Home | History | Annotate | Line # | Download | only in acpi
acpi_cpu_md.c revision 1.38.4.2
      1  1.38.4.2  bouyer /* $NetBSD: acpi_cpu_md.c,v 1.38.4.2 2011/03/05 15:10:09 bouyer Exp $ */
      2       1.1  jruoho 
      3       1.1  jruoho /*-
      4  1.38.4.2  bouyer  * Copyright (c) 2010, 2011 Jukka Ruohonen <jruohonen (at) iki.fi>
      5       1.1  jruoho  * All rights reserved.
      6       1.1  jruoho  *
      7       1.1  jruoho  * Redistribution and use in source and binary forms, with or without
      8       1.1  jruoho  * modification, are permitted provided that the following conditions
      9       1.1  jruoho  * are met:
     10       1.1  jruoho  *
     11       1.1  jruoho  * 1. Redistributions of source code must retain the above copyright
     12       1.1  jruoho  *    notice, this list of conditions and the following disclaimer.
     13       1.1  jruoho  * 2. Redistributions in binary form must reproduce the above copyright
     14       1.1  jruoho  *    notice, this list of conditions and the following disclaimer in the
     15       1.1  jruoho  *    documentation and/or other materials provided with the distribution.
     16       1.1  jruoho  *
     17       1.1  jruoho  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
     18       1.1  jruoho  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     19       1.1  jruoho  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     20       1.1  jruoho  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
     21       1.1  jruoho  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     22       1.1  jruoho  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     23       1.1  jruoho  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     24       1.1  jruoho  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     25       1.1  jruoho  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     26       1.1  jruoho  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     27       1.1  jruoho  * SUCH DAMAGE.
     28       1.1  jruoho  */
     29       1.1  jruoho #include <sys/cdefs.h>
     30  1.38.4.2  bouyer __KERNEL_RCSID(0, "$NetBSD: acpi_cpu_md.c,v 1.38.4.2 2011/03/05 15:10:09 bouyer Exp $");
     31       1.1  jruoho 
     32       1.1  jruoho #include <sys/param.h>
     33       1.1  jruoho #include <sys/bus.h>
     34  1.38.4.2  bouyer #include <sys/device.h>
     35       1.1  jruoho #include <sys/kcore.h>
     36       1.5  jruoho #include <sys/sysctl.h>
     37       1.4  jruoho #include <sys/xcall.h>
     38       1.1  jruoho 
     39       1.1  jruoho #include <x86/cpu.h>
     40       1.5  jruoho #include <x86/cpufunc.h>
     41       1.5  jruoho #include <x86/cputypes.h>
     42       1.1  jruoho #include <x86/cpuvar.h>
     43       1.5  jruoho #include <x86/cpu_msr.h>
     44       1.1  jruoho #include <x86/machdep.h>
     45       1.1  jruoho 
     46       1.1  jruoho #include <dev/acpi/acpica.h>
     47       1.1  jruoho #include <dev/acpi/acpi_cpu.h>
     48       1.1  jruoho 
     49      1.12  jruoho #include <dev/pci/pcivar.h>
     50      1.12  jruoho #include <dev/pci/pcidevs.h>
     51      1.12  jruoho 
     52      1.38  jruoho #include <machine/acpi_machdep.h>
     53      1.38  jruoho 
     54      1.35  jruoho /*
     55  1.38.4.2  bouyer  * Intel IA32_MISC_ENABLE.
     56  1.38.4.2  bouyer  */
     57  1.38.4.2  bouyer #define MSR_MISC_ENABLE_EST	__BIT(16)
     58  1.38.4.2  bouyer #define MSR_MISC_ENABLE_TURBO	__BIT(38)
     59  1.38.4.2  bouyer 
     60  1.38.4.2  bouyer /*
     61      1.35  jruoho  * AMD C1E.
     62      1.35  jruoho  */
     63      1.35  jruoho #define MSR_CMPHALT		0xc0010055
     64      1.35  jruoho 
     65      1.35  jruoho #define MSR_CMPHALT_SMI		__BIT(27)
     66      1.35  jruoho #define MSR_CMPHALT_C1E		__BIT(28)
     67      1.35  jruoho #define MSR_CMPHALT_BMSTS	__BIT(29)
     68      1.33  jruoho 
     69      1.32  jruoho /*
     70  1.38.4.2  bouyer  * AMD families 10h, 11h, and 14h
     71      1.32  jruoho  */
     72      1.32  jruoho #define MSR_10H_LIMIT		0xc0010061
     73      1.32  jruoho #define MSR_10H_CONTROL		0xc0010062
     74      1.32  jruoho #define MSR_10H_STATUS		0xc0010063
     75      1.32  jruoho #define MSR_10H_CONFIG		0xc0010064
     76      1.22  jruoho 
     77      1.32  jruoho /*
     78      1.32  jruoho  * AMD family 0Fh.
     79      1.32  jruoho  */
     80      1.32  jruoho #define MSR_0FH_CONTROL		0xc0010041
     81      1.17  jruoho #define MSR_0FH_STATUS		0xc0010042
     82      1.17  jruoho 
     83      1.32  jruoho #define MSR_0FH_STATUS_CFID	__BITS( 0,  5)
     84      1.32  jruoho #define MSR_0FH_STATUS_CVID	__BITS(32, 36)
     85      1.32  jruoho #define MSR_0FH_STATUS_PENDING	__BITS(31, 31)
     86      1.32  jruoho 
     87      1.32  jruoho #define MSR_0FH_CONTROL_FID	__BITS( 0,  5)
     88      1.32  jruoho #define MSR_0FH_CONTROL_VID	__BITS( 8, 12)
     89      1.32  jruoho #define MSR_0FH_CONTROL_CHG	__BITS(16, 16)
     90      1.32  jruoho #define MSR_0FH_CONTROL_CNT	__BITS(32, 51)
     91      1.32  jruoho 
     92      1.32  jruoho #define ACPI_0FH_STATUS_FID	__BITS( 0,  5)
     93      1.32  jruoho #define ACPI_0FH_STATUS_VID	__BITS( 6, 10)
     94      1.32  jruoho 
     95      1.32  jruoho #define ACPI_0FH_CONTROL_FID	__BITS( 0,  5)
     96      1.32  jruoho #define ACPI_0FH_CONTROL_VID	__BITS( 6, 10)
     97      1.32  jruoho #define ACPI_0FH_CONTROL_VST	__BITS(11, 17)
     98      1.32  jruoho #define ACPI_0FH_CONTROL_MVS	__BITS(18, 19)
     99      1.32  jruoho #define ACPI_0FH_CONTROL_PLL	__BITS(20, 26)
    100      1.32  jruoho #define ACPI_0FH_CONTROL_RVO	__BITS(28, 29)
    101      1.32  jruoho #define ACPI_0FH_CONTROL_IRT	__BITS(30, 31)
    102      1.32  jruoho 
    103      1.32  jruoho #define FID_TO_VCO_FID(fidd)	(((fid) < 8) ? (8 + ((fid) << 1)) : (fid))
    104      1.17  jruoho 
    105       1.5  jruoho static char	  native_idle_text[16];
    106       1.5  jruoho void		(*native_idle)(void) = NULL;
    107       1.1  jruoho 
    108  1.38.4.2  bouyer static u_long	 acpicpu_md_lock(struct acpicpu_softc *);
    109  1.38.4.2  bouyer static void	 acpicpu_md_unlock(struct acpicpu_softc *, u_long);
    110  1.38.4.2  bouyer static int	 acpicpu_md_quirk_piix4(struct pci_attach_args *);
    111  1.38.4.2  bouyer static void	 acpicpu_md_pstate_percent_reset(struct cpu_info *);
    112      1.32  jruoho static int	 acpicpu_md_pstate_fidvid_get(struct acpicpu_softc *,
    113      1.32  jruoho                                               uint32_t *);
    114      1.32  jruoho static int	 acpicpu_md_pstate_fidvid_set(struct acpicpu_pstate *);
    115      1.32  jruoho static int	 acpicpu_md_pstate_fidvid_read(uint32_t *, uint32_t *);
    116      1.32  jruoho static void	 acpicpu_md_pstate_fidvid_write(uint32_t, uint32_t,
    117      1.32  jruoho 					        uint32_t, uint32_t);
    118      1.19  jruoho static int	 acpicpu_md_pstate_sysctl_init(void);
    119       1.5  jruoho static int	 acpicpu_md_pstate_sysctl_get(SYSCTLFN_PROTO);
    120       1.5  jruoho static int	 acpicpu_md_pstate_sysctl_set(SYSCTLFN_PROTO);
    121       1.5  jruoho static int	 acpicpu_md_pstate_sysctl_all(SYSCTLFN_PROTO);
    122       1.5  jruoho 
    123       1.5  jruoho extern struct acpicpu_softc **acpicpu_sc;
    124      1.19  jruoho static struct sysctllog *acpicpu_log = NULL;
    125       1.1  jruoho 
    126  1.38.4.2  bouyer struct cpu_info *
    127  1.38.4.2  bouyer acpicpu_md_match(device_t parent, cfdata_t match, void *aux)
    128  1.38.4.2  bouyer {
    129  1.38.4.2  bouyer 	struct cpufeature_attach_args *cfaa = aux;
    130  1.38.4.2  bouyer 
    131  1.38.4.2  bouyer 	if (strcmp(cfaa->name, "frequency") != 0)
    132  1.38.4.2  bouyer 		return NULL;
    133  1.38.4.2  bouyer 
    134  1.38.4.2  bouyer 	return cfaa->ci;
    135  1.38.4.2  bouyer }
    136  1.38.4.2  bouyer 
    137  1.38.4.2  bouyer struct cpu_info *
    138  1.38.4.2  bouyer acpicpu_md_attach(device_t parent, device_t self, void *aux)
    139  1.38.4.2  bouyer {
    140  1.38.4.2  bouyer 	struct cpufeature_attach_args *cfaa = aux;
    141  1.38.4.2  bouyer 
    142  1.38.4.2  bouyer 	return cfaa->ci;
    143  1.38.4.2  bouyer }
    144  1.38.4.2  bouyer 
    145  1.38.4.2  bouyer static u_long
    146  1.38.4.2  bouyer acpicpu_md_lock(struct acpicpu_softc *sc)
    147  1.38.4.2  bouyer {
    148  1.38.4.2  bouyer 	const u_long flags = x86_read_psl();
    149  1.38.4.2  bouyer 
    150  1.38.4.2  bouyer 	x86_disable_intr();
    151  1.38.4.2  bouyer 	__cpu_simple_lock(&sc->sc_lock);
    152  1.38.4.2  bouyer 
    153  1.38.4.2  bouyer 	return flags;
    154  1.38.4.2  bouyer }
    155  1.38.4.2  bouyer 
    156  1.38.4.2  bouyer static void
    157  1.38.4.2  bouyer acpicpu_md_unlock(struct acpicpu_softc *sc, u_long flags)
    158  1.38.4.2  bouyer {
    159  1.38.4.2  bouyer 	__cpu_simple_unlock(&sc->sc_lock);
    160  1.38.4.2  bouyer 	x86_write_psl(flags);
    161  1.38.4.2  bouyer }
    162  1.38.4.2  bouyer 
    163       1.1  jruoho uint32_t
    164       1.1  jruoho acpicpu_md_cap(void)
    165       1.1  jruoho {
    166       1.1  jruoho 	struct cpu_info *ci = curcpu();
    167  1.38.4.2  bouyer 	uint32_t regs[4];
    168       1.1  jruoho 	uint32_t val = 0;
    169       1.1  jruoho 
    170      1.17  jruoho 	if (cpu_vendor != CPUVENDOR_IDT &&
    171      1.17  jruoho 	    cpu_vendor != CPUVENDOR_INTEL)
    172       1.1  jruoho 		return val;
    173       1.1  jruoho 
    174       1.1  jruoho 	/*
    175  1.38.4.2  bouyer 	 * Basic SMP C-states (required for e.g. _CST).
    176       1.1  jruoho 	 */
    177       1.1  jruoho 	val |= ACPICPU_PDC_C_C1PT | ACPICPU_PDC_C_C2C3;
    178       1.1  jruoho 
    179  1.38.4.2  bouyer 	/*
    180  1.38.4.2  bouyer 	 * Claim to support dependency coordination.
    181  1.38.4.2  bouyer 	 */
    182  1.38.4.2  bouyer 	val |= ACPICPU_PDC_P_SW | ACPICPU_PDC_C_SW | ACPICPU_PDC_T_SW;
    183  1.38.4.2  bouyer 
    184       1.1  jruoho         /*
    185       1.1  jruoho 	 * If MONITOR/MWAIT is available, announce
    186       1.1  jruoho 	 * support for native instructions in all C-states.
    187       1.1  jruoho 	 */
    188       1.1  jruoho         if ((ci->ci_feat_val[1] & CPUID2_MONITOR) != 0)
    189       1.1  jruoho 		val |= ACPICPU_PDC_C_C1_FFH | ACPICPU_PDC_C_C2C3_FFH;
    190       1.1  jruoho 
    191       1.5  jruoho 	/*
    192      1.10  jruoho 	 * Set native P- and T-states, if available.
    193       1.5  jruoho 	 */
    194       1.5  jruoho         if ((ci->ci_feat_val[1] & CPUID2_EST) != 0)
    195       1.5  jruoho 		val |= ACPICPU_PDC_P_FFH;
    196       1.5  jruoho 
    197      1.10  jruoho 	if ((ci->ci_feat_val[0] & CPUID_ACPI) != 0)
    198      1.10  jruoho 		val |= ACPICPU_PDC_T_FFH;
    199      1.10  jruoho 
    200  1.38.4.2  bouyer 	/*
    201  1.38.4.2  bouyer 	 * Declare support for APERF and MPERF.
    202  1.38.4.2  bouyer 	 */
    203  1.38.4.2  bouyer 	if (cpuid_level >= 0x06) {
    204  1.38.4.2  bouyer 
    205  1.38.4.2  bouyer 		x86_cpuid(0x00000006, regs);
    206  1.38.4.2  bouyer 
    207  1.38.4.2  bouyer 		if ((regs[2] & CPUID_DSPM_HWF) != 0)
    208  1.38.4.2  bouyer 			val |= ACPICPU_PDC_P_HWF;
    209  1.38.4.2  bouyer 	}
    210  1.38.4.2  bouyer 
    211       1.1  jruoho 	return val;
    212       1.1  jruoho }
    213       1.1  jruoho 
    214       1.1  jruoho uint32_t
    215  1.38.4.2  bouyer acpicpu_md_flags(void)
    216       1.1  jruoho {
    217       1.1  jruoho 	struct cpu_info *ci = curcpu();
    218      1.12  jruoho 	struct pci_attach_args pa;
    219      1.18  jruoho 	uint32_t family, val = 0;
    220      1.21  jruoho 	uint32_t regs[4];
    221       1.1  jruoho 
    222      1.38  jruoho 	if (acpi_md_ncpus() == 1)
    223       1.1  jruoho 		val |= ACPICPU_FLAG_C_BM;
    224       1.1  jruoho 
    225       1.1  jruoho 	if ((ci->ci_feat_val[1] & CPUID2_MONITOR) != 0)
    226       1.5  jruoho 		val |= ACPICPU_FLAG_C_FFH;
    227       1.1  jruoho 
    228  1.38.4.1  bouyer 	/*
    229  1.38.4.1  bouyer 	 * By default, assume that the local APIC timer
    230  1.38.4.1  bouyer 	 * as well as TSC are stalled during C3 sleep.
    231  1.38.4.1  bouyer 	 */
    232      1.25  jruoho 	val |= ACPICPU_FLAG_C_APIC | ACPICPU_FLAG_C_TSC;
    233      1.22  jruoho 
    234       1.1  jruoho 	switch (cpu_vendor) {
    235       1.1  jruoho 
    236      1.17  jruoho 	case CPUVENDOR_IDT:
    237      1.22  jruoho 
    238      1.22  jruoho 		if ((ci->ci_feat_val[1] & CPUID2_EST) != 0)
    239      1.22  jruoho 			val |= ACPICPU_FLAG_P_FFH;
    240      1.22  jruoho 
    241      1.22  jruoho 		if ((ci->ci_feat_val[0] & CPUID_ACPI) != 0)
    242      1.22  jruoho 			val |= ACPICPU_FLAG_T_FFH;
    243      1.22  jruoho 
    244      1.22  jruoho 		break;
    245      1.22  jruoho 
    246       1.1  jruoho 	case CPUVENDOR_INTEL:
    247      1.17  jruoho 
    248  1.38.4.1  bouyer 		/*
    249  1.38.4.1  bouyer 		 * Bus master control and arbitration should be
    250  1.38.4.1  bouyer 		 * available on all supported Intel CPUs (to be
    251  1.38.4.1  bouyer 		 * sure, this is double-checked later from the
    252  1.38.4.1  bouyer 		 * firmware data). These flags imply that it is
    253  1.38.4.1  bouyer 		 * not necessary to flush caches before C3 state.
    254  1.38.4.1  bouyer 		 */
    255      1.22  jruoho 		val |= ACPICPU_FLAG_C_BM | ACPICPU_FLAG_C_ARB;
    256      1.22  jruoho 
    257  1.38.4.1  bouyer 		/*
    258  1.38.4.1  bouyer 		 * Check if we can use "native", MSR-based,
    259  1.38.4.1  bouyer 		 * access. If not, we have to resort to I/O.
    260  1.38.4.1  bouyer 		 */
    261       1.5  jruoho 		if ((ci->ci_feat_val[1] & CPUID2_EST) != 0)
    262       1.5  jruoho 			val |= ACPICPU_FLAG_P_FFH;
    263       1.5  jruoho 
    264      1.10  jruoho 		if ((ci->ci_feat_val[0] & CPUID_ACPI) != 0)
    265      1.10  jruoho 			val |= ACPICPU_FLAG_T_FFH;
    266      1.10  jruoho 
    267      1.22  jruoho 		/*
    268      1.25  jruoho 		 * Check whether MSR_APERF, MSR_MPERF, and Turbo
    269      1.25  jruoho 		 * Boost are available. Also see if we might have
    270      1.25  jruoho 		 * an invariant local APIC timer ("ARAT").
    271      1.23  jruoho 		 */
    272      1.23  jruoho 		if (cpuid_level >= 0x06) {
    273      1.23  jruoho 
    274  1.38.4.2  bouyer 			x86_cpuid(0x00000006, regs);
    275      1.23  jruoho 
    276      1.34  jruoho 			if ((regs[2] & CPUID_DSPM_HWF) != 0)
    277  1.38.4.2  bouyer 				val |= ACPICPU_FLAG_P_HWF;
    278      1.23  jruoho 
    279      1.34  jruoho 			if ((regs[0] & CPUID_DSPM_IDA) != 0)
    280      1.24  jruoho 				val |= ACPICPU_FLAG_P_TURBO;
    281      1.25  jruoho 
    282      1.34  jruoho 			if ((regs[0] & CPUID_DSPM_ARAT) != 0)
    283      1.25  jruoho 				val &= ~ACPICPU_FLAG_C_APIC;
    284      1.23  jruoho 		}
    285      1.23  jruoho 
    286      1.23  jruoho 		/*
    287      1.22  jruoho 		 * Detect whether TSC is invariant. If it is not,
    288      1.22  jruoho 		 * we keep the flag to note that TSC will not run
    289      1.22  jruoho 		 * at constant rate. Depending on the CPU, this may
    290      1.22  jruoho 		 * affect P- and T-state changes, but especially
    291      1.22  jruoho 		 * relevant are C-states; with variant TSC, states
    292      1.24  jruoho 		 * larger than C1 may completely stop the counter.
    293      1.22  jruoho 		 */
    294      1.22  jruoho 		x86_cpuid(0x80000000, regs);
    295      1.22  jruoho 
    296      1.22  jruoho 		if (regs[0] >= 0x80000007) {
    297      1.22  jruoho 
    298      1.22  jruoho 			x86_cpuid(0x80000007, regs);
    299      1.22  jruoho 
    300      1.32  jruoho 			if ((regs[3] & __BIT(8)) != 0)
    301      1.22  jruoho 				val &= ~ACPICPU_FLAG_C_TSC;
    302      1.22  jruoho 		}
    303      1.22  jruoho 
    304      1.17  jruoho 		break;
    305      1.12  jruoho 
    306      1.17  jruoho 	case CPUVENDOR_AMD:
    307      1.17  jruoho 
    308      1.32  jruoho 		x86_cpuid(0x80000000, regs);
    309      1.32  jruoho 
    310      1.32  jruoho 		if (regs[0] < 0x80000007)
    311      1.32  jruoho 			break;
    312      1.32  jruoho 
    313      1.32  jruoho 		x86_cpuid(0x80000007, regs);
    314      1.32  jruoho 
    315      1.18  jruoho 		family = CPUID2FAMILY(ci->ci_signature);
    316      1.18  jruoho 
    317      1.18  jruoho 		if (family == 0xf)
    318      1.18  jruoho 			family += CPUID2EXTFAMILY(ci->ci_signature);
    319      1.18  jruoho 
    320      1.32  jruoho     		switch (family) {
    321       1.1  jruoho 
    322      1.22  jruoho 		case 0x0f:
    323      1.32  jruoho 
    324  1.38.4.2  bouyer 			/*
    325  1.38.4.2  bouyer 			 * Evaluate support for the "FID/VID
    326  1.38.4.2  bouyer 			 * algorithm" also used by powernow(4).
    327  1.38.4.2  bouyer 			 */
    328      1.32  jruoho 			if ((regs[3] & CPUID_APM_FID) == 0)
    329      1.32  jruoho 				break;
    330      1.32  jruoho 
    331      1.32  jruoho 			if ((regs[3] & CPUID_APM_VID) == 0)
    332      1.32  jruoho 				break;
    333      1.32  jruoho 
    334      1.32  jruoho 			val |= ACPICPU_FLAG_P_FFH | ACPICPU_FLAG_P_FIDVID;
    335      1.32  jruoho 			break;
    336      1.32  jruoho 
    337      1.17  jruoho 		case 0x10:
    338      1.17  jruoho 		case 0x11:
    339  1.38.4.2  bouyer 			val |= ACPICPU_FLAG_C_C1E;
    340  1.38.4.2  bouyer 			/* FALLTHROUGH */
    341  1.38.4.2  bouyer 
    342  1.38.4.2  bouyer 		case 0x14: /* AMD Fusion */
    343       1.1  jruoho 
    344  1.38.4.2  bouyer 			/*
    345  1.38.4.2  bouyer 			 * Like with Intel, detect invariant TSC,
    346  1.38.4.2  bouyer 			 * MSR-based P-states, and AMD's "turbo"
    347  1.38.4.2  bouyer 			 * (Core Performance Boost), respectively.
    348  1.38.4.2  bouyer 			 */
    349      1.22  jruoho 			if ((regs[3] & CPUID_APM_TSC) != 0)
    350      1.22  jruoho 				val &= ~ACPICPU_FLAG_C_TSC;
    351      1.22  jruoho 
    352      1.21  jruoho 			if ((regs[3] & CPUID_APM_HWP) != 0)
    353      1.17  jruoho 				val |= ACPICPU_FLAG_P_FFH;
    354      1.21  jruoho 
    355      1.21  jruoho 			if ((regs[3] & CPUID_APM_CPB) != 0)
    356      1.21  jruoho 				val |= ACPICPU_FLAG_P_TURBO;
    357      1.35  jruoho 
    358  1.38.4.2  bouyer 			/*
    359  1.38.4.2  bouyer 			 * Also check for APERF and MPERF,
    360  1.38.4.2  bouyer 			 * first available in the family 10h.
    361  1.38.4.2  bouyer 			 */
    362  1.38.4.2  bouyer 			if (cpuid_level >= 0x06) {
    363  1.38.4.2  bouyer 
    364  1.38.4.2  bouyer 				x86_cpuid(0x00000006, regs);
    365  1.38.4.2  bouyer 
    366  1.38.4.2  bouyer 				if ((regs[2] & CPUID_DSPM_HWF) != 0)
    367  1.38.4.2  bouyer 					val |= ACPICPU_FLAG_P_HWF;
    368  1.38.4.2  bouyer 			}
    369  1.38.4.2  bouyer 
    370      1.35  jruoho 			break;
    371      1.17  jruoho 		}
    372       1.1  jruoho 
    373       1.1  jruoho 		break;
    374       1.1  jruoho 	}
    375       1.1  jruoho 
    376      1.12  jruoho 	/*
    377      1.12  jruoho 	 * There are several erratums for PIIX4.
    378      1.12  jruoho 	 */
    379  1.38.4.2  bouyer 	if (pci_find_device(&pa, acpicpu_md_quirk_piix4) != 0)
    380      1.12  jruoho 		val |= ACPICPU_FLAG_PIIX4;
    381      1.12  jruoho 
    382       1.1  jruoho 	return val;
    383       1.1  jruoho }
    384       1.1  jruoho 
    385      1.12  jruoho static int
    386  1.38.4.2  bouyer acpicpu_md_quirk_piix4(struct pci_attach_args *pa)
    387      1.12  jruoho {
    388      1.12  jruoho 
    389      1.12  jruoho 	/*
    390      1.12  jruoho 	 * XXX: The pci_find_device(9) function only
    391      1.12  jruoho 	 *	deals with attached devices. Change this
    392      1.12  jruoho 	 *	to use something like pci_device_foreach().
    393      1.12  jruoho 	 */
    394      1.12  jruoho 	if (PCI_VENDOR(pa->pa_id) != PCI_VENDOR_INTEL)
    395      1.12  jruoho 		return 0;
    396      1.12  jruoho 
    397      1.12  jruoho 	if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_82371AB_ISA ||
    398      1.12  jruoho 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_82440MX_PMC)
    399      1.12  jruoho 		return 1;
    400      1.12  jruoho 
    401      1.12  jruoho 	return 0;
    402      1.12  jruoho }
    403      1.12  jruoho 
    404      1.35  jruoho void
    405  1.38.4.2  bouyer acpicpu_md_quirk_c1e(void)
    406      1.35  jruoho {
    407      1.35  jruoho 	const uint64_t c1e = MSR_CMPHALT_SMI | MSR_CMPHALT_C1E;
    408      1.35  jruoho 	uint64_t val;
    409      1.35  jruoho 
    410      1.35  jruoho 	val = rdmsr(MSR_CMPHALT);
    411      1.35  jruoho 
    412      1.35  jruoho 	if ((val & c1e) != 0)
    413      1.35  jruoho 		wrmsr(MSR_CMPHALT, val & ~c1e);
    414      1.35  jruoho }
    415      1.35  jruoho 
    416       1.1  jruoho int
    417  1.38.4.2  bouyer acpicpu_md_cstate_start(struct acpicpu_softc *sc)
    418       1.1  jruoho {
    419       1.1  jruoho 	const size_t size = sizeof(native_idle_text);
    420      1.31  jruoho 	struct acpicpu_cstate *cs;
    421      1.31  jruoho 	bool ipi = false;
    422      1.31  jruoho 	int i;
    423       1.1  jruoho 
    424  1.38.4.2  bouyer 	/*
    425  1.38.4.2  bouyer 	 * Save the cpu_idle(9) loop used by default.
    426  1.38.4.2  bouyer 	 */
    427       1.1  jruoho 	x86_cpu_idle_get(&native_idle, native_idle_text, size);
    428      1.31  jruoho 
    429      1.31  jruoho 	for (i = 0; i < ACPI_C_STATE_COUNT; i++) {
    430      1.31  jruoho 
    431      1.31  jruoho 		cs = &sc->sc_cstate[i];
    432      1.31  jruoho 
    433      1.31  jruoho 		if (cs->cs_method == ACPICPU_C_STATE_HALT) {
    434      1.31  jruoho 			ipi = true;
    435      1.31  jruoho 			break;
    436      1.31  jruoho 		}
    437      1.31  jruoho 	}
    438      1.31  jruoho 
    439      1.31  jruoho 	x86_cpu_idle_set(acpicpu_cstate_idle, "acpi", ipi);
    440       1.1  jruoho 
    441       1.1  jruoho 	return 0;
    442       1.1  jruoho }
    443       1.1  jruoho 
    444       1.1  jruoho int
    445  1.38.4.2  bouyer acpicpu_md_cstate_stop(void)
    446       1.1  jruoho {
    447       1.4  jruoho 	uint64_t xc;
    448      1.31  jruoho 	bool ipi;
    449       1.1  jruoho 
    450      1.31  jruoho 	ipi = (native_idle != x86_cpu_idle_halt) ? false : true;
    451      1.31  jruoho 	x86_cpu_idle_set(native_idle, native_idle_text, ipi);
    452       1.1  jruoho 
    453       1.4  jruoho 	/*
    454       1.4  jruoho 	 * Run a cross-call to ensure that all CPUs are
    455       1.4  jruoho 	 * out from the ACPI idle-loop before detachment.
    456       1.4  jruoho 	 */
    457       1.4  jruoho 	xc = xc_broadcast(0, (xcfunc_t)nullop, NULL, NULL);
    458       1.4  jruoho 	xc_wait(xc);
    459       1.1  jruoho 
    460       1.1  jruoho 	return 0;
    461       1.1  jruoho }
    462       1.1  jruoho 
    463       1.3  jruoho /*
    464      1.31  jruoho  * Called with interrupts disabled.
    465      1.31  jruoho  * Caller should enable interrupts after return.
    466       1.3  jruoho  */
    467       1.1  jruoho void
    468  1.38.4.2  bouyer acpicpu_md_cstate_enter(int method, int state)
    469       1.1  jruoho {
    470       1.3  jruoho 	struct cpu_info *ci = curcpu();
    471       1.1  jruoho 
    472       1.1  jruoho 	switch (method) {
    473       1.1  jruoho 
    474       1.1  jruoho 	case ACPICPU_C_STATE_FFH:
    475       1.3  jruoho 
    476       1.3  jruoho 		x86_enable_intr();
    477       1.3  jruoho 		x86_monitor(&ci->ci_want_resched, 0, 0);
    478       1.3  jruoho 
    479      1.31  jruoho 		if (__predict_false(ci->ci_want_resched != 0))
    480       1.3  jruoho 			return;
    481       1.3  jruoho 
    482       1.1  jruoho 		x86_mwait((state - 1) << 4, 0);
    483       1.1  jruoho 		break;
    484       1.1  jruoho 
    485       1.1  jruoho 	case ACPICPU_C_STATE_HALT:
    486       1.3  jruoho 
    487      1.31  jruoho 		if (__predict_false(ci->ci_want_resched != 0))
    488       1.3  jruoho 			return;
    489       1.3  jruoho 
    490       1.1  jruoho 		x86_stihlt();
    491       1.1  jruoho 		break;
    492       1.1  jruoho 	}
    493       1.1  jruoho }
    494       1.5  jruoho 
    495       1.5  jruoho int
    496  1.38.4.2  bouyer acpicpu_md_pstate_start(struct acpicpu_softc *sc)
    497       1.5  jruoho {
    498      1.19  jruoho 	return acpicpu_md_pstate_sysctl_init();
    499       1.5  jruoho }
    500       1.5  jruoho 
    501       1.5  jruoho int
    502       1.5  jruoho acpicpu_md_pstate_stop(void)
    503       1.5  jruoho {
    504      1.19  jruoho 	if (acpicpu_log != NULL)
    505      1.19  jruoho 		sysctl_teardown(&acpicpu_log);
    506       1.5  jruoho 
    507       1.5  jruoho 	return 0;
    508       1.5  jruoho }
    509       1.5  jruoho 
    510       1.5  jruoho int
    511  1.38.4.2  bouyer acpicpu_md_pstate_init(struct acpicpu_softc *sc)
    512       1.5  jruoho {
    513      1.15  jruoho 	struct acpicpu_pstate *ps, msr;
    514      1.17  jruoho 	struct cpu_info *ci = curcpu();
    515      1.18  jruoho 	uint32_t family, i = 0;
    516  1.38.4.2  bouyer 	uint64_t val;
    517      1.13  jruoho 
    518      1.15  jruoho 	(void)memset(&msr, 0, sizeof(struct acpicpu_pstate));
    519      1.13  jruoho 
    520       1.5  jruoho 	switch (cpu_vendor) {
    521       1.5  jruoho 
    522      1.17  jruoho 	case CPUVENDOR_IDT:
    523       1.5  jruoho 	case CPUVENDOR_INTEL:
    524      1.33  jruoho 
    525      1.33  jruoho 		/*
    526  1.38.4.2  bouyer 		 * Make sure EST is enabled.
    527  1.38.4.2  bouyer 		 */
    528  1.38.4.2  bouyer 		if ((sc->sc_flags & ACPICPU_FLAG_P_FFH) != 0) {
    529  1.38.4.2  bouyer 
    530  1.38.4.2  bouyer 			val = rdmsr(MSR_MISC_ENABLE);
    531  1.38.4.2  bouyer 
    532  1.38.4.2  bouyer 			if ((val & MSR_MISC_ENABLE_EST) == 0) {
    533  1.38.4.2  bouyer 
    534  1.38.4.2  bouyer 				val |= MSR_MISC_ENABLE_EST;
    535  1.38.4.2  bouyer 				wrmsr(MSR_MISC_ENABLE, val);
    536  1.38.4.2  bouyer 				val = rdmsr(MSR_MISC_ENABLE);
    537  1.38.4.2  bouyer 
    538  1.38.4.2  bouyer 				if ((val & MSR_MISC_ENABLE_EST) == 0)
    539  1.38.4.2  bouyer 					return ENOTTY;
    540  1.38.4.2  bouyer 			}
    541  1.38.4.2  bouyer 		}
    542  1.38.4.2  bouyer 
    543  1.38.4.2  bouyer 		/*
    544      1.33  jruoho 		 * If the so-called Turbo Boost is present,
    545      1.33  jruoho 		 * the P0-state is always the "turbo state".
    546  1.38.4.2  bouyer 		 * It is shown as the P1 frequency + 1 MHz.
    547      1.33  jruoho 		 *
    548      1.33  jruoho 		 * For discussion, see:
    549      1.33  jruoho 		 *
    550      1.33  jruoho 		 *	Intel Corporation: Intel Turbo Boost Technology
    551      1.33  jruoho 		 *	in Intel Core(tm) Microarchitectures (Nehalem)
    552      1.33  jruoho 		 *	Based Processors. White Paper, November 2008.
    553      1.33  jruoho 		 */
    554  1.38.4.2  bouyer 		if (sc->sc_pstate_count >= 2 &&
    555  1.38.4.2  bouyer 		   (sc->sc_flags & ACPICPU_FLAG_P_TURBO) != 0) {
    556  1.38.4.2  bouyer 
    557  1.38.4.2  bouyer 			ps = &sc->sc_pstate[0];
    558  1.38.4.2  bouyer 
    559  1.38.4.2  bouyer 			if (ps->ps_freq == sc->sc_pstate[1].ps_freq + 1)
    560  1.38.4.2  bouyer 				ps->ps_flags |= ACPICPU_FLAG_P_TURBO;
    561  1.38.4.2  bouyer 		}
    562      1.33  jruoho 
    563      1.15  jruoho 		msr.ps_control_addr = MSR_PERF_CTL;
    564      1.15  jruoho 		msr.ps_control_mask = __BITS(0, 15);
    565      1.15  jruoho 
    566      1.15  jruoho 		msr.ps_status_addr  = MSR_PERF_STATUS;
    567      1.15  jruoho 		msr.ps_status_mask  = __BITS(0, 15);
    568      1.13  jruoho 		break;
    569      1.13  jruoho 
    570      1.13  jruoho 	case CPUVENDOR_AMD:
    571      1.13  jruoho 
    572      1.33  jruoho 		if ((sc->sc_flags & ACPICPU_FLAG_P_FIDVID) != 0)
    573      1.33  jruoho 			msr.ps_flags |= ACPICPU_FLAG_P_FIDVID;
    574      1.33  jruoho 
    575      1.18  jruoho 		family = CPUID2FAMILY(ci->ci_signature);
    576      1.18  jruoho 
    577      1.18  jruoho 		if (family == 0xf)
    578      1.18  jruoho 			family += CPUID2EXTFAMILY(ci->ci_signature);
    579      1.18  jruoho 
    580      1.18  jruoho 		switch (family) {
    581      1.17  jruoho 
    582      1.32  jruoho 		case 0x0f:
    583      1.32  jruoho 			msr.ps_control_addr = MSR_0FH_CONTROL;
    584      1.32  jruoho 			msr.ps_status_addr  = MSR_0FH_STATUS;
    585      1.32  jruoho 			break;
    586      1.32  jruoho 
    587      1.17  jruoho 		case 0x10:
    588      1.17  jruoho 		case 0x11:
    589  1.38.4.2  bouyer 		case 0x14: /* AMD Fusion */
    590      1.17  jruoho 			msr.ps_control_addr = MSR_10H_CONTROL;
    591      1.17  jruoho 			msr.ps_control_mask = __BITS(0, 2);
    592      1.17  jruoho 
    593      1.17  jruoho 			msr.ps_status_addr  = MSR_10H_STATUS;
    594      1.17  jruoho 			msr.ps_status_mask  = __BITS(0, 2);
    595      1.17  jruoho 			break;
    596      1.17  jruoho 
    597      1.17  jruoho 		default:
    598      1.17  jruoho 
    599  1.38.4.2  bouyer 			/*
    600  1.38.4.2  bouyer 			 * If we have an unknown AMD CPU, rely on XPSS.
    601  1.38.4.2  bouyer 			 */
    602      1.17  jruoho 			if ((sc->sc_flags & ACPICPU_FLAG_P_XPSS) == 0)
    603      1.17  jruoho 				return EOPNOTSUPP;
    604      1.17  jruoho 		}
    605      1.13  jruoho 
    606      1.13  jruoho 		break;
    607      1.13  jruoho 
    608      1.13  jruoho 	default:
    609      1.13  jruoho 		return ENODEV;
    610      1.13  jruoho 	}
    611       1.5  jruoho 
    612      1.26  jruoho 	/*
    613      1.26  jruoho 	 * Fill the P-state structures with MSR addresses that are
    614      1.27  jruoho 	 * known to be correct. If we do not know the addresses,
    615      1.27  jruoho 	 * leave the values intact. If a vendor uses XPSS, we do
    616  1.38.4.1  bouyer 	 * not necessarily need to do anything to support new CPUs.
    617      1.26  jruoho 	 */
    618      1.15  jruoho 	while (i < sc->sc_pstate_count) {
    619      1.15  jruoho 
    620      1.15  jruoho 		ps = &sc->sc_pstate[i];
    621      1.15  jruoho 
    622      1.32  jruoho 		if (msr.ps_flags != 0)
    623      1.32  jruoho 			ps->ps_flags |= msr.ps_flags;
    624      1.32  jruoho 
    625      1.27  jruoho 		if (msr.ps_status_addr != 0)
    626      1.15  jruoho 			ps->ps_status_addr = msr.ps_status_addr;
    627      1.15  jruoho 
    628      1.27  jruoho 		if (msr.ps_status_mask != 0)
    629      1.15  jruoho 			ps->ps_status_mask = msr.ps_status_mask;
    630      1.15  jruoho 
    631      1.27  jruoho 		if (msr.ps_control_addr != 0)
    632      1.15  jruoho 			ps->ps_control_addr = msr.ps_control_addr;
    633      1.15  jruoho 
    634      1.27  jruoho 		if (msr.ps_control_mask != 0)
    635      1.15  jruoho 			ps->ps_control_mask = msr.ps_control_mask;
    636      1.15  jruoho 
    637      1.15  jruoho 		i++;
    638      1.15  jruoho 	}
    639      1.15  jruoho 
    640  1.38.4.2  bouyer 	/*
    641  1.38.4.2  bouyer 	 * Reset the APERF and MPERF counters.
    642  1.38.4.2  bouyer 	 *
    643  1.38.4.2  bouyer 	 * XXX: Should be with xc_unicast(9).
    644  1.38.4.2  bouyer 	 */
    645  1.38.4.2  bouyer 	if ((sc->sc_flags & ACPICPU_FLAG_P_HWF) != 0)
    646  1.38.4.2  bouyer 		acpicpu_md_pstate_percent_reset(sc->sc_ci);
    647  1.38.4.2  bouyer 
    648      1.15  jruoho 	return 0;
    649      1.15  jruoho }
    650      1.15  jruoho 
    651  1.38.4.2  bouyer /*
    652  1.38.4.2  bouyer  * Read the IA32_APERF and IA32_MPERF counters. The first
    653  1.38.4.2  bouyer  * increments at the rate of the fixed maximum frequency
    654  1.38.4.2  bouyer  * configured during the boot, whereas APERF counts at the
    655  1.38.4.2  bouyer  * rate of the actual frequency. Note that the MSRs must be
    656  1.38.4.2  bouyer  * read without delay, and that only the ratio between
    657  1.38.4.2  bouyer  * IA32_APERF and IA32_MPERF is architecturally defined.
    658  1.38.4.2  bouyer  *
    659  1.38.4.2  bouyer  * The function thus returns the percentage of the actual
    660  1.38.4.2  bouyer  * frequency in terms of the maximum frequency of the calling
    661  1.38.4.2  bouyer  * CPU since the last call. A value zero implies an error.
    662  1.38.4.2  bouyer  *
    663  1.38.4.2  bouyer  * For further details, refer to:
    664  1.38.4.2  bouyer  *
    665  1.38.4.2  bouyer  *	Intel Corporation: Intel 64 and IA-32 Architectures
    666  1.38.4.2  bouyer  *	Software Developer's Manual. Section 13.2, Volume 3A:
    667  1.38.4.2  bouyer  *	System Programming Guide, Part 1. July, 2008.
    668  1.38.4.2  bouyer  *
    669  1.38.4.2  bouyer  *	Advanced Micro Devices: BIOS and Kernel Developer's
    670  1.38.4.2  bouyer  *	Guide (BKDG) for AMD Family 10h Processors. Section
    671  1.38.4.2  bouyer  *	2.4.5, Revision 3.48, April 2010.
    672  1.38.4.2  bouyer  */
    673  1.38.4.2  bouyer uint8_t
    674  1.38.4.2  bouyer acpicpu_md_pstate_percent(struct cpu_info *ci)
    675  1.38.4.2  bouyer {
    676  1.38.4.2  bouyer 	struct acpicpu_softc *sc;
    677  1.38.4.2  bouyer 	uint64_t aperf, mperf;
    678  1.38.4.2  bouyer 	uint8_t rv = 0;
    679  1.38.4.2  bouyer 	u_long flags;
    680  1.38.4.2  bouyer 
    681  1.38.4.2  bouyer 	sc = acpicpu_sc[ci->ci_acpiid];
    682  1.38.4.2  bouyer 
    683  1.38.4.2  bouyer 	if (__predict_false(sc == NULL))
    684  1.38.4.2  bouyer 		return 0;
    685  1.38.4.2  bouyer 
    686  1.38.4.2  bouyer 	if (__predict_false((sc->sc_flags & ACPICPU_FLAG_P_HWF) == 0))
    687  1.38.4.2  bouyer 		return 0;
    688  1.38.4.2  bouyer 
    689  1.38.4.2  bouyer 	flags = acpicpu_md_lock(sc);
    690  1.38.4.2  bouyer 
    691  1.38.4.2  bouyer 	aperf = sc->sc_pstate_aperf;
    692  1.38.4.2  bouyer 	mperf = sc->sc_pstate_mperf;
    693  1.38.4.2  bouyer 
    694  1.38.4.2  bouyer 	sc->sc_pstate_aperf = rdmsr(MSR_APERF);
    695  1.38.4.2  bouyer 	sc->sc_pstate_mperf = rdmsr(MSR_MPERF);
    696  1.38.4.2  bouyer 
    697  1.38.4.2  bouyer 	aperf = sc->sc_pstate_aperf - aperf;
    698  1.38.4.2  bouyer 	mperf = sc->sc_pstate_mperf - mperf;
    699  1.38.4.2  bouyer 
    700  1.38.4.2  bouyer 	if (__predict_true(mperf != 0))
    701  1.38.4.2  bouyer 		rv = (aperf * 100) / mperf;
    702  1.38.4.2  bouyer 
    703  1.38.4.2  bouyer 	acpicpu_md_unlock(sc, flags);
    704  1.38.4.2  bouyer 
    705  1.38.4.2  bouyer 	return rv;
    706  1.38.4.2  bouyer }
    707  1.38.4.2  bouyer 
    708  1.38.4.2  bouyer static void
    709  1.38.4.2  bouyer acpicpu_md_pstate_percent_reset(struct cpu_info *ci)
    710  1.38.4.2  bouyer {
    711  1.38.4.2  bouyer 	struct acpicpu_softc *sc;
    712  1.38.4.2  bouyer 	u_long flags;
    713  1.38.4.2  bouyer 
    714  1.38.4.2  bouyer 	sc = acpicpu_sc[ci->ci_acpiid];
    715  1.38.4.2  bouyer 
    716  1.38.4.2  bouyer 	if (__predict_false(sc == NULL))
    717  1.38.4.2  bouyer 		return;
    718  1.38.4.2  bouyer 
    719  1.38.4.2  bouyer 	flags = acpicpu_md_lock(sc);
    720  1.38.4.2  bouyer 
    721  1.38.4.2  bouyer 	wrmsr(MSR_APERF, 0);
    722  1.38.4.2  bouyer 	wrmsr(MSR_MPERF, 0);
    723  1.38.4.2  bouyer 
    724  1.38.4.2  bouyer 	sc->sc_pstate_aperf = 0;
    725  1.38.4.2  bouyer 	sc->sc_pstate_mperf = 0;
    726  1.38.4.2  bouyer 
    727  1.38.4.2  bouyer 	acpicpu_md_unlock(sc, flags);
    728  1.38.4.2  bouyer }
    729  1.38.4.2  bouyer 
    730      1.15  jruoho int
    731      1.15  jruoho acpicpu_md_pstate_get(struct acpicpu_softc *sc, uint32_t *freq)
    732      1.15  jruoho {
    733      1.15  jruoho 	struct acpicpu_pstate *ps = NULL;
    734      1.15  jruoho 	uint64_t val;
    735      1.15  jruoho 	uint32_t i;
    736      1.15  jruoho 
    737      1.32  jruoho 	if ((sc->sc_flags & ACPICPU_FLAG_P_FIDVID) != 0)
    738      1.32  jruoho 		return acpicpu_md_pstate_fidvid_get(sc, freq);
    739      1.32  jruoho 
    740  1.38.4.2  bouyer 	/*
    741  1.38.4.2  bouyer 	 * Pick any P-state for the status address.
    742  1.38.4.2  bouyer 	*/
    743      1.15  jruoho 	for (i = 0; i < sc->sc_pstate_count; i++) {
    744      1.15  jruoho 
    745      1.15  jruoho 		ps = &sc->sc_pstate[i];
    746      1.15  jruoho 
    747      1.32  jruoho 		if (__predict_true(ps->ps_freq != 0))
    748      1.15  jruoho 			break;
    749      1.15  jruoho 	}
    750      1.15  jruoho 
    751      1.15  jruoho 	if (__predict_false(ps == NULL))
    752      1.17  jruoho 		return ENODEV;
    753      1.15  jruoho 
    754      1.28  jruoho 	if (__predict_false(ps->ps_status_addr == 0))
    755      1.13  jruoho 		return EINVAL;
    756       1.5  jruoho 
    757      1.13  jruoho 	val = rdmsr(ps->ps_status_addr);
    758       1.5  jruoho 
    759      1.28  jruoho 	if (__predict_true(ps->ps_status_mask != 0))
    760      1.13  jruoho 		val = val & ps->ps_status_mask;
    761       1.5  jruoho 
    762  1.38.4.2  bouyer 	/*
    763  1.38.4.2  bouyer 	 * Search for the value from known P-states.
    764  1.38.4.2  bouyer 	 */
    765      1.13  jruoho 	for (i = 0; i < sc->sc_pstate_count; i++) {
    766       1.5  jruoho 
    767      1.13  jruoho 		ps = &sc->sc_pstate[i];
    768       1.5  jruoho 
    769      1.32  jruoho 		if (__predict_false(ps->ps_freq == 0))
    770      1.13  jruoho 			continue;
    771       1.5  jruoho 
    772      1.29  jruoho 		if (val == ps->ps_status) {
    773      1.13  jruoho 			*freq = ps->ps_freq;
    774      1.13  jruoho 			return 0;
    775      1.13  jruoho 		}
    776       1.5  jruoho 	}
    777       1.5  jruoho 
    778      1.13  jruoho 	return EIO;
    779       1.5  jruoho }
    780       1.5  jruoho 
    781       1.5  jruoho int
    782       1.5  jruoho acpicpu_md_pstate_set(struct acpicpu_pstate *ps)
    783       1.5  jruoho {
    784  1.38.4.2  bouyer 	uint64_t val = 0;
    785       1.5  jruoho 
    786      1.37  jruoho 	if (__predict_false(ps->ps_control_addr == 0))
    787      1.37  jruoho 		return EINVAL;
    788      1.37  jruoho 
    789      1.32  jruoho 	if ((ps->ps_flags & ACPICPU_FLAG_P_FIDVID) != 0)
    790      1.32  jruoho 		return acpicpu_md_pstate_fidvid_set(ps);
    791      1.32  jruoho 
    792      1.36  jruoho 	/*
    793  1.38.4.2  bouyer 	 * If the mask is set, do a read-modify-write.
    794      1.36  jruoho 	 */
    795  1.38.4.2  bouyer 	if (__predict_true(ps->ps_control_mask != 0)) {
    796  1.38.4.2  bouyer 		val = rdmsr(ps->ps_control_addr);
    797  1.38.4.2  bouyer 		val &= ~ps->ps_control_mask;
    798      1.33  jruoho 	}
    799      1.13  jruoho 
    800  1.38.4.2  bouyer 	val |= ps->ps_control;
    801      1.14  jruoho 
    802  1.38.4.2  bouyer 	wrmsr(ps->ps_control_addr, val);
    803  1.38.4.2  bouyer 	DELAY(ps->ps_latency);
    804      1.14  jruoho 
    805  1.38.4.2  bouyer 	return 0;
    806       1.5  jruoho }
    807      1.10  jruoho 
    808      1.32  jruoho static int
    809      1.32  jruoho acpicpu_md_pstate_fidvid_get(struct acpicpu_softc *sc, uint32_t *freq)
    810      1.32  jruoho {
    811      1.32  jruoho 	struct acpicpu_pstate *ps;
    812      1.32  jruoho 	uint32_t fid, i, vid;
    813      1.32  jruoho 	uint32_t cfid, cvid;
    814      1.32  jruoho 	int rv;
    815      1.32  jruoho 
    816      1.32  jruoho 	/*
    817      1.32  jruoho 	 * AMD family 0Fh needs special treatment.
    818      1.32  jruoho 	 * While it wants to use ACPI, it does not
    819      1.32  jruoho 	 * comply with the ACPI specifications.
    820      1.32  jruoho 	 */
    821      1.32  jruoho 	rv = acpicpu_md_pstate_fidvid_read(&cfid, &cvid);
    822      1.32  jruoho 
    823      1.32  jruoho 	if (rv != 0)
    824      1.32  jruoho 		return rv;
    825      1.32  jruoho 
    826      1.32  jruoho 	for (i = 0; i < sc->sc_pstate_count; i++) {
    827      1.32  jruoho 
    828      1.32  jruoho 		ps = &sc->sc_pstate[i];
    829      1.32  jruoho 
    830      1.32  jruoho 		if (__predict_false(ps->ps_freq == 0))
    831      1.32  jruoho 			continue;
    832      1.32  jruoho 
    833      1.32  jruoho 		fid = __SHIFTOUT(ps->ps_status, ACPI_0FH_STATUS_FID);
    834      1.32  jruoho 		vid = __SHIFTOUT(ps->ps_status, ACPI_0FH_STATUS_VID);
    835      1.32  jruoho 
    836      1.32  jruoho 		if (cfid == fid && cvid == vid) {
    837      1.32  jruoho 			*freq = ps->ps_freq;
    838      1.32  jruoho 			return 0;
    839      1.32  jruoho 		}
    840      1.32  jruoho 	}
    841      1.32  jruoho 
    842      1.32  jruoho 	return EIO;
    843      1.32  jruoho }
    844      1.32  jruoho 
    845      1.32  jruoho static int
    846      1.32  jruoho acpicpu_md_pstate_fidvid_set(struct acpicpu_pstate *ps)
    847      1.32  jruoho {
    848      1.32  jruoho 	const uint64_t ctrl = ps->ps_control;
    849      1.32  jruoho 	uint32_t cfid, cvid, fid, i, irt;
    850      1.32  jruoho 	uint32_t pll, vco_cfid, vco_fid;
    851      1.32  jruoho 	uint32_t val, vid, vst;
    852      1.32  jruoho 	int rv;
    853      1.32  jruoho 
    854      1.32  jruoho 	rv = acpicpu_md_pstate_fidvid_read(&cfid, &cvid);
    855      1.32  jruoho 
    856      1.32  jruoho 	if (rv != 0)
    857      1.32  jruoho 		return rv;
    858      1.32  jruoho 
    859      1.32  jruoho 	fid = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_FID);
    860      1.32  jruoho 	vid = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_VID);
    861      1.32  jruoho 	irt = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_IRT);
    862      1.32  jruoho 	vst = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_VST);
    863      1.32  jruoho 	pll = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_PLL);
    864      1.32  jruoho 
    865      1.32  jruoho 	vst = vst * 20;
    866      1.32  jruoho 	pll = pll * 1000 / 5;
    867      1.32  jruoho 	irt = 10 * __BIT(irt);
    868      1.32  jruoho 
    869      1.32  jruoho 	/*
    870      1.32  jruoho 	 * Phase 1.
    871      1.32  jruoho 	 */
    872      1.32  jruoho 	while (cvid > vid) {
    873      1.32  jruoho 
    874      1.32  jruoho 		val = 1 << __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_MVS);
    875      1.32  jruoho 		val = (val > cvid) ? 0 : cvid - val;
    876      1.32  jruoho 
    877      1.32  jruoho 		acpicpu_md_pstate_fidvid_write(cfid, val, 1, vst);
    878      1.32  jruoho 		rv = acpicpu_md_pstate_fidvid_read(NULL, &cvid);
    879      1.32  jruoho 
    880      1.32  jruoho 		if (rv != 0)
    881      1.32  jruoho 			return rv;
    882      1.32  jruoho 	}
    883      1.32  jruoho 
    884      1.32  jruoho 	i = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_RVO);
    885      1.32  jruoho 
    886      1.32  jruoho 	for (; i > 0 && cvid > 0; --i) {
    887      1.32  jruoho 
    888      1.32  jruoho 		acpicpu_md_pstate_fidvid_write(cfid, cvid - 1, 1, vst);
    889      1.32  jruoho 		rv = acpicpu_md_pstate_fidvid_read(NULL, &cvid);
    890      1.32  jruoho 
    891      1.32  jruoho 		if (rv != 0)
    892      1.32  jruoho 			return rv;
    893      1.32  jruoho 	}
    894      1.32  jruoho 
    895      1.32  jruoho 	/*
    896      1.32  jruoho 	 * Phase 2.
    897      1.32  jruoho 	 */
    898      1.32  jruoho 	if (cfid != fid) {
    899      1.32  jruoho 
    900      1.32  jruoho 		vco_fid  = FID_TO_VCO_FID(fid);
    901      1.32  jruoho 		vco_cfid = FID_TO_VCO_FID(cfid);
    902      1.32  jruoho 
    903      1.32  jruoho 		while (abs(vco_fid - vco_cfid) > 2) {
    904      1.32  jruoho 
    905      1.32  jruoho 			if (fid <= cfid)
    906      1.32  jruoho 				val = cfid - 2;
    907      1.32  jruoho 			else {
    908      1.32  jruoho 				val = (cfid > 6) ? cfid + 2 :
    909      1.32  jruoho 				    FID_TO_VCO_FID(cfid) + 2;
    910      1.32  jruoho 			}
    911      1.32  jruoho 
    912      1.32  jruoho 			acpicpu_md_pstate_fidvid_write(val, cvid, pll, irt);
    913      1.32  jruoho 			rv = acpicpu_md_pstate_fidvid_read(&cfid, NULL);
    914      1.32  jruoho 
    915      1.32  jruoho 			if (rv != 0)
    916      1.32  jruoho 				return rv;
    917      1.32  jruoho 
    918      1.32  jruoho 			vco_cfid = FID_TO_VCO_FID(cfid);
    919      1.32  jruoho 		}
    920      1.32  jruoho 
    921      1.32  jruoho 		acpicpu_md_pstate_fidvid_write(fid, cvid, pll, irt);
    922      1.32  jruoho 		rv = acpicpu_md_pstate_fidvid_read(&cfid, NULL);
    923      1.32  jruoho 
    924      1.32  jruoho 		if (rv != 0)
    925      1.32  jruoho 			return rv;
    926      1.32  jruoho 	}
    927      1.32  jruoho 
    928      1.32  jruoho 	/*
    929      1.32  jruoho 	 * Phase 3.
    930      1.32  jruoho 	 */
    931      1.32  jruoho 	if (cvid != vid) {
    932      1.32  jruoho 
    933      1.32  jruoho 		acpicpu_md_pstate_fidvid_write(cfid, vid, 1, vst);
    934      1.32  jruoho 		rv = acpicpu_md_pstate_fidvid_read(NULL, &cvid);
    935      1.32  jruoho 
    936      1.32  jruoho 		if (rv != 0)
    937      1.32  jruoho 			return rv;
    938      1.32  jruoho 	}
    939      1.32  jruoho 
    940      1.32  jruoho 	if (cfid != fid || cvid != vid)
    941      1.32  jruoho 		return EIO;
    942      1.32  jruoho 
    943      1.32  jruoho 	return 0;
    944      1.32  jruoho }
    945      1.32  jruoho 
    946      1.32  jruoho static int
    947      1.32  jruoho acpicpu_md_pstate_fidvid_read(uint32_t *cfid, uint32_t *cvid)
    948      1.32  jruoho {
    949      1.32  jruoho 	int i = ACPICPU_P_STATE_RETRY * 100;
    950      1.32  jruoho 	uint64_t val;
    951      1.32  jruoho 
    952      1.32  jruoho 	do {
    953      1.32  jruoho 		val = rdmsr(MSR_0FH_STATUS);
    954      1.32  jruoho 
    955      1.32  jruoho 	} while (__SHIFTOUT(val, MSR_0FH_STATUS_PENDING) != 0 && --i >= 0);
    956      1.32  jruoho 
    957      1.32  jruoho 	if (i == 0)
    958      1.32  jruoho 		return EAGAIN;
    959      1.32  jruoho 
    960      1.32  jruoho 	if (cfid != NULL)
    961      1.32  jruoho 		*cfid = __SHIFTOUT(val, MSR_0FH_STATUS_CFID);
    962      1.32  jruoho 
    963      1.32  jruoho 	if (cvid != NULL)
    964      1.32  jruoho 		*cvid = __SHIFTOUT(val, MSR_0FH_STATUS_CVID);
    965      1.32  jruoho 
    966      1.32  jruoho 	return 0;
    967      1.32  jruoho }
    968      1.32  jruoho 
    969      1.32  jruoho static void
    970      1.32  jruoho acpicpu_md_pstate_fidvid_write(uint32_t fid,
    971      1.32  jruoho     uint32_t vid, uint32_t cnt, uint32_t tmo)
    972      1.32  jruoho {
    973  1.38.4.2  bouyer 	uint64_t val = 0;
    974      1.32  jruoho 
    975  1.38.4.2  bouyer 	val |= __SHIFTIN(fid, MSR_0FH_CONTROL_FID);
    976  1.38.4.2  bouyer 	val |= __SHIFTIN(vid, MSR_0FH_CONTROL_VID);
    977  1.38.4.2  bouyer 	val |= __SHIFTIN(cnt, MSR_0FH_CONTROL_CNT);
    978  1.38.4.2  bouyer 	val |= __SHIFTIN(0x1, MSR_0FH_CONTROL_CHG);
    979      1.32  jruoho 
    980  1.38.4.2  bouyer 	wrmsr(MSR_0FH_CONTROL, val);
    981      1.32  jruoho 	DELAY(tmo);
    982      1.32  jruoho }
    983      1.32  jruoho 
    984      1.10  jruoho int
    985      1.10  jruoho acpicpu_md_tstate_get(struct acpicpu_softc *sc, uint32_t *percent)
    986      1.10  jruoho {
    987      1.10  jruoho 	struct acpicpu_tstate *ts;
    988      1.14  jruoho 	uint64_t val;
    989      1.10  jruoho 	uint32_t i;
    990      1.10  jruoho 
    991      1.14  jruoho 	val = rdmsr(MSR_THERM_CONTROL);
    992      1.10  jruoho 
    993      1.10  jruoho 	for (i = 0; i < sc->sc_tstate_count; i++) {
    994      1.10  jruoho 
    995      1.10  jruoho 		ts = &sc->sc_tstate[i];
    996      1.10  jruoho 
    997      1.10  jruoho 		if (ts->ts_percent == 0)
    998      1.10  jruoho 			continue;
    999      1.10  jruoho 
   1000      1.29  jruoho 		if (val == ts->ts_status) {
   1001      1.10  jruoho 			*percent = ts->ts_percent;
   1002      1.10  jruoho 			return 0;
   1003      1.10  jruoho 		}
   1004      1.10  jruoho 	}
   1005      1.10  jruoho 
   1006      1.10  jruoho 	return EIO;
   1007      1.10  jruoho }
   1008      1.10  jruoho 
   1009      1.10  jruoho int
   1010      1.10  jruoho acpicpu_md_tstate_set(struct acpicpu_tstate *ts)
   1011      1.10  jruoho {
   1012  1.38.4.2  bouyer 	uint64_t val;
   1013  1.38.4.2  bouyer 	uint8_t i;
   1014      1.10  jruoho 
   1015  1.38.4.2  bouyer 	val = ts->ts_control;
   1016  1.38.4.2  bouyer 	val = val & __BITS(1, 4);
   1017      1.10  jruoho 
   1018  1.38.4.2  bouyer 	wrmsr(MSR_THERM_CONTROL, val);
   1019      1.10  jruoho 
   1020      1.30  jruoho 	if (ts->ts_status == 0) {
   1021      1.30  jruoho 		DELAY(ts->ts_latency);
   1022      1.10  jruoho 		return 0;
   1023      1.30  jruoho 	}
   1024      1.10  jruoho 
   1025      1.10  jruoho 	for (i = val = 0; i < ACPICPU_T_STATE_RETRY; i++) {
   1026      1.10  jruoho 
   1027      1.14  jruoho 		val = rdmsr(MSR_THERM_CONTROL);
   1028      1.10  jruoho 
   1029      1.29  jruoho 		if (val == ts->ts_status)
   1030  1.38.4.2  bouyer 			return 0;
   1031      1.10  jruoho 
   1032      1.10  jruoho 		DELAY(ts->ts_latency);
   1033      1.10  jruoho 	}
   1034      1.10  jruoho 
   1035  1.38.4.2  bouyer 	return EAGAIN;
   1036      1.10  jruoho }
   1037      1.19  jruoho 
   1038      1.19  jruoho /*
   1039      1.19  jruoho  * A kludge for backwards compatibility.
   1040      1.19  jruoho  */
   1041      1.19  jruoho static int
   1042      1.19  jruoho acpicpu_md_pstate_sysctl_init(void)
   1043      1.19  jruoho {
   1044      1.19  jruoho 	const struct sysctlnode	*fnode, *mnode, *rnode;
   1045      1.19  jruoho 	const char *str;
   1046      1.19  jruoho 	int rv;
   1047      1.19  jruoho 
   1048      1.19  jruoho 	switch (cpu_vendor) {
   1049      1.19  jruoho 
   1050      1.19  jruoho 	case CPUVENDOR_IDT:
   1051      1.19  jruoho 	case CPUVENDOR_INTEL:
   1052      1.19  jruoho 		str = "est";
   1053      1.19  jruoho 		break;
   1054      1.19  jruoho 
   1055      1.19  jruoho 	case CPUVENDOR_AMD:
   1056      1.19  jruoho 		str = "powernow";
   1057      1.19  jruoho 		break;
   1058      1.19  jruoho 
   1059      1.19  jruoho 	default:
   1060      1.19  jruoho 		return ENODEV;
   1061      1.19  jruoho 	}
   1062      1.19  jruoho 
   1063      1.19  jruoho 
   1064      1.19  jruoho 	rv = sysctl_createv(&acpicpu_log, 0, NULL, &rnode,
   1065      1.19  jruoho 	    CTLFLAG_PERMANENT, CTLTYPE_NODE, "machdep", NULL,
   1066      1.19  jruoho 	    NULL, 0, NULL, 0, CTL_MACHDEP, CTL_EOL);
   1067      1.19  jruoho 
   1068      1.19  jruoho 	if (rv != 0)
   1069      1.19  jruoho 		goto fail;
   1070      1.19  jruoho 
   1071      1.19  jruoho 	rv = sysctl_createv(&acpicpu_log, 0, &rnode, &mnode,
   1072      1.19  jruoho 	    0, CTLTYPE_NODE, str, NULL,
   1073      1.19  jruoho 	    NULL, 0, NULL, 0, CTL_CREATE, CTL_EOL);
   1074      1.19  jruoho 
   1075      1.19  jruoho 	if (rv != 0)
   1076      1.19  jruoho 		goto fail;
   1077      1.19  jruoho 
   1078      1.19  jruoho 	rv = sysctl_createv(&acpicpu_log, 0, &mnode, &fnode,
   1079      1.19  jruoho 	    0, CTLTYPE_NODE, "frequency", NULL,
   1080      1.19  jruoho 	    NULL, 0, NULL, 0, CTL_CREATE, CTL_EOL);
   1081      1.19  jruoho 
   1082      1.19  jruoho 	if (rv != 0)
   1083      1.19  jruoho 		goto fail;
   1084      1.19  jruoho 
   1085      1.19  jruoho 	rv = sysctl_createv(&acpicpu_log, 0, &fnode, &rnode,
   1086      1.19  jruoho 	    CTLFLAG_READWRITE, CTLTYPE_INT, "target", NULL,
   1087      1.19  jruoho 	    acpicpu_md_pstate_sysctl_set, 0, NULL, 0, CTL_CREATE, CTL_EOL);
   1088      1.19  jruoho 
   1089      1.19  jruoho 	if (rv != 0)
   1090      1.19  jruoho 		goto fail;
   1091      1.19  jruoho 
   1092      1.19  jruoho 	rv = sysctl_createv(&acpicpu_log, 0, &fnode, &rnode,
   1093      1.19  jruoho 	    CTLFLAG_READONLY, CTLTYPE_INT, "current", NULL,
   1094      1.19  jruoho 	    acpicpu_md_pstate_sysctl_get, 0, NULL, 0, CTL_CREATE, CTL_EOL);
   1095      1.19  jruoho 
   1096      1.19  jruoho 	if (rv != 0)
   1097      1.19  jruoho 		goto fail;
   1098      1.19  jruoho 
   1099      1.19  jruoho 	rv = sysctl_createv(&acpicpu_log, 0, &fnode, &rnode,
   1100      1.19  jruoho 	    CTLFLAG_READONLY, CTLTYPE_STRING, "available", NULL,
   1101      1.19  jruoho 	    acpicpu_md_pstate_sysctl_all, 0, NULL, 0, CTL_CREATE, CTL_EOL);
   1102      1.19  jruoho 
   1103      1.19  jruoho 	if (rv != 0)
   1104      1.19  jruoho 		goto fail;
   1105      1.19  jruoho 
   1106      1.19  jruoho 	return 0;
   1107      1.19  jruoho 
   1108      1.19  jruoho fail:
   1109      1.19  jruoho 	if (acpicpu_log != NULL) {
   1110      1.19  jruoho 		sysctl_teardown(&acpicpu_log);
   1111      1.19  jruoho 		acpicpu_log = NULL;
   1112      1.19  jruoho 	}
   1113      1.19  jruoho 
   1114      1.19  jruoho 	return rv;
   1115      1.19  jruoho }
   1116      1.19  jruoho 
   1117      1.19  jruoho static int
   1118      1.19  jruoho acpicpu_md_pstate_sysctl_get(SYSCTLFN_ARGS)
   1119      1.19  jruoho {
   1120      1.19  jruoho 	struct cpu_info *ci = curcpu();
   1121      1.19  jruoho 	struct sysctlnode node;
   1122      1.19  jruoho 	uint32_t freq;
   1123      1.19  jruoho 	int err;
   1124      1.19  jruoho 
   1125  1.38.4.2  bouyer 	err = acpicpu_pstate_get(ci, &freq);
   1126      1.19  jruoho 
   1127      1.19  jruoho 	if (err != 0)
   1128      1.19  jruoho 		return err;
   1129      1.19  jruoho 
   1130      1.19  jruoho 	node = *rnode;
   1131      1.19  jruoho 	node.sysctl_data = &freq;
   1132      1.19  jruoho 
   1133      1.19  jruoho 	err = sysctl_lookup(SYSCTLFN_CALL(&node));
   1134      1.19  jruoho 
   1135      1.19  jruoho 	if (err != 0 || newp == NULL)
   1136      1.19  jruoho 		return err;
   1137      1.19  jruoho 
   1138      1.19  jruoho 	return 0;
   1139      1.19  jruoho }
   1140      1.19  jruoho 
   1141      1.19  jruoho static int
   1142      1.19  jruoho acpicpu_md_pstate_sysctl_set(SYSCTLFN_ARGS)
   1143      1.19  jruoho {
   1144      1.19  jruoho 	struct cpu_info *ci = curcpu();
   1145      1.19  jruoho 	struct sysctlnode node;
   1146      1.19  jruoho 	uint32_t freq;
   1147      1.19  jruoho 	int err;
   1148      1.19  jruoho 
   1149  1.38.4.2  bouyer 	err = acpicpu_pstate_get(ci, &freq);
   1150      1.19  jruoho 
   1151      1.19  jruoho 	if (err != 0)
   1152      1.19  jruoho 		return err;
   1153      1.19  jruoho 
   1154      1.19  jruoho 	node = *rnode;
   1155      1.19  jruoho 	node.sysctl_data = &freq;
   1156      1.19  jruoho 
   1157      1.19  jruoho 	err = sysctl_lookup(SYSCTLFN_CALL(&node));
   1158      1.19  jruoho 
   1159      1.19  jruoho 	if (err != 0 || newp == NULL)
   1160      1.19  jruoho 		return err;
   1161      1.19  jruoho 
   1162  1.38.4.2  bouyer 	acpicpu_pstate_set(ci, freq);
   1163      1.19  jruoho 
   1164      1.19  jruoho 	return 0;
   1165      1.19  jruoho }
   1166      1.19  jruoho 
   1167      1.19  jruoho static int
   1168      1.19  jruoho acpicpu_md_pstate_sysctl_all(SYSCTLFN_ARGS)
   1169      1.19  jruoho {
   1170      1.19  jruoho 	struct cpu_info *ci = curcpu();
   1171      1.19  jruoho 	struct acpicpu_softc *sc;
   1172      1.19  jruoho 	struct sysctlnode node;
   1173      1.19  jruoho 	char buf[1024];
   1174      1.19  jruoho 	size_t len;
   1175      1.19  jruoho 	uint32_t i;
   1176      1.19  jruoho 	int err;
   1177      1.19  jruoho 
   1178      1.19  jruoho 	sc = acpicpu_sc[ci->ci_acpiid];
   1179      1.19  jruoho 
   1180      1.19  jruoho 	if (sc == NULL)
   1181      1.19  jruoho 		return ENXIO;
   1182      1.19  jruoho 
   1183      1.19  jruoho 	(void)memset(&buf, 0, sizeof(buf));
   1184      1.19  jruoho 
   1185      1.19  jruoho 	mutex_enter(&sc->sc_mtx);
   1186      1.19  jruoho 
   1187      1.19  jruoho 	for (len = 0, i = sc->sc_pstate_max; i < sc->sc_pstate_count; i++) {
   1188      1.19  jruoho 
   1189      1.19  jruoho 		if (sc->sc_pstate[i].ps_freq == 0)
   1190      1.19  jruoho 			continue;
   1191      1.19  jruoho 
   1192      1.19  jruoho 		len += snprintf(buf + len, sizeof(buf) - len, "%u%s",
   1193      1.19  jruoho 		    sc->sc_pstate[i].ps_freq,
   1194      1.19  jruoho 		    i < (sc->sc_pstate_count - 1) ? " " : "");
   1195      1.19  jruoho 	}
   1196      1.19  jruoho 
   1197      1.19  jruoho 	mutex_exit(&sc->sc_mtx);
   1198      1.19  jruoho 
   1199      1.19  jruoho 	node = *rnode;
   1200      1.19  jruoho 	node.sysctl_data = buf;
   1201      1.19  jruoho 
   1202      1.19  jruoho 	err = sysctl_lookup(SYSCTLFN_CALL(&node));
   1203      1.19  jruoho 
   1204      1.19  jruoho 	if (err != 0 || newp == NULL)
   1205      1.19  jruoho 		return err;
   1206      1.19  jruoho 
   1207      1.19  jruoho 	return 0;
   1208      1.19  jruoho }
   1209      1.19  jruoho 
   1210