acpi_cpu_md.c revision 1.46 1 1.46 jruoho /* $NetBSD: acpi_cpu_md.c,v 1.46 2011/02/25 17:23:34 jruoho Exp $ */
2 1.1 jruoho
3 1.1 jruoho /*-
4 1.41 jruoho * Copyright (c) 2010, 2011 Jukka Ruohonen <jruohonen (at) iki.fi>
5 1.1 jruoho * All rights reserved.
6 1.1 jruoho *
7 1.1 jruoho * Redistribution and use in source and binary forms, with or without
8 1.1 jruoho * modification, are permitted provided that the following conditions
9 1.1 jruoho * are met:
10 1.1 jruoho *
11 1.1 jruoho * 1. Redistributions of source code must retain the above copyright
12 1.1 jruoho * notice, this list of conditions and the following disclaimer.
13 1.1 jruoho * 2. Redistributions in binary form must reproduce the above copyright
14 1.1 jruoho * notice, this list of conditions and the following disclaimer in the
15 1.1 jruoho * documentation and/or other materials provided with the distribution.
16 1.1 jruoho *
17 1.1 jruoho * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18 1.1 jruoho * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 1.1 jruoho * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 1.1 jruoho * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21 1.1 jruoho * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 1.1 jruoho * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 1.1 jruoho * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 1.1 jruoho * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 1.1 jruoho * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 1.1 jruoho * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 1.1 jruoho * SUCH DAMAGE.
28 1.1 jruoho */
29 1.1 jruoho #include <sys/cdefs.h>
30 1.46 jruoho __KERNEL_RCSID(0, "$NetBSD: acpi_cpu_md.c,v 1.46 2011/02/25 17:23:34 jruoho Exp $");
31 1.1 jruoho
32 1.1 jruoho #include <sys/param.h>
33 1.1 jruoho #include <sys/bus.h>
34 1.1 jruoho #include <sys/kcore.h>
35 1.5 jruoho #include <sys/sysctl.h>
36 1.4 jruoho #include <sys/xcall.h>
37 1.1 jruoho
38 1.1 jruoho #include <x86/cpu.h>
39 1.5 jruoho #include <x86/cpufunc.h>
40 1.5 jruoho #include <x86/cputypes.h>
41 1.1 jruoho #include <x86/cpuvar.h>
42 1.5 jruoho #include <x86/cpu_msr.h>
43 1.1 jruoho #include <x86/machdep.h>
44 1.1 jruoho
45 1.1 jruoho #include <dev/acpi/acpica.h>
46 1.1 jruoho #include <dev/acpi/acpi_cpu.h>
47 1.1 jruoho
48 1.12 jruoho #include <dev/pci/pcivar.h>
49 1.12 jruoho #include <dev/pci/pcidevs.h>
50 1.12 jruoho
51 1.38 jruoho #include <machine/acpi_machdep.h>
52 1.38 jruoho
53 1.35 jruoho /*
54 1.35 jruoho * AMD C1E.
55 1.35 jruoho */
56 1.35 jruoho #define MSR_CMPHALT 0xc0010055
57 1.35 jruoho
58 1.35 jruoho #define MSR_CMPHALT_SMI __BIT(27)
59 1.35 jruoho #define MSR_CMPHALT_C1E __BIT(28)
60 1.35 jruoho #define MSR_CMPHALT_BMSTS __BIT(29)
61 1.33 jruoho
62 1.32 jruoho /*
63 1.40 jmcneill * AMD families 10h, 11h, and 14h
64 1.32 jruoho */
65 1.32 jruoho #define MSR_10H_LIMIT 0xc0010061
66 1.32 jruoho #define MSR_10H_CONTROL 0xc0010062
67 1.32 jruoho #define MSR_10H_STATUS 0xc0010063
68 1.32 jruoho #define MSR_10H_CONFIG 0xc0010064
69 1.22 jruoho
70 1.32 jruoho /*
71 1.32 jruoho * AMD family 0Fh.
72 1.32 jruoho */
73 1.32 jruoho #define MSR_0FH_CONTROL 0xc0010041
74 1.17 jruoho #define MSR_0FH_STATUS 0xc0010042
75 1.17 jruoho
76 1.32 jruoho #define MSR_0FH_STATUS_CFID __BITS( 0, 5)
77 1.32 jruoho #define MSR_0FH_STATUS_CVID __BITS(32, 36)
78 1.32 jruoho #define MSR_0FH_STATUS_PENDING __BITS(31, 31)
79 1.32 jruoho
80 1.32 jruoho #define MSR_0FH_CONTROL_FID __BITS( 0, 5)
81 1.32 jruoho #define MSR_0FH_CONTROL_VID __BITS( 8, 12)
82 1.32 jruoho #define MSR_0FH_CONTROL_CHG __BITS(16, 16)
83 1.32 jruoho #define MSR_0FH_CONTROL_CNT __BITS(32, 51)
84 1.32 jruoho
85 1.32 jruoho #define ACPI_0FH_STATUS_FID __BITS( 0, 5)
86 1.32 jruoho #define ACPI_0FH_STATUS_VID __BITS( 6, 10)
87 1.32 jruoho
88 1.32 jruoho #define ACPI_0FH_CONTROL_FID __BITS( 0, 5)
89 1.32 jruoho #define ACPI_0FH_CONTROL_VID __BITS( 6, 10)
90 1.32 jruoho #define ACPI_0FH_CONTROL_VST __BITS(11, 17)
91 1.32 jruoho #define ACPI_0FH_CONTROL_MVS __BITS(18, 19)
92 1.32 jruoho #define ACPI_0FH_CONTROL_PLL __BITS(20, 26)
93 1.32 jruoho #define ACPI_0FH_CONTROL_RVO __BITS(28, 29)
94 1.32 jruoho #define ACPI_0FH_CONTROL_IRT __BITS(30, 31)
95 1.32 jruoho
96 1.32 jruoho #define FID_TO_VCO_FID(fidd) (((fid) < 8) ? (8 + ((fid) << 1)) : (fid))
97 1.17 jruoho
98 1.5 jruoho static char native_idle_text[16];
99 1.5 jruoho void (*native_idle)(void) = NULL;
100 1.1 jruoho
101 1.43 jruoho static int acpicpu_md_quirk_piix4(struct pci_attach_args *);
102 1.41 jruoho static void acpicpu_md_pstate_percent_reset(struct acpicpu_softc *);
103 1.41 jruoho static void acpicpu_md_pstate_percent_status(void *, void *);
104 1.19 jruoho static void acpicpu_md_pstate_status(void *, void *);
105 1.32 jruoho static int acpicpu_md_pstate_fidvid_get(struct acpicpu_softc *,
106 1.32 jruoho uint32_t *);
107 1.32 jruoho static int acpicpu_md_pstate_fidvid_set(struct acpicpu_pstate *);
108 1.32 jruoho static int acpicpu_md_pstate_fidvid_read(uint32_t *, uint32_t *);
109 1.32 jruoho static void acpicpu_md_pstate_fidvid_write(uint32_t, uint32_t,
110 1.32 jruoho uint32_t, uint32_t);
111 1.19 jruoho static void acpicpu_md_tstate_status(void *, void *);
112 1.19 jruoho static int acpicpu_md_pstate_sysctl_init(void);
113 1.5 jruoho static int acpicpu_md_pstate_sysctl_get(SYSCTLFN_PROTO);
114 1.5 jruoho static int acpicpu_md_pstate_sysctl_set(SYSCTLFN_PROTO);
115 1.5 jruoho static int acpicpu_md_pstate_sysctl_all(SYSCTLFN_PROTO);
116 1.5 jruoho
117 1.5 jruoho extern struct acpicpu_softc **acpicpu_sc;
118 1.35 jruoho static bool acpicpu_pstate_status = false;
119 1.19 jruoho static struct sysctllog *acpicpu_log = NULL;
120 1.1 jruoho
121 1.1 jruoho uint32_t
122 1.1 jruoho acpicpu_md_cap(void)
123 1.1 jruoho {
124 1.1 jruoho struct cpu_info *ci = curcpu();
125 1.44 jruoho uint32_t regs[4];
126 1.1 jruoho uint32_t val = 0;
127 1.1 jruoho
128 1.17 jruoho if (cpu_vendor != CPUVENDOR_IDT &&
129 1.17 jruoho cpu_vendor != CPUVENDOR_INTEL)
130 1.1 jruoho return val;
131 1.1 jruoho
132 1.1 jruoho /*
133 1.1 jruoho * Basic SMP C-states (required for _CST).
134 1.1 jruoho */
135 1.1 jruoho val |= ACPICPU_PDC_C_C1PT | ACPICPU_PDC_C_C2C3;
136 1.1 jruoho
137 1.1 jruoho /*
138 1.1 jruoho * If MONITOR/MWAIT is available, announce
139 1.1 jruoho * support for native instructions in all C-states.
140 1.1 jruoho */
141 1.1 jruoho if ((ci->ci_feat_val[1] & CPUID2_MONITOR) != 0)
142 1.1 jruoho val |= ACPICPU_PDC_C_C1_FFH | ACPICPU_PDC_C_C2C3_FFH;
143 1.1 jruoho
144 1.5 jruoho /*
145 1.10 jruoho * Set native P- and T-states, if available.
146 1.5 jruoho */
147 1.5 jruoho if ((ci->ci_feat_val[1] & CPUID2_EST) != 0)
148 1.5 jruoho val |= ACPICPU_PDC_P_FFH;
149 1.5 jruoho
150 1.10 jruoho if ((ci->ci_feat_val[0] & CPUID_ACPI) != 0)
151 1.10 jruoho val |= ACPICPU_PDC_T_FFH;
152 1.10 jruoho
153 1.44 jruoho /*
154 1.44 jruoho * Declare support for APERF and MPERF.
155 1.44 jruoho */
156 1.44 jruoho if (cpuid_level >= 0x06) {
157 1.44 jruoho
158 1.44 jruoho x86_cpuid(0x00000006, regs);
159 1.44 jruoho
160 1.44 jruoho if ((regs[2] & CPUID_DSPM_HWF) != 0)
161 1.44 jruoho val |= ACPICPU_PDC_P_HW;
162 1.44 jruoho }
163 1.44 jruoho
164 1.1 jruoho return val;
165 1.1 jruoho }
166 1.1 jruoho
167 1.1 jruoho uint32_t
168 1.43 jruoho acpicpu_md_flags(void)
169 1.1 jruoho {
170 1.1 jruoho struct cpu_info *ci = curcpu();
171 1.12 jruoho struct pci_attach_args pa;
172 1.18 jruoho uint32_t family, val = 0;
173 1.21 jruoho uint32_t regs[4];
174 1.1 jruoho
175 1.38 jruoho if (acpi_md_ncpus() == 1)
176 1.1 jruoho val |= ACPICPU_FLAG_C_BM;
177 1.1 jruoho
178 1.1 jruoho if ((ci->ci_feat_val[1] & CPUID2_MONITOR) != 0)
179 1.5 jruoho val |= ACPICPU_FLAG_C_FFH;
180 1.1 jruoho
181 1.39 jruoho /*
182 1.39 jruoho * By default, assume that the local APIC timer
183 1.39 jruoho * as well as TSC are stalled during C3 sleep.
184 1.39 jruoho */
185 1.25 jruoho val |= ACPICPU_FLAG_C_APIC | ACPICPU_FLAG_C_TSC;
186 1.22 jruoho
187 1.1 jruoho switch (cpu_vendor) {
188 1.1 jruoho
189 1.17 jruoho case CPUVENDOR_IDT:
190 1.22 jruoho
191 1.22 jruoho if ((ci->ci_feat_val[1] & CPUID2_EST) != 0)
192 1.22 jruoho val |= ACPICPU_FLAG_P_FFH;
193 1.22 jruoho
194 1.22 jruoho if ((ci->ci_feat_val[0] & CPUID_ACPI) != 0)
195 1.22 jruoho val |= ACPICPU_FLAG_T_FFH;
196 1.22 jruoho
197 1.22 jruoho break;
198 1.22 jruoho
199 1.1 jruoho case CPUVENDOR_INTEL:
200 1.17 jruoho
201 1.39 jruoho /*
202 1.39 jruoho * Bus master control and arbitration should be
203 1.39 jruoho * available on all supported Intel CPUs (to be
204 1.39 jruoho * sure, this is double-checked later from the
205 1.39 jruoho * firmware data). These flags imply that it is
206 1.39 jruoho * not necessary to flush caches before C3 state.
207 1.39 jruoho */
208 1.22 jruoho val |= ACPICPU_FLAG_C_BM | ACPICPU_FLAG_C_ARB;
209 1.22 jruoho
210 1.39 jruoho /*
211 1.39 jruoho * Check if we can use "native", MSR-based,
212 1.39 jruoho * access. If not, we have to resort to I/O.
213 1.39 jruoho */
214 1.5 jruoho if ((ci->ci_feat_val[1] & CPUID2_EST) != 0)
215 1.5 jruoho val |= ACPICPU_FLAG_P_FFH;
216 1.5 jruoho
217 1.10 jruoho if ((ci->ci_feat_val[0] & CPUID_ACPI) != 0)
218 1.10 jruoho val |= ACPICPU_FLAG_T_FFH;
219 1.10 jruoho
220 1.22 jruoho /*
221 1.25 jruoho * Check whether MSR_APERF, MSR_MPERF, and Turbo
222 1.25 jruoho * Boost are available. Also see if we might have
223 1.25 jruoho * an invariant local APIC timer ("ARAT").
224 1.23 jruoho */
225 1.23 jruoho if (cpuid_level >= 0x06) {
226 1.23 jruoho
227 1.44 jruoho x86_cpuid(0x00000006, regs);
228 1.23 jruoho
229 1.34 jruoho if ((regs[2] & CPUID_DSPM_HWF) != 0)
230 1.23 jruoho val |= ACPICPU_FLAG_P_HW;
231 1.23 jruoho
232 1.34 jruoho if ((regs[0] & CPUID_DSPM_IDA) != 0)
233 1.24 jruoho val |= ACPICPU_FLAG_P_TURBO;
234 1.25 jruoho
235 1.34 jruoho if ((regs[0] & CPUID_DSPM_ARAT) != 0)
236 1.25 jruoho val &= ~ACPICPU_FLAG_C_APIC;
237 1.23 jruoho }
238 1.23 jruoho
239 1.23 jruoho /*
240 1.22 jruoho * Detect whether TSC is invariant. If it is not,
241 1.22 jruoho * we keep the flag to note that TSC will not run
242 1.22 jruoho * at constant rate. Depending on the CPU, this may
243 1.22 jruoho * affect P- and T-state changes, but especially
244 1.22 jruoho * relevant are C-states; with variant TSC, states
245 1.24 jruoho * larger than C1 may completely stop the counter.
246 1.22 jruoho */
247 1.22 jruoho x86_cpuid(0x80000000, regs);
248 1.22 jruoho
249 1.22 jruoho if (regs[0] >= 0x80000007) {
250 1.22 jruoho
251 1.22 jruoho x86_cpuid(0x80000007, regs);
252 1.22 jruoho
253 1.32 jruoho if ((regs[3] & __BIT(8)) != 0)
254 1.22 jruoho val &= ~ACPICPU_FLAG_C_TSC;
255 1.22 jruoho }
256 1.22 jruoho
257 1.17 jruoho break;
258 1.12 jruoho
259 1.17 jruoho case CPUVENDOR_AMD:
260 1.17 jruoho
261 1.32 jruoho x86_cpuid(0x80000000, regs);
262 1.32 jruoho
263 1.32 jruoho if (regs[0] < 0x80000007)
264 1.32 jruoho break;
265 1.32 jruoho
266 1.32 jruoho x86_cpuid(0x80000007, regs);
267 1.32 jruoho
268 1.18 jruoho family = CPUID2FAMILY(ci->ci_signature);
269 1.18 jruoho
270 1.18 jruoho if (family == 0xf)
271 1.18 jruoho family += CPUID2EXTFAMILY(ci->ci_signature);
272 1.18 jruoho
273 1.32 jruoho switch (family) {
274 1.1 jruoho
275 1.22 jruoho case 0x0f:
276 1.32 jruoho
277 1.45 jruoho /*
278 1.45 jruoho * Evaluate support for the "FID/VID
279 1.45 jruoho * algorithm" also used by powernow(4).
280 1.45 jruoho */
281 1.32 jruoho if ((regs[3] & CPUID_APM_FID) == 0)
282 1.32 jruoho break;
283 1.32 jruoho
284 1.32 jruoho if ((regs[3] & CPUID_APM_VID) == 0)
285 1.32 jruoho break;
286 1.32 jruoho
287 1.32 jruoho val |= ACPICPU_FLAG_P_FFH | ACPICPU_FLAG_P_FIDVID;
288 1.32 jruoho break;
289 1.32 jruoho
290 1.17 jruoho case 0x10:
291 1.17 jruoho case 0x11:
292 1.40 jmcneill val |= ACPICPU_FLAG_C_C1E;
293 1.40 jmcneill /* FALLTHROUGH */
294 1.40 jmcneill
295 1.40 jmcneill case 0x14: /* AMD Fusion */
296 1.1 jruoho
297 1.42 jruoho /*
298 1.42 jruoho * Like with Intel, detect invariant TSC,
299 1.42 jruoho * MSR-based P-states, and AMD's "turbo"
300 1.42 jruoho * (Core Performance Boost), respectively.
301 1.42 jruoho */
302 1.22 jruoho if ((regs[3] & CPUID_APM_TSC) != 0)
303 1.22 jruoho val &= ~ACPICPU_FLAG_C_TSC;
304 1.22 jruoho
305 1.21 jruoho if ((regs[3] & CPUID_APM_HWP) != 0)
306 1.17 jruoho val |= ACPICPU_FLAG_P_FFH;
307 1.21 jruoho
308 1.21 jruoho if ((regs[3] & CPUID_APM_CPB) != 0)
309 1.21 jruoho val |= ACPICPU_FLAG_P_TURBO;
310 1.35 jruoho
311 1.42 jruoho /*
312 1.42 jruoho * Also check for APERF and MPERF,
313 1.42 jruoho * first available in the family 10h.
314 1.42 jruoho */
315 1.42 jruoho if (cpuid_level >= 0x06) {
316 1.42 jruoho
317 1.42 jruoho x86_cpuid(0x00000006, regs);
318 1.42 jruoho
319 1.44 jruoho if ((regs[2] & CPUID_DSPM_HWF) != 0)
320 1.42 jruoho val |= ACPICPU_FLAG_P_HW;
321 1.42 jruoho }
322 1.42 jruoho
323 1.35 jruoho break;
324 1.17 jruoho }
325 1.1 jruoho
326 1.1 jruoho break;
327 1.1 jruoho }
328 1.1 jruoho
329 1.12 jruoho /*
330 1.12 jruoho * There are several erratums for PIIX4.
331 1.12 jruoho */
332 1.43 jruoho if (pci_find_device(&pa, acpicpu_md_quirk_piix4) != 0)
333 1.12 jruoho val |= ACPICPU_FLAG_PIIX4;
334 1.12 jruoho
335 1.1 jruoho return val;
336 1.1 jruoho }
337 1.1 jruoho
338 1.12 jruoho static int
339 1.43 jruoho acpicpu_md_quirk_piix4(struct pci_attach_args *pa)
340 1.12 jruoho {
341 1.12 jruoho
342 1.12 jruoho /*
343 1.12 jruoho * XXX: The pci_find_device(9) function only
344 1.12 jruoho * deals with attached devices. Change this
345 1.12 jruoho * to use something like pci_device_foreach().
346 1.12 jruoho */
347 1.12 jruoho if (PCI_VENDOR(pa->pa_id) != PCI_VENDOR_INTEL)
348 1.12 jruoho return 0;
349 1.12 jruoho
350 1.12 jruoho if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_82371AB_ISA ||
351 1.12 jruoho PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_82440MX_PMC)
352 1.12 jruoho return 1;
353 1.12 jruoho
354 1.12 jruoho return 0;
355 1.12 jruoho }
356 1.12 jruoho
357 1.35 jruoho void
358 1.43 jruoho acpicpu_md_quirk_c1e(void)
359 1.35 jruoho {
360 1.35 jruoho const uint64_t c1e = MSR_CMPHALT_SMI | MSR_CMPHALT_C1E;
361 1.35 jruoho uint64_t val;
362 1.35 jruoho
363 1.35 jruoho val = rdmsr(MSR_CMPHALT);
364 1.35 jruoho
365 1.35 jruoho if ((val & c1e) != 0)
366 1.35 jruoho wrmsr(MSR_CMPHALT, val & ~c1e);
367 1.35 jruoho }
368 1.35 jruoho
369 1.1 jruoho int
370 1.43 jruoho acpicpu_md_cstate_start(struct acpicpu_softc *sc)
371 1.1 jruoho {
372 1.1 jruoho const size_t size = sizeof(native_idle_text);
373 1.31 jruoho struct acpicpu_cstate *cs;
374 1.31 jruoho bool ipi = false;
375 1.31 jruoho int i;
376 1.1 jruoho
377 1.45 jruoho /*
378 1.45 jruoho * Save the cpu_idle(9) loop used by default.
379 1.45 jruoho */
380 1.1 jruoho x86_cpu_idle_get(&native_idle, native_idle_text, size);
381 1.31 jruoho
382 1.31 jruoho for (i = 0; i < ACPI_C_STATE_COUNT; i++) {
383 1.31 jruoho
384 1.31 jruoho cs = &sc->sc_cstate[i];
385 1.31 jruoho
386 1.31 jruoho if (cs->cs_method == ACPICPU_C_STATE_HALT) {
387 1.31 jruoho ipi = true;
388 1.31 jruoho break;
389 1.31 jruoho }
390 1.31 jruoho }
391 1.31 jruoho
392 1.31 jruoho x86_cpu_idle_set(acpicpu_cstate_idle, "acpi", ipi);
393 1.1 jruoho
394 1.1 jruoho return 0;
395 1.1 jruoho }
396 1.1 jruoho
397 1.1 jruoho int
398 1.43 jruoho acpicpu_md_cstate_stop(void)
399 1.1 jruoho {
400 1.4 jruoho uint64_t xc;
401 1.31 jruoho bool ipi;
402 1.1 jruoho
403 1.31 jruoho ipi = (native_idle != x86_cpu_idle_halt) ? false : true;
404 1.31 jruoho x86_cpu_idle_set(native_idle, native_idle_text, ipi);
405 1.1 jruoho
406 1.4 jruoho /*
407 1.4 jruoho * Run a cross-call to ensure that all CPUs are
408 1.4 jruoho * out from the ACPI idle-loop before detachment.
409 1.4 jruoho */
410 1.4 jruoho xc = xc_broadcast(0, (xcfunc_t)nullop, NULL, NULL);
411 1.4 jruoho xc_wait(xc);
412 1.1 jruoho
413 1.1 jruoho return 0;
414 1.1 jruoho }
415 1.1 jruoho
416 1.3 jruoho /*
417 1.31 jruoho * Called with interrupts disabled.
418 1.31 jruoho * Caller should enable interrupts after return.
419 1.3 jruoho */
420 1.1 jruoho void
421 1.43 jruoho acpicpu_md_cstate_enter(int method, int state)
422 1.1 jruoho {
423 1.3 jruoho struct cpu_info *ci = curcpu();
424 1.1 jruoho
425 1.1 jruoho switch (method) {
426 1.1 jruoho
427 1.1 jruoho case ACPICPU_C_STATE_FFH:
428 1.3 jruoho
429 1.3 jruoho x86_enable_intr();
430 1.3 jruoho x86_monitor(&ci->ci_want_resched, 0, 0);
431 1.3 jruoho
432 1.31 jruoho if (__predict_false(ci->ci_want_resched != 0))
433 1.3 jruoho return;
434 1.3 jruoho
435 1.1 jruoho x86_mwait((state - 1) << 4, 0);
436 1.1 jruoho break;
437 1.1 jruoho
438 1.1 jruoho case ACPICPU_C_STATE_HALT:
439 1.3 jruoho
440 1.31 jruoho if (__predict_false(ci->ci_want_resched != 0))
441 1.3 jruoho return;
442 1.3 jruoho
443 1.1 jruoho x86_stihlt();
444 1.1 jruoho break;
445 1.1 jruoho }
446 1.1 jruoho }
447 1.5 jruoho
448 1.5 jruoho int
449 1.41 jruoho acpicpu_md_pstate_start(struct acpicpu_softc *sc)
450 1.5 jruoho {
451 1.20 jruoho const uint64_t est = __BIT(16);
452 1.20 jruoho uint64_t val;
453 1.20 jruoho
454 1.41 jruoho if ((sc->sc_flags & ACPICPU_FLAG_P) == 0)
455 1.41 jruoho return ENODEV;
456 1.41 jruoho
457 1.20 jruoho switch (cpu_vendor) {
458 1.20 jruoho
459 1.20 jruoho case CPUVENDOR_IDT:
460 1.20 jruoho case CPUVENDOR_INTEL:
461 1.20 jruoho
462 1.41 jruoho /*
463 1.41 jruoho * Make sure EST is enabled.
464 1.41 jruoho */
465 1.20 jruoho val = rdmsr(MSR_MISC_ENABLE);
466 1.20 jruoho
467 1.20 jruoho if ((val & est) == 0) {
468 1.20 jruoho
469 1.20 jruoho val |= est;
470 1.20 jruoho
471 1.20 jruoho wrmsr(MSR_MISC_ENABLE, val);
472 1.20 jruoho val = rdmsr(MSR_MISC_ENABLE);
473 1.20 jruoho
474 1.20 jruoho if ((val & est) == 0)
475 1.20 jruoho return ENOTTY;
476 1.20 jruoho }
477 1.42 jruoho }
478 1.41 jruoho
479 1.42 jruoho /*
480 1.42 jruoho * Reset the APERF and MPERF counters.
481 1.42 jruoho */
482 1.42 jruoho if ((sc->sc_flags & ACPICPU_FLAG_P_HW) != 0)
483 1.42 jruoho acpicpu_md_pstate_percent_reset(sc);
484 1.9 jruoho
485 1.19 jruoho return acpicpu_md_pstate_sysctl_init();
486 1.5 jruoho }
487 1.5 jruoho
488 1.5 jruoho int
489 1.5 jruoho acpicpu_md_pstate_stop(void)
490 1.5 jruoho {
491 1.5 jruoho
492 1.19 jruoho if (acpicpu_log != NULL)
493 1.19 jruoho sysctl_teardown(&acpicpu_log);
494 1.5 jruoho
495 1.5 jruoho return 0;
496 1.5 jruoho }
497 1.5 jruoho
498 1.5 jruoho int
499 1.15 jruoho acpicpu_md_pstate_pss(struct acpicpu_softc *sc)
500 1.5 jruoho {
501 1.15 jruoho struct acpicpu_pstate *ps, msr;
502 1.17 jruoho struct cpu_info *ci = curcpu();
503 1.18 jruoho uint32_t family, i = 0;
504 1.13 jruoho
505 1.15 jruoho (void)memset(&msr, 0, sizeof(struct acpicpu_pstate));
506 1.13 jruoho
507 1.5 jruoho switch (cpu_vendor) {
508 1.5 jruoho
509 1.17 jruoho case CPUVENDOR_IDT:
510 1.5 jruoho case CPUVENDOR_INTEL:
511 1.33 jruoho
512 1.33 jruoho /*
513 1.33 jruoho * If the so-called Turbo Boost is present,
514 1.33 jruoho * the P0-state is always the "turbo state".
515 1.33 jruoho *
516 1.33 jruoho * For discussion, see:
517 1.33 jruoho *
518 1.33 jruoho * Intel Corporation: Intel Turbo Boost Technology
519 1.33 jruoho * in Intel Core(tm) Microarchitectures (Nehalem)
520 1.33 jruoho * Based Processors. White Paper, November 2008.
521 1.33 jruoho */
522 1.33 jruoho if ((sc->sc_flags & ACPICPU_FLAG_P_TURBO) != 0)
523 1.33 jruoho sc->sc_pstate[0].ps_flags |= ACPICPU_FLAG_P_TURBO;
524 1.33 jruoho
525 1.15 jruoho msr.ps_control_addr = MSR_PERF_CTL;
526 1.15 jruoho msr.ps_control_mask = __BITS(0, 15);
527 1.15 jruoho
528 1.15 jruoho msr.ps_status_addr = MSR_PERF_STATUS;
529 1.15 jruoho msr.ps_status_mask = __BITS(0, 15);
530 1.13 jruoho break;
531 1.13 jruoho
532 1.13 jruoho case CPUVENDOR_AMD:
533 1.13 jruoho
534 1.33 jruoho if ((sc->sc_flags & ACPICPU_FLAG_P_FIDVID) != 0)
535 1.33 jruoho msr.ps_flags |= ACPICPU_FLAG_P_FIDVID;
536 1.33 jruoho
537 1.18 jruoho family = CPUID2FAMILY(ci->ci_signature);
538 1.18 jruoho
539 1.18 jruoho if (family == 0xf)
540 1.18 jruoho family += CPUID2EXTFAMILY(ci->ci_signature);
541 1.18 jruoho
542 1.18 jruoho switch (family) {
543 1.17 jruoho
544 1.32 jruoho case 0x0f:
545 1.32 jruoho msr.ps_control_addr = MSR_0FH_CONTROL;
546 1.32 jruoho msr.ps_status_addr = MSR_0FH_STATUS;
547 1.32 jruoho break;
548 1.32 jruoho
549 1.17 jruoho case 0x10:
550 1.17 jruoho case 0x11:
551 1.40 jmcneill case 0x14: /* AMD Fusion */
552 1.17 jruoho msr.ps_control_addr = MSR_10H_CONTROL;
553 1.17 jruoho msr.ps_control_mask = __BITS(0, 2);
554 1.17 jruoho
555 1.17 jruoho msr.ps_status_addr = MSR_10H_STATUS;
556 1.17 jruoho msr.ps_status_mask = __BITS(0, 2);
557 1.17 jruoho break;
558 1.17 jruoho
559 1.17 jruoho default:
560 1.17 jruoho
561 1.17 jruoho if ((sc->sc_flags & ACPICPU_FLAG_P_XPSS) == 0)
562 1.17 jruoho return EOPNOTSUPP;
563 1.17 jruoho }
564 1.13 jruoho
565 1.13 jruoho break;
566 1.13 jruoho
567 1.13 jruoho default:
568 1.13 jruoho return ENODEV;
569 1.13 jruoho }
570 1.5 jruoho
571 1.26 jruoho /*
572 1.26 jruoho * Fill the P-state structures with MSR addresses that are
573 1.27 jruoho * known to be correct. If we do not know the addresses,
574 1.27 jruoho * leave the values intact. If a vendor uses XPSS, we do
575 1.39 jruoho * not necessarily need to do anything to support new CPUs.
576 1.26 jruoho */
577 1.15 jruoho while (i < sc->sc_pstate_count) {
578 1.15 jruoho
579 1.15 jruoho ps = &sc->sc_pstate[i];
580 1.15 jruoho
581 1.32 jruoho if (msr.ps_flags != 0)
582 1.32 jruoho ps->ps_flags |= msr.ps_flags;
583 1.32 jruoho
584 1.27 jruoho if (msr.ps_status_addr != 0)
585 1.15 jruoho ps->ps_status_addr = msr.ps_status_addr;
586 1.15 jruoho
587 1.27 jruoho if (msr.ps_status_mask != 0)
588 1.15 jruoho ps->ps_status_mask = msr.ps_status_mask;
589 1.15 jruoho
590 1.27 jruoho if (msr.ps_control_addr != 0)
591 1.15 jruoho ps->ps_control_addr = msr.ps_control_addr;
592 1.15 jruoho
593 1.27 jruoho if (msr.ps_control_mask != 0)
594 1.15 jruoho ps->ps_control_mask = msr.ps_control_mask;
595 1.15 jruoho
596 1.15 jruoho i++;
597 1.15 jruoho }
598 1.15 jruoho
599 1.15 jruoho return 0;
600 1.15 jruoho }
601 1.15 jruoho
602 1.41 jruoho /*
603 1.41 jruoho * Returns the percentage of the actual frequency in
604 1.41 jruoho * terms of the maximum frequency of the calling CPU
605 1.41 jruoho * since the last call. A value zero implies an error.
606 1.41 jruoho */
607 1.41 jruoho uint8_t
608 1.41 jruoho acpicpu_md_pstate_percent(struct acpicpu_softc *sc)
609 1.41 jruoho {
610 1.41 jruoho struct cpu_info *ci = sc->sc_ci;
611 1.41 jruoho uint64_t aperf, mperf;
612 1.41 jruoho uint64_t xc, rv = 0;
613 1.41 jruoho
614 1.41 jruoho if (__predict_false((sc->sc_flags & ACPICPU_FLAG_P) == 0))
615 1.41 jruoho return 0;
616 1.41 jruoho
617 1.41 jruoho if (__predict_false((sc->sc_flags & ACPICPU_FLAG_P_HW) == 0))
618 1.41 jruoho return 0;
619 1.41 jruoho
620 1.41 jruoho /*
621 1.41 jruoho * Read the IA32_APERF and IA32_MPERF counters. The first
622 1.41 jruoho * increments at the rate of the fixed maximum frequency
623 1.41 jruoho * configured during the boot, whereas APERF counts at the
624 1.41 jruoho * rate of the actual frequency. Note that the MSRs must be
625 1.41 jruoho * read without delay, and that only the ratio between
626 1.41 jruoho * IA32_APERF and IA32_MPERF is architecturally defined.
627 1.41 jruoho *
628 1.41 jruoho * For further details, refer to:
629 1.41 jruoho *
630 1.41 jruoho * Intel Corporation: Intel 64 and IA-32 Architectures
631 1.41 jruoho * Software Developer's Manual. Section 13.2, Volume 3A:
632 1.41 jruoho * System Programming Guide, Part 1. July, 2008.
633 1.42 jruoho *
634 1.42 jruoho * Advanced Micro Devices: BIOS and Kernel Developer's
635 1.42 jruoho * Guide (BKDG) for AMD Family 10h Processors. Section
636 1.42 jruoho * 2.4.5, Revision 3.48, April 2010.
637 1.41 jruoho */
638 1.41 jruoho x86_disable_intr();
639 1.41 jruoho
640 1.41 jruoho aperf = sc->sc_pstate_aperf;
641 1.41 jruoho mperf = sc->sc_pstate_mperf;
642 1.41 jruoho
643 1.41 jruoho xc = xc_unicast(0, acpicpu_md_pstate_percent_status, sc, NULL, ci);
644 1.41 jruoho xc_wait(xc);
645 1.41 jruoho
646 1.41 jruoho x86_enable_intr();
647 1.41 jruoho
648 1.41 jruoho aperf = sc->sc_pstate_aperf - aperf;
649 1.41 jruoho mperf = sc->sc_pstate_mperf - mperf;
650 1.41 jruoho
651 1.41 jruoho if (__predict_true(mperf != 0))
652 1.41 jruoho rv = (aperf * 100) / mperf;
653 1.41 jruoho
654 1.41 jruoho return rv;
655 1.41 jruoho }
656 1.41 jruoho
657 1.41 jruoho static void
658 1.41 jruoho acpicpu_md_pstate_percent_status(void *arg1, void *arg2)
659 1.41 jruoho {
660 1.41 jruoho struct acpicpu_softc *sc = arg1;
661 1.41 jruoho
662 1.41 jruoho sc->sc_pstate_aperf = rdmsr(MSR_APERF);
663 1.41 jruoho sc->sc_pstate_mperf = rdmsr(MSR_MPERF);
664 1.41 jruoho }
665 1.41 jruoho
666 1.41 jruoho static void
667 1.41 jruoho acpicpu_md_pstate_percent_reset(struct acpicpu_softc *sc)
668 1.41 jruoho {
669 1.46 jruoho struct msr_rw_info msr;
670 1.46 jruoho uint64_t xc;
671 1.41 jruoho
672 1.41 jruoho KASSERT((sc->sc_flags & ACPICPU_FLAG_P) != 0);
673 1.41 jruoho KASSERT((sc->sc_flags & ACPICPU_FLAG_P_HW) != 0);
674 1.41 jruoho
675 1.46 jruoho msr.msr_value = 0;
676 1.46 jruoho msr.msr_read = false;
677 1.46 jruoho msr.msr_type = MSR_APERF;
678 1.46 jruoho
679 1.46 jruoho xc = xc_broadcast(0, (xcfunc_t)x86_msr_xcall, &msr, NULL);
680 1.46 jruoho xc_wait(xc);
681 1.46 jruoho
682 1.46 jruoho msr.msr_value = 0;
683 1.46 jruoho msr.msr_read = false;
684 1.46 jruoho msr.msr_type = MSR_MPERF;
685 1.46 jruoho
686 1.46 jruoho xc = xc_broadcast(0, (xcfunc_t)x86_msr_xcall, &msr, NULL);
687 1.46 jruoho xc_wait(xc);
688 1.41 jruoho
689 1.41 jruoho sc->sc_pstate_aperf = 0;
690 1.41 jruoho sc->sc_pstate_mperf = 0;
691 1.41 jruoho }
692 1.41 jruoho
693 1.15 jruoho int
694 1.15 jruoho acpicpu_md_pstate_get(struct acpicpu_softc *sc, uint32_t *freq)
695 1.15 jruoho {
696 1.15 jruoho struct acpicpu_pstate *ps = NULL;
697 1.15 jruoho uint64_t val;
698 1.15 jruoho uint32_t i;
699 1.15 jruoho
700 1.32 jruoho if ((sc->sc_flags & ACPICPU_FLAG_P_FIDVID) != 0)
701 1.32 jruoho return acpicpu_md_pstate_fidvid_get(sc, freq);
702 1.32 jruoho
703 1.15 jruoho for (i = 0; i < sc->sc_pstate_count; i++) {
704 1.15 jruoho
705 1.15 jruoho ps = &sc->sc_pstate[i];
706 1.15 jruoho
707 1.32 jruoho if (__predict_true(ps->ps_freq != 0))
708 1.15 jruoho break;
709 1.15 jruoho }
710 1.15 jruoho
711 1.15 jruoho if (__predict_false(ps == NULL))
712 1.17 jruoho return ENODEV;
713 1.15 jruoho
714 1.28 jruoho if (__predict_false(ps->ps_status_addr == 0))
715 1.13 jruoho return EINVAL;
716 1.5 jruoho
717 1.13 jruoho val = rdmsr(ps->ps_status_addr);
718 1.5 jruoho
719 1.28 jruoho if (__predict_true(ps->ps_status_mask != 0))
720 1.13 jruoho val = val & ps->ps_status_mask;
721 1.5 jruoho
722 1.13 jruoho for (i = 0; i < sc->sc_pstate_count; i++) {
723 1.5 jruoho
724 1.13 jruoho ps = &sc->sc_pstate[i];
725 1.5 jruoho
726 1.32 jruoho if (__predict_false(ps->ps_freq == 0))
727 1.13 jruoho continue;
728 1.5 jruoho
729 1.29 jruoho if (val == ps->ps_status) {
730 1.13 jruoho *freq = ps->ps_freq;
731 1.13 jruoho return 0;
732 1.13 jruoho }
733 1.5 jruoho }
734 1.5 jruoho
735 1.13 jruoho return EIO;
736 1.5 jruoho }
737 1.5 jruoho
738 1.5 jruoho int
739 1.5 jruoho acpicpu_md_pstate_set(struct acpicpu_pstate *ps)
740 1.5 jruoho {
741 1.5 jruoho struct msr_rw_info msr;
742 1.14 jruoho uint64_t xc;
743 1.14 jruoho int rv = 0;
744 1.5 jruoho
745 1.37 jruoho if (__predict_false(ps->ps_control_addr == 0))
746 1.37 jruoho return EINVAL;
747 1.37 jruoho
748 1.32 jruoho if ((ps->ps_flags & ACPICPU_FLAG_P_FIDVID) != 0)
749 1.32 jruoho return acpicpu_md_pstate_fidvid_set(ps);
750 1.32 jruoho
751 1.13 jruoho msr.msr_read = false;
752 1.13 jruoho msr.msr_type = ps->ps_control_addr;
753 1.13 jruoho msr.msr_value = ps->ps_control;
754 1.13 jruoho
755 1.24 jruoho if (__predict_true(ps->ps_control_mask != 0)) {
756 1.13 jruoho msr.msr_mask = ps->ps_control_mask;
757 1.13 jruoho msr.msr_read = true;
758 1.13 jruoho }
759 1.13 jruoho
760 1.5 jruoho xc = xc_broadcast(0, (xcfunc_t)x86_msr_xcall, &msr, NULL);
761 1.5 jruoho xc_wait(xc);
762 1.5 jruoho
763 1.36 jruoho /*
764 1.36 jruoho * Due several problems, we bypass the
765 1.36 jruoho * relatively expensive status check.
766 1.36 jruoho */
767 1.36 jruoho if (acpicpu_pstate_status != true) {
768 1.33 jruoho DELAY(ps->ps_latency);
769 1.33 jruoho return 0;
770 1.33 jruoho }
771 1.13 jruoho
772 1.14 jruoho xc = xc_broadcast(0, (xcfunc_t)acpicpu_md_pstate_status, ps, &rv);
773 1.14 jruoho xc_wait(xc);
774 1.14 jruoho
775 1.14 jruoho return rv;
776 1.14 jruoho }
777 1.14 jruoho
778 1.14 jruoho static void
779 1.14 jruoho acpicpu_md_pstate_status(void *arg1, void *arg2)
780 1.14 jruoho {
781 1.14 jruoho struct acpicpu_pstate *ps = arg1;
782 1.14 jruoho uint64_t val;
783 1.14 jruoho int i;
784 1.14 jruoho
785 1.5 jruoho for (i = val = 0; i < ACPICPU_P_STATE_RETRY; i++) {
786 1.5 jruoho
787 1.13 jruoho val = rdmsr(ps->ps_status_addr);
788 1.13 jruoho
789 1.24 jruoho if (__predict_true(ps->ps_status_mask != 0))
790 1.13 jruoho val = val & ps->ps_status_mask;
791 1.5 jruoho
792 1.29 jruoho if (val == ps->ps_status)
793 1.14 jruoho return;
794 1.5 jruoho
795 1.5 jruoho DELAY(ps->ps_latency);
796 1.5 jruoho }
797 1.5 jruoho
798 1.14 jruoho *(uintptr_t *)arg2 = EAGAIN;
799 1.5 jruoho }
800 1.10 jruoho
801 1.32 jruoho static int
802 1.32 jruoho acpicpu_md_pstate_fidvid_get(struct acpicpu_softc *sc, uint32_t *freq)
803 1.32 jruoho {
804 1.32 jruoho struct acpicpu_pstate *ps;
805 1.32 jruoho uint32_t fid, i, vid;
806 1.32 jruoho uint32_t cfid, cvid;
807 1.32 jruoho int rv;
808 1.32 jruoho
809 1.32 jruoho /*
810 1.32 jruoho * AMD family 0Fh needs special treatment.
811 1.32 jruoho * While it wants to use ACPI, it does not
812 1.32 jruoho * comply with the ACPI specifications.
813 1.32 jruoho */
814 1.32 jruoho rv = acpicpu_md_pstate_fidvid_read(&cfid, &cvid);
815 1.32 jruoho
816 1.32 jruoho if (rv != 0)
817 1.32 jruoho return rv;
818 1.32 jruoho
819 1.32 jruoho for (i = 0; i < sc->sc_pstate_count; i++) {
820 1.32 jruoho
821 1.32 jruoho ps = &sc->sc_pstate[i];
822 1.32 jruoho
823 1.32 jruoho if (__predict_false(ps->ps_freq == 0))
824 1.32 jruoho continue;
825 1.32 jruoho
826 1.32 jruoho fid = __SHIFTOUT(ps->ps_status, ACPI_0FH_STATUS_FID);
827 1.32 jruoho vid = __SHIFTOUT(ps->ps_status, ACPI_0FH_STATUS_VID);
828 1.32 jruoho
829 1.32 jruoho if (cfid == fid && cvid == vid) {
830 1.32 jruoho *freq = ps->ps_freq;
831 1.32 jruoho return 0;
832 1.32 jruoho }
833 1.32 jruoho }
834 1.32 jruoho
835 1.32 jruoho return EIO;
836 1.32 jruoho }
837 1.32 jruoho
838 1.32 jruoho static int
839 1.32 jruoho acpicpu_md_pstate_fidvid_set(struct acpicpu_pstate *ps)
840 1.32 jruoho {
841 1.32 jruoho const uint64_t ctrl = ps->ps_control;
842 1.32 jruoho uint32_t cfid, cvid, fid, i, irt;
843 1.32 jruoho uint32_t pll, vco_cfid, vco_fid;
844 1.32 jruoho uint32_t val, vid, vst;
845 1.32 jruoho int rv;
846 1.32 jruoho
847 1.32 jruoho rv = acpicpu_md_pstate_fidvid_read(&cfid, &cvid);
848 1.32 jruoho
849 1.32 jruoho if (rv != 0)
850 1.32 jruoho return rv;
851 1.32 jruoho
852 1.32 jruoho fid = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_FID);
853 1.32 jruoho vid = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_VID);
854 1.32 jruoho irt = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_IRT);
855 1.32 jruoho vst = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_VST);
856 1.32 jruoho pll = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_PLL);
857 1.32 jruoho
858 1.32 jruoho vst = vst * 20;
859 1.32 jruoho pll = pll * 1000 / 5;
860 1.32 jruoho irt = 10 * __BIT(irt);
861 1.32 jruoho
862 1.32 jruoho /*
863 1.32 jruoho * Phase 1.
864 1.32 jruoho */
865 1.32 jruoho while (cvid > vid) {
866 1.32 jruoho
867 1.32 jruoho val = 1 << __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_MVS);
868 1.32 jruoho val = (val > cvid) ? 0 : cvid - val;
869 1.32 jruoho
870 1.32 jruoho acpicpu_md_pstate_fidvid_write(cfid, val, 1, vst);
871 1.32 jruoho rv = acpicpu_md_pstate_fidvid_read(NULL, &cvid);
872 1.32 jruoho
873 1.32 jruoho if (rv != 0)
874 1.32 jruoho return rv;
875 1.32 jruoho }
876 1.32 jruoho
877 1.32 jruoho i = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_RVO);
878 1.32 jruoho
879 1.32 jruoho for (; i > 0 && cvid > 0; --i) {
880 1.32 jruoho
881 1.32 jruoho acpicpu_md_pstate_fidvid_write(cfid, cvid - 1, 1, vst);
882 1.32 jruoho rv = acpicpu_md_pstate_fidvid_read(NULL, &cvid);
883 1.32 jruoho
884 1.32 jruoho if (rv != 0)
885 1.32 jruoho return rv;
886 1.32 jruoho }
887 1.32 jruoho
888 1.32 jruoho /*
889 1.32 jruoho * Phase 2.
890 1.32 jruoho */
891 1.32 jruoho if (cfid != fid) {
892 1.32 jruoho
893 1.32 jruoho vco_fid = FID_TO_VCO_FID(fid);
894 1.32 jruoho vco_cfid = FID_TO_VCO_FID(cfid);
895 1.32 jruoho
896 1.32 jruoho while (abs(vco_fid - vco_cfid) > 2) {
897 1.32 jruoho
898 1.32 jruoho if (fid <= cfid)
899 1.32 jruoho val = cfid - 2;
900 1.32 jruoho else {
901 1.32 jruoho val = (cfid > 6) ? cfid + 2 :
902 1.32 jruoho FID_TO_VCO_FID(cfid) + 2;
903 1.32 jruoho }
904 1.32 jruoho
905 1.32 jruoho acpicpu_md_pstate_fidvid_write(val, cvid, pll, irt);
906 1.32 jruoho rv = acpicpu_md_pstate_fidvid_read(&cfid, NULL);
907 1.32 jruoho
908 1.32 jruoho if (rv != 0)
909 1.32 jruoho return rv;
910 1.32 jruoho
911 1.32 jruoho vco_cfid = FID_TO_VCO_FID(cfid);
912 1.32 jruoho }
913 1.32 jruoho
914 1.32 jruoho acpicpu_md_pstate_fidvid_write(fid, cvid, pll, irt);
915 1.32 jruoho rv = acpicpu_md_pstate_fidvid_read(&cfid, NULL);
916 1.32 jruoho
917 1.32 jruoho if (rv != 0)
918 1.32 jruoho return rv;
919 1.32 jruoho }
920 1.32 jruoho
921 1.32 jruoho /*
922 1.32 jruoho * Phase 3.
923 1.32 jruoho */
924 1.32 jruoho if (cvid != vid) {
925 1.32 jruoho
926 1.32 jruoho acpicpu_md_pstate_fidvid_write(cfid, vid, 1, vst);
927 1.32 jruoho rv = acpicpu_md_pstate_fidvid_read(NULL, &cvid);
928 1.32 jruoho
929 1.32 jruoho if (rv != 0)
930 1.32 jruoho return rv;
931 1.32 jruoho }
932 1.32 jruoho
933 1.32 jruoho if (cfid != fid || cvid != vid)
934 1.32 jruoho return EIO;
935 1.32 jruoho
936 1.32 jruoho return 0;
937 1.32 jruoho }
938 1.32 jruoho
939 1.32 jruoho static int
940 1.32 jruoho acpicpu_md_pstate_fidvid_read(uint32_t *cfid, uint32_t *cvid)
941 1.32 jruoho {
942 1.32 jruoho int i = ACPICPU_P_STATE_RETRY * 100;
943 1.32 jruoho uint64_t val;
944 1.32 jruoho
945 1.32 jruoho do {
946 1.32 jruoho val = rdmsr(MSR_0FH_STATUS);
947 1.32 jruoho
948 1.32 jruoho } while (__SHIFTOUT(val, MSR_0FH_STATUS_PENDING) != 0 && --i >= 0);
949 1.32 jruoho
950 1.32 jruoho if (i == 0)
951 1.32 jruoho return EAGAIN;
952 1.32 jruoho
953 1.32 jruoho if (cfid != NULL)
954 1.32 jruoho *cfid = __SHIFTOUT(val, MSR_0FH_STATUS_CFID);
955 1.32 jruoho
956 1.32 jruoho if (cvid != NULL)
957 1.32 jruoho *cvid = __SHIFTOUT(val, MSR_0FH_STATUS_CVID);
958 1.32 jruoho
959 1.32 jruoho return 0;
960 1.32 jruoho }
961 1.32 jruoho
962 1.32 jruoho static void
963 1.32 jruoho acpicpu_md_pstate_fidvid_write(uint32_t fid,
964 1.32 jruoho uint32_t vid, uint32_t cnt, uint32_t tmo)
965 1.32 jruoho {
966 1.32 jruoho struct msr_rw_info msr;
967 1.32 jruoho uint64_t xc;
968 1.32 jruoho
969 1.32 jruoho msr.msr_read = false;
970 1.32 jruoho msr.msr_type = MSR_0FH_CONTROL;
971 1.32 jruoho msr.msr_value = 0;
972 1.32 jruoho
973 1.32 jruoho msr.msr_value |= __SHIFTIN(fid, MSR_0FH_CONTROL_FID);
974 1.32 jruoho msr.msr_value |= __SHIFTIN(vid, MSR_0FH_CONTROL_VID);
975 1.32 jruoho msr.msr_value |= __SHIFTIN(cnt, MSR_0FH_CONTROL_CNT);
976 1.32 jruoho msr.msr_value |= __SHIFTIN(0x1, MSR_0FH_CONTROL_CHG);
977 1.32 jruoho
978 1.32 jruoho xc = xc_broadcast(0, (xcfunc_t)x86_msr_xcall, &msr, NULL);
979 1.32 jruoho xc_wait(xc);
980 1.32 jruoho
981 1.32 jruoho DELAY(tmo);
982 1.32 jruoho }
983 1.32 jruoho
984 1.10 jruoho int
985 1.10 jruoho acpicpu_md_tstate_get(struct acpicpu_softc *sc, uint32_t *percent)
986 1.10 jruoho {
987 1.10 jruoho struct acpicpu_tstate *ts;
988 1.14 jruoho uint64_t val;
989 1.10 jruoho uint32_t i;
990 1.10 jruoho
991 1.14 jruoho val = rdmsr(MSR_THERM_CONTROL);
992 1.10 jruoho
993 1.10 jruoho for (i = 0; i < sc->sc_tstate_count; i++) {
994 1.10 jruoho
995 1.10 jruoho ts = &sc->sc_tstate[i];
996 1.10 jruoho
997 1.10 jruoho if (ts->ts_percent == 0)
998 1.10 jruoho continue;
999 1.10 jruoho
1000 1.29 jruoho if (val == ts->ts_status) {
1001 1.10 jruoho *percent = ts->ts_percent;
1002 1.10 jruoho return 0;
1003 1.10 jruoho }
1004 1.10 jruoho }
1005 1.10 jruoho
1006 1.10 jruoho return EIO;
1007 1.10 jruoho }
1008 1.10 jruoho
1009 1.10 jruoho int
1010 1.10 jruoho acpicpu_md_tstate_set(struct acpicpu_tstate *ts)
1011 1.10 jruoho {
1012 1.10 jruoho struct msr_rw_info msr;
1013 1.14 jruoho uint64_t xc;
1014 1.14 jruoho int rv = 0;
1015 1.10 jruoho
1016 1.14 jruoho msr.msr_read = true;
1017 1.14 jruoho msr.msr_type = MSR_THERM_CONTROL;
1018 1.14 jruoho msr.msr_value = ts->ts_control;
1019 1.14 jruoho msr.msr_mask = __BITS(1, 4);
1020 1.10 jruoho
1021 1.10 jruoho xc = xc_broadcast(0, (xcfunc_t)x86_msr_xcall, &msr, NULL);
1022 1.10 jruoho xc_wait(xc);
1023 1.10 jruoho
1024 1.30 jruoho if (ts->ts_status == 0) {
1025 1.30 jruoho DELAY(ts->ts_latency);
1026 1.10 jruoho return 0;
1027 1.30 jruoho }
1028 1.10 jruoho
1029 1.14 jruoho xc = xc_broadcast(0, (xcfunc_t)acpicpu_md_tstate_status, ts, &rv);
1030 1.14 jruoho xc_wait(xc);
1031 1.14 jruoho
1032 1.14 jruoho return rv;
1033 1.14 jruoho }
1034 1.14 jruoho
1035 1.14 jruoho static void
1036 1.14 jruoho acpicpu_md_tstate_status(void *arg1, void *arg2)
1037 1.14 jruoho {
1038 1.14 jruoho struct acpicpu_tstate *ts = arg1;
1039 1.14 jruoho uint64_t val;
1040 1.14 jruoho int i;
1041 1.14 jruoho
1042 1.10 jruoho for (i = val = 0; i < ACPICPU_T_STATE_RETRY; i++) {
1043 1.10 jruoho
1044 1.14 jruoho val = rdmsr(MSR_THERM_CONTROL);
1045 1.10 jruoho
1046 1.29 jruoho if (val == ts->ts_status)
1047 1.14 jruoho return;
1048 1.10 jruoho
1049 1.10 jruoho DELAY(ts->ts_latency);
1050 1.10 jruoho }
1051 1.10 jruoho
1052 1.14 jruoho *(uintptr_t *)arg2 = EAGAIN;
1053 1.10 jruoho }
1054 1.19 jruoho
1055 1.19 jruoho /*
1056 1.19 jruoho * A kludge for backwards compatibility.
1057 1.19 jruoho */
1058 1.19 jruoho static int
1059 1.19 jruoho acpicpu_md_pstate_sysctl_init(void)
1060 1.19 jruoho {
1061 1.19 jruoho const struct sysctlnode *fnode, *mnode, *rnode;
1062 1.19 jruoho const char *str;
1063 1.19 jruoho int rv;
1064 1.19 jruoho
1065 1.19 jruoho switch (cpu_vendor) {
1066 1.19 jruoho
1067 1.19 jruoho case CPUVENDOR_IDT:
1068 1.19 jruoho case CPUVENDOR_INTEL:
1069 1.19 jruoho str = "est";
1070 1.19 jruoho break;
1071 1.19 jruoho
1072 1.19 jruoho case CPUVENDOR_AMD:
1073 1.19 jruoho str = "powernow";
1074 1.19 jruoho break;
1075 1.19 jruoho
1076 1.19 jruoho default:
1077 1.19 jruoho return ENODEV;
1078 1.19 jruoho }
1079 1.19 jruoho
1080 1.19 jruoho
1081 1.19 jruoho rv = sysctl_createv(&acpicpu_log, 0, NULL, &rnode,
1082 1.19 jruoho CTLFLAG_PERMANENT, CTLTYPE_NODE, "machdep", NULL,
1083 1.19 jruoho NULL, 0, NULL, 0, CTL_MACHDEP, CTL_EOL);
1084 1.19 jruoho
1085 1.19 jruoho if (rv != 0)
1086 1.19 jruoho goto fail;
1087 1.19 jruoho
1088 1.19 jruoho rv = sysctl_createv(&acpicpu_log, 0, &rnode, &mnode,
1089 1.19 jruoho 0, CTLTYPE_NODE, str, NULL,
1090 1.19 jruoho NULL, 0, NULL, 0, CTL_CREATE, CTL_EOL);
1091 1.19 jruoho
1092 1.19 jruoho if (rv != 0)
1093 1.19 jruoho goto fail;
1094 1.19 jruoho
1095 1.19 jruoho rv = sysctl_createv(&acpicpu_log, 0, &mnode, &fnode,
1096 1.19 jruoho 0, CTLTYPE_NODE, "frequency", NULL,
1097 1.19 jruoho NULL, 0, NULL, 0, CTL_CREATE, CTL_EOL);
1098 1.19 jruoho
1099 1.19 jruoho if (rv != 0)
1100 1.19 jruoho goto fail;
1101 1.19 jruoho
1102 1.19 jruoho rv = sysctl_createv(&acpicpu_log, 0, &fnode, &rnode,
1103 1.19 jruoho CTLFLAG_READWRITE, CTLTYPE_INT, "target", NULL,
1104 1.19 jruoho acpicpu_md_pstate_sysctl_set, 0, NULL, 0, CTL_CREATE, CTL_EOL);
1105 1.19 jruoho
1106 1.19 jruoho if (rv != 0)
1107 1.19 jruoho goto fail;
1108 1.19 jruoho
1109 1.19 jruoho rv = sysctl_createv(&acpicpu_log, 0, &fnode, &rnode,
1110 1.19 jruoho CTLFLAG_READONLY, CTLTYPE_INT, "current", NULL,
1111 1.19 jruoho acpicpu_md_pstate_sysctl_get, 0, NULL, 0, CTL_CREATE, CTL_EOL);
1112 1.19 jruoho
1113 1.19 jruoho if (rv != 0)
1114 1.19 jruoho goto fail;
1115 1.19 jruoho
1116 1.19 jruoho rv = sysctl_createv(&acpicpu_log, 0, &fnode, &rnode,
1117 1.19 jruoho CTLFLAG_READONLY, CTLTYPE_STRING, "available", NULL,
1118 1.19 jruoho acpicpu_md_pstate_sysctl_all, 0, NULL, 0, CTL_CREATE, CTL_EOL);
1119 1.19 jruoho
1120 1.19 jruoho if (rv != 0)
1121 1.19 jruoho goto fail;
1122 1.19 jruoho
1123 1.19 jruoho return 0;
1124 1.19 jruoho
1125 1.19 jruoho fail:
1126 1.19 jruoho if (acpicpu_log != NULL) {
1127 1.19 jruoho sysctl_teardown(&acpicpu_log);
1128 1.19 jruoho acpicpu_log = NULL;
1129 1.19 jruoho }
1130 1.19 jruoho
1131 1.19 jruoho return rv;
1132 1.19 jruoho }
1133 1.19 jruoho
1134 1.19 jruoho static int
1135 1.19 jruoho acpicpu_md_pstate_sysctl_get(SYSCTLFN_ARGS)
1136 1.19 jruoho {
1137 1.19 jruoho struct cpu_info *ci = curcpu();
1138 1.19 jruoho struct acpicpu_softc *sc;
1139 1.19 jruoho struct sysctlnode node;
1140 1.19 jruoho uint32_t freq;
1141 1.19 jruoho int err;
1142 1.19 jruoho
1143 1.19 jruoho sc = acpicpu_sc[ci->ci_acpiid];
1144 1.19 jruoho
1145 1.19 jruoho if (sc == NULL)
1146 1.19 jruoho return ENXIO;
1147 1.19 jruoho
1148 1.19 jruoho err = acpicpu_pstate_get(sc, &freq);
1149 1.19 jruoho
1150 1.19 jruoho if (err != 0)
1151 1.19 jruoho return err;
1152 1.19 jruoho
1153 1.19 jruoho node = *rnode;
1154 1.19 jruoho node.sysctl_data = &freq;
1155 1.19 jruoho
1156 1.19 jruoho err = sysctl_lookup(SYSCTLFN_CALL(&node));
1157 1.19 jruoho
1158 1.19 jruoho if (err != 0 || newp == NULL)
1159 1.19 jruoho return err;
1160 1.19 jruoho
1161 1.19 jruoho return 0;
1162 1.19 jruoho }
1163 1.19 jruoho
1164 1.19 jruoho static int
1165 1.19 jruoho acpicpu_md_pstate_sysctl_set(SYSCTLFN_ARGS)
1166 1.19 jruoho {
1167 1.19 jruoho struct cpu_info *ci = curcpu();
1168 1.19 jruoho struct acpicpu_softc *sc;
1169 1.19 jruoho struct sysctlnode node;
1170 1.19 jruoho uint32_t freq;
1171 1.19 jruoho int err;
1172 1.19 jruoho
1173 1.19 jruoho sc = acpicpu_sc[ci->ci_acpiid];
1174 1.19 jruoho
1175 1.19 jruoho if (sc == NULL)
1176 1.19 jruoho return ENXIO;
1177 1.19 jruoho
1178 1.19 jruoho err = acpicpu_pstate_get(sc, &freq);
1179 1.19 jruoho
1180 1.19 jruoho if (err != 0)
1181 1.19 jruoho return err;
1182 1.19 jruoho
1183 1.19 jruoho node = *rnode;
1184 1.19 jruoho node.sysctl_data = &freq;
1185 1.19 jruoho
1186 1.19 jruoho err = sysctl_lookup(SYSCTLFN_CALL(&node));
1187 1.19 jruoho
1188 1.19 jruoho if (err != 0 || newp == NULL)
1189 1.19 jruoho return err;
1190 1.19 jruoho
1191 1.19 jruoho err = acpicpu_pstate_set(sc, freq);
1192 1.19 jruoho
1193 1.19 jruoho if (err != 0)
1194 1.19 jruoho return err;
1195 1.19 jruoho
1196 1.19 jruoho return 0;
1197 1.19 jruoho }
1198 1.19 jruoho
1199 1.19 jruoho static int
1200 1.19 jruoho acpicpu_md_pstate_sysctl_all(SYSCTLFN_ARGS)
1201 1.19 jruoho {
1202 1.19 jruoho struct cpu_info *ci = curcpu();
1203 1.19 jruoho struct acpicpu_softc *sc;
1204 1.19 jruoho struct sysctlnode node;
1205 1.19 jruoho char buf[1024];
1206 1.19 jruoho size_t len;
1207 1.19 jruoho uint32_t i;
1208 1.19 jruoho int err;
1209 1.19 jruoho
1210 1.19 jruoho sc = acpicpu_sc[ci->ci_acpiid];
1211 1.19 jruoho
1212 1.19 jruoho if (sc == NULL)
1213 1.19 jruoho return ENXIO;
1214 1.19 jruoho
1215 1.19 jruoho (void)memset(&buf, 0, sizeof(buf));
1216 1.19 jruoho
1217 1.19 jruoho mutex_enter(&sc->sc_mtx);
1218 1.19 jruoho
1219 1.19 jruoho for (len = 0, i = sc->sc_pstate_max; i < sc->sc_pstate_count; i++) {
1220 1.19 jruoho
1221 1.19 jruoho if (sc->sc_pstate[i].ps_freq == 0)
1222 1.19 jruoho continue;
1223 1.19 jruoho
1224 1.19 jruoho len += snprintf(buf + len, sizeof(buf) - len, "%u%s",
1225 1.19 jruoho sc->sc_pstate[i].ps_freq,
1226 1.19 jruoho i < (sc->sc_pstate_count - 1) ? " " : "");
1227 1.19 jruoho }
1228 1.19 jruoho
1229 1.19 jruoho mutex_exit(&sc->sc_mtx);
1230 1.19 jruoho
1231 1.19 jruoho node = *rnode;
1232 1.19 jruoho node.sysctl_data = buf;
1233 1.19 jruoho
1234 1.19 jruoho err = sysctl_lookup(SYSCTLFN_CALL(&node));
1235 1.19 jruoho
1236 1.19 jruoho if (err != 0 || newp == NULL)
1237 1.19 jruoho return err;
1238 1.19 jruoho
1239 1.19 jruoho return 0;
1240 1.19 jruoho }
1241 1.19 jruoho
1242