aout2hux.c revision 1.4 1 /*
2 * aout2hux - convert a.out/ELF executable to Human68k .x format
3 *
4 * Read two a.out/ELF format executables with different load addresses
5 * and generate Human68k .x format executable.
6 *
7 * written by Yasha (ITOH Yasufumi)
8 * public domain
9 *
10 * usage:
11 * aout2hux [ -o output.x ] a.out1 loadaddr1 a.out2 loadaddr2
12 *
13 * The input files must be static OMAGIC/NMAGIC m68k a.out executables
14 * or m68k ELF executables.
15 * Two executables must have different loading addresses.
16 * Each of the load address must be a hexadecimal number.
17 * Load address shall be multiple of 4 for as / ld of NetBSD/m68k.
18 *
19 * example:
20 * % cc -N -static -Wl,-Ttext,0 -o aout1 *.o
21 * % cc -N -static -Wl,-Ttext,10203040 -o aout2 *.o
22 * % aout2hux -o foo.x aout1 0 aout2 10203040
23 *
24 * $NetBSD: aout2hux.c,v 1.4 1999/11/16 00:48:12 itohy Exp $
25 */
26
27 #include <sys/types.h>
28 #ifndef NO_UNISTD
29 # include <unistd.h>
30 #endif
31 #ifndef NO_STDLIB
32 # include <stdlib.h>
33 #endif
34 #include <stdio.h>
35 #include <string.h>
36
37 #include "type_local.h"
38 #include "aout68k.h"
39 #include "hux.h"
40
41 /* fseek() offset type */
42 typedef long foff_t;
43
44 #ifndef DEFAULT_OUTPUT_FILE
45 # define DEFAULT_OUTPUT_FILE "out.x"
46 #endif
47
48 #ifdef DEBUG
49 # define DPRINTF(x) printf x
50 #else
51 # define DPRINTF(x)
52 #endif
53
54 struct exec_info {
55 foff_t text_off; /* file offset of text section */
56 foff_t data_off; /* file offset of data section */
57 u_int32_t text_size; /* size of text section */
58 u_int32_t text_pad; /* pad between text and data */
59 u_int32_t data_size; /* size of data section */
60 u_int32_t bss_size; /* size of bss */
61 u_int32_t entry_addr; /* entry point address */
62 };
63
64 unsigned get_uint16 PROTO((be_uint16_t *be));
65 u_int32_t get_uint32 PROTO((be_uint32_t *be));
66 void put_uint16 PROTO((be_uint16_t *be, unsigned v));
67 void put_uint32 PROTO((be_uint32_t *be, u_int32_t v));
68 void *do_realloc PROTO((void *p, size_t s));
69
70 static int open_aout __P((const char *fn, struct aout_m68k *hdr,
71 struct exec_info *inf));
72 static int open_elf PROTO((const char *fn, FILE *fp, struct elf_m68k_hdr *hdr,
73 struct exec_info *inf));
74 FILE *open_exec PROTO((const char *fn, struct exec_info *inf));
75 int check_2_exec_inf PROTO((struct exec_info *inf1, struct exec_info *inf2));
76 int aout2hux PROTO((const char *fn1, const char *fn2,
77 u_int32_t loadadr1, u_int32_t loadadr2, const char *fnx));
78 int gethex PROTO((u_int32_t *pval, const char *str));
79 void usage PROTO((const char *name));
80 int main PROTO((int argc, char *argv[]));
81
82 #if !defined(bzero) && defined(__SVR4)
83 # define bzero(d, n) memset((d), 0, (n))
84 #endif
85
86 /*
87 * read/write big-endian integer
88 */
89
90 unsigned
91 get_uint16(be)
92 be_uint16_t *be;
93 {
94
95 return be->val[0] << 8 | be->val[1];
96 }
97
98 u_int32_t
99 get_uint32(be)
100 be_uint32_t *be;
101 {
102
103 return be->val[0]<<24 | be->val[1]<<16 | be->val[2]<<8 | be->val[3];
104 }
105
106 void
107 put_uint16(be, v)
108 be_uint16_t *be;
109 unsigned v;
110 {
111
112 be->val[0] = (u_int8_t) (v >> 8);
113 be->val[1] = (u_int8_t) v;
114 }
115
116 void
117 put_uint32(be, v)
118 be_uint32_t *be;
119 u_int32_t v;
120 {
121
122 be->val[0] = (u_int8_t) (v >> 24);
123 be->val[1] = (u_int8_t) (v >> 16);
124 be->val[2] = (u_int8_t) (v >> 8);
125 be->val[3] = (u_int8_t) v;
126 }
127
128 void *
129 do_realloc(p, s)
130 void *p;
131 size_t s;
132 {
133
134 p = p ? realloc(p, s) : malloc(s); /* for portability */
135
136 if (!p) {
137 fprintf(stderr, "malloc failed\n");
138 exit(1);
139 }
140
141 return p;
142 }
143
144 /*
145 * check a.out header
146 */
147 static int
148 open_aout(fn, hdr, inf)
149 const char *fn;
150 struct aout_m68k *hdr;
151 struct exec_info *inf;
152 {
153 int i;
154
155 DPRINTF(("%s: is an a.out\n", fn));
156
157 if ((i = AOUT_GET_MID(hdr)) != AOUT_MID_M68K && i != AOUT_MID_M68K4K) {
158 fprintf(stderr, "%s: wrong architecture (mid %d)\n", fn, i);
159 return 1;
160 }
161
162 /* if unsolved relocations exist, not an executable but an object */
163 if (hdr->a_trsize.hostval || hdr->a_drsize.hostval) {
164 fprintf(stderr, "%s: not an executable (object file?)\n", fn);
165 return 1;
166 }
167
168 if (AOUT_GET_FLAGS(hdr) & (AOUT_FLAG_PIC | AOUT_FLAG_DYNAMIC)) {
169 fprintf(stderr, "%s: PIC and DYNAMIC are not supported\n", fn);
170 return 1;
171 }
172
173 inf->text_size = get_uint32(&hdr->a_text);
174 inf->data_size = get_uint32(&hdr->a_data);
175 inf->bss_size = get_uint32(&hdr->a_bss);
176 inf->entry_addr = get_uint32(&hdr->a_entry);
177 inf->text_off = sizeof(struct aout_m68k);
178 inf->data_off = sizeof(struct aout_m68k) + inf->text_size;
179 inf->text_pad = -inf->text_size & (AOUT_PAGESIZE(hdr) - 1);
180
181 return 0;
182 }
183
184 /*
185 * digest ELF structure
186 */
187 static int
188 open_elf(fn, fp, hdr, inf)
189 const char *fn;
190 FILE *fp;
191 struct elf_m68k_hdr *hdr;
192 struct exec_info *inf;
193 {
194 int i;
195 size_t nphdr;
196 struct elf_m68k_phdr phdr[2];
197
198 DPRINTF(("%s: is an ELF\n", fn));
199
200 if (hdr->e_ident[EI_VERSION] != EV_CURRENT ||
201 get_uint32(&hdr->e_version) != EV_CURRENT) {
202 fprintf(stderr, "%s: unknown ELF version\n", fn);
203 return 1;
204 }
205
206 if (get_uint16(&hdr->e_type) != EL_EXEC) {
207 fprintf(stderr, "%s: not an executable\n", fn);
208 return 1;
209 }
210
211 if ((i = get_uint16(&hdr->e_machine)) != EM_68K) {
212 fprintf(stderr, "%s: wrong architecture (%d)\n", fn, i);
213 return 1;
214 }
215
216 if ((i = get_uint16(&hdr->e_shentsize)) != SIZE_ELF68K_SHDR) {
217 fprintf(stderr, "%s: size shdr %d should be %d\n", fn, i,
218 SIZE_ELF68K_SHDR);
219 return 1;
220 }
221
222 if ((i = get_uint16(&hdr->e_phentsize)) != SIZE_ELF68K_PHDR) {
223 fprintf(stderr, "%s: size phdr %d should be %d\n", fn, i,
224 SIZE_ELF68K_PHDR);
225 return 1;
226 }
227
228 if ((nphdr = get_uint16(&hdr->e_phnum)) != 1 && nphdr != 2) {
229 fprintf(stderr,
230 "%s: has %d loadable segments (should be 1 or 2)\n",
231 fn, nphdr);
232 return 1;
233 }
234
235 /* Read ELF program header table. */
236 if (fseek(fp, (foff_t) get_uint32(&hdr->e_phoff), SEEK_SET)) {
237 perror(fn);
238 return 1;
239 }
240 if (fread(phdr, sizeof phdr[0], nphdr, fp) != nphdr) {
241 fprintf(stderr, "%s: can't read ELF program header\n", fn);
242 return 1;
243 }
244
245 /* Just error checking. */
246 for (i = 0; i < (int) nphdr; i++) {
247 if (get_uint32(&phdr[i].p_type) != PT_LOAD) {
248 fprintf(stderr,
249 "%s: program header #%d is not loadable\n",
250 fn, i);
251 return 1;
252 }
253 }
254
255 if (nphdr == 1 && (get_uint32(&phdr[0].p_flags) & PF_W)) {
256 /*
257 * Only one writable section --- probably "ld -N" executable.
258 * Find out the start of data segment.
259 */
260 struct elf_m68k_shdr shdr;
261 int nshdr;
262
263 nshdr = get_uint16(&hdr->e_shnum);
264
265 /* section #0 always exists and reserved --- skip */
266 if (nshdr > 1 &&
267 fseek(fp,
268 (foff_t) (get_uint32(&hdr->e_shoff) + sizeof shdr),
269 SEEK_SET)) {
270 perror(fn);
271 return 1;
272 }
273 for (i = 1; i < nshdr; i++) {
274 if (fread(&shdr, sizeof shdr, 1, fp) != 1) {
275 fprintf(stderr,
276 "%s: can't read ELF section header\n",
277 fn);
278 return 1;
279 }
280
281 DPRINTF(("%s: section header #%d: flags 0x%x\n",
282 fn, i, get_uint32(&shdr.sh_flags)));
283
284 if (ELF68K_ISDATASEG(&shdr)) {
285 /*
286 * data section is found.
287 */
288 DPRINTF(("%s: one section, data found\n", fn));
289 inf->text_off = get_uint32(&phdr[0].p_offset);
290 inf->text_size = get_uint32(&shdr.sh_offset) -
291 inf->text_off;
292 inf->text_pad = 0;
293 inf->data_off = inf->text_off + inf->text_size;
294 inf->data_size = get_uint32(&phdr[0].p_filesz) -
295 inf->text_size;
296 inf->bss_size = get_uint32(&phdr[0].p_memsz) -
297 get_uint32(&phdr[0].p_filesz);
298 inf->entry_addr = get_uint32(&hdr->e_entry);
299 goto data_found;
300 }
301 }
302 /*
303 * No data section found --- probably text + bss.
304 */
305 DPRINTF(("%s: one section, no data section\n", fn));
306 inf->text_size = get_uint32(&phdr[0].p_filesz);
307 inf->data_size = 0;
308 inf->bss_size = get_uint32(&phdr[0].p_memsz) - inf->text_size;
309 inf->entry_addr = get_uint32(&hdr->e_entry);
310 inf->text_off = get_uint32(&phdr[0].p_offset);
311 inf->data_off = 0;
312 inf->text_pad = 0;
313 data_found:;
314 } else if (nphdr == 1) {
315 /*
316 * Only one non-writable section --- pure text program?
317 */
318 DPRINTF(("%s: one RO section\n", fn));
319 inf->text_size = get_uint32(&phdr[0].p_filesz);
320 inf->data_size = 0;
321 inf->bss_size = 0;
322 inf->entry_addr = get_uint32(&hdr->e_entry);
323 inf->text_off = get_uint32(&phdr[0].p_offset);
324 inf->data_off = 0;
325 inf->text_pad = get_uint32(&phdr[0].p_memsz) - inf->text_size;
326 } else {
327 /*
328 * two sections
329 * text + data assumed.
330 */
331 int t = 0, d = 1, tmp; /* first guess */
332 #define SWAP_T_D tmp = t, t = d, d = tmp
333
334 DPRINTF(("%s: two sections\n", fn));
335
336 /* Find out text and data. */
337 if (get_uint32(&phdr[t].p_vaddr) > get_uint32(&phdr[d].p_vaddr))
338 SWAP_T_D;
339
340 if ((get_uint32(&phdr[t].p_flags) & PF_X) == 0 &&
341 get_uint32(&phdr[d].p_flags) & PF_X)
342 SWAP_T_D;
343
344 if ((get_uint32(&phdr[d].p_flags) & PF_W) == 0 &&
345 get_uint32(&phdr[t].p_flags) & PF_W)
346 SWAP_T_D;
347 #undef SWAP_T_D
348
349 /* Are the text/data sections correctly detected? */
350 if (get_uint32(&phdr[t].p_vaddr) >
351 get_uint32(&phdr[d].p_vaddr)) {
352 fprintf(stderr, "%s: program sections not in order\n",
353 fn);
354 return 1;
355 }
356
357 if ((get_uint32(&phdr[t].p_flags) & PF_X) == 0)
358 fprintf(stderr, "%s: warning: text is not executable\n",
359 fn);
360
361 if ((get_uint32(&phdr[d].p_flags) & PF_W) == 0)
362 fprintf(stderr, "%s: warning: data is not writable\n",
363 fn);
364
365 inf->text_size = get_uint32(&phdr[t].p_filesz);
366 inf->data_size = get_uint32(&phdr[d].p_filesz);
367 inf->bss_size = get_uint32(&phdr[d].p_memsz) - inf->data_size;
368 inf->entry_addr = get_uint32(&hdr->e_entry);
369 inf->text_off = get_uint32(&phdr[t].p_offset);
370 inf->data_off = get_uint32(&phdr[d].p_offset);
371 inf->text_pad = get_uint32(&phdr[d].p_vaddr) -
372 (get_uint32(&phdr[t].p_vaddr) + inf->text_size);
373 }
374
375 return 0;
376 }
377
378 /*
379 * open an executable
380 */
381 FILE *
382 open_exec(fn, inf)
383 const char *fn;
384 struct exec_info *inf;
385 {
386 FILE *fp;
387 int i;
388 union {
389 struct aout_m68k u_aout;
390 struct elf_m68k_hdr u_elf;
391 } buf;
392 #define hdra (&buf.u_aout)
393 #define hdre (&buf.u_elf)
394
395 if (!(fp = fopen(fn, "r"))) {
396 perror(fn);
397 return (FILE *) NULL;
398 }
399
400 /*
401 * Check for a.out.
402 */
403
404 if (fread(hdra, sizeof(struct aout_m68k), 1, fp) != 1) {
405 fprintf(stderr, "%s: can't read a.out header\n", fn);
406 goto out;
407 }
408
409 if ((i = AOUT_GET_MAGIC(hdra)) != AOUT_OMAGIC && i != AOUT_NMAGIC)
410 goto notaout;
411
412 if (open_aout(fn, hdra, inf))
413 goto out;
414
415 /* OK! */
416 return fp;
417
418 notaout:
419 /*
420 * Check for ELF.
421 */
422
423 if (hdre->e_ident[EI_MAG0] != ELFMAG0 ||
424 hdre->e_ident[EI_MAG1] != ELFMAG1 ||
425 hdre->e_ident[EI_MAG2] != ELFMAG2 ||
426 hdre->e_ident[EI_MAG3] != ELFMAG3 ||
427 hdre->e_ident[EI_CLASS] != ELFCLASS32 ||
428 hdre->e_ident[EI_DATA] != ELFDATA2MSB) {
429 fprintf(stderr,
430 "%s: not an OMAGIC or NMAGIC a.out, or a 32bit BE ELF\n",
431 fn);
432 goto out;
433 }
434
435 /* ELF header is longer than a.out header. Read the rest. */
436 if (fread(hdra + 1,
437 sizeof(struct elf_m68k_hdr) - sizeof(struct aout_m68k),
438 1, fp) != 1) {
439 fprintf(stderr, "%s: can't read ELF header\n", fn);
440 goto out;
441 }
442
443 if (open_elf(fn, fp, hdre, inf))
444 goto out;
445
446 /* OK! */
447 return fp;
448
449 out: fclose(fp);
450 return (FILE *) NULL;
451 #undef hdra
452 #undef hdre
453 }
454
455 /*
456 * compare two executables and check if they are compatible
457 */
458 int
459 check_2_exec_inf(inf1, inf2)
460 struct exec_info *inf1, *inf2;
461 {
462
463 if (inf1->text_size != inf2->text_size ||
464 inf1->text_pad != inf2->text_pad ||
465 inf1->data_size != inf2->data_size ||
466 inf1->bss_size != inf2->bss_size)
467 return -1;
468
469 return 0;
470 }
471
472 /* allocation unit (in bytes) of relocation table */
473 #define RELTBL_CHUNK 8192
474
475 /*
476 * add an entry to the relocation table
477 */
478 #define ADD_RELTBL(adr) \
479 if (relsize + sizeof(struct relinf_l) > relallocsize) \
480 reltbl = do_realloc(reltbl, relallocsize += RELTBL_CHUNK); \
481 if ((adr) < reladdr + HUX_MINLREL) { \
482 struct relinf_s *r = (struct relinf_s *)(reltbl + relsize); \
483 put_uint16(&r->locoff_s, (unsigned)((adr) - reladdr)); \
484 relsize += sizeof(struct relinf_s); \
485 DPRINTF(("short")); \
486 } else { \
487 struct relinf_l *r = (struct relinf_l *)(reltbl + relsize); \
488 put_uint16(&r->lrelmag, HUXLRELMAGIC); \
489 put_uint32((be_uint32_t *)r->locoff_l, (adr) - reladdr); \
490 relsize += sizeof(struct relinf_l); \
491 DPRINTF(("long ")); \
492 } \
493 DPRINTF((" reloc 0x%06x", (adr))); \
494 reladdr = (adr);
495
496 #define ERR1 { if (ferror(fpa1)) perror(fn1); \
497 else fprintf(stderr, "%s: unexpected EOF\n", fn1); \
498 goto out; }
499 #define ERR2 { if (ferror(fpa2)) perror(fn2); \
500 else fprintf(stderr, "%s: unexpected EOF\n", fn2); \
501 goto out; }
502 #define ERRC { fprintf(stderr, "files %s and %s are inconsistent\n", \
503 fn1, fn2); \
504 goto out; }
505
506 /*
507 * read input executables and output .x body
508 * and create relocation table
509 */
510 #define CREATE_RELOCATION(segsize) \
511 while (segsize > 0 || nbuf) { \
512 if (nbuf == 0) { \
513 if (fread(&b1.half[0], SIZE_16, 1, fpa1) != 1) \
514 ERR1 \
515 if (fread(&b2.half[0], SIZE_16, 1, fpa2) != 1) \
516 ERR2 \
517 nbuf = 1; \
518 segsize -= SIZE_16; \
519 } else if (nbuf == 1) { \
520 if (segsize == 0) { \
521 if (b1.half[0].hostval != b2.half[0].hostval) \
522 ERRC \
523 fwrite(&b1.half[0], SIZE_16, 1, fpx); \
524 nbuf = 0; \
525 addr += SIZE_16; \
526 } else { \
527 if (fread(&b1.half[1], SIZE_16, 1, fpa1) != 1)\
528 ERR1 \
529 if (fread(&b2.half[1], SIZE_16, 1, fpa2) != 1)\
530 ERR2 \
531 nbuf = 2; \
532 segsize -= SIZE_16; \
533 } \
534 } else /* if (nbuf == 2) */ { \
535 if (b1.hostval != b2.hostval && \
536 get_uint32(&b1) - loadadr1 \
537 == get_uint32(&b2) - loadadr2) {\
538 /* do relocation */ \
539 ADD_RELTBL(addr) \
540 \
541 put_uint32(&b1, get_uint32(&b1) - loadadr1); \
542 DPRINTF((" v 0x%08x\t", get_uint32(&b1))); \
543 fwrite(&b1, SIZE_32, 1, fpx); \
544 nbuf = 0; \
545 addr += SIZE_32; \
546 } else if (b1.half[0].hostval == b2.half[0].hostval) {\
547 fwrite(&b1.half[0], SIZE_16, 1, fpx); \
548 addr += SIZE_16; \
549 b1.half[0] = b1.half[1]; \
550 b2.half[0] = b2.half[1]; \
551 nbuf = 1; \
552 } else \
553 ERRC \
554 } \
555 }
556
557 int
558 aout2hux(fn1, fn2, loadadr1, loadadr2, fnx)
559 const char *fn1, *fn2, *fnx;
560 u_int32_t loadadr1, loadadr2;
561 {
562 int status = 1; /* the default is "failed" */
563 FILE *fpa1 = NULL, *fpa2 = NULL;
564 struct exec_info inf1, inf2;
565 FILE *fpx = NULL;
566 struct huxhdr xhdr;
567 u_int32_t textsize, datasize, paddingsize, execoff;
568
569 /* for relocation */
570 be_uint32_t b1, b2;
571 int nbuf;
572 u_int32_t addr;
573
574 /* for relocation table */
575 size_t relsize, relallocsize;
576 u_int32_t reladdr;
577 char *reltbl = NULL;
578
579
580 /*
581 * check load addresses
582 */
583 if (loadadr1 == loadadr2) {
584 fprintf(stderr, "two load addresses must be different\n");
585 return 1;
586 }
587
588 /*
589 * open input executables and check them
590 */
591 if (!(fpa1 = open_exec(fn1, &inf1)) || !(fpa2 = open_exec(fn2, &inf2)))
592 goto out;
593
594 /*
595 * check for consistency
596 */
597 if (check_2_exec_inf(&inf1, &inf2)) {
598 fprintf(stderr, "files %s and %s are incompatible\n",
599 fn1, fn2);
600 goto out;
601 }
602 /* check entry address */
603 if (inf1.entry_addr - loadadr1 != inf2.entry_addr - loadadr2) {
604 fprintf(stderr, "address of %s or %s may be incorrect\n",
605 fn1, fn2);
606 goto out;
607 }
608
609 /*
610 * get information of the executables
611 */
612 textsize = inf1.text_size;
613 paddingsize = inf1.text_pad;
614 datasize = inf1.data_size;
615 execoff = inf1.entry_addr - loadadr1;
616
617 DPRINTF(("text: %u, data: %u, pad: %u, bss: %u, exec: %u\n",
618 textsize, datasize, paddingsize, inf1.bss_size, execoff));
619
620 if (textsize & 1) {
621 fprintf(stderr, "text size is not even\n");
622 goto out;
623 }
624 if (datasize & 1) {
625 fprintf(stderr, "data size is not even\n");
626 goto out;
627 }
628 if (execoff >= textsize &&
629 (execoff < textsize + paddingsize ||
630 execoff >= textsize + paddingsize + datasize)) {
631 fprintf(stderr, "exec addr is not in text or data segment\n");
632 goto out;
633 }
634
635 /*
636 * prepare for .x header
637 */
638 bzero((void *) &xhdr, sizeof xhdr);
639 put_uint16(&xhdr.x_magic, HUXMAGIC);
640 put_uint32(&xhdr.x_entry, execoff);
641 put_uint32(&xhdr.x_text, textsize + paddingsize);
642 put_uint32(&xhdr.x_data, inf1.data_size);
643 put_uint32(&xhdr.x_bss, inf1.bss_size);
644
645 /*
646 * create output file
647 */
648 if (!(fpx = fopen(fnx, "w")) ||
649 fseek(fpx, (foff_t) sizeof xhdr, SEEK_SET)) { /* skip header */
650 perror(fnx);
651 goto out;
652 }
653
654 addr = 0;
655 nbuf = 0;
656
657 relsize = relallocsize = 0;
658 reladdr = 0;
659
660 /*
661 * text segment
662 */
663 if (fseek(fpa1, inf1.text_off, SEEK_SET)) {
664 perror(fn1);
665 goto out;
666 }
667 if (fseek(fpa2, inf2.text_off, SEEK_SET)) {
668 perror(fn2);
669 goto out;
670 }
671 CREATE_RELOCATION(textsize)
672
673 /*
674 * page boundary
675 */
676 addr += paddingsize;
677 while (paddingsize--)
678 putc('\0', fpx);
679
680 /*
681 * data segment
682 */
683 if (fseek(fpa1, inf1.data_off, SEEK_SET)) {
684 perror(fn1);
685 goto out;
686 }
687 if (fseek(fpa2, inf2.data_off, SEEK_SET)) {
688 perror(fn2);
689 goto out;
690 }
691 CREATE_RELOCATION(datasize)
692
693 /*
694 * error check of the above
695 */
696 if (ferror(fpx)) {
697 fprintf(stderr, "%s: write failure\n", fnx);
698 goto out;
699 }
700
701 /*
702 * write relocation table
703 */
704 if (relsize > 0) {
705 DPRINTF(("\n"));
706 if (fwrite(reltbl, 1, relsize, fpx) != relsize) {
707 perror(fnx);
708 goto out;
709 }
710 }
711
712 /*
713 * write .x header at the top of the output file
714 */
715 put_uint32(&xhdr.x_rsize, relsize);
716 if (fseek(fpx, (foff_t) 0, SEEK_SET) ||
717 fwrite(&xhdr, sizeof xhdr, 1, fpx) != 1) {
718 perror(fnx);
719 goto out;
720 }
721
722 status = 0; /* all OK */
723
724 out: /*
725 * cleanup
726 */
727 if (fpa1)
728 fclose(fpa1);
729 if (fpa2)
730 fclose(fpa2);
731 if (fpx) {
732 if (fclose(fpx) && status == 0) {
733 /* Alas, final flush failed! */
734 perror(fnx);
735 status = 1;
736 }
737 if (status)
738 remove(fnx);
739 }
740 if (reltbl)
741 free(reltbl);
742
743 return status;
744 }
745
746 #ifndef NO_BIST
747 void bist PROTO((void));
748
749 /*
750 * built-in self test
751 */
752 void
753 bist()
754 {
755 be_uint16_t be16;
756 be_uint32_t be32;
757 be_uint32_t be32x2[2];
758
759 be16.val[0] = 0x12; be16.val[1] = 0x34;
760 be32.val[0] = 0xfe; be32.val[1] = 0xdc;
761 be32.val[2] = 0xba; be32.val[3] = 0x98;
762
763 put_uint16(&be32x2[0].half[1], 0x4567);
764 put_uint32(&be32x2[1], 0xa9876543);
765
766 if (sizeof(u_int8_t) != 1 || sizeof(u_int16_t) != 2 ||
767 sizeof(u_int32_t) != 4 ||
768 SIZE_16 != 2 || SIZE_32 != 4 || sizeof be32x2 != 8 ||
769 sizeof(struct relinf_s) != 2 || sizeof(struct relinf_l) != 6 ||
770 SIZE_ELF68K_HDR != 52 || SIZE_ELF68K_SHDR != 40 ||
771 SIZE_ELF68K_PHDR != 32 ||
772 get_uint16(&be16) != 0x1234 || get_uint32(&be32) != 0xfedcba98 ||
773 get_uint16(&be32x2[0].half[1]) != 0x4567 ||
774 get_uint32(&be32x2[1]) != 0xa9876543) {
775 fprintf(stderr, "BIST failed\n");
776 exit(1);
777 }
778 }
779 #endif
780
781 int
782 gethex(pval, str)
783 u_int32_t *pval;
784 const char *str;
785 {
786 const unsigned char *p = (const unsigned char *) str;
787 u_int32_t val;
788 int over;
789
790 /* skip leading "0x" if exists */
791 if (p[0] == '0' && (p[1] == 'x' || p[1] == 'X'))
792 p += 2;
793
794 if (!*p)
795 goto bad;
796
797 for (val = 0, over = 0; *p; p++) {
798 int digit;
799
800 switch (*p) {
801 case '0': case '1': case '2': case '3': case '4':
802 case '5': case '6': case '7': case '8': case '9':
803 digit = *p - '0';
804 break;
805 case 'a': case 'A': digit = 10; break;
806 case 'b': case 'B': digit = 11; break;
807 case 'c': case 'C': digit = 12; break;
808 case 'd': case 'D': digit = 13; break;
809 case 'e': case 'E': digit = 14; break;
810 case 'f': case 'F': digit = 15; break;
811 default:
812 goto bad;
813 }
814 if (val >= 0x10000000)
815 over = 1;
816 val = (val << 4) | digit;
817 }
818
819 if (over)
820 fprintf(stderr, "warning: %s: constant overflow\n", str);
821
822 *pval = val;
823
824 DPRINTF(("gethex: %s -> 0x%x\n", str, val));
825
826 return 0;
827
828 bad:
829 fprintf(stderr, "%s: not a hexadecimal number\n", str);
830 return 1;
831 }
832
833 void
834 usage(name)
835 const char *name;
836 {
837
838 fprintf(stderr, "\
839 usage: %s [ -o output.x ] a.out1 loadaddr1 a.out2 loadaddr2\n\n\
840 The input files must be static OMAGIC/NMAGIC m68k a.out executables\n\
841 or m68k ELF executables.\n\
842 Two executables must have different loading addresses.\n\
843 Each of the load address must be a hexadecimal number.\n\
844 The default output filename is \"%s\".\n" ,name, DEFAULT_OUTPUT_FILE);
845
846 exit(1);
847 }
848
849 int
850 main(argc, argv)
851 int argc;
852 char *argv[];
853 {
854 const char *outfile = DEFAULT_OUTPUT_FILE;
855 u_int32_t adr1, adr2;
856
857 #ifndef NO_BIST
858 bist();
859 #endif
860
861 if (argc > 2 && argv[1][0] == '-' && argv[1][1] == 'o' && !argv[1][2]) {
862 outfile = argv[2];
863 argv += 2;
864 argc -= 2;
865 }
866
867 if (argc != 5)
868 usage(argv[0]);
869
870 if (gethex(&adr1, argv[2]) || gethex(&adr2, argv[4]))
871 usage(argv[0]);
872
873 return aout2hux(argv[1], argv[3], adr1, adr2, outfile);
874 }
875