acpi_cpu_md.c revision 1.42 1 1.42 jruoho /* $NetBSD: acpi_cpu_md.c,v 1.42 2011/02/25 10:59:32 jruoho Exp $ */
2 1.1 jruoho
3 1.1 jruoho /*-
4 1.41 jruoho * Copyright (c) 2010, 2011 Jukka Ruohonen <jruohonen (at) iki.fi>
5 1.1 jruoho * All rights reserved.
6 1.1 jruoho *
7 1.1 jruoho * Redistribution and use in source and binary forms, with or without
8 1.1 jruoho * modification, are permitted provided that the following conditions
9 1.1 jruoho * are met:
10 1.1 jruoho *
11 1.1 jruoho * 1. Redistributions of source code must retain the above copyright
12 1.1 jruoho * notice, this list of conditions and the following disclaimer.
13 1.1 jruoho * 2. Redistributions in binary form must reproduce the above copyright
14 1.1 jruoho * notice, this list of conditions and the following disclaimer in the
15 1.1 jruoho * documentation and/or other materials provided with the distribution.
16 1.1 jruoho *
17 1.1 jruoho * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18 1.1 jruoho * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 1.1 jruoho * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 1.1 jruoho * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21 1.1 jruoho * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 1.1 jruoho * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 1.1 jruoho * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 1.1 jruoho * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 1.1 jruoho * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 1.1 jruoho * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 1.1 jruoho * SUCH DAMAGE.
28 1.1 jruoho */
29 1.1 jruoho #include <sys/cdefs.h>
30 1.42 jruoho __KERNEL_RCSID(0, "$NetBSD: acpi_cpu_md.c,v 1.42 2011/02/25 10:59:32 jruoho Exp $");
31 1.1 jruoho
32 1.1 jruoho #include <sys/param.h>
33 1.1 jruoho #include <sys/bus.h>
34 1.1 jruoho #include <sys/kcore.h>
35 1.5 jruoho #include <sys/sysctl.h>
36 1.4 jruoho #include <sys/xcall.h>
37 1.1 jruoho
38 1.1 jruoho #include <x86/cpu.h>
39 1.5 jruoho #include <x86/cpufunc.h>
40 1.5 jruoho #include <x86/cputypes.h>
41 1.1 jruoho #include <x86/cpuvar.h>
42 1.5 jruoho #include <x86/cpu_msr.h>
43 1.1 jruoho #include <x86/machdep.h>
44 1.1 jruoho
45 1.1 jruoho #include <dev/acpi/acpica.h>
46 1.1 jruoho #include <dev/acpi/acpi_cpu.h>
47 1.1 jruoho
48 1.12 jruoho #include <dev/pci/pcivar.h>
49 1.12 jruoho #include <dev/pci/pcidevs.h>
50 1.12 jruoho
51 1.38 jruoho #include <machine/acpi_machdep.h>
52 1.38 jruoho
53 1.35 jruoho /*
54 1.35 jruoho * AMD C1E.
55 1.35 jruoho */
56 1.35 jruoho #define MSR_CMPHALT 0xc0010055
57 1.35 jruoho
58 1.35 jruoho #define MSR_CMPHALT_SMI __BIT(27)
59 1.35 jruoho #define MSR_CMPHALT_C1E __BIT(28)
60 1.35 jruoho #define MSR_CMPHALT_BMSTS __BIT(29)
61 1.33 jruoho
62 1.32 jruoho /*
63 1.40 jmcneill * AMD families 10h, 11h, and 14h
64 1.32 jruoho */
65 1.32 jruoho #define MSR_10H_LIMIT 0xc0010061
66 1.32 jruoho #define MSR_10H_CONTROL 0xc0010062
67 1.32 jruoho #define MSR_10H_STATUS 0xc0010063
68 1.32 jruoho #define MSR_10H_CONFIG 0xc0010064
69 1.22 jruoho
70 1.32 jruoho /*
71 1.32 jruoho * AMD family 0Fh.
72 1.32 jruoho */
73 1.32 jruoho #define MSR_0FH_CONTROL 0xc0010041
74 1.17 jruoho #define MSR_0FH_STATUS 0xc0010042
75 1.17 jruoho
76 1.32 jruoho #define MSR_0FH_STATUS_CFID __BITS( 0, 5)
77 1.32 jruoho #define MSR_0FH_STATUS_CVID __BITS(32, 36)
78 1.32 jruoho #define MSR_0FH_STATUS_PENDING __BITS(31, 31)
79 1.32 jruoho
80 1.32 jruoho #define MSR_0FH_CONTROL_FID __BITS( 0, 5)
81 1.32 jruoho #define MSR_0FH_CONTROL_VID __BITS( 8, 12)
82 1.32 jruoho #define MSR_0FH_CONTROL_CHG __BITS(16, 16)
83 1.32 jruoho #define MSR_0FH_CONTROL_CNT __BITS(32, 51)
84 1.32 jruoho
85 1.32 jruoho #define ACPI_0FH_STATUS_FID __BITS( 0, 5)
86 1.32 jruoho #define ACPI_0FH_STATUS_VID __BITS( 6, 10)
87 1.32 jruoho
88 1.32 jruoho #define ACPI_0FH_CONTROL_FID __BITS( 0, 5)
89 1.32 jruoho #define ACPI_0FH_CONTROL_VID __BITS( 6, 10)
90 1.32 jruoho #define ACPI_0FH_CONTROL_VST __BITS(11, 17)
91 1.32 jruoho #define ACPI_0FH_CONTROL_MVS __BITS(18, 19)
92 1.32 jruoho #define ACPI_0FH_CONTROL_PLL __BITS(20, 26)
93 1.32 jruoho #define ACPI_0FH_CONTROL_RVO __BITS(28, 29)
94 1.32 jruoho #define ACPI_0FH_CONTROL_IRT __BITS(30, 31)
95 1.32 jruoho
96 1.32 jruoho #define FID_TO_VCO_FID(fidd) (((fid) < 8) ? (8 + ((fid) << 1)) : (fid))
97 1.17 jruoho
98 1.5 jruoho static char native_idle_text[16];
99 1.5 jruoho void (*native_idle)(void) = NULL;
100 1.1 jruoho
101 1.12 jruoho static int acpicpu_md_quirks_piix4(struct pci_attach_args *);
102 1.41 jruoho static void acpicpu_md_pstate_percent_reset(struct acpicpu_softc *);
103 1.41 jruoho static void acpicpu_md_pstate_percent_status(void *, void *);
104 1.19 jruoho static void acpicpu_md_pstate_status(void *, void *);
105 1.32 jruoho static int acpicpu_md_pstate_fidvid_get(struct acpicpu_softc *,
106 1.32 jruoho uint32_t *);
107 1.32 jruoho static int acpicpu_md_pstate_fidvid_set(struct acpicpu_pstate *);
108 1.32 jruoho static int acpicpu_md_pstate_fidvid_read(uint32_t *, uint32_t *);
109 1.32 jruoho static void acpicpu_md_pstate_fidvid_write(uint32_t, uint32_t,
110 1.32 jruoho uint32_t, uint32_t);
111 1.19 jruoho static void acpicpu_md_tstate_status(void *, void *);
112 1.19 jruoho static int acpicpu_md_pstate_sysctl_init(void);
113 1.5 jruoho static int acpicpu_md_pstate_sysctl_get(SYSCTLFN_PROTO);
114 1.5 jruoho static int acpicpu_md_pstate_sysctl_set(SYSCTLFN_PROTO);
115 1.5 jruoho static int acpicpu_md_pstate_sysctl_all(SYSCTLFN_PROTO);
116 1.5 jruoho
117 1.5 jruoho extern struct acpicpu_softc **acpicpu_sc;
118 1.35 jruoho static bool acpicpu_pstate_status = false;
119 1.19 jruoho static struct sysctllog *acpicpu_log = NULL;
120 1.1 jruoho
121 1.1 jruoho uint32_t
122 1.1 jruoho acpicpu_md_cap(void)
123 1.1 jruoho {
124 1.1 jruoho struct cpu_info *ci = curcpu();
125 1.1 jruoho uint32_t val = 0;
126 1.1 jruoho
127 1.17 jruoho if (cpu_vendor != CPUVENDOR_IDT &&
128 1.17 jruoho cpu_vendor != CPUVENDOR_INTEL)
129 1.1 jruoho return val;
130 1.1 jruoho
131 1.1 jruoho /*
132 1.1 jruoho * Basic SMP C-states (required for _CST).
133 1.1 jruoho */
134 1.1 jruoho val |= ACPICPU_PDC_C_C1PT | ACPICPU_PDC_C_C2C3;
135 1.1 jruoho
136 1.1 jruoho /*
137 1.1 jruoho * If MONITOR/MWAIT is available, announce
138 1.1 jruoho * support for native instructions in all C-states.
139 1.1 jruoho */
140 1.1 jruoho if ((ci->ci_feat_val[1] & CPUID2_MONITOR) != 0)
141 1.1 jruoho val |= ACPICPU_PDC_C_C1_FFH | ACPICPU_PDC_C_C2C3_FFH;
142 1.1 jruoho
143 1.5 jruoho /*
144 1.10 jruoho * Set native P- and T-states, if available.
145 1.5 jruoho */
146 1.5 jruoho if ((ci->ci_feat_val[1] & CPUID2_EST) != 0)
147 1.5 jruoho val |= ACPICPU_PDC_P_FFH;
148 1.5 jruoho
149 1.10 jruoho if ((ci->ci_feat_val[0] & CPUID_ACPI) != 0)
150 1.10 jruoho val |= ACPICPU_PDC_T_FFH;
151 1.10 jruoho
152 1.1 jruoho return val;
153 1.1 jruoho }
154 1.1 jruoho
155 1.1 jruoho uint32_t
156 1.1 jruoho acpicpu_md_quirks(void)
157 1.1 jruoho {
158 1.1 jruoho struct cpu_info *ci = curcpu();
159 1.12 jruoho struct pci_attach_args pa;
160 1.18 jruoho uint32_t family, val = 0;
161 1.21 jruoho uint32_t regs[4];
162 1.1 jruoho
163 1.38 jruoho if (acpi_md_ncpus() == 1)
164 1.1 jruoho val |= ACPICPU_FLAG_C_BM;
165 1.1 jruoho
166 1.1 jruoho if ((ci->ci_feat_val[1] & CPUID2_MONITOR) != 0)
167 1.5 jruoho val |= ACPICPU_FLAG_C_FFH;
168 1.1 jruoho
169 1.39 jruoho /*
170 1.39 jruoho * By default, assume that the local APIC timer
171 1.39 jruoho * as well as TSC are stalled during C3 sleep.
172 1.39 jruoho */
173 1.25 jruoho val |= ACPICPU_FLAG_C_APIC | ACPICPU_FLAG_C_TSC;
174 1.22 jruoho
175 1.1 jruoho switch (cpu_vendor) {
176 1.1 jruoho
177 1.17 jruoho case CPUVENDOR_IDT:
178 1.22 jruoho
179 1.22 jruoho if ((ci->ci_feat_val[1] & CPUID2_EST) != 0)
180 1.22 jruoho val |= ACPICPU_FLAG_P_FFH;
181 1.22 jruoho
182 1.22 jruoho if ((ci->ci_feat_val[0] & CPUID_ACPI) != 0)
183 1.22 jruoho val |= ACPICPU_FLAG_T_FFH;
184 1.22 jruoho
185 1.22 jruoho break;
186 1.22 jruoho
187 1.1 jruoho case CPUVENDOR_INTEL:
188 1.17 jruoho
189 1.39 jruoho /*
190 1.39 jruoho * Bus master control and arbitration should be
191 1.39 jruoho * available on all supported Intel CPUs (to be
192 1.39 jruoho * sure, this is double-checked later from the
193 1.39 jruoho * firmware data). These flags imply that it is
194 1.39 jruoho * not necessary to flush caches before C3 state.
195 1.39 jruoho */
196 1.22 jruoho val |= ACPICPU_FLAG_C_BM | ACPICPU_FLAG_C_ARB;
197 1.22 jruoho
198 1.39 jruoho /*
199 1.39 jruoho * Check if we can use "native", MSR-based,
200 1.39 jruoho * access. If not, we have to resort to I/O.
201 1.39 jruoho */
202 1.5 jruoho if ((ci->ci_feat_val[1] & CPUID2_EST) != 0)
203 1.5 jruoho val |= ACPICPU_FLAG_P_FFH;
204 1.5 jruoho
205 1.10 jruoho if ((ci->ci_feat_val[0] & CPUID_ACPI) != 0)
206 1.10 jruoho val |= ACPICPU_FLAG_T_FFH;
207 1.10 jruoho
208 1.22 jruoho /*
209 1.25 jruoho * Check whether MSR_APERF, MSR_MPERF, and Turbo
210 1.25 jruoho * Boost are available. Also see if we might have
211 1.25 jruoho * an invariant local APIC timer ("ARAT").
212 1.23 jruoho */
213 1.23 jruoho if (cpuid_level >= 0x06) {
214 1.23 jruoho
215 1.23 jruoho x86_cpuid(0x06, regs);
216 1.23 jruoho
217 1.34 jruoho if ((regs[2] & CPUID_DSPM_HWF) != 0)
218 1.23 jruoho val |= ACPICPU_FLAG_P_HW;
219 1.23 jruoho
220 1.34 jruoho if ((regs[0] & CPUID_DSPM_IDA) != 0)
221 1.24 jruoho val |= ACPICPU_FLAG_P_TURBO;
222 1.25 jruoho
223 1.34 jruoho if ((regs[0] & CPUID_DSPM_ARAT) != 0)
224 1.25 jruoho val &= ~ACPICPU_FLAG_C_APIC;
225 1.23 jruoho }
226 1.23 jruoho
227 1.23 jruoho /*
228 1.22 jruoho * Detect whether TSC is invariant. If it is not,
229 1.22 jruoho * we keep the flag to note that TSC will not run
230 1.22 jruoho * at constant rate. Depending on the CPU, this may
231 1.22 jruoho * affect P- and T-state changes, but especially
232 1.22 jruoho * relevant are C-states; with variant TSC, states
233 1.24 jruoho * larger than C1 may completely stop the counter.
234 1.22 jruoho */
235 1.22 jruoho x86_cpuid(0x80000000, regs);
236 1.22 jruoho
237 1.22 jruoho if (regs[0] >= 0x80000007) {
238 1.22 jruoho
239 1.22 jruoho x86_cpuid(0x80000007, regs);
240 1.22 jruoho
241 1.32 jruoho if ((regs[3] & __BIT(8)) != 0)
242 1.22 jruoho val &= ~ACPICPU_FLAG_C_TSC;
243 1.22 jruoho }
244 1.22 jruoho
245 1.17 jruoho break;
246 1.12 jruoho
247 1.17 jruoho case CPUVENDOR_AMD:
248 1.17 jruoho
249 1.32 jruoho x86_cpuid(0x80000000, regs);
250 1.32 jruoho
251 1.32 jruoho if (regs[0] < 0x80000007)
252 1.32 jruoho break;
253 1.32 jruoho
254 1.32 jruoho x86_cpuid(0x80000007, regs);
255 1.32 jruoho
256 1.18 jruoho family = CPUID2FAMILY(ci->ci_signature);
257 1.18 jruoho
258 1.18 jruoho if (family == 0xf)
259 1.18 jruoho family += CPUID2EXTFAMILY(ci->ci_signature);
260 1.18 jruoho
261 1.32 jruoho switch (family) {
262 1.1 jruoho
263 1.22 jruoho case 0x0f:
264 1.32 jruoho
265 1.32 jruoho if ((regs[3] & CPUID_APM_FID) == 0)
266 1.32 jruoho break;
267 1.32 jruoho
268 1.32 jruoho if ((regs[3] & CPUID_APM_VID) == 0)
269 1.32 jruoho break;
270 1.32 jruoho
271 1.32 jruoho val |= ACPICPU_FLAG_P_FFH | ACPICPU_FLAG_P_FIDVID;
272 1.32 jruoho break;
273 1.32 jruoho
274 1.17 jruoho case 0x10:
275 1.17 jruoho case 0x11:
276 1.40 jmcneill val |= ACPICPU_FLAG_C_C1E;
277 1.40 jmcneill /* FALLTHROUGH */
278 1.40 jmcneill
279 1.40 jmcneill case 0x14: /* AMD Fusion */
280 1.1 jruoho
281 1.42 jruoho /*
282 1.42 jruoho * Like with Intel, detect invariant TSC,
283 1.42 jruoho * MSR-based P-states, and AMD's "turbo"
284 1.42 jruoho * (Core Performance Boost), respectively.
285 1.42 jruoho */
286 1.22 jruoho if ((regs[3] & CPUID_APM_TSC) != 0)
287 1.22 jruoho val &= ~ACPICPU_FLAG_C_TSC;
288 1.22 jruoho
289 1.21 jruoho if ((regs[3] & CPUID_APM_HWP) != 0)
290 1.17 jruoho val |= ACPICPU_FLAG_P_FFH;
291 1.21 jruoho
292 1.21 jruoho if ((regs[3] & CPUID_APM_CPB) != 0)
293 1.21 jruoho val |= ACPICPU_FLAG_P_TURBO;
294 1.35 jruoho
295 1.42 jruoho /*
296 1.42 jruoho * Also check for APERF and MPERF,
297 1.42 jruoho * first available in the family 10h.
298 1.42 jruoho */
299 1.42 jruoho if (cpuid_level >= 0x06) {
300 1.42 jruoho
301 1.42 jruoho x86_cpuid(0x00000006, regs);
302 1.42 jruoho
303 1.42 jruoho if ((regs[2] & __BIT(0)) != 0)
304 1.42 jruoho val |= ACPICPU_FLAG_P_HW;
305 1.42 jruoho }
306 1.42 jruoho
307 1.35 jruoho break;
308 1.17 jruoho }
309 1.1 jruoho
310 1.1 jruoho break;
311 1.1 jruoho }
312 1.1 jruoho
313 1.12 jruoho /*
314 1.12 jruoho * There are several erratums for PIIX4.
315 1.12 jruoho */
316 1.12 jruoho if (pci_find_device(&pa, acpicpu_md_quirks_piix4) != 0)
317 1.12 jruoho val |= ACPICPU_FLAG_PIIX4;
318 1.12 jruoho
319 1.1 jruoho return val;
320 1.1 jruoho }
321 1.1 jruoho
322 1.12 jruoho static int
323 1.12 jruoho acpicpu_md_quirks_piix4(struct pci_attach_args *pa)
324 1.12 jruoho {
325 1.12 jruoho
326 1.12 jruoho /*
327 1.12 jruoho * XXX: The pci_find_device(9) function only
328 1.12 jruoho * deals with attached devices. Change this
329 1.12 jruoho * to use something like pci_device_foreach().
330 1.12 jruoho */
331 1.12 jruoho if (PCI_VENDOR(pa->pa_id) != PCI_VENDOR_INTEL)
332 1.12 jruoho return 0;
333 1.12 jruoho
334 1.12 jruoho if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_82371AB_ISA ||
335 1.12 jruoho PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_82440MX_PMC)
336 1.12 jruoho return 1;
337 1.12 jruoho
338 1.12 jruoho return 0;
339 1.12 jruoho }
340 1.12 jruoho
341 1.35 jruoho void
342 1.35 jruoho acpicpu_md_quirks_c1e(void)
343 1.35 jruoho {
344 1.35 jruoho const uint64_t c1e = MSR_CMPHALT_SMI | MSR_CMPHALT_C1E;
345 1.35 jruoho uint64_t val;
346 1.35 jruoho
347 1.35 jruoho val = rdmsr(MSR_CMPHALT);
348 1.35 jruoho
349 1.35 jruoho if ((val & c1e) != 0)
350 1.35 jruoho wrmsr(MSR_CMPHALT, val & ~c1e);
351 1.35 jruoho }
352 1.35 jruoho
353 1.1 jruoho int
354 1.31 jruoho acpicpu_md_idle_start(struct acpicpu_softc *sc)
355 1.1 jruoho {
356 1.1 jruoho const size_t size = sizeof(native_idle_text);
357 1.31 jruoho struct acpicpu_cstate *cs;
358 1.31 jruoho bool ipi = false;
359 1.31 jruoho int i;
360 1.1 jruoho
361 1.1 jruoho x86_cpu_idle_get(&native_idle, native_idle_text, size);
362 1.31 jruoho
363 1.31 jruoho for (i = 0; i < ACPI_C_STATE_COUNT; i++) {
364 1.31 jruoho
365 1.31 jruoho cs = &sc->sc_cstate[i];
366 1.31 jruoho
367 1.31 jruoho if (cs->cs_method == ACPICPU_C_STATE_HALT) {
368 1.31 jruoho ipi = true;
369 1.31 jruoho break;
370 1.31 jruoho }
371 1.31 jruoho }
372 1.31 jruoho
373 1.31 jruoho x86_cpu_idle_set(acpicpu_cstate_idle, "acpi", ipi);
374 1.1 jruoho
375 1.1 jruoho return 0;
376 1.1 jruoho }
377 1.1 jruoho
378 1.1 jruoho int
379 1.1 jruoho acpicpu_md_idle_stop(void)
380 1.1 jruoho {
381 1.4 jruoho uint64_t xc;
382 1.31 jruoho bool ipi;
383 1.1 jruoho
384 1.31 jruoho ipi = (native_idle != x86_cpu_idle_halt) ? false : true;
385 1.31 jruoho x86_cpu_idle_set(native_idle, native_idle_text, ipi);
386 1.1 jruoho
387 1.4 jruoho /*
388 1.4 jruoho * Run a cross-call to ensure that all CPUs are
389 1.4 jruoho * out from the ACPI idle-loop before detachment.
390 1.4 jruoho */
391 1.4 jruoho xc = xc_broadcast(0, (xcfunc_t)nullop, NULL, NULL);
392 1.4 jruoho xc_wait(xc);
393 1.1 jruoho
394 1.1 jruoho return 0;
395 1.1 jruoho }
396 1.1 jruoho
397 1.3 jruoho /*
398 1.31 jruoho * Called with interrupts disabled.
399 1.31 jruoho * Caller should enable interrupts after return.
400 1.3 jruoho */
401 1.1 jruoho void
402 1.1 jruoho acpicpu_md_idle_enter(int method, int state)
403 1.1 jruoho {
404 1.3 jruoho struct cpu_info *ci = curcpu();
405 1.1 jruoho
406 1.1 jruoho switch (method) {
407 1.1 jruoho
408 1.1 jruoho case ACPICPU_C_STATE_FFH:
409 1.3 jruoho
410 1.3 jruoho x86_enable_intr();
411 1.3 jruoho x86_monitor(&ci->ci_want_resched, 0, 0);
412 1.3 jruoho
413 1.31 jruoho if (__predict_false(ci->ci_want_resched != 0))
414 1.3 jruoho return;
415 1.3 jruoho
416 1.1 jruoho x86_mwait((state - 1) << 4, 0);
417 1.1 jruoho break;
418 1.1 jruoho
419 1.1 jruoho case ACPICPU_C_STATE_HALT:
420 1.3 jruoho
421 1.31 jruoho if (__predict_false(ci->ci_want_resched != 0))
422 1.3 jruoho return;
423 1.3 jruoho
424 1.1 jruoho x86_stihlt();
425 1.1 jruoho break;
426 1.1 jruoho }
427 1.1 jruoho }
428 1.5 jruoho
429 1.5 jruoho int
430 1.41 jruoho acpicpu_md_pstate_start(struct acpicpu_softc *sc)
431 1.5 jruoho {
432 1.20 jruoho const uint64_t est = __BIT(16);
433 1.20 jruoho uint64_t val;
434 1.20 jruoho
435 1.41 jruoho if ((sc->sc_flags & ACPICPU_FLAG_P) == 0)
436 1.41 jruoho return ENODEV;
437 1.41 jruoho
438 1.20 jruoho switch (cpu_vendor) {
439 1.20 jruoho
440 1.20 jruoho case CPUVENDOR_IDT:
441 1.20 jruoho case CPUVENDOR_INTEL:
442 1.20 jruoho
443 1.41 jruoho /*
444 1.41 jruoho * Make sure EST is enabled.
445 1.41 jruoho */
446 1.20 jruoho val = rdmsr(MSR_MISC_ENABLE);
447 1.20 jruoho
448 1.20 jruoho if ((val & est) == 0) {
449 1.20 jruoho
450 1.20 jruoho val |= est;
451 1.20 jruoho
452 1.20 jruoho wrmsr(MSR_MISC_ENABLE, val);
453 1.20 jruoho val = rdmsr(MSR_MISC_ENABLE);
454 1.20 jruoho
455 1.20 jruoho if ((val & est) == 0)
456 1.20 jruoho return ENOTTY;
457 1.20 jruoho }
458 1.42 jruoho }
459 1.41 jruoho
460 1.42 jruoho /*
461 1.42 jruoho * Reset the APERF and MPERF counters.
462 1.42 jruoho */
463 1.42 jruoho if ((sc->sc_flags & ACPICPU_FLAG_P_HW) != 0)
464 1.42 jruoho acpicpu_md_pstate_percent_reset(sc);
465 1.9 jruoho
466 1.19 jruoho return acpicpu_md_pstate_sysctl_init();
467 1.5 jruoho }
468 1.5 jruoho
469 1.5 jruoho int
470 1.5 jruoho acpicpu_md_pstate_stop(void)
471 1.5 jruoho {
472 1.5 jruoho
473 1.19 jruoho if (acpicpu_log != NULL)
474 1.19 jruoho sysctl_teardown(&acpicpu_log);
475 1.5 jruoho
476 1.5 jruoho return 0;
477 1.5 jruoho }
478 1.5 jruoho
479 1.5 jruoho int
480 1.15 jruoho acpicpu_md_pstate_pss(struct acpicpu_softc *sc)
481 1.5 jruoho {
482 1.15 jruoho struct acpicpu_pstate *ps, msr;
483 1.17 jruoho struct cpu_info *ci = curcpu();
484 1.18 jruoho uint32_t family, i = 0;
485 1.13 jruoho
486 1.15 jruoho (void)memset(&msr, 0, sizeof(struct acpicpu_pstate));
487 1.13 jruoho
488 1.5 jruoho switch (cpu_vendor) {
489 1.5 jruoho
490 1.17 jruoho case CPUVENDOR_IDT:
491 1.5 jruoho case CPUVENDOR_INTEL:
492 1.33 jruoho
493 1.33 jruoho /*
494 1.33 jruoho * If the so-called Turbo Boost is present,
495 1.33 jruoho * the P0-state is always the "turbo state".
496 1.33 jruoho *
497 1.33 jruoho * For discussion, see:
498 1.33 jruoho *
499 1.33 jruoho * Intel Corporation: Intel Turbo Boost Technology
500 1.33 jruoho * in Intel Core(tm) Microarchitectures (Nehalem)
501 1.33 jruoho * Based Processors. White Paper, November 2008.
502 1.33 jruoho */
503 1.33 jruoho if ((sc->sc_flags & ACPICPU_FLAG_P_TURBO) != 0)
504 1.33 jruoho sc->sc_pstate[0].ps_flags |= ACPICPU_FLAG_P_TURBO;
505 1.33 jruoho
506 1.15 jruoho msr.ps_control_addr = MSR_PERF_CTL;
507 1.15 jruoho msr.ps_control_mask = __BITS(0, 15);
508 1.15 jruoho
509 1.15 jruoho msr.ps_status_addr = MSR_PERF_STATUS;
510 1.15 jruoho msr.ps_status_mask = __BITS(0, 15);
511 1.13 jruoho break;
512 1.13 jruoho
513 1.13 jruoho case CPUVENDOR_AMD:
514 1.13 jruoho
515 1.33 jruoho if ((sc->sc_flags & ACPICPU_FLAG_P_FIDVID) != 0)
516 1.33 jruoho msr.ps_flags |= ACPICPU_FLAG_P_FIDVID;
517 1.33 jruoho
518 1.18 jruoho family = CPUID2FAMILY(ci->ci_signature);
519 1.18 jruoho
520 1.18 jruoho if (family == 0xf)
521 1.18 jruoho family += CPUID2EXTFAMILY(ci->ci_signature);
522 1.18 jruoho
523 1.18 jruoho switch (family) {
524 1.17 jruoho
525 1.32 jruoho case 0x0f:
526 1.32 jruoho msr.ps_control_addr = MSR_0FH_CONTROL;
527 1.32 jruoho msr.ps_status_addr = MSR_0FH_STATUS;
528 1.32 jruoho break;
529 1.32 jruoho
530 1.17 jruoho case 0x10:
531 1.17 jruoho case 0x11:
532 1.40 jmcneill case 0x14: /* AMD Fusion */
533 1.17 jruoho msr.ps_control_addr = MSR_10H_CONTROL;
534 1.17 jruoho msr.ps_control_mask = __BITS(0, 2);
535 1.17 jruoho
536 1.17 jruoho msr.ps_status_addr = MSR_10H_STATUS;
537 1.17 jruoho msr.ps_status_mask = __BITS(0, 2);
538 1.17 jruoho break;
539 1.17 jruoho
540 1.17 jruoho default:
541 1.17 jruoho
542 1.17 jruoho if ((sc->sc_flags & ACPICPU_FLAG_P_XPSS) == 0)
543 1.17 jruoho return EOPNOTSUPP;
544 1.17 jruoho }
545 1.13 jruoho
546 1.13 jruoho break;
547 1.13 jruoho
548 1.13 jruoho default:
549 1.13 jruoho return ENODEV;
550 1.13 jruoho }
551 1.5 jruoho
552 1.26 jruoho /*
553 1.26 jruoho * Fill the P-state structures with MSR addresses that are
554 1.27 jruoho * known to be correct. If we do not know the addresses,
555 1.27 jruoho * leave the values intact. If a vendor uses XPSS, we do
556 1.39 jruoho * not necessarily need to do anything to support new CPUs.
557 1.26 jruoho */
558 1.15 jruoho while (i < sc->sc_pstate_count) {
559 1.15 jruoho
560 1.15 jruoho ps = &sc->sc_pstate[i];
561 1.15 jruoho
562 1.32 jruoho if (msr.ps_flags != 0)
563 1.32 jruoho ps->ps_flags |= msr.ps_flags;
564 1.32 jruoho
565 1.27 jruoho if (msr.ps_status_addr != 0)
566 1.15 jruoho ps->ps_status_addr = msr.ps_status_addr;
567 1.15 jruoho
568 1.27 jruoho if (msr.ps_status_mask != 0)
569 1.15 jruoho ps->ps_status_mask = msr.ps_status_mask;
570 1.15 jruoho
571 1.27 jruoho if (msr.ps_control_addr != 0)
572 1.15 jruoho ps->ps_control_addr = msr.ps_control_addr;
573 1.15 jruoho
574 1.27 jruoho if (msr.ps_control_mask != 0)
575 1.15 jruoho ps->ps_control_mask = msr.ps_control_mask;
576 1.15 jruoho
577 1.15 jruoho i++;
578 1.15 jruoho }
579 1.15 jruoho
580 1.15 jruoho return 0;
581 1.15 jruoho }
582 1.15 jruoho
583 1.41 jruoho /*
584 1.41 jruoho * Returns the percentage of the actual frequency in
585 1.41 jruoho * terms of the maximum frequency of the calling CPU
586 1.41 jruoho * since the last call. A value zero implies an error.
587 1.41 jruoho */
588 1.41 jruoho uint8_t
589 1.41 jruoho acpicpu_md_pstate_percent(struct acpicpu_softc *sc)
590 1.41 jruoho {
591 1.41 jruoho struct cpu_info *ci = sc->sc_ci;
592 1.41 jruoho uint64_t aperf, mperf;
593 1.41 jruoho uint64_t xc, rv = 0;
594 1.41 jruoho
595 1.41 jruoho if (__predict_false((sc->sc_flags & ACPICPU_FLAG_P) == 0))
596 1.41 jruoho return 0;
597 1.41 jruoho
598 1.41 jruoho if (__predict_false((sc->sc_flags & ACPICPU_FLAG_P_HW) == 0))
599 1.41 jruoho return 0;
600 1.41 jruoho
601 1.41 jruoho /*
602 1.41 jruoho * Read the IA32_APERF and IA32_MPERF counters. The first
603 1.41 jruoho * increments at the rate of the fixed maximum frequency
604 1.41 jruoho * configured during the boot, whereas APERF counts at the
605 1.41 jruoho * rate of the actual frequency. Note that the MSRs must be
606 1.41 jruoho * read without delay, and that only the ratio between
607 1.41 jruoho * IA32_APERF and IA32_MPERF is architecturally defined.
608 1.41 jruoho *
609 1.41 jruoho * For further details, refer to:
610 1.41 jruoho *
611 1.41 jruoho * Intel Corporation: Intel 64 and IA-32 Architectures
612 1.41 jruoho * Software Developer's Manual. Section 13.2, Volume 3A:
613 1.41 jruoho * System Programming Guide, Part 1. July, 2008.
614 1.42 jruoho *
615 1.42 jruoho * Advanced Micro Devices: BIOS and Kernel Developer's
616 1.42 jruoho * Guide (BKDG) for AMD Family 10h Processors. Section
617 1.42 jruoho * 2.4.5, Revision 3.48, April 2010.
618 1.41 jruoho */
619 1.41 jruoho x86_disable_intr();
620 1.41 jruoho
621 1.41 jruoho aperf = sc->sc_pstate_aperf;
622 1.41 jruoho mperf = sc->sc_pstate_mperf;
623 1.41 jruoho
624 1.41 jruoho xc = xc_unicast(0, acpicpu_md_pstate_percent_status, sc, NULL, ci);
625 1.41 jruoho xc_wait(xc);
626 1.41 jruoho
627 1.41 jruoho x86_enable_intr();
628 1.41 jruoho
629 1.41 jruoho aperf = sc->sc_pstate_aperf - aperf;
630 1.41 jruoho mperf = sc->sc_pstate_mperf - mperf;
631 1.41 jruoho
632 1.41 jruoho if (__predict_true(mperf != 0))
633 1.41 jruoho rv = (aperf * 100) / mperf;
634 1.41 jruoho
635 1.41 jruoho return rv;
636 1.41 jruoho }
637 1.41 jruoho
638 1.41 jruoho static void
639 1.41 jruoho acpicpu_md_pstate_percent_status(void *arg1, void *arg2)
640 1.41 jruoho {
641 1.41 jruoho struct acpicpu_softc *sc = arg1;
642 1.41 jruoho
643 1.41 jruoho sc->sc_pstate_aperf = rdmsr(MSR_APERF);
644 1.41 jruoho sc->sc_pstate_mperf = rdmsr(MSR_MPERF);
645 1.41 jruoho }
646 1.41 jruoho
647 1.41 jruoho static void
648 1.41 jruoho acpicpu_md_pstate_percent_reset(struct acpicpu_softc *sc)
649 1.41 jruoho {
650 1.41 jruoho
651 1.41 jruoho KASSERT((sc->sc_flags & ACPICPU_FLAG_P) != 0);
652 1.41 jruoho KASSERT((sc->sc_flags & ACPICPU_FLAG_P_HW) != 0);
653 1.41 jruoho
654 1.41 jruoho wrmsr(MSR_APERF, 0);
655 1.41 jruoho wrmsr(MSR_MPERF, 0);
656 1.41 jruoho
657 1.41 jruoho sc->sc_pstate_aperf = 0;
658 1.41 jruoho sc->sc_pstate_mperf = 0;
659 1.41 jruoho }
660 1.41 jruoho
661 1.15 jruoho int
662 1.15 jruoho acpicpu_md_pstate_get(struct acpicpu_softc *sc, uint32_t *freq)
663 1.15 jruoho {
664 1.15 jruoho struct acpicpu_pstate *ps = NULL;
665 1.15 jruoho uint64_t val;
666 1.15 jruoho uint32_t i;
667 1.15 jruoho
668 1.32 jruoho if ((sc->sc_flags & ACPICPU_FLAG_P_FIDVID) != 0)
669 1.32 jruoho return acpicpu_md_pstate_fidvid_get(sc, freq);
670 1.32 jruoho
671 1.15 jruoho for (i = 0; i < sc->sc_pstate_count; i++) {
672 1.15 jruoho
673 1.15 jruoho ps = &sc->sc_pstate[i];
674 1.15 jruoho
675 1.32 jruoho if (__predict_true(ps->ps_freq != 0))
676 1.15 jruoho break;
677 1.15 jruoho }
678 1.15 jruoho
679 1.15 jruoho if (__predict_false(ps == NULL))
680 1.17 jruoho return ENODEV;
681 1.15 jruoho
682 1.28 jruoho if (__predict_false(ps->ps_status_addr == 0))
683 1.13 jruoho return EINVAL;
684 1.5 jruoho
685 1.13 jruoho val = rdmsr(ps->ps_status_addr);
686 1.5 jruoho
687 1.28 jruoho if (__predict_true(ps->ps_status_mask != 0))
688 1.13 jruoho val = val & ps->ps_status_mask;
689 1.5 jruoho
690 1.13 jruoho for (i = 0; i < sc->sc_pstate_count; i++) {
691 1.5 jruoho
692 1.13 jruoho ps = &sc->sc_pstate[i];
693 1.5 jruoho
694 1.32 jruoho if (__predict_false(ps->ps_freq == 0))
695 1.13 jruoho continue;
696 1.5 jruoho
697 1.29 jruoho if (val == ps->ps_status) {
698 1.13 jruoho *freq = ps->ps_freq;
699 1.13 jruoho return 0;
700 1.13 jruoho }
701 1.5 jruoho }
702 1.5 jruoho
703 1.13 jruoho return EIO;
704 1.5 jruoho }
705 1.5 jruoho
706 1.5 jruoho int
707 1.5 jruoho acpicpu_md_pstate_set(struct acpicpu_pstate *ps)
708 1.5 jruoho {
709 1.5 jruoho struct msr_rw_info msr;
710 1.14 jruoho uint64_t xc;
711 1.14 jruoho int rv = 0;
712 1.5 jruoho
713 1.37 jruoho if (__predict_false(ps->ps_control_addr == 0))
714 1.37 jruoho return EINVAL;
715 1.37 jruoho
716 1.32 jruoho if ((ps->ps_flags & ACPICPU_FLAG_P_FIDVID) != 0)
717 1.32 jruoho return acpicpu_md_pstate_fidvid_set(ps);
718 1.32 jruoho
719 1.13 jruoho msr.msr_read = false;
720 1.13 jruoho msr.msr_type = ps->ps_control_addr;
721 1.13 jruoho msr.msr_value = ps->ps_control;
722 1.13 jruoho
723 1.24 jruoho if (__predict_true(ps->ps_control_mask != 0)) {
724 1.13 jruoho msr.msr_mask = ps->ps_control_mask;
725 1.13 jruoho msr.msr_read = true;
726 1.13 jruoho }
727 1.13 jruoho
728 1.5 jruoho xc = xc_broadcast(0, (xcfunc_t)x86_msr_xcall, &msr, NULL);
729 1.5 jruoho xc_wait(xc);
730 1.5 jruoho
731 1.36 jruoho /*
732 1.36 jruoho * Due several problems, we bypass the
733 1.36 jruoho * relatively expensive status check.
734 1.36 jruoho */
735 1.36 jruoho if (acpicpu_pstate_status != true) {
736 1.33 jruoho DELAY(ps->ps_latency);
737 1.33 jruoho return 0;
738 1.33 jruoho }
739 1.13 jruoho
740 1.14 jruoho xc = xc_broadcast(0, (xcfunc_t)acpicpu_md_pstate_status, ps, &rv);
741 1.14 jruoho xc_wait(xc);
742 1.14 jruoho
743 1.14 jruoho return rv;
744 1.14 jruoho }
745 1.14 jruoho
746 1.14 jruoho static void
747 1.14 jruoho acpicpu_md_pstate_status(void *arg1, void *arg2)
748 1.14 jruoho {
749 1.14 jruoho struct acpicpu_pstate *ps = arg1;
750 1.14 jruoho uint64_t val;
751 1.14 jruoho int i;
752 1.14 jruoho
753 1.5 jruoho for (i = val = 0; i < ACPICPU_P_STATE_RETRY; i++) {
754 1.5 jruoho
755 1.13 jruoho val = rdmsr(ps->ps_status_addr);
756 1.13 jruoho
757 1.24 jruoho if (__predict_true(ps->ps_status_mask != 0))
758 1.13 jruoho val = val & ps->ps_status_mask;
759 1.5 jruoho
760 1.29 jruoho if (val == ps->ps_status)
761 1.14 jruoho return;
762 1.5 jruoho
763 1.5 jruoho DELAY(ps->ps_latency);
764 1.5 jruoho }
765 1.5 jruoho
766 1.14 jruoho *(uintptr_t *)arg2 = EAGAIN;
767 1.5 jruoho }
768 1.10 jruoho
769 1.32 jruoho static int
770 1.32 jruoho acpicpu_md_pstate_fidvid_get(struct acpicpu_softc *sc, uint32_t *freq)
771 1.32 jruoho {
772 1.32 jruoho struct acpicpu_pstate *ps;
773 1.32 jruoho uint32_t fid, i, vid;
774 1.32 jruoho uint32_t cfid, cvid;
775 1.32 jruoho int rv;
776 1.32 jruoho
777 1.32 jruoho /*
778 1.32 jruoho * AMD family 0Fh needs special treatment.
779 1.32 jruoho * While it wants to use ACPI, it does not
780 1.32 jruoho * comply with the ACPI specifications.
781 1.32 jruoho */
782 1.32 jruoho rv = acpicpu_md_pstate_fidvid_read(&cfid, &cvid);
783 1.32 jruoho
784 1.32 jruoho if (rv != 0)
785 1.32 jruoho return rv;
786 1.32 jruoho
787 1.32 jruoho for (i = 0; i < sc->sc_pstate_count; i++) {
788 1.32 jruoho
789 1.32 jruoho ps = &sc->sc_pstate[i];
790 1.32 jruoho
791 1.32 jruoho if (__predict_false(ps->ps_freq == 0))
792 1.32 jruoho continue;
793 1.32 jruoho
794 1.32 jruoho fid = __SHIFTOUT(ps->ps_status, ACPI_0FH_STATUS_FID);
795 1.32 jruoho vid = __SHIFTOUT(ps->ps_status, ACPI_0FH_STATUS_VID);
796 1.32 jruoho
797 1.32 jruoho if (cfid == fid && cvid == vid) {
798 1.32 jruoho *freq = ps->ps_freq;
799 1.32 jruoho return 0;
800 1.32 jruoho }
801 1.32 jruoho }
802 1.32 jruoho
803 1.32 jruoho return EIO;
804 1.32 jruoho }
805 1.32 jruoho
806 1.32 jruoho static int
807 1.32 jruoho acpicpu_md_pstate_fidvid_set(struct acpicpu_pstate *ps)
808 1.32 jruoho {
809 1.32 jruoho const uint64_t ctrl = ps->ps_control;
810 1.32 jruoho uint32_t cfid, cvid, fid, i, irt;
811 1.32 jruoho uint32_t pll, vco_cfid, vco_fid;
812 1.32 jruoho uint32_t val, vid, vst;
813 1.32 jruoho int rv;
814 1.32 jruoho
815 1.32 jruoho rv = acpicpu_md_pstate_fidvid_read(&cfid, &cvid);
816 1.32 jruoho
817 1.32 jruoho if (rv != 0)
818 1.32 jruoho return rv;
819 1.32 jruoho
820 1.32 jruoho fid = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_FID);
821 1.32 jruoho vid = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_VID);
822 1.32 jruoho irt = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_IRT);
823 1.32 jruoho vst = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_VST);
824 1.32 jruoho pll = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_PLL);
825 1.32 jruoho
826 1.32 jruoho vst = vst * 20;
827 1.32 jruoho pll = pll * 1000 / 5;
828 1.32 jruoho irt = 10 * __BIT(irt);
829 1.32 jruoho
830 1.32 jruoho /*
831 1.32 jruoho * Phase 1.
832 1.32 jruoho */
833 1.32 jruoho while (cvid > vid) {
834 1.32 jruoho
835 1.32 jruoho val = 1 << __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_MVS);
836 1.32 jruoho val = (val > cvid) ? 0 : cvid - val;
837 1.32 jruoho
838 1.32 jruoho acpicpu_md_pstate_fidvid_write(cfid, val, 1, vst);
839 1.32 jruoho rv = acpicpu_md_pstate_fidvid_read(NULL, &cvid);
840 1.32 jruoho
841 1.32 jruoho if (rv != 0)
842 1.32 jruoho return rv;
843 1.32 jruoho }
844 1.32 jruoho
845 1.32 jruoho i = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_RVO);
846 1.32 jruoho
847 1.32 jruoho for (; i > 0 && cvid > 0; --i) {
848 1.32 jruoho
849 1.32 jruoho acpicpu_md_pstate_fidvid_write(cfid, cvid - 1, 1, vst);
850 1.32 jruoho rv = acpicpu_md_pstate_fidvid_read(NULL, &cvid);
851 1.32 jruoho
852 1.32 jruoho if (rv != 0)
853 1.32 jruoho return rv;
854 1.32 jruoho }
855 1.32 jruoho
856 1.32 jruoho /*
857 1.32 jruoho * Phase 2.
858 1.32 jruoho */
859 1.32 jruoho if (cfid != fid) {
860 1.32 jruoho
861 1.32 jruoho vco_fid = FID_TO_VCO_FID(fid);
862 1.32 jruoho vco_cfid = FID_TO_VCO_FID(cfid);
863 1.32 jruoho
864 1.32 jruoho while (abs(vco_fid - vco_cfid) > 2) {
865 1.32 jruoho
866 1.32 jruoho if (fid <= cfid)
867 1.32 jruoho val = cfid - 2;
868 1.32 jruoho else {
869 1.32 jruoho val = (cfid > 6) ? cfid + 2 :
870 1.32 jruoho FID_TO_VCO_FID(cfid) + 2;
871 1.32 jruoho }
872 1.32 jruoho
873 1.32 jruoho acpicpu_md_pstate_fidvid_write(val, cvid, pll, irt);
874 1.32 jruoho rv = acpicpu_md_pstate_fidvid_read(&cfid, NULL);
875 1.32 jruoho
876 1.32 jruoho if (rv != 0)
877 1.32 jruoho return rv;
878 1.32 jruoho
879 1.32 jruoho vco_cfid = FID_TO_VCO_FID(cfid);
880 1.32 jruoho }
881 1.32 jruoho
882 1.32 jruoho acpicpu_md_pstate_fidvid_write(fid, cvid, pll, irt);
883 1.32 jruoho rv = acpicpu_md_pstate_fidvid_read(&cfid, NULL);
884 1.32 jruoho
885 1.32 jruoho if (rv != 0)
886 1.32 jruoho return rv;
887 1.32 jruoho }
888 1.32 jruoho
889 1.32 jruoho /*
890 1.32 jruoho * Phase 3.
891 1.32 jruoho */
892 1.32 jruoho if (cvid != vid) {
893 1.32 jruoho
894 1.32 jruoho acpicpu_md_pstate_fidvid_write(cfid, vid, 1, vst);
895 1.32 jruoho rv = acpicpu_md_pstate_fidvid_read(NULL, &cvid);
896 1.32 jruoho
897 1.32 jruoho if (rv != 0)
898 1.32 jruoho return rv;
899 1.32 jruoho }
900 1.32 jruoho
901 1.32 jruoho if (cfid != fid || cvid != vid)
902 1.32 jruoho return EIO;
903 1.32 jruoho
904 1.32 jruoho return 0;
905 1.32 jruoho }
906 1.32 jruoho
907 1.32 jruoho static int
908 1.32 jruoho acpicpu_md_pstate_fidvid_read(uint32_t *cfid, uint32_t *cvid)
909 1.32 jruoho {
910 1.32 jruoho int i = ACPICPU_P_STATE_RETRY * 100;
911 1.32 jruoho uint64_t val;
912 1.32 jruoho
913 1.32 jruoho do {
914 1.32 jruoho val = rdmsr(MSR_0FH_STATUS);
915 1.32 jruoho
916 1.32 jruoho } while (__SHIFTOUT(val, MSR_0FH_STATUS_PENDING) != 0 && --i >= 0);
917 1.32 jruoho
918 1.32 jruoho if (i == 0)
919 1.32 jruoho return EAGAIN;
920 1.32 jruoho
921 1.32 jruoho if (cfid != NULL)
922 1.32 jruoho *cfid = __SHIFTOUT(val, MSR_0FH_STATUS_CFID);
923 1.32 jruoho
924 1.32 jruoho if (cvid != NULL)
925 1.32 jruoho *cvid = __SHIFTOUT(val, MSR_0FH_STATUS_CVID);
926 1.32 jruoho
927 1.32 jruoho return 0;
928 1.32 jruoho }
929 1.32 jruoho
930 1.32 jruoho static void
931 1.32 jruoho acpicpu_md_pstate_fidvid_write(uint32_t fid,
932 1.32 jruoho uint32_t vid, uint32_t cnt, uint32_t tmo)
933 1.32 jruoho {
934 1.32 jruoho struct msr_rw_info msr;
935 1.32 jruoho uint64_t xc;
936 1.32 jruoho
937 1.32 jruoho msr.msr_read = false;
938 1.32 jruoho msr.msr_type = MSR_0FH_CONTROL;
939 1.32 jruoho msr.msr_value = 0;
940 1.32 jruoho
941 1.32 jruoho msr.msr_value |= __SHIFTIN(fid, MSR_0FH_CONTROL_FID);
942 1.32 jruoho msr.msr_value |= __SHIFTIN(vid, MSR_0FH_CONTROL_VID);
943 1.32 jruoho msr.msr_value |= __SHIFTIN(cnt, MSR_0FH_CONTROL_CNT);
944 1.32 jruoho msr.msr_value |= __SHIFTIN(0x1, MSR_0FH_CONTROL_CHG);
945 1.32 jruoho
946 1.32 jruoho xc = xc_broadcast(0, (xcfunc_t)x86_msr_xcall, &msr, NULL);
947 1.32 jruoho xc_wait(xc);
948 1.32 jruoho
949 1.32 jruoho DELAY(tmo);
950 1.32 jruoho }
951 1.32 jruoho
952 1.10 jruoho int
953 1.10 jruoho acpicpu_md_tstate_get(struct acpicpu_softc *sc, uint32_t *percent)
954 1.10 jruoho {
955 1.10 jruoho struct acpicpu_tstate *ts;
956 1.14 jruoho uint64_t val;
957 1.10 jruoho uint32_t i;
958 1.10 jruoho
959 1.14 jruoho val = rdmsr(MSR_THERM_CONTROL);
960 1.10 jruoho
961 1.10 jruoho for (i = 0; i < sc->sc_tstate_count; i++) {
962 1.10 jruoho
963 1.10 jruoho ts = &sc->sc_tstate[i];
964 1.10 jruoho
965 1.10 jruoho if (ts->ts_percent == 0)
966 1.10 jruoho continue;
967 1.10 jruoho
968 1.29 jruoho if (val == ts->ts_status) {
969 1.10 jruoho *percent = ts->ts_percent;
970 1.10 jruoho return 0;
971 1.10 jruoho }
972 1.10 jruoho }
973 1.10 jruoho
974 1.10 jruoho return EIO;
975 1.10 jruoho }
976 1.10 jruoho
977 1.10 jruoho int
978 1.10 jruoho acpicpu_md_tstate_set(struct acpicpu_tstate *ts)
979 1.10 jruoho {
980 1.10 jruoho struct msr_rw_info msr;
981 1.14 jruoho uint64_t xc;
982 1.14 jruoho int rv = 0;
983 1.10 jruoho
984 1.14 jruoho msr.msr_read = true;
985 1.14 jruoho msr.msr_type = MSR_THERM_CONTROL;
986 1.14 jruoho msr.msr_value = ts->ts_control;
987 1.14 jruoho msr.msr_mask = __BITS(1, 4);
988 1.10 jruoho
989 1.10 jruoho xc = xc_broadcast(0, (xcfunc_t)x86_msr_xcall, &msr, NULL);
990 1.10 jruoho xc_wait(xc);
991 1.10 jruoho
992 1.30 jruoho if (ts->ts_status == 0) {
993 1.30 jruoho DELAY(ts->ts_latency);
994 1.10 jruoho return 0;
995 1.30 jruoho }
996 1.10 jruoho
997 1.14 jruoho xc = xc_broadcast(0, (xcfunc_t)acpicpu_md_tstate_status, ts, &rv);
998 1.14 jruoho xc_wait(xc);
999 1.14 jruoho
1000 1.14 jruoho return rv;
1001 1.14 jruoho }
1002 1.14 jruoho
1003 1.14 jruoho static void
1004 1.14 jruoho acpicpu_md_tstate_status(void *arg1, void *arg2)
1005 1.14 jruoho {
1006 1.14 jruoho struct acpicpu_tstate *ts = arg1;
1007 1.14 jruoho uint64_t val;
1008 1.14 jruoho int i;
1009 1.14 jruoho
1010 1.10 jruoho for (i = val = 0; i < ACPICPU_T_STATE_RETRY; i++) {
1011 1.10 jruoho
1012 1.14 jruoho val = rdmsr(MSR_THERM_CONTROL);
1013 1.10 jruoho
1014 1.29 jruoho if (val == ts->ts_status)
1015 1.14 jruoho return;
1016 1.10 jruoho
1017 1.10 jruoho DELAY(ts->ts_latency);
1018 1.10 jruoho }
1019 1.10 jruoho
1020 1.14 jruoho *(uintptr_t *)arg2 = EAGAIN;
1021 1.10 jruoho }
1022 1.19 jruoho
1023 1.19 jruoho /*
1024 1.19 jruoho * A kludge for backwards compatibility.
1025 1.19 jruoho */
1026 1.19 jruoho static int
1027 1.19 jruoho acpicpu_md_pstate_sysctl_init(void)
1028 1.19 jruoho {
1029 1.19 jruoho const struct sysctlnode *fnode, *mnode, *rnode;
1030 1.19 jruoho const char *str;
1031 1.19 jruoho int rv;
1032 1.19 jruoho
1033 1.19 jruoho switch (cpu_vendor) {
1034 1.19 jruoho
1035 1.19 jruoho case CPUVENDOR_IDT:
1036 1.19 jruoho case CPUVENDOR_INTEL:
1037 1.19 jruoho str = "est";
1038 1.19 jruoho break;
1039 1.19 jruoho
1040 1.19 jruoho case CPUVENDOR_AMD:
1041 1.19 jruoho str = "powernow";
1042 1.19 jruoho break;
1043 1.19 jruoho
1044 1.19 jruoho default:
1045 1.19 jruoho return ENODEV;
1046 1.19 jruoho }
1047 1.19 jruoho
1048 1.19 jruoho
1049 1.19 jruoho rv = sysctl_createv(&acpicpu_log, 0, NULL, &rnode,
1050 1.19 jruoho CTLFLAG_PERMANENT, CTLTYPE_NODE, "machdep", NULL,
1051 1.19 jruoho NULL, 0, NULL, 0, CTL_MACHDEP, CTL_EOL);
1052 1.19 jruoho
1053 1.19 jruoho if (rv != 0)
1054 1.19 jruoho goto fail;
1055 1.19 jruoho
1056 1.19 jruoho rv = sysctl_createv(&acpicpu_log, 0, &rnode, &mnode,
1057 1.19 jruoho 0, CTLTYPE_NODE, str, NULL,
1058 1.19 jruoho NULL, 0, NULL, 0, CTL_CREATE, CTL_EOL);
1059 1.19 jruoho
1060 1.19 jruoho if (rv != 0)
1061 1.19 jruoho goto fail;
1062 1.19 jruoho
1063 1.19 jruoho rv = sysctl_createv(&acpicpu_log, 0, &mnode, &fnode,
1064 1.19 jruoho 0, CTLTYPE_NODE, "frequency", NULL,
1065 1.19 jruoho NULL, 0, NULL, 0, CTL_CREATE, CTL_EOL);
1066 1.19 jruoho
1067 1.19 jruoho if (rv != 0)
1068 1.19 jruoho goto fail;
1069 1.19 jruoho
1070 1.19 jruoho rv = sysctl_createv(&acpicpu_log, 0, &fnode, &rnode,
1071 1.19 jruoho CTLFLAG_READWRITE, CTLTYPE_INT, "target", NULL,
1072 1.19 jruoho acpicpu_md_pstate_sysctl_set, 0, NULL, 0, CTL_CREATE, CTL_EOL);
1073 1.19 jruoho
1074 1.19 jruoho if (rv != 0)
1075 1.19 jruoho goto fail;
1076 1.19 jruoho
1077 1.19 jruoho rv = sysctl_createv(&acpicpu_log, 0, &fnode, &rnode,
1078 1.19 jruoho CTLFLAG_READONLY, CTLTYPE_INT, "current", NULL,
1079 1.19 jruoho acpicpu_md_pstate_sysctl_get, 0, NULL, 0, CTL_CREATE, CTL_EOL);
1080 1.19 jruoho
1081 1.19 jruoho if (rv != 0)
1082 1.19 jruoho goto fail;
1083 1.19 jruoho
1084 1.19 jruoho rv = sysctl_createv(&acpicpu_log, 0, &fnode, &rnode,
1085 1.19 jruoho CTLFLAG_READONLY, CTLTYPE_STRING, "available", NULL,
1086 1.19 jruoho acpicpu_md_pstate_sysctl_all, 0, NULL, 0, CTL_CREATE, CTL_EOL);
1087 1.19 jruoho
1088 1.19 jruoho if (rv != 0)
1089 1.19 jruoho goto fail;
1090 1.19 jruoho
1091 1.19 jruoho return 0;
1092 1.19 jruoho
1093 1.19 jruoho fail:
1094 1.19 jruoho if (acpicpu_log != NULL) {
1095 1.19 jruoho sysctl_teardown(&acpicpu_log);
1096 1.19 jruoho acpicpu_log = NULL;
1097 1.19 jruoho }
1098 1.19 jruoho
1099 1.19 jruoho return rv;
1100 1.19 jruoho }
1101 1.19 jruoho
1102 1.19 jruoho static int
1103 1.19 jruoho acpicpu_md_pstate_sysctl_get(SYSCTLFN_ARGS)
1104 1.19 jruoho {
1105 1.19 jruoho struct cpu_info *ci = curcpu();
1106 1.19 jruoho struct acpicpu_softc *sc;
1107 1.19 jruoho struct sysctlnode node;
1108 1.19 jruoho uint32_t freq;
1109 1.19 jruoho int err;
1110 1.19 jruoho
1111 1.19 jruoho sc = acpicpu_sc[ci->ci_acpiid];
1112 1.19 jruoho
1113 1.19 jruoho if (sc == NULL)
1114 1.19 jruoho return ENXIO;
1115 1.19 jruoho
1116 1.19 jruoho err = acpicpu_pstate_get(sc, &freq);
1117 1.19 jruoho
1118 1.19 jruoho if (err != 0)
1119 1.19 jruoho return err;
1120 1.19 jruoho
1121 1.19 jruoho node = *rnode;
1122 1.19 jruoho node.sysctl_data = &freq;
1123 1.19 jruoho
1124 1.19 jruoho err = sysctl_lookup(SYSCTLFN_CALL(&node));
1125 1.19 jruoho
1126 1.19 jruoho if (err != 0 || newp == NULL)
1127 1.19 jruoho return err;
1128 1.19 jruoho
1129 1.19 jruoho return 0;
1130 1.19 jruoho }
1131 1.19 jruoho
1132 1.19 jruoho static int
1133 1.19 jruoho acpicpu_md_pstate_sysctl_set(SYSCTLFN_ARGS)
1134 1.19 jruoho {
1135 1.19 jruoho struct cpu_info *ci = curcpu();
1136 1.19 jruoho struct acpicpu_softc *sc;
1137 1.19 jruoho struct sysctlnode node;
1138 1.19 jruoho uint32_t freq;
1139 1.19 jruoho int err;
1140 1.19 jruoho
1141 1.19 jruoho sc = acpicpu_sc[ci->ci_acpiid];
1142 1.19 jruoho
1143 1.19 jruoho if (sc == NULL)
1144 1.19 jruoho return ENXIO;
1145 1.19 jruoho
1146 1.19 jruoho err = acpicpu_pstate_get(sc, &freq);
1147 1.19 jruoho
1148 1.19 jruoho if (err != 0)
1149 1.19 jruoho return err;
1150 1.19 jruoho
1151 1.19 jruoho node = *rnode;
1152 1.19 jruoho node.sysctl_data = &freq;
1153 1.19 jruoho
1154 1.19 jruoho err = sysctl_lookup(SYSCTLFN_CALL(&node));
1155 1.19 jruoho
1156 1.19 jruoho if (err != 0 || newp == NULL)
1157 1.19 jruoho return err;
1158 1.19 jruoho
1159 1.19 jruoho err = acpicpu_pstate_set(sc, freq);
1160 1.19 jruoho
1161 1.19 jruoho if (err != 0)
1162 1.19 jruoho return err;
1163 1.19 jruoho
1164 1.19 jruoho return 0;
1165 1.19 jruoho }
1166 1.19 jruoho
1167 1.19 jruoho static int
1168 1.19 jruoho acpicpu_md_pstate_sysctl_all(SYSCTLFN_ARGS)
1169 1.19 jruoho {
1170 1.19 jruoho struct cpu_info *ci = curcpu();
1171 1.19 jruoho struct acpicpu_softc *sc;
1172 1.19 jruoho struct sysctlnode node;
1173 1.19 jruoho char buf[1024];
1174 1.19 jruoho size_t len;
1175 1.19 jruoho uint32_t i;
1176 1.19 jruoho int err;
1177 1.19 jruoho
1178 1.19 jruoho sc = acpicpu_sc[ci->ci_acpiid];
1179 1.19 jruoho
1180 1.19 jruoho if (sc == NULL)
1181 1.19 jruoho return ENXIO;
1182 1.19 jruoho
1183 1.19 jruoho (void)memset(&buf, 0, sizeof(buf));
1184 1.19 jruoho
1185 1.19 jruoho mutex_enter(&sc->sc_mtx);
1186 1.19 jruoho
1187 1.19 jruoho for (len = 0, i = sc->sc_pstate_max; i < sc->sc_pstate_count; i++) {
1188 1.19 jruoho
1189 1.19 jruoho if (sc->sc_pstate[i].ps_freq == 0)
1190 1.19 jruoho continue;
1191 1.19 jruoho
1192 1.19 jruoho len += snprintf(buf + len, sizeof(buf) - len, "%u%s",
1193 1.19 jruoho sc->sc_pstate[i].ps_freq,
1194 1.19 jruoho i < (sc->sc_pstate_count - 1) ? " " : "");
1195 1.19 jruoho }
1196 1.19 jruoho
1197 1.19 jruoho mutex_exit(&sc->sc_mtx);
1198 1.19 jruoho
1199 1.19 jruoho node = *rnode;
1200 1.19 jruoho node.sysctl_data = buf;
1201 1.19 jruoho
1202 1.19 jruoho err = sysctl_lookup(SYSCTLFN_CALL(&node));
1203 1.19 jruoho
1204 1.19 jruoho if (err != 0 || newp == NULL)
1205 1.19 jruoho return err;
1206 1.19 jruoho
1207 1.19 jruoho return 0;
1208 1.19 jruoho }
1209 1.19 jruoho
1210