acpi_cpu_md.c revision 1.38 1 1.38 jruoho /* $NetBSD: acpi_cpu_md.c,v 1.38 2011/01/13 03:40:50 jruoho Exp $ */
2 1.1 jruoho
3 1.1 jruoho /*-
4 1.1 jruoho * Copyright (c) 2010 Jukka Ruohonen <jruohonen (at) iki.fi>
5 1.1 jruoho * All rights reserved.
6 1.1 jruoho *
7 1.1 jruoho * Redistribution and use in source and binary forms, with or without
8 1.1 jruoho * modification, are permitted provided that the following conditions
9 1.1 jruoho * are met:
10 1.1 jruoho *
11 1.1 jruoho * 1. Redistributions of source code must retain the above copyright
12 1.1 jruoho * notice, this list of conditions and the following disclaimer.
13 1.1 jruoho * 2. Redistributions in binary form must reproduce the above copyright
14 1.1 jruoho * notice, this list of conditions and the following disclaimer in the
15 1.1 jruoho * documentation and/or other materials provided with the distribution.
16 1.1 jruoho *
17 1.1 jruoho * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18 1.1 jruoho * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 1.1 jruoho * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 1.1 jruoho * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21 1.1 jruoho * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 1.1 jruoho * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 1.1 jruoho * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 1.1 jruoho * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 1.1 jruoho * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 1.1 jruoho * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 1.1 jruoho * SUCH DAMAGE.
28 1.1 jruoho */
29 1.1 jruoho #include <sys/cdefs.h>
30 1.38 jruoho __KERNEL_RCSID(0, "$NetBSD: acpi_cpu_md.c,v 1.38 2011/01/13 03:40:50 jruoho Exp $");
31 1.1 jruoho
32 1.1 jruoho #include <sys/param.h>
33 1.1 jruoho #include <sys/bus.h>
34 1.1 jruoho #include <sys/kcore.h>
35 1.5 jruoho #include <sys/sysctl.h>
36 1.4 jruoho #include <sys/xcall.h>
37 1.1 jruoho
38 1.1 jruoho #include <x86/cpu.h>
39 1.5 jruoho #include <x86/cpufunc.h>
40 1.5 jruoho #include <x86/cputypes.h>
41 1.1 jruoho #include <x86/cpuvar.h>
42 1.5 jruoho #include <x86/cpu_msr.h>
43 1.1 jruoho #include <x86/machdep.h>
44 1.1 jruoho
45 1.1 jruoho #include <dev/acpi/acpica.h>
46 1.1 jruoho #include <dev/acpi/acpi_cpu.h>
47 1.1 jruoho
48 1.12 jruoho #include <dev/pci/pcivar.h>
49 1.12 jruoho #include <dev/pci/pcidevs.h>
50 1.12 jruoho
51 1.38 jruoho #include <machine/acpi_machdep.h>
52 1.38 jruoho
53 1.35 jruoho /*
54 1.35 jruoho * AMD C1E.
55 1.35 jruoho */
56 1.35 jruoho #define MSR_CMPHALT 0xc0010055
57 1.35 jruoho
58 1.35 jruoho #define MSR_CMPHALT_SMI __BIT(27)
59 1.35 jruoho #define MSR_CMPHALT_C1E __BIT(28)
60 1.35 jruoho #define MSR_CMPHALT_BMSTS __BIT(29)
61 1.33 jruoho
62 1.32 jruoho /*
63 1.32 jruoho * AMD families 10h and 11h.
64 1.32 jruoho */
65 1.32 jruoho #define MSR_10H_LIMIT 0xc0010061
66 1.32 jruoho #define MSR_10H_CONTROL 0xc0010062
67 1.32 jruoho #define MSR_10H_STATUS 0xc0010063
68 1.32 jruoho #define MSR_10H_CONFIG 0xc0010064
69 1.22 jruoho
70 1.32 jruoho /*
71 1.32 jruoho * AMD family 0Fh.
72 1.32 jruoho */
73 1.32 jruoho #define MSR_0FH_CONTROL 0xc0010041
74 1.17 jruoho #define MSR_0FH_STATUS 0xc0010042
75 1.17 jruoho
76 1.32 jruoho #define MSR_0FH_STATUS_CFID __BITS( 0, 5)
77 1.32 jruoho #define MSR_0FH_STATUS_CVID __BITS(32, 36)
78 1.32 jruoho #define MSR_0FH_STATUS_PENDING __BITS(31, 31)
79 1.32 jruoho
80 1.32 jruoho #define MSR_0FH_CONTROL_FID __BITS( 0, 5)
81 1.32 jruoho #define MSR_0FH_CONTROL_VID __BITS( 8, 12)
82 1.32 jruoho #define MSR_0FH_CONTROL_CHG __BITS(16, 16)
83 1.32 jruoho #define MSR_0FH_CONTROL_CNT __BITS(32, 51)
84 1.32 jruoho
85 1.32 jruoho #define ACPI_0FH_STATUS_FID __BITS( 0, 5)
86 1.32 jruoho #define ACPI_0FH_STATUS_VID __BITS( 6, 10)
87 1.32 jruoho
88 1.32 jruoho #define ACPI_0FH_CONTROL_FID __BITS( 0, 5)
89 1.32 jruoho #define ACPI_0FH_CONTROL_VID __BITS( 6, 10)
90 1.32 jruoho #define ACPI_0FH_CONTROL_VST __BITS(11, 17)
91 1.32 jruoho #define ACPI_0FH_CONTROL_MVS __BITS(18, 19)
92 1.32 jruoho #define ACPI_0FH_CONTROL_PLL __BITS(20, 26)
93 1.32 jruoho #define ACPI_0FH_CONTROL_RVO __BITS(28, 29)
94 1.32 jruoho #define ACPI_0FH_CONTROL_IRT __BITS(30, 31)
95 1.32 jruoho
96 1.32 jruoho #define FID_TO_VCO_FID(fidd) (((fid) < 8) ? (8 + ((fid) << 1)) : (fid))
97 1.17 jruoho
98 1.5 jruoho static char native_idle_text[16];
99 1.5 jruoho void (*native_idle)(void) = NULL;
100 1.1 jruoho
101 1.12 jruoho static int acpicpu_md_quirks_piix4(struct pci_attach_args *);
102 1.19 jruoho static void acpicpu_md_pstate_status(void *, void *);
103 1.32 jruoho static int acpicpu_md_pstate_fidvid_get(struct acpicpu_softc *,
104 1.32 jruoho uint32_t *);
105 1.32 jruoho static int acpicpu_md_pstate_fidvid_set(struct acpicpu_pstate *);
106 1.32 jruoho static int acpicpu_md_pstate_fidvid_read(uint32_t *, uint32_t *);
107 1.32 jruoho static void acpicpu_md_pstate_fidvid_write(uint32_t, uint32_t,
108 1.32 jruoho uint32_t, uint32_t);
109 1.19 jruoho static void acpicpu_md_tstate_status(void *, void *);
110 1.19 jruoho static int acpicpu_md_pstate_sysctl_init(void);
111 1.5 jruoho static int acpicpu_md_pstate_sysctl_get(SYSCTLFN_PROTO);
112 1.5 jruoho static int acpicpu_md_pstate_sysctl_set(SYSCTLFN_PROTO);
113 1.5 jruoho static int acpicpu_md_pstate_sysctl_all(SYSCTLFN_PROTO);
114 1.5 jruoho
115 1.5 jruoho extern struct acpicpu_softc **acpicpu_sc;
116 1.35 jruoho static bool acpicpu_pstate_status = false;
117 1.19 jruoho static struct sysctllog *acpicpu_log = NULL;
118 1.1 jruoho
119 1.1 jruoho uint32_t
120 1.1 jruoho acpicpu_md_cap(void)
121 1.1 jruoho {
122 1.1 jruoho struct cpu_info *ci = curcpu();
123 1.1 jruoho uint32_t val = 0;
124 1.1 jruoho
125 1.17 jruoho if (cpu_vendor != CPUVENDOR_IDT &&
126 1.17 jruoho cpu_vendor != CPUVENDOR_INTEL)
127 1.1 jruoho return val;
128 1.1 jruoho
129 1.1 jruoho /*
130 1.1 jruoho * Basic SMP C-states (required for _CST).
131 1.1 jruoho */
132 1.1 jruoho val |= ACPICPU_PDC_C_C1PT | ACPICPU_PDC_C_C2C3;
133 1.1 jruoho
134 1.1 jruoho /*
135 1.1 jruoho * If MONITOR/MWAIT is available, announce
136 1.1 jruoho * support for native instructions in all C-states.
137 1.1 jruoho */
138 1.1 jruoho if ((ci->ci_feat_val[1] & CPUID2_MONITOR) != 0)
139 1.1 jruoho val |= ACPICPU_PDC_C_C1_FFH | ACPICPU_PDC_C_C2C3_FFH;
140 1.1 jruoho
141 1.5 jruoho /*
142 1.10 jruoho * Set native P- and T-states, if available.
143 1.5 jruoho */
144 1.5 jruoho if ((ci->ci_feat_val[1] & CPUID2_EST) != 0)
145 1.5 jruoho val |= ACPICPU_PDC_P_FFH;
146 1.5 jruoho
147 1.10 jruoho if ((ci->ci_feat_val[0] & CPUID_ACPI) != 0)
148 1.10 jruoho val |= ACPICPU_PDC_T_FFH;
149 1.10 jruoho
150 1.1 jruoho return val;
151 1.1 jruoho }
152 1.1 jruoho
153 1.1 jruoho uint32_t
154 1.1 jruoho acpicpu_md_quirks(void)
155 1.1 jruoho {
156 1.1 jruoho struct cpu_info *ci = curcpu();
157 1.12 jruoho struct pci_attach_args pa;
158 1.18 jruoho uint32_t family, val = 0;
159 1.21 jruoho uint32_t regs[4];
160 1.1 jruoho
161 1.38 jruoho if (acpi_md_ncpus() == 1)
162 1.1 jruoho val |= ACPICPU_FLAG_C_BM;
163 1.1 jruoho
164 1.1 jruoho if ((ci->ci_feat_val[1] & CPUID2_MONITOR) != 0)
165 1.5 jruoho val |= ACPICPU_FLAG_C_FFH;
166 1.1 jruoho
167 1.25 jruoho val |= ACPICPU_FLAG_C_APIC | ACPICPU_FLAG_C_TSC;
168 1.22 jruoho
169 1.1 jruoho switch (cpu_vendor) {
170 1.1 jruoho
171 1.17 jruoho case CPUVENDOR_IDT:
172 1.22 jruoho
173 1.22 jruoho if ((ci->ci_feat_val[1] & CPUID2_EST) != 0)
174 1.22 jruoho val |= ACPICPU_FLAG_P_FFH;
175 1.22 jruoho
176 1.22 jruoho if ((ci->ci_feat_val[0] & CPUID_ACPI) != 0)
177 1.22 jruoho val |= ACPICPU_FLAG_T_FFH;
178 1.22 jruoho
179 1.22 jruoho break;
180 1.22 jruoho
181 1.1 jruoho case CPUVENDOR_INTEL:
182 1.17 jruoho
183 1.22 jruoho val |= ACPICPU_FLAG_C_BM | ACPICPU_FLAG_C_ARB;
184 1.22 jruoho
185 1.5 jruoho if ((ci->ci_feat_val[1] & CPUID2_EST) != 0)
186 1.5 jruoho val |= ACPICPU_FLAG_P_FFH;
187 1.5 jruoho
188 1.10 jruoho if ((ci->ci_feat_val[0] & CPUID_ACPI) != 0)
189 1.10 jruoho val |= ACPICPU_FLAG_T_FFH;
190 1.10 jruoho
191 1.22 jruoho /*
192 1.25 jruoho * Check whether MSR_APERF, MSR_MPERF, and Turbo
193 1.25 jruoho * Boost are available. Also see if we might have
194 1.25 jruoho * an invariant local APIC timer ("ARAT").
195 1.23 jruoho */
196 1.23 jruoho if (cpuid_level >= 0x06) {
197 1.23 jruoho
198 1.23 jruoho x86_cpuid(0x06, regs);
199 1.23 jruoho
200 1.34 jruoho if ((regs[2] & CPUID_DSPM_HWF) != 0)
201 1.23 jruoho val |= ACPICPU_FLAG_P_HW;
202 1.23 jruoho
203 1.34 jruoho if ((regs[0] & CPUID_DSPM_IDA) != 0)
204 1.24 jruoho val |= ACPICPU_FLAG_P_TURBO;
205 1.25 jruoho
206 1.34 jruoho if ((regs[0] & CPUID_DSPM_ARAT) != 0)
207 1.25 jruoho val &= ~ACPICPU_FLAG_C_APIC;
208 1.23 jruoho }
209 1.23 jruoho
210 1.23 jruoho /*
211 1.22 jruoho * Detect whether TSC is invariant. If it is not,
212 1.22 jruoho * we keep the flag to note that TSC will not run
213 1.22 jruoho * at constant rate. Depending on the CPU, this may
214 1.22 jruoho * affect P- and T-state changes, but especially
215 1.22 jruoho * relevant are C-states; with variant TSC, states
216 1.24 jruoho * larger than C1 may completely stop the counter.
217 1.22 jruoho */
218 1.22 jruoho x86_cpuid(0x80000000, regs);
219 1.22 jruoho
220 1.22 jruoho if (regs[0] >= 0x80000007) {
221 1.22 jruoho
222 1.22 jruoho x86_cpuid(0x80000007, regs);
223 1.22 jruoho
224 1.32 jruoho if ((regs[3] & __BIT(8)) != 0)
225 1.22 jruoho val &= ~ACPICPU_FLAG_C_TSC;
226 1.22 jruoho }
227 1.22 jruoho
228 1.17 jruoho break;
229 1.12 jruoho
230 1.17 jruoho case CPUVENDOR_AMD:
231 1.17 jruoho
232 1.32 jruoho x86_cpuid(0x80000000, regs);
233 1.32 jruoho
234 1.32 jruoho if (regs[0] < 0x80000007)
235 1.32 jruoho break;
236 1.32 jruoho
237 1.32 jruoho x86_cpuid(0x80000007, regs);
238 1.32 jruoho
239 1.18 jruoho family = CPUID2FAMILY(ci->ci_signature);
240 1.18 jruoho
241 1.18 jruoho if (family == 0xf)
242 1.18 jruoho family += CPUID2EXTFAMILY(ci->ci_signature);
243 1.18 jruoho
244 1.32 jruoho switch (family) {
245 1.1 jruoho
246 1.22 jruoho case 0x0f:
247 1.32 jruoho
248 1.32 jruoho if ((regs[3] & CPUID_APM_FID) == 0)
249 1.32 jruoho break;
250 1.32 jruoho
251 1.32 jruoho if ((regs[3] & CPUID_APM_VID) == 0)
252 1.32 jruoho break;
253 1.32 jruoho
254 1.32 jruoho val |= ACPICPU_FLAG_P_FFH | ACPICPU_FLAG_P_FIDVID;
255 1.32 jruoho break;
256 1.32 jruoho
257 1.17 jruoho case 0x10:
258 1.17 jruoho case 0x11:
259 1.1 jruoho
260 1.22 jruoho if ((regs[3] & CPUID_APM_TSC) != 0)
261 1.22 jruoho val &= ~ACPICPU_FLAG_C_TSC;
262 1.22 jruoho
263 1.21 jruoho if ((regs[3] & CPUID_APM_HWP) != 0)
264 1.17 jruoho val |= ACPICPU_FLAG_P_FFH;
265 1.21 jruoho
266 1.21 jruoho if ((regs[3] & CPUID_APM_CPB) != 0)
267 1.21 jruoho val |= ACPICPU_FLAG_P_TURBO;
268 1.35 jruoho
269 1.35 jruoho val |= ACPICPU_FLAG_C_C1E;
270 1.35 jruoho break;
271 1.17 jruoho }
272 1.1 jruoho
273 1.1 jruoho break;
274 1.1 jruoho }
275 1.1 jruoho
276 1.12 jruoho /*
277 1.12 jruoho * There are several erratums for PIIX4.
278 1.12 jruoho */
279 1.12 jruoho if (pci_find_device(&pa, acpicpu_md_quirks_piix4) != 0)
280 1.12 jruoho val |= ACPICPU_FLAG_PIIX4;
281 1.12 jruoho
282 1.1 jruoho return val;
283 1.1 jruoho }
284 1.1 jruoho
285 1.12 jruoho static int
286 1.12 jruoho acpicpu_md_quirks_piix4(struct pci_attach_args *pa)
287 1.12 jruoho {
288 1.12 jruoho
289 1.12 jruoho /*
290 1.12 jruoho * XXX: The pci_find_device(9) function only
291 1.12 jruoho * deals with attached devices. Change this
292 1.12 jruoho * to use something like pci_device_foreach().
293 1.12 jruoho */
294 1.12 jruoho if (PCI_VENDOR(pa->pa_id) != PCI_VENDOR_INTEL)
295 1.12 jruoho return 0;
296 1.12 jruoho
297 1.12 jruoho if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_82371AB_ISA ||
298 1.12 jruoho PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_82440MX_PMC)
299 1.12 jruoho return 1;
300 1.12 jruoho
301 1.12 jruoho return 0;
302 1.12 jruoho }
303 1.12 jruoho
304 1.35 jruoho void
305 1.35 jruoho acpicpu_md_quirks_c1e(void)
306 1.35 jruoho {
307 1.35 jruoho const uint64_t c1e = MSR_CMPHALT_SMI | MSR_CMPHALT_C1E;
308 1.35 jruoho uint64_t val;
309 1.35 jruoho
310 1.35 jruoho val = rdmsr(MSR_CMPHALT);
311 1.35 jruoho
312 1.35 jruoho if ((val & c1e) != 0)
313 1.35 jruoho wrmsr(MSR_CMPHALT, val & ~c1e);
314 1.35 jruoho }
315 1.35 jruoho
316 1.1 jruoho int
317 1.31 jruoho acpicpu_md_idle_start(struct acpicpu_softc *sc)
318 1.1 jruoho {
319 1.1 jruoho const size_t size = sizeof(native_idle_text);
320 1.31 jruoho struct acpicpu_cstate *cs;
321 1.31 jruoho bool ipi = false;
322 1.31 jruoho int i;
323 1.1 jruoho
324 1.1 jruoho x86_cpu_idle_get(&native_idle, native_idle_text, size);
325 1.31 jruoho
326 1.31 jruoho for (i = 0; i < ACPI_C_STATE_COUNT; i++) {
327 1.31 jruoho
328 1.31 jruoho cs = &sc->sc_cstate[i];
329 1.31 jruoho
330 1.31 jruoho if (cs->cs_method == ACPICPU_C_STATE_HALT) {
331 1.31 jruoho ipi = true;
332 1.31 jruoho break;
333 1.31 jruoho }
334 1.31 jruoho }
335 1.31 jruoho
336 1.31 jruoho x86_cpu_idle_set(acpicpu_cstate_idle, "acpi", ipi);
337 1.1 jruoho
338 1.1 jruoho return 0;
339 1.1 jruoho }
340 1.1 jruoho
341 1.1 jruoho int
342 1.1 jruoho acpicpu_md_idle_stop(void)
343 1.1 jruoho {
344 1.4 jruoho uint64_t xc;
345 1.31 jruoho bool ipi;
346 1.1 jruoho
347 1.31 jruoho ipi = (native_idle != x86_cpu_idle_halt) ? false : true;
348 1.31 jruoho x86_cpu_idle_set(native_idle, native_idle_text, ipi);
349 1.1 jruoho
350 1.4 jruoho /*
351 1.4 jruoho * Run a cross-call to ensure that all CPUs are
352 1.4 jruoho * out from the ACPI idle-loop before detachment.
353 1.4 jruoho */
354 1.4 jruoho xc = xc_broadcast(0, (xcfunc_t)nullop, NULL, NULL);
355 1.4 jruoho xc_wait(xc);
356 1.1 jruoho
357 1.1 jruoho return 0;
358 1.1 jruoho }
359 1.1 jruoho
360 1.3 jruoho /*
361 1.31 jruoho * Called with interrupts disabled.
362 1.31 jruoho * Caller should enable interrupts after return.
363 1.3 jruoho */
364 1.1 jruoho void
365 1.1 jruoho acpicpu_md_idle_enter(int method, int state)
366 1.1 jruoho {
367 1.3 jruoho struct cpu_info *ci = curcpu();
368 1.1 jruoho
369 1.1 jruoho switch (method) {
370 1.1 jruoho
371 1.1 jruoho case ACPICPU_C_STATE_FFH:
372 1.3 jruoho
373 1.3 jruoho x86_enable_intr();
374 1.3 jruoho x86_monitor(&ci->ci_want_resched, 0, 0);
375 1.3 jruoho
376 1.31 jruoho if (__predict_false(ci->ci_want_resched != 0))
377 1.3 jruoho return;
378 1.3 jruoho
379 1.1 jruoho x86_mwait((state - 1) << 4, 0);
380 1.1 jruoho break;
381 1.1 jruoho
382 1.1 jruoho case ACPICPU_C_STATE_HALT:
383 1.3 jruoho
384 1.31 jruoho if (__predict_false(ci->ci_want_resched != 0))
385 1.3 jruoho return;
386 1.3 jruoho
387 1.1 jruoho x86_stihlt();
388 1.1 jruoho break;
389 1.1 jruoho }
390 1.1 jruoho }
391 1.5 jruoho
392 1.5 jruoho int
393 1.5 jruoho acpicpu_md_pstate_start(void)
394 1.5 jruoho {
395 1.20 jruoho const uint64_t est = __BIT(16);
396 1.20 jruoho uint64_t val;
397 1.20 jruoho
398 1.20 jruoho switch (cpu_vendor) {
399 1.20 jruoho
400 1.20 jruoho case CPUVENDOR_IDT:
401 1.20 jruoho case CPUVENDOR_INTEL:
402 1.20 jruoho
403 1.20 jruoho val = rdmsr(MSR_MISC_ENABLE);
404 1.20 jruoho
405 1.20 jruoho if ((val & est) == 0) {
406 1.20 jruoho
407 1.20 jruoho val |= est;
408 1.20 jruoho
409 1.20 jruoho wrmsr(MSR_MISC_ENABLE, val);
410 1.20 jruoho val = rdmsr(MSR_MISC_ENABLE);
411 1.20 jruoho
412 1.20 jruoho if ((val & est) == 0)
413 1.20 jruoho return ENOTTY;
414 1.20 jruoho }
415 1.20 jruoho }
416 1.9 jruoho
417 1.19 jruoho return acpicpu_md_pstate_sysctl_init();
418 1.5 jruoho }
419 1.5 jruoho
420 1.5 jruoho int
421 1.5 jruoho acpicpu_md_pstate_stop(void)
422 1.5 jruoho {
423 1.5 jruoho
424 1.19 jruoho if (acpicpu_log != NULL)
425 1.19 jruoho sysctl_teardown(&acpicpu_log);
426 1.5 jruoho
427 1.5 jruoho return 0;
428 1.5 jruoho }
429 1.5 jruoho
430 1.5 jruoho int
431 1.15 jruoho acpicpu_md_pstate_pss(struct acpicpu_softc *sc)
432 1.5 jruoho {
433 1.15 jruoho struct acpicpu_pstate *ps, msr;
434 1.17 jruoho struct cpu_info *ci = curcpu();
435 1.18 jruoho uint32_t family, i = 0;
436 1.13 jruoho
437 1.15 jruoho (void)memset(&msr, 0, sizeof(struct acpicpu_pstate));
438 1.13 jruoho
439 1.5 jruoho switch (cpu_vendor) {
440 1.5 jruoho
441 1.17 jruoho case CPUVENDOR_IDT:
442 1.5 jruoho case CPUVENDOR_INTEL:
443 1.33 jruoho
444 1.33 jruoho /*
445 1.33 jruoho * If the so-called Turbo Boost is present,
446 1.33 jruoho * the P0-state is always the "turbo state".
447 1.33 jruoho *
448 1.33 jruoho * For discussion, see:
449 1.33 jruoho *
450 1.33 jruoho * Intel Corporation: Intel Turbo Boost Technology
451 1.33 jruoho * in Intel Core(tm) Microarchitectures (Nehalem)
452 1.33 jruoho * Based Processors. White Paper, November 2008.
453 1.33 jruoho */
454 1.33 jruoho if ((sc->sc_flags & ACPICPU_FLAG_P_TURBO) != 0)
455 1.33 jruoho sc->sc_pstate[0].ps_flags |= ACPICPU_FLAG_P_TURBO;
456 1.33 jruoho
457 1.15 jruoho msr.ps_control_addr = MSR_PERF_CTL;
458 1.15 jruoho msr.ps_control_mask = __BITS(0, 15);
459 1.15 jruoho
460 1.15 jruoho msr.ps_status_addr = MSR_PERF_STATUS;
461 1.15 jruoho msr.ps_status_mask = __BITS(0, 15);
462 1.13 jruoho break;
463 1.13 jruoho
464 1.13 jruoho case CPUVENDOR_AMD:
465 1.13 jruoho
466 1.33 jruoho if ((sc->sc_flags & ACPICPU_FLAG_P_FIDVID) != 0)
467 1.33 jruoho msr.ps_flags |= ACPICPU_FLAG_P_FIDVID;
468 1.33 jruoho
469 1.18 jruoho family = CPUID2FAMILY(ci->ci_signature);
470 1.18 jruoho
471 1.18 jruoho if (family == 0xf)
472 1.18 jruoho family += CPUID2EXTFAMILY(ci->ci_signature);
473 1.18 jruoho
474 1.18 jruoho switch (family) {
475 1.17 jruoho
476 1.32 jruoho case 0x0f:
477 1.32 jruoho msr.ps_control_addr = MSR_0FH_CONTROL;
478 1.32 jruoho msr.ps_status_addr = MSR_0FH_STATUS;
479 1.32 jruoho break;
480 1.32 jruoho
481 1.17 jruoho case 0x10:
482 1.17 jruoho case 0x11:
483 1.17 jruoho msr.ps_control_addr = MSR_10H_CONTROL;
484 1.17 jruoho msr.ps_control_mask = __BITS(0, 2);
485 1.17 jruoho
486 1.17 jruoho msr.ps_status_addr = MSR_10H_STATUS;
487 1.17 jruoho msr.ps_status_mask = __BITS(0, 2);
488 1.17 jruoho break;
489 1.17 jruoho
490 1.17 jruoho default:
491 1.17 jruoho
492 1.17 jruoho if ((sc->sc_flags & ACPICPU_FLAG_P_XPSS) == 0)
493 1.17 jruoho return EOPNOTSUPP;
494 1.17 jruoho }
495 1.13 jruoho
496 1.13 jruoho break;
497 1.13 jruoho
498 1.13 jruoho default:
499 1.13 jruoho return ENODEV;
500 1.13 jruoho }
501 1.5 jruoho
502 1.26 jruoho /*
503 1.26 jruoho * Fill the P-state structures with MSR addresses that are
504 1.27 jruoho * known to be correct. If we do not know the addresses,
505 1.27 jruoho * leave the values intact. If a vendor uses XPSS, we do
506 1.27 jruoho * not necessary need to do anything to support new CPUs.
507 1.26 jruoho */
508 1.15 jruoho while (i < sc->sc_pstate_count) {
509 1.15 jruoho
510 1.15 jruoho ps = &sc->sc_pstate[i];
511 1.15 jruoho
512 1.32 jruoho if (msr.ps_flags != 0)
513 1.32 jruoho ps->ps_flags |= msr.ps_flags;
514 1.32 jruoho
515 1.27 jruoho if (msr.ps_status_addr != 0)
516 1.15 jruoho ps->ps_status_addr = msr.ps_status_addr;
517 1.15 jruoho
518 1.27 jruoho if (msr.ps_status_mask != 0)
519 1.15 jruoho ps->ps_status_mask = msr.ps_status_mask;
520 1.15 jruoho
521 1.27 jruoho if (msr.ps_control_addr != 0)
522 1.15 jruoho ps->ps_control_addr = msr.ps_control_addr;
523 1.15 jruoho
524 1.27 jruoho if (msr.ps_control_mask != 0)
525 1.15 jruoho ps->ps_control_mask = msr.ps_control_mask;
526 1.15 jruoho
527 1.15 jruoho i++;
528 1.15 jruoho }
529 1.15 jruoho
530 1.15 jruoho return 0;
531 1.15 jruoho }
532 1.15 jruoho
533 1.15 jruoho int
534 1.15 jruoho acpicpu_md_pstate_get(struct acpicpu_softc *sc, uint32_t *freq)
535 1.15 jruoho {
536 1.15 jruoho struct acpicpu_pstate *ps = NULL;
537 1.15 jruoho uint64_t val;
538 1.15 jruoho uint32_t i;
539 1.15 jruoho
540 1.32 jruoho if ((sc->sc_flags & ACPICPU_FLAG_P_FIDVID) != 0)
541 1.32 jruoho return acpicpu_md_pstate_fidvid_get(sc, freq);
542 1.32 jruoho
543 1.15 jruoho for (i = 0; i < sc->sc_pstate_count; i++) {
544 1.15 jruoho
545 1.15 jruoho ps = &sc->sc_pstate[i];
546 1.15 jruoho
547 1.32 jruoho if (__predict_true(ps->ps_freq != 0))
548 1.15 jruoho break;
549 1.15 jruoho }
550 1.15 jruoho
551 1.15 jruoho if (__predict_false(ps == NULL))
552 1.17 jruoho return ENODEV;
553 1.15 jruoho
554 1.28 jruoho if (__predict_false(ps->ps_status_addr == 0))
555 1.13 jruoho return EINVAL;
556 1.5 jruoho
557 1.13 jruoho val = rdmsr(ps->ps_status_addr);
558 1.5 jruoho
559 1.28 jruoho if (__predict_true(ps->ps_status_mask != 0))
560 1.13 jruoho val = val & ps->ps_status_mask;
561 1.5 jruoho
562 1.13 jruoho for (i = 0; i < sc->sc_pstate_count; i++) {
563 1.5 jruoho
564 1.13 jruoho ps = &sc->sc_pstate[i];
565 1.5 jruoho
566 1.32 jruoho if (__predict_false(ps->ps_freq == 0))
567 1.13 jruoho continue;
568 1.5 jruoho
569 1.29 jruoho if (val == ps->ps_status) {
570 1.13 jruoho *freq = ps->ps_freq;
571 1.13 jruoho return 0;
572 1.13 jruoho }
573 1.5 jruoho }
574 1.5 jruoho
575 1.13 jruoho return EIO;
576 1.5 jruoho }
577 1.5 jruoho
578 1.5 jruoho int
579 1.5 jruoho acpicpu_md_pstate_set(struct acpicpu_pstate *ps)
580 1.5 jruoho {
581 1.5 jruoho struct msr_rw_info msr;
582 1.14 jruoho uint64_t xc;
583 1.14 jruoho int rv = 0;
584 1.5 jruoho
585 1.37 jruoho if (__predict_false(ps->ps_control_addr == 0))
586 1.37 jruoho return EINVAL;
587 1.37 jruoho
588 1.32 jruoho if ((ps->ps_flags & ACPICPU_FLAG_P_FIDVID) != 0)
589 1.32 jruoho return acpicpu_md_pstate_fidvid_set(ps);
590 1.32 jruoho
591 1.13 jruoho msr.msr_read = false;
592 1.13 jruoho msr.msr_type = ps->ps_control_addr;
593 1.13 jruoho msr.msr_value = ps->ps_control;
594 1.13 jruoho
595 1.24 jruoho if (__predict_true(ps->ps_control_mask != 0)) {
596 1.13 jruoho msr.msr_mask = ps->ps_control_mask;
597 1.13 jruoho msr.msr_read = true;
598 1.13 jruoho }
599 1.13 jruoho
600 1.5 jruoho xc = xc_broadcast(0, (xcfunc_t)x86_msr_xcall, &msr, NULL);
601 1.5 jruoho xc_wait(xc);
602 1.5 jruoho
603 1.36 jruoho /*
604 1.36 jruoho * Due several problems, we bypass the
605 1.36 jruoho * relatively expensive status check.
606 1.36 jruoho */
607 1.36 jruoho if (acpicpu_pstate_status != true) {
608 1.33 jruoho DELAY(ps->ps_latency);
609 1.33 jruoho return 0;
610 1.33 jruoho }
611 1.13 jruoho
612 1.14 jruoho xc = xc_broadcast(0, (xcfunc_t)acpicpu_md_pstate_status, ps, &rv);
613 1.14 jruoho xc_wait(xc);
614 1.14 jruoho
615 1.14 jruoho return rv;
616 1.14 jruoho }
617 1.14 jruoho
618 1.14 jruoho static void
619 1.14 jruoho acpicpu_md_pstate_status(void *arg1, void *arg2)
620 1.14 jruoho {
621 1.14 jruoho struct acpicpu_pstate *ps = arg1;
622 1.14 jruoho uint64_t val;
623 1.14 jruoho int i;
624 1.14 jruoho
625 1.5 jruoho for (i = val = 0; i < ACPICPU_P_STATE_RETRY; i++) {
626 1.5 jruoho
627 1.13 jruoho val = rdmsr(ps->ps_status_addr);
628 1.13 jruoho
629 1.24 jruoho if (__predict_true(ps->ps_status_mask != 0))
630 1.13 jruoho val = val & ps->ps_status_mask;
631 1.5 jruoho
632 1.29 jruoho if (val == ps->ps_status)
633 1.14 jruoho return;
634 1.5 jruoho
635 1.5 jruoho DELAY(ps->ps_latency);
636 1.5 jruoho }
637 1.5 jruoho
638 1.14 jruoho *(uintptr_t *)arg2 = EAGAIN;
639 1.5 jruoho }
640 1.10 jruoho
641 1.32 jruoho static int
642 1.32 jruoho acpicpu_md_pstate_fidvid_get(struct acpicpu_softc *sc, uint32_t *freq)
643 1.32 jruoho {
644 1.32 jruoho struct acpicpu_pstate *ps;
645 1.32 jruoho uint32_t fid, i, vid;
646 1.32 jruoho uint32_t cfid, cvid;
647 1.32 jruoho int rv;
648 1.32 jruoho
649 1.32 jruoho /*
650 1.32 jruoho * AMD family 0Fh needs special treatment.
651 1.32 jruoho * While it wants to use ACPI, it does not
652 1.32 jruoho * comply with the ACPI specifications.
653 1.32 jruoho */
654 1.32 jruoho rv = acpicpu_md_pstate_fidvid_read(&cfid, &cvid);
655 1.32 jruoho
656 1.32 jruoho if (rv != 0)
657 1.32 jruoho return rv;
658 1.32 jruoho
659 1.32 jruoho for (i = 0; i < sc->sc_pstate_count; i++) {
660 1.32 jruoho
661 1.32 jruoho ps = &sc->sc_pstate[i];
662 1.32 jruoho
663 1.32 jruoho if (__predict_false(ps->ps_freq == 0))
664 1.32 jruoho continue;
665 1.32 jruoho
666 1.32 jruoho fid = __SHIFTOUT(ps->ps_status, ACPI_0FH_STATUS_FID);
667 1.32 jruoho vid = __SHIFTOUT(ps->ps_status, ACPI_0FH_STATUS_VID);
668 1.32 jruoho
669 1.32 jruoho if (cfid == fid && cvid == vid) {
670 1.32 jruoho *freq = ps->ps_freq;
671 1.32 jruoho return 0;
672 1.32 jruoho }
673 1.32 jruoho }
674 1.32 jruoho
675 1.32 jruoho return EIO;
676 1.32 jruoho }
677 1.32 jruoho
678 1.32 jruoho static int
679 1.32 jruoho acpicpu_md_pstate_fidvid_set(struct acpicpu_pstate *ps)
680 1.32 jruoho {
681 1.32 jruoho const uint64_t ctrl = ps->ps_control;
682 1.32 jruoho uint32_t cfid, cvid, fid, i, irt;
683 1.32 jruoho uint32_t pll, vco_cfid, vco_fid;
684 1.32 jruoho uint32_t val, vid, vst;
685 1.32 jruoho int rv;
686 1.32 jruoho
687 1.32 jruoho rv = acpicpu_md_pstate_fidvid_read(&cfid, &cvid);
688 1.32 jruoho
689 1.32 jruoho if (rv != 0)
690 1.32 jruoho return rv;
691 1.32 jruoho
692 1.32 jruoho fid = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_FID);
693 1.32 jruoho vid = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_VID);
694 1.32 jruoho irt = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_IRT);
695 1.32 jruoho vst = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_VST);
696 1.32 jruoho pll = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_PLL);
697 1.32 jruoho
698 1.32 jruoho vst = vst * 20;
699 1.32 jruoho pll = pll * 1000 / 5;
700 1.32 jruoho irt = 10 * __BIT(irt);
701 1.32 jruoho
702 1.32 jruoho /*
703 1.32 jruoho * Phase 1.
704 1.32 jruoho */
705 1.32 jruoho while (cvid > vid) {
706 1.32 jruoho
707 1.32 jruoho val = 1 << __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_MVS);
708 1.32 jruoho val = (val > cvid) ? 0 : cvid - val;
709 1.32 jruoho
710 1.32 jruoho acpicpu_md_pstate_fidvid_write(cfid, val, 1, vst);
711 1.32 jruoho rv = acpicpu_md_pstate_fidvid_read(NULL, &cvid);
712 1.32 jruoho
713 1.32 jruoho if (rv != 0)
714 1.32 jruoho return rv;
715 1.32 jruoho }
716 1.32 jruoho
717 1.32 jruoho i = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_RVO);
718 1.32 jruoho
719 1.32 jruoho for (; i > 0 && cvid > 0; --i) {
720 1.32 jruoho
721 1.32 jruoho acpicpu_md_pstate_fidvid_write(cfid, cvid - 1, 1, vst);
722 1.32 jruoho rv = acpicpu_md_pstate_fidvid_read(NULL, &cvid);
723 1.32 jruoho
724 1.32 jruoho if (rv != 0)
725 1.32 jruoho return rv;
726 1.32 jruoho }
727 1.32 jruoho
728 1.32 jruoho /*
729 1.32 jruoho * Phase 2.
730 1.32 jruoho */
731 1.32 jruoho if (cfid != fid) {
732 1.32 jruoho
733 1.32 jruoho vco_fid = FID_TO_VCO_FID(fid);
734 1.32 jruoho vco_cfid = FID_TO_VCO_FID(cfid);
735 1.32 jruoho
736 1.32 jruoho while (abs(vco_fid - vco_cfid) > 2) {
737 1.32 jruoho
738 1.32 jruoho if (fid <= cfid)
739 1.32 jruoho val = cfid - 2;
740 1.32 jruoho else {
741 1.32 jruoho val = (cfid > 6) ? cfid + 2 :
742 1.32 jruoho FID_TO_VCO_FID(cfid) + 2;
743 1.32 jruoho }
744 1.32 jruoho
745 1.32 jruoho acpicpu_md_pstate_fidvid_write(val, cvid, pll, irt);
746 1.32 jruoho rv = acpicpu_md_pstate_fidvid_read(&cfid, NULL);
747 1.32 jruoho
748 1.32 jruoho if (rv != 0)
749 1.32 jruoho return rv;
750 1.32 jruoho
751 1.32 jruoho vco_cfid = FID_TO_VCO_FID(cfid);
752 1.32 jruoho }
753 1.32 jruoho
754 1.32 jruoho acpicpu_md_pstate_fidvid_write(fid, cvid, pll, irt);
755 1.32 jruoho rv = acpicpu_md_pstate_fidvid_read(&cfid, NULL);
756 1.32 jruoho
757 1.32 jruoho if (rv != 0)
758 1.32 jruoho return rv;
759 1.32 jruoho }
760 1.32 jruoho
761 1.32 jruoho /*
762 1.32 jruoho * Phase 3.
763 1.32 jruoho */
764 1.32 jruoho if (cvid != vid) {
765 1.32 jruoho
766 1.32 jruoho acpicpu_md_pstate_fidvid_write(cfid, vid, 1, vst);
767 1.32 jruoho rv = acpicpu_md_pstate_fidvid_read(NULL, &cvid);
768 1.32 jruoho
769 1.32 jruoho if (rv != 0)
770 1.32 jruoho return rv;
771 1.32 jruoho }
772 1.32 jruoho
773 1.32 jruoho if (cfid != fid || cvid != vid)
774 1.32 jruoho return EIO;
775 1.32 jruoho
776 1.32 jruoho return 0;
777 1.32 jruoho }
778 1.32 jruoho
779 1.32 jruoho static int
780 1.32 jruoho acpicpu_md_pstate_fidvid_read(uint32_t *cfid, uint32_t *cvid)
781 1.32 jruoho {
782 1.32 jruoho int i = ACPICPU_P_STATE_RETRY * 100;
783 1.32 jruoho uint64_t val;
784 1.32 jruoho
785 1.32 jruoho do {
786 1.32 jruoho val = rdmsr(MSR_0FH_STATUS);
787 1.32 jruoho
788 1.32 jruoho } while (__SHIFTOUT(val, MSR_0FH_STATUS_PENDING) != 0 && --i >= 0);
789 1.32 jruoho
790 1.32 jruoho if (i == 0)
791 1.32 jruoho return EAGAIN;
792 1.32 jruoho
793 1.32 jruoho if (cfid != NULL)
794 1.32 jruoho *cfid = __SHIFTOUT(val, MSR_0FH_STATUS_CFID);
795 1.32 jruoho
796 1.32 jruoho if (cvid != NULL)
797 1.32 jruoho *cvid = __SHIFTOUT(val, MSR_0FH_STATUS_CVID);
798 1.32 jruoho
799 1.32 jruoho return 0;
800 1.32 jruoho }
801 1.32 jruoho
802 1.32 jruoho static void
803 1.32 jruoho acpicpu_md_pstate_fidvid_write(uint32_t fid,
804 1.32 jruoho uint32_t vid, uint32_t cnt, uint32_t tmo)
805 1.32 jruoho {
806 1.32 jruoho struct msr_rw_info msr;
807 1.32 jruoho uint64_t xc;
808 1.32 jruoho
809 1.32 jruoho msr.msr_read = false;
810 1.32 jruoho msr.msr_type = MSR_0FH_CONTROL;
811 1.32 jruoho msr.msr_value = 0;
812 1.32 jruoho
813 1.32 jruoho msr.msr_value |= __SHIFTIN(fid, MSR_0FH_CONTROL_FID);
814 1.32 jruoho msr.msr_value |= __SHIFTIN(vid, MSR_0FH_CONTROL_VID);
815 1.32 jruoho msr.msr_value |= __SHIFTIN(cnt, MSR_0FH_CONTROL_CNT);
816 1.32 jruoho msr.msr_value |= __SHIFTIN(0x1, MSR_0FH_CONTROL_CHG);
817 1.32 jruoho
818 1.32 jruoho xc = xc_broadcast(0, (xcfunc_t)x86_msr_xcall, &msr, NULL);
819 1.32 jruoho xc_wait(xc);
820 1.32 jruoho
821 1.32 jruoho DELAY(tmo);
822 1.32 jruoho }
823 1.32 jruoho
824 1.10 jruoho int
825 1.10 jruoho acpicpu_md_tstate_get(struct acpicpu_softc *sc, uint32_t *percent)
826 1.10 jruoho {
827 1.10 jruoho struct acpicpu_tstate *ts;
828 1.14 jruoho uint64_t val;
829 1.10 jruoho uint32_t i;
830 1.10 jruoho
831 1.14 jruoho val = rdmsr(MSR_THERM_CONTROL);
832 1.10 jruoho
833 1.10 jruoho for (i = 0; i < sc->sc_tstate_count; i++) {
834 1.10 jruoho
835 1.10 jruoho ts = &sc->sc_tstate[i];
836 1.10 jruoho
837 1.10 jruoho if (ts->ts_percent == 0)
838 1.10 jruoho continue;
839 1.10 jruoho
840 1.29 jruoho if (val == ts->ts_status) {
841 1.10 jruoho *percent = ts->ts_percent;
842 1.10 jruoho return 0;
843 1.10 jruoho }
844 1.10 jruoho }
845 1.10 jruoho
846 1.10 jruoho return EIO;
847 1.10 jruoho }
848 1.10 jruoho
849 1.10 jruoho int
850 1.10 jruoho acpicpu_md_tstate_set(struct acpicpu_tstate *ts)
851 1.10 jruoho {
852 1.10 jruoho struct msr_rw_info msr;
853 1.14 jruoho uint64_t xc;
854 1.14 jruoho int rv = 0;
855 1.10 jruoho
856 1.14 jruoho msr.msr_read = true;
857 1.14 jruoho msr.msr_type = MSR_THERM_CONTROL;
858 1.14 jruoho msr.msr_value = ts->ts_control;
859 1.14 jruoho msr.msr_mask = __BITS(1, 4);
860 1.10 jruoho
861 1.10 jruoho xc = xc_broadcast(0, (xcfunc_t)x86_msr_xcall, &msr, NULL);
862 1.10 jruoho xc_wait(xc);
863 1.10 jruoho
864 1.30 jruoho if (ts->ts_status == 0) {
865 1.30 jruoho DELAY(ts->ts_latency);
866 1.10 jruoho return 0;
867 1.30 jruoho }
868 1.10 jruoho
869 1.14 jruoho xc = xc_broadcast(0, (xcfunc_t)acpicpu_md_tstate_status, ts, &rv);
870 1.14 jruoho xc_wait(xc);
871 1.14 jruoho
872 1.14 jruoho return rv;
873 1.14 jruoho }
874 1.14 jruoho
875 1.14 jruoho static void
876 1.14 jruoho acpicpu_md_tstate_status(void *arg1, void *arg2)
877 1.14 jruoho {
878 1.14 jruoho struct acpicpu_tstate *ts = arg1;
879 1.14 jruoho uint64_t val;
880 1.14 jruoho int i;
881 1.14 jruoho
882 1.10 jruoho for (i = val = 0; i < ACPICPU_T_STATE_RETRY; i++) {
883 1.10 jruoho
884 1.14 jruoho val = rdmsr(MSR_THERM_CONTROL);
885 1.10 jruoho
886 1.29 jruoho if (val == ts->ts_status)
887 1.14 jruoho return;
888 1.10 jruoho
889 1.10 jruoho DELAY(ts->ts_latency);
890 1.10 jruoho }
891 1.10 jruoho
892 1.14 jruoho *(uintptr_t *)arg2 = EAGAIN;
893 1.10 jruoho }
894 1.19 jruoho
895 1.19 jruoho /*
896 1.19 jruoho * A kludge for backwards compatibility.
897 1.19 jruoho */
898 1.19 jruoho static int
899 1.19 jruoho acpicpu_md_pstate_sysctl_init(void)
900 1.19 jruoho {
901 1.19 jruoho const struct sysctlnode *fnode, *mnode, *rnode;
902 1.19 jruoho const char *str;
903 1.19 jruoho int rv;
904 1.19 jruoho
905 1.19 jruoho switch (cpu_vendor) {
906 1.19 jruoho
907 1.19 jruoho case CPUVENDOR_IDT:
908 1.19 jruoho case CPUVENDOR_INTEL:
909 1.19 jruoho str = "est";
910 1.19 jruoho break;
911 1.19 jruoho
912 1.19 jruoho case CPUVENDOR_AMD:
913 1.19 jruoho str = "powernow";
914 1.19 jruoho break;
915 1.19 jruoho
916 1.19 jruoho default:
917 1.19 jruoho return ENODEV;
918 1.19 jruoho }
919 1.19 jruoho
920 1.19 jruoho
921 1.19 jruoho rv = sysctl_createv(&acpicpu_log, 0, NULL, &rnode,
922 1.19 jruoho CTLFLAG_PERMANENT, CTLTYPE_NODE, "machdep", NULL,
923 1.19 jruoho NULL, 0, NULL, 0, CTL_MACHDEP, CTL_EOL);
924 1.19 jruoho
925 1.19 jruoho if (rv != 0)
926 1.19 jruoho goto fail;
927 1.19 jruoho
928 1.19 jruoho rv = sysctl_createv(&acpicpu_log, 0, &rnode, &mnode,
929 1.19 jruoho 0, CTLTYPE_NODE, str, NULL,
930 1.19 jruoho NULL, 0, NULL, 0, CTL_CREATE, CTL_EOL);
931 1.19 jruoho
932 1.19 jruoho if (rv != 0)
933 1.19 jruoho goto fail;
934 1.19 jruoho
935 1.19 jruoho rv = sysctl_createv(&acpicpu_log, 0, &mnode, &fnode,
936 1.19 jruoho 0, CTLTYPE_NODE, "frequency", NULL,
937 1.19 jruoho NULL, 0, NULL, 0, CTL_CREATE, CTL_EOL);
938 1.19 jruoho
939 1.19 jruoho if (rv != 0)
940 1.19 jruoho goto fail;
941 1.19 jruoho
942 1.19 jruoho rv = sysctl_createv(&acpicpu_log, 0, &fnode, &rnode,
943 1.19 jruoho CTLFLAG_READWRITE, CTLTYPE_INT, "target", NULL,
944 1.19 jruoho acpicpu_md_pstate_sysctl_set, 0, NULL, 0, CTL_CREATE, CTL_EOL);
945 1.19 jruoho
946 1.19 jruoho if (rv != 0)
947 1.19 jruoho goto fail;
948 1.19 jruoho
949 1.19 jruoho rv = sysctl_createv(&acpicpu_log, 0, &fnode, &rnode,
950 1.19 jruoho CTLFLAG_READONLY, CTLTYPE_INT, "current", NULL,
951 1.19 jruoho acpicpu_md_pstate_sysctl_get, 0, NULL, 0, CTL_CREATE, CTL_EOL);
952 1.19 jruoho
953 1.19 jruoho if (rv != 0)
954 1.19 jruoho goto fail;
955 1.19 jruoho
956 1.19 jruoho rv = sysctl_createv(&acpicpu_log, 0, &fnode, &rnode,
957 1.19 jruoho CTLFLAG_READONLY, CTLTYPE_STRING, "available", NULL,
958 1.19 jruoho acpicpu_md_pstate_sysctl_all, 0, NULL, 0, CTL_CREATE, CTL_EOL);
959 1.19 jruoho
960 1.19 jruoho if (rv != 0)
961 1.19 jruoho goto fail;
962 1.19 jruoho
963 1.19 jruoho return 0;
964 1.19 jruoho
965 1.19 jruoho fail:
966 1.19 jruoho if (acpicpu_log != NULL) {
967 1.19 jruoho sysctl_teardown(&acpicpu_log);
968 1.19 jruoho acpicpu_log = NULL;
969 1.19 jruoho }
970 1.19 jruoho
971 1.19 jruoho return rv;
972 1.19 jruoho }
973 1.19 jruoho
974 1.19 jruoho static int
975 1.19 jruoho acpicpu_md_pstate_sysctl_get(SYSCTLFN_ARGS)
976 1.19 jruoho {
977 1.19 jruoho struct cpu_info *ci = curcpu();
978 1.19 jruoho struct acpicpu_softc *sc;
979 1.19 jruoho struct sysctlnode node;
980 1.19 jruoho uint32_t freq;
981 1.19 jruoho int err;
982 1.19 jruoho
983 1.19 jruoho sc = acpicpu_sc[ci->ci_acpiid];
984 1.19 jruoho
985 1.19 jruoho if (sc == NULL)
986 1.19 jruoho return ENXIO;
987 1.19 jruoho
988 1.19 jruoho err = acpicpu_pstate_get(sc, &freq);
989 1.19 jruoho
990 1.19 jruoho if (err != 0)
991 1.19 jruoho return err;
992 1.19 jruoho
993 1.19 jruoho node = *rnode;
994 1.19 jruoho node.sysctl_data = &freq;
995 1.19 jruoho
996 1.19 jruoho err = sysctl_lookup(SYSCTLFN_CALL(&node));
997 1.19 jruoho
998 1.19 jruoho if (err != 0 || newp == NULL)
999 1.19 jruoho return err;
1000 1.19 jruoho
1001 1.19 jruoho return 0;
1002 1.19 jruoho }
1003 1.19 jruoho
1004 1.19 jruoho static int
1005 1.19 jruoho acpicpu_md_pstate_sysctl_set(SYSCTLFN_ARGS)
1006 1.19 jruoho {
1007 1.19 jruoho struct cpu_info *ci = curcpu();
1008 1.19 jruoho struct acpicpu_softc *sc;
1009 1.19 jruoho struct sysctlnode node;
1010 1.19 jruoho uint32_t freq;
1011 1.19 jruoho int err;
1012 1.19 jruoho
1013 1.19 jruoho sc = acpicpu_sc[ci->ci_acpiid];
1014 1.19 jruoho
1015 1.19 jruoho if (sc == NULL)
1016 1.19 jruoho return ENXIO;
1017 1.19 jruoho
1018 1.19 jruoho err = acpicpu_pstate_get(sc, &freq);
1019 1.19 jruoho
1020 1.19 jruoho if (err != 0)
1021 1.19 jruoho return err;
1022 1.19 jruoho
1023 1.19 jruoho node = *rnode;
1024 1.19 jruoho node.sysctl_data = &freq;
1025 1.19 jruoho
1026 1.19 jruoho err = sysctl_lookup(SYSCTLFN_CALL(&node));
1027 1.19 jruoho
1028 1.19 jruoho if (err != 0 || newp == NULL)
1029 1.19 jruoho return err;
1030 1.19 jruoho
1031 1.19 jruoho err = acpicpu_pstate_set(sc, freq);
1032 1.19 jruoho
1033 1.19 jruoho if (err != 0)
1034 1.19 jruoho return err;
1035 1.19 jruoho
1036 1.19 jruoho return 0;
1037 1.19 jruoho }
1038 1.19 jruoho
1039 1.19 jruoho static int
1040 1.19 jruoho acpicpu_md_pstate_sysctl_all(SYSCTLFN_ARGS)
1041 1.19 jruoho {
1042 1.19 jruoho struct cpu_info *ci = curcpu();
1043 1.19 jruoho struct acpicpu_softc *sc;
1044 1.19 jruoho struct sysctlnode node;
1045 1.19 jruoho char buf[1024];
1046 1.19 jruoho size_t len;
1047 1.19 jruoho uint32_t i;
1048 1.19 jruoho int err;
1049 1.19 jruoho
1050 1.19 jruoho sc = acpicpu_sc[ci->ci_acpiid];
1051 1.19 jruoho
1052 1.19 jruoho if (sc == NULL)
1053 1.19 jruoho return ENXIO;
1054 1.19 jruoho
1055 1.19 jruoho (void)memset(&buf, 0, sizeof(buf));
1056 1.19 jruoho
1057 1.19 jruoho mutex_enter(&sc->sc_mtx);
1058 1.19 jruoho
1059 1.19 jruoho for (len = 0, i = sc->sc_pstate_max; i < sc->sc_pstate_count; i++) {
1060 1.19 jruoho
1061 1.19 jruoho if (sc->sc_pstate[i].ps_freq == 0)
1062 1.19 jruoho continue;
1063 1.19 jruoho
1064 1.19 jruoho len += snprintf(buf + len, sizeof(buf) - len, "%u%s",
1065 1.19 jruoho sc->sc_pstate[i].ps_freq,
1066 1.19 jruoho i < (sc->sc_pstate_count - 1) ? " " : "");
1067 1.19 jruoho }
1068 1.19 jruoho
1069 1.19 jruoho mutex_exit(&sc->sc_mtx);
1070 1.19 jruoho
1071 1.19 jruoho node = *rnode;
1072 1.19 jruoho node.sysctl_data = buf;
1073 1.19 jruoho
1074 1.19 jruoho err = sysctl_lookup(SYSCTLFN_CALL(&node));
1075 1.19 jruoho
1076 1.19 jruoho if (err != 0 || newp == NULL)
1077 1.19 jruoho return err;
1078 1.19 jruoho
1079 1.19 jruoho return 0;
1080 1.19 jruoho }
1081 1.19 jruoho
1082