRITE(zc, 10, reg[10]);
1512 ZS_WRITE(zc, 3, reg[3] & ~ZSWR3_RX_ENABLE);
1513 ZS_WRITE(zc, 5, reg[5] & ~ZSWR5_TX_ENABLE);
1514 ZS_WRITE(zc, 1, reg[1]);
1515 ZS_WRITE(zc, 9, reg[9]);
1516 ZS_WRITE(zc, 11, reg[11]);
1517 ZS_WRITE(zc, 12, reg[12]);
1518 ZS_WRITE(zc, 13, reg[13]);
1519 ZS_WRITE(zc, 14, reg[14]);
1520 ZS_WRITE(zc, 15, reg[15]);
1521 ZS_WRITE(zc, 3, reg[3]);
1522 ZS_WRITE(zc, 5, reg[5]);
1523 }
1524
1525 #ifdef x68k
1526 void
1527 zs_msmodem(onoff)
1528 int onoff;
1529 {
1530 if (zsms != NULL) {
1531 zs_modem(zsms, onoff);
1532 while(!(mfp.tsr & MFP_TSR_BE))
1533 /* XXX wait */ ;
1534 mfp.udr = 0x40 | (onoff ? 0 : 1);
1535 }
1536 }
1537 #endif
1538
1539 #ifdef KGDB
1540 /*
1541 * Get a character from the given kgdb channel. Called at splhigh().
1542 */
1543 static int
1544 zs_kgdb_getc(arg)
1545 void *arg;
1546 {
1547 register volatile struct zschan *zc = (volatile struct zschan *)arg;
1548
1549 while ((zc->zc_csr & ZSRR0_RX_READY) == 0)
1550 ZS_DELAY();
1551 return (zc->zc_data);
1552 }
1553
1554 /*
1555 * Put a character to the given kgdb channel. Called at splhigh().
1556 */
1557 static void
1558 zs_kgdb_putc(arg, c)
1559 void *arg;
1560 int c;
1561 {
1562 register volatile struct zschan *zc = (volatile struct zschan *)arg;
1563
1564 while ((zc->zc_csr & ZSRR0_TX_READY) == 0)
1565 ZS_DELAY();
1566 zc->zc_data = c;
1567 ZS_DELAY();
1568 }
1569
1570 /*
1571 * Set up for kgdb; called at boot time before configuration.
1572 * KGDB interrupts will be enabled later when zs0 is configured.
1573 */
1574 void
1575 zs_kgdb_init()
1576 {
1577 volatile struct zsdevice *addr;
1578 volatile struct zschan *zc;
1579 int unit, zs;
1580
1581 if (major(kgdb_dev) != ZSMAJOR)
1582 return;
1583 unit = minor(kgdb_dev);
1584 zs = unit >> 1;
1585 if ((addr = zsaddr[zs]) == NULL)
1586 addr = zsaddr[zs] = findzs(zs);
1587 unit &= 1;
1588 zc = unit == 0 ? &addr->zs_chan[ZS_CHAN_A] : &addr->zs_chan[ZS_CHAN_B];
1589 zs_kgdb_savedspeed = zs_getspeed(zc);
1590 printf("zs_kgdb_init: attaching zs%d%c at %d baud\n",
1591 zs, unit + 'a', kgdb_rate);
1592 zs_reset(zc, 1, kgdb_rate);
1593 kgdb_attach(zs_kgdb_getc, zs_kgdb_putc, (void *)zc);
1594 }
1595 #endif /* KGDB */
1596 #endif
1597