zs.c revision 1.9 1 /* $NetBSD: zs.c,v 1.9 1998/06/30 11:59:11 msaitoh Exp $ */
2
3 /*
4 * Copyright (c) 1992, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * This software was developed by the Computer Systems Engineering group
8 * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
9 * contributed to Berkeley.
10 *
11 * All advertising materials mentioning features or use of this software
12 * must display the following acknowledgement:
13 * This product includes software developed by the University of
14 * California, Lawrence Berkeley Laboratory.
15 *
16 * Redistribution and use in source and binary forms, with or without
17 * modification, are permitted provided that the following conditions
18 * are met:
19 * 1. Redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer.
21 * 2. Redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution.
24 * 3. All advertising materials mentioning features or use of this software
25 * must display the following acknowledgement:
26 * This product includes software developed by the University of
27 * California, Berkeley and its contributors.
28 * 4. Neither the name of the University nor the names of its contributors
29 * may be used to endorse or promote products derived from this software
30 * without specific prior written permission.
31 *
32 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
33 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
34 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
35 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
36 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
37 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
38 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
39 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
40 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
41 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
42 * SUCH DAMAGE.
43 *
44 * @(#)zs.c 8.1 (Berkeley) 7/19/93
45 */
46
47 /*
48 * Zilog Z8530 (ZSCC) driver.
49 *
50 * Runs two tty ports (ttya and ttyb) on zs0,
51 * and runs a keyboard and mouse on zs1.
52 *
53 * This driver knows far too much about chip to usage mappings.
54 */
55 #include "zs.h"
56 #if NZS > 0
57
58 #include <sys/param.h>
59 #include <sys/systm.h>
60 #include <sys/proc.h>
61 #include <sys/device.h>
62 #include <sys/conf.h>
63 #include <sys/file.h>
64 #include <sys/ioctl.h>
65 #include <sys/tty.h>
66 #include <sys/time.h>
67 #include <sys/kernel.h>
68 #include <sys/syslog.h>
69
70 #include <machine/cpu.h>
71
72 #include <x68k/x68k/iodevice.h>
73 #include <dev/ic/z8530reg.h>
74 #include <x68k/dev/zsvar.h>
75
76 #ifdef KGDB
77 #include <machine/remote-sl.h>
78 #endif
79
80 #define ZSMAJOR 12 /* XXX */
81
82 #define ZSUNIT(x) (minor(x) & 0x7f)
83 #define ZSDIALOUT(x) (minor(x) & 0x80)
84 #define ZS_MOUSE 1 /* XXX */
85
86 #define PCLK (5*1000*1000) /* PCLK pin input clock rate */
87
88 #if 0
89 /*
90 * Select software interrupt bit based on TTY ipl.
91 */
92 #if PIL_TTY == 1
93 # define IE_ZSSOFT IE_L1
94 #elif PIL_TTY == 4
95 # define IE_ZSSOFT IE_L4
96 #elif PIL_TTY == 6
97 # define IE_ZSSOFT IE_L6
98 #else
99 # error "no suitable software interrupt bit"
100 #endif
101 #endif
102
103 /*
104 * Software state per found chip. This would be called `zs_softc',
105 * but the previous driver had a rather different zs_softc....
106 */
107 struct zs_softc {
108 struct device zi_dev; /* base device */
109 volatile struct zsdevice *zi_zs;/* chip registers */
110 struct zs_chanstate zi_cs[2]; /* channel A and B software state */
111 };
112
113 struct tty *zs_tty[NZS * 2]; /* XXX should be dynamic */
114
115 /* Definition of the driver for autoconfig. */
116 static int zsmatch __P((struct device *, void *, void *));
117 static void zsattach __P((struct device *, struct device *, void *));
118
119 struct cfattach zs_ca = {
120 sizeof(struct zs_softc), zsmatch, zsattach
121 };
122
123 extern struct cfdriver zs_cd;
124
125 #ifdef x68k
126 static struct zs_chanstate *zsms;
127 void zs_msmodem __P((int));
128 #endif
129
130 /* Interrupt handlers. */
131 void zshard __P((int));
132 int zssoft __P((void *));
133
134 struct zs_chanstate *zslist;
135
136 /* Routines called from other code. */
137 cdev_decl(zs);
138
139 static void zsiopen __P((struct tty *));
140 static void zsiclose __P((struct tty *));
141 static void zs_shutdown __P((struct zs_chanstate *cs));
142 static void zsstart __P((struct tty *));
143 void zsstop __P((struct tty *, int));
144 static int zsparam __P((struct tty *, struct termios *));
145 static int zshwiflow __P((struct tty *, int));
146
147 /* Routines purely local to this driver. */
148 static int zs_getspeed __P((volatile struct zschan *));
149 #ifdef KGDB
150 static void zs_reset __P((volatile struct zschan *, int, int));
151 #endif
152 static void zs_modem __P((struct zs_chanstate *, int));
153 static void zs_loadchannelregs __P((volatile struct zschan *, u_char *));
154 static void zsabort __P((void));
155 static int zsrint __P((struct zs_chanstate *, volatile struct zschan *));
156 static int zsxint __P((struct zs_chanstate *, volatile struct zschan *));
157 static int zssint __P((struct zs_chanstate *, volatile struct zschan *));
158 static void zsoverrun __P((int, long *, char *));
159
160 /* Console stuff. */
161 static struct tty *zs_ctty; /* console `struct tty *' */
162 static int zs_consin = -1, zs_consout = -1;
163 static void zscnputc __P((int)); /* console putc function */
164 static volatile struct zschan *zs_conschan;
165 static struct tty *zs_checkcons __P((struct zs_softc *, int, struct zs_chanstate *));
166
167 #ifdef KGDB
168 /* KGDB stuff. Must reboot to change zs_kgdbunit. */
169 extern int kgdb_dev, kgdb_rate;
170 static int zs_kgdb_savedspeed;
171 static void zs_checkkgdb __P((int, struct zs_chanstate *, struct tty *));
172 #endif
173
174 static volatile struct zsdevice *findzs __P((int));
175 static volatile struct zsdevice *zsaddr[NZS]; /* XXX, but saves work */
176
177 int zshardscope;
178 int zsshortcuts; /* number of "shortcut" software interrupts */
179
180 static u_int zs_read __P((volatile struct zschan *, u_int reg));
181 static u_int zs_write __P((volatile struct zschan *, u_int, u_int));
182
183 static u_int
184 zs_read(zc, reg)
185 volatile struct zschan *zc;
186 u_int reg;
187 {
188 u_char val;
189
190 zc->zc_csr = reg;
191 ZS_DELAY();
192 val = zc->zc_csr;
193 ZS_DELAY();
194 return val;
195 }
196
197 static u_int
198 zs_write(zc, reg, val)
199 volatile struct zschan *zc;
200 u_int reg, val;
201 {
202 zc->zc_csr = reg;
203 ZS_DELAY();
204 zc->zc_csr = val;
205 ZS_DELAY();
206 return val;
207 }
208
209 /*
210 * find zs address for x68k architecture
211 */
212 static volatile struct zsdevice *
213 findzs(zs)
214 int zs;
215 {
216 if (zs == 0)
217 return &IODEVbase->io_inscc;
218 if (1 <= zs && zs <= 4)
219 return &(IODEVbase->io_exscc)[zs - 1];
220 /* none */
221 return 0;
222 }
223
224 /*
225 * Match slave number to zs unit number, so that misconfiguration will
226 * not set up the keyboard as ttya, etc.
227 */
228 static int
229 zsmatch(parent, match, aux)
230 struct device *parent;
231 void *match, *aux;
232 {
233 struct cfdata *cfp = match;
234 volatile void *addr;
235
236 if(strcmp("zs", aux) || (addr = findzs(cfp->cf_unit)) == 0)
237 return(0);
238 if (badaddr(addr))
239 return 0;
240 return(1);
241 }
242
243 /*
244 * Attach a found zs.
245 *
246 * USE ROM PROPERTIES port-a-ignore-cd AND port-b-ignore-cd FOR
247 * SOFT CARRIER, AND keyboard PROPERTY FOR KEYBOARD/MOUSE?
248 */
249 static void
250 zsattach(parent, dev, aux)
251 struct device *parent;
252 struct device *dev;
253 void *aux;
254 {
255 register int zs = dev->dv_unit, unit;
256 register struct zs_softc *zi;
257 register struct zs_chanstate *cs;
258 register volatile struct zsdevice *addr;
259 register struct tty *tp, *ctp;
260 register struct confargs *ca = aux;
261 int pri;
262
263 if ((addr = zsaddr[zs]) == NULL)
264 addr = zsaddr[zs] = findzs(zs);
265 printf(" (%s)\n", zs ? "external" : "onboard");
266 zi = (struct zs_softc *)dev;
267 zi->zi_zs = addr;
268 unit = zs * 2;
269 cs = zi->zi_cs;
270 cs->cs_ttyp = tp = ttymalloc();
271
272 /* link into interrupt list with order (A,B) (B=A+1) */
273 cs[0].cs_next = &cs[1];
274 cs[1].cs_next = zslist;
275 zslist = cs;
276
277 cs->cs_unit = unit;
278 cs->cs_speed = zs_getspeed(&addr->zs_chan[ZS_CHAN_A]);
279 cs->cs_zc = &addr->zs_chan[ZS_CHAN_A];
280 tp->t_dev = makedev(ZSMAJOR, unit);
281 tp->t_oproc = zsstart;
282 tp->t_param = zsparam;
283 tp->t_hwiflow = zshwiflow;
284 if ((ctp = zs_checkcons(zi, unit, cs)) != NULL)
285 cs->cs_ttyp = tp = ctp;
286 #ifdef KGDB
287 if (ctp == NULL)
288 zs_checkkgdb(unit, cs, tp);
289 #endif
290 #ifdef sun
291 if (unit == ZS_KBD) {
292 /*
293 * Keyboard: tell /dev/kbd driver how to talk to us.
294 */
295 tp->t_ispeed = tp->t_ospeed = cs->cs_speed;
296 tp->t_cflag = CS8;
297 kbd_serial(tp, zsiopen, zsiclose);
298 cs->cs_conk = 1; /* do L1-A processing */
299 }
300 #endif
301 if (tp != ctp)
302 tty_attach(tp);
303 ZS_WRITE(cs->cs_zc, 2, 0x70 + zs); /* XXX interrupt vector */
304 unit++;
305 cs++;
306 cs->cs_ttyp = tp = ttymalloc();
307 cs->cs_unit = unit;
308 cs->cs_speed = zs_getspeed(&addr->zs_chan[ZS_CHAN_B]);
309 cs->cs_zc = &addr->zs_chan[ZS_CHAN_B];
310 tp->t_dev = makedev(ZSMAJOR, unit);
311 tp->t_oproc = zsstart;
312 tp->t_param = zsparam;
313 if (unit != ZS_MOUSE)
314 tp->t_hwiflow = zshwiflow;
315 if ((ctp = zs_checkcons(zi, unit, cs)) != NULL)
316 cs->cs_ttyp = tp = ctp;
317 #ifdef KGDB
318 if (ctp == NULL)
319 zs_checkkgdb(unit, cs, tp);
320 #endif
321 if (unit == ZS_MOUSE) {
322 /*
323 * Mouse: tell /dev/mouse driver how to talk to us.
324 */
325 tp->t_ispeed = tp->t_ospeed = cs->cs_speed;
326 tp->t_cflag = CS8 | CSTOPB;
327 ms_serial(tp, zsiopen, zsiclose);
328 #ifdef x68k
329 zsms = cs;
330 #endif
331 } else {
332 if (tp != ctp)
333 tty_attach(tp);
334 }
335 }
336
337 #ifdef KGDB
338 /*
339 * Put a channel in a known state. Interrupts may be left disabled
340 * or enabled, as desired.
341 */
342 static void
343 zs_reset(zc, inten, speed)
344 volatile struct zschan *zc;
345 int inten, speed;
346 {
347 int tconst;
348 static u_char reg[16] = {
349 0,
350 0,
351 0,
352 ZSWR3_RX_8 | ZSWR3_RX_ENABLE,
353 ZSWR4_CLK_X16 | ZSWR4_ONESB | ZSWR4_EVENP,
354 ZSWR5_TX_8 | ZSWR5_TX_ENABLE,
355 0,
356 0,
357 0,
358 0,
359 ZSWR10_NRZ,
360 ZSWR11_TXCLK_BAUD | ZSWR11_RXCLK_BAUD,
361 0,
362 0,
363 ZSWR14_BAUD_FROM_PCLK | ZSWR14_BAUD_ENA,
364 ZSWR15_BREAK_IE | ZSWR15_DCD_IE,
365 };
366
367 reg[9] = inten ? ZSWR9_MASTER_IE | ZSWR9_NO_VECTOR : ZSWR9_NO_VECTOR;
368 tconst = BPS_TO_TCONST(PCLK / 16, speed);
369 reg[12] = tconst;
370 reg[13] = tconst >> 8;
371 zs_loadchannelregs(zc, reg);
372 }
373 #endif
374
375 /*
376 * Polled console output putchar.
377 */
378 static void
379 zscnputc(c)
380 int c;
381 {
382 register volatile struct zschan *zc = zs_conschan;
383 register int s;
384
385 if (c == '\n')
386 zscnputc('\r');
387 /*
388 * Must block output interrupts (i.e., raise to >= splzs) without
389 * lowering current ipl. Need a better way.
390 */
391 s = splhigh();
392 #ifdef SUN4C /* XXX */
393 if (CPU_ISSUN4C && s <= (12 << 8))
394 (void) splzs();
395 #endif
396 while ((zc->zc_csr & ZSRR0_TX_READY) == 0)
397 ZS_DELAY();
398 zc->zc_data = c;
399 ZS_DELAY();
400 splx(s);
401 }
402
403 /*
404 * Set up the given unit as console input, output, both, or neither, as
405 * needed. Return console tty if it is to receive console input.
406 */
407 static struct tty *
408 zs_checkcons(zi, unit, cs)
409 struct zs_softc *zi;
410 int unit;
411 struct zs_chanstate *cs;
412 {
413 register struct tty *tp;
414 char *i, *o;
415
416 if ((tp = zs_ctty) == NULL) /* XXX */
417 return (0);
418 i = zs_consin == unit ? "input" : NULL;
419 o = zs_consout == unit ? "output" : NULL;
420 if (i == NULL && o == NULL)
421 return (0);
422
423 /* rewire the minor device (gack) */
424 tp->t_dev = makedev(major(tp->t_dev), unit);
425
426 /*
427 * Rewire input and/or output. Note that baud rate reflects
428 * input settings, not output settings, but we can do no better
429 * if the console is split across two ports.
430 *
431 * XXX split consoles don't work anyway -- this needs to be
432 * thrown away and redone
433 */
434 if (i) {
435 tp->t_param = zsparam;
436 tp->t_ispeed = tp->t_ospeed = cs->cs_speed;
437 tp->t_cflag = CS8;
438 ttsetwater(tp);
439 }
440 if (o) {
441 tp->t_oproc = zsstart;
442 }
443 printf("%s%c: console %s\n",
444 zi->zi_dev.dv_xname, (unit & 1) + 'a', i ? (o ? "i/o" : i) : o);
445 cs->cs_consio = 1;
446 cs->cs_brkabort = 1;
447 return (tp);
448 }
449
450 #ifdef KGDB
451 /*
452 * The kgdb zs port, if any, was altered at boot time (see zs_kgdb_init).
453 * Pick up the current speed and character size and restore the original
454 * speed.
455 */
456 static void
457 zs_checkkgdb(unit, cs, tp)
458 int unit;
459 struct zs_chanstate *cs;
460 struct tty *tp;
461 {
462
463 if (kgdb_dev == makedev(ZSMAJOR, unit)) {
464 tp->t_ispeed = tp->t_ospeed = kgdb_rate;
465 tp->t_cflag = CS8;
466 cs->cs_kgdb = 1;
467 cs->cs_speed = zs_kgdb_savedspeed;
468 (void) zsparam(tp, &tp->t_termios);
469 }
470 }
471 #endif
472
473 /*
474 * Compute the current baud rate given a ZSCC channel.
475 */
476 static int
477 zs_getspeed(zc)
478 register volatile struct zschan *zc;
479 {
480 register int tconst;
481
482 tconst = ZS_READ(zc, 12);
483 tconst |= ZS_READ(zc, 13) << 8;
484 return (TCONST_TO_BPS(PCLK / 16, tconst));
485 }
486
487
488 /*
489 * Do an internal open.
490 */
491 static void
492 zsiopen(tp)
493 struct tty *tp;
494 {
495
496 (void) zsparam(tp, &tp->t_termios);
497 ttsetwater(tp);
498 tp->t_state = TS_ISOPEN | TS_CARR_ON;
499 }
500
501 /*
502 * Do an internal close. Eventually we should shut off the chip when both
503 * ports on it are closed.
504 */
505 static void
506 zsiclose(tp)
507 struct tty *tp;
508 {
509
510 ttylclose(tp, 0); /* ??? */
511 ttyclose(tp); /* ??? */
512 tp->t_state = 0;
513 }
514
515
516 static void
517 zs_shutdown(cs)
518 struct zs_chanstate *cs;
519 {
520 struct tty *tp = cs->cs_ttyp;
521 int s;
522
523 s = splzs();
524
525 /* XXX not yet */
526
527 /* Clear any break condition set with TIOCSBRK. */
528 cs->cs_preg[5] &= ~ZSWR5_BREAK;
529 cs->cs_creg[5] &= ~ZSWR5_BREAK;
530 ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
531
532 /*
533 * Hang up if necessary. Wait a bit, so the other side has time to
534 * notice even if we immediately open the port again.
535 */
536 if (tp->t_cflag & HUPCL) {
537 zs_modem(cs, 0);
538 (void) tsleep(cs, TTIPRI, ttclos, hz);
539 }
540
541 splx(s);
542 }
543
544 /*
545 * Open a zs serial port. This interface may not be used to open
546 * the keyboard and mouse ports. (XXX)
547 */
548 int
549 zsopen(dev, flags, mode, p)
550 dev_t dev;
551 int flags;
552 int mode;
553 struct proc *p;
554 {
555 register struct tty *tp;
556 register struct zs_chanstate *cs;
557 struct zs_softc *zi;
558 int unit = ZSUNIT(dev), zs = unit >> 1, error, s;
559
560 if (zs >= zs_cd.cd_ndevs || (zi = zs_cd.cd_devs[zs]) == NULL ||
561 unit == ZS_MOUSE)
562 return (ENXIO);
563 if (zi->zi_zs == NULL)
564 return (ENXIO);
565 cs = &zi->zi_cs[unit & 1];
566 if (cs->cs_consio)
567 return (ENXIO); /* ??? */
568 tp = cs->cs_ttyp;
569 if ((tp->t_state & TS_ISOPEN) &&
570 (tp->t_state & TS_XCLUDE) &&
571 p->p_ucred->cr_uid != 0)
572 return (EBUSY);
573
574 s = spltty();
575
576 if ((tp->t_state & TS_ISOPEN) == 0 && tp->t_wopen == 0) {
577 ttychars(tp);
578 tp->t_iflag = TTYDEF_IFLAG;
579 tp->t_oflag = TTYDEF_OFLAG;
580 tp->t_cflag = TTYDEF_CFLAG;
581 tp->t_lflag = TTYDEF_LFLAG;
582 tp->t_ispeed = tp->t_ospeed = cs->cs_speed;
583 (void) zsparam(tp, &tp->t_termios);
584 ttsetwater(tp);
585 }
586
587 splx(s);
588
589 error = ttyopen(tp, ZSDIALOUT(dev), flags & O_NONBLOCK);
590 if (error)
591 goto bad;
592
593 error = (*linesw[tp->t_line].l_open)(dev, tp);
594 if (error)
595 goto bad;
596
597 return (0);
598
599 bad:
600 if ((tp->t_state & TS_ISOPEN) == 0 && tp->t_wopen == 0) {
601 /*
602 * We failed to open the device, and nobody else had it opened.
603 * Clean up the state as appropriate.
604 */
605 zs_shutdown(cs);
606 }
607
608 return (error);
609 }
610
611 /*
612 * Close a zs serial port.
613 */
614 int
615 zsclose(dev, flags, mode, p)
616 dev_t dev;
617 int flags;
618 int mode;
619 struct proc *p;
620 {
621 register struct zs_chanstate *cs;
622 register struct tty *tp;
623 struct zs_softc *zi;
624 int unit = ZSUNIT(dev), s;
625
626 zi = zs_cd.cd_devs[unit >> 1];
627 cs = &zi->zi_cs[unit & 1];
628 tp = cs->cs_ttyp;
629 linesw[tp->t_line].l_close(tp, flags);
630 if ((tp->t_state & TS_ISOPEN) == 0 && tp->t_wopen == 0) {
631 /*
632 * Although we got a last close, the device may still be in
633 * use; e.g. if this was the dialout node, and there are still
634 * processes waiting for carrier on the non-dialout node.
635 */
636 zs_shutdown(cs);
637 }
638 ttyclose(tp);
639 #ifdef KGDB
640 /* Reset the speed if we're doing kgdb on this port */
641 if (cs->cs_kgdb) {
642 tp->t_ispeed = tp->t_ospeed = kgdb_rate;
643 (void) zsparam(tp, &tp->t_termios);
644 }
645 #endif
646 return (0);
647 }
648
649 /*
650 * Read/write zs serial port.
651 */
652 int
653 zsread(dev, uio, flags)
654 dev_t dev;
655 struct uio *uio;
656 int flags;
657 {
658 register struct zs_chanstate *cs;
659 register struct zs_softc *zi;
660 register struct tty *tp;
661 int unit = ZSUNIT(dev);
662
663 zi = zs_cd.cd_devs[unit >> 1];
664 cs = &zi->zi_cs[unit & 1];
665 tp = cs->cs_ttyp;
666
667 return (linesw[tp->t_line].l_read(tp, uio, flags));
668
669 }
670
671 int
672 zswrite(dev, uio, flags)
673 dev_t dev;
674 struct uio *uio;
675 int flags;
676 {
677 register struct zs_chanstate *cs;
678 register struct zs_softc *zi;
679 register struct tty *tp;
680 int unit = ZSUNIT(dev);
681
682 zi = zs_cd.cd_devs[unit >> 1];
683 cs = &zi->zi_cs[unit & 1];
684 tp = cs->cs_ttyp;
685
686 return (linesw[tp->t_line].l_write(tp, uio, flags));
687 }
688
689 struct tty *
690 zstty(dev)
691 dev_t dev;
692 {
693 register struct zs_chanstate *cs;
694 register struct zs_softc *zi;
695 int unit = ZSUNIT(dev);
696
697 zi = zs_cd.cd_devs[unit >> 1];
698 cs = &zi->zi_cs[unit & 1];
699
700 return (cs->cs_ttyp);
701
702 }
703
704 /*
705 * ZS hardware interrupt. Scan all ZS channels. NB: we know here that
706 * channels are kept in (A,B) pairs.
707 *
708 * Do just a little, then get out; set a software interrupt if more
709 * work is needed.
710 *
711 * We deliberately ignore the vectoring Zilog gives us, and match up
712 * only the number of `reset interrupt under service' operations, not
713 * the order.
714 */
715 /* ARGSUSED */
716 void
717 zshard(intrarg)
718 int intrarg;
719 {
720 register struct zs_chanstate *a;
721 #define b (a + 1)
722 register volatile struct zschan *zc;
723 register int rr3, intflags = 0, v, i;
724
725 a = &((struct zs_softc*)zs_cd.cd_devs[(intrarg >> 2) & 0x0f])->zi_cs[0];
726 rr3 = ZS_READ(a->cs_zc, 3);
727 if (rr3 & (ZSRR3_IP_A_RX|ZSRR3_IP_A_TX|ZSRR3_IP_A_STAT)) {
728 intflags |= 2;
729 zc = a->cs_zc;
730 i = a->cs_rbput;
731 if (rr3 & ZSRR3_IP_A_RX && (v = zsrint(a, zc)) != 0) {
732 a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
733 intflags |= 1;
734 }
735 if (rr3 & ZSRR3_IP_A_TX && (v = zsxint(a, zc)) != 0) {
736 a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
737 intflags |= 1;
738 intflags |= 4;
739 }
740 if (rr3 & ZSRR3_IP_A_STAT && (v = zssint(a, zc)) != 0) {
741 a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
742 intflags |= 1;
743 }
744 a->cs_rbput = i;
745 }
746 if (rr3 & (ZSRR3_IP_B_RX|ZSRR3_IP_B_TX|ZSRR3_IP_B_STAT)) {
747 intflags |= 2;
748 zc = b->cs_zc;
749 i = b->cs_rbput;
750 if (rr3 & ZSRR3_IP_B_RX && (v = zsrint(b, zc)) != 0) {
751 b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
752 intflags |= 1;
753 }
754 if (rr3 & ZSRR3_IP_B_TX && (v = zsxint(b, zc)) != 0) {
755 b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
756 intflags |= 1;
757 intflags |= 4;
758 }
759 if (rr3 & ZSRR3_IP_B_STAT && (v = zssint(b, zc)) != 0) {
760 b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
761 intflags |= 1;
762 }
763 b->cs_rbput = i;
764 }
765 #undef b
766 if (intflags & 1) {
767 #if defined(SUN4C) || defined(SUN4M)
768 if (CPU_ISSUN4M || CPU_ISSUN4C) {
769 /* XXX -- but this will go away when zshard moves to locore.s */
770 struct clockframe *p = intrarg;
771
772 if ((p->psr & PSR_PIL) < (PIL_TTY << 8)) {
773 zsshortcuts++;
774 (void) spltty();
775 if (zshardscope) {
776 LED_ON;
777 LED_OFF;
778 }
779 return (zssoft(intrarg));
780 }
781 }
782 #endif
783 #if x68k
784 #define PSL_TTY PSL_IPL4 /* XXX */
785 if (((intrarg >> 16) & PSL_IPL) < PSL_TTY) {
786 zsshortcuts++;
787 (void) spltty();
788 zssoft(0/*intrarg*/);
789 return;
790 }
791 setsoftserial();
792 #else
793 ienab_bis(IE_ZSSOFT);
794 #endif
795 }
796 }
797
798 static int
799 zsrint(cs, zc)
800 register struct zs_chanstate *cs;
801 register volatile struct zschan *zc;
802 {
803 register int c = zc->zc_data;
804
805 ZS_DELAY();
806 #ifndef x68k
807 if (cs->cs_conk) {
808 register struct conk_state *conk = &zsconk_state;
809
810 /*
811 * Check here for console abort function, so that we
812 * can abort even when interrupts are locking up the
813 * machine.
814 */
815 if (c == KBD_RESET) {
816 conk->conk_id = 1; /* ignore next byte */
817 conk->conk_l1 = 0;
818 } else if (conk->conk_id)
819 conk->conk_id = 0; /* stop ignoring bytes */
820 else if (c == KBD_L1)
821 conk->conk_l1 = 1; /* L1 went down */
822 else if (c == (KBD_L1|KBD_UP))
823 conk->conk_l1 = 0; /* L1 went up */
824 else if (c == KBD_A && conk->conk_l1) {
825 zsabort();
826 conk->conk_l1 = 0; /* we never see the up */
827 goto clearit; /* eat the A after L1-A */
828 }
829 }
830 #endif
831 #ifdef KGDB
832 if (c == FRAME_START && cs->cs_kgdb &&
833 (cs->cs_ttyp->t_state & TS_ISOPEN) == 0) {
834 zskgdb(cs->cs_unit);
835 goto clearit;
836 }
837 #endif
838 /* compose receive character and status */
839 c <<= 8;
840 c |= ZS_READ(zc, 1);
841
842 /* clear receive error & interrupt condition */
843 zc->zc_csr = ZSWR0_RESET_ERRORS;
844 ZS_DELAY();
845 zc->zc_csr = ZSWR0_CLR_INTR;
846 ZS_DELAY();
847
848 return (ZRING_MAKE(ZRING_RINT, c));
849
850 clearit:
851 zc->zc_csr = ZSWR0_RESET_ERRORS;
852 ZS_DELAY();
853 zc->zc_csr = ZSWR0_CLR_INTR;
854 ZS_DELAY();
855 return (0);
856 }
857
858 static int
859 zsxint(cs, zc)
860 register struct zs_chanstate *cs;
861 register volatile struct zschan *zc;
862 {
863 register int i = cs->cs_tbc;
864
865 if (i == 0) {
866 zc->zc_csr = ZSWR0_RESET_TXINT;
867 ZS_DELAY();
868 zc->zc_csr = ZSWR0_CLR_INTR;
869 ZS_DELAY();
870 return (ZRING_MAKE(ZRING_XINT, 0));
871 }
872 cs->cs_tbc = i - 1;
873 zc->zc_data = *cs->cs_tba++;
874 ZS_DELAY();
875 zc->zc_csr = ZSWR0_CLR_INTR;
876 ZS_DELAY();
877 return (0);
878 }
879
880 static int
881 zssint(cs, zc)
882 register struct zs_chanstate *cs;
883 register volatile struct zschan *zc;
884 {
885 register int rr0;
886
887 rr0 = zc->zc_csr;
888 ZS_DELAY();
889 zc->zc_csr = ZSWR0_RESET_STATUS;
890 ZS_DELAY();
891 zc->zc_csr = ZSWR0_CLR_INTR;
892 ZS_DELAY();
893 /*
894 * The chip's hardware flow control is, as noted in zsreg.h,
895 * busted---if the DCD line goes low the chip shuts off the
896 * receiver (!). If we want hardware CTS flow control but do
897 * not have it, and carrier is now on, turn HFC on; if we have
898 * HFC now but carrier has gone low, turn it off.
899 */
900 if (rr0 & ZSRR0_DCD) {
901 if (cs->cs_ttyp->t_cflag & CCTS_OFLOW &&
902 (cs->cs_creg[3] & ZSWR3_HFC) == 0) {
903 cs->cs_creg[3] |= ZSWR3_HFC;
904 ZS_WRITE(zc, 3, cs->cs_creg[3]);
905 }
906 } else {
907 if (cs->cs_creg[3] & ZSWR3_HFC) {
908 cs->cs_creg[3] &= ~ZSWR3_HFC;
909 ZS_WRITE(zc, 3, cs->cs_creg[3]);
910 }
911 }
912 if ((rr0 & ZSRR0_BREAK) && cs->cs_brkabort) {
913 #ifdef SUN4
914 /*
915 * XXX This might not be necessary. Test and
916 * delete if it isn't.
917 */
918 if (CPU_ISSUN4) {
919 while (zc->zc_csr & ZSRR0_BREAK)
920 ZS_DELAY();
921 }
922 #endif
923 zsabort();
924 return (0);
925 }
926 return (ZRING_MAKE(ZRING_SINT, rr0));
927 }
928
929 static void
930 zsabort()
931 {
932
933 #ifdef DDB
934 Debugger();
935 #else
936 printf("stopping on keyboard abort\n");
937 #ifndef x68k
938 callrom();
939 #endif
940 #endif
941 }
942
943 #ifdef KGDB
944 /*
945 * KGDB framing character received: enter kernel debugger. This probably
946 * should time out after a few seconds to avoid hanging on spurious input.
947 */
948 void
949 zskgdb(unit)
950 int unit;
951 {
952
953 printf("zs%d%c: kgdb interrupt\n", unit >> 1, (unit & 1) + 'a');
954 kgdb_connect(1);
955 }
956 #endif
957
958 /*
959 * Print out a ring or fifo overrun error message.
960 */
961 static void
962 zsoverrun(unit, ptime, what)
963 int unit;
964 long *ptime;
965 char *what;
966 {
967
968 if (*ptime != time.tv_sec) {
969 *ptime = time.tv_sec;
970 log(LOG_WARNING, "zs%d%c: %s overrun\n", unit >> 1,
971 (unit & 1) + 'a', what);
972 }
973 }
974
975 /*
976 * ZS software interrupt. Scan all channels for deferred interrupts.
977 */
978 int
979 zssoft(arg)
980 void *arg;
981 {
982 register struct zs_chanstate *cs;
983 register volatile struct zschan *zc;
984 register struct linesw *line;
985 register struct tty *tp;
986 register int get, n, c, cc, unit, s;
987 int retval = 0;
988
989 for (cs = zslist; cs != NULL; cs = cs->cs_next) {
990 get = cs->cs_rbget;
991 again:
992 n = cs->cs_rbput; /* atomic */
993 if (get == n) /* nothing more on this line */
994 continue;
995 retval = 1;
996 unit = cs->cs_unit; /* set up to handle interrupts */
997 zc = cs->cs_zc;
998 tp = cs->cs_ttyp;
999 line = &linesw[tp->t_line];
1000 /*
1001 * Compute the number of interrupts in the receive ring.
1002 * If the count is overlarge, we lost some events, and
1003 * must advance to the first valid one. It may get
1004 * overwritten if more data are arriving, but this is
1005 * too expensive to check and gains nothing (we already
1006 * lost out; all we can do at this point is trade one
1007 * kind of loss for another).
1008 */
1009 n -= get;
1010 if (n > ZLRB_RING_SIZE) {
1011 zsoverrun(unit, &cs->cs_rotime, "ring");
1012 get += n - ZLRB_RING_SIZE;
1013 n = ZLRB_RING_SIZE;
1014 }
1015 while (--n >= 0) {
1016 /* race to keep ahead of incoming interrupts */
1017 c = cs->cs_rbuf[get++ & ZLRB_RING_MASK];
1018 switch (ZRING_TYPE(c)) {
1019
1020 case ZRING_RINT:
1021 c = ZRING_VALUE(c);
1022 if (c & ZSRR1_DO)
1023 zsoverrun(unit, &cs->cs_fotime, "fifo");
1024 cc = c >> 8;
1025 if (c & ZSRR1_FE)
1026 cc |= TTY_FE;
1027 if (c & ZSRR1_PE)
1028 cc |= TTY_PE;
1029 /*
1030 * this should be done through
1031 * bstreams XXX gag choke
1032 */
1033 else if (unit == ZS_MOUSE)
1034 ms_rint(cc);
1035 else
1036 line->l_rint(cc, tp);
1037 break;
1038
1039 case ZRING_XINT:
1040 /*
1041 * Transmit done: change registers and resume,
1042 * or clear BUSY.
1043 */
1044 if (cs->cs_heldchange) {
1045 s = splzs();
1046 c = zc->zc_csr;
1047 ZS_DELAY();
1048 if ((c & ZSRR0_DCD) == 0)
1049 cs->cs_preg[3] &= ~ZSWR3_HFC;
1050 bcopy((caddr_t)cs->cs_preg,
1051 (caddr_t)cs->cs_creg, 16);
1052 zs_loadchannelregs(zc, cs->cs_creg);
1053 splx(s);
1054 cs->cs_heldchange = 0;
1055 if (cs->cs_heldtbc &&
1056 (tp->t_state & TS_TTSTOP) == 0) {
1057 cs->cs_tbc = cs->cs_heldtbc - 1;
1058 zc->zc_data = *cs->cs_tba++;
1059 ZS_DELAY();
1060 goto again;
1061 }
1062 }
1063 tp->t_state &= ~TS_BUSY;
1064 if (tp->t_state & TS_FLUSH)
1065 tp->t_state &= ~TS_FLUSH;
1066 else
1067 ndflush(&tp->t_outq,
1068 cs->cs_tba - (caddr_t)tp->t_outq.c_cf);
1069 line->l_start(tp);
1070 break;
1071
1072 case ZRING_SINT:
1073 /*
1074 * Status line change. HFC bit is run in
1075 * hardware interrupt, to avoid locking
1076 * at splzs here.
1077 */
1078 c = ZRING_VALUE(c);
1079 if ((c ^ cs->cs_rr0) & ZSRR0_DCD) {
1080 cc = (c & ZSRR0_DCD) != 0;
1081 if (line->l_modem(tp, cc) == 0)
1082 zs_modem(cs, cc);
1083 }
1084 cs->cs_rr0 = c;
1085 break;
1086
1087 default:
1088 log(LOG_ERR, "zs%d%c: bad ZRING_TYPE (%x)\n",
1089 unit >> 1, (unit & 1) + 'a', c);
1090 break;
1091 }
1092 }
1093 cs->cs_rbget = get;
1094 goto again;
1095 }
1096 return (retval);
1097 }
1098
1099 int
1100 zsioctl(dev, cmd, data, flag, p)
1101 dev_t dev;
1102 u_long cmd;
1103 caddr_t data;
1104 int flag;
1105 struct proc *p;
1106 {
1107 int unit = ZSUNIT(dev);
1108 struct zs_softc *zi = zs_cd.cd_devs[unit >> 1];
1109 register struct zs_chanstate *cs = &zi->zi_cs[unit & 1];
1110 register struct tty *tp = cs->cs_ttyp;
1111 register int error, s;
1112
1113 error = linesw[tp->t_line].l_ioctl(tp, cmd, data, flag, p);
1114 if (error >= 0)
1115 return (error);
1116 error = ttioctl(tp, cmd, data, flag, p);
1117 if (error >= 0)
1118 return (error);
1119
1120 switch (cmd) {
1121 case TIOCSBRK:
1122 s = splzs();
1123 cs->cs_preg[5] |= ZSWR5_BREAK;
1124 cs->cs_creg[5] |= ZSWR5_BREAK;
1125 ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
1126 splx(s);
1127 break;
1128 case TIOCCBRK:
1129 s = splzs();
1130 cs->cs_preg[5] &= ~ZSWR5_BREAK;
1131 cs->cs_creg[5] &= ~ZSWR5_BREAK;
1132 ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
1133 splx(s);
1134 break;
1135 case TIOCGFLAGS: {
1136 int bits = 0;
1137
1138 if (cs->cs_softcar)
1139 bits |= TIOCFLAG_SOFTCAR;
1140 if (cs->cs_creg[15] & ZSWR15_DCD_IE)
1141 bits |= TIOCFLAG_CLOCAL;
1142 if (cs->cs_creg[3] & ZSWR3_HFC)
1143 bits |= TIOCFLAG_CRTSCTS;
1144 *(int *)data = bits;
1145 break;
1146 }
1147 case TIOCSFLAGS: {
1148 int userbits, driverbits = 0;
1149
1150 error = suser(p->p_ucred, &p->p_acflag);
1151 if (error != 0)
1152 return (EPERM);
1153
1154 userbits = *(int *)data;
1155
1156 /*
1157 * can have `local' or `softcar', and `rtscts' or `mdmbuf'
1158 # defaulting to software flow control.
1159 */
1160 if (userbits & TIOCFLAG_SOFTCAR && userbits & TIOCFLAG_CLOCAL)
1161 return(EINVAL);
1162 if (userbits & TIOCFLAG_MDMBUF) /* don't support this (yet?) */
1163 return(ENXIO);
1164
1165 s = splzs();
1166 if ((userbits & TIOCFLAG_SOFTCAR) || cs->cs_consio) {
1167 cs->cs_softcar = 1; /* turn on softcar */
1168 cs->cs_preg[15] &= ~ZSWR15_DCD_IE; /* turn off dcd */
1169 cs->cs_creg[15] &= ~ZSWR15_DCD_IE;
1170 ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
1171 } else if (userbits & TIOCFLAG_CLOCAL) {
1172 cs->cs_softcar = 0; /* turn off softcar */
1173 cs->cs_preg[15] |= ZSWR15_DCD_IE; /* turn on dcd */
1174 cs->cs_creg[15] |= ZSWR15_DCD_IE;
1175 ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
1176 tp->t_termios.c_cflag |= CLOCAL;
1177 }
1178 if (userbits & TIOCFLAG_CRTSCTS) {
1179 cs->cs_preg[15] |= ZSWR15_CTS_IE;
1180 cs->cs_creg[15] |= ZSWR15_CTS_IE;
1181 ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
1182 cs->cs_preg[3] |= ZSWR3_HFC;
1183 cs->cs_creg[3] |= ZSWR3_HFC;
1184 ZS_WRITE(cs->cs_zc, 3, cs->cs_creg[3]);
1185 tp->t_termios.c_cflag |= CRTSCTS;
1186 } else {
1187 /* no mdmbuf, so we must want software flow control */
1188 cs->cs_preg[15] &= ~ZSWR15_CTS_IE;
1189 cs->cs_creg[15] &= ~ZSWR15_CTS_IE;
1190 ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
1191 cs->cs_preg[3] &= ~ZSWR3_HFC;
1192 cs->cs_creg[3] &= ~ZSWR3_HFC;
1193 ZS_WRITE(cs->cs_zc, 3, cs->cs_creg[3]);
1194 tp->t_termios.c_cflag &= ~CRTSCTS;
1195 }
1196 splx(s);
1197 break;
1198 }
1199 case TIOCSDTR:
1200 zs_modem(cs, 1);
1201 break;
1202 case TIOCCDTR:
1203 zs_modem(cs, 0);
1204 break;
1205 case TIOCMSET:
1206 case TIOCMBIS:
1207 case TIOCMBIC:
1208 case TIOCMGET:
1209 default:
1210 return (ENOTTY);
1211 }
1212 return (0);
1213 }
1214
1215 /*
1216 * Start or restart transmission.
1217 */
1218 static void
1219 zsstart(tp)
1220 register struct tty *tp;
1221 {
1222 register struct zs_chanstate *cs;
1223 register int s, nch;
1224 int unit = ZSUNIT(tp->t_dev);
1225 struct zs_softc *zi = zs_cd.cd_devs[unit >> 1];
1226
1227 cs = &zi->zi_cs[unit & 1];
1228 s = spltty();
1229
1230 /*
1231 * If currently active or delaying, no need to do anything.
1232 */
1233 if (tp->t_state & (TS_TIMEOUT | TS_BUSY | TS_TTSTOP))
1234 goto out;
1235
1236 /*
1237 * If there are sleepers, and output has drained below low
1238 * water mark, awaken.
1239 */
1240 if (tp->t_outq.c_cc <= tp->t_lowat) {
1241 if (tp->t_state & TS_ASLEEP) {
1242 tp->t_state &= ~TS_ASLEEP;
1243 wakeup((caddr_t)&tp->t_outq);
1244 }
1245 selwakeup(&tp->t_wsel);
1246 }
1247
1248 nch = ndqb(&tp->t_outq, 0); /* XXX */
1249 if (nch) {
1250 register char *p = tp->t_outq.c_cf;
1251
1252 /* mark busy, enable tx done interrupts, & send first byte */
1253 tp->t_state |= TS_BUSY;
1254 (void) splzs();
1255 cs->cs_preg[1] |= ZSWR1_TIE;
1256 cs->cs_creg[1] |= ZSWR1_TIE;
1257 ZS_WRITE(cs->cs_zc, 1, cs->cs_creg[1]);
1258 cs->cs_zc->zc_data = *p;
1259 ZS_DELAY();
1260 cs->cs_tba = p + 1;
1261 cs->cs_tbc = nch - 1;
1262 } else {
1263 /*
1264 * Nothing to send, turn off transmit done interrupts.
1265 * This is useful if something is doing polled output.
1266 */
1267 (void) splzs();
1268 cs->cs_preg[1] &= ~ZSWR1_TIE;
1269 cs->cs_creg[1] &= ~ZSWR1_TIE;
1270 ZS_WRITE(cs->cs_zc, 1, cs->cs_creg[1]);
1271 }
1272 out:
1273 splx(s);
1274 }
1275
1276 /*
1277 * Stop output, e.g., for ^S or output flush.
1278 */
1279 void
1280 zsstop(tp, flag)
1281 register struct tty *tp;
1282 int flag;
1283 {
1284 register struct zs_chanstate *cs;
1285 register int s, unit = ZSUNIT(tp->t_dev);
1286 struct zs_softc *zi = zs_cd.cd_devs[unit >> 1];
1287
1288 cs = &zi->zi_cs[unit & 1];
1289 s = splzs();
1290 if (tp->t_state & TS_BUSY) {
1291 /*
1292 * Device is transmitting; must stop it.
1293 */
1294 cs->cs_tbc = 0;
1295 if ((tp->t_state & TS_TTSTOP) == 0)
1296 tp->t_state |= TS_FLUSH;
1297 }
1298 splx(s);
1299 }
1300
1301 /*
1302 * Set ZS tty parameters from termios.
1303 *
1304 * This routine makes use of the fact that only registers
1305 * 1, 3, 4, 5, 9, 10, 11, 12, 13, 14, and 15 are written.
1306 */
1307 static int
1308 zsparam(tp, t)
1309 register struct tty *tp;
1310 register struct termios *t;
1311 {
1312 int unit = ZSUNIT(tp->t_dev);
1313 struct zs_softc *zi = zs_cd.cd_devs[unit >> 1];
1314 register struct zs_chanstate *cs = &zi->zi_cs[unit & 1];
1315 register int tmp, tmp5, cflag, s;
1316
1317 /*
1318 * Because PCLK is only run at 5 MHz, the fastest we
1319 * can go is 51200 baud (this corresponds to TC=1).
1320 * This is somewhat unfortunate as there is no real
1321 * reason we should not be able to handle higher rates.
1322 */
1323 tmp = t->c_ospeed;
1324 if (tmp < 0 || (t->c_ispeed && t->c_ispeed != tmp))
1325 return (EINVAL);
1326 if (tmp == 0) {
1327 /* stty 0 => drop DTR and RTS */
1328 zs_modem(cs, 0);
1329 return (0);
1330 }
1331 tmp = BPS_TO_TCONST(PCLK / 16, tmp);
1332 if (tmp < 2)
1333 return (EINVAL);
1334
1335 cflag = t->c_cflag;
1336 tp->t_ispeed = tp->t_ospeed = TCONST_TO_BPS(PCLK / 16, tmp);
1337 tp->t_cflag = cflag;
1338
1339 /*
1340 * Block interrupts so that state will not
1341 * be altered until we are done setting it up.
1342 */
1343 s = splzs();
1344 cs->cs_preg[12] = tmp;
1345 cs->cs_preg[13] = tmp >> 8;
1346 cs->cs_preg[1] = ZSWR1_RIE | ZSWR1_TIE | ZSWR1_SIE;
1347 switch (cflag & CSIZE) {
1348 case CS5:
1349 tmp = ZSWR3_RX_5;
1350 tmp5 = ZSWR5_TX_5;
1351 break;
1352 case CS6:
1353 tmp = ZSWR3_RX_6;
1354 tmp5 = ZSWR5_TX_6;
1355 break;
1356 case CS7:
1357 tmp = ZSWR3_RX_7;
1358 tmp5 = ZSWR5_TX_7;
1359 break;
1360 case CS8:
1361 default:
1362 tmp = ZSWR3_RX_8;
1363 tmp5 = ZSWR5_TX_8;
1364 break;
1365 }
1366
1367 /*
1368 * Output hardware flow control on the chip is horrendous: if
1369 * carrier detect drops, the receiver is disabled. Hence we
1370 * can only do this when the carrier is on.
1371 */
1372 tmp |= ZSWR3_RX_ENABLE;
1373 if (cflag & CCTS_OFLOW) {
1374 if (cs->cs_zc->zc_csr & ZSRR0_DCD)
1375 tmp |= ZSWR3_HFC;
1376 ZS_DELAY();
1377 }
1378 cs->cs_preg[3] = tmp;
1379 cs->cs_preg[5] = tmp5 | ZSWR5_TX_ENABLE | ZSWR5_DTR | ZSWR5_RTS;
1380
1381 tmp = ZSWR4_CLK_X16 | (cflag & CSTOPB ? ZSWR4_TWOSB : ZSWR4_ONESB);
1382 if ((cflag & PARODD) == 0)
1383 tmp |= ZSWR4_EVENP;
1384 if (cflag & PARENB)
1385 tmp |= ZSWR4_PARENB;
1386 cs->cs_preg[4] = tmp;
1387 cs->cs_preg[9] = ZSWR9_MASTER_IE /*| ZSWR9_NO_VECTOR*/;
1388 cs->cs_preg[10] = ZSWR10_NRZ;
1389 cs->cs_preg[11] = ZSWR11_TXCLK_BAUD | ZSWR11_RXCLK_BAUD;
1390 cs->cs_preg[14] = ZSWR14_BAUD_FROM_PCLK | ZSWR14_BAUD_ENA;
1391 cs->cs_preg[15] = ZSWR15_BREAK_IE | ZSWR15_DCD_IE;
1392
1393 /*
1394 * If nothing is being transmitted, set up new current values,
1395 * else mark them as pending.
1396 */
1397 if (cs->cs_heldchange == 0) {
1398 if (cs->cs_ttyp->t_state & TS_BUSY) {
1399 cs->cs_heldtbc = cs->cs_tbc;
1400 cs->cs_tbc = 0;
1401 cs->cs_heldchange = 1;
1402 } else {
1403 bcopy((caddr_t)cs->cs_preg, (caddr_t)cs->cs_creg, 16);
1404 zs_loadchannelregs(cs->cs_zc, cs->cs_creg);
1405 }
1406 }
1407 splx(s);
1408 return (0);
1409 }
1410
1411 /*
1412 * Raise or lower modem control (DTR/RTS) signals. If a character is
1413 * in transmission, the change is deferred.
1414 */
1415 static void
1416 zs_modem(cs, onoff)
1417 struct zs_chanstate *cs;
1418 int onoff;
1419 {
1420 int s, bis, and;
1421
1422 if (onoff) {
1423 bis = ZSWR5_DTR | ZSWR5_RTS;
1424 and = ~0;
1425 } else {
1426 bis = 0;
1427 and = ~(ZSWR5_DTR | ZSWR5_RTS);
1428 }
1429 s = splzs();
1430 cs->cs_preg[5] = (cs->cs_preg[5] | bis) & and;
1431 if (cs->cs_heldchange == 0) {
1432 if (cs->cs_ttyp->t_state & TS_BUSY) {
1433 cs->cs_heldtbc = cs->cs_tbc;
1434 cs->cs_tbc = 0;
1435 cs->cs_heldchange = 1;
1436 } else {
1437 cs->cs_creg[5] = (cs->cs_creg[5] | bis) & and;
1438 ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
1439 }
1440 }
1441 splx(s);
1442 }
1443
1444 /*
1445 * Hardware flow (RTS) control.
1446 */
1447 static int
1448 zshwiflow(tp, flag)
1449 struct tty *tp;
1450 int flag;
1451 {
1452 int unit = ZSUNIT(tp->t_dev);
1453 struct zs_softc *zi = zs_cd.cd_devs[unit >> 1];
1454 register struct zs_chanstate *cs = &zi->zi_cs[unit & 1];
1455 int s;
1456
1457 #if 0
1458 printf ("zshwiflow %d\n", flag);
1459 #endif
1460 s = splzs();
1461 if (flag) {
1462 cs->cs_preg[5] &= ~ZSWR5_RTS;
1463 cs->cs_creg[5] &= ~ZSWR5_RTS;
1464 ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
1465 } else {
1466 cs->cs_preg[5] |= ZSWR5_RTS;
1467 cs->cs_creg[5] |= ZSWR5_RTS;
1468 ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
1469 }
1470 splx(s);
1471 return 1;
1472 }
1473
1474 /*
1475 * Write the given register set to the given zs channel in the proper order.
1476 * The channel must not be transmitting at the time. The receiver will
1477 * be disabled for the time it takes to write all the registers.
1478 */
1479 static void
1480 zs_loadchannelregs(zc, reg)
1481 volatile struct zschan *zc;
1482 u_char *reg;
1483 {
1484 int i;
1485
1486 zc->zc_csr = ZSM_RESET_ERR; /* reset error condition */
1487 ZS_DELAY();
1488 i = zc->zc_data; /* drain fifo */
1489 ZS_DELAY();
1490 i = zc->zc_data;
1491 ZS_DELAY();
1492 i = zc->zc_data;
1493 ZS_DELAY();
1494 ZS_WRITE(zc, 4, reg[4]);
1495 ZS_WRITE(zc, 10, reg[10]);
1496 ZS_WRITE(zc, 3, reg[3] & ~ZSWR3_RX_ENABLE);
1497 ZS_WRITE(zc, 5, reg[5] & ~ZSWR5_TX_ENABLE);
1498 ZS_WRITE(zc, 1, reg[1]);
1499 ZS_WRITE(zc, 9, reg[9]);
1500 ZS_WRITE(zc, 11, reg[11]);
1501 ZS_WRITE(zc, 12, reg[12]);
1502 ZS_WRITE(zc, 13, reg[13]);
1503 ZS_WRITE(zc, 14, reg[14]);
1504 ZS_WRITE(zc, 15, reg[15]);
1505 ZS_WRITE(zc, 3, reg[3]);
1506 ZS_WRITE(zc, 5, reg[5]);
1507 }
1508
1509 #ifdef x68k
1510 void
1511 zs_msmodem(onoff)
1512 int onoff;
1513 {
1514 if (zsms != NULL) {
1515 zs_modem(zsms, onoff);
1516 while(!(mfp.tsr & MFP_TSR_BE))
1517 /* XXX wait */ ;
1518 mfp.udr = 0x40 | (onoff ? 0 : 1);
1519 }
1520 }
1521 #endif
1522
1523 #ifdef KGDB
1524 /*
1525 * Get a character from the given kgdb channel. Called at splhigh().
1526 */
1527 static int
1528 zs_kgdb_getc(arg)
1529 void *arg;
1530 {
1531 register volatile struct zschan *zc = (volatile struct zschan *)arg;
1532
1533 while ((zc->zc_csr & ZSRR0_RX_READY) == 0)
1534 ZS_DELAY();
1535 return (zc->zc_data);
1536 }
1537
1538 /*
1539 * Put a character to the given kgdb channel. Called at splhigh().
1540 */
1541 static void
1542 zs_kgdb_putc(arg, c)
1543 void *arg;
1544 int c;
1545 {
1546 register volatile struct zschan *zc = (volatile struct zschan *)arg;
1547
1548 while ((zc->zc_csr & ZSRR0_TX_READY) == 0)
1549 ZS_DELAY();
1550 zc->zc_data = c;
1551 ZS_DELAY();
1552 }
1553
1554 /*
1555 * Set up for kgdb; called at boot time before configuration.
1556 * KGDB interrupts will be enabled later when zs0 is configured.
1557 */
1558 void
1559 zs_kgdb_init()
1560 {
1561 volatile struct zsdevice *addr;
1562 volatile struct zschan *zc;
1563 int unit, zs;
1564
1565 if (major(kgdb_dev) != ZSMAJOR)
1566 return;
1567 unit = ZSUNIT(kgdb_dev);
1568 zs = unit >> 1;
1569 if ((addr = zsaddr[zs]) == NULL)
1570 addr = zsaddr[zs] = findzs(zs);
1571 unit &= 1;
1572 zc = unit == 0 ? &addr->zs_chan[ZS_CHAN_A] : &addr->zs_chan[ZS_CHAN_B];
1573 zs_kgdb_savedspeed = zs_getspeed(zc);
1574 printf("zs_kgdb_init: attaching zs%d%c at %d baud\n",
1575 zs, unit + 'a', kgdb_rate);
1576 zs_reset(zc, 1, kgdb_rate);
1577 kgdb_attach(zs_kgdb_getc, zs_kgdb_putc, (void *)zc);
1578 }
1579 #endif /* KGDB */
1580 #endif
1581