acpi_cpu_md.c revision 1.36 1 1.36 jruoho /* $NetBSD: acpi_cpu_md.c,v 1.36 2010/11/30 18:44:07 jruoho Exp $ */
2 1.1 jruoho
3 1.1 jruoho /*-
4 1.1 jruoho * Copyright (c) 2010 Jukka Ruohonen <jruohonen (at) iki.fi>
5 1.1 jruoho * All rights reserved.
6 1.1 jruoho *
7 1.1 jruoho * Redistribution and use in source and binary forms, with or without
8 1.1 jruoho * modification, are permitted provided that the following conditions
9 1.1 jruoho * are met:
10 1.1 jruoho *
11 1.1 jruoho * 1. Redistributions of source code must retain the above copyright
12 1.1 jruoho * notice, this list of conditions and the following disclaimer.
13 1.1 jruoho * 2. Redistributions in binary form must reproduce the above copyright
14 1.1 jruoho * notice, this list of conditions and the following disclaimer in the
15 1.1 jruoho * documentation and/or other materials provided with the distribution.
16 1.1 jruoho *
17 1.1 jruoho * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18 1.1 jruoho * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 1.1 jruoho * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 1.1 jruoho * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21 1.1 jruoho * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 1.1 jruoho * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 1.1 jruoho * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 1.1 jruoho * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 1.1 jruoho * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 1.1 jruoho * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 1.1 jruoho * SUCH DAMAGE.
28 1.1 jruoho */
29 1.1 jruoho #include <sys/cdefs.h>
30 1.36 jruoho __KERNEL_RCSID(0, "$NetBSD: acpi_cpu_md.c,v 1.36 2010/11/30 18:44:07 jruoho Exp $");
31 1.1 jruoho
32 1.1 jruoho #include <sys/param.h>
33 1.1 jruoho #include <sys/bus.h>
34 1.1 jruoho #include <sys/kcore.h>
35 1.5 jruoho #include <sys/sysctl.h>
36 1.4 jruoho #include <sys/xcall.h>
37 1.1 jruoho
38 1.1 jruoho #include <x86/cpu.h>
39 1.5 jruoho #include <x86/cpufunc.h>
40 1.5 jruoho #include <x86/cputypes.h>
41 1.1 jruoho #include <x86/cpuvar.h>
42 1.5 jruoho #include <x86/cpu_msr.h>
43 1.1 jruoho #include <x86/machdep.h>
44 1.1 jruoho
45 1.1 jruoho #include <dev/acpi/acpica.h>
46 1.1 jruoho #include <dev/acpi/acpi_cpu.h>
47 1.1 jruoho
48 1.12 jruoho #include <dev/pci/pcivar.h>
49 1.12 jruoho #include <dev/pci/pcidevs.h>
50 1.12 jruoho
51 1.35 jruoho /*
52 1.35 jruoho * AMD C1E.
53 1.35 jruoho */
54 1.35 jruoho #define MSR_CMPHALT 0xc0010055
55 1.35 jruoho
56 1.35 jruoho #define MSR_CMPHALT_SMI __BIT(27)
57 1.35 jruoho #define MSR_CMPHALT_C1E __BIT(28)
58 1.35 jruoho #define MSR_CMPHALT_BMSTS __BIT(29)
59 1.33 jruoho
60 1.32 jruoho /*
61 1.32 jruoho * AMD families 10h and 11h.
62 1.32 jruoho */
63 1.32 jruoho #define MSR_10H_LIMIT 0xc0010061
64 1.32 jruoho #define MSR_10H_CONTROL 0xc0010062
65 1.32 jruoho #define MSR_10H_STATUS 0xc0010063
66 1.32 jruoho #define MSR_10H_CONFIG 0xc0010064
67 1.22 jruoho
68 1.32 jruoho /*
69 1.32 jruoho * AMD family 0Fh.
70 1.32 jruoho */
71 1.32 jruoho #define MSR_0FH_CONTROL 0xc0010041
72 1.17 jruoho #define MSR_0FH_STATUS 0xc0010042
73 1.17 jruoho
74 1.32 jruoho #define MSR_0FH_STATUS_CFID __BITS( 0, 5)
75 1.32 jruoho #define MSR_0FH_STATUS_CVID __BITS(32, 36)
76 1.32 jruoho #define MSR_0FH_STATUS_PENDING __BITS(31, 31)
77 1.32 jruoho
78 1.32 jruoho #define MSR_0FH_CONTROL_FID __BITS( 0, 5)
79 1.32 jruoho #define MSR_0FH_CONTROL_VID __BITS( 8, 12)
80 1.32 jruoho #define MSR_0FH_CONTROL_CHG __BITS(16, 16)
81 1.32 jruoho #define MSR_0FH_CONTROL_CNT __BITS(32, 51)
82 1.32 jruoho
83 1.32 jruoho #define ACPI_0FH_STATUS_FID __BITS( 0, 5)
84 1.32 jruoho #define ACPI_0FH_STATUS_VID __BITS( 6, 10)
85 1.32 jruoho
86 1.32 jruoho #define ACPI_0FH_CONTROL_FID __BITS( 0, 5)
87 1.32 jruoho #define ACPI_0FH_CONTROL_VID __BITS( 6, 10)
88 1.32 jruoho #define ACPI_0FH_CONTROL_VST __BITS(11, 17)
89 1.32 jruoho #define ACPI_0FH_CONTROL_MVS __BITS(18, 19)
90 1.32 jruoho #define ACPI_0FH_CONTROL_PLL __BITS(20, 26)
91 1.32 jruoho #define ACPI_0FH_CONTROL_RVO __BITS(28, 29)
92 1.32 jruoho #define ACPI_0FH_CONTROL_IRT __BITS(30, 31)
93 1.32 jruoho
94 1.32 jruoho #define FID_TO_VCO_FID(fidd) (((fid) < 8) ? (8 + ((fid) << 1)) : (fid))
95 1.17 jruoho
96 1.5 jruoho static char native_idle_text[16];
97 1.5 jruoho void (*native_idle)(void) = NULL;
98 1.1 jruoho
99 1.12 jruoho static int acpicpu_md_quirks_piix4(struct pci_attach_args *);
100 1.19 jruoho static void acpicpu_md_pstate_status(void *, void *);
101 1.32 jruoho static int acpicpu_md_pstate_fidvid_get(struct acpicpu_softc *,
102 1.32 jruoho uint32_t *);
103 1.32 jruoho static int acpicpu_md_pstate_fidvid_set(struct acpicpu_pstate *);
104 1.32 jruoho static int acpicpu_md_pstate_fidvid_read(uint32_t *, uint32_t *);
105 1.32 jruoho static void acpicpu_md_pstate_fidvid_write(uint32_t, uint32_t,
106 1.32 jruoho uint32_t, uint32_t);
107 1.19 jruoho static void acpicpu_md_tstate_status(void *, void *);
108 1.19 jruoho static int acpicpu_md_pstate_sysctl_init(void);
109 1.5 jruoho static int acpicpu_md_pstate_sysctl_get(SYSCTLFN_PROTO);
110 1.5 jruoho static int acpicpu_md_pstate_sysctl_set(SYSCTLFN_PROTO);
111 1.5 jruoho static int acpicpu_md_pstate_sysctl_all(SYSCTLFN_PROTO);
112 1.5 jruoho
113 1.5 jruoho extern uint32_t cpus_running;
114 1.5 jruoho extern struct acpicpu_softc **acpicpu_sc;
115 1.35 jruoho static bool acpicpu_pstate_status = false;
116 1.19 jruoho static struct sysctllog *acpicpu_log = NULL;
117 1.1 jruoho
118 1.1 jruoho uint32_t
119 1.1 jruoho acpicpu_md_cap(void)
120 1.1 jruoho {
121 1.1 jruoho struct cpu_info *ci = curcpu();
122 1.1 jruoho uint32_t val = 0;
123 1.1 jruoho
124 1.17 jruoho if (cpu_vendor != CPUVENDOR_IDT &&
125 1.17 jruoho cpu_vendor != CPUVENDOR_INTEL)
126 1.1 jruoho return val;
127 1.1 jruoho
128 1.1 jruoho /*
129 1.1 jruoho * Basic SMP C-states (required for _CST).
130 1.1 jruoho */
131 1.1 jruoho val |= ACPICPU_PDC_C_C1PT | ACPICPU_PDC_C_C2C3;
132 1.1 jruoho
133 1.1 jruoho /*
134 1.1 jruoho * If MONITOR/MWAIT is available, announce
135 1.1 jruoho * support for native instructions in all C-states.
136 1.1 jruoho */
137 1.1 jruoho if ((ci->ci_feat_val[1] & CPUID2_MONITOR) != 0)
138 1.1 jruoho val |= ACPICPU_PDC_C_C1_FFH | ACPICPU_PDC_C_C2C3_FFH;
139 1.1 jruoho
140 1.5 jruoho /*
141 1.10 jruoho * Set native P- and T-states, if available.
142 1.5 jruoho */
143 1.5 jruoho if ((ci->ci_feat_val[1] & CPUID2_EST) != 0)
144 1.5 jruoho val |= ACPICPU_PDC_P_FFH;
145 1.5 jruoho
146 1.10 jruoho if ((ci->ci_feat_val[0] & CPUID_ACPI) != 0)
147 1.10 jruoho val |= ACPICPU_PDC_T_FFH;
148 1.10 jruoho
149 1.1 jruoho return val;
150 1.1 jruoho }
151 1.1 jruoho
152 1.1 jruoho uint32_t
153 1.1 jruoho acpicpu_md_quirks(void)
154 1.1 jruoho {
155 1.1 jruoho struct cpu_info *ci = curcpu();
156 1.12 jruoho struct pci_attach_args pa;
157 1.18 jruoho uint32_t family, val = 0;
158 1.21 jruoho uint32_t regs[4];
159 1.1 jruoho
160 1.1 jruoho if (acpicpu_md_cpus_running() == 1)
161 1.1 jruoho val |= ACPICPU_FLAG_C_BM;
162 1.1 jruoho
163 1.1 jruoho if ((ci->ci_feat_val[1] & CPUID2_MONITOR) != 0)
164 1.5 jruoho val |= ACPICPU_FLAG_C_FFH;
165 1.1 jruoho
166 1.25 jruoho val |= ACPICPU_FLAG_C_APIC | ACPICPU_FLAG_C_TSC;
167 1.22 jruoho
168 1.1 jruoho switch (cpu_vendor) {
169 1.1 jruoho
170 1.17 jruoho case CPUVENDOR_IDT:
171 1.22 jruoho
172 1.22 jruoho if ((ci->ci_feat_val[1] & CPUID2_EST) != 0)
173 1.22 jruoho val |= ACPICPU_FLAG_P_FFH;
174 1.22 jruoho
175 1.22 jruoho if ((ci->ci_feat_val[0] & CPUID_ACPI) != 0)
176 1.22 jruoho val |= ACPICPU_FLAG_T_FFH;
177 1.22 jruoho
178 1.22 jruoho break;
179 1.22 jruoho
180 1.1 jruoho case CPUVENDOR_INTEL:
181 1.17 jruoho
182 1.22 jruoho val |= ACPICPU_FLAG_C_BM | ACPICPU_FLAG_C_ARB;
183 1.22 jruoho
184 1.5 jruoho if ((ci->ci_feat_val[1] & CPUID2_EST) != 0)
185 1.5 jruoho val |= ACPICPU_FLAG_P_FFH;
186 1.5 jruoho
187 1.10 jruoho if ((ci->ci_feat_val[0] & CPUID_ACPI) != 0)
188 1.10 jruoho val |= ACPICPU_FLAG_T_FFH;
189 1.10 jruoho
190 1.22 jruoho /*
191 1.25 jruoho * Check whether MSR_APERF, MSR_MPERF, and Turbo
192 1.25 jruoho * Boost are available. Also see if we might have
193 1.25 jruoho * an invariant local APIC timer ("ARAT").
194 1.23 jruoho */
195 1.23 jruoho if (cpuid_level >= 0x06) {
196 1.23 jruoho
197 1.23 jruoho x86_cpuid(0x06, regs);
198 1.23 jruoho
199 1.34 jruoho if ((regs[2] & CPUID_DSPM_HWF) != 0)
200 1.23 jruoho val |= ACPICPU_FLAG_P_HW;
201 1.23 jruoho
202 1.34 jruoho if ((regs[0] & CPUID_DSPM_IDA) != 0)
203 1.24 jruoho val |= ACPICPU_FLAG_P_TURBO;
204 1.25 jruoho
205 1.34 jruoho if ((regs[0] & CPUID_DSPM_ARAT) != 0)
206 1.25 jruoho val &= ~ACPICPU_FLAG_C_APIC;
207 1.23 jruoho }
208 1.23 jruoho
209 1.23 jruoho /*
210 1.22 jruoho * Detect whether TSC is invariant. If it is not,
211 1.22 jruoho * we keep the flag to note that TSC will not run
212 1.22 jruoho * at constant rate. Depending on the CPU, this may
213 1.22 jruoho * affect P- and T-state changes, but especially
214 1.22 jruoho * relevant are C-states; with variant TSC, states
215 1.24 jruoho * larger than C1 may completely stop the counter.
216 1.22 jruoho */
217 1.22 jruoho x86_cpuid(0x80000000, regs);
218 1.22 jruoho
219 1.22 jruoho if (regs[0] >= 0x80000007) {
220 1.22 jruoho
221 1.22 jruoho x86_cpuid(0x80000007, regs);
222 1.22 jruoho
223 1.32 jruoho if ((regs[3] & __BIT(8)) != 0)
224 1.22 jruoho val &= ~ACPICPU_FLAG_C_TSC;
225 1.22 jruoho }
226 1.22 jruoho
227 1.17 jruoho break;
228 1.12 jruoho
229 1.17 jruoho case CPUVENDOR_AMD:
230 1.17 jruoho
231 1.32 jruoho x86_cpuid(0x80000000, regs);
232 1.32 jruoho
233 1.32 jruoho if (regs[0] < 0x80000007)
234 1.32 jruoho break;
235 1.32 jruoho
236 1.32 jruoho x86_cpuid(0x80000007, regs);
237 1.32 jruoho
238 1.18 jruoho family = CPUID2FAMILY(ci->ci_signature);
239 1.18 jruoho
240 1.18 jruoho if (family == 0xf)
241 1.18 jruoho family += CPUID2EXTFAMILY(ci->ci_signature);
242 1.18 jruoho
243 1.32 jruoho switch (family) {
244 1.1 jruoho
245 1.22 jruoho case 0x0f:
246 1.32 jruoho
247 1.32 jruoho if ((regs[3] & CPUID_APM_FID) == 0)
248 1.32 jruoho break;
249 1.32 jruoho
250 1.32 jruoho if ((regs[3] & CPUID_APM_VID) == 0)
251 1.32 jruoho break;
252 1.32 jruoho
253 1.32 jruoho val |= ACPICPU_FLAG_P_FFH | ACPICPU_FLAG_P_FIDVID;
254 1.32 jruoho break;
255 1.32 jruoho
256 1.17 jruoho case 0x10:
257 1.17 jruoho case 0x11:
258 1.1 jruoho
259 1.22 jruoho if ((regs[3] & CPUID_APM_TSC) != 0)
260 1.22 jruoho val &= ~ACPICPU_FLAG_C_TSC;
261 1.22 jruoho
262 1.21 jruoho if ((regs[3] & CPUID_APM_HWP) != 0)
263 1.17 jruoho val |= ACPICPU_FLAG_P_FFH;
264 1.21 jruoho
265 1.21 jruoho if ((regs[3] & CPUID_APM_CPB) != 0)
266 1.21 jruoho val |= ACPICPU_FLAG_P_TURBO;
267 1.35 jruoho
268 1.35 jruoho val |= ACPICPU_FLAG_C_C1E;
269 1.35 jruoho break;
270 1.17 jruoho }
271 1.1 jruoho
272 1.1 jruoho break;
273 1.1 jruoho }
274 1.1 jruoho
275 1.12 jruoho /*
276 1.12 jruoho * There are several erratums for PIIX4.
277 1.12 jruoho */
278 1.12 jruoho if (pci_find_device(&pa, acpicpu_md_quirks_piix4) != 0)
279 1.12 jruoho val |= ACPICPU_FLAG_PIIX4;
280 1.12 jruoho
281 1.1 jruoho return val;
282 1.1 jruoho }
283 1.1 jruoho
284 1.12 jruoho static int
285 1.12 jruoho acpicpu_md_quirks_piix4(struct pci_attach_args *pa)
286 1.12 jruoho {
287 1.12 jruoho
288 1.12 jruoho /*
289 1.12 jruoho * XXX: The pci_find_device(9) function only
290 1.12 jruoho * deals with attached devices. Change this
291 1.12 jruoho * to use something like pci_device_foreach().
292 1.12 jruoho */
293 1.12 jruoho if (PCI_VENDOR(pa->pa_id) != PCI_VENDOR_INTEL)
294 1.12 jruoho return 0;
295 1.12 jruoho
296 1.12 jruoho if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_82371AB_ISA ||
297 1.12 jruoho PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_82440MX_PMC)
298 1.12 jruoho return 1;
299 1.12 jruoho
300 1.12 jruoho return 0;
301 1.12 jruoho }
302 1.12 jruoho
303 1.35 jruoho void
304 1.35 jruoho acpicpu_md_quirks_c1e(void)
305 1.35 jruoho {
306 1.35 jruoho const uint64_t c1e = MSR_CMPHALT_SMI | MSR_CMPHALT_C1E;
307 1.35 jruoho uint64_t val;
308 1.35 jruoho
309 1.35 jruoho val = rdmsr(MSR_CMPHALT);
310 1.35 jruoho
311 1.35 jruoho if ((val & c1e) != 0)
312 1.35 jruoho wrmsr(MSR_CMPHALT, val & ~c1e);
313 1.35 jruoho }
314 1.35 jruoho
315 1.1 jruoho uint32_t
316 1.1 jruoho acpicpu_md_cpus_running(void)
317 1.1 jruoho {
318 1.1 jruoho
319 1.1 jruoho return popcount32(cpus_running);
320 1.1 jruoho }
321 1.1 jruoho
322 1.1 jruoho int
323 1.31 jruoho acpicpu_md_idle_start(struct acpicpu_softc *sc)
324 1.1 jruoho {
325 1.1 jruoho const size_t size = sizeof(native_idle_text);
326 1.31 jruoho struct acpicpu_cstate *cs;
327 1.31 jruoho bool ipi = false;
328 1.31 jruoho int i;
329 1.1 jruoho
330 1.1 jruoho x86_cpu_idle_get(&native_idle, native_idle_text, size);
331 1.31 jruoho
332 1.31 jruoho for (i = 0; i < ACPI_C_STATE_COUNT; i++) {
333 1.31 jruoho
334 1.31 jruoho cs = &sc->sc_cstate[i];
335 1.31 jruoho
336 1.31 jruoho if (cs->cs_method == ACPICPU_C_STATE_HALT) {
337 1.31 jruoho ipi = true;
338 1.31 jruoho break;
339 1.31 jruoho }
340 1.31 jruoho }
341 1.31 jruoho
342 1.31 jruoho x86_cpu_idle_set(acpicpu_cstate_idle, "acpi", ipi);
343 1.1 jruoho
344 1.1 jruoho return 0;
345 1.1 jruoho }
346 1.1 jruoho
347 1.1 jruoho int
348 1.1 jruoho acpicpu_md_idle_stop(void)
349 1.1 jruoho {
350 1.4 jruoho uint64_t xc;
351 1.31 jruoho bool ipi;
352 1.1 jruoho
353 1.31 jruoho ipi = (native_idle != x86_cpu_idle_halt) ? false : true;
354 1.31 jruoho x86_cpu_idle_set(native_idle, native_idle_text, ipi);
355 1.1 jruoho
356 1.4 jruoho /*
357 1.4 jruoho * Run a cross-call to ensure that all CPUs are
358 1.4 jruoho * out from the ACPI idle-loop before detachment.
359 1.4 jruoho */
360 1.4 jruoho xc = xc_broadcast(0, (xcfunc_t)nullop, NULL, NULL);
361 1.4 jruoho xc_wait(xc);
362 1.1 jruoho
363 1.1 jruoho return 0;
364 1.1 jruoho }
365 1.1 jruoho
366 1.3 jruoho /*
367 1.31 jruoho * Called with interrupts disabled.
368 1.31 jruoho * Caller should enable interrupts after return.
369 1.3 jruoho */
370 1.1 jruoho void
371 1.1 jruoho acpicpu_md_idle_enter(int method, int state)
372 1.1 jruoho {
373 1.3 jruoho struct cpu_info *ci = curcpu();
374 1.1 jruoho
375 1.1 jruoho switch (method) {
376 1.1 jruoho
377 1.1 jruoho case ACPICPU_C_STATE_FFH:
378 1.3 jruoho
379 1.3 jruoho x86_enable_intr();
380 1.3 jruoho x86_monitor(&ci->ci_want_resched, 0, 0);
381 1.3 jruoho
382 1.31 jruoho if (__predict_false(ci->ci_want_resched != 0))
383 1.3 jruoho return;
384 1.3 jruoho
385 1.1 jruoho x86_mwait((state - 1) << 4, 0);
386 1.1 jruoho break;
387 1.1 jruoho
388 1.1 jruoho case ACPICPU_C_STATE_HALT:
389 1.3 jruoho
390 1.31 jruoho if (__predict_false(ci->ci_want_resched != 0))
391 1.3 jruoho return;
392 1.3 jruoho
393 1.1 jruoho x86_stihlt();
394 1.1 jruoho break;
395 1.1 jruoho }
396 1.1 jruoho }
397 1.5 jruoho
398 1.5 jruoho int
399 1.5 jruoho acpicpu_md_pstate_start(void)
400 1.5 jruoho {
401 1.20 jruoho const uint64_t est = __BIT(16);
402 1.20 jruoho uint64_t val;
403 1.20 jruoho
404 1.20 jruoho switch (cpu_vendor) {
405 1.20 jruoho
406 1.20 jruoho case CPUVENDOR_IDT:
407 1.20 jruoho case CPUVENDOR_INTEL:
408 1.20 jruoho
409 1.20 jruoho val = rdmsr(MSR_MISC_ENABLE);
410 1.20 jruoho
411 1.20 jruoho if ((val & est) == 0) {
412 1.20 jruoho
413 1.20 jruoho val |= est;
414 1.20 jruoho
415 1.20 jruoho wrmsr(MSR_MISC_ENABLE, val);
416 1.20 jruoho val = rdmsr(MSR_MISC_ENABLE);
417 1.20 jruoho
418 1.20 jruoho if ((val & est) == 0)
419 1.20 jruoho return ENOTTY;
420 1.20 jruoho }
421 1.20 jruoho }
422 1.9 jruoho
423 1.19 jruoho return acpicpu_md_pstate_sysctl_init();
424 1.5 jruoho }
425 1.5 jruoho
426 1.5 jruoho int
427 1.5 jruoho acpicpu_md_pstate_stop(void)
428 1.5 jruoho {
429 1.5 jruoho
430 1.19 jruoho if (acpicpu_log != NULL)
431 1.19 jruoho sysctl_teardown(&acpicpu_log);
432 1.5 jruoho
433 1.5 jruoho return 0;
434 1.5 jruoho }
435 1.5 jruoho
436 1.5 jruoho int
437 1.15 jruoho acpicpu_md_pstate_pss(struct acpicpu_softc *sc)
438 1.5 jruoho {
439 1.15 jruoho struct acpicpu_pstate *ps, msr;
440 1.17 jruoho struct cpu_info *ci = curcpu();
441 1.18 jruoho uint32_t family, i = 0;
442 1.13 jruoho
443 1.15 jruoho (void)memset(&msr, 0, sizeof(struct acpicpu_pstate));
444 1.13 jruoho
445 1.5 jruoho switch (cpu_vendor) {
446 1.5 jruoho
447 1.17 jruoho case CPUVENDOR_IDT:
448 1.5 jruoho case CPUVENDOR_INTEL:
449 1.33 jruoho
450 1.33 jruoho /*
451 1.33 jruoho * If the so-called Turbo Boost is present,
452 1.33 jruoho * the P0-state is always the "turbo state".
453 1.33 jruoho *
454 1.33 jruoho * For discussion, see:
455 1.33 jruoho *
456 1.33 jruoho * Intel Corporation: Intel Turbo Boost Technology
457 1.33 jruoho * in Intel Core(tm) Microarchitectures (Nehalem)
458 1.33 jruoho * Based Processors. White Paper, November 2008.
459 1.33 jruoho */
460 1.33 jruoho if ((sc->sc_flags & ACPICPU_FLAG_P_TURBO) != 0)
461 1.33 jruoho sc->sc_pstate[0].ps_flags |= ACPICPU_FLAG_P_TURBO;
462 1.33 jruoho
463 1.15 jruoho msr.ps_control_addr = MSR_PERF_CTL;
464 1.15 jruoho msr.ps_control_mask = __BITS(0, 15);
465 1.15 jruoho
466 1.15 jruoho msr.ps_status_addr = MSR_PERF_STATUS;
467 1.15 jruoho msr.ps_status_mask = __BITS(0, 15);
468 1.13 jruoho break;
469 1.13 jruoho
470 1.13 jruoho case CPUVENDOR_AMD:
471 1.13 jruoho
472 1.33 jruoho if ((sc->sc_flags & ACPICPU_FLAG_P_FIDVID) != 0)
473 1.33 jruoho msr.ps_flags |= ACPICPU_FLAG_P_FIDVID;
474 1.33 jruoho
475 1.18 jruoho family = CPUID2FAMILY(ci->ci_signature);
476 1.18 jruoho
477 1.18 jruoho if (family == 0xf)
478 1.18 jruoho family += CPUID2EXTFAMILY(ci->ci_signature);
479 1.18 jruoho
480 1.18 jruoho switch (family) {
481 1.17 jruoho
482 1.32 jruoho case 0x0f:
483 1.32 jruoho msr.ps_control_addr = MSR_0FH_CONTROL;
484 1.32 jruoho msr.ps_status_addr = MSR_0FH_STATUS;
485 1.32 jruoho break;
486 1.32 jruoho
487 1.17 jruoho case 0x10:
488 1.17 jruoho case 0x11:
489 1.17 jruoho msr.ps_control_addr = MSR_10H_CONTROL;
490 1.17 jruoho msr.ps_control_mask = __BITS(0, 2);
491 1.17 jruoho
492 1.17 jruoho msr.ps_status_addr = MSR_10H_STATUS;
493 1.17 jruoho msr.ps_status_mask = __BITS(0, 2);
494 1.17 jruoho break;
495 1.17 jruoho
496 1.17 jruoho default:
497 1.17 jruoho
498 1.17 jruoho if ((sc->sc_flags & ACPICPU_FLAG_P_XPSS) == 0)
499 1.17 jruoho return EOPNOTSUPP;
500 1.17 jruoho }
501 1.13 jruoho
502 1.13 jruoho break;
503 1.13 jruoho
504 1.13 jruoho default:
505 1.13 jruoho return ENODEV;
506 1.13 jruoho }
507 1.5 jruoho
508 1.26 jruoho /*
509 1.26 jruoho * Fill the P-state structures with MSR addresses that are
510 1.27 jruoho * known to be correct. If we do not know the addresses,
511 1.27 jruoho * leave the values intact. If a vendor uses XPSS, we do
512 1.27 jruoho * not necessary need to do anything to support new CPUs.
513 1.26 jruoho */
514 1.15 jruoho while (i < sc->sc_pstate_count) {
515 1.15 jruoho
516 1.15 jruoho ps = &sc->sc_pstate[i];
517 1.15 jruoho
518 1.32 jruoho if (msr.ps_flags != 0)
519 1.32 jruoho ps->ps_flags |= msr.ps_flags;
520 1.32 jruoho
521 1.27 jruoho if (msr.ps_status_addr != 0)
522 1.15 jruoho ps->ps_status_addr = msr.ps_status_addr;
523 1.15 jruoho
524 1.27 jruoho if (msr.ps_status_mask != 0)
525 1.15 jruoho ps->ps_status_mask = msr.ps_status_mask;
526 1.15 jruoho
527 1.27 jruoho if (msr.ps_control_addr != 0)
528 1.15 jruoho ps->ps_control_addr = msr.ps_control_addr;
529 1.15 jruoho
530 1.27 jruoho if (msr.ps_control_mask != 0)
531 1.15 jruoho ps->ps_control_mask = msr.ps_control_mask;
532 1.15 jruoho
533 1.15 jruoho i++;
534 1.15 jruoho }
535 1.15 jruoho
536 1.15 jruoho return 0;
537 1.15 jruoho }
538 1.15 jruoho
539 1.15 jruoho int
540 1.15 jruoho acpicpu_md_pstate_get(struct acpicpu_softc *sc, uint32_t *freq)
541 1.15 jruoho {
542 1.15 jruoho struct acpicpu_pstate *ps = NULL;
543 1.15 jruoho uint64_t val;
544 1.15 jruoho uint32_t i;
545 1.15 jruoho
546 1.32 jruoho if ((sc->sc_flags & ACPICPU_FLAG_P_FIDVID) != 0)
547 1.32 jruoho return acpicpu_md_pstate_fidvid_get(sc, freq);
548 1.32 jruoho
549 1.15 jruoho for (i = 0; i < sc->sc_pstate_count; i++) {
550 1.15 jruoho
551 1.15 jruoho ps = &sc->sc_pstate[i];
552 1.15 jruoho
553 1.32 jruoho if (__predict_true(ps->ps_freq != 0))
554 1.15 jruoho break;
555 1.15 jruoho }
556 1.15 jruoho
557 1.15 jruoho if (__predict_false(ps == NULL))
558 1.17 jruoho return ENODEV;
559 1.15 jruoho
560 1.28 jruoho if (__predict_false(ps->ps_status_addr == 0))
561 1.13 jruoho return EINVAL;
562 1.5 jruoho
563 1.13 jruoho val = rdmsr(ps->ps_status_addr);
564 1.5 jruoho
565 1.28 jruoho if (__predict_true(ps->ps_status_mask != 0))
566 1.13 jruoho val = val & ps->ps_status_mask;
567 1.5 jruoho
568 1.13 jruoho for (i = 0; i < sc->sc_pstate_count; i++) {
569 1.5 jruoho
570 1.13 jruoho ps = &sc->sc_pstate[i];
571 1.5 jruoho
572 1.32 jruoho if (__predict_false(ps->ps_freq == 0))
573 1.13 jruoho continue;
574 1.5 jruoho
575 1.29 jruoho if (val == ps->ps_status) {
576 1.13 jruoho *freq = ps->ps_freq;
577 1.13 jruoho return 0;
578 1.13 jruoho }
579 1.5 jruoho }
580 1.5 jruoho
581 1.13 jruoho return EIO;
582 1.5 jruoho }
583 1.5 jruoho
584 1.5 jruoho int
585 1.5 jruoho acpicpu_md_pstate_set(struct acpicpu_pstate *ps)
586 1.5 jruoho {
587 1.5 jruoho struct msr_rw_info msr;
588 1.14 jruoho uint64_t xc;
589 1.14 jruoho int rv = 0;
590 1.5 jruoho
591 1.32 jruoho if ((ps->ps_flags & ACPICPU_FLAG_P_FIDVID) != 0)
592 1.32 jruoho return acpicpu_md_pstate_fidvid_set(ps);
593 1.32 jruoho
594 1.13 jruoho msr.msr_read = false;
595 1.13 jruoho msr.msr_type = ps->ps_control_addr;
596 1.13 jruoho msr.msr_value = ps->ps_control;
597 1.13 jruoho
598 1.24 jruoho if (__predict_true(ps->ps_control_mask != 0)) {
599 1.13 jruoho msr.msr_mask = ps->ps_control_mask;
600 1.13 jruoho msr.msr_read = true;
601 1.13 jruoho }
602 1.13 jruoho
603 1.5 jruoho xc = xc_broadcast(0, (xcfunc_t)x86_msr_xcall, &msr, NULL);
604 1.5 jruoho xc_wait(xc);
605 1.5 jruoho
606 1.36 jruoho /*
607 1.36 jruoho * Due several problems, we bypass the
608 1.36 jruoho * relatively expensive status check.
609 1.36 jruoho */
610 1.36 jruoho if (acpicpu_pstate_status != true) {
611 1.33 jruoho DELAY(ps->ps_latency);
612 1.33 jruoho return 0;
613 1.33 jruoho }
614 1.13 jruoho
615 1.14 jruoho xc = xc_broadcast(0, (xcfunc_t)acpicpu_md_pstate_status, ps, &rv);
616 1.14 jruoho xc_wait(xc);
617 1.14 jruoho
618 1.14 jruoho return rv;
619 1.14 jruoho }
620 1.14 jruoho
621 1.14 jruoho static void
622 1.14 jruoho acpicpu_md_pstate_status(void *arg1, void *arg2)
623 1.14 jruoho {
624 1.14 jruoho struct acpicpu_pstate *ps = arg1;
625 1.14 jruoho uint64_t val;
626 1.14 jruoho int i;
627 1.14 jruoho
628 1.5 jruoho for (i = val = 0; i < ACPICPU_P_STATE_RETRY; i++) {
629 1.5 jruoho
630 1.13 jruoho val = rdmsr(ps->ps_status_addr);
631 1.13 jruoho
632 1.24 jruoho if (__predict_true(ps->ps_status_mask != 0))
633 1.13 jruoho val = val & ps->ps_status_mask;
634 1.5 jruoho
635 1.29 jruoho if (val == ps->ps_status)
636 1.14 jruoho return;
637 1.5 jruoho
638 1.5 jruoho DELAY(ps->ps_latency);
639 1.5 jruoho }
640 1.5 jruoho
641 1.14 jruoho *(uintptr_t *)arg2 = EAGAIN;
642 1.5 jruoho }
643 1.10 jruoho
644 1.32 jruoho static int
645 1.32 jruoho acpicpu_md_pstate_fidvid_get(struct acpicpu_softc *sc, uint32_t *freq)
646 1.32 jruoho {
647 1.32 jruoho struct acpicpu_pstate *ps;
648 1.32 jruoho uint32_t fid, i, vid;
649 1.32 jruoho uint32_t cfid, cvid;
650 1.32 jruoho int rv;
651 1.32 jruoho
652 1.32 jruoho /*
653 1.32 jruoho * AMD family 0Fh needs special treatment.
654 1.32 jruoho * While it wants to use ACPI, it does not
655 1.32 jruoho * comply with the ACPI specifications.
656 1.32 jruoho */
657 1.32 jruoho rv = acpicpu_md_pstate_fidvid_read(&cfid, &cvid);
658 1.32 jruoho
659 1.32 jruoho if (rv != 0)
660 1.32 jruoho return rv;
661 1.32 jruoho
662 1.32 jruoho for (i = 0; i < sc->sc_pstate_count; i++) {
663 1.32 jruoho
664 1.32 jruoho ps = &sc->sc_pstate[i];
665 1.32 jruoho
666 1.32 jruoho if (__predict_false(ps->ps_freq == 0))
667 1.32 jruoho continue;
668 1.32 jruoho
669 1.32 jruoho fid = __SHIFTOUT(ps->ps_status, ACPI_0FH_STATUS_FID);
670 1.32 jruoho vid = __SHIFTOUT(ps->ps_status, ACPI_0FH_STATUS_VID);
671 1.32 jruoho
672 1.32 jruoho if (cfid == fid && cvid == vid) {
673 1.32 jruoho *freq = ps->ps_freq;
674 1.32 jruoho return 0;
675 1.32 jruoho }
676 1.32 jruoho }
677 1.32 jruoho
678 1.32 jruoho return EIO;
679 1.32 jruoho }
680 1.32 jruoho
681 1.32 jruoho static int
682 1.32 jruoho acpicpu_md_pstate_fidvid_set(struct acpicpu_pstate *ps)
683 1.32 jruoho {
684 1.32 jruoho const uint64_t ctrl = ps->ps_control;
685 1.32 jruoho uint32_t cfid, cvid, fid, i, irt;
686 1.32 jruoho uint32_t pll, vco_cfid, vco_fid;
687 1.32 jruoho uint32_t val, vid, vst;
688 1.32 jruoho int rv;
689 1.32 jruoho
690 1.32 jruoho rv = acpicpu_md_pstate_fidvid_read(&cfid, &cvid);
691 1.32 jruoho
692 1.32 jruoho if (rv != 0)
693 1.32 jruoho return rv;
694 1.32 jruoho
695 1.32 jruoho fid = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_FID);
696 1.32 jruoho vid = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_VID);
697 1.32 jruoho irt = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_IRT);
698 1.32 jruoho vst = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_VST);
699 1.32 jruoho pll = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_PLL);
700 1.32 jruoho
701 1.32 jruoho vst = vst * 20;
702 1.32 jruoho pll = pll * 1000 / 5;
703 1.32 jruoho irt = 10 * __BIT(irt);
704 1.32 jruoho
705 1.32 jruoho /*
706 1.32 jruoho * Phase 1.
707 1.32 jruoho */
708 1.32 jruoho while (cvid > vid) {
709 1.32 jruoho
710 1.32 jruoho val = 1 << __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_MVS);
711 1.32 jruoho val = (val > cvid) ? 0 : cvid - val;
712 1.32 jruoho
713 1.32 jruoho acpicpu_md_pstate_fidvid_write(cfid, val, 1, vst);
714 1.32 jruoho rv = acpicpu_md_pstate_fidvid_read(NULL, &cvid);
715 1.32 jruoho
716 1.32 jruoho if (rv != 0)
717 1.32 jruoho return rv;
718 1.32 jruoho }
719 1.32 jruoho
720 1.32 jruoho i = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_RVO);
721 1.32 jruoho
722 1.32 jruoho for (; i > 0 && cvid > 0; --i) {
723 1.32 jruoho
724 1.32 jruoho acpicpu_md_pstate_fidvid_write(cfid, cvid - 1, 1, vst);
725 1.32 jruoho rv = acpicpu_md_pstate_fidvid_read(NULL, &cvid);
726 1.32 jruoho
727 1.32 jruoho if (rv != 0)
728 1.32 jruoho return rv;
729 1.32 jruoho }
730 1.32 jruoho
731 1.32 jruoho /*
732 1.32 jruoho * Phase 2.
733 1.32 jruoho */
734 1.32 jruoho if (cfid != fid) {
735 1.32 jruoho
736 1.32 jruoho vco_fid = FID_TO_VCO_FID(fid);
737 1.32 jruoho vco_cfid = FID_TO_VCO_FID(cfid);
738 1.32 jruoho
739 1.32 jruoho while (abs(vco_fid - vco_cfid) > 2) {
740 1.32 jruoho
741 1.32 jruoho if (fid <= cfid)
742 1.32 jruoho val = cfid - 2;
743 1.32 jruoho else {
744 1.32 jruoho val = (cfid > 6) ? cfid + 2 :
745 1.32 jruoho FID_TO_VCO_FID(cfid) + 2;
746 1.32 jruoho }
747 1.32 jruoho
748 1.32 jruoho acpicpu_md_pstate_fidvid_write(val, cvid, pll, irt);
749 1.32 jruoho rv = acpicpu_md_pstate_fidvid_read(&cfid, NULL);
750 1.32 jruoho
751 1.32 jruoho if (rv != 0)
752 1.32 jruoho return rv;
753 1.32 jruoho
754 1.32 jruoho vco_cfid = FID_TO_VCO_FID(cfid);
755 1.32 jruoho }
756 1.32 jruoho
757 1.32 jruoho acpicpu_md_pstate_fidvid_write(fid, cvid, pll, irt);
758 1.32 jruoho rv = acpicpu_md_pstate_fidvid_read(&cfid, NULL);
759 1.32 jruoho
760 1.32 jruoho if (rv != 0)
761 1.32 jruoho return rv;
762 1.32 jruoho }
763 1.32 jruoho
764 1.32 jruoho /*
765 1.32 jruoho * Phase 3.
766 1.32 jruoho */
767 1.32 jruoho if (cvid != vid) {
768 1.32 jruoho
769 1.32 jruoho acpicpu_md_pstate_fidvid_write(cfid, vid, 1, vst);
770 1.32 jruoho rv = acpicpu_md_pstate_fidvid_read(NULL, &cvid);
771 1.32 jruoho
772 1.32 jruoho if (rv != 0)
773 1.32 jruoho return rv;
774 1.32 jruoho }
775 1.32 jruoho
776 1.32 jruoho if (cfid != fid || cvid != vid)
777 1.32 jruoho return EIO;
778 1.32 jruoho
779 1.32 jruoho return 0;
780 1.32 jruoho }
781 1.32 jruoho
782 1.32 jruoho static int
783 1.32 jruoho acpicpu_md_pstate_fidvid_read(uint32_t *cfid, uint32_t *cvid)
784 1.32 jruoho {
785 1.32 jruoho int i = ACPICPU_P_STATE_RETRY * 100;
786 1.32 jruoho uint64_t val;
787 1.32 jruoho
788 1.32 jruoho do {
789 1.32 jruoho val = rdmsr(MSR_0FH_STATUS);
790 1.32 jruoho
791 1.32 jruoho } while (__SHIFTOUT(val, MSR_0FH_STATUS_PENDING) != 0 && --i >= 0);
792 1.32 jruoho
793 1.32 jruoho if (i == 0)
794 1.32 jruoho return EAGAIN;
795 1.32 jruoho
796 1.32 jruoho if (cfid != NULL)
797 1.32 jruoho *cfid = __SHIFTOUT(val, MSR_0FH_STATUS_CFID);
798 1.32 jruoho
799 1.32 jruoho if (cvid != NULL)
800 1.32 jruoho *cvid = __SHIFTOUT(val, MSR_0FH_STATUS_CVID);
801 1.32 jruoho
802 1.32 jruoho return 0;
803 1.32 jruoho }
804 1.32 jruoho
805 1.32 jruoho static void
806 1.32 jruoho acpicpu_md_pstate_fidvid_write(uint32_t fid,
807 1.32 jruoho uint32_t vid, uint32_t cnt, uint32_t tmo)
808 1.32 jruoho {
809 1.32 jruoho struct msr_rw_info msr;
810 1.32 jruoho uint64_t xc;
811 1.32 jruoho
812 1.32 jruoho msr.msr_read = false;
813 1.32 jruoho msr.msr_type = MSR_0FH_CONTROL;
814 1.32 jruoho msr.msr_value = 0;
815 1.32 jruoho
816 1.32 jruoho msr.msr_value |= __SHIFTIN(fid, MSR_0FH_CONTROL_FID);
817 1.32 jruoho msr.msr_value |= __SHIFTIN(vid, MSR_0FH_CONTROL_VID);
818 1.32 jruoho msr.msr_value |= __SHIFTIN(cnt, MSR_0FH_CONTROL_CNT);
819 1.32 jruoho msr.msr_value |= __SHIFTIN(0x1, MSR_0FH_CONTROL_CHG);
820 1.32 jruoho
821 1.32 jruoho xc = xc_broadcast(0, (xcfunc_t)x86_msr_xcall, &msr, NULL);
822 1.32 jruoho xc_wait(xc);
823 1.32 jruoho
824 1.32 jruoho DELAY(tmo);
825 1.32 jruoho }
826 1.32 jruoho
827 1.10 jruoho int
828 1.10 jruoho acpicpu_md_tstate_get(struct acpicpu_softc *sc, uint32_t *percent)
829 1.10 jruoho {
830 1.10 jruoho struct acpicpu_tstate *ts;
831 1.14 jruoho uint64_t val;
832 1.10 jruoho uint32_t i;
833 1.10 jruoho
834 1.14 jruoho val = rdmsr(MSR_THERM_CONTROL);
835 1.10 jruoho
836 1.10 jruoho for (i = 0; i < sc->sc_tstate_count; i++) {
837 1.10 jruoho
838 1.10 jruoho ts = &sc->sc_tstate[i];
839 1.10 jruoho
840 1.10 jruoho if (ts->ts_percent == 0)
841 1.10 jruoho continue;
842 1.10 jruoho
843 1.29 jruoho if (val == ts->ts_status) {
844 1.10 jruoho *percent = ts->ts_percent;
845 1.10 jruoho return 0;
846 1.10 jruoho }
847 1.10 jruoho }
848 1.10 jruoho
849 1.10 jruoho return EIO;
850 1.10 jruoho }
851 1.10 jruoho
852 1.10 jruoho int
853 1.10 jruoho acpicpu_md_tstate_set(struct acpicpu_tstate *ts)
854 1.10 jruoho {
855 1.10 jruoho struct msr_rw_info msr;
856 1.14 jruoho uint64_t xc;
857 1.14 jruoho int rv = 0;
858 1.10 jruoho
859 1.14 jruoho msr.msr_read = true;
860 1.14 jruoho msr.msr_type = MSR_THERM_CONTROL;
861 1.14 jruoho msr.msr_value = ts->ts_control;
862 1.14 jruoho msr.msr_mask = __BITS(1, 4);
863 1.10 jruoho
864 1.10 jruoho xc = xc_broadcast(0, (xcfunc_t)x86_msr_xcall, &msr, NULL);
865 1.10 jruoho xc_wait(xc);
866 1.10 jruoho
867 1.30 jruoho if (ts->ts_status == 0) {
868 1.30 jruoho DELAY(ts->ts_latency);
869 1.10 jruoho return 0;
870 1.30 jruoho }
871 1.10 jruoho
872 1.14 jruoho xc = xc_broadcast(0, (xcfunc_t)acpicpu_md_tstate_status, ts, &rv);
873 1.14 jruoho xc_wait(xc);
874 1.14 jruoho
875 1.14 jruoho return rv;
876 1.14 jruoho }
877 1.14 jruoho
878 1.14 jruoho static void
879 1.14 jruoho acpicpu_md_tstate_status(void *arg1, void *arg2)
880 1.14 jruoho {
881 1.14 jruoho struct acpicpu_tstate *ts = arg1;
882 1.14 jruoho uint64_t val;
883 1.14 jruoho int i;
884 1.14 jruoho
885 1.10 jruoho for (i = val = 0; i < ACPICPU_T_STATE_RETRY; i++) {
886 1.10 jruoho
887 1.14 jruoho val = rdmsr(MSR_THERM_CONTROL);
888 1.10 jruoho
889 1.29 jruoho if (val == ts->ts_status)
890 1.14 jruoho return;
891 1.10 jruoho
892 1.10 jruoho DELAY(ts->ts_latency);
893 1.10 jruoho }
894 1.10 jruoho
895 1.14 jruoho *(uintptr_t *)arg2 = EAGAIN;
896 1.10 jruoho }
897 1.19 jruoho
898 1.19 jruoho /*
899 1.19 jruoho * A kludge for backwards compatibility.
900 1.19 jruoho */
901 1.19 jruoho static int
902 1.19 jruoho acpicpu_md_pstate_sysctl_init(void)
903 1.19 jruoho {
904 1.19 jruoho const struct sysctlnode *fnode, *mnode, *rnode;
905 1.19 jruoho const char *str;
906 1.19 jruoho int rv;
907 1.19 jruoho
908 1.19 jruoho switch (cpu_vendor) {
909 1.19 jruoho
910 1.19 jruoho case CPUVENDOR_IDT:
911 1.19 jruoho case CPUVENDOR_INTEL:
912 1.19 jruoho str = "est";
913 1.19 jruoho break;
914 1.19 jruoho
915 1.19 jruoho case CPUVENDOR_AMD:
916 1.19 jruoho str = "powernow";
917 1.19 jruoho break;
918 1.19 jruoho
919 1.19 jruoho default:
920 1.19 jruoho return ENODEV;
921 1.19 jruoho }
922 1.19 jruoho
923 1.19 jruoho
924 1.19 jruoho rv = sysctl_createv(&acpicpu_log, 0, NULL, &rnode,
925 1.19 jruoho CTLFLAG_PERMANENT, CTLTYPE_NODE, "machdep", NULL,
926 1.19 jruoho NULL, 0, NULL, 0, CTL_MACHDEP, CTL_EOL);
927 1.19 jruoho
928 1.19 jruoho if (rv != 0)
929 1.19 jruoho goto fail;
930 1.19 jruoho
931 1.19 jruoho rv = sysctl_createv(&acpicpu_log, 0, &rnode, &mnode,
932 1.19 jruoho 0, CTLTYPE_NODE, str, NULL,
933 1.19 jruoho NULL, 0, NULL, 0, CTL_CREATE, CTL_EOL);
934 1.19 jruoho
935 1.19 jruoho if (rv != 0)
936 1.19 jruoho goto fail;
937 1.19 jruoho
938 1.19 jruoho rv = sysctl_createv(&acpicpu_log, 0, &mnode, &fnode,
939 1.19 jruoho 0, CTLTYPE_NODE, "frequency", NULL,
940 1.19 jruoho NULL, 0, NULL, 0, CTL_CREATE, CTL_EOL);
941 1.19 jruoho
942 1.19 jruoho if (rv != 0)
943 1.19 jruoho goto fail;
944 1.19 jruoho
945 1.19 jruoho rv = sysctl_createv(&acpicpu_log, 0, &fnode, &rnode,
946 1.19 jruoho CTLFLAG_READWRITE, CTLTYPE_INT, "target", NULL,
947 1.19 jruoho acpicpu_md_pstate_sysctl_set, 0, NULL, 0, CTL_CREATE, CTL_EOL);
948 1.19 jruoho
949 1.19 jruoho if (rv != 0)
950 1.19 jruoho goto fail;
951 1.19 jruoho
952 1.19 jruoho rv = sysctl_createv(&acpicpu_log, 0, &fnode, &rnode,
953 1.19 jruoho CTLFLAG_READONLY, CTLTYPE_INT, "current", NULL,
954 1.19 jruoho acpicpu_md_pstate_sysctl_get, 0, NULL, 0, CTL_CREATE, CTL_EOL);
955 1.19 jruoho
956 1.19 jruoho if (rv != 0)
957 1.19 jruoho goto fail;
958 1.19 jruoho
959 1.19 jruoho rv = sysctl_createv(&acpicpu_log, 0, &fnode, &rnode,
960 1.19 jruoho CTLFLAG_READONLY, CTLTYPE_STRING, "available", NULL,
961 1.19 jruoho acpicpu_md_pstate_sysctl_all, 0, NULL, 0, CTL_CREATE, CTL_EOL);
962 1.19 jruoho
963 1.19 jruoho if (rv != 0)
964 1.19 jruoho goto fail;
965 1.19 jruoho
966 1.19 jruoho return 0;
967 1.19 jruoho
968 1.19 jruoho fail:
969 1.19 jruoho if (acpicpu_log != NULL) {
970 1.19 jruoho sysctl_teardown(&acpicpu_log);
971 1.19 jruoho acpicpu_log = NULL;
972 1.19 jruoho }
973 1.19 jruoho
974 1.19 jruoho return rv;
975 1.19 jruoho }
976 1.19 jruoho
977 1.19 jruoho static int
978 1.19 jruoho acpicpu_md_pstate_sysctl_get(SYSCTLFN_ARGS)
979 1.19 jruoho {
980 1.19 jruoho struct cpu_info *ci = curcpu();
981 1.19 jruoho struct acpicpu_softc *sc;
982 1.19 jruoho struct sysctlnode node;
983 1.19 jruoho uint32_t freq;
984 1.19 jruoho int err;
985 1.19 jruoho
986 1.19 jruoho sc = acpicpu_sc[ci->ci_acpiid];
987 1.19 jruoho
988 1.19 jruoho if (sc == NULL)
989 1.19 jruoho return ENXIO;
990 1.19 jruoho
991 1.19 jruoho err = acpicpu_pstate_get(sc, &freq);
992 1.19 jruoho
993 1.19 jruoho if (err != 0)
994 1.19 jruoho return err;
995 1.19 jruoho
996 1.19 jruoho node = *rnode;
997 1.19 jruoho node.sysctl_data = &freq;
998 1.19 jruoho
999 1.19 jruoho err = sysctl_lookup(SYSCTLFN_CALL(&node));
1000 1.19 jruoho
1001 1.19 jruoho if (err != 0 || newp == NULL)
1002 1.19 jruoho return err;
1003 1.19 jruoho
1004 1.19 jruoho return 0;
1005 1.19 jruoho }
1006 1.19 jruoho
1007 1.19 jruoho static int
1008 1.19 jruoho acpicpu_md_pstate_sysctl_set(SYSCTLFN_ARGS)
1009 1.19 jruoho {
1010 1.19 jruoho struct cpu_info *ci = curcpu();
1011 1.19 jruoho struct acpicpu_softc *sc;
1012 1.19 jruoho struct sysctlnode node;
1013 1.19 jruoho uint32_t freq;
1014 1.19 jruoho int err;
1015 1.19 jruoho
1016 1.19 jruoho sc = acpicpu_sc[ci->ci_acpiid];
1017 1.19 jruoho
1018 1.19 jruoho if (sc == NULL)
1019 1.19 jruoho return ENXIO;
1020 1.19 jruoho
1021 1.19 jruoho err = acpicpu_pstate_get(sc, &freq);
1022 1.19 jruoho
1023 1.19 jruoho if (err != 0)
1024 1.19 jruoho return err;
1025 1.19 jruoho
1026 1.19 jruoho node = *rnode;
1027 1.19 jruoho node.sysctl_data = &freq;
1028 1.19 jruoho
1029 1.19 jruoho err = sysctl_lookup(SYSCTLFN_CALL(&node));
1030 1.19 jruoho
1031 1.19 jruoho if (err != 0 || newp == NULL)
1032 1.19 jruoho return err;
1033 1.19 jruoho
1034 1.19 jruoho err = acpicpu_pstate_set(sc, freq);
1035 1.19 jruoho
1036 1.19 jruoho if (err != 0)
1037 1.19 jruoho return err;
1038 1.19 jruoho
1039 1.19 jruoho return 0;
1040 1.19 jruoho }
1041 1.19 jruoho
1042 1.19 jruoho static int
1043 1.19 jruoho acpicpu_md_pstate_sysctl_all(SYSCTLFN_ARGS)
1044 1.19 jruoho {
1045 1.19 jruoho struct cpu_info *ci = curcpu();
1046 1.19 jruoho struct acpicpu_softc *sc;
1047 1.19 jruoho struct sysctlnode node;
1048 1.19 jruoho char buf[1024];
1049 1.19 jruoho size_t len;
1050 1.19 jruoho uint32_t i;
1051 1.19 jruoho int err;
1052 1.19 jruoho
1053 1.19 jruoho sc = acpicpu_sc[ci->ci_acpiid];
1054 1.19 jruoho
1055 1.19 jruoho if (sc == NULL)
1056 1.19 jruoho return ENXIO;
1057 1.19 jruoho
1058 1.19 jruoho (void)memset(&buf, 0, sizeof(buf));
1059 1.19 jruoho
1060 1.19 jruoho mutex_enter(&sc->sc_mtx);
1061 1.19 jruoho
1062 1.19 jruoho for (len = 0, i = sc->sc_pstate_max; i < sc->sc_pstate_count; i++) {
1063 1.19 jruoho
1064 1.19 jruoho if (sc->sc_pstate[i].ps_freq == 0)
1065 1.19 jruoho continue;
1066 1.19 jruoho
1067 1.19 jruoho len += snprintf(buf + len, sizeof(buf) - len, "%u%s",
1068 1.19 jruoho sc->sc_pstate[i].ps_freq,
1069 1.19 jruoho i < (sc->sc_pstate_count - 1) ? " " : "");
1070 1.19 jruoho }
1071 1.19 jruoho
1072 1.19 jruoho mutex_exit(&sc->sc_mtx);
1073 1.19 jruoho
1074 1.19 jruoho node = *rnode;
1075 1.19 jruoho node.sysctl_data = buf;
1076 1.19 jruoho
1077 1.19 jruoho err = sysctl_lookup(SYSCTLFN_CALL(&node));
1078 1.19 jruoho
1079 1.19 jruoho if (err != 0 || newp == NULL)
1080 1.19 jruoho return err;
1081 1.19 jruoho
1082 1.19 jruoho return 0;
1083 1.19 jruoho }
1084 1.19 jruoho
1085