Home | History | Annotate | Line # | Download | only in acpi
acpi_cpu_md.c revision 1.43
      1  1.43    jruoho /* $NetBSD: acpi_cpu_md.c,v 1.43 2011/02/25 12:08:35 jruoho Exp $ */
      2   1.1    jruoho 
      3   1.1    jruoho /*-
      4  1.41    jruoho  * Copyright (c) 2010, 2011 Jukka Ruohonen <jruohonen (at) iki.fi>
      5   1.1    jruoho  * All rights reserved.
      6   1.1    jruoho  *
      7   1.1    jruoho  * Redistribution and use in source and binary forms, with or without
      8   1.1    jruoho  * modification, are permitted provided that the following conditions
      9   1.1    jruoho  * are met:
     10   1.1    jruoho  *
     11   1.1    jruoho  * 1. Redistributions of source code must retain the above copyright
     12   1.1    jruoho  *    notice, this list of conditions and the following disclaimer.
     13   1.1    jruoho  * 2. Redistributions in binary form must reproduce the above copyright
     14   1.1    jruoho  *    notice, this list of conditions and the following disclaimer in the
     15   1.1    jruoho  *    documentation and/or other materials provided with the distribution.
     16   1.1    jruoho  *
     17   1.1    jruoho  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
     18   1.1    jruoho  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     19   1.1    jruoho  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     20   1.1    jruoho  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
     21   1.1    jruoho  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     22   1.1    jruoho  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     23   1.1    jruoho  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     24   1.1    jruoho  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     25   1.1    jruoho  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     26   1.1    jruoho  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     27   1.1    jruoho  * SUCH DAMAGE.
     28   1.1    jruoho  */
     29   1.1    jruoho #include <sys/cdefs.h>
     30  1.43    jruoho __KERNEL_RCSID(0, "$NetBSD: acpi_cpu_md.c,v 1.43 2011/02/25 12:08:35 jruoho Exp $");
     31   1.1    jruoho 
     32   1.1    jruoho #include <sys/param.h>
     33   1.1    jruoho #include <sys/bus.h>
     34   1.1    jruoho #include <sys/kcore.h>
     35   1.5    jruoho #include <sys/sysctl.h>
     36   1.4    jruoho #include <sys/xcall.h>
     37   1.1    jruoho 
     38   1.1    jruoho #include <x86/cpu.h>
     39   1.5    jruoho #include <x86/cpufunc.h>
     40   1.5    jruoho #include <x86/cputypes.h>
     41   1.1    jruoho #include <x86/cpuvar.h>
     42   1.5    jruoho #include <x86/cpu_msr.h>
     43   1.1    jruoho #include <x86/machdep.h>
     44   1.1    jruoho 
     45   1.1    jruoho #include <dev/acpi/acpica.h>
     46   1.1    jruoho #include <dev/acpi/acpi_cpu.h>
     47   1.1    jruoho 
     48  1.12    jruoho #include <dev/pci/pcivar.h>
     49  1.12    jruoho #include <dev/pci/pcidevs.h>
     50  1.12    jruoho 
     51  1.38    jruoho #include <machine/acpi_machdep.h>
     52  1.38    jruoho 
     53  1.35    jruoho /*
     54  1.35    jruoho  * AMD C1E.
     55  1.35    jruoho  */
     56  1.35    jruoho #define MSR_CMPHALT		0xc0010055
     57  1.35    jruoho 
     58  1.35    jruoho #define MSR_CMPHALT_SMI		__BIT(27)
     59  1.35    jruoho #define MSR_CMPHALT_C1E		__BIT(28)
     60  1.35    jruoho #define MSR_CMPHALT_BMSTS	__BIT(29)
     61  1.33    jruoho 
     62  1.32    jruoho /*
     63  1.40  jmcneill  * AMD families 10h, 11h, and 14h
     64  1.32    jruoho  */
     65  1.32    jruoho #define MSR_10H_LIMIT		0xc0010061
     66  1.32    jruoho #define MSR_10H_CONTROL		0xc0010062
     67  1.32    jruoho #define MSR_10H_STATUS		0xc0010063
     68  1.32    jruoho #define MSR_10H_CONFIG		0xc0010064
     69  1.22    jruoho 
     70  1.32    jruoho /*
     71  1.32    jruoho  * AMD family 0Fh.
     72  1.32    jruoho  */
     73  1.32    jruoho #define MSR_0FH_CONTROL		0xc0010041
     74  1.17    jruoho #define MSR_0FH_STATUS		0xc0010042
     75  1.17    jruoho 
     76  1.32    jruoho #define MSR_0FH_STATUS_CFID	__BITS( 0,  5)
     77  1.32    jruoho #define MSR_0FH_STATUS_CVID	__BITS(32, 36)
     78  1.32    jruoho #define MSR_0FH_STATUS_PENDING	__BITS(31, 31)
     79  1.32    jruoho 
     80  1.32    jruoho #define MSR_0FH_CONTROL_FID	__BITS( 0,  5)
     81  1.32    jruoho #define MSR_0FH_CONTROL_VID	__BITS( 8, 12)
     82  1.32    jruoho #define MSR_0FH_CONTROL_CHG	__BITS(16, 16)
     83  1.32    jruoho #define MSR_0FH_CONTROL_CNT	__BITS(32, 51)
     84  1.32    jruoho 
     85  1.32    jruoho #define ACPI_0FH_STATUS_FID	__BITS( 0,  5)
     86  1.32    jruoho #define ACPI_0FH_STATUS_VID	__BITS( 6, 10)
     87  1.32    jruoho 
     88  1.32    jruoho #define ACPI_0FH_CONTROL_FID	__BITS( 0,  5)
     89  1.32    jruoho #define ACPI_0FH_CONTROL_VID	__BITS( 6, 10)
     90  1.32    jruoho #define ACPI_0FH_CONTROL_VST	__BITS(11, 17)
     91  1.32    jruoho #define ACPI_0FH_CONTROL_MVS	__BITS(18, 19)
     92  1.32    jruoho #define ACPI_0FH_CONTROL_PLL	__BITS(20, 26)
     93  1.32    jruoho #define ACPI_0FH_CONTROL_RVO	__BITS(28, 29)
     94  1.32    jruoho #define ACPI_0FH_CONTROL_IRT	__BITS(30, 31)
     95  1.32    jruoho 
     96  1.32    jruoho #define FID_TO_VCO_FID(fidd)	(((fid) < 8) ? (8 + ((fid) << 1)) : (fid))
     97  1.17    jruoho 
     98   1.5    jruoho static char	  native_idle_text[16];
     99   1.5    jruoho void		(*native_idle)(void) = NULL;
    100   1.1    jruoho 
    101  1.43    jruoho static int	 acpicpu_md_quirk_piix4(struct pci_attach_args *);
    102  1.41    jruoho static void	 acpicpu_md_pstate_percent_reset(struct acpicpu_softc *);
    103  1.41    jruoho static void	 acpicpu_md_pstate_percent_status(void *, void *);
    104  1.19    jruoho static void	 acpicpu_md_pstate_status(void *, void *);
    105  1.32    jruoho static int	 acpicpu_md_pstate_fidvid_get(struct acpicpu_softc *,
    106  1.32    jruoho                                               uint32_t *);
    107  1.32    jruoho static int	 acpicpu_md_pstate_fidvid_set(struct acpicpu_pstate *);
    108  1.32    jruoho static int	 acpicpu_md_pstate_fidvid_read(uint32_t *, uint32_t *);
    109  1.32    jruoho static void	 acpicpu_md_pstate_fidvid_write(uint32_t, uint32_t,
    110  1.32    jruoho 					        uint32_t, uint32_t);
    111  1.19    jruoho static void	 acpicpu_md_tstate_status(void *, void *);
    112  1.19    jruoho static int	 acpicpu_md_pstate_sysctl_init(void);
    113   1.5    jruoho static int	 acpicpu_md_pstate_sysctl_get(SYSCTLFN_PROTO);
    114   1.5    jruoho static int	 acpicpu_md_pstate_sysctl_set(SYSCTLFN_PROTO);
    115   1.5    jruoho static int	 acpicpu_md_pstate_sysctl_all(SYSCTLFN_PROTO);
    116   1.5    jruoho 
    117   1.5    jruoho extern struct acpicpu_softc **acpicpu_sc;
    118  1.35    jruoho static bool acpicpu_pstate_status = false;
    119  1.19    jruoho static struct sysctllog *acpicpu_log = NULL;
    120   1.1    jruoho 
    121   1.1    jruoho uint32_t
    122   1.1    jruoho acpicpu_md_cap(void)
    123   1.1    jruoho {
    124   1.1    jruoho 	struct cpu_info *ci = curcpu();
    125   1.1    jruoho 	uint32_t val = 0;
    126   1.1    jruoho 
    127  1.17    jruoho 	if (cpu_vendor != CPUVENDOR_IDT &&
    128  1.17    jruoho 	    cpu_vendor != CPUVENDOR_INTEL)
    129   1.1    jruoho 		return val;
    130   1.1    jruoho 
    131   1.1    jruoho 	/*
    132   1.1    jruoho 	 * Basic SMP C-states (required for _CST).
    133   1.1    jruoho 	 */
    134   1.1    jruoho 	val |= ACPICPU_PDC_C_C1PT | ACPICPU_PDC_C_C2C3;
    135   1.1    jruoho 
    136   1.1    jruoho         /*
    137   1.1    jruoho 	 * If MONITOR/MWAIT is available, announce
    138   1.1    jruoho 	 * support for native instructions in all C-states.
    139   1.1    jruoho 	 */
    140   1.1    jruoho         if ((ci->ci_feat_val[1] & CPUID2_MONITOR) != 0)
    141   1.1    jruoho 		val |= ACPICPU_PDC_C_C1_FFH | ACPICPU_PDC_C_C2C3_FFH;
    142   1.1    jruoho 
    143   1.5    jruoho 	/*
    144  1.10    jruoho 	 * Set native P- and T-states, if available.
    145   1.5    jruoho 	 */
    146   1.5    jruoho         if ((ci->ci_feat_val[1] & CPUID2_EST) != 0)
    147   1.5    jruoho 		val |= ACPICPU_PDC_P_FFH;
    148   1.5    jruoho 
    149  1.10    jruoho 	if ((ci->ci_feat_val[0] & CPUID_ACPI) != 0)
    150  1.10    jruoho 		val |= ACPICPU_PDC_T_FFH;
    151  1.10    jruoho 
    152   1.1    jruoho 	return val;
    153   1.1    jruoho }
    154   1.1    jruoho 
    155   1.1    jruoho uint32_t
    156  1.43    jruoho acpicpu_md_flags(void)
    157   1.1    jruoho {
    158   1.1    jruoho 	struct cpu_info *ci = curcpu();
    159  1.12    jruoho 	struct pci_attach_args pa;
    160  1.18    jruoho 	uint32_t family, val = 0;
    161  1.21    jruoho 	uint32_t regs[4];
    162   1.1    jruoho 
    163  1.38    jruoho 	if (acpi_md_ncpus() == 1)
    164   1.1    jruoho 		val |= ACPICPU_FLAG_C_BM;
    165   1.1    jruoho 
    166   1.1    jruoho 	if ((ci->ci_feat_val[1] & CPUID2_MONITOR) != 0)
    167   1.5    jruoho 		val |= ACPICPU_FLAG_C_FFH;
    168   1.1    jruoho 
    169  1.39    jruoho 	/*
    170  1.39    jruoho 	 * By default, assume that the local APIC timer
    171  1.39    jruoho 	 * as well as TSC are stalled during C3 sleep.
    172  1.39    jruoho 	 */
    173  1.25    jruoho 	val |= ACPICPU_FLAG_C_APIC | ACPICPU_FLAG_C_TSC;
    174  1.22    jruoho 
    175   1.1    jruoho 	switch (cpu_vendor) {
    176   1.1    jruoho 
    177  1.17    jruoho 	case CPUVENDOR_IDT:
    178  1.22    jruoho 
    179  1.22    jruoho 		if ((ci->ci_feat_val[1] & CPUID2_EST) != 0)
    180  1.22    jruoho 			val |= ACPICPU_FLAG_P_FFH;
    181  1.22    jruoho 
    182  1.22    jruoho 		if ((ci->ci_feat_val[0] & CPUID_ACPI) != 0)
    183  1.22    jruoho 			val |= ACPICPU_FLAG_T_FFH;
    184  1.22    jruoho 
    185  1.22    jruoho 		break;
    186  1.22    jruoho 
    187   1.1    jruoho 	case CPUVENDOR_INTEL:
    188  1.17    jruoho 
    189  1.39    jruoho 		/*
    190  1.39    jruoho 		 * Bus master control and arbitration should be
    191  1.39    jruoho 		 * available on all supported Intel CPUs (to be
    192  1.39    jruoho 		 * sure, this is double-checked later from the
    193  1.39    jruoho 		 * firmware data). These flags imply that it is
    194  1.39    jruoho 		 * not necessary to flush caches before C3 state.
    195  1.39    jruoho 		 */
    196  1.22    jruoho 		val |= ACPICPU_FLAG_C_BM | ACPICPU_FLAG_C_ARB;
    197  1.22    jruoho 
    198  1.39    jruoho 		/*
    199  1.39    jruoho 		 * Check if we can use "native", MSR-based,
    200  1.39    jruoho 		 * access. If not, we have to resort to I/O.
    201  1.39    jruoho 		 */
    202   1.5    jruoho 		if ((ci->ci_feat_val[1] & CPUID2_EST) != 0)
    203   1.5    jruoho 			val |= ACPICPU_FLAG_P_FFH;
    204   1.5    jruoho 
    205  1.10    jruoho 		if ((ci->ci_feat_val[0] & CPUID_ACPI) != 0)
    206  1.10    jruoho 			val |= ACPICPU_FLAG_T_FFH;
    207  1.10    jruoho 
    208  1.22    jruoho 		/*
    209  1.25    jruoho 		 * Check whether MSR_APERF, MSR_MPERF, and Turbo
    210  1.25    jruoho 		 * Boost are available. Also see if we might have
    211  1.25    jruoho 		 * an invariant local APIC timer ("ARAT").
    212  1.23    jruoho 		 */
    213  1.23    jruoho 		if (cpuid_level >= 0x06) {
    214  1.23    jruoho 
    215  1.23    jruoho 			x86_cpuid(0x06, regs);
    216  1.23    jruoho 
    217  1.34    jruoho 			if ((regs[2] & CPUID_DSPM_HWF) != 0)
    218  1.23    jruoho 				val |= ACPICPU_FLAG_P_HW;
    219  1.23    jruoho 
    220  1.34    jruoho 			if ((regs[0] & CPUID_DSPM_IDA) != 0)
    221  1.24    jruoho 				val |= ACPICPU_FLAG_P_TURBO;
    222  1.25    jruoho 
    223  1.34    jruoho 			if ((regs[0] & CPUID_DSPM_ARAT) != 0)
    224  1.25    jruoho 				val &= ~ACPICPU_FLAG_C_APIC;
    225  1.23    jruoho 		}
    226  1.23    jruoho 
    227  1.23    jruoho 		/*
    228  1.22    jruoho 		 * Detect whether TSC is invariant. If it is not,
    229  1.22    jruoho 		 * we keep the flag to note that TSC will not run
    230  1.22    jruoho 		 * at constant rate. Depending on the CPU, this may
    231  1.22    jruoho 		 * affect P- and T-state changes, but especially
    232  1.22    jruoho 		 * relevant are C-states; with variant TSC, states
    233  1.24    jruoho 		 * larger than C1 may completely stop the counter.
    234  1.22    jruoho 		 */
    235  1.22    jruoho 		x86_cpuid(0x80000000, regs);
    236  1.22    jruoho 
    237  1.22    jruoho 		if (regs[0] >= 0x80000007) {
    238  1.22    jruoho 
    239  1.22    jruoho 			x86_cpuid(0x80000007, regs);
    240  1.22    jruoho 
    241  1.32    jruoho 			if ((regs[3] & __BIT(8)) != 0)
    242  1.22    jruoho 				val &= ~ACPICPU_FLAG_C_TSC;
    243  1.22    jruoho 		}
    244  1.22    jruoho 
    245  1.17    jruoho 		break;
    246  1.12    jruoho 
    247  1.17    jruoho 	case CPUVENDOR_AMD:
    248  1.17    jruoho 
    249  1.32    jruoho 		x86_cpuid(0x80000000, regs);
    250  1.32    jruoho 
    251  1.32    jruoho 		if (regs[0] < 0x80000007)
    252  1.32    jruoho 			break;
    253  1.32    jruoho 
    254  1.32    jruoho 		x86_cpuid(0x80000007, regs);
    255  1.32    jruoho 
    256  1.18    jruoho 		family = CPUID2FAMILY(ci->ci_signature);
    257  1.18    jruoho 
    258  1.18    jruoho 		if (family == 0xf)
    259  1.18    jruoho 			family += CPUID2EXTFAMILY(ci->ci_signature);
    260  1.18    jruoho 
    261  1.32    jruoho     		switch (family) {
    262   1.1    jruoho 
    263  1.22    jruoho 		case 0x0f:
    264  1.32    jruoho 
    265  1.32    jruoho 			if ((regs[3] & CPUID_APM_FID) == 0)
    266  1.32    jruoho 				break;
    267  1.32    jruoho 
    268  1.32    jruoho 			if ((regs[3] & CPUID_APM_VID) == 0)
    269  1.32    jruoho 				break;
    270  1.32    jruoho 
    271  1.32    jruoho 			val |= ACPICPU_FLAG_P_FFH | ACPICPU_FLAG_P_FIDVID;
    272  1.32    jruoho 			break;
    273  1.32    jruoho 
    274  1.17    jruoho 		case 0x10:
    275  1.17    jruoho 		case 0x11:
    276  1.40  jmcneill 			val |= ACPICPU_FLAG_C_C1E;
    277  1.40  jmcneill 			/* FALLTHROUGH */
    278  1.40  jmcneill 
    279  1.40  jmcneill 		case 0x14: /* AMD Fusion */
    280   1.1    jruoho 
    281  1.42    jruoho 			/*
    282  1.42    jruoho 			 * Like with Intel, detect invariant TSC,
    283  1.42    jruoho 			 * MSR-based P-states, and AMD's "turbo"
    284  1.42    jruoho 			 * (Core Performance Boost), respectively.
    285  1.42    jruoho 			 */
    286  1.22    jruoho 			if ((regs[3] & CPUID_APM_TSC) != 0)
    287  1.22    jruoho 				val &= ~ACPICPU_FLAG_C_TSC;
    288  1.22    jruoho 
    289  1.21    jruoho 			if ((regs[3] & CPUID_APM_HWP) != 0)
    290  1.17    jruoho 				val |= ACPICPU_FLAG_P_FFH;
    291  1.21    jruoho 
    292  1.21    jruoho 			if ((regs[3] & CPUID_APM_CPB) != 0)
    293  1.21    jruoho 				val |= ACPICPU_FLAG_P_TURBO;
    294  1.35    jruoho 
    295  1.42    jruoho 			/*
    296  1.42    jruoho 			 * Also check for APERF and MPERF,
    297  1.42    jruoho 			 * first available in the family 10h.
    298  1.42    jruoho 			 */
    299  1.42    jruoho 			if (cpuid_level >= 0x06) {
    300  1.42    jruoho 
    301  1.42    jruoho 				x86_cpuid(0x00000006, regs);
    302  1.42    jruoho 
    303  1.42    jruoho 				if ((regs[2] & __BIT(0)) != 0)
    304  1.42    jruoho 					val |= ACPICPU_FLAG_P_HW;
    305  1.42    jruoho 			}
    306  1.42    jruoho 
    307  1.35    jruoho 			break;
    308  1.17    jruoho 		}
    309   1.1    jruoho 
    310   1.1    jruoho 		break;
    311   1.1    jruoho 	}
    312   1.1    jruoho 
    313  1.12    jruoho 	/*
    314  1.12    jruoho 	 * There are several erratums for PIIX4.
    315  1.12    jruoho 	 */
    316  1.43    jruoho 	if (pci_find_device(&pa, acpicpu_md_quirk_piix4) != 0)
    317  1.12    jruoho 		val |= ACPICPU_FLAG_PIIX4;
    318  1.12    jruoho 
    319   1.1    jruoho 	return val;
    320   1.1    jruoho }
    321   1.1    jruoho 
    322  1.12    jruoho static int
    323  1.43    jruoho acpicpu_md_quirk_piix4(struct pci_attach_args *pa)
    324  1.12    jruoho {
    325  1.12    jruoho 
    326  1.12    jruoho 	/*
    327  1.12    jruoho 	 * XXX: The pci_find_device(9) function only
    328  1.12    jruoho 	 *	deals with attached devices. Change this
    329  1.12    jruoho 	 *	to use something like pci_device_foreach().
    330  1.12    jruoho 	 */
    331  1.12    jruoho 	if (PCI_VENDOR(pa->pa_id) != PCI_VENDOR_INTEL)
    332  1.12    jruoho 		return 0;
    333  1.12    jruoho 
    334  1.12    jruoho 	if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_82371AB_ISA ||
    335  1.12    jruoho 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_82440MX_PMC)
    336  1.12    jruoho 		return 1;
    337  1.12    jruoho 
    338  1.12    jruoho 	return 0;
    339  1.12    jruoho }
    340  1.12    jruoho 
    341  1.35    jruoho void
    342  1.43    jruoho acpicpu_md_quirk_c1e(void)
    343  1.35    jruoho {
    344  1.35    jruoho 	const uint64_t c1e = MSR_CMPHALT_SMI | MSR_CMPHALT_C1E;
    345  1.35    jruoho 	uint64_t val;
    346  1.35    jruoho 
    347  1.35    jruoho 	val = rdmsr(MSR_CMPHALT);
    348  1.35    jruoho 
    349  1.35    jruoho 	if ((val & c1e) != 0)
    350  1.35    jruoho 		wrmsr(MSR_CMPHALT, val & ~c1e);
    351  1.35    jruoho }
    352  1.35    jruoho 
    353   1.1    jruoho int
    354  1.43    jruoho acpicpu_md_cstate_start(struct acpicpu_softc *sc)
    355   1.1    jruoho {
    356   1.1    jruoho 	const size_t size = sizeof(native_idle_text);
    357  1.31    jruoho 	struct acpicpu_cstate *cs;
    358  1.31    jruoho 	bool ipi = false;
    359  1.31    jruoho 	int i;
    360   1.1    jruoho 
    361   1.1    jruoho 	x86_cpu_idle_get(&native_idle, native_idle_text, size);
    362  1.31    jruoho 
    363  1.31    jruoho 	for (i = 0; i < ACPI_C_STATE_COUNT; i++) {
    364  1.31    jruoho 
    365  1.31    jruoho 		cs = &sc->sc_cstate[i];
    366  1.31    jruoho 
    367  1.31    jruoho 		if (cs->cs_method == ACPICPU_C_STATE_HALT) {
    368  1.31    jruoho 			ipi = true;
    369  1.31    jruoho 			break;
    370  1.31    jruoho 		}
    371  1.31    jruoho 	}
    372  1.31    jruoho 
    373  1.31    jruoho 	x86_cpu_idle_set(acpicpu_cstate_idle, "acpi", ipi);
    374   1.1    jruoho 
    375   1.1    jruoho 	return 0;
    376   1.1    jruoho }
    377   1.1    jruoho 
    378   1.1    jruoho int
    379  1.43    jruoho acpicpu_md_cstate_stop(void)
    380   1.1    jruoho {
    381   1.4    jruoho 	uint64_t xc;
    382  1.31    jruoho 	bool ipi;
    383   1.1    jruoho 
    384  1.31    jruoho 	ipi = (native_idle != x86_cpu_idle_halt) ? false : true;
    385  1.31    jruoho 	x86_cpu_idle_set(native_idle, native_idle_text, ipi);
    386   1.1    jruoho 
    387   1.4    jruoho 	/*
    388   1.4    jruoho 	 * Run a cross-call to ensure that all CPUs are
    389   1.4    jruoho 	 * out from the ACPI idle-loop before detachment.
    390   1.4    jruoho 	 */
    391   1.4    jruoho 	xc = xc_broadcast(0, (xcfunc_t)nullop, NULL, NULL);
    392   1.4    jruoho 	xc_wait(xc);
    393   1.1    jruoho 
    394   1.1    jruoho 	return 0;
    395   1.1    jruoho }
    396   1.1    jruoho 
    397   1.3    jruoho /*
    398  1.31    jruoho  * Called with interrupts disabled.
    399  1.31    jruoho  * Caller should enable interrupts after return.
    400   1.3    jruoho  */
    401   1.1    jruoho void
    402  1.43    jruoho acpicpu_md_cstate_enter(int method, int state)
    403   1.1    jruoho {
    404   1.3    jruoho 	struct cpu_info *ci = curcpu();
    405   1.1    jruoho 
    406   1.1    jruoho 	switch (method) {
    407   1.1    jruoho 
    408   1.1    jruoho 	case ACPICPU_C_STATE_FFH:
    409   1.3    jruoho 
    410   1.3    jruoho 		x86_enable_intr();
    411   1.3    jruoho 		x86_monitor(&ci->ci_want_resched, 0, 0);
    412   1.3    jruoho 
    413  1.31    jruoho 		if (__predict_false(ci->ci_want_resched != 0))
    414   1.3    jruoho 			return;
    415   1.3    jruoho 
    416   1.1    jruoho 		x86_mwait((state - 1) << 4, 0);
    417   1.1    jruoho 		break;
    418   1.1    jruoho 
    419   1.1    jruoho 	case ACPICPU_C_STATE_HALT:
    420   1.3    jruoho 
    421  1.31    jruoho 		if (__predict_false(ci->ci_want_resched != 0))
    422   1.3    jruoho 			return;
    423   1.3    jruoho 
    424   1.1    jruoho 		x86_stihlt();
    425   1.1    jruoho 		break;
    426   1.1    jruoho 	}
    427   1.1    jruoho }
    428   1.5    jruoho 
    429   1.5    jruoho int
    430  1.41    jruoho acpicpu_md_pstate_start(struct acpicpu_softc *sc)
    431   1.5    jruoho {
    432  1.20    jruoho 	const uint64_t est = __BIT(16);
    433  1.20    jruoho 	uint64_t val;
    434  1.20    jruoho 
    435  1.41    jruoho 	if ((sc->sc_flags & ACPICPU_FLAG_P) == 0)
    436  1.41    jruoho 		return ENODEV;
    437  1.41    jruoho 
    438  1.20    jruoho 	switch (cpu_vendor) {
    439  1.20    jruoho 
    440  1.20    jruoho 	case CPUVENDOR_IDT:
    441  1.20    jruoho 	case CPUVENDOR_INTEL:
    442  1.20    jruoho 
    443  1.41    jruoho 		/*
    444  1.41    jruoho 		 * Make sure EST is enabled.
    445  1.41    jruoho 		 */
    446  1.20    jruoho 		val = rdmsr(MSR_MISC_ENABLE);
    447  1.20    jruoho 
    448  1.20    jruoho 		if ((val & est) == 0) {
    449  1.20    jruoho 
    450  1.20    jruoho 			val |= est;
    451  1.20    jruoho 
    452  1.20    jruoho 			wrmsr(MSR_MISC_ENABLE, val);
    453  1.20    jruoho 			val = rdmsr(MSR_MISC_ENABLE);
    454  1.20    jruoho 
    455  1.20    jruoho 			if ((val & est) == 0)
    456  1.20    jruoho 				return ENOTTY;
    457  1.20    jruoho 		}
    458  1.42    jruoho 	}
    459  1.41    jruoho 
    460  1.42    jruoho 	/*
    461  1.42    jruoho 	 * Reset the APERF and MPERF counters.
    462  1.42    jruoho 	 */
    463  1.42    jruoho 	if ((sc->sc_flags & ACPICPU_FLAG_P_HW) != 0)
    464  1.42    jruoho 		acpicpu_md_pstate_percent_reset(sc);
    465   1.9    jruoho 
    466  1.19    jruoho 	return acpicpu_md_pstate_sysctl_init();
    467   1.5    jruoho }
    468   1.5    jruoho 
    469   1.5    jruoho int
    470   1.5    jruoho acpicpu_md_pstate_stop(void)
    471   1.5    jruoho {
    472   1.5    jruoho 
    473  1.19    jruoho 	if (acpicpu_log != NULL)
    474  1.19    jruoho 		sysctl_teardown(&acpicpu_log);
    475   1.5    jruoho 
    476   1.5    jruoho 	return 0;
    477   1.5    jruoho }
    478   1.5    jruoho 
    479   1.5    jruoho int
    480  1.15    jruoho acpicpu_md_pstate_pss(struct acpicpu_softc *sc)
    481   1.5    jruoho {
    482  1.15    jruoho 	struct acpicpu_pstate *ps, msr;
    483  1.17    jruoho 	struct cpu_info *ci = curcpu();
    484  1.18    jruoho 	uint32_t family, i = 0;
    485  1.13    jruoho 
    486  1.15    jruoho 	(void)memset(&msr, 0, sizeof(struct acpicpu_pstate));
    487  1.13    jruoho 
    488   1.5    jruoho 	switch (cpu_vendor) {
    489   1.5    jruoho 
    490  1.17    jruoho 	case CPUVENDOR_IDT:
    491   1.5    jruoho 	case CPUVENDOR_INTEL:
    492  1.33    jruoho 
    493  1.33    jruoho 		/*
    494  1.33    jruoho 		 * If the so-called Turbo Boost is present,
    495  1.33    jruoho 		 * the P0-state is always the "turbo state".
    496  1.33    jruoho 		 *
    497  1.33    jruoho 		 * For discussion, see:
    498  1.33    jruoho 		 *
    499  1.33    jruoho 		 *	Intel Corporation: Intel Turbo Boost Technology
    500  1.33    jruoho 		 *	in Intel Core(tm) Microarchitectures (Nehalem)
    501  1.33    jruoho 		 *	Based Processors. White Paper, November 2008.
    502  1.33    jruoho 		 */
    503  1.33    jruoho 		if ((sc->sc_flags & ACPICPU_FLAG_P_TURBO) != 0)
    504  1.33    jruoho 			sc->sc_pstate[0].ps_flags |= ACPICPU_FLAG_P_TURBO;
    505  1.33    jruoho 
    506  1.15    jruoho 		msr.ps_control_addr = MSR_PERF_CTL;
    507  1.15    jruoho 		msr.ps_control_mask = __BITS(0, 15);
    508  1.15    jruoho 
    509  1.15    jruoho 		msr.ps_status_addr  = MSR_PERF_STATUS;
    510  1.15    jruoho 		msr.ps_status_mask  = __BITS(0, 15);
    511  1.13    jruoho 		break;
    512  1.13    jruoho 
    513  1.13    jruoho 	case CPUVENDOR_AMD:
    514  1.13    jruoho 
    515  1.33    jruoho 		if ((sc->sc_flags & ACPICPU_FLAG_P_FIDVID) != 0)
    516  1.33    jruoho 			msr.ps_flags |= ACPICPU_FLAG_P_FIDVID;
    517  1.33    jruoho 
    518  1.18    jruoho 		family = CPUID2FAMILY(ci->ci_signature);
    519  1.18    jruoho 
    520  1.18    jruoho 		if (family == 0xf)
    521  1.18    jruoho 			family += CPUID2EXTFAMILY(ci->ci_signature);
    522  1.18    jruoho 
    523  1.18    jruoho 		switch (family) {
    524  1.17    jruoho 
    525  1.32    jruoho 		case 0x0f:
    526  1.32    jruoho 			msr.ps_control_addr = MSR_0FH_CONTROL;
    527  1.32    jruoho 			msr.ps_status_addr  = MSR_0FH_STATUS;
    528  1.32    jruoho 			break;
    529  1.32    jruoho 
    530  1.17    jruoho 		case 0x10:
    531  1.17    jruoho 		case 0x11:
    532  1.40  jmcneill 		case 0x14: /* AMD Fusion */
    533  1.17    jruoho 			msr.ps_control_addr = MSR_10H_CONTROL;
    534  1.17    jruoho 			msr.ps_control_mask = __BITS(0, 2);
    535  1.17    jruoho 
    536  1.17    jruoho 			msr.ps_status_addr  = MSR_10H_STATUS;
    537  1.17    jruoho 			msr.ps_status_mask  = __BITS(0, 2);
    538  1.17    jruoho 			break;
    539  1.17    jruoho 
    540  1.17    jruoho 		default:
    541  1.17    jruoho 
    542  1.17    jruoho 			if ((sc->sc_flags & ACPICPU_FLAG_P_XPSS) == 0)
    543  1.17    jruoho 				return EOPNOTSUPP;
    544  1.17    jruoho 		}
    545  1.13    jruoho 
    546  1.13    jruoho 		break;
    547  1.13    jruoho 
    548  1.13    jruoho 	default:
    549  1.13    jruoho 		return ENODEV;
    550  1.13    jruoho 	}
    551   1.5    jruoho 
    552  1.26    jruoho 	/*
    553  1.26    jruoho 	 * Fill the P-state structures with MSR addresses that are
    554  1.27    jruoho 	 * known to be correct. If we do not know the addresses,
    555  1.27    jruoho 	 * leave the values intact. If a vendor uses XPSS, we do
    556  1.39    jruoho 	 * not necessarily need to do anything to support new CPUs.
    557  1.26    jruoho 	 */
    558  1.15    jruoho 	while (i < sc->sc_pstate_count) {
    559  1.15    jruoho 
    560  1.15    jruoho 		ps = &sc->sc_pstate[i];
    561  1.15    jruoho 
    562  1.32    jruoho 		if (msr.ps_flags != 0)
    563  1.32    jruoho 			ps->ps_flags |= msr.ps_flags;
    564  1.32    jruoho 
    565  1.27    jruoho 		if (msr.ps_status_addr != 0)
    566  1.15    jruoho 			ps->ps_status_addr = msr.ps_status_addr;
    567  1.15    jruoho 
    568  1.27    jruoho 		if (msr.ps_status_mask != 0)
    569  1.15    jruoho 			ps->ps_status_mask = msr.ps_status_mask;
    570  1.15    jruoho 
    571  1.27    jruoho 		if (msr.ps_control_addr != 0)
    572  1.15    jruoho 			ps->ps_control_addr = msr.ps_control_addr;
    573  1.15    jruoho 
    574  1.27    jruoho 		if (msr.ps_control_mask != 0)
    575  1.15    jruoho 			ps->ps_control_mask = msr.ps_control_mask;
    576  1.15    jruoho 
    577  1.15    jruoho 		i++;
    578  1.15    jruoho 	}
    579  1.15    jruoho 
    580  1.15    jruoho 	return 0;
    581  1.15    jruoho }
    582  1.15    jruoho 
    583  1.41    jruoho /*
    584  1.41    jruoho  * Returns the percentage of the actual frequency in
    585  1.41    jruoho  * terms of the maximum frequency of the calling CPU
    586  1.41    jruoho  * since the last call. A value zero implies an error.
    587  1.41    jruoho  */
    588  1.41    jruoho uint8_t
    589  1.41    jruoho acpicpu_md_pstate_percent(struct acpicpu_softc *sc)
    590  1.41    jruoho {
    591  1.41    jruoho 	struct cpu_info *ci = sc->sc_ci;
    592  1.41    jruoho 	uint64_t aperf, mperf;
    593  1.41    jruoho 	uint64_t xc, rv = 0;
    594  1.41    jruoho 
    595  1.41    jruoho 	if (__predict_false((sc->sc_flags & ACPICPU_FLAG_P) == 0))
    596  1.41    jruoho 		return 0;
    597  1.41    jruoho 
    598  1.41    jruoho 	if (__predict_false((sc->sc_flags & ACPICPU_FLAG_P_HW) == 0))
    599  1.41    jruoho 		return 0;
    600  1.41    jruoho 
    601  1.41    jruoho 	/*
    602  1.41    jruoho 	 * Read the IA32_APERF and IA32_MPERF counters. The first
    603  1.41    jruoho 	 * increments at the rate of the fixed maximum frequency
    604  1.41    jruoho 	 * configured during the boot, whereas APERF counts at the
    605  1.41    jruoho 	 * rate of the actual frequency. Note that the MSRs must be
    606  1.41    jruoho 	 * read without delay, and that only the ratio between
    607  1.41    jruoho 	 * IA32_APERF and IA32_MPERF is architecturally defined.
    608  1.41    jruoho 	 *
    609  1.41    jruoho 	 * For further details, refer to:
    610  1.41    jruoho 	 *
    611  1.41    jruoho 	 *	Intel Corporation: Intel 64 and IA-32 Architectures
    612  1.41    jruoho 	 *	Software Developer's Manual. Section 13.2, Volume 3A:
    613  1.41    jruoho 	 *	System Programming Guide, Part 1. July, 2008.
    614  1.42    jruoho 	 *
    615  1.42    jruoho 	 *	Advanced Micro Devices: BIOS and Kernel Developer's
    616  1.42    jruoho 	 *	Guide (BKDG) for AMD Family 10h Processors. Section
    617  1.42    jruoho 	 *	2.4.5, Revision 3.48, April 2010.
    618  1.41    jruoho 	 */
    619  1.41    jruoho 	x86_disable_intr();
    620  1.41    jruoho 
    621  1.41    jruoho 	aperf = sc->sc_pstate_aperf;
    622  1.41    jruoho 	mperf = sc->sc_pstate_mperf;
    623  1.41    jruoho 
    624  1.41    jruoho 	xc = xc_unicast(0, acpicpu_md_pstate_percent_status, sc, NULL, ci);
    625  1.41    jruoho 	xc_wait(xc);
    626  1.41    jruoho 
    627  1.41    jruoho 	x86_enable_intr();
    628  1.41    jruoho 
    629  1.41    jruoho 	aperf = sc->sc_pstate_aperf - aperf;
    630  1.41    jruoho 	mperf = sc->sc_pstate_mperf - mperf;
    631  1.41    jruoho 
    632  1.41    jruoho 	if (__predict_true(mperf != 0))
    633  1.41    jruoho 		rv = (aperf * 100) / mperf;
    634  1.41    jruoho 
    635  1.41    jruoho 	return rv;
    636  1.41    jruoho }
    637  1.41    jruoho 
    638  1.41    jruoho static void
    639  1.41    jruoho acpicpu_md_pstate_percent_status(void *arg1, void *arg2)
    640  1.41    jruoho {
    641  1.41    jruoho 	struct acpicpu_softc *sc = arg1;
    642  1.41    jruoho 
    643  1.41    jruoho 	sc->sc_pstate_aperf = rdmsr(MSR_APERF);
    644  1.41    jruoho 	sc->sc_pstate_mperf = rdmsr(MSR_MPERF);
    645  1.41    jruoho }
    646  1.41    jruoho 
    647  1.41    jruoho static void
    648  1.41    jruoho acpicpu_md_pstate_percent_reset(struct acpicpu_softc *sc)
    649  1.41    jruoho {
    650  1.41    jruoho 
    651  1.41    jruoho 	KASSERT((sc->sc_flags & ACPICPU_FLAG_P) != 0);
    652  1.41    jruoho 	KASSERT((sc->sc_flags & ACPICPU_FLAG_P_HW) != 0);
    653  1.41    jruoho 
    654  1.41    jruoho 	wrmsr(MSR_APERF, 0);
    655  1.41    jruoho 	wrmsr(MSR_MPERF, 0);
    656  1.41    jruoho 
    657  1.41    jruoho 	sc->sc_pstate_aperf = 0;
    658  1.41    jruoho 	sc->sc_pstate_mperf = 0;
    659  1.41    jruoho }
    660  1.41    jruoho 
    661  1.15    jruoho int
    662  1.15    jruoho acpicpu_md_pstate_get(struct acpicpu_softc *sc, uint32_t *freq)
    663  1.15    jruoho {
    664  1.15    jruoho 	struct acpicpu_pstate *ps = NULL;
    665  1.15    jruoho 	uint64_t val;
    666  1.15    jruoho 	uint32_t i;
    667  1.15    jruoho 
    668  1.32    jruoho 	if ((sc->sc_flags & ACPICPU_FLAG_P_FIDVID) != 0)
    669  1.32    jruoho 		return acpicpu_md_pstate_fidvid_get(sc, freq);
    670  1.32    jruoho 
    671  1.15    jruoho 	for (i = 0; i < sc->sc_pstate_count; i++) {
    672  1.15    jruoho 
    673  1.15    jruoho 		ps = &sc->sc_pstate[i];
    674  1.15    jruoho 
    675  1.32    jruoho 		if (__predict_true(ps->ps_freq != 0))
    676  1.15    jruoho 			break;
    677  1.15    jruoho 	}
    678  1.15    jruoho 
    679  1.15    jruoho 	if (__predict_false(ps == NULL))
    680  1.17    jruoho 		return ENODEV;
    681  1.15    jruoho 
    682  1.28    jruoho 	if (__predict_false(ps->ps_status_addr == 0))
    683  1.13    jruoho 		return EINVAL;
    684   1.5    jruoho 
    685  1.13    jruoho 	val = rdmsr(ps->ps_status_addr);
    686   1.5    jruoho 
    687  1.28    jruoho 	if (__predict_true(ps->ps_status_mask != 0))
    688  1.13    jruoho 		val = val & ps->ps_status_mask;
    689   1.5    jruoho 
    690  1.13    jruoho 	for (i = 0; i < sc->sc_pstate_count; i++) {
    691   1.5    jruoho 
    692  1.13    jruoho 		ps = &sc->sc_pstate[i];
    693   1.5    jruoho 
    694  1.32    jruoho 		if (__predict_false(ps->ps_freq == 0))
    695  1.13    jruoho 			continue;
    696   1.5    jruoho 
    697  1.29    jruoho 		if (val == ps->ps_status) {
    698  1.13    jruoho 			*freq = ps->ps_freq;
    699  1.13    jruoho 			return 0;
    700  1.13    jruoho 		}
    701   1.5    jruoho 	}
    702   1.5    jruoho 
    703  1.13    jruoho 	return EIO;
    704   1.5    jruoho }
    705   1.5    jruoho 
    706   1.5    jruoho int
    707   1.5    jruoho acpicpu_md_pstate_set(struct acpicpu_pstate *ps)
    708   1.5    jruoho {
    709   1.5    jruoho 	struct msr_rw_info msr;
    710  1.14    jruoho 	uint64_t xc;
    711  1.14    jruoho 	int rv = 0;
    712   1.5    jruoho 
    713  1.37    jruoho 	if (__predict_false(ps->ps_control_addr == 0))
    714  1.37    jruoho 		return EINVAL;
    715  1.37    jruoho 
    716  1.32    jruoho 	if ((ps->ps_flags & ACPICPU_FLAG_P_FIDVID) != 0)
    717  1.32    jruoho 		return acpicpu_md_pstate_fidvid_set(ps);
    718  1.32    jruoho 
    719  1.13    jruoho 	msr.msr_read  = false;
    720  1.13    jruoho 	msr.msr_type  = ps->ps_control_addr;
    721  1.13    jruoho 	msr.msr_value = ps->ps_control;
    722  1.13    jruoho 
    723  1.24    jruoho 	if (__predict_true(ps->ps_control_mask != 0)) {
    724  1.13    jruoho 		msr.msr_mask = ps->ps_control_mask;
    725  1.13    jruoho 		msr.msr_read = true;
    726  1.13    jruoho 	}
    727  1.13    jruoho 
    728   1.5    jruoho 	xc = xc_broadcast(0, (xcfunc_t)x86_msr_xcall, &msr, NULL);
    729   1.5    jruoho 	xc_wait(xc);
    730   1.5    jruoho 
    731  1.36    jruoho 	/*
    732  1.36    jruoho 	 * Due several problems, we bypass the
    733  1.36    jruoho 	 * relatively expensive status check.
    734  1.36    jruoho 	 */
    735  1.36    jruoho 	if (acpicpu_pstate_status != true) {
    736  1.33    jruoho 		DELAY(ps->ps_latency);
    737  1.33    jruoho 		return 0;
    738  1.33    jruoho 	}
    739  1.13    jruoho 
    740  1.14    jruoho 	xc = xc_broadcast(0, (xcfunc_t)acpicpu_md_pstate_status, ps, &rv);
    741  1.14    jruoho 	xc_wait(xc);
    742  1.14    jruoho 
    743  1.14    jruoho 	return rv;
    744  1.14    jruoho }
    745  1.14    jruoho 
    746  1.14    jruoho static void
    747  1.14    jruoho acpicpu_md_pstate_status(void *arg1, void *arg2)
    748  1.14    jruoho {
    749  1.14    jruoho 	struct acpicpu_pstate *ps = arg1;
    750  1.14    jruoho 	uint64_t val;
    751  1.14    jruoho 	int i;
    752  1.14    jruoho 
    753   1.5    jruoho 	for (i = val = 0; i < ACPICPU_P_STATE_RETRY; i++) {
    754   1.5    jruoho 
    755  1.13    jruoho 		val = rdmsr(ps->ps_status_addr);
    756  1.13    jruoho 
    757  1.24    jruoho 		if (__predict_true(ps->ps_status_mask != 0))
    758  1.13    jruoho 			val = val & ps->ps_status_mask;
    759   1.5    jruoho 
    760  1.29    jruoho 		if (val == ps->ps_status)
    761  1.14    jruoho 			return;
    762   1.5    jruoho 
    763   1.5    jruoho 		DELAY(ps->ps_latency);
    764   1.5    jruoho 	}
    765   1.5    jruoho 
    766  1.14    jruoho 	*(uintptr_t *)arg2 = EAGAIN;
    767   1.5    jruoho }
    768  1.10    jruoho 
    769  1.32    jruoho static int
    770  1.32    jruoho acpicpu_md_pstate_fidvid_get(struct acpicpu_softc *sc, uint32_t *freq)
    771  1.32    jruoho {
    772  1.32    jruoho 	struct acpicpu_pstate *ps;
    773  1.32    jruoho 	uint32_t fid, i, vid;
    774  1.32    jruoho 	uint32_t cfid, cvid;
    775  1.32    jruoho 	int rv;
    776  1.32    jruoho 
    777  1.32    jruoho 	/*
    778  1.32    jruoho 	 * AMD family 0Fh needs special treatment.
    779  1.32    jruoho 	 * While it wants to use ACPI, it does not
    780  1.32    jruoho 	 * comply with the ACPI specifications.
    781  1.32    jruoho 	 */
    782  1.32    jruoho 	rv = acpicpu_md_pstate_fidvid_read(&cfid, &cvid);
    783  1.32    jruoho 
    784  1.32    jruoho 	if (rv != 0)
    785  1.32    jruoho 		return rv;
    786  1.32    jruoho 
    787  1.32    jruoho 	for (i = 0; i < sc->sc_pstate_count; i++) {
    788  1.32    jruoho 
    789  1.32    jruoho 		ps = &sc->sc_pstate[i];
    790  1.32    jruoho 
    791  1.32    jruoho 		if (__predict_false(ps->ps_freq == 0))
    792  1.32    jruoho 			continue;
    793  1.32    jruoho 
    794  1.32    jruoho 		fid = __SHIFTOUT(ps->ps_status, ACPI_0FH_STATUS_FID);
    795  1.32    jruoho 		vid = __SHIFTOUT(ps->ps_status, ACPI_0FH_STATUS_VID);
    796  1.32    jruoho 
    797  1.32    jruoho 		if (cfid == fid && cvid == vid) {
    798  1.32    jruoho 			*freq = ps->ps_freq;
    799  1.32    jruoho 			return 0;
    800  1.32    jruoho 		}
    801  1.32    jruoho 	}
    802  1.32    jruoho 
    803  1.32    jruoho 	return EIO;
    804  1.32    jruoho }
    805  1.32    jruoho 
    806  1.32    jruoho static int
    807  1.32    jruoho acpicpu_md_pstate_fidvid_set(struct acpicpu_pstate *ps)
    808  1.32    jruoho {
    809  1.32    jruoho 	const uint64_t ctrl = ps->ps_control;
    810  1.32    jruoho 	uint32_t cfid, cvid, fid, i, irt;
    811  1.32    jruoho 	uint32_t pll, vco_cfid, vco_fid;
    812  1.32    jruoho 	uint32_t val, vid, vst;
    813  1.32    jruoho 	int rv;
    814  1.32    jruoho 
    815  1.32    jruoho 	rv = acpicpu_md_pstate_fidvid_read(&cfid, &cvid);
    816  1.32    jruoho 
    817  1.32    jruoho 	if (rv != 0)
    818  1.32    jruoho 		return rv;
    819  1.32    jruoho 
    820  1.32    jruoho 	fid = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_FID);
    821  1.32    jruoho 	vid = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_VID);
    822  1.32    jruoho 	irt = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_IRT);
    823  1.32    jruoho 	vst = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_VST);
    824  1.32    jruoho 	pll = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_PLL);
    825  1.32    jruoho 
    826  1.32    jruoho 	vst = vst * 20;
    827  1.32    jruoho 	pll = pll * 1000 / 5;
    828  1.32    jruoho 	irt = 10 * __BIT(irt);
    829  1.32    jruoho 
    830  1.32    jruoho 	/*
    831  1.32    jruoho 	 * Phase 1.
    832  1.32    jruoho 	 */
    833  1.32    jruoho 	while (cvid > vid) {
    834  1.32    jruoho 
    835  1.32    jruoho 		val = 1 << __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_MVS);
    836  1.32    jruoho 		val = (val > cvid) ? 0 : cvid - val;
    837  1.32    jruoho 
    838  1.32    jruoho 		acpicpu_md_pstate_fidvid_write(cfid, val, 1, vst);
    839  1.32    jruoho 		rv = acpicpu_md_pstate_fidvid_read(NULL, &cvid);
    840  1.32    jruoho 
    841  1.32    jruoho 		if (rv != 0)
    842  1.32    jruoho 			return rv;
    843  1.32    jruoho 	}
    844  1.32    jruoho 
    845  1.32    jruoho 	i = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_RVO);
    846  1.32    jruoho 
    847  1.32    jruoho 	for (; i > 0 && cvid > 0; --i) {
    848  1.32    jruoho 
    849  1.32    jruoho 		acpicpu_md_pstate_fidvid_write(cfid, cvid - 1, 1, vst);
    850  1.32    jruoho 		rv = acpicpu_md_pstate_fidvid_read(NULL, &cvid);
    851  1.32    jruoho 
    852  1.32    jruoho 		if (rv != 0)
    853  1.32    jruoho 			return rv;
    854  1.32    jruoho 	}
    855  1.32    jruoho 
    856  1.32    jruoho 	/*
    857  1.32    jruoho 	 * Phase 2.
    858  1.32    jruoho 	 */
    859  1.32    jruoho 	if (cfid != fid) {
    860  1.32    jruoho 
    861  1.32    jruoho 		vco_fid  = FID_TO_VCO_FID(fid);
    862  1.32    jruoho 		vco_cfid = FID_TO_VCO_FID(cfid);
    863  1.32    jruoho 
    864  1.32    jruoho 		while (abs(vco_fid - vco_cfid) > 2) {
    865  1.32    jruoho 
    866  1.32    jruoho 			if (fid <= cfid)
    867  1.32    jruoho 				val = cfid - 2;
    868  1.32    jruoho 			else {
    869  1.32    jruoho 				val = (cfid > 6) ? cfid + 2 :
    870  1.32    jruoho 				    FID_TO_VCO_FID(cfid) + 2;
    871  1.32    jruoho 			}
    872  1.32    jruoho 
    873  1.32    jruoho 			acpicpu_md_pstate_fidvid_write(val, cvid, pll, irt);
    874  1.32    jruoho 			rv = acpicpu_md_pstate_fidvid_read(&cfid, NULL);
    875  1.32    jruoho 
    876  1.32    jruoho 			if (rv != 0)
    877  1.32    jruoho 				return rv;
    878  1.32    jruoho 
    879  1.32    jruoho 			vco_cfid = FID_TO_VCO_FID(cfid);
    880  1.32    jruoho 		}
    881  1.32    jruoho 
    882  1.32    jruoho 		acpicpu_md_pstate_fidvid_write(fid, cvid, pll, irt);
    883  1.32    jruoho 		rv = acpicpu_md_pstate_fidvid_read(&cfid, NULL);
    884  1.32    jruoho 
    885  1.32    jruoho 		if (rv != 0)
    886  1.32    jruoho 			return rv;
    887  1.32    jruoho 	}
    888  1.32    jruoho 
    889  1.32    jruoho 	/*
    890  1.32    jruoho 	 * Phase 3.
    891  1.32    jruoho 	 */
    892  1.32    jruoho 	if (cvid != vid) {
    893  1.32    jruoho 
    894  1.32    jruoho 		acpicpu_md_pstate_fidvid_write(cfid, vid, 1, vst);
    895  1.32    jruoho 		rv = acpicpu_md_pstate_fidvid_read(NULL, &cvid);
    896  1.32    jruoho 
    897  1.32    jruoho 		if (rv != 0)
    898  1.32    jruoho 			return rv;
    899  1.32    jruoho 	}
    900  1.32    jruoho 
    901  1.32    jruoho 	if (cfid != fid || cvid != vid)
    902  1.32    jruoho 		return EIO;
    903  1.32    jruoho 
    904  1.32    jruoho 	return 0;
    905  1.32    jruoho }
    906  1.32    jruoho 
    907  1.32    jruoho static int
    908  1.32    jruoho acpicpu_md_pstate_fidvid_read(uint32_t *cfid, uint32_t *cvid)
    909  1.32    jruoho {
    910  1.32    jruoho 	int i = ACPICPU_P_STATE_RETRY * 100;
    911  1.32    jruoho 	uint64_t val;
    912  1.32    jruoho 
    913  1.32    jruoho 	do {
    914  1.32    jruoho 		val = rdmsr(MSR_0FH_STATUS);
    915  1.32    jruoho 
    916  1.32    jruoho 	} while (__SHIFTOUT(val, MSR_0FH_STATUS_PENDING) != 0 && --i >= 0);
    917  1.32    jruoho 
    918  1.32    jruoho 	if (i == 0)
    919  1.32    jruoho 		return EAGAIN;
    920  1.32    jruoho 
    921  1.32    jruoho 	if (cfid != NULL)
    922  1.32    jruoho 		*cfid = __SHIFTOUT(val, MSR_0FH_STATUS_CFID);
    923  1.32    jruoho 
    924  1.32    jruoho 	if (cvid != NULL)
    925  1.32    jruoho 		*cvid = __SHIFTOUT(val, MSR_0FH_STATUS_CVID);
    926  1.32    jruoho 
    927  1.32    jruoho 	return 0;
    928  1.32    jruoho }
    929  1.32    jruoho 
    930  1.32    jruoho static void
    931  1.32    jruoho acpicpu_md_pstate_fidvid_write(uint32_t fid,
    932  1.32    jruoho     uint32_t vid, uint32_t cnt, uint32_t tmo)
    933  1.32    jruoho {
    934  1.32    jruoho 	struct msr_rw_info msr;
    935  1.32    jruoho 	uint64_t xc;
    936  1.32    jruoho 
    937  1.32    jruoho 	msr.msr_read  = false;
    938  1.32    jruoho 	msr.msr_type  = MSR_0FH_CONTROL;
    939  1.32    jruoho 	msr.msr_value = 0;
    940  1.32    jruoho 
    941  1.32    jruoho 	msr.msr_value |= __SHIFTIN(fid, MSR_0FH_CONTROL_FID);
    942  1.32    jruoho 	msr.msr_value |= __SHIFTIN(vid, MSR_0FH_CONTROL_VID);
    943  1.32    jruoho 	msr.msr_value |= __SHIFTIN(cnt, MSR_0FH_CONTROL_CNT);
    944  1.32    jruoho 	msr.msr_value |= __SHIFTIN(0x1, MSR_0FH_CONTROL_CHG);
    945  1.32    jruoho 
    946  1.32    jruoho 	xc = xc_broadcast(0, (xcfunc_t)x86_msr_xcall, &msr, NULL);
    947  1.32    jruoho 	xc_wait(xc);
    948  1.32    jruoho 
    949  1.32    jruoho 	DELAY(tmo);
    950  1.32    jruoho }
    951  1.32    jruoho 
    952  1.10    jruoho int
    953  1.10    jruoho acpicpu_md_tstate_get(struct acpicpu_softc *sc, uint32_t *percent)
    954  1.10    jruoho {
    955  1.10    jruoho 	struct acpicpu_tstate *ts;
    956  1.14    jruoho 	uint64_t val;
    957  1.10    jruoho 	uint32_t i;
    958  1.10    jruoho 
    959  1.14    jruoho 	val = rdmsr(MSR_THERM_CONTROL);
    960  1.10    jruoho 
    961  1.10    jruoho 	for (i = 0; i < sc->sc_tstate_count; i++) {
    962  1.10    jruoho 
    963  1.10    jruoho 		ts = &sc->sc_tstate[i];
    964  1.10    jruoho 
    965  1.10    jruoho 		if (ts->ts_percent == 0)
    966  1.10    jruoho 			continue;
    967  1.10    jruoho 
    968  1.29    jruoho 		if (val == ts->ts_status) {
    969  1.10    jruoho 			*percent = ts->ts_percent;
    970  1.10    jruoho 			return 0;
    971  1.10    jruoho 		}
    972  1.10    jruoho 	}
    973  1.10    jruoho 
    974  1.10    jruoho 	return EIO;
    975  1.10    jruoho }
    976  1.10    jruoho 
    977  1.10    jruoho int
    978  1.10    jruoho acpicpu_md_tstate_set(struct acpicpu_tstate *ts)
    979  1.10    jruoho {
    980  1.10    jruoho 	struct msr_rw_info msr;
    981  1.14    jruoho 	uint64_t xc;
    982  1.14    jruoho 	int rv = 0;
    983  1.10    jruoho 
    984  1.14    jruoho 	msr.msr_read  = true;
    985  1.14    jruoho 	msr.msr_type  = MSR_THERM_CONTROL;
    986  1.14    jruoho 	msr.msr_value = ts->ts_control;
    987  1.14    jruoho 	msr.msr_mask = __BITS(1, 4);
    988  1.10    jruoho 
    989  1.10    jruoho 	xc = xc_broadcast(0, (xcfunc_t)x86_msr_xcall, &msr, NULL);
    990  1.10    jruoho 	xc_wait(xc);
    991  1.10    jruoho 
    992  1.30    jruoho 	if (ts->ts_status == 0) {
    993  1.30    jruoho 		DELAY(ts->ts_latency);
    994  1.10    jruoho 		return 0;
    995  1.30    jruoho 	}
    996  1.10    jruoho 
    997  1.14    jruoho 	xc = xc_broadcast(0, (xcfunc_t)acpicpu_md_tstate_status, ts, &rv);
    998  1.14    jruoho 	xc_wait(xc);
    999  1.14    jruoho 
   1000  1.14    jruoho 	return rv;
   1001  1.14    jruoho }
   1002  1.14    jruoho 
   1003  1.14    jruoho static void
   1004  1.14    jruoho acpicpu_md_tstate_status(void *arg1, void *arg2)
   1005  1.14    jruoho {
   1006  1.14    jruoho 	struct acpicpu_tstate *ts = arg1;
   1007  1.14    jruoho 	uint64_t val;
   1008  1.14    jruoho 	int i;
   1009  1.14    jruoho 
   1010  1.10    jruoho 	for (i = val = 0; i < ACPICPU_T_STATE_RETRY; i++) {
   1011  1.10    jruoho 
   1012  1.14    jruoho 		val = rdmsr(MSR_THERM_CONTROL);
   1013  1.10    jruoho 
   1014  1.29    jruoho 		if (val == ts->ts_status)
   1015  1.14    jruoho 			return;
   1016  1.10    jruoho 
   1017  1.10    jruoho 		DELAY(ts->ts_latency);
   1018  1.10    jruoho 	}
   1019  1.10    jruoho 
   1020  1.14    jruoho 	*(uintptr_t *)arg2 = EAGAIN;
   1021  1.10    jruoho }
   1022  1.19    jruoho 
   1023  1.19    jruoho /*
   1024  1.19    jruoho  * A kludge for backwards compatibility.
   1025  1.19    jruoho  */
   1026  1.19    jruoho static int
   1027  1.19    jruoho acpicpu_md_pstate_sysctl_init(void)
   1028  1.19    jruoho {
   1029  1.19    jruoho 	const struct sysctlnode	*fnode, *mnode, *rnode;
   1030  1.19    jruoho 	const char *str;
   1031  1.19    jruoho 	int rv;
   1032  1.19    jruoho 
   1033  1.19    jruoho 	switch (cpu_vendor) {
   1034  1.19    jruoho 
   1035  1.19    jruoho 	case CPUVENDOR_IDT:
   1036  1.19    jruoho 	case CPUVENDOR_INTEL:
   1037  1.19    jruoho 		str = "est";
   1038  1.19    jruoho 		break;
   1039  1.19    jruoho 
   1040  1.19    jruoho 	case CPUVENDOR_AMD:
   1041  1.19    jruoho 		str = "powernow";
   1042  1.19    jruoho 		break;
   1043  1.19    jruoho 
   1044  1.19    jruoho 	default:
   1045  1.19    jruoho 		return ENODEV;
   1046  1.19    jruoho 	}
   1047  1.19    jruoho 
   1048  1.19    jruoho 
   1049  1.19    jruoho 	rv = sysctl_createv(&acpicpu_log, 0, NULL, &rnode,
   1050  1.19    jruoho 	    CTLFLAG_PERMANENT, CTLTYPE_NODE, "machdep", NULL,
   1051  1.19    jruoho 	    NULL, 0, NULL, 0, CTL_MACHDEP, CTL_EOL);
   1052  1.19    jruoho 
   1053  1.19    jruoho 	if (rv != 0)
   1054  1.19    jruoho 		goto fail;
   1055  1.19    jruoho 
   1056  1.19    jruoho 	rv = sysctl_createv(&acpicpu_log, 0, &rnode, &mnode,
   1057  1.19    jruoho 	    0, CTLTYPE_NODE, str, NULL,
   1058  1.19    jruoho 	    NULL, 0, NULL, 0, CTL_CREATE, CTL_EOL);
   1059  1.19    jruoho 
   1060  1.19    jruoho 	if (rv != 0)
   1061  1.19    jruoho 		goto fail;
   1062  1.19    jruoho 
   1063  1.19    jruoho 	rv = sysctl_createv(&acpicpu_log, 0, &mnode, &fnode,
   1064  1.19    jruoho 	    0, CTLTYPE_NODE, "frequency", NULL,
   1065  1.19    jruoho 	    NULL, 0, NULL, 0, CTL_CREATE, CTL_EOL);
   1066  1.19    jruoho 
   1067  1.19    jruoho 	if (rv != 0)
   1068  1.19    jruoho 		goto fail;
   1069  1.19    jruoho 
   1070  1.19    jruoho 	rv = sysctl_createv(&acpicpu_log, 0, &fnode, &rnode,
   1071  1.19    jruoho 	    CTLFLAG_READWRITE, CTLTYPE_INT, "target", NULL,
   1072  1.19    jruoho 	    acpicpu_md_pstate_sysctl_set, 0, NULL, 0, CTL_CREATE, CTL_EOL);
   1073  1.19    jruoho 
   1074  1.19    jruoho 	if (rv != 0)
   1075  1.19    jruoho 		goto fail;
   1076  1.19    jruoho 
   1077  1.19    jruoho 	rv = sysctl_createv(&acpicpu_log, 0, &fnode, &rnode,
   1078  1.19    jruoho 	    CTLFLAG_READONLY, CTLTYPE_INT, "current", NULL,
   1079  1.19    jruoho 	    acpicpu_md_pstate_sysctl_get, 0, NULL, 0, CTL_CREATE, CTL_EOL);
   1080  1.19    jruoho 
   1081  1.19    jruoho 	if (rv != 0)
   1082  1.19    jruoho 		goto fail;
   1083  1.19    jruoho 
   1084  1.19    jruoho 	rv = sysctl_createv(&acpicpu_log, 0, &fnode, &rnode,
   1085  1.19    jruoho 	    CTLFLAG_READONLY, CTLTYPE_STRING, "available", NULL,
   1086  1.19    jruoho 	    acpicpu_md_pstate_sysctl_all, 0, NULL, 0, CTL_CREATE, CTL_EOL);
   1087  1.19    jruoho 
   1088  1.19    jruoho 	if (rv != 0)
   1089  1.19    jruoho 		goto fail;
   1090  1.19    jruoho 
   1091  1.19    jruoho 	return 0;
   1092  1.19    jruoho 
   1093  1.19    jruoho fail:
   1094  1.19    jruoho 	if (acpicpu_log != NULL) {
   1095  1.19    jruoho 		sysctl_teardown(&acpicpu_log);
   1096  1.19    jruoho 		acpicpu_log = NULL;
   1097  1.19    jruoho 	}
   1098  1.19    jruoho 
   1099  1.19    jruoho 	return rv;
   1100  1.19    jruoho }
   1101  1.19    jruoho 
   1102  1.19    jruoho static int
   1103  1.19    jruoho acpicpu_md_pstate_sysctl_get(SYSCTLFN_ARGS)
   1104  1.19    jruoho {
   1105  1.19    jruoho 	struct cpu_info *ci = curcpu();
   1106  1.19    jruoho 	struct acpicpu_softc *sc;
   1107  1.19    jruoho 	struct sysctlnode node;
   1108  1.19    jruoho 	uint32_t freq;
   1109  1.19    jruoho 	int err;
   1110  1.19    jruoho 
   1111  1.19    jruoho 	sc = acpicpu_sc[ci->ci_acpiid];
   1112  1.19    jruoho 
   1113  1.19    jruoho 	if (sc == NULL)
   1114  1.19    jruoho 		return ENXIO;
   1115  1.19    jruoho 
   1116  1.19    jruoho 	err = acpicpu_pstate_get(sc, &freq);
   1117  1.19    jruoho 
   1118  1.19    jruoho 	if (err != 0)
   1119  1.19    jruoho 		return err;
   1120  1.19    jruoho 
   1121  1.19    jruoho 	node = *rnode;
   1122  1.19    jruoho 	node.sysctl_data = &freq;
   1123  1.19    jruoho 
   1124  1.19    jruoho 	err = sysctl_lookup(SYSCTLFN_CALL(&node));
   1125  1.19    jruoho 
   1126  1.19    jruoho 	if (err != 0 || newp == NULL)
   1127  1.19    jruoho 		return err;
   1128  1.19    jruoho 
   1129  1.19    jruoho 	return 0;
   1130  1.19    jruoho }
   1131  1.19    jruoho 
   1132  1.19    jruoho static int
   1133  1.19    jruoho acpicpu_md_pstate_sysctl_set(SYSCTLFN_ARGS)
   1134  1.19    jruoho {
   1135  1.19    jruoho 	struct cpu_info *ci = curcpu();
   1136  1.19    jruoho 	struct acpicpu_softc *sc;
   1137  1.19    jruoho 	struct sysctlnode node;
   1138  1.19    jruoho 	uint32_t freq;
   1139  1.19    jruoho 	int err;
   1140  1.19    jruoho 
   1141  1.19    jruoho 	sc = acpicpu_sc[ci->ci_acpiid];
   1142  1.19    jruoho 
   1143  1.19    jruoho 	if (sc == NULL)
   1144  1.19    jruoho 		return ENXIO;
   1145  1.19    jruoho 
   1146  1.19    jruoho 	err = acpicpu_pstate_get(sc, &freq);
   1147  1.19    jruoho 
   1148  1.19    jruoho 	if (err != 0)
   1149  1.19    jruoho 		return err;
   1150  1.19    jruoho 
   1151  1.19    jruoho 	node = *rnode;
   1152  1.19    jruoho 	node.sysctl_data = &freq;
   1153  1.19    jruoho 
   1154  1.19    jruoho 	err = sysctl_lookup(SYSCTLFN_CALL(&node));
   1155  1.19    jruoho 
   1156  1.19    jruoho 	if (err != 0 || newp == NULL)
   1157  1.19    jruoho 		return err;
   1158  1.19    jruoho 
   1159  1.19    jruoho 	err = acpicpu_pstate_set(sc, freq);
   1160  1.19    jruoho 
   1161  1.19    jruoho 	if (err != 0)
   1162  1.19    jruoho 		return err;
   1163  1.19    jruoho 
   1164  1.19    jruoho 	return 0;
   1165  1.19    jruoho }
   1166  1.19    jruoho 
   1167  1.19    jruoho static int
   1168  1.19    jruoho acpicpu_md_pstate_sysctl_all(SYSCTLFN_ARGS)
   1169  1.19    jruoho {
   1170  1.19    jruoho 	struct cpu_info *ci = curcpu();
   1171  1.19    jruoho 	struct acpicpu_softc *sc;
   1172  1.19    jruoho 	struct sysctlnode node;
   1173  1.19    jruoho 	char buf[1024];
   1174  1.19    jruoho 	size_t len;
   1175  1.19    jruoho 	uint32_t i;
   1176  1.19    jruoho 	int err;
   1177  1.19    jruoho 
   1178  1.19    jruoho 	sc = acpicpu_sc[ci->ci_acpiid];
   1179  1.19    jruoho 
   1180  1.19    jruoho 	if (sc == NULL)
   1181  1.19    jruoho 		return ENXIO;
   1182  1.19    jruoho 
   1183  1.19    jruoho 	(void)memset(&buf, 0, sizeof(buf));
   1184  1.19    jruoho 
   1185  1.19    jruoho 	mutex_enter(&sc->sc_mtx);
   1186  1.19    jruoho 
   1187  1.19    jruoho 	for (len = 0, i = sc->sc_pstate_max; i < sc->sc_pstate_count; i++) {
   1188  1.19    jruoho 
   1189  1.19    jruoho 		if (sc->sc_pstate[i].ps_freq == 0)
   1190  1.19    jruoho 			continue;
   1191  1.19    jruoho 
   1192  1.19    jruoho 		len += snprintf(buf + len, sizeof(buf) - len, "%u%s",
   1193  1.19    jruoho 		    sc->sc_pstate[i].ps_freq,
   1194  1.19    jruoho 		    i < (sc->sc_pstate_count - 1) ? " " : "");
   1195  1.19    jruoho 	}
   1196  1.19    jruoho 
   1197  1.19    jruoho 	mutex_exit(&sc->sc_mtx);
   1198  1.19    jruoho 
   1199  1.19    jruoho 	node = *rnode;
   1200  1.19    jruoho 	node.sysctl_data = buf;
   1201  1.19    jruoho 
   1202  1.19    jruoho 	err = sysctl_lookup(SYSCTLFN_CALL(&node));
   1203  1.19    jruoho 
   1204  1.19    jruoho 	if (err != 0 || newp == NULL)
   1205  1.19    jruoho 		return err;
   1206  1.19    jruoho 
   1207  1.19    jruoho 	return 0;
   1208  1.19    jruoho }
   1209  1.19    jruoho 
   1210