acpi_cpu_md.c revision 1.38.4.2 1 1.38.4.2 bouyer /* $NetBSD: acpi_cpu_md.c,v 1.38.4.2 2011/03/05 15:10:09 bouyer Exp $ */
2 1.1 jruoho
3 1.1 jruoho /*-
4 1.38.4.2 bouyer * Copyright (c) 2010, 2011 Jukka Ruohonen <jruohonen (at) iki.fi>
5 1.1 jruoho * All rights reserved.
6 1.1 jruoho *
7 1.1 jruoho * Redistribution and use in source and binary forms, with or without
8 1.1 jruoho * modification, are permitted provided that the following conditions
9 1.1 jruoho * are met:
10 1.1 jruoho *
11 1.1 jruoho * 1. Redistributions of source code must retain the above copyright
12 1.1 jruoho * notice, this list of conditions and the following disclaimer.
13 1.1 jruoho * 2. Redistributions in binary form must reproduce the above copyright
14 1.1 jruoho * notice, this list of conditions and the following disclaimer in the
15 1.1 jruoho * documentation and/or other materials provided with the distribution.
16 1.1 jruoho *
17 1.1 jruoho * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18 1.1 jruoho * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 1.1 jruoho * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 1.1 jruoho * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21 1.1 jruoho * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 1.1 jruoho * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 1.1 jruoho * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 1.1 jruoho * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 1.1 jruoho * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 1.1 jruoho * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 1.1 jruoho * SUCH DAMAGE.
28 1.1 jruoho */
29 1.1 jruoho #include <sys/cdefs.h>
30 1.38.4.2 bouyer __KERNEL_RCSID(0, "$NetBSD: acpi_cpu_md.c,v 1.38.4.2 2011/03/05 15:10:09 bouyer Exp $");
31 1.1 jruoho
32 1.1 jruoho #include <sys/param.h>
33 1.1 jruoho #include <sys/bus.h>
34 1.38.4.2 bouyer #include <sys/device.h>
35 1.1 jruoho #include <sys/kcore.h>
36 1.5 jruoho #include <sys/sysctl.h>
37 1.4 jruoho #include <sys/xcall.h>
38 1.1 jruoho
39 1.1 jruoho #include <x86/cpu.h>
40 1.5 jruoho #include <x86/cpufunc.h>
41 1.5 jruoho #include <x86/cputypes.h>
42 1.1 jruoho #include <x86/cpuvar.h>
43 1.5 jruoho #include <x86/cpu_msr.h>
44 1.1 jruoho #include <x86/machdep.h>
45 1.1 jruoho
46 1.1 jruoho #include <dev/acpi/acpica.h>
47 1.1 jruoho #include <dev/acpi/acpi_cpu.h>
48 1.1 jruoho
49 1.12 jruoho #include <dev/pci/pcivar.h>
50 1.12 jruoho #include <dev/pci/pcidevs.h>
51 1.12 jruoho
52 1.38 jruoho #include <machine/acpi_machdep.h>
53 1.38 jruoho
54 1.35 jruoho /*
55 1.38.4.2 bouyer * Intel IA32_MISC_ENABLE.
56 1.38.4.2 bouyer */
57 1.38.4.2 bouyer #define MSR_MISC_ENABLE_EST __BIT(16)
58 1.38.4.2 bouyer #define MSR_MISC_ENABLE_TURBO __BIT(38)
59 1.38.4.2 bouyer
60 1.38.4.2 bouyer /*
61 1.35 jruoho * AMD C1E.
62 1.35 jruoho */
63 1.35 jruoho #define MSR_CMPHALT 0xc0010055
64 1.35 jruoho
65 1.35 jruoho #define MSR_CMPHALT_SMI __BIT(27)
66 1.35 jruoho #define MSR_CMPHALT_C1E __BIT(28)
67 1.35 jruoho #define MSR_CMPHALT_BMSTS __BIT(29)
68 1.33 jruoho
69 1.32 jruoho /*
70 1.38.4.2 bouyer * AMD families 10h, 11h, and 14h
71 1.32 jruoho */
72 1.32 jruoho #define MSR_10H_LIMIT 0xc0010061
73 1.32 jruoho #define MSR_10H_CONTROL 0xc0010062
74 1.32 jruoho #define MSR_10H_STATUS 0xc0010063
75 1.32 jruoho #define MSR_10H_CONFIG 0xc0010064
76 1.22 jruoho
77 1.32 jruoho /*
78 1.32 jruoho * AMD family 0Fh.
79 1.32 jruoho */
80 1.32 jruoho #define MSR_0FH_CONTROL 0xc0010041
81 1.17 jruoho #define MSR_0FH_STATUS 0xc0010042
82 1.17 jruoho
83 1.32 jruoho #define MSR_0FH_STATUS_CFID __BITS( 0, 5)
84 1.32 jruoho #define MSR_0FH_STATUS_CVID __BITS(32, 36)
85 1.32 jruoho #define MSR_0FH_STATUS_PENDING __BITS(31, 31)
86 1.32 jruoho
87 1.32 jruoho #define MSR_0FH_CONTROL_FID __BITS( 0, 5)
88 1.32 jruoho #define MSR_0FH_CONTROL_VID __BITS( 8, 12)
89 1.32 jruoho #define MSR_0FH_CONTROL_CHG __BITS(16, 16)
90 1.32 jruoho #define MSR_0FH_CONTROL_CNT __BITS(32, 51)
91 1.32 jruoho
92 1.32 jruoho #define ACPI_0FH_STATUS_FID __BITS( 0, 5)
93 1.32 jruoho #define ACPI_0FH_STATUS_VID __BITS( 6, 10)
94 1.32 jruoho
95 1.32 jruoho #define ACPI_0FH_CONTROL_FID __BITS( 0, 5)
96 1.32 jruoho #define ACPI_0FH_CONTROL_VID __BITS( 6, 10)
97 1.32 jruoho #define ACPI_0FH_CONTROL_VST __BITS(11, 17)
98 1.32 jruoho #define ACPI_0FH_CONTROL_MVS __BITS(18, 19)
99 1.32 jruoho #define ACPI_0FH_CONTROL_PLL __BITS(20, 26)
100 1.32 jruoho #define ACPI_0FH_CONTROL_RVO __BITS(28, 29)
101 1.32 jruoho #define ACPI_0FH_CONTROL_IRT __BITS(30, 31)
102 1.32 jruoho
103 1.32 jruoho #define FID_TO_VCO_FID(fidd) (((fid) < 8) ? (8 + ((fid) << 1)) : (fid))
104 1.17 jruoho
105 1.5 jruoho static char native_idle_text[16];
106 1.5 jruoho void (*native_idle)(void) = NULL;
107 1.1 jruoho
108 1.38.4.2 bouyer static u_long acpicpu_md_lock(struct acpicpu_softc *);
109 1.38.4.2 bouyer static void acpicpu_md_unlock(struct acpicpu_softc *, u_long);
110 1.38.4.2 bouyer static int acpicpu_md_quirk_piix4(struct pci_attach_args *);
111 1.38.4.2 bouyer static void acpicpu_md_pstate_percent_reset(struct cpu_info *);
112 1.32 jruoho static int acpicpu_md_pstate_fidvid_get(struct acpicpu_softc *,
113 1.32 jruoho uint32_t *);
114 1.32 jruoho static int acpicpu_md_pstate_fidvid_set(struct acpicpu_pstate *);
115 1.32 jruoho static int acpicpu_md_pstate_fidvid_read(uint32_t *, uint32_t *);
116 1.32 jruoho static void acpicpu_md_pstate_fidvid_write(uint32_t, uint32_t,
117 1.32 jruoho uint32_t, uint32_t);
118 1.19 jruoho static int acpicpu_md_pstate_sysctl_init(void);
119 1.5 jruoho static int acpicpu_md_pstate_sysctl_get(SYSCTLFN_PROTO);
120 1.5 jruoho static int acpicpu_md_pstate_sysctl_set(SYSCTLFN_PROTO);
121 1.5 jruoho static int acpicpu_md_pstate_sysctl_all(SYSCTLFN_PROTO);
122 1.5 jruoho
123 1.5 jruoho extern struct acpicpu_softc **acpicpu_sc;
124 1.19 jruoho static struct sysctllog *acpicpu_log = NULL;
125 1.1 jruoho
126 1.38.4.2 bouyer struct cpu_info *
127 1.38.4.2 bouyer acpicpu_md_match(device_t parent, cfdata_t match, void *aux)
128 1.38.4.2 bouyer {
129 1.38.4.2 bouyer struct cpufeature_attach_args *cfaa = aux;
130 1.38.4.2 bouyer
131 1.38.4.2 bouyer if (strcmp(cfaa->name, "frequency") != 0)
132 1.38.4.2 bouyer return NULL;
133 1.38.4.2 bouyer
134 1.38.4.2 bouyer return cfaa->ci;
135 1.38.4.2 bouyer }
136 1.38.4.2 bouyer
137 1.38.4.2 bouyer struct cpu_info *
138 1.38.4.2 bouyer acpicpu_md_attach(device_t parent, device_t self, void *aux)
139 1.38.4.2 bouyer {
140 1.38.4.2 bouyer struct cpufeature_attach_args *cfaa = aux;
141 1.38.4.2 bouyer
142 1.38.4.2 bouyer return cfaa->ci;
143 1.38.4.2 bouyer }
144 1.38.4.2 bouyer
145 1.38.4.2 bouyer static u_long
146 1.38.4.2 bouyer acpicpu_md_lock(struct acpicpu_softc *sc)
147 1.38.4.2 bouyer {
148 1.38.4.2 bouyer const u_long flags = x86_read_psl();
149 1.38.4.2 bouyer
150 1.38.4.2 bouyer x86_disable_intr();
151 1.38.4.2 bouyer __cpu_simple_lock(&sc->sc_lock);
152 1.38.4.2 bouyer
153 1.38.4.2 bouyer return flags;
154 1.38.4.2 bouyer }
155 1.38.4.2 bouyer
156 1.38.4.2 bouyer static void
157 1.38.4.2 bouyer acpicpu_md_unlock(struct acpicpu_softc *sc, u_long flags)
158 1.38.4.2 bouyer {
159 1.38.4.2 bouyer __cpu_simple_unlock(&sc->sc_lock);
160 1.38.4.2 bouyer x86_write_psl(flags);
161 1.38.4.2 bouyer }
162 1.38.4.2 bouyer
163 1.1 jruoho uint32_t
164 1.1 jruoho acpicpu_md_cap(void)
165 1.1 jruoho {
166 1.1 jruoho struct cpu_info *ci = curcpu();
167 1.38.4.2 bouyer uint32_t regs[4];
168 1.1 jruoho uint32_t val = 0;
169 1.1 jruoho
170 1.17 jruoho if (cpu_vendor != CPUVENDOR_IDT &&
171 1.17 jruoho cpu_vendor != CPUVENDOR_INTEL)
172 1.1 jruoho return val;
173 1.1 jruoho
174 1.1 jruoho /*
175 1.38.4.2 bouyer * Basic SMP C-states (required for e.g. _CST).
176 1.1 jruoho */
177 1.1 jruoho val |= ACPICPU_PDC_C_C1PT | ACPICPU_PDC_C_C2C3;
178 1.1 jruoho
179 1.38.4.2 bouyer /*
180 1.38.4.2 bouyer * Claim to support dependency coordination.
181 1.38.4.2 bouyer */
182 1.38.4.2 bouyer val |= ACPICPU_PDC_P_SW | ACPICPU_PDC_C_SW | ACPICPU_PDC_T_SW;
183 1.38.4.2 bouyer
184 1.1 jruoho /*
185 1.1 jruoho * If MONITOR/MWAIT is available, announce
186 1.1 jruoho * support for native instructions in all C-states.
187 1.1 jruoho */
188 1.1 jruoho if ((ci->ci_feat_val[1] & CPUID2_MONITOR) != 0)
189 1.1 jruoho val |= ACPICPU_PDC_C_C1_FFH | ACPICPU_PDC_C_C2C3_FFH;
190 1.1 jruoho
191 1.5 jruoho /*
192 1.10 jruoho * Set native P- and T-states, if available.
193 1.5 jruoho */
194 1.5 jruoho if ((ci->ci_feat_val[1] & CPUID2_EST) != 0)
195 1.5 jruoho val |= ACPICPU_PDC_P_FFH;
196 1.5 jruoho
197 1.10 jruoho if ((ci->ci_feat_val[0] & CPUID_ACPI) != 0)
198 1.10 jruoho val |= ACPICPU_PDC_T_FFH;
199 1.10 jruoho
200 1.38.4.2 bouyer /*
201 1.38.4.2 bouyer * Declare support for APERF and MPERF.
202 1.38.4.2 bouyer */
203 1.38.4.2 bouyer if (cpuid_level >= 0x06) {
204 1.38.4.2 bouyer
205 1.38.4.2 bouyer x86_cpuid(0x00000006, regs);
206 1.38.4.2 bouyer
207 1.38.4.2 bouyer if ((regs[2] & CPUID_DSPM_HWF) != 0)
208 1.38.4.2 bouyer val |= ACPICPU_PDC_P_HWF;
209 1.38.4.2 bouyer }
210 1.38.4.2 bouyer
211 1.1 jruoho return val;
212 1.1 jruoho }
213 1.1 jruoho
214 1.1 jruoho uint32_t
215 1.38.4.2 bouyer acpicpu_md_flags(void)
216 1.1 jruoho {
217 1.1 jruoho struct cpu_info *ci = curcpu();
218 1.12 jruoho struct pci_attach_args pa;
219 1.18 jruoho uint32_t family, val = 0;
220 1.21 jruoho uint32_t regs[4];
221 1.1 jruoho
222 1.38 jruoho if (acpi_md_ncpus() == 1)
223 1.1 jruoho val |= ACPICPU_FLAG_C_BM;
224 1.1 jruoho
225 1.1 jruoho if ((ci->ci_feat_val[1] & CPUID2_MONITOR) != 0)
226 1.5 jruoho val |= ACPICPU_FLAG_C_FFH;
227 1.1 jruoho
228 1.38.4.1 bouyer /*
229 1.38.4.1 bouyer * By default, assume that the local APIC timer
230 1.38.4.1 bouyer * as well as TSC are stalled during C3 sleep.
231 1.38.4.1 bouyer */
232 1.25 jruoho val |= ACPICPU_FLAG_C_APIC | ACPICPU_FLAG_C_TSC;
233 1.22 jruoho
234 1.1 jruoho switch (cpu_vendor) {
235 1.1 jruoho
236 1.17 jruoho case CPUVENDOR_IDT:
237 1.22 jruoho
238 1.22 jruoho if ((ci->ci_feat_val[1] & CPUID2_EST) != 0)
239 1.22 jruoho val |= ACPICPU_FLAG_P_FFH;
240 1.22 jruoho
241 1.22 jruoho if ((ci->ci_feat_val[0] & CPUID_ACPI) != 0)
242 1.22 jruoho val |= ACPICPU_FLAG_T_FFH;
243 1.22 jruoho
244 1.22 jruoho break;
245 1.22 jruoho
246 1.1 jruoho case CPUVENDOR_INTEL:
247 1.17 jruoho
248 1.38.4.1 bouyer /*
249 1.38.4.1 bouyer * Bus master control and arbitration should be
250 1.38.4.1 bouyer * available on all supported Intel CPUs (to be
251 1.38.4.1 bouyer * sure, this is double-checked later from the
252 1.38.4.1 bouyer * firmware data). These flags imply that it is
253 1.38.4.1 bouyer * not necessary to flush caches before C3 state.
254 1.38.4.1 bouyer */
255 1.22 jruoho val |= ACPICPU_FLAG_C_BM | ACPICPU_FLAG_C_ARB;
256 1.22 jruoho
257 1.38.4.1 bouyer /*
258 1.38.4.1 bouyer * Check if we can use "native", MSR-based,
259 1.38.4.1 bouyer * access. If not, we have to resort to I/O.
260 1.38.4.1 bouyer */
261 1.5 jruoho if ((ci->ci_feat_val[1] & CPUID2_EST) != 0)
262 1.5 jruoho val |= ACPICPU_FLAG_P_FFH;
263 1.5 jruoho
264 1.10 jruoho if ((ci->ci_feat_val[0] & CPUID_ACPI) != 0)
265 1.10 jruoho val |= ACPICPU_FLAG_T_FFH;
266 1.10 jruoho
267 1.22 jruoho /*
268 1.25 jruoho * Check whether MSR_APERF, MSR_MPERF, and Turbo
269 1.25 jruoho * Boost are available. Also see if we might have
270 1.25 jruoho * an invariant local APIC timer ("ARAT").
271 1.23 jruoho */
272 1.23 jruoho if (cpuid_level >= 0x06) {
273 1.23 jruoho
274 1.38.4.2 bouyer x86_cpuid(0x00000006, regs);
275 1.23 jruoho
276 1.34 jruoho if ((regs[2] & CPUID_DSPM_HWF) != 0)
277 1.38.4.2 bouyer val |= ACPICPU_FLAG_P_HWF;
278 1.23 jruoho
279 1.34 jruoho if ((regs[0] & CPUID_DSPM_IDA) != 0)
280 1.24 jruoho val |= ACPICPU_FLAG_P_TURBO;
281 1.25 jruoho
282 1.34 jruoho if ((regs[0] & CPUID_DSPM_ARAT) != 0)
283 1.25 jruoho val &= ~ACPICPU_FLAG_C_APIC;
284 1.23 jruoho }
285 1.23 jruoho
286 1.23 jruoho /*
287 1.22 jruoho * Detect whether TSC is invariant. If it is not,
288 1.22 jruoho * we keep the flag to note that TSC will not run
289 1.22 jruoho * at constant rate. Depending on the CPU, this may
290 1.22 jruoho * affect P- and T-state changes, but especially
291 1.22 jruoho * relevant are C-states; with variant TSC, states
292 1.24 jruoho * larger than C1 may completely stop the counter.
293 1.22 jruoho */
294 1.22 jruoho x86_cpuid(0x80000000, regs);
295 1.22 jruoho
296 1.22 jruoho if (regs[0] >= 0x80000007) {
297 1.22 jruoho
298 1.22 jruoho x86_cpuid(0x80000007, regs);
299 1.22 jruoho
300 1.32 jruoho if ((regs[3] & __BIT(8)) != 0)
301 1.22 jruoho val &= ~ACPICPU_FLAG_C_TSC;
302 1.22 jruoho }
303 1.22 jruoho
304 1.17 jruoho break;
305 1.12 jruoho
306 1.17 jruoho case CPUVENDOR_AMD:
307 1.17 jruoho
308 1.32 jruoho x86_cpuid(0x80000000, regs);
309 1.32 jruoho
310 1.32 jruoho if (regs[0] < 0x80000007)
311 1.32 jruoho break;
312 1.32 jruoho
313 1.32 jruoho x86_cpuid(0x80000007, regs);
314 1.32 jruoho
315 1.18 jruoho family = CPUID2FAMILY(ci->ci_signature);
316 1.18 jruoho
317 1.18 jruoho if (family == 0xf)
318 1.18 jruoho family += CPUID2EXTFAMILY(ci->ci_signature);
319 1.18 jruoho
320 1.32 jruoho switch (family) {
321 1.1 jruoho
322 1.22 jruoho case 0x0f:
323 1.32 jruoho
324 1.38.4.2 bouyer /*
325 1.38.4.2 bouyer * Evaluate support for the "FID/VID
326 1.38.4.2 bouyer * algorithm" also used by powernow(4).
327 1.38.4.2 bouyer */
328 1.32 jruoho if ((regs[3] & CPUID_APM_FID) == 0)
329 1.32 jruoho break;
330 1.32 jruoho
331 1.32 jruoho if ((regs[3] & CPUID_APM_VID) == 0)
332 1.32 jruoho break;
333 1.32 jruoho
334 1.32 jruoho val |= ACPICPU_FLAG_P_FFH | ACPICPU_FLAG_P_FIDVID;
335 1.32 jruoho break;
336 1.32 jruoho
337 1.17 jruoho case 0x10:
338 1.17 jruoho case 0x11:
339 1.38.4.2 bouyer val |= ACPICPU_FLAG_C_C1E;
340 1.38.4.2 bouyer /* FALLTHROUGH */
341 1.38.4.2 bouyer
342 1.38.4.2 bouyer case 0x14: /* AMD Fusion */
343 1.1 jruoho
344 1.38.4.2 bouyer /*
345 1.38.4.2 bouyer * Like with Intel, detect invariant TSC,
346 1.38.4.2 bouyer * MSR-based P-states, and AMD's "turbo"
347 1.38.4.2 bouyer * (Core Performance Boost), respectively.
348 1.38.4.2 bouyer */
349 1.22 jruoho if ((regs[3] & CPUID_APM_TSC) != 0)
350 1.22 jruoho val &= ~ACPICPU_FLAG_C_TSC;
351 1.22 jruoho
352 1.21 jruoho if ((regs[3] & CPUID_APM_HWP) != 0)
353 1.17 jruoho val |= ACPICPU_FLAG_P_FFH;
354 1.21 jruoho
355 1.21 jruoho if ((regs[3] & CPUID_APM_CPB) != 0)
356 1.21 jruoho val |= ACPICPU_FLAG_P_TURBO;
357 1.35 jruoho
358 1.38.4.2 bouyer /*
359 1.38.4.2 bouyer * Also check for APERF and MPERF,
360 1.38.4.2 bouyer * first available in the family 10h.
361 1.38.4.2 bouyer */
362 1.38.4.2 bouyer if (cpuid_level >= 0x06) {
363 1.38.4.2 bouyer
364 1.38.4.2 bouyer x86_cpuid(0x00000006, regs);
365 1.38.4.2 bouyer
366 1.38.4.2 bouyer if ((regs[2] & CPUID_DSPM_HWF) != 0)
367 1.38.4.2 bouyer val |= ACPICPU_FLAG_P_HWF;
368 1.38.4.2 bouyer }
369 1.38.4.2 bouyer
370 1.35 jruoho break;
371 1.17 jruoho }
372 1.1 jruoho
373 1.1 jruoho break;
374 1.1 jruoho }
375 1.1 jruoho
376 1.12 jruoho /*
377 1.12 jruoho * There are several erratums for PIIX4.
378 1.12 jruoho */
379 1.38.4.2 bouyer if (pci_find_device(&pa, acpicpu_md_quirk_piix4) != 0)
380 1.12 jruoho val |= ACPICPU_FLAG_PIIX4;
381 1.12 jruoho
382 1.1 jruoho return val;
383 1.1 jruoho }
384 1.1 jruoho
385 1.12 jruoho static int
386 1.38.4.2 bouyer acpicpu_md_quirk_piix4(struct pci_attach_args *pa)
387 1.12 jruoho {
388 1.12 jruoho
389 1.12 jruoho /*
390 1.12 jruoho * XXX: The pci_find_device(9) function only
391 1.12 jruoho * deals with attached devices. Change this
392 1.12 jruoho * to use something like pci_device_foreach().
393 1.12 jruoho */
394 1.12 jruoho if (PCI_VENDOR(pa->pa_id) != PCI_VENDOR_INTEL)
395 1.12 jruoho return 0;
396 1.12 jruoho
397 1.12 jruoho if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_82371AB_ISA ||
398 1.12 jruoho PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_82440MX_PMC)
399 1.12 jruoho return 1;
400 1.12 jruoho
401 1.12 jruoho return 0;
402 1.12 jruoho }
403 1.12 jruoho
404 1.35 jruoho void
405 1.38.4.2 bouyer acpicpu_md_quirk_c1e(void)
406 1.35 jruoho {
407 1.35 jruoho const uint64_t c1e = MSR_CMPHALT_SMI | MSR_CMPHALT_C1E;
408 1.35 jruoho uint64_t val;
409 1.35 jruoho
410 1.35 jruoho val = rdmsr(MSR_CMPHALT);
411 1.35 jruoho
412 1.35 jruoho if ((val & c1e) != 0)
413 1.35 jruoho wrmsr(MSR_CMPHALT, val & ~c1e);
414 1.35 jruoho }
415 1.35 jruoho
416 1.1 jruoho int
417 1.38.4.2 bouyer acpicpu_md_cstate_start(struct acpicpu_softc *sc)
418 1.1 jruoho {
419 1.1 jruoho const size_t size = sizeof(native_idle_text);
420 1.31 jruoho struct acpicpu_cstate *cs;
421 1.31 jruoho bool ipi = false;
422 1.31 jruoho int i;
423 1.1 jruoho
424 1.38.4.2 bouyer /*
425 1.38.4.2 bouyer * Save the cpu_idle(9) loop used by default.
426 1.38.4.2 bouyer */
427 1.1 jruoho x86_cpu_idle_get(&native_idle, native_idle_text, size);
428 1.31 jruoho
429 1.31 jruoho for (i = 0; i < ACPI_C_STATE_COUNT; i++) {
430 1.31 jruoho
431 1.31 jruoho cs = &sc->sc_cstate[i];
432 1.31 jruoho
433 1.31 jruoho if (cs->cs_method == ACPICPU_C_STATE_HALT) {
434 1.31 jruoho ipi = true;
435 1.31 jruoho break;
436 1.31 jruoho }
437 1.31 jruoho }
438 1.31 jruoho
439 1.31 jruoho x86_cpu_idle_set(acpicpu_cstate_idle, "acpi", ipi);
440 1.1 jruoho
441 1.1 jruoho return 0;
442 1.1 jruoho }
443 1.1 jruoho
444 1.1 jruoho int
445 1.38.4.2 bouyer acpicpu_md_cstate_stop(void)
446 1.1 jruoho {
447 1.4 jruoho uint64_t xc;
448 1.31 jruoho bool ipi;
449 1.1 jruoho
450 1.31 jruoho ipi = (native_idle != x86_cpu_idle_halt) ? false : true;
451 1.31 jruoho x86_cpu_idle_set(native_idle, native_idle_text, ipi);
452 1.1 jruoho
453 1.4 jruoho /*
454 1.4 jruoho * Run a cross-call to ensure that all CPUs are
455 1.4 jruoho * out from the ACPI idle-loop before detachment.
456 1.4 jruoho */
457 1.4 jruoho xc = xc_broadcast(0, (xcfunc_t)nullop, NULL, NULL);
458 1.4 jruoho xc_wait(xc);
459 1.1 jruoho
460 1.1 jruoho return 0;
461 1.1 jruoho }
462 1.1 jruoho
463 1.3 jruoho /*
464 1.31 jruoho * Called with interrupts disabled.
465 1.31 jruoho * Caller should enable interrupts after return.
466 1.3 jruoho */
467 1.1 jruoho void
468 1.38.4.2 bouyer acpicpu_md_cstate_enter(int method, int state)
469 1.1 jruoho {
470 1.3 jruoho struct cpu_info *ci = curcpu();
471 1.1 jruoho
472 1.1 jruoho switch (method) {
473 1.1 jruoho
474 1.1 jruoho case ACPICPU_C_STATE_FFH:
475 1.3 jruoho
476 1.3 jruoho x86_enable_intr();
477 1.3 jruoho x86_monitor(&ci->ci_want_resched, 0, 0);
478 1.3 jruoho
479 1.31 jruoho if (__predict_false(ci->ci_want_resched != 0))
480 1.3 jruoho return;
481 1.3 jruoho
482 1.1 jruoho x86_mwait((state - 1) << 4, 0);
483 1.1 jruoho break;
484 1.1 jruoho
485 1.1 jruoho case ACPICPU_C_STATE_HALT:
486 1.3 jruoho
487 1.31 jruoho if (__predict_false(ci->ci_want_resched != 0))
488 1.3 jruoho return;
489 1.3 jruoho
490 1.1 jruoho x86_stihlt();
491 1.1 jruoho break;
492 1.1 jruoho }
493 1.1 jruoho }
494 1.5 jruoho
495 1.5 jruoho int
496 1.38.4.2 bouyer acpicpu_md_pstate_start(struct acpicpu_softc *sc)
497 1.5 jruoho {
498 1.19 jruoho return acpicpu_md_pstate_sysctl_init();
499 1.5 jruoho }
500 1.5 jruoho
501 1.5 jruoho int
502 1.5 jruoho acpicpu_md_pstate_stop(void)
503 1.5 jruoho {
504 1.19 jruoho if (acpicpu_log != NULL)
505 1.19 jruoho sysctl_teardown(&acpicpu_log);
506 1.5 jruoho
507 1.5 jruoho return 0;
508 1.5 jruoho }
509 1.5 jruoho
510 1.5 jruoho int
511 1.38.4.2 bouyer acpicpu_md_pstate_init(struct acpicpu_softc *sc)
512 1.5 jruoho {
513 1.15 jruoho struct acpicpu_pstate *ps, msr;
514 1.17 jruoho struct cpu_info *ci = curcpu();
515 1.18 jruoho uint32_t family, i = 0;
516 1.38.4.2 bouyer uint64_t val;
517 1.13 jruoho
518 1.15 jruoho (void)memset(&msr, 0, sizeof(struct acpicpu_pstate));
519 1.13 jruoho
520 1.5 jruoho switch (cpu_vendor) {
521 1.5 jruoho
522 1.17 jruoho case CPUVENDOR_IDT:
523 1.5 jruoho case CPUVENDOR_INTEL:
524 1.33 jruoho
525 1.33 jruoho /*
526 1.38.4.2 bouyer * Make sure EST is enabled.
527 1.38.4.2 bouyer */
528 1.38.4.2 bouyer if ((sc->sc_flags & ACPICPU_FLAG_P_FFH) != 0) {
529 1.38.4.2 bouyer
530 1.38.4.2 bouyer val = rdmsr(MSR_MISC_ENABLE);
531 1.38.4.2 bouyer
532 1.38.4.2 bouyer if ((val & MSR_MISC_ENABLE_EST) == 0) {
533 1.38.4.2 bouyer
534 1.38.4.2 bouyer val |= MSR_MISC_ENABLE_EST;
535 1.38.4.2 bouyer wrmsr(MSR_MISC_ENABLE, val);
536 1.38.4.2 bouyer val = rdmsr(MSR_MISC_ENABLE);
537 1.38.4.2 bouyer
538 1.38.4.2 bouyer if ((val & MSR_MISC_ENABLE_EST) == 0)
539 1.38.4.2 bouyer return ENOTTY;
540 1.38.4.2 bouyer }
541 1.38.4.2 bouyer }
542 1.38.4.2 bouyer
543 1.38.4.2 bouyer /*
544 1.33 jruoho * If the so-called Turbo Boost is present,
545 1.33 jruoho * the P0-state is always the "turbo state".
546 1.38.4.2 bouyer * It is shown as the P1 frequency + 1 MHz.
547 1.33 jruoho *
548 1.33 jruoho * For discussion, see:
549 1.33 jruoho *
550 1.33 jruoho * Intel Corporation: Intel Turbo Boost Technology
551 1.33 jruoho * in Intel Core(tm) Microarchitectures (Nehalem)
552 1.33 jruoho * Based Processors. White Paper, November 2008.
553 1.33 jruoho */
554 1.38.4.2 bouyer if (sc->sc_pstate_count >= 2 &&
555 1.38.4.2 bouyer (sc->sc_flags & ACPICPU_FLAG_P_TURBO) != 0) {
556 1.38.4.2 bouyer
557 1.38.4.2 bouyer ps = &sc->sc_pstate[0];
558 1.38.4.2 bouyer
559 1.38.4.2 bouyer if (ps->ps_freq == sc->sc_pstate[1].ps_freq + 1)
560 1.38.4.2 bouyer ps->ps_flags |= ACPICPU_FLAG_P_TURBO;
561 1.38.4.2 bouyer }
562 1.33 jruoho
563 1.15 jruoho msr.ps_control_addr = MSR_PERF_CTL;
564 1.15 jruoho msr.ps_control_mask = __BITS(0, 15);
565 1.15 jruoho
566 1.15 jruoho msr.ps_status_addr = MSR_PERF_STATUS;
567 1.15 jruoho msr.ps_status_mask = __BITS(0, 15);
568 1.13 jruoho break;
569 1.13 jruoho
570 1.13 jruoho case CPUVENDOR_AMD:
571 1.13 jruoho
572 1.33 jruoho if ((sc->sc_flags & ACPICPU_FLAG_P_FIDVID) != 0)
573 1.33 jruoho msr.ps_flags |= ACPICPU_FLAG_P_FIDVID;
574 1.33 jruoho
575 1.18 jruoho family = CPUID2FAMILY(ci->ci_signature);
576 1.18 jruoho
577 1.18 jruoho if (family == 0xf)
578 1.18 jruoho family += CPUID2EXTFAMILY(ci->ci_signature);
579 1.18 jruoho
580 1.18 jruoho switch (family) {
581 1.17 jruoho
582 1.32 jruoho case 0x0f:
583 1.32 jruoho msr.ps_control_addr = MSR_0FH_CONTROL;
584 1.32 jruoho msr.ps_status_addr = MSR_0FH_STATUS;
585 1.32 jruoho break;
586 1.32 jruoho
587 1.17 jruoho case 0x10:
588 1.17 jruoho case 0x11:
589 1.38.4.2 bouyer case 0x14: /* AMD Fusion */
590 1.17 jruoho msr.ps_control_addr = MSR_10H_CONTROL;
591 1.17 jruoho msr.ps_control_mask = __BITS(0, 2);
592 1.17 jruoho
593 1.17 jruoho msr.ps_status_addr = MSR_10H_STATUS;
594 1.17 jruoho msr.ps_status_mask = __BITS(0, 2);
595 1.17 jruoho break;
596 1.17 jruoho
597 1.17 jruoho default:
598 1.17 jruoho
599 1.38.4.2 bouyer /*
600 1.38.4.2 bouyer * If we have an unknown AMD CPU, rely on XPSS.
601 1.38.4.2 bouyer */
602 1.17 jruoho if ((sc->sc_flags & ACPICPU_FLAG_P_XPSS) == 0)
603 1.17 jruoho return EOPNOTSUPP;
604 1.17 jruoho }
605 1.13 jruoho
606 1.13 jruoho break;
607 1.13 jruoho
608 1.13 jruoho default:
609 1.13 jruoho return ENODEV;
610 1.13 jruoho }
611 1.5 jruoho
612 1.26 jruoho /*
613 1.26 jruoho * Fill the P-state structures with MSR addresses that are
614 1.27 jruoho * known to be correct. If we do not know the addresses,
615 1.27 jruoho * leave the values intact. If a vendor uses XPSS, we do
616 1.38.4.1 bouyer * not necessarily need to do anything to support new CPUs.
617 1.26 jruoho */
618 1.15 jruoho while (i < sc->sc_pstate_count) {
619 1.15 jruoho
620 1.15 jruoho ps = &sc->sc_pstate[i];
621 1.15 jruoho
622 1.32 jruoho if (msr.ps_flags != 0)
623 1.32 jruoho ps->ps_flags |= msr.ps_flags;
624 1.32 jruoho
625 1.27 jruoho if (msr.ps_status_addr != 0)
626 1.15 jruoho ps->ps_status_addr = msr.ps_status_addr;
627 1.15 jruoho
628 1.27 jruoho if (msr.ps_status_mask != 0)
629 1.15 jruoho ps->ps_status_mask = msr.ps_status_mask;
630 1.15 jruoho
631 1.27 jruoho if (msr.ps_control_addr != 0)
632 1.15 jruoho ps->ps_control_addr = msr.ps_control_addr;
633 1.15 jruoho
634 1.27 jruoho if (msr.ps_control_mask != 0)
635 1.15 jruoho ps->ps_control_mask = msr.ps_control_mask;
636 1.15 jruoho
637 1.15 jruoho i++;
638 1.15 jruoho }
639 1.15 jruoho
640 1.38.4.2 bouyer /*
641 1.38.4.2 bouyer * Reset the APERF and MPERF counters.
642 1.38.4.2 bouyer *
643 1.38.4.2 bouyer * XXX: Should be with xc_unicast(9).
644 1.38.4.2 bouyer */
645 1.38.4.2 bouyer if ((sc->sc_flags & ACPICPU_FLAG_P_HWF) != 0)
646 1.38.4.2 bouyer acpicpu_md_pstate_percent_reset(sc->sc_ci);
647 1.38.4.2 bouyer
648 1.15 jruoho return 0;
649 1.15 jruoho }
650 1.15 jruoho
651 1.38.4.2 bouyer /*
652 1.38.4.2 bouyer * Read the IA32_APERF and IA32_MPERF counters. The first
653 1.38.4.2 bouyer * increments at the rate of the fixed maximum frequency
654 1.38.4.2 bouyer * configured during the boot, whereas APERF counts at the
655 1.38.4.2 bouyer * rate of the actual frequency. Note that the MSRs must be
656 1.38.4.2 bouyer * read without delay, and that only the ratio between
657 1.38.4.2 bouyer * IA32_APERF and IA32_MPERF is architecturally defined.
658 1.38.4.2 bouyer *
659 1.38.4.2 bouyer * The function thus returns the percentage of the actual
660 1.38.4.2 bouyer * frequency in terms of the maximum frequency of the calling
661 1.38.4.2 bouyer * CPU since the last call. A value zero implies an error.
662 1.38.4.2 bouyer *
663 1.38.4.2 bouyer * For further details, refer to:
664 1.38.4.2 bouyer *
665 1.38.4.2 bouyer * Intel Corporation: Intel 64 and IA-32 Architectures
666 1.38.4.2 bouyer * Software Developer's Manual. Section 13.2, Volume 3A:
667 1.38.4.2 bouyer * System Programming Guide, Part 1. July, 2008.
668 1.38.4.2 bouyer *
669 1.38.4.2 bouyer * Advanced Micro Devices: BIOS and Kernel Developer's
670 1.38.4.2 bouyer * Guide (BKDG) for AMD Family 10h Processors. Section
671 1.38.4.2 bouyer * 2.4.5, Revision 3.48, April 2010.
672 1.38.4.2 bouyer */
673 1.38.4.2 bouyer uint8_t
674 1.38.4.2 bouyer acpicpu_md_pstate_percent(struct cpu_info *ci)
675 1.38.4.2 bouyer {
676 1.38.4.2 bouyer struct acpicpu_softc *sc;
677 1.38.4.2 bouyer uint64_t aperf, mperf;
678 1.38.4.2 bouyer uint8_t rv = 0;
679 1.38.4.2 bouyer u_long flags;
680 1.38.4.2 bouyer
681 1.38.4.2 bouyer sc = acpicpu_sc[ci->ci_acpiid];
682 1.38.4.2 bouyer
683 1.38.4.2 bouyer if (__predict_false(sc == NULL))
684 1.38.4.2 bouyer return 0;
685 1.38.4.2 bouyer
686 1.38.4.2 bouyer if (__predict_false((sc->sc_flags & ACPICPU_FLAG_P_HWF) == 0))
687 1.38.4.2 bouyer return 0;
688 1.38.4.2 bouyer
689 1.38.4.2 bouyer flags = acpicpu_md_lock(sc);
690 1.38.4.2 bouyer
691 1.38.4.2 bouyer aperf = sc->sc_pstate_aperf;
692 1.38.4.2 bouyer mperf = sc->sc_pstate_mperf;
693 1.38.4.2 bouyer
694 1.38.4.2 bouyer sc->sc_pstate_aperf = rdmsr(MSR_APERF);
695 1.38.4.2 bouyer sc->sc_pstate_mperf = rdmsr(MSR_MPERF);
696 1.38.4.2 bouyer
697 1.38.4.2 bouyer aperf = sc->sc_pstate_aperf - aperf;
698 1.38.4.2 bouyer mperf = sc->sc_pstate_mperf - mperf;
699 1.38.4.2 bouyer
700 1.38.4.2 bouyer if (__predict_true(mperf != 0))
701 1.38.4.2 bouyer rv = (aperf * 100) / mperf;
702 1.38.4.2 bouyer
703 1.38.4.2 bouyer acpicpu_md_unlock(sc, flags);
704 1.38.4.2 bouyer
705 1.38.4.2 bouyer return rv;
706 1.38.4.2 bouyer }
707 1.38.4.2 bouyer
708 1.38.4.2 bouyer static void
709 1.38.4.2 bouyer acpicpu_md_pstate_percent_reset(struct cpu_info *ci)
710 1.38.4.2 bouyer {
711 1.38.4.2 bouyer struct acpicpu_softc *sc;
712 1.38.4.2 bouyer u_long flags;
713 1.38.4.2 bouyer
714 1.38.4.2 bouyer sc = acpicpu_sc[ci->ci_acpiid];
715 1.38.4.2 bouyer
716 1.38.4.2 bouyer if (__predict_false(sc == NULL))
717 1.38.4.2 bouyer return;
718 1.38.4.2 bouyer
719 1.38.4.2 bouyer flags = acpicpu_md_lock(sc);
720 1.38.4.2 bouyer
721 1.38.4.2 bouyer wrmsr(MSR_APERF, 0);
722 1.38.4.2 bouyer wrmsr(MSR_MPERF, 0);
723 1.38.4.2 bouyer
724 1.38.4.2 bouyer sc->sc_pstate_aperf = 0;
725 1.38.4.2 bouyer sc->sc_pstate_mperf = 0;
726 1.38.4.2 bouyer
727 1.38.4.2 bouyer acpicpu_md_unlock(sc, flags);
728 1.38.4.2 bouyer }
729 1.38.4.2 bouyer
730 1.15 jruoho int
731 1.15 jruoho acpicpu_md_pstate_get(struct acpicpu_softc *sc, uint32_t *freq)
732 1.15 jruoho {
733 1.15 jruoho struct acpicpu_pstate *ps = NULL;
734 1.15 jruoho uint64_t val;
735 1.15 jruoho uint32_t i;
736 1.15 jruoho
737 1.32 jruoho if ((sc->sc_flags & ACPICPU_FLAG_P_FIDVID) != 0)
738 1.32 jruoho return acpicpu_md_pstate_fidvid_get(sc, freq);
739 1.32 jruoho
740 1.38.4.2 bouyer /*
741 1.38.4.2 bouyer * Pick any P-state for the status address.
742 1.38.4.2 bouyer */
743 1.15 jruoho for (i = 0; i < sc->sc_pstate_count; i++) {
744 1.15 jruoho
745 1.15 jruoho ps = &sc->sc_pstate[i];
746 1.15 jruoho
747 1.32 jruoho if (__predict_true(ps->ps_freq != 0))
748 1.15 jruoho break;
749 1.15 jruoho }
750 1.15 jruoho
751 1.15 jruoho if (__predict_false(ps == NULL))
752 1.17 jruoho return ENODEV;
753 1.15 jruoho
754 1.28 jruoho if (__predict_false(ps->ps_status_addr == 0))
755 1.13 jruoho return EINVAL;
756 1.5 jruoho
757 1.13 jruoho val = rdmsr(ps->ps_status_addr);
758 1.5 jruoho
759 1.28 jruoho if (__predict_true(ps->ps_status_mask != 0))
760 1.13 jruoho val = val & ps->ps_status_mask;
761 1.5 jruoho
762 1.38.4.2 bouyer /*
763 1.38.4.2 bouyer * Search for the value from known P-states.
764 1.38.4.2 bouyer */
765 1.13 jruoho for (i = 0; i < sc->sc_pstate_count; i++) {
766 1.5 jruoho
767 1.13 jruoho ps = &sc->sc_pstate[i];
768 1.5 jruoho
769 1.32 jruoho if (__predict_false(ps->ps_freq == 0))
770 1.13 jruoho continue;
771 1.5 jruoho
772 1.29 jruoho if (val == ps->ps_status) {
773 1.13 jruoho *freq = ps->ps_freq;
774 1.13 jruoho return 0;
775 1.13 jruoho }
776 1.5 jruoho }
777 1.5 jruoho
778 1.13 jruoho return EIO;
779 1.5 jruoho }
780 1.5 jruoho
781 1.5 jruoho int
782 1.5 jruoho acpicpu_md_pstate_set(struct acpicpu_pstate *ps)
783 1.5 jruoho {
784 1.38.4.2 bouyer uint64_t val = 0;
785 1.5 jruoho
786 1.37 jruoho if (__predict_false(ps->ps_control_addr == 0))
787 1.37 jruoho return EINVAL;
788 1.37 jruoho
789 1.32 jruoho if ((ps->ps_flags & ACPICPU_FLAG_P_FIDVID) != 0)
790 1.32 jruoho return acpicpu_md_pstate_fidvid_set(ps);
791 1.32 jruoho
792 1.36 jruoho /*
793 1.38.4.2 bouyer * If the mask is set, do a read-modify-write.
794 1.36 jruoho */
795 1.38.4.2 bouyer if (__predict_true(ps->ps_control_mask != 0)) {
796 1.38.4.2 bouyer val = rdmsr(ps->ps_control_addr);
797 1.38.4.2 bouyer val &= ~ps->ps_control_mask;
798 1.33 jruoho }
799 1.13 jruoho
800 1.38.4.2 bouyer val |= ps->ps_control;
801 1.14 jruoho
802 1.38.4.2 bouyer wrmsr(ps->ps_control_addr, val);
803 1.38.4.2 bouyer DELAY(ps->ps_latency);
804 1.14 jruoho
805 1.38.4.2 bouyer return 0;
806 1.5 jruoho }
807 1.10 jruoho
808 1.32 jruoho static int
809 1.32 jruoho acpicpu_md_pstate_fidvid_get(struct acpicpu_softc *sc, uint32_t *freq)
810 1.32 jruoho {
811 1.32 jruoho struct acpicpu_pstate *ps;
812 1.32 jruoho uint32_t fid, i, vid;
813 1.32 jruoho uint32_t cfid, cvid;
814 1.32 jruoho int rv;
815 1.32 jruoho
816 1.32 jruoho /*
817 1.32 jruoho * AMD family 0Fh needs special treatment.
818 1.32 jruoho * While it wants to use ACPI, it does not
819 1.32 jruoho * comply with the ACPI specifications.
820 1.32 jruoho */
821 1.32 jruoho rv = acpicpu_md_pstate_fidvid_read(&cfid, &cvid);
822 1.32 jruoho
823 1.32 jruoho if (rv != 0)
824 1.32 jruoho return rv;
825 1.32 jruoho
826 1.32 jruoho for (i = 0; i < sc->sc_pstate_count; i++) {
827 1.32 jruoho
828 1.32 jruoho ps = &sc->sc_pstate[i];
829 1.32 jruoho
830 1.32 jruoho if (__predict_false(ps->ps_freq == 0))
831 1.32 jruoho continue;
832 1.32 jruoho
833 1.32 jruoho fid = __SHIFTOUT(ps->ps_status, ACPI_0FH_STATUS_FID);
834 1.32 jruoho vid = __SHIFTOUT(ps->ps_status, ACPI_0FH_STATUS_VID);
835 1.32 jruoho
836 1.32 jruoho if (cfid == fid && cvid == vid) {
837 1.32 jruoho *freq = ps->ps_freq;
838 1.32 jruoho return 0;
839 1.32 jruoho }
840 1.32 jruoho }
841 1.32 jruoho
842 1.32 jruoho return EIO;
843 1.32 jruoho }
844 1.32 jruoho
845 1.32 jruoho static int
846 1.32 jruoho acpicpu_md_pstate_fidvid_set(struct acpicpu_pstate *ps)
847 1.32 jruoho {
848 1.32 jruoho const uint64_t ctrl = ps->ps_control;
849 1.32 jruoho uint32_t cfid, cvid, fid, i, irt;
850 1.32 jruoho uint32_t pll, vco_cfid, vco_fid;
851 1.32 jruoho uint32_t val, vid, vst;
852 1.32 jruoho int rv;
853 1.32 jruoho
854 1.32 jruoho rv = acpicpu_md_pstate_fidvid_read(&cfid, &cvid);
855 1.32 jruoho
856 1.32 jruoho if (rv != 0)
857 1.32 jruoho return rv;
858 1.32 jruoho
859 1.32 jruoho fid = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_FID);
860 1.32 jruoho vid = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_VID);
861 1.32 jruoho irt = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_IRT);
862 1.32 jruoho vst = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_VST);
863 1.32 jruoho pll = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_PLL);
864 1.32 jruoho
865 1.32 jruoho vst = vst * 20;
866 1.32 jruoho pll = pll * 1000 / 5;
867 1.32 jruoho irt = 10 * __BIT(irt);
868 1.32 jruoho
869 1.32 jruoho /*
870 1.32 jruoho * Phase 1.
871 1.32 jruoho */
872 1.32 jruoho while (cvid > vid) {
873 1.32 jruoho
874 1.32 jruoho val = 1 << __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_MVS);
875 1.32 jruoho val = (val > cvid) ? 0 : cvid - val;
876 1.32 jruoho
877 1.32 jruoho acpicpu_md_pstate_fidvid_write(cfid, val, 1, vst);
878 1.32 jruoho rv = acpicpu_md_pstate_fidvid_read(NULL, &cvid);
879 1.32 jruoho
880 1.32 jruoho if (rv != 0)
881 1.32 jruoho return rv;
882 1.32 jruoho }
883 1.32 jruoho
884 1.32 jruoho i = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_RVO);
885 1.32 jruoho
886 1.32 jruoho for (; i > 0 && cvid > 0; --i) {
887 1.32 jruoho
888 1.32 jruoho acpicpu_md_pstate_fidvid_write(cfid, cvid - 1, 1, vst);
889 1.32 jruoho rv = acpicpu_md_pstate_fidvid_read(NULL, &cvid);
890 1.32 jruoho
891 1.32 jruoho if (rv != 0)
892 1.32 jruoho return rv;
893 1.32 jruoho }
894 1.32 jruoho
895 1.32 jruoho /*
896 1.32 jruoho * Phase 2.
897 1.32 jruoho */
898 1.32 jruoho if (cfid != fid) {
899 1.32 jruoho
900 1.32 jruoho vco_fid = FID_TO_VCO_FID(fid);
901 1.32 jruoho vco_cfid = FID_TO_VCO_FID(cfid);
902 1.32 jruoho
903 1.32 jruoho while (abs(vco_fid - vco_cfid) > 2) {
904 1.32 jruoho
905 1.32 jruoho if (fid <= cfid)
906 1.32 jruoho val = cfid - 2;
907 1.32 jruoho else {
908 1.32 jruoho val = (cfid > 6) ? cfid + 2 :
909 1.32 jruoho FID_TO_VCO_FID(cfid) + 2;
910 1.32 jruoho }
911 1.32 jruoho
912 1.32 jruoho acpicpu_md_pstate_fidvid_write(val, cvid, pll, irt);
913 1.32 jruoho rv = acpicpu_md_pstate_fidvid_read(&cfid, NULL);
914 1.32 jruoho
915 1.32 jruoho if (rv != 0)
916 1.32 jruoho return rv;
917 1.32 jruoho
918 1.32 jruoho vco_cfid = FID_TO_VCO_FID(cfid);
919 1.32 jruoho }
920 1.32 jruoho
921 1.32 jruoho acpicpu_md_pstate_fidvid_write(fid, cvid, pll, irt);
922 1.32 jruoho rv = acpicpu_md_pstate_fidvid_read(&cfid, NULL);
923 1.32 jruoho
924 1.32 jruoho if (rv != 0)
925 1.32 jruoho return rv;
926 1.32 jruoho }
927 1.32 jruoho
928 1.32 jruoho /*
929 1.32 jruoho * Phase 3.
930 1.32 jruoho */
931 1.32 jruoho if (cvid != vid) {
932 1.32 jruoho
933 1.32 jruoho acpicpu_md_pstate_fidvid_write(cfid, vid, 1, vst);
934 1.32 jruoho rv = acpicpu_md_pstate_fidvid_read(NULL, &cvid);
935 1.32 jruoho
936 1.32 jruoho if (rv != 0)
937 1.32 jruoho return rv;
938 1.32 jruoho }
939 1.32 jruoho
940 1.32 jruoho if (cfid != fid || cvid != vid)
941 1.32 jruoho return EIO;
942 1.32 jruoho
943 1.32 jruoho return 0;
944 1.32 jruoho }
945 1.32 jruoho
946 1.32 jruoho static int
947 1.32 jruoho acpicpu_md_pstate_fidvid_read(uint32_t *cfid, uint32_t *cvid)
948 1.32 jruoho {
949 1.32 jruoho int i = ACPICPU_P_STATE_RETRY * 100;
950 1.32 jruoho uint64_t val;
951 1.32 jruoho
952 1.32 jruoho do {
953 1.32 jruoho val = rdmsr(MSR_0FH_STATUS);
954 1.32 jruoho
955 1.32 jruoho } while (__SHIFTOUT(val, MSR_0FH_STATUS_PENDING) != 0 && --i >= 0);
956 1.32 jruoho
957 1.32 jruoho if (i == 0)
958 1.32 jruoho return EAGAIN;
959 1.32 jruoho
960 1.32 jruoho if (cfid != NULL)
961 1.32 jruoho *cfid = __SHIFTOUT(val, MSR_0FH_STATUS_CFID);
962 1.32 jruoho
963 1.32 jruoho if (cvid != NULL)
964 1.32 jruoho *cvid = __SHIFTOUT(val, MSR_0FH_STATUS_CVID);
965 1.32 jruoho
966 1.32 jruoho return 0;
967 1.32 jruoho }
968 1.32 jruoho
969 1.32 jruoho static void
970 1.32 jruoho acpicpu_md_pstate_fidvid_write(uint32_t fid,
971 1.32 jruoho uint32_t vid, uint32_t cnt, uint32_t tmo)
972 1.32 jruoho {
973 1.38.4.2 bouyer uint64_t val = 0;
974 1.32 jruoho
975 1.38.4.2 bouyer val |= __SHIFTIN(fid, MSR_0FH_CONTROL_FID);
976 1.38.4.2 bouyer val |= __SHIFTIN(vid, MSR_0FH_CONTROL_VID);
977 1.38.4.2 bouyer val |= __SHIFTIN(cnt, MSR_0FH_CONTROL_CNT);
978 1.38.4.2 bouyer val |= __SHIFTIN(0x1, MSR_0FH_CONTROL_CHG);
979 1.32 jruoho
980 1.38.4.2 bouyer wrmsr(MSR_0FH_CONTROL, val);
981 1.32 jruoho DELAY(tmo);
982 1.32 jruoho }
983 1.32 jruoho
984 1.10 jruoho int
985 1.10 jruoho acpicpu_md_tstate_get(struct acpicpu_softc *sc, uint32_t *percent)
986 1.10 jruoho {
987 1.10 jruoho struct acpicpu_tstate *ts;
988 1.14 jruoho uint64_t val;
989 1.10 jruoho uint32_t i;
990 1.10 jruoho
991 1.14 jruoho val = rdmsr(MSR_THERM_CONTROL);
992 1.10 jruoho
993 1.10 jruoho for (i = 0; i < sc->sc_tstate_count; i++) {
994 1.10 jruoho
995 1.10 jruoho ts = &sc->sc_tstate[i];
996 1.10 jruoho
997 1.10 jruoho if (ts->ts_percent == 0)
998 1.10 jruoho continue;
999 1.10 jruoho
1000 1.29 jruoho if (val == ts->ts_status) {
1001 1.10 jruoho *percent = ts->ts_percent;
1002 1.10 jruoho return 0;
1003 1.10 jruoho }
1004 1.10 jruoho }
1005 1.10 jruoho
1006 1.10 jruoho return EIO;
1007 1.10 jruoho }
1008 1.10 jruoho
1009 1.10 jruoho int
1010 1.10 jruoho acpicpu_md_tstate_set(struct acpicpu_tstate *ts)
1011 1.10 jruoho {
1012 1.38.4.2 bouyer uint64_t val;
1013 1.38.4.2 bouyer uint8_t i;
1014 1.10 jruoho
1015 1.38.4.2 bouyer val = ts->ts_control;
1016 1.38.4.2 bouyer val = val & __BITS(1, 4);
1017 1.10 jruoho
1018 1.38.4.2 bouyer wrmsr(MSR_THERM_CONTROL, val);
1019 1.10 jruoho
1020 1.30 jruoho if (ts->ts_status == 0) {
1021 1.30 jruoho DELAY(ts->ts_latency);
1022 1.10 jruoho return 0;
1023 1.30 jruoho }
1024 1.10 jruoho
1025 1.10 jruoho for (i = val = 0; i < ACPICPU_T_STATE_RETRY; i++) {
1026 1.10 jruoho
1027 1.14 jruoho val = rdmsr(MSR_THERM_CONTROL);
1028 1.10 jruoho
1029 1.29 jruoho if (val == ts->ts_status)
1030 1.38.4.2 bouyer return 0;
1031 1.10 jruoho
1032 1.10 jruoho DELAY(ts->ts_latency);
1033 1.10 jruoho }
1034 1.10 jruoho
1035 1.38.4.2 bouyer return EAGAIN;
1036 1.10 jruoho }
1037 1.19 jruoho
1038 1.19 jruoho /*
1039 1.19 jruoho * A kludge for backwards compatibility.
1040 1.19 jruoho */
1041 1.19 jruoho static int
1042 1.19 jruoho acpicpu_md_pstate_sysctl_init(void)
1043 1.19 jruoho {
1044 1.19 jruoho const struct sysctlnode *fnode, *mnode, *rnode;
1045 1.19 jruoho const char *str;
1046 1.19 jruoho int rv;
1047 1.19 jruoho
1048 1.19 jruoho switch (cpu_vendor) {
1049 1.19 jruoho
1050 1.19 jruoho case CPUVENDOR_IDT:
1051 1.19 jruoho case CPUVENDOR_INTEL:
1052 1.19 jruoho str = "est";
1053 1.19 jruoho break;
1054 1.19 jruoho
1055 1.19 jruoho case CPUVENDOR_AMD:
1056 1.19 jruoho str = "powernow";
1057 1.19 jruoho break;
1058 1.19 jruoho
1059 1.19 jruoho default:
1060 1.19 jruoho return ENODEV;
1061 1.19 jruoho }
1062 1.19 jruoho
1063 1.19 jruoho
1064 1.19 jruoho rv = sysctl_createv(&acpicpu_log, 0, NULL, &rnode,
1065 1.19 jruoho CTLFLAG_PERMANENT, CTLTYPE_NODE, "machdep", NULL,
1066 1.19 jruoho NULL, 0, NULL, 0, CTL_MACHDEP, CTL_EOL);
1067 1.19 jruoho
1068 1.19 jruoho if (rv != 0)
1069 1.19 jruoho goto fail;
1070 1.19 jruoho
1071 1.19 jruoho rv = sysctl_createv(&acpicpu_log, 0, &rnode, &mnode,
1072 1.19 jruoho 0, CTLTYPE_NODE, str, NULL,
1073 1.19 jruoho NULL, 0, NULL, 0, CTL_CREATE, CTL_EOL);
1074 1.19 jruoho
1075 1.19 jruoho if (rv != 0)
1076 1.19 jruoho goto fail;
1077 1.19 jruoho
1078 1.19 jruoho rv = sysctl_createv(&acpicpu_log, 0, &mnode, &fnode,
1079 1.19 jruoho 0, CTLTYPE_NODE, "frequency", NULL,
1080 1.19 jruoho NULL, 0, NULL, 0, CTL_CREATE, CTL_EOL);
1081 1.19 jruoho
1082 1.19 jruoho if (rv != 0)
1083 1.19 jruoho goto fail;
1084 1.19 jruoho
1085 1.19 jruoho rv = sysctl_createv(&acpicpu_log, 0, &fnode, &rnode,
1086 1.19 jruoho CTLFLAG_READWRITE, CTLTYPE_INT, "target", NULL,
1087 1.19 jruoho acpicpu_md_pstate_sysctl_set, 0, NULL, 0, CTL_CREATE, CTL_EOL);
1088 1.19 jruoho
1089 1.19 jruoho if (rv != 0)
1090 1.19 jruoho goto fail;
1091 1.19 jruoho
1092 1.19 jruoho rv = sysctl_createv(&acpicpu_log, 0, &fnode, &rnode,
1093 1.19 jruoho CTLFLAG_READONLY, CTLTYPE_INT, "current", NULL,
1094 1.19 jruoho acpicpu_md_pstate_sysctl_get, 0, NULL, 0, CTL_CREATE, CTL_EOL);
1095 1.19 jruoho
1096 1.19 jruoho if (rv != 0)
1097 1.19 jruoho goto fail;
1098 1.19 jruoho
1099 1.19 jruoho rv = sysctl_createv(&acpicpu_log, 0, &fnode, &rnode,
1100 1.19 jruoho CTLFLAG_READONLY, CTLTYPE_STRING, "available", NULL,
1101 1.19 jruoho acpicpu_md_pstate_sysctl_all, 0, NULL, 0, CTL_CREATE, CTL_EOL);
1102 1.19 jruoho
1103 1.19 jruoho if (rv != 0)
1104 1.19 jruoho goto fail;
1105 1.19 jruoho
1106 1.19 jruoho return 0;
1107 1.19 jruoho
1108 1.19 jruoho fail:
1109 1.19 jruoho if (acpicpu_log != NULL) {
1110 1.19 jruoho sysctl_teardown(&acpicpu_log);
1111 1.19 jruoho acpicpu_log = NULL;
1112 1.19 jruoho }
1113 1.19 jruoho
1114 1.19 jruoho return rv;
1115 1.19 jruoho }
1116 1.19 jruoho
1117 1.19 jruoho static int
1118 1.19 jruoho acpicpu_md_pstate_sysctl_get(SYSCTLFN_ARGS)
1119 1.19 jruoho {
1120 1.19 jruoho struct cpu_info *ci = curcpu();
1121 1.19 jruoho struct sysctlnode node;
1122 1.19 jruoho uint32_t freq;
1123 1.19 jruoho int err;
1124 1.19 jruoho
1125 1.38.4.2 bouyer err = acpicpu_pstate_get(ci, &freq);
1126 1.19 jruoho
1127 1.19 jruoho if (err != 0)
1128 1.19 jruoho return err;
1129 1.19 jruoho
1130 1.19 jruoho node = *rnode;
1131 1.19 jruoho node.sysctl_data = &freq;
1132 1.19 jruoho
1133 1.19 jruoho err = sysctl_lookup(SYSCTLFN_CALL(&node));
1134 1.19 jruoho
1135 1.19 jruoho if (err != 0 || newp == NULL)
1136 1.19 jruoho return err;
1137 1.19 jruoho
1138 1.19 jruoho return 0;
1139 1.19 jruoho }
1140 1.19 jruoho
1141 1.19 jruoho static int
1142 1.19 jruoho acpicpu_md_pstate_sysctl_set(SYSCTLFN_ARGS)
1143 1.19 jruoho {
1144 1.19 jruoho struct cpu_info *ci = curcpu();
1145 1.19 jruoho struct sysctlnode node;
1146 1.19 jruoho uint32_t freq;
1147 1.19 jruoho int err;
1148 1.19 jruoho
1149 1.38.4.2 bouyer err = acpicpu_pstate_get(ci, &freq);
1150 1.19 jruoho
1151 1.19 jruoho if (err != 0)
1152 1.19 jruoho return err;
1153 1.19 jruoho
1154 1.19 jruoho node = *rnode;
1155 1.19 jruoho node.sysctl_data = &freq;
1156 1.19 jruoho
1157 1.19 jruoho err = sysctl_lookup(SYSCTLFN_CALL(&node));
1158 1.19 jruoho
1159 1.19 jruoho if (err != 0 || newp == NULL)
1160 1.19 jruoho return err;
1161 1.19 jruoho
1162 1.38.4.2 bouyer acpicpu_pstate_set(ci, freq);
1163 1.19 jruoho
1164 1.19 jruoho return 0;
1165 1.19 jruoho }
1166 1.19 jruoho
1167 1.19 jruoho static int
1168 1.19 jruoho acpicpu_md_pstate_sysctl_all(SYSCTLFN_ARGS)
1169 1.19 jruoho {
1170 1.19 jruoho struct cpu_info *ci = curcpu();
1171 1.19 jruoho struct acpicpu_softc *sc;
1172 1.19 jruoho struct sysctlnode node;
1173 1.19 jruoho char buf[1024];
1174 1.19 jruoho size_t len;
1175 1.19 jruoho uint32_t i;
1176 1.19 jruoho int err;
1177 1.19 jruoho
1178 1.19 jruoho sc = acpicpu_sc[ci->ci_acpiid];
1179 1.19 jruoho
1180 1.19 jruoho if (sc == NULL)
1181 1.19 jruoho return ENXIO;
1182 1.19 jruoho
1183 1.19 jruoho (void)memset(&buf, 0, sizeof(buf));
1184 1.19 jruoho
1185 1.19 jruoho mutex_enter(&sc->sc_mtx);
1186 1.19 jruoho
1187 1.19 jruoho for (len = 0, i = sc->sc_pstate_max; i < sc->sc_pstate_count; i++) {
1188 1.19 jruoho
1189 1.19 jruoho if (sc->sc_pstate[i].ps_freq == 0)
1190 1.19 jruoho continue;
1191 1.19 jruoho
1192 1.19 jruoho len += snprintf(buf + len, sizeof(buf) - len, "%u%s",
1193 1.19 jruoho sc->sc_pstate[i].ps_freq,
1194 1.19 jruoho i < (sc->sc_pstate_count - 1) ? " " : "");
1195 1.19 jruoho }
1196 1.19 jruoho
1197 1.19 jruoho mutex_exit(&sc->sc_mtx);
1198 1.19 jruoho
1199 1.19 jruoho node = *rnode;
1200 1.19 jruoho node.sysctl_data = buf;
1201 1.19 jruoho
1202 1.19 jruoho err = sysctl_lookup(SYSCTLFN_CALL(&node));
1203 1.19 jruoho
1204 1.19 jruoho if (err != 0 || newp == NULL)
1205 1.19 jruoho return err;
1206 1.19 jruoho
1207 1.19 jruoho return 0;
1208 1.19 jruoho }
1209 1.19 jruoho
1210