acpi_cpu_md.c revision 1.39 1 1.39 jruoho /* $NetBSD: acpi_cpu_md.c,v 1.39 2011/02/15 17:50:46 jruoho Exp $ */
2 1.1 jruoho
3 1.1 jruoho /*-
4 1.1 jruoho * Copyright (c) 2010 Jukka Ruohonen <jruohonen (at) iki.fi>
5 1.1 jruoho * All rights reserved.
6 1.1 jruoho *
7 1.1 jruoho * Redistribution and use in source and binary forms, with or without
8 1.1 jruoho * modification, are permitted provided that the following conditions
9 1.1 jruoho * are met:
10 1.1 jruoho *
11 1.1 jruoho * 1. Redistributions of source code must retain the above copyright
12 1.1 jruoho * notice, this list of conditions and the following disclaimer.
13 1.1 jruoho * 2. Redistributions in binary form must reproduce the above copyright
14 1.1 jruoho * notice, this list of conditions and the following disclaimer in the
15 1.1 jruoho * documentation and/or other materials provided with the distribution.
16 1.1 jruoho *
17 1.1 jruoho * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18 1.1 jruoho * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 1.1 jruoho * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 1.1 jruoho * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21 1.1 jruoho * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 1.1 jruoho * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 1.1 jruoho * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 1.1 jruoho * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 1.1 jruoho * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 1.1 jruoho * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 1.1 jruoho * SUCH DAMAGE.
28 1.1 jruoho */
29 1.1 jruoho #include <sys/cdefs.h>
30 1.39 jruoho __KERNEL_RCSID(0, "$NetBSD: acpi_cpu_md.c,v 1.39 2011/02/15 17:50:46 jruoho Exp $");
31 1.1 jruoho
32 1.1 jruoho #include <sys/param.h>
33 1.1 jruoho #include <sys/bus.h>
34 1.1 jruoho #include <sys/kcore.h>
35 1.5 jruoho #include <sys/sysctl.h>
36 1.4 jruoho #include <sys/xcall.h>
37 1.1 jruoho
38 1.1 jruoho #include <x86/cpu.h>
39 1.5 jruoho #include <x86/cpufunc.h>
40 1.5 jruoho #include <x86/cputypes.h>
41 1.1 jruoho #include <x86/cpuvar.h>
42 1.5 jruoho #include <x86/cpu_msr.h>
43 1.1 jruoho #include <x86/machdep.h>
44 1.1 jruoho
45 1.1 jruoho #include <dev/acpi/acpica.h>
46 1.1 jruoho #include <dev/acpi/acpi_cpu.h>
47 1.1 jruoho
48 1.12 jruoho #include <dev/pci/pcivar.h>
49 1.12 jruoho #include <dev/pci/pcidevs.h>
50 1.12 jruoho
51 1.38 jruoho #include <machine/acpi_machdep.h>
52 1.38 jruoho
53 1.35 jruoho /*
54 1.35 jruoho * AMD C1E.
55 1.35 jruoho */
56 1.35 jruoho #define MSR_CMPHALT 0xc0010055
57 1.35 jruoho
58 1.35 jruoho #define MSR_CMPHALT_SMI __BIT(27)
59 1.35 jruoho #define MSR_CMPHALT_C1E __BIT(28)
60 1.35 jruoho #define MSR_CMPHALT_BMSTS __BIT(29)
61 1.33 jruoho
62 1.32 jruoho /*
63 1.32 jruoho * AMD families 10h and 11h.
64 1.32 jruoho */
65 1.32 jruoho #define MSR_10H_LIMIT 0xc0010061
66 1.32 jruoho #define MSR_10H_CONTROL 0xc0010062
67 1.32 jruoho #define MSR_10H_STATUS 0xc0010063
68 1.32 jruoho #define MSR_10H_CONFIG 0xc0010064
69 1.22 jruoho
70 1.32 jruoho /*
71 1.32 jruoho * AMD family 0Fh.
72 1.32 jruoho */
73 1.32 jruoho #define MSR_0FH_CONTROL 0xc0010041
74 1.17 jruoho #define MSR_0FH_STATUS 0xc0010042
75 1.17 jruoho
76 1.32 jruoho #define MSR_0FH_STATUS_CFID __BITS( 0, 5)
77 1.32 jruoho #define MSR_0FH_STATUS_CVID __BITS(32, 36)
78 1.32 jruoho #define MSR_0FH_STATUS_PENDING __BITS(31, 31)
79 1.32 jruoho
80 1.32 jruoho #define MSR_0FH_CONTROL_FID __BITS( 0, 5)
81 1.32 jruoho #define MSR_0FH_CONTROL_VID __BITS( 8, 12)
82 1.32 jruoho #define MSR_0FH_CONTROL_CHG __BITS(16, 16)
83 1.32 jruoho #define MSR_0FH_CONTROL_CNT __BITS(32, 51)
84 1.32 jruoho
85 1.32 jruoho #define ACPI_0FH_STATUS_FID __BITS( 0, 5)
86 1.32 jruoho #define ACPI_0FH_STATUS_VID __BITS( 6, 10)
87 1.32 jruoho
88 1.32 jruoho #define ACPI_0FH_CONTROL_FID __BITS( 0, 5)
89 1.32 jruoho #define ACPI_0FH_CONTROL_VID __BITS( 6, 10)
90 1.32 jruoho #define ACPI_0FH_CONTROL_VST __BITS(11, 17)
91 1.32 jruoho #define ACPI_0FH_CONTROL_MVS __BITS(18, 19)
92 1.32 jruoho #define ACPI_0FH_CONTROL_PLL __BITS(20, 26)
93 1.32 jruoho #define ACPI_0FH_CONTROL_RVO __BITS(28, 29)
94 1.32 jruoho #define ACPI_0FH_CONTROL_IRT __BITS(30, 31)
95 1.32 jruoho
96 1.32 jruoho #define FID_TO_VCO_FID(fidd) (((fid) < 8) ? (8 + ((fid) << 1)) : (fid))
97 1.17 jruoho
98 1.5 jruoho static char native_idle_text[16];
99 1.5 jruoho void (*native_idle)(void) = NULL;
100 1.1 jruoho
101 1.12 jruoho static int acpicpu_md_quirks_piix4(struct pci_attach_args *);
102 1.19 jruoho static void acpicpu_md_pstate_status(void *, void *);
103 1.32 jruoho static int acpicpu_md_pstate_fidvid_get(struct acpicpu_softc *,
104 1.32 jruoho uint32_t *);
105 1.32 jruoho static int acpicpu_md_pstate_fidvid_set(struct acpicpu_pstate *);
106 1.32 jruoho static int acpicpu_md_pstate_fidvid_read(uint32_t *, uint32_t *);
107 1.32 jruoho static void acpicpu_md_pstate_fidvid_write(uint32_t, uint32_t,
108 1.32 jruoho uint32_t, uint32_t);
109 1.19 jruoho static void acpicpu_md_tstate_status(void *, void *);
110 1.19 jruoho static int acpicpu_md_pstate_sysctl_init(void);
111 1.5 jruoho static int acpicpu_md_pstate_sysctl_get(SYSCTLFN_PROTO);
112 1.5 jruoho static int acpicpu_md_pstate_sysctl_set(SYSCTLFN_PROTO);
113 1.5 jruoho static int acpicpu_md_pstate_sysctl_all(SYSCTLFN_PROTO);
114 1.5 jruoho
115 1.5 jruoho extern struct acpicpu_softc **acpicpu_sc;
116 1.35 jruoho static bool acpicpu_pstate_status = false;
117 1.19 jruoho static struct sysctllog *acpicpu_log = NULL;
118 1.1 jruoho
119 1.1 jruoho uint32_t
120 1.1 jruoho acpicpu_md_cap(void)
121 1.1 jruoho {
122 1.1 jruoho struct cpu_info *ci = curcpu();
123 1.1 jruoho uint32_t val = 0;
124 1.1 jruoho
125 1.17 jruoho if (cpu_vendor != CPUVENDOR_IDT &&
126 1.17 jruoho cpu_vendor != CPUVENDOR_INTEL)
127 1.1 jruoho return val;
128 1.1 jruoho
129 1.1 jruoho /*
130 1.1 jruoho * Basic SMP C-states (required for _CST).
131 1.1 jruoho */
132 1.1 jruoho val |= ACPICPU_PDC_C_C1PT | ACPICPU_PDC_C_C2C3;
133 1.1 jruoho
134 1.1 jruoho /*
135 1.1 jruoho * If MONITOR/MWAIT is available, announce
136 1.1 jruoho * support for native instructions in all C-states.
137 1.1 jruoho */
138 1.1 jruoho if ((ci->ci_feat_val[1] & CPUID2_MONITOR) != 0)
139 1.1 jruoho val |= ACPICPU_PDC_C_C1_FFH | ACPICPU_PDC_C_C2C3_FFH;
140 1.1 jruoho
141 1.5 jruoho /*
142 1.10 jruoho * Set native P- and T-states, if available.
143 1.5 jruoho */
144 1.5 jruoho if ((ci->ci_feat_val[1] & CPUID2_EST) != 0)
145 1.5 jruoho val |= ACPICPU_PDC_P_FFH;
146 1.5 jruoho
147 1.10 jruoho if ((ci->ci_feat_val[0] & CPUID_ACPI) != 0)
148 1.10 jruoho val |= ACPICPU_PDC_T_FFH;
149 1.10 jruoho
150 1.1 jruoho return val;
151 1.1 jruoho }
152 1.1 jruoho
153 1.1 jruoho uint32_t
154 1.1 jruoho acpicpu_md_quirks(void)
155 1.1 jruoho {
156 1.1 jruoho struct cpu_info *ci = curcpu();
157 1.12 jruoho struct pci_attach_args pa;
158 1.18 jruoho uint32_t family, val = 0;
159 1.21 jruoho uint32_t regs[4];
160 1.1 jruoho
161 1.38 jruoho if (acpi_md_ncpus() == 1)
162 1.1 jruoho val |= ACPICPU_FLAG_C_BM;
163 1.1 jruoho
164 1.1 jruoho if ((ci->ci_feat_val[1] & CPUID2_MONITOR) != 0)
165 1.5 jruoho val |= ACPICPU_FLAG_C_FFH;
166 1.1 jruoho
167 1.39 jruoho /*
168 1.39 jruoho * By default, assume that the local APIC timer
169 1.39 jruoho * as well as TSC are stalled during C3 sleep.
170 1.39 jruoho */
171 1.25 jruoho val |= ACPICPU_FLAG_C_APIC | ACPICPU_FLAG_C_TSC;
172 1.22 jruoho
173 1.1 jruoho switch (cpu_vendor) {
174 1.1 jruoho
175 1.17 jruoho case CPUVENDOR_IDT:
176 1.22 jruoho
177 1.22 jruoho if ((ci->ci_feat_val[1] & CPUID2_EST) != 0)
178 1.22 jruoho val |= ACPICPU_FLAG_P_FFH;
179 1.22 jruoho
180 1.22 jruoho if ((ci->ci_feat_val[0] & CPUID_ACPI) != 0)
181 1.22 jruoho val |= ACPICPU_FLAG_T_FFH;
182 1.22 jruoho
183 1.22 jruoho break;
184 1.22 jruoho
185 1.1 jruoho case CPUVENDOR_INTEL:
186 1.17 jruoho
187 1.39 jruoho /*
188 1.39 jruoho * Bus master control and arbitration should be
189 1.39 jruoho * available on all supported Intel CPUs (to be
190 1.39 jruoho * sure, this is double-checked later from the
191 1.39 jruoho * firmware data). These flags imply that it is
192 1.39 jruoho * not necessary to flush caches before C3 state.
193 1.39 jruoho */
194 1.22 jruoho val |= ACPICPU_FLAG_C_BM | ACPICPU_FLAG_C_ARB;
195 1.22 jruoho
196 1.39 jruoho /*
197 1.39 jruoho * Check if we can use "native", MSR-based,
198 1.39 jruoho * access. If not, we have to resort to I/O.
199 1.39 jruoho */
200 1.5 jruoho if ((ci->ci_feat_val[1] & CPUID2_EST) != 0)
201 1.5 jruoho val |= ACPICPU_FLAG_P_FFH;
202 1.5 jruoho
203 1.10 jruoho if ((ci->ci_feat_val[0] & CPUID_ACPI) != 0)
204 1.10 jruoho val |= ACPICPU_FLAG_T_FFH;
205 1.10 jruoho
206 1.22 jruoho /*
207 1.25 jruoho * Check whether MSR_APERF, MSR_MPERF, and Turbo
208 1.25 jruoho * Boost are available. Also see if we might have
209 1.25 jruoho * an invariant local APIC timer ("ARAT").
210 1.23 jruoho */
211 1.23 jruoho if (cpuid_level >= 0x06) {
212 1.23 jruoho
213 1.23 jruoho x86_cpuid(0x06, regs);
214 1.23 jruoho
215 1.34 jruoho if ((regs[2] & CPUID_DSPM_HWF) != 0)
216 1.23 jruoho val |= ACPICPU_FLAG_P_HW;
217 1.23 jruoho
218 1.34 jruoho if ((regs[0] & CPUID_DSPM_IDA) != 0)
219 1.24 jruoho val |= ACPICPU_FLAG_P_TURBO;
220 1.25 jruoho
221 1.34 jruoho if ((regs[0] & CPUID_DSPM_ARAT) != 0)
222 1.25 jruoho val &= ~ACPICPU_FLAG_C_APIC;
223 1.23 jruoho }
224 1.23 jruoho
225 1.23 jruoho /*
226 1.22 jruoho * Detect whether TSC is invariant. If it is not,
227 1.22 jruoho * we keep the flag to note that TSC will not run
228 1.22 jruoho * at constant rate. Depending on the CPU, this may
229 1.22 jruoho * affect P- and T-state changes, but especially
230 1.22 jruoho * relevant are C-states; with variant TSC, states
231 1.24 jruoho * larger than C1 may completely stop the counter.
232 1.22 jruoho */
233 1.22 jruoho x86_cpuid(0x80000000, regs);
234 1.22 jruoho
235 1.22 jruoho if (regs[0] >= 0x80000007) {
236 1.22 jruoho
237 1.22 jruoho x86_cpuid(0x80000007, regs);
238 1.22 jruoho
239 1.32 jruoho if ((regs[3] & __BIT(8)) != 0)
240 1.22 jruoho val &= ~ACPICPU_FLAG_C_TSC;
241 1.22 jruoho }
242 1.22 jruoho
243 1.17 jruoho break;
244 1.12 jruoho
245 1.17 jruoho case CPUVENDOR_AMD:
246 1.17 jruoho
247 1.32 jruoho x86_cpuid(0x80000000, regs);
248 1.32 jruoho
249 1.32 jruoho if (regs[0] < 0x80000007)
250 1.32 jruoho break;
251 1.32 jruoho
252 1.32 jruoho x86_cpuid(0x80000007, regs);
253 1.32 jruoho
254 1.18 jruoho family = CPUID2FAMILY(ci->ci_signature);
255 1.18 jruoho
256 1.18 jruoho if (family == 0xf)
257 1.18 jruoho family += CPUID2EXTFAMILY(ci->ci_signature);
258 1.18 jruoho
259 1.32 jruoho switch (family) {
260 1.1 jruoho
261 1.22 jruoho case 0x0f:
262 1.32 jruoho
263 1.32 jruoho if ((regs[3] & CPUID_APM_FID) == 0)
264 1.32 jruoho break;
265 1.32 jruoho
266 1.32 jruoho if ((regs[3] & CPUID_APM_VID) == 0)
267 1.32 jruoho break;
268 1.32 jruoho
269 1.32 jruoho val |= ACPICPU_FLAG_P_FFH | ACPICPU_FLAG_P_FIDVID;
270 1.32 jruoho break;
271 1.32 jruoho
272 1.17 jruoho case 0x10:
273 1.17 jruoho case 0x11:
274 1.1 jruoho
275 1.22 jruoho if ((regs[3] & CPUID_APM_TSC) != 0)
276 1.22 jruoho val &= ~ACPICPU_FLAG_C_TSC;
277 1.22 jruoho
278 1.21 jruoho if ((regs[3] & CPUID_APM_HWP) != 0)
279 1.17 jruoho val |= ACPICPU_FLAG_P_FFH;
280 1.21 jruoho
281 1.21 jruoho if ((regs[3] & CPUID_APM_CPB) != 0)
282 1.21 jruoho val |= ACPICPU_FLAG_P_TURBO;
283 1.35 jruoho
284 1.35 jruoho val |= ACPICPU_FLAG_C_C1E;
285 1.35 jruoho break;
286 1.17 jruoho }
287 1.1 jruoho
288 1.1 jruoho break;
289 1.1 jruoho }
290 1.1 jruoho
291 1.12 jruoho /*
292 1.12 jruoho * There are several erratums for PIIX4.
293 1.12 jruoho */
294 1.12 jruoho if (pci_find_device(&pa, acpicpu_md_quirks_piix4) != 0)
295 1.12 jruoho val |= ACPICPU_FLAG_PIIX4;
296 1.12 jruoho
297 1.1 jruoho return val;
298 1.1 jruoho }
299 1.1 jruoho
300 1.12 jruoho static int
301 1.12 jruoho acpicpu_md_quirks_piix4(struct pci_attach_args *pa)
302 1.12 jruoho {
303 1.12 jruoho
304 1.12 jruoho /*
305 1.12 jruoho * XXX: The pci_find_device(9) function only
306 1.12 jruoho * deals with attached devices. Change this
307 1.12 jruoho * to use something like pci_device_foreach().
308 1.12 jruoho */
309 1.12 jruoho if (PCI_VENDOR(pa->pa_id) != PCI_VENDOR_INTEL)
310 1.12 jruoho return 0;
311 1.12 jruoho
312 1.12 jruoho if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_82371AB_ISA ||
313 1.12 jruoho PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_82440MX_PMC)
314 1.12 jruoho return 1;
315 1.12 jruoho
316 1.12 jruoho return 0;
317 1.12 jruoho }
318 1.12 jruoho
319 1.35 jruoho void
320 1.35 jruoho acpicpu_md_quirks_c1e(void)
321 1.35 jruoho {
322 1.35 jruoho const uint64_t c1e = MSR_CMPHALT_SMI | MSR_CMPHALT_C1E;
323 1.35 jruoho uint64_t val;
324 1.35 jruoho
325 1.35 jruoho val = rdmsr(MSR_CMPHALT);
326 1.35 jruoho
327 1.35 jruoho if ((val & c1e) != 0)
328 1.35 jruoho wrmsr(MSR_CMPHALT, val & ~c1e);
329 1.35 jruoho }
330 1.35 jruoho
331 1.1 jruoho int
332 1.31 jruoho acpicpu_md_idle_start(struct acpicpu_softc *sc)
333 1.1 jruoho {
334 1.1 jruoho const size_t size = sizeof(native_idle_text);
335 1.31 jruoho struct acpicpu_cstate *cs;
336 1.31 jruoho bool ipi = false;
337 1.31 jruoho int i;
338 1.1 jruoho
339 1.1 jruoho x86_cpu_idle_get(&native_idle, native_idle_text, size);
340 1.31 jruoho
341 1.31 jruoho for (i = 0; i < ACPI_C_STATE_COUNT; i++) {
342 1.31 jruoho
343 1.31 jruoho cs = &sc->sc_cstate[i];
344 1.31 jruoho
345 1.31 jruoho if (cs->cs_method == ACPICPU_C_STATE_HALT) {
346 1.31 jruoho ipi = true;
347 1.31 jruoho break;
348 1.31 jruoho }
349 1.31 jruoho }
350 1.31 jruoho
351 1.31 jruoho x86_cpu_idle_set(acpicpu_cstate_idle, "acpi", ipi);
352 1.1 jruoho
353 1.1 jruoho return 0;
354 1.1 jruoho }
355 1.1 jruoho
356 1.1 jruoho int
357 1.1 jruoho acpicpu_md_idle_stop(void)
358 1.1 jruoho {
359 1.4 jruoho uint64_t xc;
360 1.31 jruoho bool ipi;
361 1.1 jruoho
362 1.31 jruoho ipi = (native_idle != x86_cpu_idle_halt) ? false : true;
363 1.31 jruoho x86_cpu_idle_set(native_idle, native_idle_text, ipi);
364 1.1 jruoho
365 1.4 jruoho /*
366 1.4 jruoho * Run a cross-call to ensure that all CPUs are
367 1.4 jruoho * out from the ACPI idle-loop before detachment.
368 1.4 jruoho */
369 1.4 jruoho xc = xc_broadcast(0, (xcfunc_t)nullop, NULL, NULL);
370 1.4 jruoho xc_wait(xc);
371 1.1 jruoho
372 1.1 jruoho return 0;
373 1.1 jruoho }
374 1.1 jruoho
375 1.3 jruoho /*
376 1.31 jruoho * Called with interrupts disabled.
377 1.31 jruoho * Caller should enable interrupts after return.
378 1.3 jruoho */
379 1.1 jruoho void
380 1.1 jruoho acpicpu_md_idle_enter(int method, int state)
381 1.1 jruoho {
382 1.3 jruoho struct cpu_info *ci = curcpu();
383 1.1 jruoho
384 1.1 jruoho switch (method) {
385 1.1 jruoho
386 1.1 jruoho case ACPICPU_C_STATE_FFH:
387 1.3 jruoho
388 1.3 jruoho x86_enable_intr();
389 1.3 jruoho x86_monitor(&ci->ci_want_resched, 0, 0);
390 1.3 jruoho
391 1.31 jruoho if (__predict_false(ci->ci_want_resched != 0))
392 1.3 jruoho return;
393 1.3 jruoho
394 1.1 jruoho x86_mwait((state - 1) << 4, 0);
395 1.1 jruoho break;
396 1.1 jruoho
397 1.1 jruoho case ACPICPU_C_STATE_HALT:
398 1.3 jruoho
399 1.31 jruoho if (__predict_false(ci->ci_want_resched != 0))
400 1.3 jruoho return;
401 1.3 jruoho
402 1.1 jruoho x86_stihlt();
403 1.1 jruoho break;
404 1.1 jruoho }
405 1.1 jruoho }
406 1.5 jruoho
407 1.5 jruoho int
408 1.5 jruoho acpicpu_md_pstate_start(void)
409 1.5 jruoho {
410 1.20 jruoho const uint64_t est = __BIT(16);
411 1.20 jruoho uint64_t val;
412 1.20 jruoho
413 1.20 jruoho switch (cpu_vendor) {
414 1.20 jruoho
415 1.20 jruoho case CPUVENDOR_IDT:
416 1.20 jruoho case CPUVENDOR_INTEL:
417 1.20 jruoho
418 1.20 jruoho val = rdmsr(MSR_MISC_ENABLE);
419 1.20 jruoho
420 1.20 jruoho if ((val & est) == 0) {
421 1.20 jruoho
422 1.20 jruoho val |= est;
423 1.20 jruoho
424 1.20 jruoho wrmsr(MSR_MISC_ENABLE, val);
425 1.20 jruoho val = rdmsr(MSR_MISC_ENABLE);
426 1.20 jruoho
427 1.20 jruoho if ((val & est) == 0)
428 1.20 jruoho return ENOTTY;
429 1.20 jruoho }
430 1.20 jruoho }
431 1.9 jruoho
432 1.19 jruoho return acpicpu_md_pstate_sysctl_init();
433 1.5 jruoho }
434 1.5 jruoho
435 1.5 jruoho int
436 1.5 jruoho acpicpu_md_pstate_stop(void)
437 1.5 jruoho {
438 1.5 jruoho
439 1.19 jruoho if (acpicpu_log != NULL)
440 1.19 jruoho sysctl_teardown(&acpicpu_log);
441 1.5 jruoho
442 1.5 jruoho return 0;
443 1.5 jruoho }
444 1.5 jruoho
445 1.5 jruoho int
446 1.15 jruoho acpicpu_md_pstate_pss(struct acpicpu_softc *sc)
447 1.5 jruoho {
448 1.15 jruoho struct acpicpu_pstate *ps, msr;
449 1.17 jruoho struct cpu_info *ci = curcpu();
450 1.18 jruoho uint32_t family, i = 0;
451 1.13 jruoho
452 1.15 jruoho (void)memset(&msr, 0, sizeof(struct acpicpu_pstate));
453 1.13 jruoho
454 1.5 jruoho switch (cpu_vendor) {
455 1.5 jruoho
456 1.17 jruoho case CPUVENDOR_IDT:
457 1.5 jruoho case CPUVENDOR_INTEL:
458 1.33 jruoho
459 1.33 jruoho /*
460 1.33 jruoho * If the so-called Turbo Boost is present,
461 1.33 jruoho * the P0-state is always the "turbo state".
462 1.33 jruoho *
463 1.33 jruoho * For discussion, see:
464 1.33 jruoho *
465 1.33 jruoho * Intel Corporation: Intel Turbo Boost Technology
466 1.33 jruoho * in Intel Core(tm) Microarchitectures (Nehalem)
467 1.33 jruoho * Based Processors. White Paper, November 2008.
468 1.33 jruoho */
469 1.33 jruoho if ((sc->sc_flags & ACPICPU_FLAG_P_TURBO) != 0)
470 1.33 jruoho sc->sc_pstate[0].ps_flags |= ACPICPU_FLAG_P_TURBO;
471 1.33 jruoho
472 1.15 jruoho msr.ps_control_addr = MSR_PERF_CTL;
473 1.15 jruoho msr.ps_control_mask = __BITS(0, 15);
474 1.15 jruoho
475 1.15 jruoho msr.ps_status_addr = MSR_PERF_STATUS;
476 1.15 jruoho msr.ps_status_mask = __BITS(0, 15);
477 1.13 jruoho break;
478 1.13 jruoho
479 1.13 jruoho case CPUVENDOR_AMD:
480 1.13 jruoho
481 1.33 jruoho if ((sc->sc_flags & ACPICPU_FLAG_P_FIDVID) != 0)
482 1.33 jruoho msr.ps_flags |= ACPICPU_FLAG_P_FIDVID;
483 1.33 jruoho
484 1.18 jruoho family = CPUID2FAMILY(ci->ci_signature);
485 1.18 jruoho
486 1.18 jruoho if (family == 0xf)
487 1.18 jruoho family += CPUID2EXTFAMILY(ci->ci_signature);
488 1.18 jruoho
489 1.18 jruoho switch (family) {
490 1.17 jruoho
491 1.32 jruoho case 0x0f:
492 1.32 jruoho msr.ps_control_addr = MSR_0FH_CONTROL;
493 1.32 jruoho msr.ps_status_addr = MSR_0FH_STATUS;
494 1.32 jruoho break;
495 1.32 jruoho
496 1.17 jruoho case 0x10:
497 1.17 jruoho case 0x11:
498 1.17 jruoho msr.ps_control_addr = MSR_10H_CONTROL;
499 1.17 jruoho msr.ps_control_mask = __BITS(0, 2);
500 1.17 jruoho
501 1.17 jruoho msr.ps_status_addr = MSR_10H_STATUS;
502 1.17 jruoho msr.ps_status_mask = __BITS(0, 2);
503 1.17 jruoho break;
504 1.17 jruoho
505 1.17 jruoho default:
506 1.17 jruoho
507 1.17 jruoho if ((sc->sc_flags & ACPICPU_FLAG_P_XPSS) == 0)
508 1.17 jruoho return EOPNOTSUPP;
509 1.17 jruoho }
510 1.13 jruoho
511 1.13 jruoho break;
512 1.13 jruoho
513 1.13 jruoho default:
514 1.13 jruoho return ENODEV;
515 1.13 jruoho }
516 1.5 jruoho
517 1.26 jruoho /*
518 1.26 jruoho * Fill the P-state structures with MSR addresses that are
519 1.27 jruoho * known to be correct. If we do not know the addresses,
520 1.27 jruoho * leave the values intact. If a vendor uses XPSS, we do
521 1.39 jruoho * not necessarily need to do anything to support new CPUs.
522 1.26 jruoho */
523 1.15 jruoho while (i < sc->sc_pstate_count) {
524 1.15 jruoho
525 1.15 jruoho ps = &sc->sc_pstate[i];
526 1.15 jruoho
527 1.32 jruoho if (msr.ps_flags != 0)
528 1.32 jruoho ps->ps_flags |= msr.ps_flags;
529 1.32 jruoho
530 1.27 jruoho if (msr.ps_status_addr != 0)
531 1.15 jruoho ps->ps_status_addr = msr.ps_status_addr;
532 1.15 jruoho
533 1.27 jruoho if (msr.ps_status_mask != 0)
534 1.15 jruoho ps->ps_status_mask = msr.ps_status_mask;
535 1.15 jruoho
536 1.27 jruoho if (msr.ps_control_addr != 0)
537 1.15 jruoho ps->ps_control_addr = msr.ps_control_addr;
538 1.15 jruoho
539 1.27 jruoho if (msr.ps_control_mask != 0)
540 1.15 jruoho ps->ps_control_mask = msr.ps_control_mask;
541 1.15 jruoho
542 1.15 jruoho i++;
543 1.15 jruoho }
544 1.15 jruoho
545 1.15 jruoho return 0;
546 1.15 jruoho }
547 1.15 jruoho
548 1.15 jruoho int
549 1.15 jruoho acpicpu_md_pstate_get(struct acpicpu_softc *sc, uint32_t *freq)
550 1.15 jruoho {
551 1.15 jruoho struct acpicpu_pstate *ps = NULL;
552 1.15 jruoho uint64_t val;
553 1.15 jruoho uint32_t i;
554 1.15 jruoho
555 1.32 jruoho if ((sc->sc_flags & ACPICPU_FLAG_P_FIDVID) != 0)
556 1.32 jruoho return acpicpu_md_pstate_fidvid_get(sc, freq);
557 1.32 jruoho
558 1.15 jruoho for (i = 0; i < sc->sc_pstate_count; i++) {
559 1.15 jruoho
560 1.15 jruoho ps = &sc->sc_pstate[i];
561 1.15 jruoho
562 1.32 jruoho if (__predict_true(ps->ps_freq != 0))
563 1.15 jruoho break;
564 1.15 jruoho }
565 1.15 jruoho
566 1.15 jruoho if (__predict_false(ps == NULL))
567 1.17 jruoho return ENODEV;
568 1.15 jruoho
569 1.28 jruoho if (__predict_false(ps->ps_status_addr == 0))
570 1.13 jruoho return EINVAL;
571 1.5 jruoho
572 1.13 jruoho val = rdmsr(ps->ps_status_addr);
573 1.5 jruoho
574 1.28 jruoho if (__predict_true(ps->ps_status_mask != 0))
575 1.13 jruoho val = val & ps->ps_status_mask;
576 1.5 jruoho
577 1.13 jruoho for (i = 0; i < sc->sc_pstate_count; i++) {
578 1.5 jruoho
579 1.13 jruoho ps = &sc->sc_pstate[i];
580 1.5 jruoho
581 1.32 jruoho if (__predict_false(ps->ps_freq == 0))
582 1.13 jruoho continue;
583 1.5 jruoho
584 1.29 jruoho if (val == ps->ps_status) {
585 1.13 jruoho *freq = ps->ps_freq;
586 1.13 jruoho return 0;
587 1.13 jruoho }
588 1.5 jruoho }
589 1.5 jruoho
590 1.13 jruoho return EIO;
591 1.5 jruoho }
592 1.5 jruoho
593 1.5 jruoho int
594 1.5 jruoho acpicpu_md_pstate_set(struct acpicpu_pstate *ps)
595 1.5 jruoho {
596 1.5 jruoho struct msr_rw_info msr;
597 1.14 jruoho uint64_t xc;
598 1.14 jruoho int rv = 0;
599 1.5 jruoho
600 1.37 jruoho if (__predict_false(ps->ps_control_addr == 0))
601 1.37 jruoho return EINVAL;
602 1.37 jruoho
603 1.32 jruoho if ((ps->ps_flags & ACPICPU_FLAG_P_FIDVID) != 0)
604 1.32 jruoho return acpicpu_md_pstate_fidvid_set(ps);
605 1.32 jruoho
606 1.13 jruoho msr.msr_read = false;
607 1.13 jruoho msr.msr_type = ps->ps_control_addr;
608 1.13 jruoho msr.msr_value = ps->ps_control;
609 1.13 jruoho
610 1.24 jruoho if (__predict_true(ps->ps_control_mask != 0)) {
611 1.13 jruoho msr.msr_mask = ps->ps_control_mask;
612 1.13 jruoho msr.msr_read = true;
613 1.13 jruoho }
614 1.13 jruoho
615 1.5 jruoho xc = xc_broadcast(0, (xcfunc_t)x86_msr_xcall, &msr, NULL);
616 1.5 jruoho xc_wait(xc);
617 1.5 jruoho
618 1.36 jruoho /*
619 1.36 jruoho * Due several problems, we bypass the
620 1.36 jruoho * relatively expensive status check.
621 1.36 jruoho */
622 1.36 jruoho if (acpicpu_pstate_status != true) {
623 1.33 jruoho DELAY(ps->ps_latency);
624 1.33 jruoho return 0;
625 1.33 jruoho }
626 1.13 jruoho
627 1.14 jruoho xc = xc_broadcast(0, (xcfunc_t)acpicpu_md_pstate_status, ps, &rv);
628 1.14 jruoho xc_wait(xc);
629 1.14 jruoho
630 1.14 jruoho return rv;
631 1.14 jruoho }
632 1.14 jruoho
633 1.14 jruoho static void
634 1.14 jruoho acpicpu_md_pstate_status(void *arg1, void *arg2)
635 1.14 jruoho {
636 1.14 jruoho struct acpicpu_pstate *ps = arg1;
637 1.14 jruoho uint64_t val;
638 1.14 jruoho int i;
639 1.14 jruoho
640 1.5 jruoho for (i = val = 0; i < ACPICPU_P_STATE_RETRY; i++) {
641 1.5 jruoho
642 1.13 jruoho val = rdmsr(ps->ps_status_addr);
643 1.13 jruoho
644 1.24 jruoho if (__predict_true(ps->ps_status_mask != 0))
645 1.13 jruoho val = val & ps->ps_status_mask;
646 1.5 jruoho
647 1.29 jruoho if (val == ps->ps_status)
648 1.14 jruoho return;
649 1.5 jruoho
650 1.5 jruoho DELAY(ps->ps_latency);
651 1.5 jruoho }
652 1.5 jruoho
653 1.14 jruoho *(uintptr_t *)arg2 = EAGAIN;
654 1.5 jruoho }
655 1.10 jruoho
656 1.32 jruoho static int
657 1.32 jruoho acpicpu_md_pstate_fidvid_get(struct acpicpu_softc *sc, uint32_t *freq)
658 1.32 jruoho {
659 1.32 jruoho struct acpicpu_pstate *ps;
660 1.32 jruoho uint32_t fid, i, vid;
661 1.32 jruoho uint32_t cfid, cvid;
662 1.32 jruoho int rv;
663 1.32 jruoho
664 1.32 jruoho /*
665 1.32 jruoho * AMD family 0Fh needs special treatment.
666 1.32 jruoho * While it wants to use ACPI, it does not
667 1.32 jruoho * comply with the ACPI specifications.
668 1.32 jruoho */
669 1.32 jruoho rv = acpicpu_md_pstate_fidvid_read(&cfid, &cvid);
670 1.32 jruoho
671 1.32 jruoho if (rv != 0)
672 1.32 jruoho return rv;
673 1.32 jruoho
674 1.32 jruoho for (i = 0; i < sc->sc_pstate_count; i++) {
675 1.32 jruoho
676 1.32 jruoho ps = &sc->sc_pstate[i];
677 1.32 jruoho
678 1.32 jruoho if (__predict_false(ps->ps_freq == 0))
679 1.32 jruoho continue;
680 1.32 jruoho
681 1.32 jruoho fid = __SHIFTOUT(ps->ps_status, ACPI_0FH_STATUS_FID);
682 1.32 jruoho vid = __SHIFTOUT(ps->ps_status, ACPI_0FH_STATUS_VID);
683 1.32 jruoho
684 1.32 jruoho if (cfid == fid && cvid == vid) {
685 1.32 jruoho *freq = ps->ps_freq;
686 1.32 jruoho return 0;
687 1.32 jruoho }
688 1.32 jruoho }
689 1.32 jruoho
690 1.32 jruoho return EIO;
691 1.32 jruoho }
692 1.32 jruoho
693 1.32 jruoho static int
694 1.32 jruoho acpicpu_md_pstate_fidvid_set(struct acpicpu_pstate *ps)
695 1.32 jruoho {
696 1.32 jruoho const uint64_t ctrl = ps->ps_control;
697 1.32 jruoho uint32_t cfid, cvid, fid, i, irt;
698 1.32 jruoho uint32_t pll, vco_cfid, vco_fid;
699 1.32 jruoho uint32_t val, vid, vst;
700 1.32 jruoho int rv;
701 1.32 jruoho
702 1.32 jruoho rv = acpicpu_md_pstate_fidvid_read(&cfid, &cvid);
703 1.32 jruoho
704 1.32 jruoho if (rv != 0)
705 1.32 jruoho return rv;
706 1.32 jruoho
707 1.32 jruoho fid = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_FID);
708 1.32 jruoho vid = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_VID);
709 1.32 jruoho irt = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_IRT);
710 1.32 jruoho vst = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_VST);
711 1.32 jruoho pll = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_PLL);
712 1.32 jruoho
713 1.32 jruoho vst = vst * 20;
714 1.32 jruoho pll = pll * 1000 / 5;
715 1.32 jruoho irt = 10 * __BIT(irt);
716 1.32 jruoho
717 1.32 jruoho /*
718 1.32 jruoho * Phase 1.
719 1.32 jruoho */
720 1.32 jruoho while (cvid > vid) {
721 1.32 jruoho
722 1.32 jruoho val = 1 << __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_MVS);
723 1.32 jruoho val = (val > cvid) ? 0 : cvid - val;
724 1.32 jruoho
725 1.32 jruoho acpicpu_md_pstate_fidvid_write(cfid, val, 1, vst);
726 1.32 jruoho rv = acpicpu_md_pstate_fidvid_read(NULL, &cvid);
727 1.32 jruoho
728 1.32 jruoho if (rv != 0)
729 1.32 jruoho return rv;
730 1.32 jruoho }
731 1.32 jruoho
732 1.32 jruoho i = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_RVO);
733 1.32 jruoho
734 1.32 jruoho for (; i > 0 && cvid > 0; --i) {
735 1.32 jruoho
736 1.32 jruoho acpicpu_md_pstate_fidvid_write(cfid, cvid - 1, 1, vst);
737 1.32 jruoho rv = acpicpu_md_pstate_fidvid_read(NULL, &cvid);
738 1.32 jruoho
739 1.32 jruoho if (rv != 0)
740 1.32 jruoho return rv;
741 1.32 jruoho }
742 1.32 jruoho
743 1.32 jruoho /*
744 1.32 jruoho * Phase 2.
745 1.32 jruoho */
746 1.32 jruoho if (cfid != fid) {
747 1.32 jruoho
748 1.32 jruoho vco_fid = FID_TO_VCO_FID(fid);
749 1.32 jruoho vco_cfid = FID_TO_VCO_FID(cfid);
750 1.32 jruoho
751 1.32 jruoho while (abs(vco_fid - vco_cfid) > 2) {
752 1.32 jruoho
753 1.32 jruoho if (fid <= cfid)
754 1.32 jruoho val = cfid - 2;
755 1.32 jruoho else {
756 1.32 jruoho val = (cfid > 6) ? cfid + 2 :
757 1.32 jruoho FID_TO_VCO_FID(cfid) + 2;
758 1.32 jruoho }
759 1.32 jruoho
760 1.32 jruoho acpicpu_md_pstate_fidvid_write(val, cvid, pll, irt);
761 1.32 jruoho rv = acpicpu_md_pstate_fidvid_read(&cfid, NULL);
762 1.32 jruoho
763 1.32 jruoho if (rv != 0)
764 1.32 jruoho return rv;
765 1.32 jruoho
766 1.32 jruoho vco_cfid = FID_TO_VCO_FID(cfid);
767 1.32 jruoho }
768 1.32 jruoho
769 1.32 jruoho acpicpu_md_pstate_fidvid_write(fid, cvid, pll, irt);
770 1.32 jruoho rv = acpicpu_md_pstate_fidvid_read(&cfid, NULL);
771 1.32 jruoho
772 1.32 jruoho if (rv != 0)
773 1.32 jruoho return rv;
774 1.32 jruoho }
775 1.32 jruoho
776 1.32 jruoho /*
777 1.32 jruoho * Phase 3.
778 1.32 jruoho */
779 1.32 jruoho if (cvid != vid) {
780 1.32 jruoho
781 1.32 jruoho acpicpu_md_pstate_fidvid_write(cfid, vid, 1, vst);
782 1.32 jruoho rv = acpicpu_md_pstate_fidvid_read(NULL, &cvid);
783 1.32 jruoho
784 1.32 jruoho if (rv != 0)
785 1.32 jruoho return rv;
786 1.32 jruoho }
787 1.32 jruoho
788 1.32 jruoho if (cfid != fid || cvid != vid)
789 1.32 jruoho return EIO;
790 1.32 jruoho
791 1.32 jruoho return 0;
792 1.32 jruoho }
793 1.32 jruoho
794 1.32 jruoho static int
795 1.32 jruoho acpicpu_md_pstate_fidvid_read(uint32_t *cfid, uint32_t *cvid)
796 1.32 jruoho {
797 1.32 jruoho int i = ACPICPU_P_STATE_RETRY * 100;
798 1.32 jruoho uint64_t val;
799 1.32 jruoho
800 1.32 jruoho do {
801 1.32 jruoho val = rdmsr(MSR_0FH_STATUS);
802 1.32 jruoho
803 1.32 jruoho } while (__SHIFTOUT(val, MSR_0FH_STATUS_PENDING) != 0 && --i >= 0);
804 1.32 jruoho
805 1.32 jruoho if (i == 0)
806 1.32 jruoho return EAGAIN;
807 1.32 jruoho
808 1.32 jruoho if (cfid != NULL)
809 1.32 jruoho *cfid = __SHIFTOUT(val, MSR_0FH_STATUS_CFID);
810 1.32 jruoho
811 1.32 jruoho if (cvid != NULL)
812 1.32 jruoho *cvid = __SHIFTOUT(val, MSR_0FH_STATUS_CVID);
813 1.32 jruoho
814 1.32 jruoho return 0;
815 1.32 jruoho }
816 1.32 jruoho
817 1.32 jruoho static void
818 1.32 jruoho acpicpu_md_pstate_fidvid_write(uint32_t fid,
819 1.32 jruoho uint32_t vid, uint32_t cnt, uint32_t tmo)
820 1.32 jruoho {
821 1.32 jruoho struct msr_rw_info msr;
822 1.32 jruoho uint64_t xc;
823 1.32 jruoho
824 1.32 jruoho msr.msr_read = false;
825 1.32 jruoho msr.msr_type = MSR_0FH_CONTROL;
826 1.32 jruoho msr.msr_value = 0;
827 1.32 jruoho
828 1.32 jruoho msr.msr_value |= __SHIFTIN(fid, MSR_0FH_CONTROL_FID);
829 1.32 jruoho msr.msr_value |= __SHIFTIN(vid, MSR_0FH_CONTROL_VID);
830 1.32 jruoho msr.msr_value |= __SHIFTIN(cnt, MSR_0FH_CONTROL_CNT);
831 1.32 jruoho msr.msr_value |= __SHIFTIN(0x1, MSR_0FH_CONTROL_CHG);
832 1.32 jruoho
833 1.32 jruoho xc = xc_broadcast(0, (xcfunc_t)x86_msr_xcall, &msr, NULL);
834 1.32 jruoho xc_wait(xc);
835 1.32 jruoho
836 1.32 jruoho DELAY(tmo);
837 1.32 jruoho }
838 1.32 jruoho
839 1.10 jruoho int
840 1.10 jruoho acpicpu_md_tstate_get(struct acpicpu_softc *sc, uint32_t *percent)
841 1.10 jruoho {
842 1.10 jruoho struct acpicpu_tstate *ts;
843 1.14 jruoho uint64_t val;
844 1.10 jruoho uint32_t i;
845 1.10 jruoho
846 1.14 jruoho val = rdmsr(MSR_THERM_CONTROL);
847 1.10 jruoho
848 1.10 jruoho for (i = 0; i < sc->sc_tstate_count; i++) {
849 1.10 jruoho
850 1.10 jruoho ts = &sc->sc_tstate[i];
851 1.10 jruoho
852 1.10 jruoho if (ts->ts_percent == 0)
853 1.10 jruoho continue;
854 1.10 jruoho
855 1.29 jruoho if (val == ts->ts_status) {
856 1.10 jruoho *percent = ts->ts_percent;
857 1.10 jruoho return 0;
858 1.10 jruoho }
859 1.10 jruoho }
860 1.10 jruoho
861 1.10 jruoho return EIO;
862 1.10 jruoho }
863 1.10 jruoho
864 1.10 jruoho int
865 1.10 jruoho acpicpu_md_tstate_set(struct acpicpu_tstate *ts)
866 1.10 jruoho {
867 1.10 jruoho struct msr_rw_info msr;
868 1.14 jruoho uint64_t xc;
869 1.14 jruoho int rv = 0;
870 1.10 jruoho
871 1.14 jruoho msr.msr_read = true;
872 1.14 jruoho msr.msr_type = MSR_THERM_CONTROL;
873 1.14 jruoho msr.msr_value = ts->ts_control;
874 1.14 jruoho msr.msr_mask = __BITS(1, 4);
875 1.10 jruoho
876 1.10 jruoho xc = xc_broadcast(0, (xcfunc_t)x86_msr_xcall, &msr, NULL);
877 1.10 jruoho xc_wait(xc);
878 1.10 jruoho
879 1.30 jruoho if (ts->ts_status == 0) {
880 1.30 jruoho DELAY(ts->ts_latency);
881 1.10 jruoho return 0;
882 1.30 jruoho }
883 1.10 jruoho
884 1.14 jruoho xc = xc_broadcast(0, (xcfunc_t)acpicpu_md_tstate_status, ts, &rv);
885 1.14 jruoho xc_wait(xc);
886 1.14 jruoho
887 1.14 jruoho return rv;
888 1.14 jruoho }
889 1.14 jruoho
890 1.14 jruoho static void
891 1.14 jruoho acpicpu_md_tstate_status(void *arg1, void *arg2)
892 1.14 jruoho {
893 1.14 jruoho struct acpicpu_tstate *ts = arg1;
894 1.14 jruoho uint64_t val;
895 1.14 jruoho int i;
896 1.14 jruoho
897 1.10 jruoho for (i = val = 0; i < ACPICPU_T_STATE_RETRY; i++) {
898 1.10 jruoho
899 1.14 jruoho val = rdmsr(MSR_THERM_CONTROL);
900 1.10 jruoho
901 1.29 jruoho if (val == ts->ts_status)
902 1.14 jruoho return;
903 1.10 jruoho
904 1.10 jruoho DELAY(ts->ts_latency);
905 1.10 jruoho }
906 1.10 jruoho
907 1.14 jruoho *(uintptr_t *)arg2 = EAGAIN;
908 1.10 jruoho }
909 1.19 jruoho
910 1.19 jruoho /*
911 1.19 jruoho * A kludge for backwards compatibility.
912 1.19 jruoho */
913 1.19 jruoho static int
914 1.19 jruoho acpicpu_md_pstate_sysctl_init(void)
915 1.19 jruoho {
916 1.19 jruoho const struct sysctlnode *fnode, *mnode, *rnode;
917 1.19 jruoho const char *str;
918 1.19 jruoho int rv;
919 1.19 jruoho
920 1.19 jruoho switch (cpu_vendor) {
921 1.19 jruoho
922 1.19 jruoho case CPUVENDOR_IDT:
923 1.19 jruoho case CPUVENDOR_INTEL:
924 1.19 jruoho str = "est";
925 1.19 jruoho break;
926 1.19 jruoho
927 1.19 jruoho case CPUVENDOR_AMD:
928 1.19 jruoho str = "powernow";
929 1.19 jruoho break;
930 1.19 jruoho
931 1.19 jruoho default:
932 1.19 jruoho return ENODEV;
933 1.19 jruoho }
934 1.19 jruoho
935 1.19 jruoho
936 1.19 jruoho rv = sysctl_createv(&acpicpu_log, 0, NULL, &rnode,
937 1.19 jruoho CTLFLAG_PERMANENT, CTLTYPE_NODE, "machdep", NULL,
938 1.19 jruoho NULL, 0, NULL, 0, CTL_MACHDEP, CTL_EOL);
939 1.19 jruoho
940 1.19 jruoho if (rv != 0)
941 1.19 jruoho goto fail;
942 1.19 jruoho
943 1.19 jruoho rv = sysctl_createv(&acpicpu_log, 0, &rnode, &mnode,
944 1.19 jruoho 0, CTLTYPE_NODE, str, NULL,
945 1.19 jruoho NULL, 0, NULL, 0, CTL_CREATE, CTL_EOL);
946 1.19 jruoho
947 1.19 jruoho if (rv != 0)
948 1.19 jruoho goto fail;
949 1.19 jruoho
950 1.19 jruoho rv = sysctl_createv(&acpicpu_log, 0, &mnode, &fnode,
951 1.19 jruoho 0, CTLTYPE_NODE, "frequency", NULL,
952 1.19 jruoho NULL, 0, NULL, 0, CTL_CREATE, CTL_EOL);
953 1.19 jruoho
954 1.19 jruoho if (rv != 0)
955 1.19 jruoho goto fail;
956 1.19 jruoho
957 1.19 jruoho rv = sysctl_createv(&acpicpu_log, 0, &fnode, &rnode,
958 1.19 jruoho CTLFLAG_READWRITE, CTLTYPE_INT, "target", NULL,
959 1.19 jruoho acpicpu_md_pstate_sysctl_set, 0, NULL, 0, CTL_CREATE, CTL_EOL);
960 1.19 jruoho
961 1.19 jruoho if (rv != 0)
962 1.19 jruoho goto fail;
963 1.19 jruoho
964 1.19 jruoho rv = sysctl_createv(&acpicpu_log, 0, &fnode, &rnode,
965 1.19 jruoho CTLFLAG_READONLY, CTLTYPE_INT, "current", NULL,
966 1.19 jruoho acpicpu_md_pstate_sysctl_get, 0, NULL, 0, CTL_CREATE, CTL_EOL);
967 1.19 jruoho
968 1.19 jruoho if (rv != 0)
969 1.19 jruoho goto fail;
970 1.19 jruoho
971 1.19 jruoho rv = sysctl_createv(&acpicpu_log, 0, &fnode, &rnode,
972 1.19 jruoho CTLFLAG_READONLY, CTLTYPE_STRING, "available", NULL,
973 1.19 jruoho acpicpu_md_pstate_sysctl_all, 0, NULL, 0, CTL_CREATE, CTL_EOL);
974 1.19 jruoho
975 1.19 jruoho if (rv != 0)
976 1.19 jruoho goto fail;
977 1.19 jruoho
978 1.19 jruoho return 0;
979 1.19 jruoho
980 1.19 jruoho fail:
981 1.19 jruoho if (acpicpu_log != NULL) {
982 1.19 jruoho sysctl_teardown(&acpicpu_log);
983 1.19 jruoho acpicpu_log = NULL;
984 1.19 jruoho }
985 1.19 jruoho
986 1.19 jruoho return rv;
987 1.19 jruoho }
988 1.19 jruoho
989 1.19 jruoho static int
990 1.19 jruoho acpicpu_md_pstate_sysctl_get(SYSCTLFN_ARGS)
991 1.19 jruoho {
992 1.19 jruoho struct cpu_info *ci = curcpu();
993 1.19 jruoho struct acpicpu_softc *sc;
994 1.19 jruoho struct sysctlnode node;
995 1.19 jruoho uint32_t freq;
996 1.19 jruoho int err;
997 1.19 jruoho
998 1.19 jruoho sc = acpicpu_sc[ci->ci_acpiid];
999 1.19 jruoho
1000 1.19 jruoho if (sc == NULL)
1001 1.19 jruoho return ENXIO;
1002 1.19 jruoho
1003 1.19 jruoho err = acpicpu_pstate_get(sc, &freq);
1004 1.19 jruoho
1005 1.19 jruoho if (err != 0)
1006 1.19 jruoho return err;
1007 1.19 jruoho
1008 1.19 jruoho node = *rnode;
1009 1.19 jruoho node.sysctl_data = &freq;
1010 1.19 jruoho
1011 1.19 jruoho err = sysctl_lookup(SYSCTLFN_CALL(&node));
1012 1.19 jruoho
1013 1.19 jruoho if (err != 0 || newp == NULL)
1014 1.19 jruoho return err;
1015 1.19 jruoho
1016 1.19 jruoho return 0;
1017 1.19 jruoho }
1018 1.19 jruoho
1019 1.19 jruoho static int
1020 1.19 jruoho acpicpu_md_pstate_sysctl_set(SYSCTLFN_ARGS)
1021 1.19 jruoho {
1022 1.19 jruoho struct cpu_info *ci = curcpu();
1023 1.19 jruoho struct acpicpu_softc *sc;
1024 1.19 jruoho struct sysctlnode node;
1025 1.19 jruoho uint32_t freq;
1026 1.19 jruoho int err;
1027 1.19 jruoho
1028 1.19 jruoho sc = acpicpu_sc[ci->ci_acpiid];
1029 1.19 jruoho
1030 1.19 jruoho if (sc == NULL)
1031 1.19 jruoho return ENXIO;
1032 1.19 jruoho
1033 1.19 jruoho err = acpicpu_pstate_get(sc, &freq);
1034 1.19 jruoho
1035 1.19 jruoho if (err != 0)
1036 1.19 jruoho return err;
1037 1.19 jruoho
1038 1.19 jruoho node = *rnode;
1039 1.19 jruoho node.sysctl_data = &freq;
1040 1.19 jruoho
1041 1.19 jruoho err = sysctl_lookup(SYSCTLFN_CALL(&node));
1042 1.19 jruoho
1043 1.19 jruoho if (err != 0 || newp == NULL)
1044 1.19 jruoho return err;
1045 1.19 jruoho
1046 1.19 jruoho err = acpicpu_pstate_set(sc, freq);
1047 1.19 jruoho
1048 1.19 jruoho if (err != 0)
1049 1.19 jruoho return err;
1050 1.19 jruoho
1051 1.19 jruoho return 0;
1052 1.19 jruoho }
1053 1.19 jruoho
1054 1.19 jruoho static int
1055 1.19 jruoho acpicpu_md_pstate_sysctl_all(SYSCTLFN_ARGS)
1056 1.19 jruoho {
1057 1.19 jruoho struct cpu_info *ci = curcpu();
1058 1.19 jruoho struct acpicpu_softc *sc;
1059 1.19 jruoho struct sysctlnode node;
1060 1.19 jruoho char buf[1024];
1061 1.19 jruoho size_t len;
1062 1.19 jruoho uint32_t i;
1063 1.19 jruoho int err;
1064 1.19 jruoho
1065 1.19 jruoho sc = acpicpu_sc[ci->ci_acpiid];
1066 1.19 jruoho
1067 1.19 jruoho if (sc == NULL)
1068 1.19 jruoho return ENXIO;
1069 1.19 jruoho
1070 1.19 jruoho (void)memset(&buf, 0, sizeof(buf));
1071 1.19 jruoho
1072 1.19 jruoho mutex_enter(&sc->sc_mtx);
1073 1.19 jruoho
1074 1.19 jruoho for (len = 0, i = sc->sc_pstate_max; i < sc->sc_pstate_count; i++) {
1075 1.19 jruoho
1076 1.19 jruoho if (sc->sc_pstate[i].ps_freq == 0)
1077 1.19 jruoho continue;
1078 1.19 jruoho
1079 1.19 jruoho len += snprintf(buf + len, sizeof(buf) - len, "%u%s",
1080 1.19 jruoho sc->sc_pstate[i].ps_freq,
1081 1.19 jruoho i < (sc->sc_pstate_count - 1) ? " " : "");
1082 1.19 jruoho }
1083 1.19 jruoho
1084 1.19 jruoho mutex_exit(&sc->sc_mtx);
1085 1.19 jruoho
1086 1.19 jruoho node = *rnode;
1087 1.19 jruoho node.sysctl_data = buf;
1088 1.19 jruoho
1089 1.19 jruoho err = sysctl_lookup(SYSCTLFN_CALL(&node));
1090 1.19 jruoho
1091 1.19 jruoho if (err != 0 || newp == NULL)
1092 1.19 jruoho return err;
1093 1.19 jruoho
1094 1.19 jruoho return 0;
1095 1.19 jruoho }
1096 1.19 jruoho
1097